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Abstract

Part One of this report is a brief summary of the research

performed under the contract. Part Two presents in 8 sections

a study of the skeletal graph G of a silhouette F and some of

the relations between the properties of G and the shape of F.
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Foreword

The first part of this Final Report su-warizes the publi-

cations issued under Contract AF19(628)-5711 from inception to

July 1968. The second part presents, in Scientific Report form,

the results of the last research phase the study of the skele-

tal graph.
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1) Technical Memorandum No. 1 (January 1966, 9 Pages)

L. Calabi: The Skeletal Pair Determines the Convex Deficiency.

Essentially absorbed in SR 2 listed below under 5).

2) Technical Memorandum No, 2 (February 1966, 17 Pages)

L. Calabi and W. Hartnett: On "Nice" Sets A.

Background work, ultimately leading to SR 3 listed below

under 15).

3) Scientific Report No. 1 (February 1966, 16 Pages)

L. Caabi nd W. E. Hartnett: Shape Recognition, Prairie Fires,

Convex Deficiencies and Skeletons.

To every closed subset A of the Euclidean plane is asso-

ciated its convex deficiency 'D and its skeletal pair

Extending a known result ( A is convex iff S a 16 iff f b )

one can prove: different sets have the same skeletal pair iff

they have the same convex deficiency. Several other results

are presented concerning the correspondence A-+ (51 t ) and

the properties of 5 andt . The relevance of these notions

and theorems for a mathematical model of visual perception is

emphasized. The treatment is expository.

Published in the April 1968 issue of Am. Math. Monthly.

-2-
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4) Technical Memorandum No. 3 (May 1966, 4 Pages)

L. Calabi: Tangents and Half-Tangents of the Skeleton.

Essentially absorbed in SR 3 listed below ,nder 15) and

in Part Two of this report.

5) Scientific Report No. 2 (November 1966, 24 Pages)

L. Caiabi and W. E. Hartnett: A Generalization of the Motzkin

Theorem.

A figure A in the Euclidean plane is a compact set whose

closed convex hull G(A) has a non empty interior; a ball of

suppcrt for A is a closed ball which has points of A on the

boundary but not in the interior. For each figure A , let

G(A) - A denote the convex deficiency of A and let ( %)

denote the skeletal pair of A where S is the set of centers

of maximal balls of support for A and k&) is the distance

from X to A for Xf S . T.he following statements are proved:

(1) Two figures have equal convex deficiencies iff they have

equal skeletal pairs. (2) (Motzkin's Theorem) A figure is

convex iff its skeleton is empty. (3) A figure is uniquely

determined by its closed convex hull and its skeletal pair.

(4) A figure with empty interior is uniquely determined by

its skeletal pair.

-3-
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6) Technical Memorandum No. 4 (December 1966, 6 Pages)

L. Calabi and W. E. Hartnett: Skeletons of Gray-Scale Pictures.

How to modify the notion of skeletal pair to represent

gray-scale, and not only black-and-white, pictures.

7) Technical Memorandum No. 5 (January 1967, 27 Pages)

W. E. Hartnett: A Preliminary Discussion of Mathematical

Models and their Suitability.

Discussion of some basic features of mathematical models,

as exemplified by the skeletal pair.

8) Technical Memorandum No. 6 (February 1967, 9 Pages)

L. Calabi: On the Curvature of a Skeleton.

Essentially absorbed in Part Two of this report.

9) Technical Memorandum No. 7 (April 1967, 34 Pages)

W. E. Hartnett: A Study of Approximation for Skeletal Pairs:

Selection of Adequate Topologies.

Together with TM 12 listed below under 14), this Technical

Memorandum pres,nts the initial results in a study of "natural"

Topologies on the set of figures and on the vet of skeletal

pairs for which the various "natural" correspondences would be

continuous.

-4-



PomnA Nhmznca Laxuomus, L.copavTA 5711-Final Report
ONXErAI OAI) - CAWL1UX MASSAM=WI1

10) Technical Memorandum No. 8 (June 1967, 6 Pages)

L. Calabi: On Nice Sets, II

Background work, ultimately leading to SR 3 listed below

under 15.

11) Technical Memorandum No. 9 (June 1967, 8 Pages)

L. Calabi: On "Smooth" Boundaries

Background work, ultimately leading to SR 3 listed below

under 15).

12) Technical Memorandum No. 10 (July 1967,13 Pages)

L. Calabi and W. E. Hartnett: Mathematical Analysis of a

Process of Shape Recognition.

