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PREFACE

This Memorandum is intended primarily to help fill a need in the

array of statistical tools now in coamon use throughout the Air Force

cost analysis community. For the past five years, for example, the

growth in the use of regression analysis hau been very rapid. More

importantly, the sophistication and understanding with which the sta-

tistical mechanics are being applied is also growing. There has,

however, been very little use of probability sampling in Air Force

cost analysis, although many have recognized the possible utility of

sampling applications.

This Memorandum was prepared at the request of cost analysts at

both Headquarters United States Air Force and major air command levels,

For the most part, it represents the distillation of material from

available sources (see Bibliography). The intent is to provide an

introduction to sampling methods, using the most applicable features

of several recognized sampling techniques. It is hoped that this

document will provide some basic understanding and encouragement,

leading to more widespread application in military cost analysis.
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SUMMARY

In this Mau.ian.um, various naspects of probability sampling are

discussed with a view toward supplementing the tool-kit of the mili-

tary cost analyst. Beginning with a discussion on the relative merits

of the sample as a means of data collection, the paper moves to a

simplified treatment of sampling theory, and of the more basic techni-

ques of sample design and estimation. Attention is given throughout

to the use of cost-effectiveness criteria in choosing among alterna-

tive sampling plans. Sufficienit coverage is provided to guide simple

survey investigations, and a bibliography is provided for further

reference. The exposition assumes at least a limited familiarity with

statistical theory (as, for example, might be provided in the Air

Force Institute of Technology training programs); accordingly, many

concepts and definitions are given only salutory treatment.

Cost analysts rely heavily on data that are often imperfectly

defined. Existing data sources are often fraught with errors of ob-

servation, reporting errors, and errors of classification. Sampling

method offers an approach to the data quality problem that is usually

cheaper, faster, and more flexible than attempts to modify existing

massive data collection systems. A sample is, of course, also subject

to error in that it cnly represents some fraction of the total; the

differenue is Lhat, with proper procedures, the magnitude of this kind

of error (i.e., sampling error) can be objectively estimated from the

sample itself.

The basi. :-...tive underlying the design of a sampling scheme is to

minimize sampling error for a given cost, or alternatively, to minimize

costs fox a given allowable sampling error. In either case, the solu-

tion to the design problem depends on the particular behavior under

study and the amount of prior information available. Some basic "tools"

that the analyst has at his disposal ar• stratification, clustering,

subsampling, systematic sampling, r~ito A.nd regression estimators, and

sampl.Lng with unequal probabilities. Although some design problems

may find optimu solutions in rather complicatedcombinatious of these

tools, such su-called "complex" samples ususliy sacrifice the virtue
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of objectively estimable sampling error (at least with the current

state-of-the-art of sampling theory). To some extent, this inadequacy

also exists in using sampled data for regression analyses, although it

appears that in this case the problem can be merely circumvented.
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I. INTRODUCTION

In 1589, Galileo Galilei tossed a couple of weights from the top

of Zhe tower at Pisa and made the remarkable observation that they

both landed at the same time. He did not find it necessary to drag

every movable object in Pisa to the top of the tower for similar dis-

position; inductive logic led him to conclude that all objects, regard-

less of mass, are equally accelerated by the earth's gravity.

Ten yea:s ago, a sampling expert carefully selected a hundred

oranges on a hundred different trees and successfully estimated the

juice content of the entire Florida orange crop within 2k percent.

The usual method of estimation, a canvass of growers' expectations,

was typically off 7k percent.

In 1936, Literary Digest's pre-election poll predicted an easy

victory for Alfred Landon over Franklin Roosevelt. Roosevelt won by

a landslide, c~rrying 46 of 48 states, and Literary 1Aest boon fadpd

from existence.

In 7eviewing the effects of airmen personnel policies, the Air

Fcrce relies on a survey of airmen attitudes, using a questionnaire

sample of less than one percent of the total airmen.

A ample survey is a vehicle for inductive reasoning; it provides

for the transformation of observations of a park into conclusions re-

garding the whole, whether that whole be Itad wvights, oranges, voters

cr aitien attitudes; it can be a very powerful device for Wnforuatiort

or misinformation, depending on the sampler', adherence to good proce-

dure. The intent of this document is to discuss a& .ects of good sam-

pling procedure and how they might be applied in cost analysis.

The pages thiat follow provide a broad overview of sam,!ing method,

particularly as it might apply to cost anely#,is. A large number of

topics wiil be touched upon, albeit briefly. Thb rather shallow depth

will be complemeted by references to the supling literature that is

listed in the bibliography. Simplified examples will be provided bcth

I1
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to illustrate points and to suggest applications to the various techni-

ques discussed. The result is an abridged "primer" on sampling for an

audience of analysts who might become involved in the actual design

and implementation of a sample. There is no pretense of providing a

short course in sample theory, but to draw together in .ummary differ-

ent aspects pertLnent Lo sampling cost data. the reader will be pro-

vided armament to tackle only the simplest sampling surveys, but perhaps

he will be encouiaged to peruse sampling literature of greater depth or

to communicate his needs to a more experienced sampling consultant:

Since the military cost analyst is typically concerned with sup-

port of planning or programming activities, his interest in data col-

lected is usually for input into some forecasting relationship.

Nevertheless, there is often significant interest in simply assessing

the state-of-the-world through the estimation of averages, total! and

ratios. Except for a small section dealing with the use of sample

data in regression analysis, the emphasis of this paper is on obtain-

ing data and estimates that reflect current fact. Thir orientation

shoulO not be thought of as ignoring the forecasting problem facing the
analyst, but as an attempt to limit the scope to the problems of data

collection, which are the same for forecasting as for estimating cur-

rent totals and averages.

MOTIVATIONS FOR SAMPLING

Cost analysis is highly dependent upon large amounts of data which,

ideally, are re±liable, accurateand precisely defined. The required

data are both historical and current, financial and non-financial, and

are often imperfectly provided by existing reporting systems. It is,

of course, seldom economically and administratively expedient to sug-

gest that the cost arnalyst go outside the existing reporting system

for large-scale data collection The basic premise of this document

is that there are occasions where small-scale methods could alleviate

the data quality problem.

Consider one important element of data quality, its reflection of

the precise characteristics to be analyzed. In a general sense, the

cost analyst is "end-product" oriented; the typical frame of reference j
is the weapon or support system and the activities and costs relating
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to it. Many reporting systems, on the other hand, reflect data in

organizational, functional,or commodity terms. These data, while use-

ful for management purposes, may be of no direct use for cost analysis

since they are not also coded to end item.* In the absence of more

precise information, artificial analytical means (such as prorating)

must be used to infer the relationships between the avai ...0 data and

the weapon system, program element, or other focus of inter-St. Sam-

pling may provide a direct means of obtaining the relationship. A sample

survey can often be used for direct observation of work in process at

a limited number of sites where direct identification to end product

is possible. Similarly, a sample survey may be designed which calls

for personnel within an organization to keep supplemental records for

a short period of time. Other samples may make use of data available

at the transaction level but which arc summarized out of existence in

the preparation of upward moving reports. Whatever the exact contcnt

of tne sample survey, the intent would always be to collect a relatively

small amount of data (by weapon system or program element, etc.) from

which reliable and consistent inferences about total behavior can be

made.

Sample or Census

One of the obvious solutions to the cost analyst's difficulty in

obtaining the required end product data is the preparation of a new

report which would provide a continuing census of the data. The fol-

lowing five considerations are basic to the choice between sampling

and complete enumeration.

(1) Flexibility. A sample survey is not permanent and may be

easily modified to reflect interest in different character-

istics should conditions change. By contrast, a formal

The Resources Management Systems (RMS) concept would in part
reduce the frequently large informational disparity between weapon/
support system or program element and functional, commodity, and or-
ganizational management. It will be some time, however, before RMS
will have an appreciable effect on the data available to the cost
analyst, particularly in the operating area.
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reporting system is often difficult to modify and often

continues to exist after the need for the data has been

obviated.

(2) Cost and Available Resources, Depending on the nature of

the information source, it is usually cheaper to secure

data from a fraction of the aggrepate, allowing a rela-

tively larger allocation of resources to the interpreta-

tion of results.

(3) Speed. Similarly, data often can be collected and summarized

more quickly with a sample than with a complete count.

(4) Scope. Sampling may be preferable when the purpose is to

study broad, aggregate characteristics. However, if accu-

rate information is wanted for many subcategories, a complete

census may be more appropriate.

(5) Accuracy. Strangely enough, a sample may actually produce

more accurate results than a census. Inaccuracy in a census

may stem from carelessness in handling the voluminous data,

poorly trained assistants, or the necessity to use data col-

lected by other people for other purposes. Although a sample

deals with only a portion of the total, the data may be much

more credible.

Flexibility and speed are important advantages when considering

the application of sampling for cost analysis data. Often, the data

required in support of a planning or programing study are transitory.

If cost analysis is to play a role in the study, usual:y there will be

a premium on the timeliness of the data. Hence, a new data collection

and reporting system is likely to be of little use.

One useful by-product of sampling is that it helps formalize the

analysis procedure. It stimulates a rational, organized procesA of
inquiry by forcing the analyst to ask questions about objectives,

scope, relevant data, and desired precision.

Sampling Computerized Data

When the existing data reporting system is couputerized, the

foregoing factors might seem irrelevant; with all the data on tapes
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cr cards, it would probably be easier to program a routine to summar-

ize all the information than to drew off a representative sample.

Even so, there may be circumstances that suggesL sampling either with-

in or outside of the existing system.

There are two main reasons why sampling from existing computerized

data might be desired:

(I) When individual data points arc to be examined further for

qualitative or non-re-orted characteristics, there may not

be enough time to deal with an entire census.

(2) The data base may be too bulky or complex to handle in the

aggregate even with the data-reduction capabilities of the

computer. It may therefore be necessary to sample in order

to determine the most useful breakout for the computer to

follow in stwnarizing the data.

There are three reasons why sampling outside existing systems

might be suggested:

(1) It may be desirable to generate a new data base when the

existing system is fraught with inaccuracies.

(2) Sampled data may be useful in testing the credibility of

the system, and in some cases may be used for data adjust-

ment.

(3) There may be no existing system that providcs the type of

data needed.

Depending on the sample size, sampling outside existing systems

(i.e., actual observation of the behavior under study) can require

considerable time and expense. Expense is minimized by the proper

choice of sample design, which in turn depends on many factors: allow-

able error of estimate, allowable budget, variability of the behavior

under study, geographic scope of the study, etc. These topics will be

considered later.

1BM has developed some interestitig ways to sample computerized
information. See Fan, Huller, and kezucha.
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Sources of Error in Existing Data

The inaccuracies often found in existing reporting systems have

already been briefly mentioned. It should be useful now to consider

the sources of inaccuracy common in mass data collection systems;

these should be considered in planning a survey. The following dis-

cussion is perhaps more speculative than objective since there is

actually no available documentation of attempts to measure the extent

to which reported data (cost or activity oriented) differ from fact.

It is often acknowledged, however, by those "within the trade" that

inadequacies do exist. So what follows is a categorization of reasons

why such problems occur, with no attempt to assess the importance of

any particular source.

Errors of Observation. These are errors of measurement (misread

gauges, faulty calculations, etc.). They arise from improper train-

ing of the data-gatherer or inadequate instruments of measurement.

Compared to ocher errors, they are probably not too important in cost

analysis.

Reporting Errors. These are errors of omission, commission, and

willful adjustment of observed information. They may arise through

misinterpretation of reporting goals, or the desire to make things

look different than they really are. Such manipulation is provoked,

for example, by the usc of performance goals and activity levels as

criteria for promotions or manpower allocation. On the other hand,

reporting errors may be motivated by the simple wish to avoid paper-

work.

Errors of Classification and Aggregation. A classification error

occurs when some resource is attributed to the wrong task, or category.

Recent studies of replenishment spares consumption have shown, for ex-

ample, that nuerous items are misclassified by mAintenance shop per-

sonnel because of carelessness or failure to use up-to-date technical

manuals.

aggreuation error results when expended resources are totaled

and reported at periodic intervals, rather than being attributed to

the time periods in which they were consumed. Aggregation error of
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another sort occurs when data for several categories are lumped to-

gether. Such data may be very appropriate for management purposes,

but the cost analyst must often arbitrarily prorate the information

among the categories of interest in order to accomplish his own ends.

Seecious Accuracy

Data may be accurate in the sense that there have been no errors

from initial observations to final reporting, yet they may not really

represent the particular behavior that one supposes. Such misleading

accuracy is said to be specious.

For example, Operation and Maintenance resources expended for

base support on Air Training Comand (ATC) bases are normally identi-

fied as "Training Support." Although such accounting may precisely

reflect support costs on those bases, the "training support" label

clouds the fact that the cost of support rendered to other major com-

mand tenants is also included; these costs may be largely independent

of the training function.

