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1. FUNDAMETAL RELATIONS

Introduction A

-----'ThE calibration of electroacoustic transducers with respect to a
field involves the pressure in a free plane wave, In actual practice,
however, the calibration is always produced in a quasi-spherical field
of real transducers. The results give, within a certain degree of
accuracy, the desired value of the sensitivity of the transducer for both
reception and transmission. Of course, a sufficiently detailed examina-
tion of the conditions of the calibration should be made before the
practical measurements are carried out.

The theory of the reciprocity method of absolute calibration of
• electroacoustic transducers in a spherical wave has been examined in a

series of articles-/1-4/-. Nonetheless, the theory has not been complete
until now. The fundamental deficiency of the theory as it appears in the
literature is the failure to take into account all of the conditions of
measurement, particularly the mutual effect of the finite dimensions of
the participating transducers on each other, and the difference between
the actual conditions of calibration in ashextcal wave and the ideal
conditions for a free plane-wave field./ Thus, some of the questions con-
cerning minimum calibration distance and the quantitative determination
of sensitivity in a spherical-wave field have not been investigated.

In the present article, the complete and accurate theory of the
reciprocity method of calibrating electroacoustic transducers in a
spherical-wave field is presented, and also analytical and experimental
investigations of the fundamental conditions for practical application
of the method. The development of the theory is based on the electro-
acoustical reciprocity theorem, a direct proof of which is given first.
As a result of the analysis, "calibration distance" for real transducers
is introduced, the range of minimum distance for calibration with a
specified degree of accuracy is fixed, and analytical means of improving
the accuracy are presented.

Electroacoustical Reciprocity Theorem

The derivation of the equations for reciprocity calibration is based
on the application of the electroacoustical reciprocity theorem, which
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involves relations between voltage and current at the terminals of one
linear reversible transducer in an infinite or a bounded sound-conducting
medium and the distribution of pressure or particle velocity on the sur-
face of another (usually auxiliary) transducer in the same medium.

ThR form of the reciprocity theorem that is often used in practical
applications can be directly obtained from the well-known theorems for
acoustic fields /3/ and electroacoustical transducers /4/.

We will consider the general form of the acoustical system of a trans-
ducer as a single vibrating surface. We will designate by I', V', n"I
p' and I", V", SOn" , p" arbitrary values of current and voltage on the
electrical terminals and, corresponding to them, the distribution on the
surface S of normal particle velocity and pressure for two conditions as
indicated by a single or a double prime.

The theorem of reciprocity for such transducers is

f(ptf - P"4')ds - (MI" - V"I') O (1)
S n n

We note that the absolute value of the quantity (V'I" - V"I') in this
expression is independent of the type of electromechanical coupling.

The differential form of the reciprocity theorem for the elastic
medium that surrounds the transducer, in the absence of mass forces, is
given by the expression

div (pilt - pttl) = 0, (2)

where y', p' and i", p" are the distribution of particle velocities and
pressure in the sound-conducting medium when it is assumed that only
longitudinal waves are present.

We will assume th mediu to be infinite, and we will put into it a
system of two transducers S1 and S2.

Wo integrate relation (2) by appiying Green's theorem for volumes to
the exterior of the transducers involved. For this, we use expression (1)
and the condition of continuity on the surface of transducer S1, which,
by the accepted convention of signs, gives

P = p and nn

The result gives the desired electroacoustic reciprocity theorem for the
acoustical side in the integral form

(p'i" - p. ,)ds - (VI,,- V"I,) = (3)
S2

Assuming that /1/

= "ds, P" = (1/S2)s p'ds
S2  S2
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and, correspondingly,

Q1 JP!I) PIT 1 0/Q" p'%"ds,S2 S2

we will obtain the final form of the reciprocity theorem

(P'Q" - P"Q') - (v'1" - V"it) =, (4)

where P and Q correspond to the values of pressure and volume velocity on
the surface of transducer S2 .

To examine the meaning of the derived reciprocity relation, we con-
sider the special case of open-circuit conditions:

PQ"- E"I' =0, (5)

where Q' Oand I" =0.

For calibrations in a quasi-spherical field we can consider a small
pulsating sphere to be the theoretical source of the field, Under these
conditions, Q represents the radial volume-velocity of the pulsating
sphere and P, the pressure on its blocked surfacep is equal to the free-
field pressure.

The reciprocity theorem in the forms (3), (4), and (5) can also be
obtained in a similar manner for the condition when the transducers under
consideration and the sound-conducting medium surrounding them are bounded
by some arbitrarily vibrating surface. The integration of expression (3)
for this condition is carried out over the entire bounding surface, or,
if part of the surface is rigid, then over its nonrigid part. This
interpretation of the theorem is the basis for the derivation of calculated
expressions for pressure calibration in a finite tube /5/ for the particu-
lar case of a small chamber, and also for the calibration with respect to
the field in a semi-infinite tube /6/. It is convenient to consider here
that the auxiliary transducer is a theoretical source of the planar field
in the tube, as for instance, performing planar vibrations in the cross
section of the tube.