Summary of work done at PML on the subject, since 1964

(32 references).

Technical Memorandum No. 11 (August 1967, 7 Pages)

L. Calabi and W. E. Hartnett: A Motzkin-Type Theorem for Closed

Nonconvex Sets.

A concise proof of an extension of the basic theorem

presented in SR 2, listed above under 5).

To appear in Proc. A.M.S.

- 5-
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14) Technical Memorandum No. 12 (August 1967, 21 2ages)

W. E. Hartnett: Implications and Non-implications About Shape.

See TM 7 listed above under 9).

15) Scientific Report No. 3 (December 1967, 28 Pages)

L. Calabi and J. A, Riley: The Skeletons of Stable Plane Sets.

Necessary and sufficient conditions are formulated for

the skeleton of a set A to be, essentially, a "well-behaved"

graph. Differentiability properties of that graph and of the

quench function are established.

16) Technical Memorandum No. 13 (January 1968, 29 Pages)

W. E. Hartnett: A Preliminary Study of Oriented SKeletal Graphs.

Background work, ultimately leading to Part Two of this

report.

17) Technical Memorandum No. 14 (February 1968, 17 Pages)

W, E. Hartnett: A Definition of Skeletal Graph of a Compact

Set.

Essentially absorbed in Part Two of this report.

18) Technical Memorandum No. 15 (April 1968, 1:3 Pages)

L. Calabi: Shape Interpretations of the Natural Vertices of

the Skeletal Graph.

Essentially absorbed in Part Two of this report.

-6-
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19) Technical Memorandum No. 16 (May 1968, 7 Pages)

L. Calabi: Fiala's Results on the Skeleton of a Curve in a

Riemannian Plane.

Quick presentation of the results of the title, and

comparison with our theory.

20) Technical Memorandum No. 17 (May 1968, 15 Pages)

William E. Hartnett: Partial Bibliography for Shape Recognition.

A list of 49 papers and books, none by the PML group, on

topics relevant to the study of the skeletal pair.

21) Technical Memorandum No. 18 (.June 1968, 16 Pages)

W. E. Hartnett: Curved Skeletal Graphs.

Background work, ultimately leading to Part Two of this

report.

1.
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Part Two

A study of the Skeletal Graph

by

L. Calabi
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1. Introduction

Assuming the reader generally conversant with previous PML work on

the general subject, this report studies the notion of skeletal graph G

of a silhouette F and shows that certain shape attributes of F are

easily describable in terms of & .

The mort interesting outcome for application purposes is the possi-

bility of studying F piecemeal by considering each vertex and each

edge of G- separately. Theorems 4.3, 6.4 and 7.6, for instance, show

that such "local" investigations may furnish non trivial information on

the boundary of F , and hence on F itself.

From a theoretical point of view the smoothness properties of each

edge of G is an interesting consequence of our general assumptions.

Even more interesting are Theorems 4.3 and 4.4, which extend to the

non-differentiable case a result so far known only for twice continu-

ously differentiable boundaries. That is a further indication that the

"nearest points map" and its related notions are indeed a powerful tool

to study geometric properties classically considered the domain of

differential geometry (cfr. [5]).

The definition of skeletal graph G is given in Section 2,

together with the general properties assumed to hold throughout the

report. Sections 3 and 4 present a study of the vertices of G, though

they contain also results on points of order 2, not vertices, to be

used later. The decomposition of F introduced in Section 5 is logi-

cally helpful and geometrically natural, even if visually too complex

-9-
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to be appealing. Sections 6 and 7 study the edges of 6 and some of

their influence on the boundary of F . Finally, in Section 8, the con-

vexity of F is shown equivalent to several prorerties of -W ar of G.

Some of the spadework leading to the definition of skeletal graph

was done by Dr. W.E. Hartnect; for it, and for many helpful discus-

sions, I am gratefully indebted to him.

2. The Skeletal Graph

Let A be a closed set in the plane and let ('5)j be its skeletal

pair. We assume that:

(1) S is closed in the complement of A , bounded and connected;

(2) All the points of S have finite order, and only finitely many

have an order different from i!.

Then we know that the closure S is a disjoint union of finitely many

open arcs and their endpoints, that we shall tall natural edges and

natural vertices respectively. A point % of r. natural edge E will be

called an extremal vertex iff it has a neighborhood U, in E such that

(or ) for all Y'6 L and there is a

sequence of points -.¢ E , z w ith ( X)> t() (or ( , ) . 1& ).

