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. Abstract

Part One of this repnrt is a brief summary of the research

Nk cdely

performed under the coutract. Part Two presents in 8 sections
a study of the skeletal graph G of a silhouette F and some of

the relations between the properties of G and the shape of F.
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Foreword

The first part of this Final Report sumaarizes the publi-
cations issued under Contract AF19(628)-5711 from inception to
July 1968. The second part presents, in Scientific Report form,
the results of the last research phase : the study of the skele-

tal graph.
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1) Technical Memorandum No. 1 (January 1966, 9 Pages)

L. Calabi: The Skeletal Pair Determines the Convex Deficiency.

Essentially absorbed in SR 2 listed below under 5).

2) Technical Memcrandum No. 2 (February 1966, 17 Pages)

L. Calabi and W. Hartnett: On "Nice'" Sets A.

Background work, ultimately leading to SR 3 listed below

under 15).

3) Sclentific Report No. 1 (February 1966, 16 Pages)

L. Calabi znd W. E. Hartnett: Shape Recognition, Prairie Fires,

Convex Deficiencies and Skeletons.

To every closed subset A of the Euclidean plare is asso-
ciated its convex deficiency D and its skeletal pair (S=7')'
Extending a known result ( A is convex iff Sa ¢ iff Da ¢ )
one can prove: different sets have the same skeletal pair iff
they have the same convex deficiency. Several other results
are presented concerning the correspondence A — (5_, 1.) and
the properties of S and ¢ - The relevance of these notions
and theorems for a mathematical model of visual perception is

emphasized. The treatment is expository.

Published in the April 1968 issue of Am. Math. Monthly.
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Technical Memorandum No. 3 (May 1966, 4 Pages)
L. Calabi: Tangents and Half-Tangents of the Skeleton.

Essentially absorbed in SR 3 listed below nder 15) and

in Part Two of this report.

Scientific Report No. 2 (November 1966, 24 Pages)

L. Calabi and W. E. Hartnett: A Generalization of the Motzkin

Theorem,

A figure A in the Euclidean plane is a compact set whose
closed convex hull GCA) has a non empty interior; a ball of
suppert for A 1is a closed ball which has points of A on the
boundary but not in the interior. For each figure A , let

C(A) ~ A denote the convex deficiency of A and let (S,?)

denote the skeletal pair of A vwhere S is the set of centers

of maximal balls of support for A and ?(%) is the distance
from ¥ to A for Z€S . The following statements are proved:
(1) Two figures have equal convex deficiencies iff they have
equal skeletal pairs. (2) (Motzkin's Theorem) A figure is
convex iff its skeleton is empty. (3) A figure is uniquely
determined by ite closed convex hull and its skeletal pair.

() A figure with empty interior is uniquely determined by

its skeletal pair.



Paxxz Marenuaricar Lasoratonizs, IncorrorstTen 5711-Final Report
CNELIVIRROAD v CARLISLE, MASSACHUSETTS

6) Technical Memorandum No. 4 (December 1966, 6 Pages)

L. Calabi and W. E. Hartnett: Skeletons of Gray-Scale Pictures.

How to modify the notion of skeletal pair to represent

gray-scale, and not only black-and-white, pictures.

7) Technical Memorandum No. 5 (January 1967, 27 Pages)

W. E. Hartnett: A Preliminary Discussion of Mathematical

Models and their Suitability.
Discussion of some basic features of mathematical models,

as exempiified by the skeletal pair.

8) Technizal Memorandum No. 6 (February 1967, 9 Pages)
L. Calabi: On the Curvature of a Skeleton.

Essentially absorbed in Part Two of this report.

9) Techaical Memorandum No. 7 (April 1967, 34 Pages)

W. E. Hartnett: A Study of Approximation for Skeletal Pairs:

Selection of Adequate Topologles.
Together with T™M 12 listed belcw under 1L), this Technical
Memorandum presunts the initial results in a study of "natural"
Topologies on the set of figures and on the cet of skeletal

pairs for which the various "natural"” correspondences would be

continuous.
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10) Technical Memorandum No. 8 (June 1967, 6 Pages)
L. Calabi: Or N¥ice Sets, II
Background work, ultimately leading to SR 3 listed below

under 15},

11) Technical Memorandum No. 9 (June 1967, 8 Pages)

L. Calabi: On "Smooth" Boundaries

Background work, ultimately leading to SR 3 listed below

under 15).

12) Technical Memorandum No. 10 (July 1967,13 Pages)

L. Calabi and W, E. Hartnett: Mathematical Analysis of a

Process of Shape Recognition.
Summary of work done at PML on the subject, since 1964

(32 references).

' Technical Memorandum No. 11 (August 1967, 7 Pages)

‘ L. Calabi and W. E. Hartnett: A Motzkin-Type Theorem for Closed

‘ Nonconvex Sets.
A concise proof of an extension of the basic theorem

presented in SR 2, listed above under 5).

To appear in Proc. A.M.S.
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14) Technical Memorandum No. 12 (August 1967, 21 Pages)

W, E. Hartnett: Implications and Noa-implications About Shape.

See T™ 7 listed above under 9).