The reciprocity theorem that has been considered does not, in practice,
limit the form of the surface vibrations of the transducer. In an infinite
medium, the theorem permits also the presence in the medium of solid and
co-vibrating obstacles and of surfaces separating the medium into sections
having different acoustical impedances.

Calibration in a Quasi-Spherical Field

Let reversible electroacoustic transducer 1 be placed at point A, and
at point B, a distance d on the axis of transducer 1, put as an auxiliary
transducer a small pulsating sphere.

The current Irev through the transducer operating as a projector,

will cause at point B a free-field pressure PB; the radial volume velocity

QB of the pulsating sphoreq in its turn, will cause at point A a free
spherical wave PA and a corresponding open-circuit voltage Erev on the
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terminals of transducer 1 operating as a receiver. On the basis of this,
the pressure on the surface of transducer 1 can be calculated for total
pressure on its blocked surface by means of the following application of
Thevenin's theorems

PA(1 + 16)

1 + ( 1/Z1 )

where

t ' = (X1 + jy 1 )[ + j(X/2nd)]

[(X1 + iY1) =01 is a dimensionless coefficient in the expression for the

complete acoustical impedance of the transducer], C1 = (pc/S1)(X1 + jY1)
is the reaction of the free medium on the Q! cillating transducer (S1 is

the surface area of transducer 1), Z1 is the total acoustical impedance

of the mechanical system of the transducer.

When such a pressure exists in the field of a free plane wave, the
pressure acting on the surface of the transducer would be equal to

PA(1 + a,)

1 + ( 1/zl)

Let the sensitivity of the transduter operating as a receiver in a
sound field be represented by M, which is equal to the ratio of the
open-circuit voltage developed at the transducer terminals to the pressure
in a free field of plane progressive waves. Then the open-circuit volt-
age developed by the transducer as a result of the pressure acting on it
is

E =Mrev PA(1 + c1 )/(1 +c 1) o (8)

We now put at point B transducer 2 which is to be calibrated as a
receiver. We assume that at this point there exists a quasi-spherical
field from projector 1, and that

d > S1/X (9)

where d is the distance measured from the acoustic center of the trans-
ducer that is the source of the quasi-spherical wave. The pressure
acting on the surface of transducer 2 equals

PB(1 + 02') (10)

1 + ( 2 '/Z2 )(10)

where all of the symbols have the same meaning as in expression (6)
except that 4 1is the reaction of the medium on transducer 2 when it is

in the field of transducer 1.
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The pressure acting on transducer 2 in a plane progressive wave field
will be

PB(1 + 2 (i)

1 + ( 2/Z2)

Transducer 2 then develops an open-circuit voltage

(1 +, (z2 +'
Er = MrPB (12)

(0 + a2)(Z 2  + 1;2 )

We will now determine a meaning for 42' for which purpose we also

assume that

d >> S2/X . (13)

Then the pressure being created by transducer 2 at point A when the
volume velocity of its surface is Q2 can be written in the form

j (jpQ,2 /4nd)o

The volume velocity of the surface of transducer 1 that is caused by
this pressure will be equal to

wPQ2 (1 + a2

4nd(ZI +

Under these conditions we assume that the reaction of the medium does not
change in the field of transducer 2 operating ith fixed velocity and
having therefore infinite impedance. Such an approximation, generally
speaking, is permissible only if conditions (9) and (13) are satisfied.

This particle velocity causes on the surface of blocked -transducer 2
the pressure

/Q, 'J' 2 (1 + '1)( + a 2

Ti-d) ZI+

The total pressure will be equal to

Q PC wp 2(1 + 64i )(0 + 0'
2S 9 '"2 (d Z+r d1

Since the desired value for 2' equals P:(total)/Q2 then

1 2
21= r2 *i \- (1'J' ' (14)

2 2 Trd)Z

We will now make use of the reciprocity theorem (5) and will put into
it the values for voltage and pressure defined by the expressions (8)



and (12). Finally, we will perform the experiment being discussed, which
is considered the basic one in the well-known "scheme of three measure-
ments," and which gives the product of the sensitivities of the transducers
involved in the calibration in the form

4nd Er
rMrev C ,(15)up 'rev

where 47d/wp = 2dpc = H is the reciprocity parameter for spherical waves.

Relation (15) differs from the well-known relation by the field
coefficient C, which takes account of the mutual influence of the trans-
ducers on each other and the difference between the effective pressure on
the surface of the transducer in the spherical-wave field and the pressure
in a plane-wave field.