Each natural edge is then the disjoint (possibly trivial) union of its

extremal vertices and of open arcs, called monotone edges since I- is

either constant or strictly monotone on them. We shall require:

(3) The number of extremal vertices in L5 is finite.

If X belongs to a natural edge, it has order 2 in S and hence 77% has

- 0 -
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exactly two (connected) components; we shall say that such a point X is

a jump vertex iff 71 has more than two points (i.e., at least one of

the components of JrX is a non-degenerate arc of circle). Our next

assumption is then:

(4) The number of jump vertices in S is finite.

Denoting by V the set of those points of S which are either natural,

or extremal, or jump vertices, and assuming /A.6 we introduce on the

set . a structure of graph by considering V as the set of vertices

and by introducing as edges the (arcs which are) components of S \V.

The set S with that structure we shall denote by G and call the

skeletal graph of A . We will extend to @ by setting (xJ- o if

If G\S. (For the case Vur#, see Theor. 5.5 below).

We will denote by F* that component of the cor-plement of A which

contains S and set F- T'. We assume now;

(5) The boundary G of A and that of F are equal. Moreover every

point W of 6 is a local separating point of G

(A set Y , or a point , is said to be locally separating if, for some

open neighborhood U.,iK\'Y or k\IJI is not connected.) We could then

say that F is the silhouette of G and that G is the graph of .

Observe that for every closed disc b containing F in its interior,

b\ FO is a stable set (in the sense of [i]), having CS, t) as skeletal

pair and hence G as skeletal graph.

Our five assumptions are probably not independent. We will use

them all in the sequel. The formulation of an irredundant set of

'

-. 1
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axioms would require an effort: out of proportion with the scope of this

study.

In any graph, if nL denotes the nuber of vertices of order i ,

then 1/2 1 is the number of edges. Further, if the graph is con-

nected, ). . showing that if there are at least 3 vertices
v L

of order 1, then there certainly are vertices of order 3 or more.

Finally again if the graph is connected the number Ii - ,i% + I,

called the connectivity of the graph, is the number of its "windows" ab

well as the largest number of edges which may be removed without dis-

connecting the graph. In our case the connectivity of G is also the

number of bounded components of the complement of F , that is the

number of "holes" in F

If % G , we 4hall call branches (of G ) at - the edges

incidert with 3 if Y is a vertex; and otherwise, if X belongs to the

edge E , the two components of E \i.-. To each branch BL at Y , we

know from [1] that there correspond

- a half-tangent A g) to G at 7 (more precisely to 9 at y;

two points %, ze such that L' 7, zj are the side

of the Tr-sector containing 1,L

- a number oq(x) measuring the angle between X. W and ft• .

as well as the angle between ejCx) and c

We further remember that the number of branches it X , denoted OCX)

is not only the number of "T-sectors of vertex X , but also the order

of 7- in G and the number' of components of 7'X.

{1

: - 12 -
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If KC BZ , sufficiently close to X , then therfo exists a branch

B at % contained in 8 . Let e('), c (X') and be the

corresponding elements. When 7' tends to X along Bi and

tend respectively to and ,showing that i CZ')---'P e,) and

o% ('z)--.v oiL0)0. We express this as follows:

Lemma 2.1 Let E be an edge and give to E an orientation. For each

point x E but the last, let .ZO) be the right half-tangent to E at

y ; and let o(x) be half the measure of the angle of the corre-

sponding IT -sector. Then the mappingse and o are continuous in

and continuous from the right at the first point of E.

We topologize the set of rays and the set of lines in the usual

fashion.

3. Points of Order 2

Since, under our general assumptions, "XX cannot have infinitely

many components, we may state without proof:

Lemma 3.1 For any point ZeSO 2" .cc)_ '7r with equality holding

iff -rrr. is a finite set. Moreover the arc length of TrX is given

by zCx) ( I- 7-cl Cx

(The symbol -rr is here used to denote the nearest points map, as

in -ay- , as well as the usual constant 3.14... ; no confusion should

arise iii the context.)

Theorem 3.2 If Z F , of the following three statements the first

implies the second, and the second and third are equivalent:

- 13-
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(a) XG- is a jump vertex;

(b) x is the center of a circle having a (non-degenerate) arc in

common with G ;

(c) Xc a and Zeix) -t.

Moreover, if 7, has order - in G, then the three statements are equiva-

lent.

Proof Immediate from the definitions and Lemma 3.1.

