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PREFACE

This Memorandum is intended primarily to help fill a need in the
array of statistical tools now in common. use throughout the Air Force
cost analysis community, For the past five years, for example, the
growth in the use of regression analysis has been very rapid. More
importantly, the sophistication and understanding with which the sta-
tistical mechanics are being applied is also growing, There has,
however, been very little use of probability sampling in Air Force
cost analysis, although many have recognized the possible utility of
sampling applications.

This Memorandum was prepared at the request of cost analysts at
both Headquarters United States Air Force and major air command levels,
For the most part, it represents the distillation of material from
available sources (see Bibliography). The intent is to provide an
introduction to sampling methods, using the most applicable features
of several recognized sampling techniques, 1t is hoped that this
document will provide some basic understanding and encouragement,

leading to more widespread application in military cost analysis.




-V-

SUMMARY
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In this Muwv.ancum, various aspects of probability sampling are
discussed with a view toward supplementing the tool-kit of the mili-
tary cost analyst, Beginning with a discussion on the relative merits
of the sample as a means of data collection, the paper moves to a
simplified treatment of sampling theory, and of the more basic techni-
ques of sample design and estimation., Attention is given throughout
to the use of cost-effectiveness criteria in choosing among slterna-
tive sampling plans, Sufficieaut coverage is provided to guide simple
survey investigations, and a bibliography is provided for further

reference, The exposition assumes at least a limited familiarity with
statistical theory (as, for example, might be provided in the Air
Force Institute of Technology training programs); accordingly, many
concepts and definitions are given only salutory treatment,

Cost analysts rely heavily cn data that ave often imperfectly
defined, Existing data sources are often fraught with errors of ob- é
servation, reporting errors, and errors of classification, Sampling
method offers an approach to the data quality problem that is usually
cheaper, faster, and more flexible than attempts to modify existing
massive data collection systems, A sample is, cf course, also subject
to error in that it cnly represents some fraction of the total; the
differenc> is chat, with procper procedures, the magnitudz of this kind
of error (i.e.,, sampling error; can be objectively estimated from the
sample itself, i

The basic .w>tive underlying the design of a sampling scheme is to
minimize sampling error for a given cost, or alternatively, to minimize
costs for a given allowable sampling error, In either case, the solu-
tion to the design problem depends on the particular behavior under
study and the amount of prior information available, Some basic "tools"
that the analyst has at his disposal ar» stratification, clustering,

subsampling, systematic sampling, ratio and regression estimators, ard

A SRR SRR R SR )

sampling with upequal probabilities, Although some design problems
may find cptimum solutions in rather complicited combinatious of these

tools, such su=-called "complex" samples usualiy sacrifice the virtue
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of objectively estimable sampling error (at least with the current
state-of=-the~-art of sampling theory), To some extent, this inadequacy
also exists in using sampled data for regression analyses, although it

appears that in this case the problem can be merely circumvented,
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L.__INTRODUCTION

In 1589, Galileo Galilei tossed a couple of weights from the top
of the tower at Pisa and made the remarkable observation that they
both landed at the same time, He did not find it necessary to drag
every movable object i{n Pisa to the top of the tower for similar dis-
position; inductive logic led him to conclude that all objects, regard-
less of mass, are equally accelerated by the earth's gravity,

Ten years ago, a sampling expert carefully selected a hundred
oranges on a hundred different trees and successfully estimated the
juice content of the entire Florida orange crop within 24 percent,
The usual method of estimation, a canvass of growers' expectations,
was typicaily off 7% percent.

In 1936, Literary Digest's pre-election poll predicted an easy
victory for Alfred Landon over Franklin Rcosevelt, Roosevelt won by
a landslide, c~rrying 46 of 48 states, and Literary Digest soon faded
from existence.

In -eviewing the effects of airmen personnel policies, the Air
Fcrce relies on a survey of airmen attitudes, using a questionnaire

sample of less thaa one percent of the total airmen,

* k % k % &

A sawple survey is a vehicle for inductive reasoning; it provides
for the transformation of obaservations of & pari into conclusions re-
garding the whole, whether that whole be lead woights, oranges, voters
cr sirmen attitudes; it can be & very powerful device for information
or misinformation, depending on the sampler‘'n adherence to good proce-
dute, The intent of this document is to discuss a. ects of good sam~
pling procedure and how they might be applied in cost analvsis.

The pages that follow provide & broad overview of saampling method,
particularly as it might apply to coet snaly.is. A lzarge nusber of
topice wiil be touched upon, aldeit briefly, Th:z rather shallow depth
vill be complemented by references to the siupling literature that is
listed in the bibliography, Simplifie! examples will be provided beth

e
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to illustrate points and to suggest applications to the various techni-
ques discussed, The result is an abridged “primer" on sampling for an

audience of analysts who might become involved in the actual design

‘and implementation of a sample. There is no pretense cof previding a

short course in sample theory, but tc draw together in summary differ-
ent aépects pertinent vn sampling cost data, The reader will be pro-
vided armaﬁent to tackle only the siuplest sampling surveys, but perhaps
he will be;encouiaged to peruse sampling literature of greater depth or
to connmmléate nis needs to a more experienced sampling consultant,
Since the military cost analyst is typically.concerned with sup=-
port of planning or programming activities, his interest in data col-
lected is usually for input into some forecasting relationship,
Nevertheless, there is often significant interest in simply assessing
the state-of-the-worid through the estimetion of averages, totals, and
ratios, - Except for a small section dealing with the use of sample
data in regression analysis, the emphasis of this paper is on obtain-
ing data and estimates that reflect current fact, Thir orientation
shoull not be-thoughf of as ignérihg the forecasting problem facing the
analyst, but as an attempt to limit the scope to the problems of data
collection, which are the same for forecasting as for esctimating cur-
rent totals and averages. ‘

MOTIVATIONS FOR SAMPLING

Cost analysis is highly dependent upon large amounts of data which,
ideally, are reliable, accurate, and precisely defined. Thé required
data are both historical and current, financial and non-financial, and
are often imperfectly provided by existing reporting systems. It is,
of course, seldom economically and administratively expedient to sug-
gest that the cost amalyst go outside the existing reporting system
for large-scale data collection. The basic premise of this document
is that there are occasions where small-scale methods could alleviate
the data quality problem,