As another example, consider maintenance data obtained from an

independent tiample that is designed to circumvent the problem of in-

flationary (cr deflationary) reporting. Such data may better measure

the actual maintenance needs of various equipment than does the es-

tablished reporting system. However, it might be a mistake to base

an estimating relctionship (ER) on these data; the ER may estimate

maintenance n.eds, but may not reflect maintenance practice.
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II, SOW SAMPLING CONCEPTS

TOWARD REPRE SENTATIVE SAWLES

Section I tacitly recommends a basic distrust of data recorded by

anyone but the cost analyst who will use those data. The suggestion

has been for the analyst to determine at what point objectionable error

occurs in the data handling process and to go to that point and make

his own observations (or engage a well trained staff of observers).

When data are voluminous, customized collection implies the use of sam-

pling method. The task remains to discuss how to insure that a sample

is representative of the total, for this is the necessary assumption if

decisions are to be based on sample information.

For it to be representative, one might specify that the sample

reflect, in proper proportion, the various attributes of the population

under study. The sample need not be an exact miniature of the popula-

tion to be useful; the allowable latitude in this respect depends or

how sensitive the analyst's purposes are to errors in estimates. A

discussion of sample representation involves terms such as population,

distribution, bias, and error. These notions will te described, since

their meanings as used in sampling may differ from comon use.

Populations and Their Distributions

Sampling is motivated by the desire to evaluate some characteris-

tic of interest in order to aid subsequent decisiormaking. In statis-

tical terminology, the population is the complete set of values of

that characteristic. Specification of the population requires defini-

tion in terms of:

(1) Content. What characteristic of the population is under

evaluation?

(2) units. What are the units into which the population can

be divided?

(3) gxtent. What are the boundaries of the population?
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(4) Time. What is the time interval during which information

is relevant, and what is the time interval for which an in-

ference is to be drawn?

If the problem is to estimate average fuel consumption of a par-

ticular model aircraft in Fiscal Year 1967, the population is the

collection of fuel consumption rates for each such aircraft that was

operational during FY 1967. If, on the other hand, the problem is to

estimate (i.e., forecast) average fuel consumption of that aircraft

during FY 1968 - FY 1973, the population is the collection of fuel

consumption rates for each such aircraft operational during those five

years. Lacking clairvoyance, the procedure in the latter case would

be to substitute a related population, e.g., all relevant experience

in the past year, and assume that the substitute population reflects

the target population closely enough for practical purposes.

Populations can be characterized by their distributions. Suppose
it is possible to categorize each unit in a population according to

its value, and then prepare a graph of the frequencies with which each

category is represented. The result is a frequency diagram of the

distribution, which represents a visual illustration of the population.

For example, if the fuel consumption rates for all operational aircraft

are allocated into 20 gallon/hour categories, the result might be

graphed as follows:

S15
C

10.

0-
SC 5

i04O 1080 1120 1160 1200 1240 1280 1320

Fuel con;rumption rates, gallons per hour
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The choice of category width is arblitrry, and is rather a matLer of

visual taste; if the categories are made very small (e.g., I gallon/

hour intervals), the graph begins to assume the appearance of a smooth

cuzve. For simplicity, all subsequent frequency diagrams in this

document will be pictured as smooth curves.

Error and Bias

A sampling procedure is usually judged by the accuracy with which

it reflects the population, or with which it provides estimates of pop-

ulation characteristics (such as the population average). This accuracy

is composed of two factors, sampling error and bias. Consider a sampling

procedure in which ten observations are taken from a population of

fifty, and their average value recorded. Suppose that this procedure

were repeated an infinite number of times. There would result quite

a number of sample average values, but they would tend to concentrate I
within some sharply defined region. This dispersion of sample averages

is called sampling error. Now, it is conceivable that these sample
averages might, in turn, be averaged to produce a "grand sample aver-

age," and that the latter may not coincide with the characteristic being
estimated (i.e., the average of the population taken as r whole). The

difference between the population average and the average of sample

averages is due to bias in the sampling procedure. Suppose this ex-

ample produced results graphed below.

True mean of

population

Mean o7 sample

ove)ages

I I i I I liIIllIflhIll iI Il I i I I
I I I

23 24 25 26

That is, a sample of ten is selected, recorded, and replaced.

then another sample of ten is selected, recorded, and repla:ed, etc.
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The population average is 25.2 and the average of sample averages is

24.5. Sampling error ranges within about 1.0 units, and the bias as-

sociated with this sampling procedure is equal to .7 (i.e., 25.2 -

24.5 -. 7). The combined effect of sazplirg error and bias may or may

not preclude the usefulness of the samapling procedure, depending on

the accuracy required by the problem.

A helpful analogy is to consider the markmanship of three rifle-

men, where the riflemen are attempting to "estimate" the center cf the

bullseye:

S~The target on the left was turned in by marksman A. He has a very
: steady arms but apparently ýuffers from astigmatism; althoue. his aim
• is precise (i.e., small sampliag error), he consistently misses his

Sm•rk. Marksman B has no bias in his score, but his prectslon is quite
• a bit less then A. Marksmn C displays a small bias and more preci-
i• sion than A. Since marksman Coe particular mix of precision and bias

S~tends to consistently put him nearer to the center of the target, we
S~ would probably consider him the most accurate of the three.

to light of the previous discussion o-n errors in cost data, we
!ii might say that marksman A could represent estimates resulting from the
S~use oi data coming out of any existing reporting systemn; the estimates

are consistent, but their bias :-ends to invalidate their usefulness.

Marksmen B and C might represent two alternative sampling schemes.
S~Scheme 5 is virtually free of bias but is burdened by large sampling

error. Scheme C displays some bias bu~t has the saving grace of small

I *

aI s r t on a a td fraJs•n

iS
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sampling error. Scheme C wouid probably be the preferred (provided the

magnitude of the bias could be assessed).

Probability Samples

There are two broad approaches to a representative sample: (1)

judgment sampling and (2) probability sampling. In judgment sampling,

the analyst relies on his experience and skill to select a number of

sample points that are "typical" of the total population under study.

The judgment sample is characterized by the following couments:

(1) Accuracy may vary from sampler to sampler, but (for a given

sampler) is fairly uniform as sample size is varied.

(2) There is generally some bias present.

(3) There is no objective measure of the combined effects of

sampling error or bias.

Probability samplee are drawn with the aid of a table of random numbers

or any other device that assures that each sample point selection is

independent of all others. The general characteristics of probability

sampling are:

(1) Accuracy is not dependent on who is doing the sampling, but

it is dependent on sample size.

(2) There is no sampling bias.

(3) Sampling error can be estimated objectively.

Sampling error can usually be estimated from a single sample, but

very rarely is it possible to estimate bias. A highly experienced

sampler who is intimately familiar with the subject under analysis may

be able tn satisfactorily convince himself that the bias in his proce-

dure is "reasonable." But the researcher's audience is typically a

skeptical one and is inclined to have less faith in his judgment. The

presence of bias muddies up any objective statement of accuracy. For

this reason, it is usually easier to accept a lot of sampling error

rather than a little bias. This also motivates this paper's near total

emphasis on probability sampling.
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STATISTICAL BASIS FOR INFERENCE

The next several pages review some basic statistical principles

as they relate to sampling and develop the line of reasoning that sup-

ports the sampling method as a basis for decisionmaking. For those

who are already convinced of the credibility of probability sampling,

this discussion will hold little interest.

In the remainder of this Memorandum, population parameters are

denoted by Greek letters and sample statistics are denottd by Roman

letters:

Population Saaple

mean I (mu) i2 2 S2

variance a (sigma)2 S

The size of the population is represented by N, and sample size is n.

An unbiased estimate of a parameter is indicated by placing a "hat,"

over the parameter symbol. Thus, to say that a sample mean is an un-

biased estimate of the population mean is equivalent to the expression:

Descriptors of Populations and Samples

Recall the earlier discussion of population distributions. There

Y are generally two characteristics of any population dist:ibution that

interest the analyst: central tendency and dispersion.

Two measures of central tendency are tho median and the mean. If

all units (noted as X1 ) in the population are arrayed in order of size,

the median is the value of the middle unit. The mean is the average

of the population units:

N
r Xti

N

Parameters are constants associated with the population; statis-

tics are numbers ý.alculated from the sample, iad therefore are vari-

able from sample to sample.
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Of the two parameters, the mean is most often of interest, especially

with near-synmetric distributiuns. The median, on the other hand, is

independent of che distribution, and is often, therefore, the preferred

parameter in situations where the shape of the dUstribution is irregu-

lar.

The most comon measure of dispersion is the variance, defined as

the average of squared deviations of units from the mean:

2 E i 2 )

N

The standard error (or standard deviation) is the square root of the

variance:

An alternative measure of dispersion is the mean deviation:

N
F, (IX -PI)

N

The mean deviation is seldom used; the standard deviation is more popu-

lar because of its relationship to corfidence intervals, to be discussed

later.

A sample is some Dortion of the population composed of n units.
2

Analogous to the two population parameters, p and a , are the sample
mean and the sample variance:

n n
I:$2 r. (X-X)2

n n

These are called statistics because they are variables dependent on

the particular assortment of n units chosen for the sample.
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Sampling Distributions

Being a variable, a statistic also has a distribution. This dis-

tribution is called the sampling distribution, since it reflects the

frequencies with which the statistic would take on different values if

the sampling procedure were repeated an infinite number of times. The

expected value of a statistic is defined as the mean of its sampling

distribution. For example, the following might be the sampling distri-

bution of S [the expected value of S2 is denoted as E(S 2):

U
C
(D

a, (S2)

13 14 15

Since the purpose of sampling is to obtain information about the

population, we are generally concerned that our sample statistics are

accurate estimates of the corresponding population parameters. The

two aspects of accuracy, precision and bias, can now be characterized

in terms of the sampling distribution,.

An estimator (i.e., the formulas actually used in deriving esti-

mates) is unbiased if the expected value of the statistic is equal to

the parameter it estimates.

An estimator is precise if it has a relatively narrow sampling

distribution (i.e., if the sampling error is small).

The diagram below represents the sampling distribution of X for

two different sampling procedures superimposed upon the distribution

of the parent population (dashed lines):

Since the distribution is conceptually derived from an infinite
number of iterations, its graph is drawn in terms of relative fre-
quency. For geometric interpretation, the probability (P) that S will
assume a value within some interval is equal to the percentage areI
under the curve that is bounded by that interval (e.g., P[14.0 < S <
15.0] = .10).
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Estimator B is unbiased (its expected value is equal to p) but not

very precise. Estimator A is more precise but is biased:

Bias (A) = 65 - 60 = 5

Frcm the diagram, it appears that a precise, slightly biased

estimator might be preferable to an unbiased, less precise estimator.

This tradeoff is difficult to evaluate since p is unknown. The usual

practice is to follow procedures that are known to produce unbiased

estimators, thin select the estimator that has the greatest preci-

sion. host of the unbiased procedures require probability sampling.

'The requisites for probability sampling are:

(1) Every unit of the population has a known probability of

being included in the sample.

(2) The sample is drawn by some method of random selection

(each selec 'on is independently determined).

(3) Probabilities of selection are taken into account when, making

estimates from the sample.

Probability sampling methods provide unbiased estimates of popu-

lation parameters, or contain certain bias that can be evaluated. For

example, X is always an unbiased estimate of V if probability a-mpling

has been employed; the sample variance, S2, is a biased estimator of

the population variance, 2, but the bias is corrected by a simple

adjustment factor, . Non-probability methods, such as judgment
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sampling, may provide more precise estimates, but it is usually impos-

sible to identify bias. Probability sampling also furnishes informa-

tion on the sampling distributions of the estimators, and thus provides

the bridge necessary to be able to draw inferences about the population,

based on the sample.

Confidence Intervals

So far it has been shown that samples can provide useful estimates

of population parameters; it is known that if the sampling procedure

is repeated an infinite number of times, the average values of X and
- 2will be • and . A question remains, however, about the

inferences drawn from a singl._ sample; how close is X to p? This can-

not be determined with certainty, but thanks to a very helpful charac-

teristic of nature which is expiessed as the central limit theorem, it

is possible to specify the shape of the sampling distribution of X and

thereby find the probability that the quantity IX - • is within some

specified tolerance level. The central limit theorem provides that,

as sample size increases, sample means tend to be distributed normally

regardless of how the parent population is distributed. The distribu-

tion of sample means has the same mean as the parent population, but
a

its standard error is equal to =7

Pictured below are the population distribution (dashei line) and

the sampling distribution of X from samples of size n-10:

95%
S68%-"

ror

2o
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Since the distribution of X is approximately normal, theory tells us

that about 68 percent of the area beneath the curve lies within one

standard error (a..) of ýL, and 95 percent of the area lies within two
x

standard errors. Another interpretation is that the probability that

Xwill fall within one standard error 4 is .68. Standardized no:mal

curve tables are available in mo3t texts that provide this information

for fractional multiples of a_ .x

Suppose that a sample is drawn from the above population and the

two statistics computed:

- S2
X=43, S 25.