Thus, if we know that .is a jump vertex, we also know that C has

one or more arcs of a circle centered at 7t ; and if we know the c(44),

we know the total central angle of those arcs; and if we know 1 =j we

know the circle; and if we also know the half-tangents AfzC ) we know

the arcs themselves and hence a part of G .

We turn now to the study of the extremal vertices. Remember that

on each edge, and hence also on each branch, 1 is monotone. We agree

to orient the branches at X away from it.

Lemma 3 If - -(%) .Tr/Z , then% is strictly increasing on B .

Similarly, if . 4( IT/ , then is strictly decreasing on 8j.

Proof With the notation of Fig. 3.1, t(%') J(x, a) and

CX0d- d ( ', -X X ) t (ZX') co . For X' sufficiently close to 7,

is close to % and so Co$ss .4 , yielding .C') >. Cx). Since

is strictly monotone if not constant, we obtain the first statement.

The second statement is established in a similar fashion (see also [2]).

- 14 -
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Lemma 3.4 If Q is strictly increasing (or strictly decreasing, or

constant) on 10 , then i(r-)Zr/a (or cAZC)_Srr/z, or oq.Z )= '/z

respectively).

Proof From Lemma 3.3. Notice that c(V=-7T/z is possible in all

cases.

Theorem 3.5 Let %e G be a point o- order oC() ?- Z at which g has

a minimum. Then oC %) Z o(,Cx ) (X) 7/2 and- is an extremal

but not a jump vertex.

Proof From Lemmas 3.1 and 3.4 and from Theorem 3.2.

Theorem 3.6 Let yce G be an extremal vertex at which t has a maximum.

Thcn, if Z is not a jump vertex, o4,(7-) a sc' /.

Proof From Lemmas 3.1 and 3.4.

Figures 3.2 to 3.5 illustrate the fact that extremal vertices do

not, by themselves, expLess shape properties of C . Notice that in all

four examples 1 (-K v ,z)wX -7 r/.

If % is a point of order 2, not a jump vertex, then o, X) + 2 C0) 7-

and hence ,(Z), eX3Qc) are collinear. The line to which they belong is

the tangent +W7) to G at Z. (Notice that such a tangent may also

exist at jump vertices.)

Theorem 3.7 Let %E Gr be a point of order two, not a jump vertex.

Then G has a tangent f(r) at z and the mapping t is continuous.

Proof From above and Lemma 2.1.

- 16-
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/ ~ has a maximum

/ at

Figure 3.2

has a minimum

at

-17-
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haB a maximum

a t

Figure 3.4

~.has a minimum

I at

Figure 3.5
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For jump vertices obvious geometric considerations yield:

Theorem a.8 Let ;s G be a jump vertex and let d,. be the measure of

the angle between ,(Z) and 0 (X) Then TrT consists of two arcs

whose lengths are W))and 3(x)Cz~r- ,(x)_Cz(X)).

At any point Xe G we now define d.(%).max cAC() , to obtain:

Theorem 3.9 Let -C be a point of order 2, not a jump vertex. Then

o% is continuous at * .

Proof If X is not a vertex, this follows at once from Lemma 2.1. If

X is a vertex, then again by Lemma 2.1,,a is continuous from the right

on each edge to which it is incident, when oriented away from it.

Hence * is continuous.

4. Points of Order Different from 2.

We begin with two results which do not need the general assumptions

of Section 2:

Lemma 4.1 Let P be a component of "7TX, ZEF and assume that P

locally separates C . Then, given any neighborhood U of P in C

there is a circle C. of center x such that Cn U has at least two

components.

Proof Given U , there is a neighborhood V of P with LJsV and V\P

not connected; and there is a real number d > I(W) such that the

circle C. of center t and radius c intersects at least two components

V,, V2  of V\P . Indeed, given V,, 1 we may set

- 19-
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j =ICX) + V,%I Sur C?4) E .ra, sUP

Lemma 4.2 Let 7/7, ze G have oCx) 4 - components, each locall.y

separating G . Then, given any neighborhood I( of -R- in G , there is

a circle C. of center - such that Con U has at least .oC(X compo-

nents.

Proof From above.

Theorem 4.3 Let r G be a vertex of order 1 with rTZ reduced to a

single point I (possibly -A=). Then5 reaches a minimum at x ; and

in any neighborhood U of in C there are four points belonging to a

circle.

Proof That % -) is a minimum follows from Lemma 3.3. To prove the

second statement, let -X be points on the branch B at = , converging

to Y. Then irX, has at least two points t, which may be chosen
as follows (see (1]); - i and, Exf ]0,, are

the sides of a T -sector whose boundary contains . Further, given

the neighborhood UI , for v sufficiently large s and 1' belong to

different components of \ , because every point of C is locally

separating. Applying then Lemma 4.2 to the corresponding Y we obtain

the desired result.