Consider one important element of data quality, its reflection of
the precise characteristics to be analyzed. In a general sense, the
cost analyst is "end-product" oriented; the typical framz of reference

is the weapon or support system and the activities and costs relating

-




to it., Many reporting systems, on the other hand, reflect data in
organizational, functional, or commodity terms., These data, while use-
ful for management purposes, may be of no direct use for cost analysis
since they are not also coded to end item.* In the absence of more
precise information, artificial analytical means (such as prorating)
must be used to infer the relationships between the avai ...e data and
the weapon system, program element, or other focus of inter=st, Sam~-
pling may provide a direct means of obtaining the relationship. A sample
survey can often be used for direct observation of work in process at

a limited number of sites where direct identification to end product

is possible, Similarly, a sample survey may be designed which calls

for personnel within an organization to keep supplemental records for

a short period of time, Other samples may make use of data available

at the transaction level but which arc summarized out of existence in
the preparation of upward moving reports, Whatever the exact conicnt

of the sample survey, the intent would always be to collect a relatively
small amount of data (by weapon system or program eleuent, etc.) from
which reliable and consistent inferences about total behavior can be

made,

Sample cr Census

One of the obvious solutions to the cost analyst's difficulty in
obtaining the required end product data is the preparation of a new
report which would provide a continuing census of the data, The fole
lowing five considerations are basic to the choice between sampling

and complete enumeration,

(1) Flexibility, A sample survey is not permanent and may be
easily modified to reflect interest in different character=-

istics should conditions change. By contrast, a formal

*The Rzsources Management Systems (RMS) concept would in part
reduce the frequently large informational disparity between wezpon/
support system or program element and functional, commedity, and or-
ganizational management, It wiil be some time, however, before RMS
will have an appreciable ¢ffect on the data available to the cost
analyst, particularly in the operating area,




reperting system is often difficult to modify and often
continues to exist after the need for the data has been
obviated,

(2} cost and Availahle Resources, Depending on the nature of

the information source, it is usually cheaper to secure
data from a fraction of the aggregate, allowing a rela-
tively larger allocation of resources to the interpreta-
tion of results,

(3) Speed, Similarly, data often can be collected and summarized
more quickly with & sample than with a complete count,

(4) Scope. Sampling may be preferable when the purpose is to
study broad, aggregate characteristics. However, if accu-
rate information is wanted for many subcategories, a couwplete
census may be more appropriate,

(5) Accuracy, Strengely enough, a sample may actually produce
more accurate results than a census, Inaccuracy in a census
may stem from carelessness in handling the voluminous data,
poorly trained assistants, or the necessity to use data col-
lected by other people for other purposes, Although a sample
deals with only a portion of the total, the data may be much

more credible,

Flexibility and speed are important advantages when considering
the application of sampling for cost analysis data, Often, the data
required in support of a planning or programming study are transitory,
If cost analysis is to play a role in the study, usually there will be
a premium on the timeliness of the data, Hence, a new data collection
and reporting system is likely to be of little use,

One useful bye-product of sampling is that it helps formalize the
analysis procedure, It stimulates a rational, organized proces« of
{nquiry by forcing the analyst to ask questions about objectives,

scope, relevant data, and desired precision,

Sampling Computerized Data
When the existing data reporting system is computerized, the

foregoing factors wight seem irrelevant; with all the data on tapes
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cr cards, it would probably be easier to program a routine to summar-
ize all the information than to drew off a representative sample,
Even so, there may be circumstances that sugges: sampling either with-
in or outside of the existing system.*

There are two main reasons why sampling from existing computerized

data might be desfired:

(1) When individual data points arc to be examined furtker for
qualitative or non-rerorted characteristics, there may not

be enough time to deal with an entire census,

(2) The data base may be too bulky or complex to handle in the
aggregate even with the data-reduction capabilities of the
computer, It may therefore be necessary to sample in order
to determine the most useful breakout for the computer to

follow in summarizing the data,

There are three reasons why sampling outside existing systems

might be suggested:

(1) It may be desiratle to generate a new data base when the
existing system is fraught with inaccuracies,

(2) Sampled data may be useful in testing the credibility of
the system, and in svme cases may be used for data adjuste
ment,

(3) There may be no existing system that provides the type of

data needed,

Depending on the sample size, sampling outside existing systems ﬂ
(1.e., actual observation of the behavior under study) can require
considerable time and expense, Expense is minimized by the proper
choice of sample design, which in turn depends on many factors: allow-
able error of estimate, allowable budget, variability of the behavior
under study, geographic scope of the study, etc, These topics will be

considered later,

*
IEM has developed somwe interestiug ways to sample computerized
fnformation. See Fan, Muller, and Rezucha,




Sources of Errox in Existing Data

The inaccuracies often found in existing reporting systems have
already been briefly mentioned, It should be useful now to consider
the sources of inaccuracy common in mass data collection systems;
these should be considered in planning a survey, The following dis-
cussion ig perhaps more speculative than obiective since there is
actually no available documentation of attempts to measure the extent
to which reported data (cost or activity oriented) differ from fact,
1t is often acknowledged, however, by those "within the trade'" that

inadequacies do exist, Sn what follows 1s a categorization of reasons

why such problems occur, with no attempt to assess the importance of

any particular source,

Errors of Observation. These are errors of messurement (misread

gauges, faulty calculations, etc.). Taey arise from improper train-
ing of the data-gatherer or inadequate instruments of measurement.
Compared to ocher errors, they are probably not too important in cost

analysis.

Reporting Errors. These are errors of omission, commission, and

willful adjustment of observed information, They may arise through
misinterpretation of reporting goals, or the desire to make things
look different than they really are, Such manipulation is provokeq,
for example, by the usc of performance goals and activity levels as
criteria for promotions or manpower allocation, On the other hand,
reporting errors may be motivated by the simple wish to avoid paper-

work,

Errors of Classification and Aggregation, A classification error

occurs when some resource is attributed to the wrong task, or category.

Recent studies of replenishment spares consumption have shown, for ex-
ample, that numerous items are misclassified by maintenance shop per-
sonnel because of carelessness or failure to use up-to-date technical
manuals,

Aggregation error results when expended resources are totaled
and reported at periodic intervals, rather than being attributed to

the time periods i{n which they were consumed, Aggregation error of

RS i
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another sort occurs when data for several categories are lumped to-
gether, Such daca may be very appropriate for management purposes,
but the cost analyst must often arbitrarily prorate the information

among the categories of interest in order to accomplish his own ends,

Specious Accuracy

Data may be accurate in the sense that there have been no errors
from initial observations to final reporting, yet they may not really
represent the particular behavior that one supposes., Such misleading
accuracy is said to be specious,

For example, Operation and Maintenance resources expended for
base support on Air Training Command (ATC) bases are normally identi-
fied as "Traiaing Support." Although such accounting may precisely
reflect support costs on those bases, the '"training support" label
clouds the fact that the cost of support rendered to other major com-
mand tenants is also included; these costs may be largely independent
of the training function,

As another example, consider maintenance data obtained from an
independent sample that is designed to circumvent the problem of in-
flationary (cr deflationary) reporting, Such data may better measure
the actual maintenance needs of various equipment than does the es-
tablished reporting system, However, it might be a mistake to base
an estimating relctionship (ER) on these data; the ER may estimate

waintenance azeds, but may not reflect maintenance practice.