15) Scientific Report No. 3 (December 1967, 28 Pages)

L. Calabi and J. A, Riley: The Skeletons of Stable Plane Sets.

Necessary and sufficient conditions are formulated for
the skeleton of & set A to be, essentially, a "well-behaved"
graph, Differentiability properties of that graph and of the

quench function are established.

16) Technical Memorandum No., 13 (January 1968, 29 Pages)

W. E. Hartnett: A Preliminary Study of Oriented Skeletal Graphs.

Background work, ultimately leading to Part Two of this

report.

17) Technical Memorandum No. 1k (February 1968, 17 Pages)

W. E, Hartnett: A Definition of Skeletal Graph of a Compact

Set.

Essentially absorbed in Part Two of this report.

18) Technical Mcmorandum No. 15 {April 1968, 13 Pages)

L. Calabi: Shape Interpretations of the Natural Vertices of
the Skeletal Graph.

Essentially absorbed in Part Two of thie report.
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19) Technical Memorandum No. 16 (May 1968, 7 Pages)
L. Calabi: Fiala's Results on the Skeleton of a Curve in a
Riemannian Plane.
Quick presentation of the results of the title, and

comparison with our theory.

20) Technical Memorandum No. 17 (May 1968, 15 Pages)

William E. Hartnett: Partial Bibliography for Shape Recognition.

A list of 49 papers and books, none by the PML group, on

topics relevant to the study of the skeletal pair.

21) Technical Memorandum No. 18 (June 1968, 16 Pages)

W. E. Hartnett: Curved Skeletal Graphs.

Background work, ultimately leading to Part Two of this

report.,
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A Study of the Skeletal Graph

by

L. Calabi
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1. Introduction

Agsuming the reader generally conversant with previous PML work on
the general subject, this report studies the notion of skeletal graph G
of a silhovette F and shows that certain shape attributes of F are
easily describable in terms of G .

The most interesting outcome for appiication purposes is the possi-
bility of studying F piecemeal by considering each vertex and each
edge of G separately. Theorems 4.3, 6.4 and 7.6, for instance, show
that such "local" investigations may furnish non trivial information on
the boundary of F, and hence on F itself.

From z theoretical pcint of view the smoothness properties of each
edge of G is an interesting consequence of our general assumptions.
Even more interesting are Theorems 4.3 and 4.4, which extend to the
non-differentiable cagse a result so far known only for twice continu-
ously differentiable boundaries. That is a further indication that the
"nearest points map'" and its related notions are indeed a powerful tool
to study geometric properties classically considered the domain of
differential geometxy (cfr. [5]).

The definition of skeletal graph G 1is given in Section 2,
together with the general properties assumed to hold throughout the
report. Sections 3 and 4 present a study of the vertices of &, though
they contain also results on points of order 2, not vertices, to be
used later. The decomposition of F introduced in Section 5 is logi-

cally helpful and geometrically natural, even if visually too complex

e o - ——

N
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to be appealing. Sections 6 and 7 study the edges of & and some of
their influence on the boundary of ¥ . Finally, in Section 8, the con-
vexity of F is shown equivalent to several prorerties of 7 or of G
Some of the spadework leading to the definition of skeletal graph
was done by Dr. W.E. Hartnect; for it, and for many helpful discus-

sions, I am gratefully indebted to him.

2. The Skeletal Graph

Let A be a closed get in the plane and let ('5,?}) be its skeletal
palr. We assume that:
(1) S 1is closed in the complement of A, bounded and connected;
(2) All the points of S have finite orvder, and only finitely many
have an order different from 2.

Then we know that the closure S is a disjoint union of finitely many

open arcs and thelr endpoints, that we shall :all natural edges and

natural vertices respectively. A point % of ¢ natural edge £ will be

called an extremal vertex iff it has a neighborhood W in E such that
?CZJ)?. Dc(z.) (or ?(z')ﬁ # (x) ) for all %'e l{ and there is a
sequence of points ¥, e £, %~ X with 3.(14”)>d¢_(x) (or ?(Z,,) 4;65) ).
Each natural edge is then the disjoint (possibly trivial) union of its

extremal vertices and of open arcs, called monotone edges since g is

either constant or strictly monotone on them. We shall require:
(3) The number of extremal vertices in S 1is finite.

If % belongs to a natural edge, it has order 2 in S and hence 77X has

- 10 -
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exactly two (connected) components; we shall say that such a point X% is
a jump vertex iff 7z has more than two points (i.e., at least one of
the components of 7¥ is a non-degenerate arc of circle). Our next
assumption is then:

(4) The number of jump vertices in S 1is finite.
Denoting by V the set of those points of S which are either natural,
or extremal, or jump vertices, and assuming V£ & we introduce on the
set S a structure of graph by considering V as the set of vertices

and by introducing as edges the (arcs which are) components of SAV.

The set S with that structure we shall denote by G and call the

skeletal graph of A . We will extend g to & by setting 3.(7-)- o {f
26 B\'S. (For the case Y~& , see Theor. 5.5 below).
We will denote by F° that component of the corplement of A which

contains S and set F=F°. We assume now:

(5) The boundary G of A and that of F are equal. Moreover every

point 4 of G is a local separating point of G .

(A set Y , or a point % is said to be locally separating if, for some
open neighborhood u,l}\\\( or \L\i}} is not connected.) We could then

say that F 1is the silhouette of G aud that G 1is the graph of F .