We have zhe following partial converse:

Theorem 4.4 Let C. ) C" q# Con if n,& i , be circles converging to a

circle C. and assume that C. tj > c. has at least four points

-20-
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., . . t4 such that the four sequences ( ), (v), ( ) and (I'n

all converge to the same point . . If T is the only point of C.il C

then the center X of C. is a vertex of 6 of order I at which

reaches a minimum.

Proof Since c. n C has only one point, C( is a circle of support to

A at .. Assume that there is a larger circle C' of support to A at

t ; then, for each vi ,the points t, and t' lie on or outside

C and hence C"-- C. That is C. = CO and C. is maximal. If its

radius is zero, Z= C G\S, otherwise Xe S . Hence the cheorem.

Observe that points with the properties of Theorem 4.3 or

Theorem 4.4 have been called vertices of G with respect to the family

of circles; a-d that, if C is a sufficiently smooth curve, they are

but the points of C at which the curvature has an extremum ([3,

Section 4.1.1). Our two last theorems then extend to the non-differ-

entiable case a well known result (cfr. [4]); they are thus two more

steps in the direction started by Bouligand almost forty years ago (cfr.

[5]). See also Theorem 10 of [9].

For completeness we give the next result characterizing those

vertices of G which are not in S :

Theorem 4.5 For X F the following statements are equivalent:

(a) %4 \ S;

(b) x is a natural vertex of G and Cx)= o,

(c) %C and the reach of A at - is zero.

-21-
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Proof The equivalence of (a) and (b) follows from the definition of

G The equivalence of (a) and (c) is established already in [6]. As

Fig. 4.1 illustrates, the order of x need not be 1.

We turn now to the points of G- of order at least 3 and we start

with:

Theorem 4.6 Let ;r G have order at least 3. Then is strictly

increasing on at most one branch at ;e

Proof From Lemmas 3.1 and 3.3.

For a more geometric study we need some new notions. Given F*

and ,, ... , ) C, v>lassume r, j c F ; then each compo-

nent W of F\uEr%,Ijis called a wede of vertex ; if -x, ) c)j,

then -Y, ;- 4s called a side of W . We have:

Lemma 4.7 If c is the number of components of G containing points

J,, there are Y-c+i wedges of vertex z and sides ,3 ,=Iz...,'.

Proof If c> i and n. > o is the number of points tt; in thp jth compo-

nent C of C , then there are r -i wedges whose boundary intersects G

only in C . There is also one wedge whose boundary intersects all c

components, yielding a total of I-c+I. If c= , the lenur.a is

obvious.

Observe that, under the assumption of the previous lemma, there is

a wedge having at leastc , but not more than ic sides. If all the

sides of a wedge W/ have equal length \ , consider the disc 1 of

center y and radius A ; W is said to be a sector iff it contains each

- 22 -
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A:the shaded set

:natural vertex of G with o (Y =i

Vertices of G 3 not in S of various order

Figure 4.1I
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component of T\U r*,j with which it has co mon points. Further a

sector is termed normal iff in each open side (-, X) there is a point

ML with %E irzz. (Notice that if rY, I " is orthogonal to C at

j,, then such a point * will exist.)

Lemma 4.8 For x e r the following two statements are equivalent:

(a) IT has at least two points ii' one component of r,

(b) there are normal sectors of vertex ;.

Proof If ITY T? belong to a component of C , then clearly

F\ U cY-,jL " contains a normal sector. The converse follows at once

from Lemma 4.7.

We say that a normal sector is minimal if no other normal sectors

are contained in it. We then have the following characterization,

where we denote by cC() the number of components of C having points in

common with i'. :

Theorem 4.9 The point X* G is a point of order o( x)2 2. iff there

are a(;)- c¢r.)+ I minimal normal sectors of vertex X

Proof From Lemma 4.7 and 4.8. The minimal normal sectors are but the

IT-sectors at Y.

Notice that if 7rX contains an arc, then there are infinitely many

normal sectors of vertex 'x , none minimal. By restricting the last

theorem to the case oC)> z we obtain a characterization of the

natural vertices of orderA 1.

- 24 -
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Let us denote by H1,, H-z the two components of -rrW a,,d set, for

Lemma 5.3 Each mapping e., z, is a continuous mapping of E onto

HZ . If , is 1-/ , then it is an homeomorphism.