11, SOME SAMPLING CONCEPTS

TOWARD REPRESENTATIVE SAMPLES

Section I tacitly recommends a basic distrust of data recorded by
anyone but the cost analyst who will use those data, The suggestion
has been for the analyst to determine at what point objectionable error
occurs in the data handling process and to go to that point and make
his own observations (or engage & well trained staff of observers).
When data are voluminous, customized collection implies the use of sam-
pling method, The task remains to discuss how to insure that a sample
i1s representative of the total, for this is the necessary assumption if
decisions are to be based on sample information.

For it to be representative, one might specify that the sample
reflect, in proper proportion, the various attributes of the population
under study. The sample need not be an exact miniature of the popula-
tion to be useful; the allowable latitude in this respect depends or
how sensitive the analyst's purposes are to errors in estimates, A
discussion of sample representation involves terms such as population,
distribution, bias, and error, These notions will Le described,since

their meanings as used in sampling may differ from common use,

Populations and Their Distributions

Sampling is motivated by the desire to evaluate some characteris=-
tic of interest in order to aid subsequent decisionmaking. In statis-
tical terminology, the population is the complete set of values of
that characteristic, Specification of the population requires defini-

tion in terms of:

(1) Content., What characteristic of the population is under

evaluation?

(2) Units, What are the units irto which the population can
be divided?

(3) Extent, What are the boundaries of the population?




Frequency of occurrence

(4) Time. What {s the time interval during which information
is relevant, and what is the t{me interval for which an in-

ference is to be drawn?

If the protlem is to estimate average fuel consumption of a par-
ticular model aircraft in Fiscal Year 1967, the population is the
collection of fuel consumption rates for each such aircraft that was
operational during FY 1967, If, on the other hand, the problem is to
estimate (i{.,e.,, forecast) average fuel consumption of that aircraft
during FY 1968 - FY 1973, the population is the collection of fuel
consumption rates for each such aircraft operational during those five
years., Lacking clairvoyance, the procedure in the latter case would
be to substitute a related population, e,g,, all relevant experience
in the past year, and assume that the substitute population reflects
the target population closely enocugh for practical purposes.

Populations can be characterized by their distributions, Suppose
it is possible to categorize each unit in a pcpulation according to
its value, and then prepare a graph of the frequencies with which each
category is represented, The result is a frequency diagram of the
distribution, which represents a visual illustration of the population,
For exampie, if the fuel consumption rates for all operational aircraft
are allocated into 20 gallon/hour categories, the result might be
graphed as follows:
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The choice of category width is arbitrsry, and is rather a matter of
visual taste; if the categories are made very small (e, g,, 1 gallon/
hour intervals), the graph begins to assume the appearance of a smooth
curve, For simplicity, all subsequent frequency diagrams in this

document will be pictured as smooth curves,

Exror and Bias

A sampling procedure is usually judged by the accuracy with which
it reflects the population, or with which it provides estimates of pop~
ulation characteristics (such as the population average), This accuracy
is composed of two factors, sampling error and hias, Consider a sampling
procedure in which ten observations are taken from a population of
fifty, and their average value recorded, Suppose that this procedure
were repeated an infinite number of times.* There would result quite
a number of sample average values, but they would temnd to concentrate
within some sharply defined region, This dispersion of sample averages
is called sampling error, Now, it is conceivable that these sample
averages might, in turn, be averaged to produce a ''grand sample aver-
age," and that the latter may not coincide with the characteristic being
estimated (i.e,, the average of the population taken as a whole), The
difference bhetween the population average and the average of sample
averages is due to bias in the sampling procedure. Suppose this ex-

ample produced results graphed below,

True mean of

population
Mean of sample
averages
'1 | 1 1%uﬂﬂﬂﬂﬂﬂlﬁl%,ll L1
23 24 25 26

*That is, a sample of ten is selected, recorded, and replaced,
then another sample ot ten is selected, recorded, and replazed, ctc,

O
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The popglation average is 25,2 and the average of sample averages is

24,5, Sampling error ranges within about 1,0 units, and the bias ase

sociated with this sampling procedure is equal to .7 (L.e., 25,2 -
24,5 =,7). The combined effect of sawpling error and bias may or may
not preclude the usefulness of the sanpling procedure, depending on
the accuracy required by the problem.

A helpful analogy is to consider the markmanship of three rifle-
men, where the riflemen are attempting to "estimate' the center of the

*
bullseye:

The target on the left was turned in by marksman A, He has a very
steady arm, but apparently ruffers from astigmatism; although his aim
is precise (i.e., small sampliag error), he consistently misses his
mark, Marksman B has no bias in his score, but his precision is quite
a bit less than A, Marksman C displays a small btias end more preci-
sion than A. Since marksman C's particular mix of precision and bias
tends to consistently put him nearer to the center of the target, we
would probably consider him the most accurate of the three,

In light of the previous discussion on errors in cost data, we
might say that mavksman A could represent estimates resulting from the
use ot data coming out of any existing reporting system; the estimates
are consistent, but their bias _ends to invalidate their usefulness,
Msrkswen B and C might represent two alternative sampling schemes,
Scheme B is virtually free of bias but is burdened by large sampling
ervor, Scheme C displays some bias but has the saving gracc of small

*
Illustration adapted from Jessen,
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sampling error, Scheme C wou:d probably be the preferred (provided the
magnitude of the bias could be assessed),

Probability Samples

There are two broad zpproaches to a representative sample: (1)
judgment sampling and (2) probability sampling. In judgment sampling,
the analyst relies on his experience and skill to select a number of
sample points that are 'typical" of the total population under study.
The judgment sample is characterized by the following comments:

(1) Accuracy may vary from sampler to sampler, but (for a given
sampler) is fairly uniform as sample size is varied,

(2) There is generally some bias present,

(3) There is no objective measure of the combined effects of

sampling error or bias,

Probability sampler are drawn with the aid of a table of random numbers
or any other device that assures that each sample point selection is
independent of all others, The general characteristics of probability

sampling are:

(1) Accuracy is not dependent on who is dcing the sampling, but
it is dependent on sample size,

(2) There is no sampling bias,

(3) Sampling error can be estimated objectively,

Sampling error can usually be estimated from a single sample, but
very rarely is it possible to estimate bias, A highly experienced
ssmpler wvho is intimately familiar with the subject under analysis may
be able to satisfactorily convince himself that the bias in nis proce-
dure {s "reasonable.," But the researcher’s audience is typically a
skeptical one and is inclired to have less faith in his julgment. The
presence of bias muddies up any objective statement of accurscy. For
this reason, it {s usually easier to accept & lot of ssmpling error
rather than a iittle bias, This also motivates this paper's near total

emphasis on probadbility ssmpling.

i i et £ o e A
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STATISTICAL BASIS FOR_INFERENCE

The next geveral pages review some basic statistical principles
as they relate to sampling and develop the line of reasoning that sup-
ports the sampling method as a basis for decisionmaking. For those
who are already convinced of the credibility of probability sampling,
this discussion will hold little interest,

In the remainder of this Memorandum, population parameters are
denoted by Greek letters and sample statistics* are denoted by Roman

letters:

Population Sample

mean p (mu) X

variance 02 (sigma)2 82

The size of the population is represented by N, and sample size is n,

An unbiased estimate of 2 parameter is indicated by placing a "hat,"

", over the parameter symbol, Thus, to say that a sample mean is an un-
biased estimate of che population mean is equivalent to the expression:

i=X

Descriptors of Populations and Samples

Recall the earlier discussion of population distributions, There
are generally two characteristics of any population distcibution that
interest the analyst: central tendency and dispersion.