Observe that for every closed disc D containing F in its interior,
D\ F° is a stable set (in the sense of {1]), having (S, 1.) as skeletal
pair and hence & as skeletal graph.

Our five assumptions are probably not independent. We will use

them all in the sequel. The formulation of an irredundant set of

- 11 -
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axioms would require an effor: out of proportion with the scope of this
study.

In any graph, if n; denotes the number of vertices of order ( ,
then '/z 2 n; is the number of edges. Further, if the graph is con-
nected, V\-Lﬁz.’.in,; , showing that if there are at least 3 vertices
of order 1, then there certainly are vertices of order 3 or more.
Finally again Lf the graph is connected the number Zn; - "li Zin; + 1,
called the connectivity of the graph, is the number of its "windows" as
well as the largest number of edges which may be removed without dis-
connecting the graph. In our case the connectivity of G 1s also the
number of bounded components of the complement of F , that is the
nuxber of "holes" in ¥ .

1f *£ 6 , we vhall call branches (of G ) at % the edges

incidert with Z , 1f X is a vertex; and otherwise, i1f ¥ belongs to the
edge E , the two components of E\lx}. To each branch B; at x , we
know from [1] chat there correspond
- a half-tangent £, () to € at ¥ (more precisely to B; at x );
- two points y. ,7{;’67% such that E};,#j, [}: ,z] are the side
of the T -sector containing B; ;
- a number o,(¥) measuring tiie angle between ,Z‘ (x) and L ¥ 3‘-],
as well as the angle between £ (x) and [x 7:]
We further remember that the number of branches at X , deaoted o(x) ,
is not only the number of "I -gectors of vertex % , but also the order

of Z in G and the number of components of 7 X.

- 12 -
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If x% B; , sufficiently close to ¥ , then there¢ exists a branch

m
é

B; at x' contained in 8 . Let ,€‘.(-x'), d;{x’) and !a,’: » 4¢ be the

TRk £ N T e £ ST ¢

>

corresponding elements. When x' tends to x along B; R y,': and y""

SR

r I

tend respectively to Y, and 1;." , showing that {; (x') —> £ (x) and

s

o; (¥') — ot;(x). We express this as follows:

AR

Lemma 2,1 Let £ be an edge and give to € an orientation. For each

|
o e ui

point k& E but the last, let £(x) be the right half-tangent to E at

% ; and let ot(x) be half the measure of the angle of the corre~

sponding T -sector. Then the mappings.€ and « are continuous in E
b and continuous from the right at the first point of E.
% We topologize the set of rays and the set of lines in the usual

v.'?-‘ fashion,

¥ 3. Points of Order 2

Since, under our general assumptions, TX cannot have infinitely

many components, we may state without proof:

Lemma 3.1 For any point Ze S, chl_-_'Cx Y= Ty with equality holding
iff TTX is a finite set. Moreover the arc length of TTx is given

N by Z?Cx)(’lr—-}".o(i(x)).

it

(The symbol -t is here used to denote the nearest points map, as
in Ttx , as well as the usual constant 3.14... ; no confusion should

arisz ia the context,)

-f, Theorem 3.2 If xe F , of the following three statements the first
'“ implies the second, and the secund and third are equivalent:
4 ,

- 13 -
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(2a) xe & 1is a jump vertex;
(b) =z 1is the center of a circle having a (non-degenerate) arc in
common with G ;
(c) ¥€G and Zoyix) <
Moreover, if X has order 2 in G-, then the three statements are equiva-

lent.

Proof Immediate from the definitions and Lemma 3.1.

Thus, if we know that %z is a jump vertex, we also know that G has
one or more arcs of a circle centered at ¥ ; and if we know the of;(%),
we know the total central angle of those arcs; and 1f we know 3(3:) we
know the circle; and if we also know the half-tangents,(‘-(x) we know
the arcs themselves and hence a part of G .

We turn now to the study of the extremal vertices. Remember that
on each edge, and hence also on each branch, ¢ is monotone. We agree

to orient the branches at x away from it.

Lemma 3, If (%) >'“'/z ) then3 is strictly increasing on B;.

8imilarly, if ot;(x) <T/2 , then 3 is strictly decreasing on B;,

Proof With the notation of Fig. 3.1, ?_Cx')z J(xﬂ 2) and d(x:;)lx
1.(x)"+al(7=,z’)‘— 2 2(% d(z,2') cos s Yor x' sufficiently close to x,
ct‘ 18 close to \t,and 80 coss < o , yielding (x> 3.(3:). Since g
is strictly monotone if not constant, we obtain the first statement.,

The second statement is established in & similar fashion (s<e also [2]).

- 14 -
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Figure 3.1

- 15 -
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Lemma 3.4 If % is strictly increasing (or strictly decreasing, or
constant) on B; , then ol,_-(%)?."r/z (or a(L-('Y-)S.T/z, or a (%)= s

respectively).

Proof From Lemma 3.3. Notice that d-(x).:”"/;. is possible in all
—— [ 3

cases.,

Theorem 3.5 Let ¥& & be a point o. order o(¥) 2 2 at which ¢ has
a minimum. Then ocx)sz) oA (%)= o(,_(x)= T/, and x is an extremal

but not a jump vertex.