Neither p. nor a- is known, but a! can be estimated:
x x

_ .2 S2 22 n S 25
n n-l n n -l 9

A slkghtly biased estimate of a- is found by finding the square root of

K2). From the previous discussion it is known that if the sample were
x

drawn repeatedly, 95 percent of the sample means would fall within 2o0
x

of the population mean. This statement is equivalent to saying that u

is within 2a- of the sample mean 95 percent of the time. Thus it is

said that the 95 percent confidence interval for . is 43 + 10/3. This

does not mean that the probability that p lies in this interval is

.95; however, if one were to follow this procedure for setting confi-

dence intervals in sample after sample, he would expect his intervals

to contain 11 95 percent of the time.

The only flaw in the procedure for arriving at confidence inter-
2 2vals has been the use of S to estimate 0 . Fortunately, this only

causes problems with 3mall samples, which are discussed on page 26.

The concept of sampling error'may be a little ponderous for the

decisionmaker to employ. If the dec!sionmaker desires a certain maxi-

mum tolerance in order to use the sample results, the sampler can esti-

mate the odds that the tolerance will be met (absolute assurance of a
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given tolerance is fcr most purposes im.ossible). Whether the odds

are acceptable depends on the decisionmaker's aversion to the risk of

incorrect conclusions.

As an example, suppose an on-site sample survey has been made of

the number of direct depot man hours required to repair and refurbish

a certain missile guidance system component. The sample yields a

statement that on the average 1191 direct man hours are required for

each of the components of interest. From information concerning the

sample, an analyst can estimate the odds of achieving a specified tol-

erance. This might be stated as "the population mean is equal to 1191

direct man hours + 12.5 hours (tolerance) at .93 confidence." If the

analyst is willing to act upon estimates with this tolerance and con-

fidence, the survey has provided useful information. A more conserva-

tive analyst might feel comfortable only when this tolerance is achieved

with .99 confidence, in which case the sample procedure would need to

be revamped to obtain better representation of the population.

SIMPLE RANDOM SAMPLING

The simplest probability sample is the simple random sample. The

required conditions are:

(1) Independert selection of sample units.

(2) Equal probability of selection for all units in the popula-

tion.

The first condition specifies that the inclusion of a particular unit

in the sample is in no way dependent on the inclusion of some other

unit; this is accomplished by randomizing the selection. The second

condition assures that the sample will not be biased.

Buth conditions are implemented by proper selection of a sampling

frame. A frame is a list; a way of dividing the population into sam-

pling units that are distinct and non-overlapping and that together con-

stitute the whole of the population. A suitable frame allows the

listing ot numbering of all units in order to make a random selection

(although for some sampling procedures to be discussed later the com-

plete list is not necessary).
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A table of randuv numbers is one way to draw the sample. Suppose,

for example, that a sample of size n-lO is desired from a population

of N-452. Choose some arbitrary point in a table of random numbers

and read down the column of 3-digit numbers, picking out the first ten

numbers that do not exceed 452. The sample consists of those sampling

units that correspond to the chosen numbers (any number appearing more

than once should be ignored after the first time).

Choice of Samplt Size

The choice of sample size involves a tradeoff between cost and

precision; increased precision requires a larger sample size, which

in turn implies higher cost. For the analyst who does not have a

fixed budget, it is probably more meaningful to translate sampling

cost to sampling time (assuming the preferred path to a solution is

the shortest path); cost and time can be considered synonymous. The

typical procedure for determining sample size is to specify some level

of precision, solve for sample size required for several alternative

sampling schemes, then ccmpare costs (and possibly adjust the preci-

sion requirement if costs for all alternatives are out of line with

the budget). The following steps assume imple random sampling; the

rationale is the same for other sampling schemes, but the computation

is more complex.

The first step is to decide how large an error can be tolerated

in the estimate. This requices careful thinking about the use to be

made of the estimate and about the consequences of sizable error (is

*There is nothing essential about the use of random number tables,

for more simple devices such as tossed dice or numbered chips drawn from

a hat will often do. Sometimes it may be assumed that the population

units occur randomly in the sampling frame, so that any arbitrary se-

lection is valid; for example, if one is sampling 40 airmen to esti-

mate the average skill level of airmen at a particular base, the first

40 airmen listed in the base directory can probably be regarded as a

random sample (since skill level is not related to surname). Care

should be exercised that such devices actually do assure independent

and equal probability of selection. The advantage of a random number

table is that such assurances are scientifically provided.

I.
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the estimate to be very precise or just a rough estimate?). The

figure arrived at may be, to some extent, arbitrary, but this is the

necessary step that patterns the sample estimate to the objective of

the analysis. The second step is to express the allowable error in

terms of confidence limits. Suppose L is the allowable tolerance in

the sample mean, and we are willing to take a 5 percent chance that

the eiror will exceed L (we want to be "reasonably certain" that the

error will not exceed L). The 95 percent confidence limits computed

from a single mean are:

X + 211'= X + Tn

Since the tolerance is L:

2o

402
L 2

The general formula is:

22
z a

where z is the standard normal deviate, i.e., the multiple of oV that

corresponds to the desired confidence interval.

r Desired %--I

The appropriate z-values can be found in tables of standard nor-
mal deviates in most statistics texts.
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In order to use this formula, an estimate ot o is necessary. This may

be accomplished by a small preliminary sample, or by examining previous

samplings of similar populations. For populations of size greater than

500, a crude estimate of a is (range)/6, the range being defined as the

difference between the highest and lowest values in the population.

Having calculated the sample size required for the stated preci-

sion, the third step is to evaluate the sample cost. If the cost is

high, it may be necessary to relax the precision requirement. It may

even appear preferable to give up the sampling plan altogether in favor

of a complete census,

Sampling for AttribuLs

Population characteristics can be classified as quantitative or

qualitative. Quantitative characteristics (e.g., annual income) are

called variates and are expressed numerically. Qualitative character-

istics (e.g., sex) are called attributes and are non-numerical. Sampl-

ing of variates leads to the estimation of totals and averages; sampl-

ing of attributes leads to the estimation of proportions, or percent-

ages. The various sampling designs generally apply in both cases, the

main difference being the form of the estimators (i.e., the formulas

used in deriving estimates). There has been no attempt in this survey

to grant "equal time" to attributes, since the discussion and examples

would simply parallel that of variates.

Consider a study to determine the proportion of overseas Air Force

installations that maintain their own telephone switchboard facilities;

each base selected for the sample would be classified as either (A)

maintaining its own facility or (B) contracting that function out. The

frequency distribution has the following form:

I'
V I

LL

A B
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If A and B were each assigned a numerical value, this distribution

could be handled the same as the variate case. 'the analyst is iusually

interested in determining the proportion of units exhibiting property

A:

NA

A N

This number is the same as p if every sample unit exhibiting character-

istic A is given a value of one (1), and all other sample units are

valued at zero:

N
N A. ...

A N N A

Assuming simple random sampling, the sample proportion, p, is an

unbiased estimator of the population proportion, TI. The variance of

the sampling distribution of p takes the following form:

a2 T(I-TT)

p n

Its unbiased estimator is

S 2 =21-p

p n

Sometimes Lhe intent is to estimate NAs the total units in the

population having the desired attribute. The appropriate estimators

here are:

NA - PAN
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2~ N2 (f2

The sampling Jistribution of p (and of pN) has the desirable

cen•tral limit theorem4 property of tending toward normal as the sample

size increases. However, if either IT or (1-11) is very small, very

large sample sizes may be required. This is because the sampling dis-

tribution tends to be non-symmetrical for values of IT that are very

high or very low:

0.2 0.4 0.5 0.6 0.8 1.0

AA

As a rule of thumb, the follo'wing conditions should hold before

relying on normal distribution properties:

np > 5 < nq.

For values of p that are very large or very small, it is much

cheaper in terms of sample size to base confidence intervals on the

properties of the Poisson distribution (a general class of skewed

distributions) or the binomiai distribution. Reference to these two

distributions can be found in most basic statistics texts (e.g., Hoel).

Finite Population Correction

This paper assumes non-replacement sampling throughout. This i.

the general class of samples in which individual population units are

no' allowed to appear in the sample sore than once; i.e., there is no

duplication in the selecting of random numbers. When sampling with
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non-replacement from finite populations, it is necessary to introduce

the factor (I - into the computation of sampling variance. Hence:

2 ^2
a- = (1-f) !- ; f

nx n N

This factor is called the finite population correction (fp..), and as-

sures that the estimated sampling variance tends to zero as the sample

size approaches the population size N. In practice, the fpc can be

igno:ed when the sampling fraction is not greater than 5 or 10 percent.

The effect of ignoring the correction is to overestimate the standard

error, which generally is not as se:ious as underestimation.

Dissecting the Sampling Variance Estimator

it may be of interest to sunmarize the "anatomy" of the sampling
variance. The various components are:

The average of squared deviations of sample observa-

n -2 tions from the sample mean; simply a convenient de-
C (XiiX) scriptive measure of variability within the sample,

n but which is also useful because of its relationship

2
to a

The factor necessary to convert the measure of sample
n variability into an unbiased estimate of population
nil 2

variability as measured by a

The factor that converts the aeasure of population
- variability into a measure of variability of the sampl-n

in, distribittion.

The factor that makes allowance for sampling fzrou finite

populations (f -
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Assembling the components gives:

n s
- 2X

xn n- \. I/

which is the unbiased estimator of j

2 a2
- = (1-f) -- I
x n

Examinacion of this formula draws attention to the fact that the

sampling error (a.2x) depends primarily on the population variance (a 2)

and the absolute sample size (n). The :elative sample size (i.e., the

fraction of the population sampled) is not an important factor in

large populations. For example, 50 observations from a population of

20,000 will give an estimate about as precise as 50 observations from

a population of 1,000, provided that the population variances are the

same.

Confidence Intervals from Small Samples

'One problem in the determination of confidence intervals arises

from the use of the following formula for determining the upper and

lower limits.

Li

The variable z is the standard normal deviate that corresponds to the

degree cf confidence desired. This formulation rests or. the fact that

has a standard normal distribution (i.e., 4=0, and a-1). Since a is not

usually known, it is often necessary to use its sample estimator
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instead, The expression

follows what is called the t-distribution. The t-distribution is very

close to normal, but has wider dispersion when the sample size is small.

Standard normal

t distribution

SI I * I I

-4 -2 0 +2 +4

For this reason it is preferable to use t-values instead of z-values

I when sample sizes are less than 30; upper and lower limirs arL thenI determined from the expression:

• tsi Ig - --L =-

where t and S have been substituted for z and a, respectively. Tables

are available from which t-values can be ascertained in much the same

manner as the z-values, except that the sample size must be specified.

A portion of a t-cable appearing in R. A. Fisher's 1934 volume of Statisti-

cal Methods for Research Workers is reproduced below. If, for example, the

degrees of freedom level of si ificance
(n - 1) .5 .3 .1 .05 .01

13 .694 1.079 1.771 2.160 3.012
14 .692 1.076 1.761 2.145 2.977
15 .691 1.074 1.753 2.131 2.947
16 .690 1.071 1.746 2.120 2.921
17 .689 1.069 1.740 2.110 2.898

<*

This boundary between "small" and "large" samples is arbitrary;

expeiience has shown that for most purposes, the z-distribution suffi-
ciently approximates the t-distribution when sample size exceeds 25 to 30.
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desired confidence level were .70 and the sample size were n15, the

appropriate t-values would be t - 1.076. The column headings refer to

the area under the "tail" of the curve (e.S., a .70 confidence level

implies .3 significance). The row headings refer to degrees of freedom,

a rather abstruse statistical concept which for simple random sampling

is one less than the sample size.
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III. ELMIENTS OF SAMPLE DESIGN

Designing a sample is a matter of getting the most accuracy for

your money, and is a problem apart from that of obtaining "valid" re-

sults (in the sense of being nble to draw correct inferences). Valid-

ity derives from adhering to the rather well defined rules of good

procedre, such as using correct estimators and maintaining independ-

ent selection if sample points, A designed sample, on the other hand,

seeks to utilize prior subjective knowledge about the population in

order to increase accuracy or decrease costs.

SAMPLE PRECISION AND COST

S~Increasing Precision

Precision is increased by decreasing the variance of the sampling

distribution. There are four fundamental methods for achieving this

result:

(1) Increasing sample size.

(2) Stratifying the population.

(3) Using auxiliary variables in the estimator.

(4) Using unequal probabilities of selection.

The simplest way to increase precision is to increase the sample

size. This has already been discussed in connection with choosing

the sample size for simple random samples.

Sttatification involves dividing the population into two or more

subpopulations and sampling from each. Stratification always reduces

the sampling variance provided the variability within strata is less

than the variability in the overall population. It is also possible

to stratify after the sample has been drawn, but this is usually not

as efficient.