Two measures of central tendency are the medisn and the mean, If
all units (noted as xt) in the population are arrayed in order of size,
the wedian is the value of the middle unit. The mean is the average
of the population units:

T Xt

u.—-—-

*Pnrn-ntcru are constants associated with the population; statis~
tics are numbers .alculated from the sample, and therefore are vart-
able from sample to sample,

il
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Of the two parameters, the mean is most often of interest, especially
with near-symmetric distributicns, The median, on the other hand, is
independent of tche distribution, and is often, therefore, the preferred
parameter in situations where the shape of the distribution is irregu-
lar,

The most common measure of dispersion is the variance, defined as

the average of squared deviations of units from the mean:
; X -u)z
2 _ i

0 N

The standard error {or standard deviation) is the square root of the

variance:

2
0='40

An alternative measure cf dispersion is the mean deviation:

N
T (|x-u])
N

The mean deviation is seldom used; the standard deviation is more popu-
lar because of its relationship to cor:fidence intervals, to be discussed
later,

A sample ic some vortion of the population composed of n units,

Analogous to the two population parameters, p and 02, are the sample

mean and the sample variance:

These are called statistics because they are variables dependent on

the particular asscrtment of n units chosen for the sample,

e M s




Sampling Distributions

Being a variable, a statistic also has a distribution. This dis-
tribution is called the sampling distribution, since it reflects the
frequencies with which the statistic would take on different values if
the sampling procedure were repeated an infinite number of times, The
expected value of a statistic is defined as the mean of its sampling
distribution, For example, the following might be the sampling distri-
bution of 32* [the expected value of 82 is denoted as E(sz)]:

Frequency

f3 14 15

Since the purpose of sampling is to obtain information about the
population, we are generally concerned that our sample statistics are
accurate estimates of the corresponding porulation parameters, The
two aspects of accuracy, preéision and bias, can now be characterized
in terms of the sampling distribution.

An estimator (i.e,, the formulas actually used in deriving esti-
mates) is unbiased if the expected value of the statistic is equal to

the parameter it estimates,

An estimator is precise if it has a relatively narrow sampiing
distribution (i,e,, if the sampling error is small).

The diagram below represents the sampling distribution of X for
two different sampling procedures superimposed upon the distribution

of the parent population (dashed lines):

*Since the distribution is conceptually derived from an infinite
number of iterations, its graph is drawn in terms of relative frei
quency, For geometric interpretation, the probability (P) that S$° will
assume a value within some interval is equal to the percentage ares
under the curve that is bounded by that interval (e.z., P{14,0 < §° <

15,0] = ,10),




Estimator B is unbiased (its expected value is equal to u) but not

very precise, Estimator A is more precise but is biased:

Bias (A) = 65 - 60 =5

From the diagram, it appears that a precise, slightly biased
estimator might be preferable to an unbiased, less precise estimator,
This tradeoff i{s difficult to evaluate since p is unknown, The usual
praciice is to follow procedures that are known to produce unbiased
estimators, then select the estimator that has the greatest preci-
sion. Most of the unbiased procedures require probability sampling.

The requisites for probability sampling are:

(1) Every unit of the population has a known probability of
being included in the sample.
(2) The sample is drawn by some method of random selection
(each selec ‘on is independently determined),
(3) Probabilities of selection are taken into account when making

estimates from the sample,

Probability sampling methods provide unbiased estimates of popu-
lation parameters, or contain certain oias that can bc evaluated, For
example, X is alvays an unbiased estimate of p 1if probability sampling
has been employed; the sample variance, Sz. is a biased estimator of
the population variance, 02, but the bias is corrected by a simple

ad justment factor, E%T . Non-probability mecthods, such as judgment
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sampling, may provide more precise estimates, but it is usually impos-
sible to identify bias, Probability sampling also furnishes informa-
tion on the sampling distributions of the estimators, and thus provides
the bridge necessary to be able to draw inferences about the population,

based on the sample,

Confidence Intervals

8o far it has been shown that samples can provide useful estimates
of population parameters; it is kaown that if the sampling procedure
is repeated an infinite number of times, the average values of X and
(;%T)sz will be j and 02. A question remains, however, about the
inferences drawn from a singlc sample; how close is X to p? This can-
not be determined with certainty, but thanks to a very helpful charac-

teristic of nature which is exp.essed as the ceutral limit theorem, it

is possible to specify the shape of the sampling distyibut:on of X and
thereby find the probability that the quantity li - u\ is within some
specified tolerance level, The central limit theorem provides that,
as sample size increases, sample means tend to be distributed normally
regardless of how the parent population is distributed, The distribu=
tion of sample means has the same mean as the parent population, but
its standard error iy equal to 7% =0z,

Pictured below are the population distribution (dashedi line) and

the sampling distribution of X from samples of size n=10:

r 95% )
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Since the distribution of X is approximately normal, theory tells us
that about 68 percent of the area beneath the curve lies within one
standard error (Gi) of u, and 95 percent of the area lies within two
standard errors, Another interpretation is that the probability that
X will fall within one standard error u is .68, Standardized no:mal
curve tables are available in most texts that provide this information
for fractional multiples of O+

Suppose that a sample is drawn from the above population and the

two statistics computed:
X =43, s° =25,

Neither p nor Oz is known, but 02 can be estimated:
X

- w2 2 2
2, _ g _,n 8" _ 8% 25
(cﬁ) n G a - n-1 9

A sl.ghtly biased estimate of O is found by finding the square root of
(ag). From the previous discussion it is known that if the sample were
dr:wn repeatedly, 95 percent of the sample means would fall within 20i
of the population mean, This statement is equivalent to saying that wu
is within 20; of the sample mean 95 percent of the time, Thus it is
said that the 95 percent confidence interval for w is 43 + 10/3, This
does not mean that the probability that p lies in this interval is

.95; however, if one were to follow this procedure for setting confi~
dence intervals in sample after sample, he would expect his intervals
to contain i 95 percent of the time,

The only flaw in the procedure for arriving at confidence inter-
vals has been the use of 82 to estimate 02. Fortunately, this only
causes problems with small samples, which are discussed on page 26,