Proof From Lemmas 3.1 and 3.4 and from Theorem 3.2.

Theorem 3.6 Let ¥€ G be an extremal vertex at which 4 has a maximum.
Then, 1f Z is not a jump vertex, ot (x)s o, (%)= Ta.

Proof From Lemmas 3.1 and 3.4,

Figures 3.2 to 3.5 illustrate the fact that extremal vertices do
not, by themselves, exp.ess shape properties of G . Notice that in all

four examples of (%)« o(sz)x'"'/z.

If X is a point of order 2, not a jump vertex, then o(,(x)-f' A (x)= 7T

and hence £ (x), Za(x-) are collinear. The line to which they belong is
the tangent +(x) to G at x . (Notice that such a tangent may also

exist at jump vertices.)

Theorem 3.7 Let Z€ G be a point of order two, not a jump vertex.

Then G has a tangent #(x) at x and the mapping ¢ is continuous.

Proof From above and Lemma 2.1.

a3 Fn o A3 4l

e
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N\ 3, has a maximum

at:7£

\
\
Figure 3.2
2 (RN
/ N\
/ \ + has a minimum
{
" \\ at x
|‘ |
, /
\ /
N y
/— Figure 3.3
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AN
| ¥ \\ ?. has a maximum
\ / at ¥
\ /
AN
- ~
//_N
Figure 3.4
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i ~
/ \
/ \
/ \
| x \ y 2 has a minimum
\ l at %
\
\ /
\ /
S _ -

Figure 3.5
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For jump vertices obvious geometric considerations yleld:

Theorem 3.8 Let xe¢ & be a jump vertex and let o_ be the measure of

the angle between ,E,(x) and 1‘(7‘) . Then Trx consgists of two arcs

whose lengths are 3(7¢)(°¢°—o(,(x)-«z(x))and &(z)(zvr_u‘_or,(x)_ql(x)),

At any point ¥& G we now define oA(x)=max ot;(%) , to obtain:

Theorem 3.9 Let x€ G be a point of order 2, not a jump vertex. Then

o is continuous at x .

Proof If X is not a vertex, this follows at once from Lemma 2.1. If
X 1is a vertex, then again by Lemma 2.1, « 18 continuous from the right
on each edge to which it is incident, when oriented away from it.

Hence of is continucus.

L. Ppoints of Order Different from 2.

We begin with two results which do not need the general assumptions

of Section 2:

Lemma 4.1 Let P be a component of TT¥, x€F and assume that P

locally separates G . Then, given any neighborhood U of P in C ,
there is a circle C, of center x such that C NW has at least two

components.

Proof Given U, there 1is a neighborhood V of P with U>Y and V\P

not connected; and there is a real number d 3(7.) such that the
circle C, of center z and radius d intersects at least two components

V,,V, of V\P . Indeed, given V,, V, we may set

- 19 -
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2d = 3(7.) + m'm§ Su.r{cl('x,t), zeV, ¥, supfdlxe), ieV‘}}.

Lemma 4.2 Let w2 2e G have o(x) « == components, each locally
separating G. Then, given any neighborhood W of Tx in C, there is
a circle C, of center x such that C, 1 K has at least 2.o(x) compo-

nents.
Proof From above.

Theorem h.} Let ¢ & be a vertex of order 1 with TrXx reduced to a
single point ‘3' (possibly %= ‘&) Thenz reaches a minimum at % ; and
in any neighborhood U of Y in G theve are four points belonging to a

circle.

Proof That 3(7:) is a minimum follows from Lemma 3.3. To prove the
second statement, let %, be points on the branch B at x , converging
to 2. Then ¥, has at least two points Yms t#',, which may be chesen
as follows (see {1]); Yo Y, ta.'”—-p Y and, [xn__l‘_"'l,fxmzi‘] are
the sides of a Tt -sector whose boundary contains t‘,, . Further, given
the neighborhood W , for nw sufficiently large \t“and ‘3"‘ belong to
different components uf W\ {'3}) because every point of G 1is locally
separating. Applying then Lemma 4.2 to the corresponding ¥, Wwe obtain

the desired result,

We have che following partial converse:

Theorem 4.4 Let C , C, # C, if ném , be circles converging to &

circle C, and assume that C,NC, n>o has at least four points

- 20 -
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Yo %IM %:’ %.‘: such that the four sequences ('3” ), (3;), (%';) and (‘8':‘)
all converge to the same point t - If 4 is the only point of C. N C,
then the center X of C, is a vertex of @ of order 1 at which 3

reaches a minimum.

Proof Since C,N G has only one point, C_, is a circle of support to
A at % Assume that there is a larger circle C; of support to A at
tb; then, for each n , the points Y s \3'“ Lé"; and ‘3,": lie on or outside
C'o and hence C"—-‘: C;. That is C, = C; and C, is maximal. If its
radius is zero, %= y & G\g' otherwise ¢ § . Hence the cheorem.