If the conditions of calibration are chosen so that C = 1, then the
calibration with respect to a quasi-spherical wave field can be carried
out. For this, it is sufficient, with the help of some third auxiliary
projector, to represent the receiving sensitivity of one of the basic
two transducers in terms of the sensitivity of the other one; that is,
to determine the ratio

Mrev Eev

Mr

where m is a coefficient representing, in a general case, the conditions
of measurement with respect to the current through the independent pro-
jector and the distance separating the transducers.

Combining (15) and (16), it is possible to obtain, for example, the
sensitivity of the receiver being calibrated

Mr= r (?)

rev E'ev m

but it is also possible to determine both the receiving and transmitting
sensitivities of all the remaining transducers involved in the calibra-
tion /1,3,.

gonditions of Calibration

We will consider the conditions under which the field coefficient C
* becomes approximately equal to one. We will write the expression for it

(1 +c 1 ( Ct + rY(1 +a P ( 1pc \2)1
We(1 l ')(1 that) the 2 (Z1 * 1 )(Z2 + 2 ) (2d

We will ssue that the distance between the transducers does not change

and that this distance is large compared to the dimension 2a of the
largest one of them; that is
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d >>2a. (19)

Then

1 1 1 +o

1 and 2 -,1 (20)
1 + C1 + O21

since, if d > A/2v, then A/2nd is a small quantity and cc. ; if now
d < X/2n, then ot and o' are small by comparison with unity by virtue of
the assumption of constant phase (d>),S/X ) and constant amplitude
(d >>2a) on all of the surface of the transducer. Having taken this into
consideration, we will obtain, from expression (18), the condition under
which the calibration will be independent of the input acoustical imped-
ance of the transducers participating in the measurement; the form of this
condition is

(z1 + 1 )(z 2 + 02) (-c (1 + &1)(1 + (21)C1)(2+ 2) (I oj2, (1

We will consider the frequency limits and the most unfavorable case,
that is, when both transducers are operating at their resonant frequen-
cies. Then

-1+ 91 (pc/S1JA1  and +Z2'a~,* = pc/)h nd 2 + :2 = (Pc/S2)X2°

For low frequencieS, 2na/\<< 1, and condition (21) takes the form
1 [sls 21

d >> (22)
2A X1X2J

For high frequencies, 2va/A >A, and condition (21) takes the form

d>> (2/X) (SlS 2)i, (23)

Here it is quite evident that the condition for the independence of
the calibration from the acoustical impedance of the transducers in-
volved in the measurement can be even more severe at high and especially
at low (that is, for small values of X) frequencies than the condition
for the presence of a quasi-spherical wave and the resemblance of this
wave to plane wave conditions (9), (13)9 and (19). The physical
meaning of this for'resonant transducers is that the effective surface
of absorption and scattering of such transducers can significantly
exceed the geometrical surface.

Extent of Quasi-Spherical Field

From the preceding analysis, it is quite evident that in practical
application of the method it is necessary first of all to determine the
extent of the quasi-spherical field by taking into account the finite
dimensions and the input acoustical impedance of the transducers.

It is well known from established theory that the region of Fraunhofer
diffraction is limited to a certain value of the wavelength ratio, which
is usually expressed merely by the inequality 6 = d/S> 1. It is not
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difficult to see that this parameter defines the boundary of the region
that has "a given degree of quasi-sphericity" in relative coordinates
d/2a and 2a/A in the following form

d 6 2a

2a 4 ,

A quantitative analytical determination of the region of the quasi-
spherical field for real transducers is difficult; it is, therefore)
expedient to determine the boundary experimentally. For this purpose,
we have carried out a series of measurements on the acoustic fields of
projector-receiver systems as a function of the distance between them0
The investigation involved the most common types of transducers with
conical and piston-type radiatng surfaces. The two most common cases
investigated wcie: transducers with equal surface area, and a pair in
which the surface of one was large compared to the surface of the nther.
To determine the relation between the transducers and the field, the
measurements were made at a series of frequencies (corresponding to
values of X0 in Figs. 1-3), which correspond to the resonant frequency

for one or both of the transducers. The measurements were made in a
free field in an undeadened chamber (additional details about this will
be given later). In each experiment, the projector remained stationary
while the receiver was moved. The field was determined from the voltage
developed by the receiver for a given current into the projector. The
position of the projector during the measurements was vaired to elimi-
nate the effect of inhomogeneity of the field, especially in an un-
deadened chamber.

The distance d was read from the center of the base of the cone for
transducers with a conical radiating surface, from the center of the
vibrating surface for transducers with plane diaphragms. Further measure-
ments of the acoustical field of a series of systems confirmed the fact
that the acoustical center of radiation for these transducers can be
taken as these points.

The average dependence p = O(d) determined from these experiments
are shown as follows:

Fig. 1. Conical radiators$ small receiver with plane diaphragm.

Fig. 2. Conical transducers of equal size.