Sometimes in sampling there is the opportunity to observe an

auxiliary variable which is closely zelated to the main variable of

interest, and which can be utilized in the estimator to give more pre-

cise estimates. Two such estimators (ratio and regression) are dis-

cussed in Section IV.
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Unequal probability sampling offerc anther way of making good

•3a of an auxiliary variable. As well as being used in the estimator,

the auxiliary variable is used to determine the probability with which

various sample points fall into the sample. Probabilities are set

proportionally to the auxiliary variable, and the closer the correla-

tion between the two variables, the more precise tha final estimate.

These methods will be discussed more fully in the process of de-

scribing the several sample designs which follow in this section and

in Section IV.

Cutting Survey Costs

Costs of running a survey fall naturally into four categories:

(1) costs of observation,

(2) travel costs,

(3) coding costs, and

(4) overhead costs.

Observation costs are those incurred "on-location" in recording

the behavior under study. These costs vary directly with the ntunber

of sampling points, and therefore are reduced by decreasing the sample

size. Any of the sample designs that offer increased precision, for

a given sample size, can likewise be used to provide the same preci-

sion at less observation cost.

Travel costs are those incurred in moving between sample points

and home base. These are mostly irrelevant when sampling from a cen-

tralized reporting system. The common method to reduce travel is to

group the sample points into clusters so that the sampler can pick up

several observations at each location rather than just otne. The cluster

technique Ls less efficient (less precise), but sometimes the reduction

in travel cost may allow the sampler to recoup his precision loss by

selecting more sample points. Cluster sampling will be explained later

in detail.

Coding inciudes those administrative taskq relating to the trans-

formation of sample information recorded by field workers into a form

that is amenable to analysis. This may simply require the consolidation



-31-

of data from several worksheets, or it may involve numerical interpre-

tation of responses recorded on sample questionnaires. The magnitude

of coding costs depends on the mode of data collection; but for a

given mode, they vary directly with sample size. Careful planning of

sample observation procedures may lead to significant savings in data

handling costs.

Overhead includes such items as frame construction, sample selec-

tion, calculating estimates. These costs are rather insensitive to

different sample designs, since planning and design probably consti-

tute the bulk of these costs. However, if the population is very

large, the choice of sampling design can significantly affect the time

necessary to construct a frame and select sample points.

Cost-Precision Tradeoff

It has been stated that the choice of sample design depends on

both cost and precision of the alternative sampling schemes, but there

has been no discussion of combining the two into a single measure.

The usual measure iz Net Relative Efficiency (NRE). The concept of

NRE will be developed by means of a simple example.

Suppose two alternative sampling schemes, A and B, are available.

For a sample of size 50, it is estimated that sampling variance for

scheme A will be 35, and that for scheme B will be about 42. The

Relative Efficiency (RE) of A to B is the inverse ratio of the vari-

ances:

RE(A/B) =var (B) 42 1.20
var (A) 35 .2

Scheme A is said to be 20 percent more efficient than scheme B. A

10 percent sample using scheme A would provide the same precision as

a 12 percent sample using scheme B.

What about costs? The costs of the two schemes are estimated,

variable costs (those proportional to sample size) are separated out,

and the variable cost per sample point for each is computed. This

variable component for A is $50, and for B is $40 (these costs might
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as easily have been stated in terms of man-hours). The Relative

Variable Cost (RVC) of A to B is the ratio of these costs:

RVC(A/B) VC(A) 1=- 1.25
vC(B) 40

Scheme A is 25 percent more costly than scheme B on a sample point

basis.

Since sampling variance is inversely proportional to sample size,

and the RVC is on a sample point basis, a consistent way to combine

the two criteria is to divide the Relative Efficiency by the Relative

Variable Cost. The new measure is called Net Relative Efficiency:

NRE(A/B) RV = 1.20-- = var (B) VC(B)
RVC 1.25 L var (A) . V'C(A)J

When costs are considered, scheme A is 4 percent less efficient than

B; equivalently, scheme B is 4 percent more efficient than A (- =

1.04).

For a given level of precision, scheme B will be 4 percent

cheaper; for a given budget, scheme B will provide 4 percent greater

precision.

The choice of scheme B has depended on some necessarily rough
"guesstimates." The feeling is, however, that these calculations

lead to a best guess when performed by someone with good subjective

familiarity with the behavior under study. The need for this kind of

preliminary analysis illustrates the usefulness of prior sample sur-

veys that are well documented. The concept of Net Relative Efficiency

receives detailed treatment in Jessen, pages 97-103.

Again, sampling designs are motivated by the desire to re-estab-

lish the cost-precision tradeoff at a more favorable level than is

obtained by simple random sampling. The most basic designs are de-

scribed in the remainder of this section.

Assume equal or insignificant fixed cost.
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BASIC TECIHIQUES OF SAMPLE DESIGN

The most basic of the sampling techniques are those that "parti-

tion" the population so that the resulting sample will reflect some

special knowledge of the manner in which the population units natuially

occur. Four techniques are considered:

. Stratified sampling

. Cluster sampling

• Subsampling

. Systematic sam~ling

V These are the foundations of the more complex schemes often required
f in real world applications of sample surveys.

Description of the basic sample designs will include the motiva-

tion for their use: why the design is used; advantages and disadvan-

tages; relative costs of application; and allocation of sample units.

A simple illustration of each design is also included.

The formulas for estimation of population means and variances

are not found in the descriptions but are given in Appendix II. This

has the dual purpose of (1) smoothing the way for those who are more

interested in the rationale behind different designs than the arith-
metic of estimation, and (2) gathering the various formulas into a

few pages for easy comparison. Most of the examples include measures

of estimation and may prompt the interested reader to refer to the

appendix; although the general tone of the applications and the rea-

soning behind the choices of designs should be apparent without having

to become immersed in actual numbers, these calculations were included

for those desiring to see the formulas in action.

Please note the following convention for stratification, cluster-

ing, and subsampling. The population is divided into N partitions,

of which n partitions are designated for sampling; each partition con-

sists of M data points, of which m are selected for the sample. Thus

the total number of data in the population is equal to MN, and the

total sample size is In.

b1
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Stratified Sampling

In stratified random sampling, the population is divided into

non-overlapping subpopulations, called strata. A simple random sample

is then drawn in each stratum.

Stratum #1 Stratum #2 Stratum #3 Stratum #4

There are four principal reasons fo:: stratifying.

First, it sometimes is desired to obtain estimates for subdivi-

sions of the population.

Second, it may be administratively convenient to break up the

population into orrata of a size easier to work with.

Third, sampling problems may differ in different parts of the

population. For example, in sampling long-haul communications person-

nel stationed on air bases, it would be practical to put SAC and ADC

in a separate stratum since they administer their own communications.

The data sources for these two commands, and their sampling frame,

would be of a different nature than that of the ocher major comnands,

which are served by the Air Force Commun|ication Service.

Fourth, considerable precision may be gained if it is possible

to divide a heterogeneous population into strata that are internaliy

homogenous. Differences between straLa do not contribute to the

stratified sampling variance. Thus, the iPss variability within

strata, the smaller the sampling variancc.

The simplest way to allocate the sample is to use proportional

allocation, that is, to make the nuiuber of sample utiits drawn from

each stratum proportional to the total number of units in that stratum.

The gain in precision over simple random sampling is, in this illocation,

I

I,
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entirely due to that prior knowledge of the population that led to its

partitioning (i.e., the knowledge_ that all of the variances within

strata are smaller than the overall population variance).

Proportional allocation overlooks two items of information that

may be at the disposal of the analyst: (I) differences in variance

(a2i) from stratum to stratum, and (2) differences in the cost (c,)

associated with observing a unit in each stratum. Since the dual pur-

pose is to minimize both overall sampling variance and cost, it follows

that more units should be drawn from high variance strata where sampl-

ing is inexpensive. When the stratum sample sizes (mi) arL set propor-

tional to the respective standard deviations (ai) and stratum sizes

(Mi), and inversely proportional to the square root of the costs (cd),

allocation is said to be optimal. The fact that some uncertainty may

be attached to the knowledge of ai and ci does not impair the lack of

bias of the final estimate of 4. If the analyst is confident in his

estimate of at least the relative magnitudes of the ci and of the Oi,

it is better to use optimal allocation rather than proportional alloca-

tion.

Example. Suppose that an estimate is desired for the average

dollar-cost of replenishment spares for a tactical fighter with the

following deployment (by conmmand):

Command
TAC 450

TAC-CCTW 150
PACAF 75
USAFE 75

750

For each aircraft there is a record o' all major modifications, spars

consumed, and major maintenance. Each aircraft can be idenitified by

its tail-number. Assume that the dusired tolerance for estimated aver-

age cost is + $300 at the 90 p%'rcent confidence level.

Combat Cre Training Wing.



The first task is to get a rough estimate of the standard devia-

tion of spares costs for the 750 aircraft. Suppose an informed individ-

6al suggests that the distribution of costs is fairly bell-shaped, but

skewed to the right; furthermore, he feels that about 95 percent of the

aircraft have spares costs equal to $11,250 1 2800. Noting that x2o

usuaily encompasses 95 percent, the standard deviation is estimated to

be •(2800), or $1400.

If simple random sampling were applied t3 this problem, the sample

size would be determined as follows:

( )Sx z lO Sn 1400'

300 z 1.65 7

n 59.4 2 60

One could expect: to do better by stratifying according to the four

command-categories (TAC, PACAF, et(.) above, since program character-

istics (flying-hour programs, etc.d are likely to affect spares consump-

tion. Using the same sample size as above, and adopting proportional

allocation, the m1 for the various strata are:

Strat• M i

TAC 60(450/750) - 36
TAC-CC7' 60(.,50/750) - 12
PACAF 60( 75/750) = 6
USAFE 60( 75/750) = 6

The design may be improved by speculating as to the reiative dif-

ferences in dispersion and sampling costs among the strata by using

optimal allocation: t

Mi•

M1 ptoporttonil * -

Suppost ost' coull t exrct sampling co,,ts ovu.rs,.as to '-c double thost- in

thc 7.1. Fuzhtrmoze, one might ,xpcct thit dispersion in TAC-CCNW to
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be one-half the dispersion within TAC, with the other strata somewhere

in between. Accordingly, the following table lists relative costs,

standard deviations, and the allocation that results:

Rela- Rela- FstimaLe of
ti-e tire Mi°/C2)i Sm

Stratum Cost Disp. i

TAC 1 4 450(4/11) = 1800 60(1800/2420) = 44.6 = 45

TAC-CCTW 1 2 150(2/12) = 300 60( 300/2420) = 7.4 = 7

PACAF 2 3 75(3/2½) = 160 60( 160/2420) = 4.0 = 4

USAFE 2 3 75(3/2½) = 160 60( 160/2420) = 4.0 = 4
2420 60

Notice that in the new allocation, high-cost "trata are sampled Less

and the high-variance stratum is sampled more.

Cluster Sampling

In cluster sampling, the populat.un is divided into groups, or

clusters, of units. Several of the clusters are chosen at rando-:

and all units in each selected cluster become part of the samp' . The

clusters are referred to as pri-1aries, whereas the units contained

therein are secondaries.

mI

There are two mjor reasons that lead to the choice of cluster

sampling.

First, there is sometimes no list of' the population available on

which to base a sampling frame and it is t•it that such a list would
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be too expcnsive to construct, whereas it is relatively easy to come

by a list of clusters ot units. Suppose it is desired to sample mes-

sage tengths in a Communications Sector. The practical procedures

would be to sample clusters of messages, i.e., messages received at

selected installations during some specified time interval.

Second, cluster sampling may be desirable if the population is

such that travel costs can be reduced by selecting adjacent units.

For example, if failure rates for some item of base equipment are

bcing samplel, it may be cheaper to select a number of bases and ob-

serve all units on those bases than to take a simple random sample.

The relkti,:e cost for snecified precision (and equivalently the

relative varience for specifie& cost) is (i) proportional to the rela-

tive cost of observing one cluster, (2) proportional to the variation

between clusters, and (3) inve.sely proportional to the relative size

of the cluster. If in estimating X a choine is to be made between

several different cluster sizes, it can be shown that the criterion

is to choose that cluster ize that minimizes the product of sampling

variance times total cost (both of which vary, depending on cluster

size).

When cluster sampling is chosen as a matter of convenience, the

final estimate will generlly be less precise than a simple random

sample , •e same size. Therefore the decisien rests on whether the

cost red,:ction allows the selection of a large enough sample to actu-

ally increase precision. This situation contrasts with the stritified

sample, where an estimate less precise than that from simple random

sampling is very unlikely, and would almost require contrived strata

designed specifically for that result. Of course, if the clustering

were designed so that variation within clusters was greater than that

between clusters, then the estimate would be more precise than the

simple raudom case. Such an arrangement is not likely; it is tpically

easier to partition the population into groups of homogcnecus units

(as in strutification) than heterogeneous units.