Observe that points y with the properties of Theorem 4.3 or
3

Theorem k4.4 have been called vertices of G with respect to the family

of circles; and that, if C is a sufficiently smooth curve, they are
but the points of C at which the curvature has an extremum ([3],
Section 4.1.1). Our two last theorems then extend to the non-differ-
entiable case a well known result (cfr. [4)]); they are thus two more
steps in the direction started by Bouligand almost forty years ago (cfr.
[5]). See also Theorem 10 of [9].

For completeness we give the next result characterizing those

vertices of ¢ which are not in S :

Theorem 4.5 For ze€ F the following statements are equivalent:
(a) xe G\S;

(b) =z is a natural vertex of G and 30:).—. o,

(¢) %2eC and the reach of A at x is zero.

-2] -
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Proof The equivalence of (a) and (b) follows from the definition of
G . The equivalence of (a) and (c) is established already in [6]. As
Fig. 4.1 illustrates, the order of x need not be 1.

We turn now to the points of & of order at least 3 and we start

with:

Theorem 4.6 Let ¥€ G have order at least 3. Then g is strictly

increasing on at most one branch at x .

Proof From Lemmas 3.1 and 3.3.
For a more geometric study we need some new notions. Given xeF°

and 13,”\3_“,,,,%‘_&6, ¥ 2 2 ,assume Ex,né,i'jc.F ; then each compo-

nent W of F\VUL%y.]is called a wedge of vertex x ; if [x, y;7 c.\:},
)‘8; P 5‘

then [y, y:1 is called a side of W. We have:

Lemma 4.7 1If ¢ is the number of components of G containing points

Yoo there are Y-c +1 wedges of vertex x and sides [x, 4o, €=42,...,7,

Proof If c%1 and ¥;>o is the number of points Y in the jth compo-~
nent C.i of G, then there are v, -1 wedges whose boundary intersects G
only in CJ- . There is also one wedge whose boundary intersects all c
components, yielding a total of v-c+/. If c¢=/ , the lemra is
obvious.

Observe that, under the assumption of the previous lemma, there is
a wedge having at leastc , but not more than 2¢ sides. If all the
sides of a wedge W have equal length A , consider the disc D of

center x and radius A ; W 1is said to be a sector iff it contains each

- 22 -
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A : the shaded set
%; . natural vertex of &, with o(¥)=¢

%2 6\S, g(x)eo

Vertices of G, not in S , of various order

Figure L.1
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component of D\UIy, téﬂ with which iz has common points. Further a
sector is termed normal iff in each open side (%, ta,;) there is a point
2, with 4, e ma, (Notice that if Lx,u.] is orthogenal to C at

®. s then such a point =#; will exist.)

Lemna 4.8 Por 2e F the following two statements are equivalent:
(a) Tx has at least two points in one component of G ;

(b) there are normal sectors of vertex X .

Proof If y,,u, €Wx belong to a couponent of C , then clearly
F\U f",‘aa:' contains a normal sector. The converse follows at once
from Lemma 4.7.

We say that a normel sector is minimal if no other normal sectors
are contained in it. We then have the following characterization,

vhere we denote by c(x) the number of components of C having points in

common with T™x:

Theorem 4.9 The point xé & is a point of order o(x)2 2 1iff there

are ofx)- ¢(x)+{ minimal normal sectors of vertex x .

Pcoof From Lemma 4.7 and 4.8. The minimal normal sectors are but the
T -sectors at X.

Notice that if Tx contains an arc, then there are infinitely many
normal sectors of vertex ¥ , none minimal. By restricting the last

theorem to the case o(x)P» 2 we obtain a characterization of the

natural vertices of order & 1,

- 24 -
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Let us denote by H, K H, A the two components of wW a.d set, for

Ye EaWw, (¥ =H N 7x.

Lemma 5.3 Each mapping §~,_- ¢=/,2 1is a continuous mapping of £ ontn

HM; . If ¥, is I~/ , then it is an homeomorphism.

Proof Clearly ¥.is ontc; its continuity follows from the upper semi-
continuity of 1. To establish the last statement fix (¢, set 3.:5--;:
and let k(f’v\—”\ﬁ' in H;, 7:n=‘}(}n)' We may assume that ()L”)converges
to some point ¥ : we have to prove X= }(l}). By the upper semi-conti-~
nuity of %, we know that \.a_e X since ‘.}“ & 'n’—)c“ . If xeA , then
4= X is a vertex of G and hence t}f‘- H;. Thus ¢ A ; but S is
closed in the complement of A, ¥.€ S and consequently xe S . That

is, '?,:(7‘-): % oF cz_('})-,—. %,

Lemma 5.4 The boundary C is a finite union of arcs, intersecting

only at their endpoints.

Proof From Lemmas 5,1 and 5.3.
If there are no vertices, F has no r.tural decomposition; or,
better, F® is the only section of F . The results given above still

apply and moreover we have:

Theorem 5.5 The following two statements are equivalent:

(a) the set Y of vertices is empty;

(b) S 1is a closed simple curve on which ;(x);— jc is constant.
Moreover either statement implies: C is the union of two parallel

curves at distance z,?..

- 27 -
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Proof If (a) holds, there are no extremal values for g hence ¢ is
constant; and all points of S have order 2, hence § is a closed
simple curve. Conrversely, if (b) holds there are no natural or extremal
vertices; and o (¥)= o (x)= T, for each X€S . Thus there are also

no jump vertices. The last statement of the theorem then follows.