Fig. 3. Transducers with plane rectangular and circular
diaphragms of equal size

From an examination of the results it is possible to conclude that
the boundary in a quasi-spherical field is rather sharp], defined. The
uncertainty about this boundary for smaller values of d/ 'a depends on the
ratio of transducer dimension to wavelength 2aA and bec -,es more sharp
as this ratio decreases. For a given ratio, particularl- for small values
of the ratio, the displacement of the boundary substantially depends on
the magnitude of the input acoustical impedance of the transduce.s, which
also permits distinguishing the cause of the distortion of the field.
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On the basis of the data thus obtained, we can establish the boundary
of the region of quasi-spherical field that is of interest to us. This
boundary has been plotted in Fig. 4; it represents the locus of the points
of discontinuity of the curves p = q(d).* Curve A is plotted for a system
of transducers with large input impedance, curve B for a system of equal-
sized transducers with low input impedance, curve C for a system of a
large and a small transducer with the large one having low input impedance. ii

The results of the experiment agree with the theoretical calculation
that has been made. For small values of 2aA, the form of the system of
transducers and the magnitudes of their input acoustical impedance sub-
stantially affect the boundary of the quasi-spherical field and then
significantly increase the minimal permissible calibration distance, for
which, as for medium and high values of 2a/A, the actual boundary
coincides with the theoretical one and is not affected by the reciprocal
influence of the transducers even if they are of the resonant typo.

It is possible to conclude from these results that the boundary of
the quasi-spherical field at the most used frequencies and for the most
commonly used types of transducers is restricted to comparatively short
distances-smaller than two or three times the dimensions of the largest
of the transducers

Coefficients of Conformity and Accuracy of M'asurements

We will consider the receiving region of a quasi-spherical field from
the point of view of the resemblance of a quasi-spherical field to a
plane-wave field. As a criterion of this resemblance, we can use the
quantities amplitude Ka and phase KO as coefficients of conformity, which
determine the difference between the integral pressure in a spherical and
in a plane wave caused respectively by the variation of amplitudes and
phases on the surface of a plane transducer.

Values of these coefficients for the most common systems of radiator
and receiver have been calculated and reproduced in a table0 In this
table, C(n/e) and S(iT/6) are tabulations of Fresnel integrals, C(r/6) =
SS C(n/6)ds, 1(n/e) = f s S(v/e). Calculation of C(ii/e) and S(U/6) yields
integrals for the surface of one transducer, calculation of U(n/e) nnd
S(/) yield integrals for the surface of the other transducer

Numeric-d values for Ka and K4 for the cases covered by the table are
shown in Figs0 5 and 6, where it is assumed that a = b.

Attempts to calculate coefficients of conformity for systems that
include projectors and receivers having conical surfaces have not been
successful We will show later that coefficients for practical systems
are not necessary0

It is not difficult to see that the magnitudes of the coefficients of
conformity place additional limitations on the region of quasi-spherical
field within the boundaries of which calibration with respect to a field
can be carried out with a known degree of accuracy. In particular, iso-
line K, intersects the minimal distance of calibration at the ordinate
d/2a = O(Ka), and the value K4 gives iso-lines of conformity by means of

*Value of 2a/ = 31.3 taken from reference /7/.



the known e = o The desired accuracy of the result being established

by such means, it is possible to further define the region of minimal
distances of calibration.

Such a new region for a system consisting of a finite round projector
and a small receiver, for example with a known general coefficient of
field conformity K = K K = (0.98)(0.95) = 0.93, is shown in Fig. 4 by
dotted linesa

The selection of values for K a and K may substantially limit the

minimal distance of calibration. However, the most useful application
of the computed coefficient of conformity lies not in determining the
limit of the minimal distance of calibration but in the possibility of
increasing in many cases the accuracy of the method for calibrations
made in broader regions of a quasi-spherical field. For this, it is
obviously sufficient to increase the measured sensitivity of the trans-
ducer by the factor 1/KAK0 corresponding to the coordinates of measure-
ments 2a/2X and d/2ao

It will later be shown that the results obtaiaed above substantially
expand the experimental possibilities of the reciprocity method. In
particular, they are the basis of a generally available method of
absolute calibration with respect to a field in an undeadened chamber
that has been discussed by the author.