The concept of sampling error'may be a little ponderous for the
decisionmaker to emplov, If the dec'sionmaker desires a certain maxi-
mum tolerance {n order to use the samole results, the sampler can esti-

mate the odds that the tolerance will be met (absolute assurance of a

s ST
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given tolerance is fcr most purposes imyossible), Whether the odds
are acceptable depends on the decisionmaker's aversion to the risk of
incorrect conclusions,

As an example, suppose an on-site sample survey has been made of
the number of direct depot man hours required to repair and refurbish
a certain missile guidance system component, The sample yields a
statement that cn the average 1191 direct man hours are required for
each of the components of interest, From information concerning the
sample, an analyst can estimate the odds of achieving a specified tol-
erance, This might be stated as ''the population mean is equal to 1191
direct man hours + 12,5 hours (tolerance) at .93 confidence,'" If the
analyst is willing to act upon estimates with this tolerance and con-
fidence, the survey has provided useful information, A more conserva-
tive analyst might feel comfortable only when this tolerance is achieved
with .99 confidence, in which case the sample procedure would need to

be revamped to obtain better representation of the population,

SIMPLE RANDOM SAMPLING

The simplest probability sample is the simple random sample, The

required conditions are:

(1) Independert selection of sample units,
(2) Equel probability of selection for all units in the popula-

tion,

The first condition specifies that the inclusion of a particular unit
iau the sample is in no way dependent on the inclusion of some other
unit; this is accomplished by randomizing the selection, The second
condition assures that the sample will not be bilased,

Buth conditions are implemented by proper selection of a sampling
frame, A frame {s a list; a way of dividing the population into sam-
pling units that are distinct and non-overlapping and that together con-
stitute the whole of the population., A suitable frame allows the
listing or numbering of all units in order to make a random selection
(although for some sampling procedures to be discussed later the com-

plete list is not necessary),




A table of randux numbers is one way to draw the sample, Suppose,

for example, that a sample of size n=10 is desired from a population
of N=452. Choose some arbitrary point in a table of random numbers
and read down the column of 3-digit numbers, picking out the first ten
numbers that do not exceed 452, The sample consists of those sampling
units that correspond to the chosen numbers (any number appearing more

*
than once should be ignored after the first time),

Choice of Sample Size

The choice of sample size involves a tradeoff between cost and
precision; increased precision requires a larger sample size, which
in turn implies higher cost, For the analyst who does not have a
fixed budget, it is probably more meaningful to translate sampling
cost to sampling time (a2ssuming the preferred path to a solution is
the shortest path); cost and time can be considered synonymous. The
typical procedure for determining sample size is to specify some level
of precision, solve for sample size required for several alternative
sampling schemes, then ccmpare costs (and possibly adjust the preci-
sion requirement if costs for all alternatives are out of line with
the budget). The following steps assume imple random sampling; the
rationale is the same for other sampling schemes, but the computation
is more complex,

The first step is to decide how large an error can be tolerated
in the estimate, This requices careful thinking about the use to be

made of the estimate and about the consequences of sizable error (is

*There is nothing essentlal about the use of random number tables,

for more simple devices such as tossed dice or numbered chips drawn from

a hat will often do., Sometimes it may be assumed that the population
units occur randomly in the sampling frame, so that any arbitrary se-
lection is valid; for example, if one is sampling 40 airmen to esti-
mate the average skill level of airmen at a particular base, the first
40 airmen listed in the base directory can probably be regarded as a
random sample (since skill level is not related to surname), Care
should be exercised that such devices actually do assure independent
and equal probabllity of selection, The advantage of a random number
table is that such assurances are scientifically provided,
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i Ri05. e:




the estimate to be very precise or just a rough estimate?), The
figure arrived at may be, to some extent, arbitrary, but this is the
necessary step that patterns the sample estimate to the objective of
the analysis, The second step is to express the aliowable error in
terms of confidence limits., Suppose L is the allowable tolerance in
the saumple mean, and we are willing to take 8 5 percent chance that
the eiror will exceed L (we want to be 'reasonably certain" that the
error will not exceed L), The 95 percent confidence limits computed

from a single mean are:

)
I+
N
x1
"
>
I+
N
Q

Since the tolerance is L:

L ud
L2
The general formula is:
22
n = 29
L2

where z is the standard normal deviate, i,e,, the multiple of oy that

*
corresponds to the desired confidence interval,

— Desired % —

g

*
The appropriate z-values can be found in tables of standard nor-
mal deviates in most statistics texts,
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In order to use this formula, an estimate ot o 1s necessary, This may
be accomplished by a small preliminary sample, or by examining previous
samplings of similar populations, For populations of size greater than
500, a crude estimate of o is (range)/6, the range being defined as the
difference between the highest and lowest values in the population,
Having calculated the sample size required for the stated preci-
sion, the third step is to evaluate the sample cost, If the cost is
high, it may be necessary to relax the precision requirement, It may
even appear preferable to give up the sampling plan altogether in favor

of a complete census.

Sampling for Attributl.s

Population characteristics can be classified as quantitative or
qualitative, Quantitative characteristics (e.g., annual income) are
called variates and are expressed numerically. Qualitative character~
istics (e.g., sex) are called attributes and are non-numerical, Sampl-
ing of variates leads to the estimation of totals and averages; sampl-
ing of attributes leads to the estimation of proportions, or percent-
ages, The various sampling designs generally apply in both cases, the
main difference being the form of the estimators (i.e,, the formulas
used in deriving estimates), There has been no attempt in this survey
to grant "equal time" to attributes, since the discussion and examples
would simply parallel that of variates,

Consider a study to determine the proportion of overseas Air Force
installations that maintain their own telephone switchboard facilities;
each base selected for the sample would be classified as either (A)
maintaining its own facility or (B) contracting that function out, The

frequency distribution has the following form:

rrequency

-




If A and B were each assigned a numerical value, this distribution
could be handled the same as the variate case, 'The analyst is wusually
interested in determining the proportion of units exhibiting property
A

2'}2

This number is the same as p if every sample unit exhibiting character-
istic A is given a value of one (1), and all other sample units are

valued at zero:

Assuming simple random sampling, the sample proportion, p, is an
unbiased estimator of the population proportion, T, The variance of

the sampling distribution of p takes the following form:

2 - I(1-m)

P n
Its unbiased estimator is
82 - p(l-p)
p n

Sometimes the intent is to estimate NA' the total units {n the
population having the desired attribute, The appropriate estimators

here are;

z»
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The sampling distribution of p (and of pN) has the desirable

central limit theorem property of tending toward normal as the sample
size increases, However, if either 17T or (1-MT) is very small, very
large sample sizes may be required, This is because the sampling dis-
tribution tends to be non-symmetrical for values of T that are very

high or very low:

As a rule of thumb, the folluwing conditions should hold before

relying on normal distribution properties:

np > 5 < nq.