6. A Study of the Edees

Given an edge £ of G, let us denote by a=-a(&)and beb(£) its
vertices (= endpoints of £ ). Remember that a=b is possible. We
orient E from a to b and assume that g is then non decreasing. For
xe E , we let ol(x)e max o&(x), as in Theorem 3,9; further
ol(a)eem o(x) and similarly for «C(b). Then o iz continuous on E .
Similarly for the tangent t(x) (see Theor. 3.7); we orient +:(x) so
that, if %, follows z on £, the oriented straight line from x to z,

tends to €(x) when x — x.

Theorem 6.1 Every closed arc E, contained in EUfb} 1is rectifiable.

Moreover, if 5(«.)>o, then € is also rectifiable.

Procof From the proof of Theorem D of [1] we know that at every point
% ot EAS the paratingent of E is reduced to one line, namely #(x).
Our result follows then, e.g., from [5j, Section 80. The assumption
301) > o is essential for the validity of the second statement:

indeed E with 3(@):0 could be, for instance, a spiral ( F* could then
be the region bounded by two non crossing spirals with the same vertex).

It may be interesting to remember here a result of [8]. Let

~ 28 -
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Cf‘: fxe F, J(%,A)::g}: then, for almost all ¢ for which Cg#: ¢, Cp
1s a union of rectifiable curves (see also [10]). Notice that CP is a
level curve of the function 4(-, A) , while S is its “crest" or
"divide". Under our general assumption we will prove below that C = C
itself is often rectifiable.

We first give two lemmas, valid without our general assumptions,

to obtain quantitative intormation on the distance between points on

the skeleton and corresponding points on C.

Lemma 6.2 Given ¥,% € F°, ye ¥, y eTx, and with the notation of

Fig. 6.1, we have

(a) %= (3 -vx)cosy + (%, )cos v Y+ Croxd Sing ~r(x,) sin 3})1

3

(b) 42 vix)cosy —-Y(x,)easy with equality iff Y= Yy -

Proof Statement (a) is elementary and holds in any quadrilateral.
Statement (b) uses the fact that Y(X)= Jd(x,A). Thus

Y 2 dCr, ) r (%) e d? + 2r () d casyt

YOk ) 2 A0y v (B -2k x)d sy

Adding and rearranging we obtain (b).
Y%
o

k] v(%,) Figure 6.1

¥

-29 -

d% ¢+ v (&) + v () - 2d(rex) cosy — v(x,) Cos 3t ) - 2HCx)I¥CE, YCos (B -10)

R =




Parxz Manmuneat Lasoratonts, Incorromten 5711-Final Report
ONERIVIRROAD » CARLISLE, MASSACHUSETTS

Lemma 6.3 Under the assumptions and with the notation of Lemma 6.2,
let also w(%)2 v¢(x). Then

de devix)-vx)s 2d if  ye=z oy

d2dery) —rx) + v y-p) & 2d #rax) () if g2z

Proof That r()cl\_r(x)_ﬁ-_c‘ is a general property of the function v .
The other inequalities may be established in every quadrilateral. To
prove the first we have (see Fig. 6.2)
3_4_ J(}“i) by construction of # and the assumption y-J* > o
d(y z)= d+ve(z)-rx)by the triangular inequality.

The second statement of the lemma may be established in a similar

fashion,

v(y)- r(z)\
2\--"

(-

Figure 6.2

Given the edge E and }@E denote by % the pcint of 7% on the
left of t(x) and (for the endpoint of £) such that the angle from +(x)

to fr,tfj is ol(x) ., Call projecting ray f’(x) the ray [ 7_——7) and
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denote by < the mapping 7(.—)}. As customary, we say that § shrinks on
(or expands on) a subarc E, of £ iff J(§x), $(x )2 dCx, 2,) (or
(dC-F(%), -9(%,))2_ d(x, ¥, y) for any two points of ¥, x, of E_ .

If ¥, follows %, on E , let E(%,% ) denote the closed subarc of

which % %, are endpoints and set HCXMX:_)=J‘(ECX°,)Q). We shall

say that H= H(%,,% ) is E -concave (or £ -convex) (see Fig. 6.3) iff
HOL E}o»‘hj with y,= -FC)%), ¢ = $(%,) is the boundary of a convex set
B and, for any xe £(%,%,), d(x H)< al(';c,l_'?”rh_:}) (or
J('X,H)?. d(x, f’,”};.l). The terminology wants to suggest the
apparent shape of [, when seen from some point of E(x“ x,).

Finally we shall denote by PCZ) the angle from a fixed, arbitrary
directed line £ to P(X—). Notice that ,g(x.)- o4(x) is then the angle
from £ to 4(x) . Thus I% is a continuous function of X ., With that
terminology we have the following results which reproduce 'locally" a
known result [11] and which enable us to know something about the
shape of F . Similar results may be easily formulated for that com-
ponent of WE(x.,):L) which lies to the right of £ . Care must be
taken however to consider the orientations involved and hence the

signs of the angles and the corresponding inequalities.

Theorem 6.4 W<th the notation just introduced assume that g (%) >o.
Then the following three statements are equivalent:

(a) § shrinks on ECx,, %, ,

(b) (@ 1s monotone increasing on E(Z,, ¥, )).