Conclusion

The theoretical and experimental investigations that have been carried
out permit us to conclude that the quasi-spherical field needed for the
practical application oi the reciprocity method for absolute calibration
of electroacoustic transducers with respect to a field exists only within
a comparatively small distance between transducers. This distance is the
minimal distance of calibration0  The accuracy that is obtained from
measurements by this method depends on the calibration distance, and can
be, if necessary, increased either by increasing the calibration dis-
tance or by introducing corrections for the phase and amplitude differences
between a spherical field and a plane field0

The conclusions reached here will be confirmed in the next section of
the article by the results of direct calibrations of transducers=

II. RESULTS OF EXPERIMENTS

t Introduction

A significantly smaller space in the literature is allotted to the
experimental proof of the method of reciprocity with respect to a field
than is allotted to its theory0  References /3,8,11/ are based on sim-
plified theory that excessively idealizes the conditions of measurement0
In particular, the calibration distance is assumed to be large by com-
parison with the dimensions of the transducers No attention is paid to
the difference between the sensitivity measured in a real quasi-spherical
field and sensitivity in an ideal plane-wave field; the very possibility
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of calibrati ,n under continuous-wave condition, is invariably made con-tingent upon the availability of ideal free-field conditions.

Neither do we find in the literature any comparison of the results
obtained from reciprocity calibration with respect to a field with
results obtained by other absolute methods of measurement, nor any
description of the worker's method of measurement.

We have considered above the principal features of practical cali-
bration with iespect to a field under c-w conditions. In particular,
we have given a geometrical sense to the concept of calibration distance,
and have shown that measurements can be made when the spacing between the
transducers is small, and have also noted means for increasing the
accuracy of results obtained from calibration measurements in a quasi-
spherical field.

In this section of the article, these results will be subjected to
further re-examination in connection with direct calibrations. It will
be shown that calibration at close distances removes some of the diffi-
culty of achieving true free-field conditions and that sufficiently
accurate measurements can be made in readily available anechoic and
reverberant chambers, and further that some of the difficulties asso-
ciated with providing auxiliary transducers sufficiently sensitive in a
wide frequency range have been reduced. An important section is allotted
to a description of the method of measurements, by means of which we have
succeeded in achieving a combination of simplicity and high accuracy of
measurement.

In conclusion, a comparison is made of the results obtained under
various conditions (free field, partially anechoic, and reverberant
chambers) and by various methcc: of absolute measurements (calibration
with respect to pressure by the reciprocity method in a tube and a small
chamber, the electrostatic method, calibration with respect to a field by
the Rayleigh disk method). The results are in good agreement.

Method of Measurements

The calibrations were made under c-w conditions. As is well know,
the low-frequency limit that is characteristic of the pulse method /9/
does not exist for c-w measurements. Another point on which the c-w
calibration is superior is, as will be shown below, the possibility of
using a simple electrical scheme for the measurements.

Fig. 7 shows the well-known scheme of three measurements which will
yield a calibration under c-w conditions, In this diagram: R (10) is a
receiver linear throughout the working range of pressure; P (14) is a
projector linear in the working range of current; T (0) is the reversible
transduer used alternately as a receiver and a transmitter, and linear
f the working range of pressures and currents. According to the scheme,
transducers are planed alternately in pairs at a certain distance from
each other. In each experiment, both the cu':rtnt flowing through the
transmitting transducer end the open-circuit voltage developed by the
receiving transducer are measured.

The physical arrangement of the transducers has a substantial effect
on the accuracy of the measurements0  Analysis of all the derived equations
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shows that for the condition of a nonideal field, the smallest measurement
error occurs when the distance between the transducers remains fixed and
when the transducers occupy during the experiments one and only one point
in the field.

The magnitude of the calibration distance is also important. The
minimal distance is restricted to the limits established above for the
region of a quasi-spherical field. This limit is shiown in Fig0 4 and in
Figs. 11 and 12 (dash-dotted line). As explained above, it is clear that
the practical minimal distance is usually established in agreement with
the limit for the highest frequency to be encountered in the calibration.
The maximal distance of calibration is limited by the magnitude of the
signal-to-interference ratio that exists for the measurements, which, as
is well known, ought to be greater than two, and by the inhomogeneity of
the field that is to be tolerated, which, as is shown by experiment, does
not exceed 10-15%. The results to be presented below were obtained under
the conditions discussed here. The measurement of the calibration dis-
tance was made between the acoustic centers of the transducers in accord-
ance with the theory0 As was shown above, the distance can be measured
from the center of the base of the cone for transducers with conical dia-
phragms and from the center of the radiating surface for transducers with
plane diaphragms. The direct measurement of this distance was made with
a very simple measurement scheme such as that shown in Fig. 8.

In Fig0 9 is shown the electrical set-up used for the measurements0
Part of it, enclosed in dotted lines, is a simple switch-box. The
experiments showed that the use of this set-up simplified the process
of making the measurements and increased the accuracy of the results.
The remainder of the system consists of standard laboratory apparatuss
sound generator G () a sensitive vacuum-tube voltmeter (measuring
amplifier) VTVM (JI. 13.)., resistance box R, and balancing transformer T

p*
The chief advantage of the scheme is that all of the electrical quanti-
ties are measured in turn by one and the same apparatus. Thus, the
current through the projector is measured as the voltage drop across the
calibrated resistor R which is small with respect to the internal resis-
tance of the projector. The magnitude of this resistance was chosen so
that all of the voltage measurements, or at least pairs of them, were
made on the same scale of the voltmeter0 This simple procedure reduces
to the minimum the most important of the measurement errors connected
with scale errors and inaccuracies of the absolute calibration of the
voltmeter.