ExanKe. A frequent proolem for the cost analyst is to estimate

the cost of consumption items that are coruion to more than one system.
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Frequently, these items are centrally managed, and their consumption

reported only in aggregate. Let us postulate, for e.xample, a study

of administrative/support aircraft, in whiLh it is desired to know the

annual cost of low value replenishment spares consumed. A large gloup

of spares are common to two aircraft (aircraft #1 and aircraft #2) as-

signed to 100 world-wide locations. Consumption accounting is by com-

modity only, necessitating some external data collection for study

purposes. One solution would be to request that maintenance managers

at each of the 100 locations keep detailed records of the fknal appli-

cation of the common spares in question. This would be time consuming

and costly and would Frobably provide more detail that necessary. What

follows is a cluster sampling design that would probably provide very

adequate information at significantly less cost.

Suppose that aircraft #1 is stationed cn all 100 bases, but air-

craft #2 is only on 40 bases. Designating a one-year time period and

defining a cluster to be a one-month period (12 clusters per base),

the population contains 1200 clusters, 50 of which will be sampled.

Since all common spares in question sent to 60 bases are consumed by

aircraft #1, attention may be restricted to the remaining 40 bases:

Sample 50[ Aircraft #1 only Both -t] and -2 base-months

months[ (720 base-months) (480 base-months)

1-- 60 bases 40 bases i

The procedure will be to estimate the proportion of cormnou spares by

aircraft #2 in the smaller stratum, then make an adjustment to allow

for the other 60 bases.

Fifty clusters are randomly chosen from the smaller stratum, The

maintenance chief at each selected base is instructed to keep records

regarding the disposition of all common spares during the particular



month(s) chosen. The information to be reported is the month's total

consumption of common spares (M.) and the consumption recorded for

aircraft #2 (X.). When all the information is in, the estimated pro-

portion of common spares going to aircraft #2 for the 40 bases is:

50
F X.

P* 50

SM.

50 50
where v- M. is the total sample consumption and Z X. is consumption by

1 1.
aircraft #2. The sampling variance for this estimator is estimated

by the formula for unequal cluster sizes, substituting P. for

50 I
- 4--- 50 50 50

2 4 ' -7 ,: M i 2 *'ý80 [ 50 2 + P2 2 i~ iS.= _~24 M.+ P•Mi - 2P~3. MX
50 (ii 2 49

The proportion of conmmon spares consumed by all bases for aircraft #2

is then estimated by weighting P. to allow for the difference between

the 40 bases and the entire 100 bases:

/480

= M *1200 2

480
where '2 M. is the year's consumption at the 40 basps (rEpresenting1 '1 200
480 clusters), and ,' M. is the consumption for all 100 bases (equiv-

alent to 1200 clusters). The proportion consumed by aircraft #1 is esti-

mated by:

p 1 = 1-P 2 ."

2~ ~ ~ P 1 nd2,adi siae

The sampling variance is the same for both P and P and is estimated

by weighting S.,:
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$ 2 ) 2p •200 S

F •M.)

Subsampling

Subsampling, or two-stage sampling, is a hybrid of cluster and

stratified sampling. The population is partitioned into N primaries,

and n of these primaries are randomly selected. A subsample of !.

secondaries is then randomly selected from each primary. This tech-

nique is sometimes extended to three or [our stages. The discussion

that follows will consider the case where each primary contains

the same number (M) of secondaries, and tie same number of secondaries

(m) are sampled from each primary.

n 4

M 2

The main advantage of subsampling over one-stage sampling is

flexibility. It reduces to cluster sampling when m = M, or to strati-

fied sampling when n -N; but in terms of the cost-precision tradeoff,

a scheme that falls somewhere between these two may be preferable.

The problem is to determine value3 of n and m such as to minimize

sampling variance for a given cost (or equivalently, to minimize cost

foi" a specified variance). Appendix II provides a method for solving

this problem that requires pieliminary estiriates of (I) the cost of

sampling associated with each cluster (c 1 ), (2) the cost of sampling

secondaries within clusters (c) , (i.) the variance between cluster means

(S) and (4) the variance of secondaries within clusters (SB w
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For this purpose, these estimates do not require great precision

because the sampling variance is not highly sensitive to the choice

of m. It is usually easier to estimate ratios cl/c 2 and S 2/S2, in

which case tables are available to aid the evaluation of m (see Coch-
ran, page 282).

Example. Since the greater portion of USAF base-level reporting

systems have been designed primarily for management ar:d control pur-

poses, the needs of the planning and prograrming oriented cost analyst

are not always satisfied; it has generally been more expedient to put

accountability on an organizational basis rather than a program basis.

Certain base-support organizations provide service to a plurality of

programs, and in order to allocate activity on a program basis, the

cost analyst must often adopt some arbitrary pro-ration scheme.

The following example suggests how a subsampling design might be

used to estimate the iverage daily man-hours devoted by Civil Engineer-

ing squadrons to repair and maintenance of aircraft alert facilities

durirg a Q0-day period. It is assumed that a daily record of work-

orders is maintained in a general ledger, and that inspection of the

ledger will provide the data needed.

Assume that there are 126 C-E squadrons overseas and in the Z.I.;

each of these will be regarded as a primary cluster. Each cluster

consists of 90 days of information. The procedure will be to select

n squadrons at random, then select m days within each cluster. The

total man-hours devoted to aircraft alert facilities maintenance during

the selected squadron-days will be found by examining the appropriate

ledger.

The first problem is to decide the optimum value of m. This re-

quires "guesstimates" of S , SB, el, and c2. Since there are about

two to 300 entries per day in each squadron's ledger, an allowance of

four hours per squadron-day seems reasonable. The cost, c2' of visit-

ing each squadron would be in the neighborhood of one and a quarter
I

"working" days, or 10 hours. S I and S are considerably more elusive,
w B

but suppose that examination of ledgers from two or three representa-

tive squadrons suggests 230 and 40, respectively; the optimum subsample

size (m) is then determined as:
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mu 23 4

is~~- e at 40 30kdy (30 eus

9 0

2 $

B M

= 6.3 2 6

The number of clusters selected (n) can be determined in one of two

ways, depending on whether total cost or overall precision is held

constant. Suppose the total time allocated to she collection of data

is set at 40 workdays (320 hours):

C =nc + nmc 2

320 =n(1O) + n(6) (4)

n =9.4 09

If.ron the other hand, one can tolerate a sample mean variance of about

5 man-hours, the following furmula is solved for nr

2 S2
_SB (1f +-w 1f) 5

x n I nm - 2)f1

126 +230 n
16 n(6) '90' T-2

0
n 7.1 -7

Systematic Sampling

Systematic sampling is not so much a sampling "technique" as it

is a refinement in the use of random numbers. It is discussed here

because it often produces the same effects as stratification or clus-

tering, and because it is almost an indispensable device when sampling

from very large frames.
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The procedure begins with the decision to sample some fraction of

the population, say 1/12. The population is listed and a random num-

ber is selected between 1 and 12, say 8. For the sample, the eighth

unit, and every twelfth unit thereafter, are selected (i.e., #8, #20,

#32, #44, etc.).

l l 1 1 II I I i i I I l l l l ~ II I1 1 1 l I I

Systematic sampling has two advantages over simple random sampl-

ing. First, it is easier to draw the sample, since only one random

number is required. Second, it distributes the sample more evenly

over the population and therefore often provides more accurate results.

There are also two potential disadvantages. If the population

contains some periodic variation, and the sampling interval coincides

with that variation, the sample obtained may be badly biased. Second,

evaluation of sampling variance is contingent on knowing the behavior

of the population with respect to the listing.

Ii

I

F I
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IV, REFINEMENTS IN THE ESTIMATOR

The techniques previously discussed each dealt with some way of

partitioning the population preliminary to drawing the sample. The

estimator of the population mean, X, was the same in all cases: the

simple or weighted average of the sampled Xi.

There are many sampling situations where there exists some "auxil-

iary" variable which is known to correlate with the variable of in-

terest. In such cases, sampling variance can be reduced by instituting

a basic change in the estimator so as to take advantage of the informa-

tion contained in the auxiliary variable. This is the case with ratio

and regression estimation, which are explained in this section. A

third technique, unequal probability sampling, uses the auxiliary

variable in determining selection probabilities as well as in the

estimator.

The format for this section is similar to that of Section III,

although the more complex designs inherently require more formula-

tions in their descriptions. A sunnary of the fundamental characteris-

tics of all the sampling techniques described in this document concludes

this section.

RATIO ESTIMATOR

In ratio estimation, two variables are observed on each sample

unit: X,, the variate of interest, and Wi, an auxiliary variable.

The auxiliary variable is such that its population mean, Pw, is known.

The ratio eatimate of the population mean of the Xi is given by:

FXR

The ratio estimator is biased, except in the situation where a

regression of X on W would be a straight line through the origin (i.e.,

the ratio X i/Wi is approximately constant). The bias is negligible

in large samples.
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The sampling distribation is hard to pin down, since both X and

W vary from sample to sample. However, for large sanples, the distri-

bution tends to normal and the bias in the approximate variance formula

becomes negligible.

In spite of these difficulties, ratio estimation can be a very

useful way to use extraneous information that is not directly of

interrst to the analyst. If this extra information is easily picked

up with the regular sample, the gain in precision is cheap, since only

the final computations are affected.

Knowledge of the exact relationship between X and W is not re-

quired, but in order for the precision of the ratio estimate to be

greater than a simple sample mean, it is necessary that the following

condition holds:

CVw

2cv CVCVw =x
'Vx = •x/•

where p xw is the correlation coefficient between X and W, and CV x and

CV are tbc coefficients of variation for X and W, respectively.w

The variability of the auxiliary variate, W, is thus an important

factor; if its coefficient of variation is more than twice that of X,

the ratio estimate is always less precise, since p w cannot excced 1.

The preceding result is based on the approximate variance formula

and therefore is applicable to large samples; for -mall samples, the

condition would be more stringent, since the approximate formula is

usually an underestimate.

Example

A common use of the ratio estimator occurs when there has been

a complete census of the particular variable of interest in some pre-

vious time period. Suppose it is desired to estimate the current

average inventory of fuel at USAF air bases, and that for purposes of

the example these data are available or. a base-by-base basis only as of

the end of the previous year. Let X be th" current inventory and Wi
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the previous inventory at the ith base in the sample. The population

average as of the end of the previous year will be indicated by •w

Before applying the ratio estimator, it will be prudent to d,,-

termine its usefulness compared with a simple sample mean. It is

reasonable to assume that the ratio estimator will be unbiased (i.e.,

Xi/Wi is constant) since a force-wide adjustment in fuel inventories

would probably derive from some implicit general policy change that

has proportional effects on all bases. A quick check of this assump-

tion can be made by plotting X against W, noting whether a freehand

regression line passes through the origin. For example:

Xi

Sw.

Wi

(If the regression line does not pass through the origin, and the sample

is not large, it would be preferable to consider the regression estima-

tor as described in later pages.) Attention is next directed to whether

the ratio estimator is more precise than the simple mean, using the cri-

terion pxw > ½(CVw)/(CVx). In this case, CVw and CV X are probably the

same, since W and X are essentially the same variable. So the question

reduces to whether pXw is greater then one-half, which does not seem un-

reasonable unless base fuel inventories fluctuate widely over time. A

quick check is provided by observing whether the free-hand regression

line seems to "explain" more than one-half the variation in X.

If the foregoing analysis establishes the ratio estimator as ap-

propriate, estimates of the mean and variance proceed according to

the formulas given in Appendix II. Supposing there ace 150 air bases

in the population irom which 20 are sampled, the calculations might

proceed according to thle following worksheet (inventories are expressed

in thousand of barrels):
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Population Sample

Data Selection Sample Data

item W Xj 2
No. (Previous WX (R•l)n y [W)2Inventory) Wi (Curentoy

1 24 V 24 22 31.4

2 49 -- -- --

3 56 .-. - -.-

4 19 19 2f 9.6

149 72 72 81 3.2

150 51 -- -- --

Totals 8250 940 1080 592.3

P = 825C/150 - 55

W = 940/20 = 47

X = 1080/20 = 54

The ratio estimate of average fuel inventory is:

% WZ) = (j)55 = 63

The variance of the ratio estimate is estimated by:

220
2 o 1-f n r 2 1 -1501$ o -i n X--•ii - 592.3) 1.
SR n(n-l) . Lxi" i 20(

This example has not included any discussion uf how the data are to be

collected. This simplest case would be a simpl-! random selection of

bytes, but there is no reason why stratified cr cluster sampling should

not be used, if the characteristics of the population warrant it. In

the present example, it would probably be useful to stratify by major

command, since base fuel consumptton should be significantly more
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homogeneous within ý;ommands than between commands. Remembering that

the stratified estimator of the population mean is just a weighted

average of stratum means, the stratified-ratio estimator can be written

as:

th
where Xi and Wi are simple means of bases sampled from the i com-

mand. The estimator of variance will be:

mi1 2

Thus, even a simple marriage of two sampling techniques complicates

estimation of variance. This problem is discussed in a general way

under the heading Complex Designs, beginning on page 57.

REGRESSION ESTIMATOR

The regression estimator is mor. appropriate than the ratio esti-

mator if the relation between X and W is linear but does not go through

the origin. In thi-a case, the estimate of the population mean is:

xr "GL +W

where b is an estimate of the change in X when W is increased by I.