(¢) H(, %)is E -concave.

- 31 -
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g %

H 1is E -concave

%

H is neither £ -concave

nor £ -convex

H is E -convex

Figure 6.3
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Proof Let %% be in E(x4,x); if (a) holds, then with the notation
of Fig. 6.1, ¥, 2 y . That is, (e(x)= ¥-+const= ¥, + const= 3Cx,).
Thus (a) implies (b). To establish the next implication let, for
o< p= ?.Cxo.), Br be the union of 8 and the segments [-;(x),-z] <
[sw), 2] for ye E(x,% ) and J(%,-S-(x)):-f_ The boundary of B,
is then [5.; '};jUE“';) 2,JOHp U fi.,\aoj vhere He is an arc of Co -
The rays p(x) are normals to He . If we assume (b), B, has then a
line of support at each point of its boundary and is hence convex.
B=0N Be is consequently also convex. Moreover AC;) E}o) 'hj) 2
J(x, B.r)‘ Z(X-)-f for all p>o. At the limit cl(;:) [3“ 7‘])?_ d(x,B8),
Thus (c) holds whenever {b) does.

If we now assume (c) we know that My shrinks on the whole plane
[11] because B is convex. Further, since d(x, Ly, 4,702 d(%,B) for
e E(zo))g_)) x) ¢ W, ¥ . Thus £ shrinks on E(x,,'&) and (a) is

proven.

Theorem 6.5 With the notation and under the assumption of Theorem 6.4,
the following three statements are equivalent:

(a) ¥ expands on E(x,,r‘);

(b) [ 1s monotone decreasing on E(x”a);

(¢) H(%, ¥ ) is E -ccnvex.

Proof The equivalence of (a) and (b) follows from Theor. 6.4 and the
continuity of @ . The equivalence of (b) and (c) may be similarly
established, after observing that, in the proof of Theor. 6.4, it is

the monotonicity of B which assures, and is indeed equivalent to, the

...33..
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convexity of B.
An immediate application of Lemma 6.3 or of Theorems 6.4 and 6.5
(together with the known result that the boundary of & convex, bounded

set is rectifiable) yield:

Theorem 6.6 Let E(%,, %) be rectifiable and be the union of finitely
many arcs, on every one of which 4 1is monotone. Then HL'):“Y,Z) is also
rectifiable,

It can be shown by examples that the assumption on @ is not
necessary. It is even conjectured that H be rectifiable whenever E

is.

7. Assuming Differentiability

In this section we will use the notation introduced above and
assume H = H(x.,xt) to have a continuous tangent f(}) at every point
}. Remember that then ¢f(x) and {o(x) are orthogonal; we assume

t$£(x) so oriented that the angle from it to p&x) is + T,

We will denote by'z,l-j:;nx* 3(7:), for any functionc} defined on E(X, ¥, )

the limit, if it exists, of > when ¥, tends to x from the right, that

is with ¥, following x on £,

d(x, %)
Theorem 7.1 If H has curvature cly) at }:&(x), then ,&.'m' W
z'__’x LA 4]

Further

Fé

1+ cCy)g-(x)
Sin «®kex)

where \3,|-'F(%,), exists and is given by
that limit is zero iff % is the center of curvature at Y .

Proof  Assume c(,na)?_ o, that is the situation of Fig. 7.1 then
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d(z,%,) singp = d(x%,) sin p

dCy, y,) dly ) - el(t;,,ar).

dlz,2) _ dy,, )+ 9(x,) =/ 4 z2¢%,)

Combining the two relations we obtain

cl(‘\(-’ 'KI) - S/n ¢ | + J‘(xr) ) .

-

JCtt,%,) sinyt J(L}“w)
Observe now that when ¥ -5 %, then also
p—Ta , p_y olx)

?.Ol,)__) 3.(3:) 5 T;;_,A_;) Y [cc%.)].
’

The last convergence follows from the fsct that«« tends to the center

of curvature at % . Our result follows. If c(%)_‘:. o, the proof is

similar.
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To complete the proof observe that {+ c(%)7C7A) = o 18 equivalent to

; that is x 1s the center of curvature.

4= L s
cCy) - 13)
If EC%,%) and H(x,, %) are rectifiable, Theor. 7.l yields
also the value of

AN are Amgth (% %)
E=2xt are by (y,y,)

since, on any rectifiable curve,

Ao are Lowgfd x2) - ).

d(zz,)

We shall denote by a dot the derivative along £ (if it exists) of

any function defined there. Por instance,

[Acx)= b BE) - ax)
x5 x’ <4(z,,x)

Then if «(x) denotes the angle from £ to #(x), T (x) 1is the curvature

cx)of E at x (if it exists).

Theorem 7.2 Assume E(%, xl) and Ha HCZ,,X‘) rectifiable, and assume

that H has curvature at %-‘}(x). Then, if ﬁ'(‘l—) exists,

Cclt)- ﬁ.(x)
Sin a(z)-;(x),éf*)

Proof We have

B)-akx) = ABFI-px) dly,,4)
(%, x) %, 4 JCz,, x)

Since 13(7(_) is the angle from . to the normal b(x) to H at £(x) , the

first factor in the right hand side tends, under our assumptions, to
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C(t&) (when %, -5 2% ). Thus, at the limit, using Theor. 7.1,

- e

Einollx)
!+ c(:é)?(x) 2

F.}(x) = ely)

which is equivalent to the desired result.