For values of p that are very large or very small, it is much
cheaper in terme of sample size to base confidence intervals on the
properties of the Poisson distribution (a general class of skewed
diatributions) or thc binomisi distribution, Reference to these two

distributions can be found in most bhasic statistics texts (e.g,, Hoel),

Finite Population Correction

This paper assumes non-replacement sempling throughout, This .
the general class of samples in vhich (ndividual populaticn units are
not allowed to sppear in the sample more than once; {,e,, there {s no

duplication in the selecting of random numbers, When sampling with




non-replacement from finite populations, it 1is necessury to introduce

the factor (1 - %) into the computation of sampling variance, Hence:

a2

2 o_ .
o " (lef) =~ ; f =

n
n'’ N

~ -fA
ox =S \n-1

This factor {s called the finite population correction (fp.), and as-

sures that the estimated sampling variance tends to zero as the sample

size approaches the population size N, In practice, the fpc can be

ignored when the sampling fraction is not greater than 5 or i0 percer.t,

The effect of ignoring the correction is to overestimate the standard

error, which generally i{s not as serious as underestimation,

Dissecting the Sampling Variance Estimator

it may be of interest to summarize the ''anatomy" of the sampling

variance,

- 1

The various components are:

The average of squared deviations of sample observa-
tions from the sample mean; simply a convenient de-
scriptive measure of variability within che sample,
but which 18 also useful because of its relationship

to 02.

The factor necessary to convert the measure of sample
variability into an unbiased estimate of populaticn

variability as measured by 02.

The factor that converts the ueasure of population
variability into & weasure of variability of the sampl-
ing distribution,

The factor that makes allowance for sampling frou finite
populations (f = %).




Assembling the components gives:

n
=2
~(X, ~X) L 2
2 1 n i . )
S5 = (-6 ) <n-1>( AR Y

which is the unbiased estimator of

2 02
o = (=B &~

Examinacion of this formula draws attention to the fact that the
sampling error (o%) depernds primarily on the population variance (02)
and the absolute sample size (n), The zelative sample size (i.e., the
fraction of the population sampled) is not an important factor in
large populations, For ¢xample, 50 observations from a population of
20,000 will give an estimate about as precise as 50 observations from
a population of 1,000, provided that the population variances are the

same,

Confidence Intervais from Small Samples

"%0mne problem in the determination of confidence intervals arises
from the use of the following formula for determining the upper and

lower limits,

X -l =1=3%

The variable z is the standard normal deviate that corresponds to the

degree cf confidence desired, This formulation rests on the fact that

has a standard normal distribution (i.,e,, u=0, and o=1), Since o is not

usually known, it {s often necessary to use its sample estimator

ke 3, B b b 2 a1
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instead, The expression

X~

$//n-1

follows what is called the t-distribution, The t-distribution is very

close tc normal, but has wider dispersion when the sample size is small,

Standard normal

—— t distribution

For this reason it is preferable to use t-values instead of z-values
*
when sample sizes are less than 30; upper and lower limite arc then

determined from the expression:

£
]
©_
|
[
|
3

where ¢ and S have been substituted for z and o, respectively, Tables
are available from which t-values can be ascertained in much the same
manner as the z-values, except that the sample size must be specified,

A portion of a t-cable appearing in R, A, Fisher's 1934 volume of Statisti-
< cal Methods for Research Workers is reproduced below, If, for example, the

degrzes of freedom level of significance
(n - 1) S 1 .3 .1 .05 ,01

13 694 | 1,079 1,771} 2,160} 3,012
14 6921 1,076 | 1.761| 2,145 2,977
15 691 | 1,074 1,753| 2,131} 2,947
B 16 L6901 1,071 1.7461 2.120| 2,921
£ 17 689 | 1,069 1.740| 2,110 2,898

*

This boundary between "small' and "large" samples is arbitrary;
experience has shown that for most purposes, the z-distribution suffi-
clently approximates the t-distribution when sample size exceeds 25 to 30,

RS D R R T
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desired confidence level were ,70 and the sample size were n=15, the
appropriate t-values would be t = 1,076, The columr. headings refer to

the area under the '"tail" of the curve (e.g,, a ,70 confidence level

implies .3 significance), The row headings refer to degrees of freedom,
a racher abstruse statistical concept which for simple random sampling

i3 one less than the sample size,
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III, ELEMENTS OF SAMPLE DESIGN

Designing a sample is a matter of getting the most accuracy for
your money, and is a problem apart from that of obtaining "valid" re-
sults (in the sense of being 4ble to draw correct inferences). Valid-
ity derives from adhering to the rather well defined rules of gond
proced.re, guch as using correct estimators and maintaining independ-
ent selection of sample points., A designed sample, on the other hand,
seeks to utilize prior subjective knowledge about the population in

order to increase accuracy or decrease costs,

SAMPLE PRECISION AND COST

Increasing Precision

Precision is increased by decreasing the variance of the sampling
distribution, There are f{our fundamental methods for achieving this

result:

(1) Increasing sample size,

(2) Stratifying the population,

(3) Using auxiliary variables in the estimator.
(4) Using unequal probabilities of selection,

The simplest way to increase precision is to increace the sample
size, This has already been discussed in connection with choosing
the sample size for simple random samples,

Stratification involves dividing the population into two or more
subpopulations and sampling from each, Stratification always reduces
the sampling variance provided the variability within strata is less
than the variability iu the overall population, It is also possible
to stratify after the sample has been drawn, but this i{s usuaily not
as efficient,

Sometimes in sampling there is the opportunity to observe an
auxiliary variable which is closely cvelated to the main variable of
interest, and which can be utilized in the estimator to give more pre-
cise estimates, Two such estimators (ratio and regression) are dise

cussed in Section IV,
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Unequal probability sampling offersc another way of making good
u3¢ of an auxiliary variable, As well as being used in the estimator,
the auxiliary variable is used to determine the probability with which
various samg’e points fall into the sample, Probabilities are set
proportionally to the auxiliary variable, and the cleser the correla=
tion between the two variables, the more precise th2 final estimate,

These methods will be discussed more fully in the process of de-
scribing the several sample designs which follow in this section and
in Section 1V,

Cutting Survey Costs

Costs of running a survey fall naturally into four categories:

(1) costs of observation,
(2) travel costs,
(3) coding costs, and

(4) overhead costs,

Observation costs are those incurred '"on-location" in recording
the behavior under study, These costs vary directly with the numbex
of sampling points, and therefore are reduced by decreasing the sample
size, Any of the sample designs that offer increased precision, for
a given sample size, can likewise be used to provide the same preci-
sion at less observation cost,

Travel costs are those incurred in moving between sample points
and home base, These are mostly irrelevant when sampling from a cen-
tralized reporting system, The common method to reduce travel is to
group the sample points into clusters so that the sampler can pick up
several observations at each location rather than just one, The cluster
technique is less efficient (less precise), but sometimes the reduction
in travel cost may allow the sampler to recoup his precision loss by
selecting more sample points, Cluster sampling will be explained later
in detail,

Coding inciudes those administrative task-s relating to the trans-
formation of sample information recorded by field workers into a form

that is amenable to analysis, This may simply require the consclidation
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of data from several worksheets, or it may involve numerical interpre-
tation of responses recorded on sample questjonnaires, The magnitude
of coding costs depends on the mode of data collection; but for a
given mode, they vary directly with sample size, Careful planning of
sample observation procedures may lead to significant savings in data
handling costs.