The reasoning is that if the sample W is below average, one could ex-

pect the sample X to also be below averatgc by an amount ý,(iLw-1), The

value of b is usually estimated from the sample using the lcast-squares

estimator:

n

b (X 1-x)(W -w)

n - 2
r (W -1. )
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Contrary to the case in general regression analysis, it is not neces-

sary to assume exact linearity between X and W, nor chat the variance

of X for a given Wi is constant (again, provided the sample size is

large).

As with ratio estimates, the regression estimate is ganetally

biased. But for large samples, the ratio of bias ti standard error

becomes small, making the bias negligible. Furthermore, there is no

bias if an exact linear relationship exists between X and W. What

constitc- - a "large" sample depends on how X and W are correlated,

and cannot be summarized by a rule of thumb.

For large samples, the regression estimate is more precise than

the simple sample meaa provided that there is some correlation between

X and W; it is more precise than the ratio estimate unless the rela-

tion between X and W is a straight line through the origin. Thus,

there is nothing to lose in using regression estimator except the

extra time spent in calculation.

Example

An interesting application of the regression estimator ia the use

of "eyebafl" estimates for the auxiliary variables. For example, sup-

pose there is a proposal to replace some training equipment at an air

base, but it is first necessary to assess the_ salvage value of the old

equipment. The analyst, or a salvage expert, would quickly survey

each item of equipment, roughly estimating its approximate salvage value.

Then a random sample would be selected, and the exact salvage value

of each sampled item determined by close irzpection. The regression

estimator is chen applied, labeling the individual rough estimates

wit the average of all rough estimates pw, and the more thorough esti-

mates Xi.

Supposing the population contains 120 items of equipment and a

sample of 20 is to be drawn, the following analysis might result:
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Population Sample
Data Date

Item W Wi x i (Xi-X) (Wi-W) (xi-X)(Wi-W) (W1W)2  [(x 1-i)-b(W1-i) ]2

1 190 -- -- -- -- --

2 220 220 214 5 5 25 25 1.7
3 230 230 223 14 15 120 225 --- 9.0

4 150

119 180 180 176 -33 -35 1155 1225 54.8
120 90 --

Totals $23760 4300 4180 0 0 10350 14083 605.8

= 23,715*11120 = 198

W = 4300/20 215

X 4180/20 209

S-(X -X)W ("-W)

b 1 - 10,350/14,083 - .73- 2
r(W -W)

The regression estimate of average salvage value is given by:

Xr = X + b(pw-W) = 209 + .73(198-215) = 196.6

The variance of this estimate is estimated ',y

o -f 20 
2

xr n(n-2) b

201-77
120

- 2018)(605.8) = 1.4

Although the rough estimates (Wi) are biased, one could expect:

the bias to be constant from item to item, except for random variation.

If this random variation is not too great, the regression estimator

will be unbiased for small samples. For this reason, it is important
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that the same person make all the rough estimates. It is also impor-

tant that this person not know what items fall into the sample until
the rough estimates have been mwde. Provided the latter condition

holds, the consistency of rouge estimates can be checked by plotting

the sample Xi versus the Wi.

UNEQUAL PkOB•ADLITY SAMPLING

This technique utilizes an auxiliary variable in determining selec-

tion probabilities as well as in a special estimator. As previously

mentioned, the idea is to find a variable which is closely correlated

with the particular variable of interest. Probabilities of selection

are set proportional to the former, the sample is collected, and the

following estimator is used:

n

where X is the variable of inteist, Wi is the auxiliary variable,
Wi

and ,= i is the probability of selecting Xi.

Unequal probability sampling is a great aid in increasing preci-

sion, when an auxiliary variable with the proper characteristics is

available. The technique has received much attention in the past ten

years or so despite problems in application. For example, in replace-

ment sampling the calculation of variance is straightforward. When

sampling with nonreplacement, however, there are problems of control-

ling the P and estimating variance that are beyond the scope of this
i

paper. Furthermore, the exact form of the sampling distribution is not

known. Suffice it to say that gains are to be made when X and W are

closely correlated, but that the complete theory of this kind of sampl-

ing is still being developed in current research literature (see

* An alternative way to arrive at rough estimates is for Lhe ana-

lyst to develop an estimating relationship on the basis of historical
information, using such parameters as original cost, age, and usage rate.
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bibliography). A simplified example will be given to illustrate the

power of the technique.

Suppose it is decided to estimate the total personnel stationed

on five military installations in some remoLe region of Northern

Canada, using a sample of three. It is expected that the average

number of personnel presently stationed at each installation (vari-

able X) is closely correlated with the average number of personnel of

the previous year (variable W), the data for which are known. The pro-
n

cedure is to choose three random numbers between I and E Wi, making

the selection of sample points on the basis of a cumulative list of

variable W. Hence:

Cumulative Random
Base U W Number Xi

1 22 22 14 25
2 36 58 37
3 21 7-9 .62 29
4 34 113 97 34
5 11 124 12

Total 124 137

The usual estinkate for simple random sampling would be:

- n X + + X4 ) = (25 + 29 + 34) -152

The unequal probability estimate is:

n A X3

i + 3 +
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i i
where . - -. is the probability with which the sample point entered

!.i
- the sample.

"There are a total of ten possible samples of size three that

could be drawn from this population. The following table compares

+ Ithe simple random sample estimate with the unequal probability esti-

mate for each ciRse:

F Bases sampled 123 124 125 134 135 145 234 235 245 345

Simple random 152 160 123 147 110 118 167 130 138 125
Unequal prob-

ability 147 131 135 145 149 133 141 145 129 143

Except for two cases, the unequal probability estimate is closer to

the population value of 137. The standard error for the unequal prob-

ability estirates is 7.3, whereas that for simple random sampling is

17.8. If W and X -iere more closely correlated, one would expect even

better results.

Example II

Sampling with unequal probabilities is often used to yield a
"self-weighting" sample in cluster sampling or subsampling when the

clusters are of unequal size. This is the context in which Hansen

and Hurwitz first introduced the technique.

When sampling n clusters from a total population of N clusters,

where the cluster size, M,, is the same for each cluster, the popula-

tion mean is estimated by averaging the cluster means:

n

cl " xi

Howevc:, if cluster size varies from clust cluster, a weighted

estimator would be more precise:

I
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nI
Xcl - L - -4,_--Y~x

where i is the average cluster size. This expression can be manipu-

lated as follows:

l(- i ) N( i)X M,I,
n "

-- NPl NP

whereth
where P is the probability of selecting the i cluster. So far,

all of the Pt's have been the same. Suppose, however, that each p,

is made proportional to its corresponding MH. The probability of

selecting each cluster is then n(Mi/MN). Substituting this into the

above formula gives:

cl L[ 4G M=X)Xi n('E) n "

wdhich is the same as the simple unweighted estimator. Thus, the

sample is said to be self-weighting: X is the appropriate estimator

for X even though cluster sizes vary.

The technique for selecting the clusters with unequal probabili-

ties is the same as outlined before, except that the basis for selec-

tion is now a cumulative list of cluster sizes, rather than the
auxiliery variable. The worksheet for such a sample might have the
following format:
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Cumulative Random
Cluster Mi Mi Nutber p t X

1 14 14 ..
2 22 36 25 105
3 7 43 ..
4 18 61 47 92

S5 23 84 82 112
6 12 96 ..

The estimated population mean is then:

-1 =(105 + 92 + 112) ,,103.

COMMAUSON OF DESIGNS

The task of compiling some sort of quantitative comparison of the

foregoing sample designs is not realistic, since so much depends on,

the characteristics of the particular population under study (see Des

Raj,• Zarkovich). It may be helpful to briefly categorize the attri-

butes of the various designs and estimation procedures as they relate

to accuracy and cost:

Simple random sample o Simplest design.

Stratified sampling o Nearly always more precise than
simple random sample.

Cluster saamling o Sitpler frame and reduced travel
costs,

o Usually less precise than simple
rand.. sample.

Sub-scmpling o Flexibility in balancing cost-precision
trade-off, especially when convenient
cluster size is too mall for strati-
fication and too large for cluster
sampling.

Systematic sampling o Ease in selecting ample points.

o May give better representation& do-
pending on frame.

o May be biased, depending on frame.
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Ratio estimator o Usually more precision than simple estimator.

o "Significant" bias in small samples.

Regression estimator o More preciaion than simple estimLtor.

o "Significant" bias in small samples.

Unequal probabilities o Usually more precision than equal probabilities.

o Difficult to assess sampling error.

Usually, the circumstances of the analysis readily suggest the

most appropriate design or combination of designs. For example, USAF-

wide sampling immediately leads to the possibility of stratification

by major command or some geographical classification; also, the

presence of a convenient auxiliary variable makes ratio or regression

estimators attractive.

On the other hand, there are often factors to consider that do

not readily fit into the framework of cost-precision tradeoffs. One

such factor is the need to minimize the imposition of field work on

USAF perso. .el who have other responsibilities (e.g., maintenance

chiefs or accounting clerks); the essence of sample work is loyal

adherence to good procedure, and it is often more fuss than the busy

serviceman can handle. More often than not, the situation will be

such that there is no completely objective approach to designing the

sample.

In any case, the general procedure is the same as with all prob-

lem solving: specify the objectives, survey factors related to the

problem, identify alternative solutions, quantify the problems as

much as possible to reduce subjective uncertainty, and make such in-

tuitive decisions as are recessary.
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V. SOME UAL LI E COMPLEXITIES

This Section gives recognition to some topics which often arise

in the application of sampling techniques and which seem particularly

relevant to the forecasting nature of cost analysis. Complex sample

design is discussed and an example of a samplLig study recently

conducted by the Cost Analysis Division, Readquarter3 Strategic Air

Command, is described. The Section concludes with a discussion of the

application of sampled data in regression analysis

COMPIZX DESIGNS

Theors surrounding the subject of complex sample designs is gen-

erally less developed than for the basic designs, and documentation of

research ie highly fr&gmented among various Journal publications and a

few books.

Two kinds of complexity are worth noting: (1) compounding of de-

sign and (2) compounding of purpose.

Compoundina Designs

Sometimes the characteristic, of the population are such that it

is convenient to compound the various basic designs. Drawvzg on the
example in the previous sect'.on where the calvage value of some train-

ing equipment was eatimated, suppose a USAF-wide estimate was desired.

The most simple scheme might be to select a simple random sample of 30

b•ses, then apply the regression etcimator within each. A wore precise

estimate might be achieved by designing a "complex" sample along the

following lias: (1) stratify base* on a two-way scheme using major

comand and geography as classifications. resulting in about 15 strata;

(2) select two bases for each strata with unmequal probabilities, using

number-of-aizren as the auxiliary variable; (3) sub-sampe several items

of eqsipment from each base; (4) estimate the total salvage value for

each bae uith a regresuion estimator, efing the salvage expert's "eye-

ball" estimates as the auxiliary variable. the total USW estimate



-59-

would be given by:

2 \Pi P

where Y and Yj are the two estimated base totals from eath stratma,

and PL and P are their respective probabilities of selection. it

would be extremely difficult to estimate what the sampling variance

from such a design would be. The rationale for the procedure wes sen-

orasted by reasoning subjectively at each stage of the design that some

particular technique would cont.Abute most to precision in the final

estimate. Although an objective estimate of the sampling error is not

known, an upper limit may be set by computing the error that would re-

sult from a less complex design.

There are simplified methods for computing the sampling error once

the sample has been drawn. One way is to use the technique called rep-

lication. Instead of drawing the entire sample in one operation, only

a fraction of the sample points are drawn, and the procedure is repeated
until the total sample is drawn. The vmriance of the sampling distribu-
tion is then computed from the several estimates. The example above,

for example, might be completed in three seperate samples, the differ-

ence being that for each sample, only one-third as many units of train-

ing equipment are selected from each base. The overall sample size is

still about the same. Sampling variance is estimated as foelows:

2

wheri X (i 1, 2, 3) is the estimate from the ith &ample and X is the

average of the three samplos. The use of replication in sample design

it trsntd extensively in Doming. Discussion of othar methods is found

in Zarkovicb.

*qltI-PbtWoI_Vre

Survey design has been described ss a process of .,-oluating alter-

native methods in term of rel4tive cost and precisio-. This is rea-

sonably straightforwar .•her only one characteristic under maessuremnt.

S.... . .•
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It often happens that the sampler takes advantage of the situation by

observing several characteristics instead of one. For example, a our-

vey ci airmen may involve observations on age, training, motivation,

and rank. Determinaeiou nf optimum design is now considerably less ub-

jective. The proper sample. size for one characteristic may provide no

useful inforwation on a second characteristic, and give superfluous

precision on a third, One characteristic may be perfectly suited for

a stratified design while a companion characteristic is more adaptable

to somethJng else. Objectivity requires the assessment of the relative

utility of the different information sought. These problems are dis-

cussed in Kish and in Yates.

A related complexity is found in the so-called "analytic" surveys.