Proof Clearly &g is ont, ; its continuity follows from the uppet semi-

continuity of VW. To establish the last statement fix Z, set J=--

and let in Hz:, %n ('). We may assume that (")converges

to some point X : we have to prove X= ( ). By the upper senii-conti-

nuity of .-, , we know that L rY since u e IT X If xe A , then

T-myis a vertex of G aid hence ' . Thus A ; but S is

closed in the complement of A % 6 S and consequently X* S That

is, -100~ or

Lemma 5.4 The boundary C is a finite union of arcs, intersecting

only at their endpoints.

Proof From Lemmas 5,1 and 5.3.

If there are no vertices, F has no r-tural decomposition; or,

better, FO is the only section of F . The results given above still

apply and moreover we have:

Theorem 5.5 The following two statements are equivalent:

(a) the set V of vertices is empty;

(b) 5 is a closed simple curve on which is constant.

Moreover either statement implies: C is the union of two parallel

curves at distance Z,

- 27 -
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Proof If (a) holds, there are no extremal values for , hence g is

constant; and all points of S have order 2, hence S is a closed

simple curve. Conversely, if (b) holds there are no natural or extremal

vertices; and o, (-A)= aC) ( r/t for each XeS . Thus there are also

no jump vertices. The last statement of the theorem then follows.

6. A Study of the Edges

Given an edge E of G, let us denote by o.=a(cE)and I.I(E) its

vertices (= endpoints of E ). Remember that o.=b is possible. We

orient E from a. to 6 and assume that 2 is then non decreasing. For

Xr E , we let ot(C).jaxitCr), as in Theorem 3.9; further

o4O(.). & o((x) and similarly for c((6). Then at is continuous on

Similarly for the tangent b(x) (see Theor. 3.7); we orient -(x) so

that, if X, follows z on E , the oriented straight line from X to x,

tends to *(Y) when -at -X

Theorem 6.1 Every closed arc E. contained in EUfkj is rectifiable.

Moreover, if 3( )> o, then E is also rectifiable.

Proof From the proof of Theorem bD of [1] we know that at every point

-4 E ( 5 the paratingent of i is reduced to one line, namely t(x).

Our result follows then, e.g., from [5J, Section 80. The assumption

a is essential for the validity of the second statement:

indeed E with 1=)=o could be, for instance, a spiral ( F" could then

be the region bounded by two non crossing spirals with the same vertex).

It may be interesting to remember here a result of (8]. Let

- 28 -
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C f. J(zA)=FI: then, for almost all? for which C , CP

is a union of rectifiable curves (see also [10]). Notice that C is a

level curve of the function J(-, A) , while S is its "crest" or

"divide". Under our general assumption we will prove below that C = C

itself is often rectifiable.

We first give two lemmas, valid without our general assumptions,

to obtain quantitative intornation on the distance between points on

the skeleton and corresponding points on C.

Lemma 6.2 Given it, -9, G F ,  c irx, tf E7Z, and with the notation of

Fig. 6.1, we have

(a) V=C ( c )cose + r~c,)cos OCcx) -

4- r (9)3 -t r C-K, )L- zd~rcx) cosr - e(x, )e ) - z cx)vC, )cos Ckk-)

(b) J 2- V() Cos' -YCX,) s with equality iff Lt

Proof Statement (a) is elementary and holds in any quadrilateral.

Statement (b) uses the fact that YCX )=Y .,A). Thus

Adding and rearranging we obtain (b).

It

r(., ) Figure 6.1

- 2-
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Lemma 6.3 Under the assumptions and with the notation of Lemma 6.2,

let also 2Ct,_ r(-) . Then

Y : C +rc . c/ if 2:
J 5 __ -(X r+ C ,-x r'Cg)) CI-e if r e,

Proof That rCy.- C_ I is a general property of the function -.

The other inequalities may be established in every quadrilateral. To

prove the first we have (see Fig. 6.2)

d ( , )by construction of k and the assumption ,- >o

J-i-)IrC,) -Ir by the triangular inequality.

The second statement of the lemma may be established in a similar

fashion.

Figure 6.2

Given the edge E and V6 denote by i the pcLnt of 7 on the

left of -(&) and (for the endpoint of k) such that the angle from +C()

to ry, is cICX). Call projecting ray () the ray yJ, -YP) and

- 30 -
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denote by 4 the mapping X As customary, we say that + shrinks on

(or expandb on) a subarc E. of E iff Jc(4 CO),,())_ , (or

C(), i, ) ) for any two points of y-, y, of E.