Overhead includes such items as frame construction, sample selec-
tion, calculating estimates, These costs are rather insensitive tc
different sample designs, since planning and design probably consti-
tute the bulk of these costs, However, if the population is very
large, the choice ¢f sampling design can significantly affect the time

necessary to construct a frame and select sample points,

Cost=Precision Tradeoff

It has been stated that the choice of sample design depends omn
both cost and precision of the alternative sampling schemes, but there
has been no discussion of combining the two into a single measure,

The usual measure i- Net Relative Efficiency (NRE). The concept of
NRE will be developed by means of a simple example.

Suppose two alternmative sampling schemes, A and B, are available,
For a sample of size 50, it is estimated that sampling variance for
scheme A will be 35, and that for scheme B will be about 42, The
Relative Efficiency (RE) of A to B is the inverse ratio of the vari-

ances;:

< var (B) _ 42 _
RE(A/B) = " ay = 35

1,20
Scheme A is said to be 20 pexcent more efficient than scheme B, A
10 percent sample using scheme A would provide the same precision as
a 12 percent sample using scheme B,

What about costs? The costs of the two schemes are estimated,
variable costs (those proportional to sample size) are separated out,
and the variable cost per sample point for each is computed, This

variable component for A is $50, and for B is $40 (these costs might
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as easily have been stated in terms of man-hours), The Relative
Variable Cost (RVC) of A to B is the ratio of these costs:

RVC(A/B) = %%%%% - %% = 1,25

Scheme A is 25 percent more costly than scheme B on a sample point
basis.*

Since sampling variance is inversely proportional to sample size,
and the RVC is on a sample point basis, a consistent way to ccmbine
the two criteria is to divide the Relative Efficiency by the Relative
Variable Cost, The new measure is called Net Relative Efficlency:

= R—E— = ———1'20 = 1 = var @) : VC(Bl
NRE(A/B) = qve = 795 = 96 | = var ) - vo(ay

When costs are considered, scheme A is 4 percent less efficient than
B; equivalently, scheme B is 4 percent more efficient than A (—lz =
1,04). )

For a given level of precision, scheme B will be 4 percent
cheaper; for a given budget, scheme B will provide 4 percent greater
precision,

The choice of scheme B has depended on some necessarily rough
"guesstimates,'" The feeling is, however, that these calculations
lead to a best guess when performed by someone with good subjective
familiarity with the behavior under study, The need for this kind of
preliminary analysis illustrates the usefulness of prior sample sur-
veys that are well documented, The concept of Net Relative Efficiency
receives detailed treatment in Jessen, pages 97-103,

Again, sampling designs are motivated by the desire to re-estab-
lish the cost-precision tradeoff at a more favorable level than is
obtained by simple random sampling, The most basic designs are de-

scribed in the remainder of this section,

*
Assume equal or insignificant fixed cost,




BASIC TECHNIQUES OF SAMPLF DESIGN

The most basic of the sampling techniques are those that ''parti-
tion" the population so that the resulting sample will reflect some
special knowledge of the manner in which the population units naturally

occur, Four techniques are considered;

. Stratified sampling
. Cluster sampling
. Subsampling

. Systemwmatic sampling

These are the foundations of the more complex schemes often required
in real world applications of sample surveys,

Description of the basic sample designs will include the motiva-
tion for their use: why the design is used; advantages and disadvan-
tages; relative costs of application; and allocation of sample units,
A simple illustration of each design is also included,

The formulas for estimation of population means and varilances
are not found in the descriptions but are given in Appendix II, This
has the dual purpose of (1) smoothiny the way for those who are more
interested in the rationale behind different designs than the arith-
metic of estimation, and (2) gathering the various formulas into a
few pages for easy comparison. Most of the examples include measures
of estimation and may prompt the interested reader to refer to the
appendix; although the general tone of the applications and the rea-
soning behind the choices of designs should be apparent without having
to become immersed in actual numbers, these calculations were included
for those desiring to see the formulas in action,

Please note the following convention for stratification, cluster-
ing, and subsampling., The population is divided into N partitions,
of which n partitions are designated for sampling; each partition con-
sists of M data polats, of which m are selected ior the sample, Thus
the total number of data in the population is equa! ro MN, and the
total sample size {s mm,
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Stratified Sampling

In stratified random sampling, the population is divided into
non-overlapping subpopulations, called strata, A simple random sample

is then drawn in each stratum,

X
& &
& ®
X

Stratum #1 Stratum 2 Stratum #3  Stratum *4

There are four principal reasons fo:r stratifying.

First, it sometimes is desired to obtain estimates for subdivi-
sions of the population,

Second, it may be administratively convenient to break up the
population into strata of a size easier to work with,

Third, sampling problews may differ in different parts of the
population, For example, in sampling long-haul communications person-
nel stationed on air bases, it would be practical to put SAC and ADC
in a separate stratum since they administer their own communications,
The data sources for these two commands, and their sampling frame,
would be of a different nature than that of the ocher major commands,
which are served by the Air Force Commuiication Service,

Fourth, considerable precision may be gained if it is possible
to divide a heterogeneous population into strata that are internally
homogenous, Differences between strasia do not contribute to the
stratified sampling variance, Thus, the i~ss variability within
strata, the smaller the sampling variance,

The simplest way to aliocate the sample is to use proporticnal
allocation, that is, to make the number oi sampie uaits drawn from

ecach stratum propertional to the total number of units {n that stratum,

The gain i{n precision over simple random sumpling {s, in this allocation,
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entirely due to that prior knowledge of the population that led to its
partitioning (i.e., the knowledg« that all of the variances within
strata are smaller than the overall population variance).