The objective of an ana.ytic survey generally is to make comparisons

between sub-populations, where the sub-populations cannot be framed

(i.e., sampling units can be iden'ified by sub-population only after

the sample is taken). Referring to the sample on page 42, (sub-samp-

ling from Civil Engin.ering Squadron work-order ledgers), the purpose

might well have been to compare the resources devoted to several pro-

gram cRtegories. Each squadron-day selected in the sample would con-

sist of work-orders in one or more categories, leading to estimates of

total activity devoted to each program. So, in effect, several samples

are being conducted, one for each sub-population. The feature that

waskes this different from other procedures heretofore discussed is that

the sample size from each sub-population is also a variable. Further-

more, the sample sizes are negatively correlated and cannot be treated

* as independent variables. Procedures for handling this situacion are

discussed in Yates and in Hartley (the letter reference is probably the

r more straightforward). The general problem of analytical statistics

from complex samples is sumiserized by Kish (pages 582-587), including

a brief description of seven approaches to computing or approximating

standard errors.

Example; SAC Aicrtaft Maintenance

The example that follows is a rather detailed description of a

research program recently undertaken in SAC. The project is of

t.
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direct interest here because (I) it illustrates a rather complex

sample design problem, and (2) it provides a case study of data col-

lection at a level of aggregation useful to a cost analyst.

Tie Cost Division at SAC Headquarters used probability sampling

to collect some maintenance man-hour and mqterial cost data on the

KC-135, the B-52 (G and H series), and the UH-IF. Sampling was ne-

cessitated by the desire to obtain data from the original source

documents, a procedure involving considerable effort; probability selec-

tion was chosen because of a preference for. unbiased estimates and be-

cause there was no apparent basis for assuming a more precise judgment

sample. Since the ýlection procedures are similar for all three air-

craft, ep~hiiis will be on the KC-135 sampie.

Motivation. The p-xcject had. three primnry objectives. The first

and mcvt important vat- to evaluate the general behavior of maintenance

requirements as an aircraft ages. Current aircraft costing models

often assume (at least implicitly) that maintenance cost3 slope down-

ward during the initial months following deployment into the force, then

level off after "shake-down" is accomplishbd. SAC cost anelysts hypoth-

esize that, instead of leveling off indefinitely, costs tend to rise

again as the equipment gets older. There is considerable interest in re-

solving the question since (1) there is some uncertainty as to when the

strategic aircraft in the force will be replaced, and (2) the proposed

Resources Management System has suggested changes in military vonagement

that could triple SAC's responsibility in prograuming and budgeting for

maintenance resources.

The second objective of the sample was to explore the relationship,

if any, between maintenance man-hours and other maintenance costs. It

is cosmom practice to pro-rate base maintenance cost,. z-mong the various

aircraft systems on the basis of man-hours. Since some systems require

relatively greater parts requirement* than others, the valility of such

practice is questionable.

The third objective was to investigate errors in recording and re-

porting maintenence material consamption. There is evidence that parts

data are sometites treated in caval#.er fashion fro crew level on up the
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line to final reporting. If sources of error can be identified and sub-

sequently reduced, the maintenance data will have greater utility for

financial planning.

The P'opulation. The population to be sampled consisted of the doc-

uments on which maintenance personnel record their work (AFTO 210, 211

and 212). This includes parts and labor expended by the base mainte-

nance shops (field maintenance, CA&E maintenance, etc.); bench stock

items are omitted, but this is a very insignificant portion of overall

maintenance. These source documents are easily identified by aircraft

tail-number.

Design. Sample desi&n was addressed priverily to the first objec-

tive of the study, and the other two were more or less regarded as by-

products of the first. The gener&l iLea was to obtain estimates of

maintenance labor and materiel costs for each of -teveral age gxoups,

then observe whether thu eJt'mgtes conform to the hypothesized curve

(data on engines would be recorded separately since engines move around

from aircraft to aircraft). Initial delivery dates of the KC-135s range

from 1958 to 1965, providing eight yearly age groups.

From the standpoint of precision) the sampie design should assure

good representation over a number of variables besides age that affect

maintenance. For example, some variation can probably be associated

with base-to-base differences in climate and maintenance management.

Differences in flying-hour programs (e.g., ready alert vs. regular ata-

tus) are Likely to be even ýacre significant.

Wilh rcgard to cost and selection control, the best design would

cluster the maintsvetane 4oavzoatC by aircraft tail number since this

is the manner in which they are fied a' '!Ase iew . Any other arrange-

mint would involve the field worhari iii sa8pi selection or require

muc• additional time in constructing a sampling fr-ts. By desaUfating

the sampling unit as all inautenance performed on a given aircraft wVIh-

in a given time interval, dample selection can be accomplished .. itirelv

at SAC Headquurtcrs.

Sinc,, little was known about the magnitude of variance that could

be expected, the design approach was to decide how much rizA could
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be expected from the base personnel who would be dotag the field work,

then select as many aircraft as possible. The Cost Analysis Division

at SAC Headquarters has at its disposal the part-time services of one

man at every SAC base, and it was desired that each man be equally in-

volved in the study. After examining the work involved in searching

for the documents, copying labor and parts data, and searching cata-

logues for parts costs, it was decided to sample one KC-135 on each

base over a two-month period (June and July, 1967). Siv-e the number

of aircraft varies from base to base, this plan necessitated sampling

with unequal probabilities. The design was further complicated by the

fact that the proportio~ns of aircraft in the different age groups also

vary from base to base.

The final choice was a two-stage design, with the first stage fol-

lowing a procedure first introduced by Goodman and Kish, and the sec-

ond stage using simple random selection.

For the first stage, primaries were designated as comprising those

aircraft on a given base that belong to the same age group; thus with

31 bases and 8 age groups, there was a maximum of 248 (31 x 8 - 248)

clusters. Each cluster was assigned a probability of selection that

is roughly proportional to the number of aircraft therein (exact pro-

portionality was precluded since the total aircraft per base varied).

The next step was to construct 21 "acceptable" samples such that each

sample contained one primary from each base and at least one primary

from each age group; the samples were simultaneously assigned probabil-

ities such that if one adds up the protabilities of all samples in

which any particular primary appears, the sum will equal the probability

originally assigned that primary. Finally, one of the samples was ran-

domly chosen with probability as assigned.

In the second stage, one aircraft was chosen at random from each

selected primary.

The overall effect of both stages was to sel8et a sample that is

stratified according to base &asd "controlled" by age group, while giving

Goodman and Kish, "Controlled Selection--A Technique in Probabil-
ity Sampling," Journal of the Am.rican Statistical Association, Vol. 45,
pp. 350-372. Also see Kish, Survey Sampling, 1965, pp. 488-496.
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all aircraft approximately equal selection probabiliti.es (Lhe probabil-

ities varied from about .03 to .06). The price of having such a con-

"trolled sample in an unbalanced population is that there is no unbiased

estimaLor of sampling variance. However, a weighted estimator for

variance is available that leads to overestimation, which is less objec-

tionable than underestimation. Since any estimate of variance is itself

case, the bias would only be associated with the sample's first stage,

from which sampling error should be small compared to that from the

second stage.

In analyzing the data, separate estimates were made for each age

group, and the resulting group means were subjected to regression ana-

lysis using age in years as the independent variable. The use of group

means instead of the raw data was necessary in order to (1) give each

age group equal weight in the regression (sample aircraft were unevenly

allocated among age groups) and (2) to accommodate the stratification

and probability aspects of the sampling--that is, to help dampen other

sources of variability and reveal any age-related behavior. Since the

age-group means were derived from samples of various sizes, the usual

assumption of equal variance along the regression line was clearly

violated; the implication is loss in efficiency in obtaining the least-

squares fit.

Some initial results are shown below:

Average Labor Hre Average Material Costs
(ooo's) (000's)1.5 0 60.

40.

1.0. *.' 40

.0 20 "

Age -. o Age
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The labor hours data conformed to the general hypothesis that mainte-

nance increases with aircraft age and, when fitted in least-squares

fashion to a parabolic curve, survived an F-test at .95 confidence

(the F-test was a useful bench-mark despite violation of some underly-

ing assumptions); analysis of matei..al costs did not fare well at this

level of aggregation. Subsequent examination entailed a closer look

at individual sample aircraft and a distribution of labor hours and

material according to maintenance shops. The results were presented

at the March 1968 OSD Cost Research S-mpjsium.

The good performance of the labor hours regression is curiously

inconsistent with the very large variability of the raw data within

age-groups. At least part of this contradiction can be explained by

the efficiency of the sample design; the design should have provided

broader representation than would be expected from, say, simple random

sampling, which is the usual data collection technique for regression

analysis. This illustrates one of the several considerations surround-

ing data collection that are discussed in the next section on estimat-

ing relationships.

ESTIMATING RELATIONSHIPS AN•D SAMPLE DESIGN

Very little attention in statistical'. literature is addressed explic-

itly to the use of sampled data in regressior analysis, a technique often

used to derive estimating relationships for military cost analysis. There

exists, in estimating relationship studies, the implied assumption that the

data base constitutes a sample of some larger population (unless the regres-

sion is simply intended to describe a particular set of points), and the

main concern is whether that sample is representative. Moreover, it is

simple random sampling that is implied; the more complicated designs (strat-

ification, unequal probabilities, etc.) are ignored because they are not

generally used to build data bases. The intent is now to suggest how these

designs might be so used in connection with least squares simple linear re-

gression. The presentation can be made clearer by establishing a conceptual

scheme within which data collection can be described. Accordingly, the data

collection process will be divided into three phases:

Jean Mullery, Aircraft Maintenance Cost Research, KC-135, Director-
ate of Budget, Headquarters Strategic Air Comwnd.
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()Partitioning the population. The populatio-a ir, divided
into sub-populations that may be treated either asI strata or clusters.

(2) Data selection. This phase includes any methods of
determining what data will fall into the sample. The
data from any given sub-population wiil comprise a pub-
sample. In clustering, each sub-sample would thus in-
clude the entire sub-populatiin, whereas only a portion
would be included with stratification.

(3) Datei reduction. The data in each sub-sarple are reduced
to a single mean value, using some estimator (simple
mean, ratio estimator, etc.)- the data base now consists
of one value per stratumi, or one value per cluster.

Regression can be performed on tha data base either after the sec-

ond phase (eliminating reduction) or after the third phase. If regrem-

sion is performed after the second phase, there are two alternatives

available: (1) a single regression on all data, or (2) weighted aver-

ages of regression coefficiants calculated separately from each sub-sample.

The following flov- chart characterizes the total process of data col-

lection and subsequent data analysis:

Data collection Data analysis -w

Phase I Phase 2 Phase 3

Partti-n slecionReg.-ession on all data1

Regriession w~thin Weighted overcae

of regression¶

coefficients

There appear to be two basic motives f-'r uising reduced date rtether
than the original sample: (1) to adjust for uneqlual sample iiiaea in

the various sub-populations, and (2) to uitiie the special eatimators
for increased accuracy.

The rs t~a and regr*3SiOn estimators will be referred to collec-
tively as the "special" estimator* so as to avoid confusioa with the
use of regression to develop forec~asti-ng relationships.
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If sample sizes within sub-populations are unequal, and it is de-

sired that all iub-populations be of equal importance in determining

the regression line, a sort of "weighted" regression is produced by us-

ing r6duced data; each sub-population is represented by the same number

of data points, namely, one. However, if it is preferable to weight on

the basis of individual obse-vations rather than sub-populations, the

data should not be reduced.

If the opportunity should present itself, it would seem prudent

to usc' one of the special estimators of the unequal probability estirla-

tor t- reduce the data within each sub-population. These estimators

woule provide more accurate estimates of the true sub-population mm-uns,

1q, hence lead to more accurate regression estimates. However, this

acco.racy is gained at the cost of using some auxiliary variable, and

it Aight be prefe.aDle to use this variable as a second independent

variable in the regression equation. The objective side of deciding

wh..ch way the extra variable should be used involves the usual cost-

precision trade-off (which use will provide greater precision for a

given cost?). On the subjective side, the decision might be governed

by whceer the extra variable can appropriately be specified in the

estimating relationship; a variable might be closely correlated with

the independent variable but still be ruled out of the regression model

because there is no logical causal relationship, or because its future

behavior is as doubtful as the dependent variable. In either of these

cases, the extra variable could be suitably used as an auxiliary vari-

able in a special estimator or unequal probability estimator. When

using the special estimators, each sample point will contain three kinds

of ubserv tions: one each for the dependent variable, the independent

variable, and the auxiliary variable. In unequal probability sampling,

only the independent and .ependent variable will be observed since val-

ues for the auxiliary variable are known prior to sample selection.

The sampling techniques that have been discussed in this paper

can be categorized into the three phases as follows:

Note that in using this manner of classification, the technioue•
of stratLfic# ion and A:lustaring include only the act of population
partitioning; the functions of sample point selection and estimation
of the population mean fall into the s#ond and third phases.
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Partitioning [Stratification
[Clustering

Selection r Simple random sampling
r|Systematic random sampling

LSampling with unequal probabilities

Reduction | Simple mean
S special estimators (ratio and regression)

Sampling with unequal probabilities falls into two categories because

selection according to this procedure requires the subsequent use of

the unequal probabilicy estimator. Sub-sampling was omitted from the

list since it is really a hybrid of the other designs.