It should be noted that the results of the measurement procedure
described were invariably independent of the type and the absolute accuracy
of the voltmeters used, which shows the great superiority of the method

The linearity and reversibility of transducers T (0) and P (1I) must
be verified before the calibration measurements are made. For this, the
amplitude characteristics of the transducers operating as transmitters
were recorded; the receiver, as usual, was assumed to be linear. The
degree of nonlinearity was deteimined visually from an oscillogram of the
voltage developed by the receiver. The allowed magnitude of nonlinearity
was 5-%° In order to reduce the possible effect of nonlinearity of the
transmitter, the current through it was maintained as nearly constant aspossible throughout the calibration process. As is evident from formulas
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to be presented below, the magnitude of this current is partially excluded
from the calculation. To simplify the measurement procedure and to
increase the accuracy of the results, the auxiliary transducers most often
used in our experiments were of the same type and reversible. In this
case, an examination of their linearity was replaced by the more usual
examination of their reversibility. For this, each transducer was used
alternately as a receiver and a projector with a constant distance between
them. As is well known /3/, reversible transducers must then satisfy the
relation

EWT=ET~/IP

or, if IP = ITV then Ep = ET .

In the case when the input impedance of the vacuum-tube voltmeter
being used in the measurements is insufficient for the direct measurement
of the electromotive force of the receiver being calibrated, the open-
circuit sensitivity of the transducer is determined by applying to the
obtained result a correction which takes into account the absolute magni-
tudb of the ratio of input impedance of the vacuum-tube voltmeter RIN to

the internal impedance of the transducer Rio In Fig. 10 is shown the
scheme for determining this correction, where RO is a small calibrated
resistance across which is developed a certain voltage VO . If V is the

voltage being measured at the terminals of the transducer, then it is not
difficult to see that when Ri: RO and RIN>R O the correction factor is
equal to V/Vo.

In conclusion, we will state the formulas* derived for determing the
sensitivity of the transducers from measureme:ts in a quasi-spherical
field:

1LEE 13 d
MR = ( ° .. . " - 2- --

K 1211 Pf

_4 1 EE I, d
MT L 2  1311J

[ E2 131

K2 11 dfSp=(2.26) (103)3E1 2

r'T E1  I2I 3 fl

* The last two formulas have a physical meaning if the transducers R (fl)
and P (M) are reversible, which they usually are.

13



1 [E2 E 3 I.l di
M P (4 4 8 ,) ( 1o -i

K L E1 1213 p

sR = )(103)

3  1 12 d

Here M is the sensitivity of the receiving transducer defined as the
ratio of the open-circuit voltage developed at its terminals to the
pressure in a free field of plane, progressive waves; S is the sensitivity
of the transmitting transducer defined as the ratio of the pressure pro-
duced by the projector at a given point in a free field to the current
flowing through its electrical circuit; d is the distance between the
acoustical centers of the transducers; p is the density of the medium in
which the calibration measurements are made; f is the frequency of measure-
ment; and K is the phase and amplitude coefficient of conformity of the
field. The -value of K for the case of a system of two equal-sized plane-
surfaced transducers is shown in Fig. 11, and the value for a system with
a large and a small plane surface is shown in Fig. 12. The numerical
coefficient is introduced for the sake of consistency of units between
the practical system for electrical quantities and the CGS system for
pressure and distance. The formulas quoted apply to pressure-sensitive
transducers.

For determining the sensitivity of velocity-sensitive transducers,

the usual correction factor is used:

[+ (/2vd) 2]

where X is the wavelength.

Calibration in a Quasi-spherical Field

Figure 13 shows results of a calibration of a typical piezoelectric
receiver with a round plane diaphragm; Fig. 14 shows results of a cali-
bration of a typical magnetostrictive transducer with a rectangular
radiating surface. In both cases, the measurements were made in a free
field with auxiliary transducers of the same type and size. The calibra-
tion distance was varied during the measurements. The largest distance
used was deliberately selected to satisfy the ideal conditions for
measurement: equality o4 phases and amplitudes and absence of mutual
influence of the transducers [conditions (9), (13), and (21)]. The
sensitivity measured under these conditions was taken as unity (0 db) for
each frequency on the graph. The sensitivity for any given distance was
determined by two means: by standard formulas without taking the coeffi-
cient of conformity into account (dotted curve) and by these formulas
with the coefficient of conformity included in the calibration (solid
curve), As can be seen from the graphs, the value of the sensitivity
corrected according to our formulas agrees with the plane-wave value for
calibrations in all regions of the quasi-spherical field. This is
especially obvious on Fig. 14 where the calibration results were obtained
with great accuracy.
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We will return now to the results shown in Fig. 15 which are typical
for an air calibration of an electrodynamic receiver with a small plane
diaphragm measured with the help of two equal-sized conical transducers.
These measurements were made in poorly deadened spaces having an average
coefficient of absorption on the order of 0.7 The validity of this
method of measurement will be examined in detail later. As was mentioned
above, attempts to calculate a coefficient of conformity for the case of
conicaL surfaces was not successful0  In connection with this, the sensi-
tivity value quoted was calculated without taking into account the coeffi-
cient of conformity0 Nonetheless, the results of the calibration are
independent of the distance of measurement almost up to the boundary of
the quasi-spherical field. The direct calibration in this manner of a
small receiver in combination with conical auxiliary transducers in a
quasi-spherical field is shown to be equivalent to the sensitivity
measured in a plane-wave field0