In view of the last theorem, it is important to establish criteria

for the existence of pl(x-).

Lemma 7.3 Under the assumptions of Theor. 7.2, ,é(X) exists when X is

not the center of curvature to H at % -
Proof From the proof of Theor. 7.2 and from Theor. 7.l.

Lemma 7.4 The existence of any two of o, c.="é') [s implies the

existence of the third. If they exist, then f.?: X+ <.

Proof [Azow-"c' .

Lemma 7.5 Under the assumptions of Theor. 7.2, and if X is not the

center of curvature to H at % then (%) exists iff cCx) exists.

Proof Assume C(x) to exist. Since /5(7‘-): ol(x) +'Z‘(2:))

w(r)- ) @alx)-@Cx) dly,y) _ T(%)-T(x)
dCx,2) dCy,, 4) dex, x) dcx,,z)

Under our assumptions, when % — z” the right hand side converges to
cy) Sin «(x) _ c¢x ) . Thus the left hand side converges

!/ r ch)ny)
also, yielding (%) . The converse is established in a similar

fashion.

We now assume K£(%,,%) to be rectifiable and denote by
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x(s) = (f,(s)‘ ?lCS)) the parametric representation of £ (x,,%)
in some cartesian coordinate system having £ for first axis, where s is

the arc length along E(%,,%). Let us set

Bols) = B (xcs>).
If we denote by F:'o the derivative of @  with respect to s, we will

have

Ba(s) = & (%)

There will be thus no confusions possible in using a dot to denote
differentiation with respect to s . We shall also set

g (s) = gC20s)) T, (s) = T (xCs))

K, ()= X (XCs))
and remember that 7‘(&!) exists and is given by — cos ot(x) (see [3]);
in our situation 3; (s)=— Cos o, (s) .,

The point tt(s)= $(xcs) may be represented as follows:

\3(:): C s, g 03) = (g )+ §.(s) cos B(s), & (s3+g,05) singB (5) ).

Assuming @ to exist, we see that 3, exists as well and

1/:(‘)" (}: (s)+ ¢ (s) Cos /8, (s) - ﬁ(;)p;(s) sin B, (s),

I;(-‘)-/- ,: (s) sinp cs)+ % (£ (s) 608/5,(53).

If H is rectifiable then its length may be computed as

-{AV,L;‘(S)-*)Z"‘CJ) JS > A = length of E(zo) x‘)‘
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We have

\{ia(s)-f- vi:(s)= I+ ?;(S) + 8:(s)pf:Cs>
+ ZCos‘Z;(s)[s_;Cs) CosB(s) - g (s) @ (s) sinﬁgfs)j
+ 1 8in 'C;cs) [?o ) sinp‘(x)-J- 3;(3)/3;(::) Cos/s‘(s)]
= b+ cosTes) + gles) @(s)
+ 2F, s £ ()2 2 ()@ (s)5ih o, (s)

Z
= [Z,OCs)[s;(s)— Sin o(ocs)] .

We have thus proven:

Theorem 7.6 Let E(%,%) and Ha H(%, %) be rectifiable and assume
(3 to exist on E(x,,%,). Then, with the noration just introduced,

the length of H is given by
4
l | c&(s) (?;,(s) - Sin o (s) | ds,

8. On the Convexity of F

We give here three necessary and sufficient conditions for F to
be convex. We shall say that -w expands iff from Y& wx, \3’& '

follows d(xz2'J= «J(\a,\z' \3 as above, for 4.€ WX , we shall call

-39-
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projecting ray the ray [';L, x&‘—-)) ; and on every edge E we consider
the mapping ¢ as well as a mapging A which agsociates to w%xe 3 the
angles p(%), & } from a fixed line £ to the projecting reys

t

[)c'té_'—-)), Lx %'_‘,3respectively, whersa 4 is on the left, Y on the

right of #(x) . We then have:

Theorem 8.1 The following four statements are equivalent:
(a) F 1is convex;
(b) no two projecting rays intersect;
(¢) - expands;
(d) on every edge E , @ is monotone decreasing and p' monotons

increasing ,

Proof Let [y 4> ), I 4’ ) be two projecting rays intersecting at
A~ and let [}',z-], [5’2"] be tangents to ths circles of support of
center x and 2’ respectively (Fig. 8.1). Since 2,2'€F if (a) holds
the triangles 7:7'2 and x'z z' are contained in F . But necessarily
either 4 is interior to 2'3'2' or '3" is interior to -,z’? #' , an impos-
sibility since Lz.‘\é'e C . Thus (a) implies (b); the implication
()= (c) 1s obvious. Theorems 6.4 and 6.5 yield the next implication
(¢)-—>(d). Pinally, to close the loop and show (d)—> (a) one can use
reasonings parallel to those used to prove the implicaticn (b)—»(c) of
Theor. 6.k.

it may be interesting to compare the equivalence * £ 18 convex

i£f 9 expands' with Pnelps's result: " A ia convex Lff - shriaks"

{111,
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