Below is a schematic diagram of the full set of feasible designs

that can be put together from these techniques.

I No
I Partitioning Partitioning

I, J - II

I Strata Clusters

Selection 1 2 3 1 2 3

phaose -

-410 Regression on
F non-redajctd da

KL Regression withinI •" " -• -" D subsamples,

Reduction 5 A S 3 4 4 5

Regression onLLLL LL------------.. ,ooo

- -"" 'n~tuc,,d-d-to
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The selection and reduction techniques are numbered for simplicity.

(1) Simple random sampling.

(2) Systematic random sampling.

(3) Unequal probabilities.
(4) Simple mean.

(5) Special estimotors.

With no nartitioning, there is no alternative to simple random sampling

and regre- on the non-reduced data. Partitioningon the other hand,

allows 18 different basic designs, i.e., there are 18 paths by which

the final regression analysis can be reached. Any other design would

essentially be an extension of those above. For example, a schematic

for collection procedures based on sub-sampling indicdtes that there

is simply a replication of the selection phase:

Partition Clusters

Selection (1)

(clusters) 2 2

Selection (11)
(units within clusters)

Reduction 3 4 5 A S 3 5 4 5LULULULLULL

The foregoing has provided a rather cursory treatment of the prep-

aration of estimating relationships from sampled data. If data are

gathered by simple random sampling, subsequent regression analysts is

straightforward. Miore complex schemes lead to difficulties in inter-

preting regression results. For example, unequal probability s@Wling

vill usually lead to underestimated prediction tntervals. Stratifica-

tion viil sometimes produce biased regtession coefficients. These prob-

llow fall into the general area of analytic surveys and are currently

being addressed in a peripheral way by such men as iartley, Ktsh, and

Koftijn.
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Vt . SURVEY PROCEDURE

The preceding pages have provided a sumuary of those aspects of

probability sampling that relate to thea design of sample seleation pro-

cedures. Some peripheral topics, such as questionnaire desigu and train-

ing of field workers, have been ignored as outside the scope of the

r t paper but can be found in such texts as Stephan and McCarthy; quota

sampling, a widely used non-probability method, is discussed also in

Stephan and McCarthy, and in Kish.

The following generalized chronology of a sample survey is intended

to "wrap things up." These steps amount to formalization of the typi-

cal decisiowmaking procp-s, but conscious observance of them is essen-

tial to the mechanics of v 'alid survey, therieby forcing a rational

approach to the analysis.

FORMULATE THE PROBLEM

The first and most important step is to identify the objectives

in a rather formalized way so that any subsequent planning alternative

can be clearly evaluated with respect to its contribution to those ob-

jectives. The analyst is not merely seeking information; he is seeking

iniormation that will eventually become part of the basis for sime spe-

cific decision or class of decisione. It would be well to itemize the

objectives and, as far as possible, to model the eventual decision

process. Where the survey is part of a r-oup effort, it is iTually im-

portent tl' clarify each person's role and to establish a consensus of

group objectives. Having defined the problem, the analyst should refer

back to it often to avoid becoming over-engrossed on the details if

planning and ad'mintstzttion.

DR "b,3 ToS POMUATILM

The objectives of the avestigjaion determine the population from

which information is dL. red--the ta!.L population. The target popu-

lation is often different from that actually sampled. Although careful

planning will tend to eliminate this difference, there are 8e0 situations
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where the discrepancy simply cannot be physically or economically re-

solved. The obvious example is the use of historical data in planning

for the future. Another example is the exclusion of portions of the

population that are too inconvenient to sample. Upper limits can some-

times be computed for the bias introduced, but usually some Judgment

must be exercised to evaluate the extent to which the sampled population

mirrors the target population. This judgment should be documented in

the form of a list of assumptions, disclaimers, and uses for which the

survey results are appropriate.

SPECIFY PRECISION

The specification of desired precision is an important first step

in the design of a survey, although this specification may be simply

to obtain the greatest precision for a given badget. In any case, it

would seem 13rudent to examine the survey objectives with respect to the

accu:racy required in the estimates. If the estimates are to be the

bases for comparisons, it makes little sense for them to have greater

precision than the standards against which they are compared. Some stud-

ies are so heavily burdened with non-statistical uncertainty (e.g.,

poorly documented data or requirements uncertainty) that high precision

may be superfluous.

In complex efforts, such as large models that require partitioning

into several sub-models, it would bp well for the analysts concerned to

discuss together the precision of the various coriponents with respect

to (1) the ultimate use of the model, (2) the interrelationship of es-

timates within the model, (3) the maximum attainable precision for the

various estimates, and (4) budget aad time ronstraints. The logical

time for such discussinn would be after the model has been designed and

preliminary investigation of the varito-s oubject areas has been accomplished.

CNSTRUCT A MX

To construct a sampling frame is to divide the population into f
sampling units (cluster, strata, and/or siIwlw population units), such

that every element of the population belongs to one and only one unit.

I
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The frame is an ordering scheme, or list, that facilitates consistent

and unbiased selection of sampling units from the population. If more

than one sanple design is urder consideration, the 1'rame must be flex-

ible so as to suit any one of them (e.g., the population might be divided

into strata and the population units grouped into clusters).

SELECT A SAMPLING PLAN

After a preliminary investigation, the anslyst should be able to

identify characteristics of the population that can be used to design

a sampling procedure that is more effi-ient (less variance for a given

sample qize) than a simple random sample. These characteristics should

suggest several alternatives. An available auxiliary variable may lend

itself either to regression estimation or to sampling with unequal prob-

abilities. The alternatives can usually be narrowed dowz to one or two

by making a priori assumptions about the different sampling variances

and costs. It may be necessary to make the final choice on the basis

of a pre-test that would try out the various plans on a small scale.

CONDUCT FIELD WORK

There is little to be said here, provided the planning has been

carefully done. However, if the analyst is not d.iing his owi field

work, there should be provisions made to check the quality of the data

as soon as it starts coming in. In any case, the analyst should do his

own sample point selection; the fL.eld worker should be concerned only

with collection. There should also be a procedure drawn up to handle

non-response, the failure of some selected sample point to be available

for sampling.

SUARY. ANALYSIS, AND DOCUMNTATION

The data should be examined for erroneous observations, and the

estimates calculated. The sampling error shiuld also be calculated,

and the sampling proceduce suwmarised.

As an aid to future surveys, it is useful to make a detailed sum-

mary of the sampling procedure, including costs that were encountered,
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peculiar sampling problems, and characteristics of the population, such

as within-strata variances. These ;might help later surveys by giving

nare confidence to a nriori assumptions and eliminating the need for

pre-tests.
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Appendix

ESTIMATORS

This appendix gathers together the estimators of means and vari-

ances along with formulas for determining sample allocation. The vari-

ous designs are treated in the same order as in Sections III and IV.

STRATIFIED SAMPLING

The population mean is estimated by Xst, the weighted average of

the stratum means:
N

= N - number of strata
at X, Mi = sub-population size of ith stratum

th itstau
X = sample mean from i stratum

M = average sub-population size

The estimate for sampling variance of X--t is also a "weighted" average:

SNl 2

Si sampling variance from ith stratumxsat m i
2

m = sample size from i th stratum.

The total sample may be divided among strata according to the pro-

portional allocation wcheme:

micc MI

If estimates are available for the variances within each stratum (0)

cn• the costs of sampling from each stratum (cI). optimal allocation

may be used:

, , . . .. .. I
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CLUSTER SAMPLING

Given that n primaries are selected, each containing Mi secondaries,

the estimator of the population mean of secondaries is given by:

nM n_5- x_ r•xi
Xcl nM n

n Mi
SXij = sum of all secondaries sampled

= mean of the ith cluster.

The variance of this estimate is generated soleiy by differences be-

tween clusters. The estimate of sampling variance is

2 BS
S:- -n(I-f);f=1NXcl

2
where SB is the estimptor for variance between the cluster means, Xi

- -2

S2 (_________SB n-I

The general criterion for choosing cluster size is to minimize

the product of sampling variance times total cost (both of which vary,

depending on cluster size:

minimize (V)(C) - BA(n-c)- S, c (ignoring fpc)
n B

2S = variance among cluster meanssB

c a cost of observing one cluster

Unequjl Cluster Sizes

In some situations the number of secondaries p-r cluster, Mi, may

itself be variable. This complicates the theoty and the estimetors and
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introduces bias of the type associated with ratio estimators. The es-

timator for the population mean is:
n Mi

i

Sampling variance is estimated by

1-f n2x~ n 2 ThI

-i2 (-) i ci i cli iiSxc I n(M)2 (n- I)

Sf =n1

N

ith

S- DCij - total of i clusterXi

-- average cluster size

Since X is based on the ratio of two variables (Xi and Mi), these es-

timators have a bias that increases as the variability of the Mi in-

creases. As a rule of thumb, the bias may be overlooked when the cc-

efficient of variation for Hi is less than .2; i.e.,

2

-T < .2

Otherwise, the sample size should be large (see Kish, page 276).

SUB- SAICLING

The population mean is estimated as the average of primary means:

as p n o e i

The sabapling variance has twio components, one representing variation
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between primaries and one reprecenting variation among cecondaries

within primaries. The estimator is:

2 2 S2

S = n (1"f 1 ) + -(1-f2)fI
so

2 1 -2
SB n-1E(Xi-X

s2 . 1 n(x 2x

w n(m-1) i )

f , f

th thX is the j sample unit in the i cluster.ij

The optimal number of secondaries to select from each primary is

given by:

S2 C

"S2 S 2

B

c1 - cost of sampling one primary

("fixed" cost)

€ - cost of sampling each secondary

('veriable" cost)

If the value computed is equal to I or less, then m - 1; if the value

is greater than N, one-stage (cluster) sampling should be used.

The determination of n, the number of primaries selected, depends

on whether total cost or precision is to be held constant. In the lat-

ter case, n is found by solving the sampling variance formla. If total

:oat, C, is fixed, the following foruwla is solved for n:

C ancI + roe2
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The uae of the foregoing methods for determining n and m requires

preliminary estimates of cl, C2 , and S2. For this purpose, these

estimates do not require great precision because the sampling variance

is not highly sensitive to the choice of m. It is usually easier to

estimate ratios cI/c2 and B'/SB, in which case tables are available to

aid the evaluation of m (see Cocbran, page 282).

Unequal Cluster Sizes

As in simple cluster sampling, sub-sampling becomes more diffi-

cult if cluster size, Mi, is variable. An estimator of the population

mean is:
n

= m
88 n

Mi.

An estimator of the sampling variance is

,2 (l)f1)x f n] 4 i9 ii2( f]

mi

f N ~, 2 1  Hi

H =average cluster size.

The bias in these estimators again relates to the variability of Mi.

and can be made negligible by making n large (see Cochran, page 300).

SYSTEHATIC SAMPLING

The estimator of X in systematic sampling is the same as for simple

random sampling:
U

-
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There is no single reliable method -)f estimating the sampling vari-

Ance because so much depends on the way the population is listed. Var-

iance formulas for specific kinds of populations can be found in sampling

tizts.

RATIO ESTIMATOR

The ratio estimate of the population mean of the X is given by:

n

XR = P )1-=

For large sample sizes, the approximate sampling variance is estimated

by: n 21

x- j-n-

REGRESSION ESTIMATOR

The regression estimate of the population mean of the X variable

is given by:

Xr + b(pw - W)

The least-squares estimator for b is:

n

b E( i-x(W~ U -)
N C qi.) (w2•

The sampling variance for large samples is estimated by:

I2 I-f n '2
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UNEQUAL PROBABILITY SAMPLING

The estimate of the population mean is provided by:

i

where pi is the probability of selecting Xi. The variance for replace-

ment sampling is estimated by:

2 1X
XPR n(n-l) P n pi

The variance for non-replacement sampling can be estimated by:

L~ =j)(a (p - )
XENPR L' P )

i>j Pi S

where Pi and P are the respective probabilities with which Y and Y

were included in the sample, and P is the joint probability with

which both Yi and Y were included. This estimator is unbiased if PiJ

is non-zero for all i avid J.

Non-replacement sampling offers the same kind of efficiency ad-

vantages for unequal probability sampling as in sampling with equal

probabilities, and is therefore widely used. However, while the bene-

fits with equal probabilities are reflected in the finite population

correction factor (page 23), the corresponding theory for unequal prob-

abilities finds no such simple expression. A "unified,' or all-

inclusive theory has not been forthcoming; current literature is gener-

ally focused on various acpects of three related problems: (1) the

control of the P through selection procedure., (2) the control of the

Pit through selection procedures, and (3) the conditions under whichii

estimates behave according to the central limit theorem (i.e., tend to

be normally distributed).
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