Taking into consideration the small value o1 the coefficient of field
conformity for the system of transducers just discussed (Fig. 11), we
note that the result obtained does not reveal any important disagreement
between theory and experiment. The smnall er'or might be explained by the
effect of the decrease in the effective ratij of cone size to wavelength
as the frequency of measurement increases, and also by the better "fit"
of the spherical wave front to the conical surface As a result of this,
coefficients of conformity K for conical surfaces, if they could have been
calculated by us would probably have been closer to unity than for the
case of the plane surfaces shown graphically in Figs. 11 and 12. Further-
more, if it is necessary, this coefficient can be determined experimentally
for various systems from the results of calibrations at various distances.

Conditions of Measurement in Reverberant Chambers

It follows from the theory of the reciprocity method discussed above
that the feasibility of calibration with respect to field is determined
by two factors: by the quasi-spherical character of the average pressure
field and the magnitude of fluctuations relative to the average field.
We will investigate from this point of view the worst condition of cali-
bration, namely, the field in a reverberant chamber The average field
in a reverberant chamber, as measured by various systems of transducers,
has been shown in Figs0 1 - 3. These results are obtained for chambers
with an average coefficient of absorption crav on the order of 0.1 to 0.3

in a wide range of frequencies for which the linear dimension R of the
cubical chamber ranged from RA.H; 1°0 to R/XB - 300. The field was

measured as nearly as possible in the middle of the chamber.

On the basis of these curves, it has been established above that under
these conditions, the average field is, within a certain range of distan-
ces, quasi-spherical. Naturally, as a result of this, one can make under
the frequently occurring conditions of a partially reverberant room even
free-field measurements near one or more reflecting or scattcring surfaces.

The magnitude of the fluctuations of the field is determined from the
ratio of the pressure in the reflected field to the pressure in the direct

field. This ratio can be made as small as desired by decreasing the dis-
tance between the projector and the receiver as compared to the distance
to the walls of the chamber0 A very simple procedure for measuring
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directly the magnitude of the fluctuations of the field can be proposed.
It consists of varying the position in the chamber of the projector-
receiver system but maintaining a fixed distance between the transducers
and a fixed current through the projector. The variation of the voltage
developed by the receiver from its average value in a constant direct
field produces the desired magnitude of the fluctuations, Fig. 16 shows
the average results obtained in this manner for maximal fluctuations
as a function of the ratio of distance between transducers to the cis-
tance to the walls of the chamber. This curve is for an average coeffi-
cient of absorption of the chamber walls 0~av = 0.1 - O3 and for a range

of wavelength ratios of the chamber R/A from 1 to 300. This dependence
can be represented approximately by

L;"(1 - 04av) *

PR 1 + (R/d)

in the limited range of values of d/R from 0.05 to 0.2. We observe that
the nature of the field as determined from these investigations and the
form of the approximation for its fluctuations correspond, as one might
expect, more to the existence of fairly ordered reflections than 1o a
diffuse field.

In the description of the method of measurements, it has already been
shown that if, in each of the experiments in the "scheme of three measure-
ments," the transducers are put in one and only one place in the field,
then the error in the measurements caused by the distortion of the field
and in particular by the fluctuations of the field, is equal to the square
root of the magnitude of the distortion of the field.* Then, the error of
the measurement being established, it is possible to select from Fig. 16
the relative proportion d/R for the calibration chamber. The possibility
of measurements at small distances d established above makes the choice of
a chamber for calibration very easy; practical calibrations can be pro-
duced in standard laboratory spaces and in standard tanks that have not
been treated with sound-absorbing materials0

It is possible to make the error as small as 0.5 db. For this, the
average dimension of the chamber must be 15 - 20 times the calibration
distance.

Comparison of Results

We will examine tho accuracy of the method of calibration in a quasi-
spherical field when it is used under free-field conditions and also in
chambers whose surfaces are not sound absorbent or only partially absorb-
ent. We will compare the results obtained by this method and under these
conditions with results obtained by other usual absolute methods. This
will be all the more interesting because no such series of comparisons
that includes calibration by the reciprocity method with respect to field
is given in the literature.