If follows x. on , let E(SX )denote the closed subarc of

which X, ,Xare endpoints and set HCxO),) X (E(;,A)). We shall

say that H. H y,,.) is E-concave (or E-convex) (see Fig. 6.3) iff

HL UE j with =  4(X.( is the boundary of a convex set

B and, for any X6EY,-,), H )6- -1 (-x'r° 3) (or

Joe,,H)?: J(., r- ., . The terminology wants to suggest the

apparent shape of H when seen from some point of E( X,, X).

Finally we shall denote by 15(Y) the angle from a fixed, arbitrary

directed line X to to ). Notice that ieCz)- a(CX) is then the angle

from e to -(x) . Thus S is a continuous function of X: . With that

terminology we have the following results which reproduce "locally" a

known result (11] and which enable us to know something about the

shape of FR. Similar results may be easily formulated for that com-

ponent of -7rE(X.,J which lies to the right of E . Care must be

taken however to consider the orientations involved and hence the

signs of the angles and the corresponding inequalities.

Theorem 6.. W'th the notation just introduced assume that .>.

Then the following three statements are equivalent:

(a) f shrinks on E cy., y)

(b) 3 is monotone increasing on E ;.

(c) H(%, )is E -concave.

- 31 -
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H4 is E -concave

H is neither .0 -concave

nor -convex

H is E -convex

Figure 6.3
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Proof Let Y-, t be in E(.,,); if (a) holds, then with the notation

of Fig. 6.1, 1 > . That is, 8 Cx ) -const: e, + const= /3Cx,).

Thus (a) implies (b). To establish the next implication let, for

aIp_ ,) , 'S. be the union of B and the segments 4Cxg).-j

U-(j) , for rE E(Y,, ) and , ) . The boundary of BE

is then - E I. u E.,° where H .is an arc of CP.

The rays ,OC.) are normals to H7 . If we assume (b), BE has then a

line of support at each point of its boundary and is hence convex.

B -) B is consequently also convex. Moreover C, Ey, j) _

?G ,*)E (X)- for all .>o. At the limit 4(y., 7) 2A,).

Thus (c) holds whenever (b) does.

If we now assume (c) we know that IT, shrinks on the whole plane

[11] because B is convex. Further, since J( 7t, , . ) J (7, B ) for

Zc 'C , Z), *&)er • Thus shrinks on E(7e,-9) and (a) is

proven.

Theorem 6.5 With the notation and under the assumption of Theorem 6.4,

the following three statements are equivalent:

(a) 4 expands on

(b) is is monotone decreasing on ECx6.,X);

(c) H (n,.i ) is E-ccnvex.

Proof The equivalence of (a) and (b) follows from Theor. 6.4 and the

continuity of p . The equivalence of (b) and (c) may be similarly

established, after observing that, in the proof of Theor. 6.4, it is

the monotonicity of /s which assures, and is indeed equivalent to, the

- 33 -
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convexity of 5.

An immediate application of Lemma 6.3 or of Theorems 6.4 and 6.5

(together with the known result that the boundary of a convex, bounded

set is rectifiable) yield:

Theorem 6.6 Let EC(*, %L) be rectifiable and be the union of finitely

many arcs, on every one of which A is monotone. Then H.~.)',)is also

rectifiable.

It can be shown by examples that the assumption on (a is not

necessary. It is even conjectured that H be rectifiable whenever E

is.

7. Assuming Differentiability

In this section we will use the notation introduced above and

assume = ex. ) to have a continuous tangent k( ) at every point

Remember that then #() and pCX) are orthogonal; we assume

(I-) so oriented that the angle from it to PCX) is t/z.

We will denote by lim IW(, for any function$ defined on Eo(X0) X,

the limit, if it exists, of t when X, tends to ) from the right, that

is with 7t, following % on f.

Theorem 7.1 If H has curvature cL'.) at '. -;(Y),then A- J Cim ,)

where ,1 (,exists and is given by * Furthers~n .cz.)

that limit is zero iff i* is the center of curvature at .

Proof Assume c(1)3 o, that is the situation of Fig. 7.1 then

- 34 -
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.. , ) Cie ) , ,. ,) / .

Combining the two relations we obtain

[1 1Ct,) 1(
Observe now that when ?. ->);then also

'Tr/2/

The last convergence follows from the fac:t thatc rtends to the center

of curvature at r . Our result follows. If CW)_ o, the proof is

similar.

Figure 7.1

- 35 -
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To complete the proof observe that I+ cC ) 7 C = 0 is equivalent to

CCj=- - --L- ; that is Z is the center of curvature.

If EC;, L) and H i,)z)are rectifiable, Theor. 7.1 yields

also the value of

since, on any rectifiable curve,

We shall denote by a dot the derivative along E (if it exists) of

any function defined there. For instance,

Then if ' '(X) denotes the angle from 2 to tX), i 4CX) is the curvature

CC7) of E at X (if Lt exists).

Theorem 7.2 Assume EC., -. ) and H. if, ,) rectifiable, and assume

that H has curvature at 1.f+C). Then, if .Cz) exists,

Proof We have

1 ,,____,. _.) / :CX , t. (x Jc ,, )_

Since SX )is the angle from 2 to the normal p(x) to H at Oc¢) , the

first factor in the right hand side tends, under our assumptions, to

- 36 -
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CCi) (when -, --4 % ). Thus, at the limit, using Theor. 7.1,

which is equivalent to the desired result.

In view of the last theorem, it is important to establish criteria

for the existence of

Lemma 7.3 Under the assumptions of Theor. 7.2, Q(YX) exists when X is

not the center of curvature to H at Lt.

Proof From the proof of Theor. 7.2 and from Theor. 7.1.

Lemma 7.4 The existence of any two of ck, C=&. i implies the

existence of the third. If they exist, then = .

Proof (A. C4+ -.

Lemma 7.5 Under the assumptions of Theor. 7.2, and if % is not the

center of curvature to H at u, then a(X) exists iff cCX) exists.

Proof Assume cCz) to exist. Since acx)= CtCxC)+ *+tc);

_____ (SCX,)-3(,) e(!,4  %- ) _____

Under our assumptions, when 2,-- Z the right hand side converges to

cCy s;hwCx _ _C C) Thus the left hand side converges

also, yielding ckCY). The converse is established in a similar

fashion.

We now assume to be rectifiable and denote by

-37-
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(ss)- , k Cs) the parametric representation of F (x), L)

in some cartesian coordinate system having e for first axis, where s is

the arc length along E(,Y6 , X). Let us set

If we denote by (S the derivative of (3 with respect to s , we will

have

There will be thus no confusions possible in using a dot to denote

differentiation with respect to s . We shall also set

~~ X(

and remember that Cx) exists and is given by -cos acz) (see [3));

in our situation Cs).- Cos a'C(s)

The point W Cs)= -S cs) may be represented as follows:

Assuming P7. to exist, we see that exists as well and

If H is rectifiable then its length may be computed as

C /s A length of

-38-
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We have

We hav (S pv +

cZ.(4 .S C( Js) -

# costL Cs al ~ *C) + spC)s~~)

Theorem 1.6 Let E (Y. n H- H(Yo,X,) be rectifiable and assume

"to exist on K ., ).Then., with the notation just introduced,

the length of H is given by

8. On the Convex2??.f F .

We give here three necessary and sufficient conditions for F to

be convex. We shall say that-fV 2Epandz iff from L r -my., ,E- Trc'

follows (,' as above, for 4,Ce'r7 w e shall rall

-- 39 -
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projcti ry Le ry [, - ;and on every edge E we co.sider

projecting ray the ray tV

the mapping Ik as well as a mapping P' which associates to x* 3 the

angles 160A), /( from a fixed linee to the projecting rays

, '~-4), Z ,respectively, where is on the left, i on the

right of 'Rx) We then have:

Theorem 8.1 The following four statements are equivalent:

(a) F is convex;

(b) no two projecting rays intersect;

(c) r r expands;

(d) on every edge E , 3 is monotone decreasing and monotone

increasing.

Proof Let , ) -._) be two projecting rays intersecting at

w- and let ' *' be tangents to the circles of support of

centers9 and 7' respectively (Fig. 8.1). Since x, 'c-F, if (a) holds

the triangles 'X and X' *1 are contained in F. But necessarily

either i is interior to x, or .' is interior to an impos-

sibility since C'e C . Thus (a) implies (b); the implication

(b)-4 (c) Ls obvious. Theorems 6.4 and 6.5 yield the next implication

(c) ->(d). Finally, to close the loop and show (d)-9 (a) one can use

reasonings parallel. to those used to prove the implication (b)-(c) of

Theor. 6.4.

It may be interesting to compare the equivalence " is convex

i!f Tr expands" with Phelps's result: A is convex iff -r shrinks"

[1].
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Figure 8.1
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