Fig. 17 shows the results of sensitivity measurements on an electro-
dynamic microphone made by three independent modifications of the

*This error can be made a systematic error and thus be excluded. To do
this, it is sufficient to fix the points of measurements,
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I
reciprocity method: calibration with respect to pressure in a tube (solid-
line curve) and in a small chamber (dotted curve) and calibrations with
respect to field in partially anechoic chambers having an average coeffi-
cient of absorption a av = 0.7 (measurements indicated by small crosses). I
In all three cases, the measurements were made by one of the methods men-
tioned above.

We show calibration results for the range of frequencies in which
sensitivity with respect to field ought to agree for a given receiver with
its sensitivity with respect to pressure. The error determined for the
calibration measurements amounts to: 0.2 db for calibration in a tube,
0.4 db for calibration in a small charber. and 0.8 - 0.9 db for calibra-
tion in a free field. Taking these errors into account, it is possible
to consider the results as completely coinciding.

The solid-line curve in Fig. 18 shows the average results of calibra-
tion of a Rochelle salts receiver with respect to field obtained in open
water; the small crosses indicate the results of measurements made in a
tank that was not acoustically treated, and the dashed curve shows results
of measurements of sensitivity with respect to pressure by the electro-
static method in oil and in air. As is evident from the curves, in the
region where the sensitivities with respect to field and with respect to
pressure coincide, the divergence of the average results obtained by
various methods does not exceed 0.5 db, and the divergence of the results
obtained under various conditions does not exceed 1.0 db. Thus, these
results can also be considered as coinciding. We will note, therefore,
that the divergence among the results decreases with an increase in the
sensitivity of the transducer. For resonant transducers, the divergence
practically does not exist. We will point outq also, that the measurement
error for calibration by the electrostatic method amounted to less than
0.5 dbg and that the error for calibration with respect to field was
0.8 - 1.3 db, but for high-impedance transducers the error was higher.

The solid-line curve in Fig. 19 shows the results of calibration of
an electrodynamic microphone with respoct to field obtained in a chamber
that was not acoustically treated (in a laboratory room) having aav o'15

for d/R = 0.14. The small circles represent the results of a calibration
of this microphone in an anechoic chamber of the Institute of Metrology
with respect to a Rayleigh disk, which is more precise than this Institute's
accepted secondary standard method in which is used a loudspeaker that has
been thoroughly studied by means of a Rayleigh disk. It can be noted
that the results (after taking into account the errors of measurement) are
in full agreement throughout the middle and high-frequency range, At the
low frequencies, some of the results diverge by as much as 1.6 db, which
is more than the measurement error. On the basis of the data shown on
Fig, 17, it can be said that this divergence in the results occurs because
the field in the chamber of the Institute of Metrology is not good enough
at these frequencies.

We have demonstrated above the accuracy of the method by giving
examples of the calibration of pressure-sensitive receivers. Without
citing any additional results, we will point out that results obtained
in the calibration of velocity-sensitive receivers and projectors were
also in good agreement.
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In this connection, it is interesting to note that Ernsthousen /10/
compired various methods of calibration (except the reciprocity method),
and concluded that the practical divergence of results of calibration with
respect to field by various methods is 1o5 db. Thus, our results show
entirely satisfactory agreement.

Co.clusion

The absolute salibration of electroacoustic transducers with respect
to field in air and particularly in water have, until now, been considered
a more or less delicate physical experiment. In connection with persis-
tent requirements of practice, it has been desirable to make this important
branch of acoustical measurements more gcnerally available. The engineer-
Ing method of calibration by reciprocity in a quasi-spherical field that
has been discussed basically solves the problem. This method guarantees
good accuracy and broad frequency range of measurements in both air and
water. The application of it, in general, does not require any special
electroacoustic transducers nor measuring arrangements. It is possible
to carry out c-w calibrations under generally available conditions, in
particular in chambers having only partially absorbent surfaces or
untreated surfaces. The scheme and procedure of the measurements is sim-
ple and elementary

The author and others, after using the method that has been discussed,
have now accumulated a comparatively large amount of material that con-
firms the fundamental principles and results presented in this article.
The possibilities for accuracy by this method are, seemingly, good enough
that by this method calibrations have successfully been made of micro-
phones in the range of frequencies up to 15,000 cps and of other special
transducers.

The author expresses deep thanks to L. Ya. Gutin for valuable counsel
and advice, and also takes advantage of this opportunity to express grati-
tude to A. E. Serapikhski and B. B. Yanpol'ska who participated in the
measurements.

Submitted 8 January 1952
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Fig. 11. Amplitude and phase coefficient Fig. 12. Amplitude and phase coefficient
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