Proportional allocation cverlooks two items of information that
may be at the disposal of the amalyst: (1) differences in variance
(oi) from stratum to stratum, and (2) differences in the cost (Ci)
associated with observing a unit in each stratum, Since the dual pur-
pose is to minimize both overall sampling variance and cost, it fellows
that more units should be drawn from high variance strata where sampl-
ing is inexpensive, When the stratum sample sizes (mi) aruv set propor-
tional to the respective standard deviations (ci) and stratum sizes
(Mi)’ and inversely proportional to the square root of the costs (ci),
allocation is said to be optimal, The fact that some uncertainty may
be attached to the knowledge of o, and <y does not impair the lack of
bias of the final estimate of p., If the analyst is confident in his
estimate of at least the relative magnitudes of the <5 and of the Oi’
it is better to use optimal allocation rather than proportional alloca-

tion,

Example, Suppose that an estimate is desired for thc average
dollar-cost of replenishment spares for a tactical fighter with the

following deployment (by command):

Command No, UE
TAC * 450
TAC-CCTW 150
PACAF 75
USAFE 5
750

For each aircraft therce {s a record of all major modifications, spares
consumed, and major maintenance, Each aircraft can be tdentified by
its tail~-number, Assume that the desired tclerance for estimated aver=

age cost is + $300 at the 90 percent confidence level,

*
Combat Crew Training Wing,
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The firs:t task is to get a rough estimate of the standard devia-
tion of spares costs for the 750 atrcraft, Suppose an informed individ-
ual suggests that the distribution of costs is fairly bell-shaped, but
skewed to the right; furthermore, he feels that about 95 percent of the
alrcraft have spares costs equal to $11,250 + 2800, Noting that +20
usuaily encompasses 95 percent, the standard deviation is estimated to
be %(2800), or $1400,

If simple random sampling were applied to this problem, the sample

size would be determined as follows:

_( . 1400
300 = (2| s = 1.65 SV

e

n = 59,4 =60

One could expect to do better by stratifying according to the four
command-categories (TAC, PACAF, etc,) above, since program character-
istics (flying-hour programs, ctc.; are likely to affect spares consump-
tion, Using the same sample size as above, and adopting proportional

allocation, the m, for the various strata are:

i

Stratum f£

TAC 60(450/750) = 36

TAC-CCTW 60(150/750) = 12

PACAF 60( 75/750) = 6

USAFE 60( 75/750) = _6
60

The desipgn may be lmproved by speculating as ‘o the reiative dif-
ferences in dispersion and sampling costs among the strata by using

optimal allocation:

Hici
M, propourtionil to —
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Suppuse otte could expect sampling coits overscas to “e double those in

the <, 1, Furthermore, one might expect the dispersion {n TAC-CCTW to
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be one~half the dispersion within TAC, with the other strata somewhere
in between, Accordingly, the following table lists relative costs,

standard deviations, and the allocation that results:

Rela-| Rela- Estimaie of
Stratum (t:isi ;ﬁ;, M, o, /€7) m
TAC 1 4 | 4504/1%) = 1800 | 60(1800/2420) = 44.6 = 45
TAC-CCTW| 1 2 | 150(2/1%) = 300 | 60¢ 300/2420) = 7.4 =
PACAF 2 3 75(3/2%) = 160 | 60( 160/2420) = 4.0 =
USAFE 2 3 75(3/2%) = 160 | 60( 160/2420) = 4.0 = _4
2420 60

Notice that in the rew allocation, high-cost strata are sampled iess

and the high-variance stratum is sampled more,

Cluster Sampling

In cluster sampling, the population is divided into groups, or
clusters, of units, Several of the clusters are chosen at randowm,
and all units in each selected cluster become part of the samp’ °, The
clusters are referred to as primaries, whereas the units contained

thervin are secondarizs,

B

&

There are two major reasons that lead to the choice of cluster
sampling.
First, there {8 sometimes no list of the population available on

which to basc a sampling frame and it is tcelt that such a list would
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be too expensive to construct, whereas it is relatively easy to come
by a list of clusters ot units, Suppose it is desired to sample mes-
sage iengths in a Communications Sector, The practical procedures
would be to sample clusters of messages, i.e,, messages rcceived at
selected installations during some specified time interval,

Second, cluster sampling may be desirable if the population is
such that travel costs can be reduced Ly selecting adjacent units.
For example, if{ failure rates for some item of base eyuipment are
being samplel, it may be cheaper to select a number of bases and ob-

serve all units on those bases than to take a simple random sample,

The rel:itive cost for specified precision (and equivalently the
relative variuznce for specified cost) is (i) propurcional to the rela-
tive cost of observing one cluster, (2) proportional tc the variation
between clusters, and (3) inversely proporticnal to the relative size
of the cluster, Ifrin estimating X a cholice is toc be made between
severa) different cluster sizes, it can be shown that the criterion
is to chuose that cluster 1ize that minimizes the product of sampling
variance times total cost (both of which vary, depending om cluster
size),

When cluscer sampling is chosen as a matter of convenience, the
final estimate will generally be less precise than a simple random
sample « e same size, Therefore the decisicn rests on whether the
cost red:ction allows the selection of a large enough sample to actu-
ally increase precision, This situation contrasts with the stratified
sample, where an estimate less precise than that from simple random
sampling is very unlikely, and would almost require contrived strata
designed specifically for that resuit, Of course, if the clustering
were designed so that variation within clusters was greater than that
between clusters, then the estimate would be more precise then the
simple random case, Such an arrangement is not likely; it is t,pically
easier to partition the population into groups of hemegenecas units

(as in sitratification) than heterogeneous units,

Exanple, A frequent preelem for the cost analyst is to estimate

the cost »f consumption items that are common to more rhan one system,
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Frequently, these items are centrally managed, and their consumption
reported only in aggregate, Let us postulate, for example, a study

of administrative/support aircraft, in which it is desired to know the
annual cost of low value replenishment spares consumed., A large group
of spares are common to two aircraft (aircraft #1 and aircraft #2) as-
signed to 100 world-wide locations. Consumption accounting is ty com-
modity only, necessitating some external data collection for study
purposes, One solution would be to request that maintenance managers
at each of the 100 locations keep detailed records of the final appli-
cation of the common spares in question, This would be time consuming
and costly and would grobably provide more detail thau necessary. What
follows is a cluster sampling design that would probably provide very
adequate information at significantly less cost,

Suppose that aircraft #l is stationed cn all 100 bases, but air-
craft #2 is only on 40 bases, Designating a one-year time period and
defining a cluster to be a one-month period (12 clusters per base),
the population contains 1200 clusters, 50 of which will be samplad,
Since all common spares in question sent to 60 bases are consumed by

aircraft #1, attention may be restricted to the remaining 40 bases:

E _ Sample 50
- - base-months
vz b Aircraft #1 only Both #1 and #2
months E (720 base-menths) (480 base-months)
L_ tuumuﬂ INTHTITER) STTHITTT JHTHTS
]
L—— 60 bases - ! 40 bases ™™

The procedure will be to estimate the proportion of ccmmon spares by
aircraft #2 in the smaller stratum, then make an adjustment to allow
for the other 60 bases,

Fifty clusters are randomly chosen from the smaller stratum, The
maintenance chief at each selected base is instructed to keep records

regarding the disposition of all common spares during the particular
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month(s) chosen, The information to be reported is the month's total

consumption of common spares (Mi) and the consumption recorded for

aircraft #2 (Xi). When all the information is in, the estimated pro-

portion of common spares going to aircraft #2 for the 40 bases is:

50
¥ X,
i

LT

oM

50 : 50
where ¥ Mi is the total sample consumption and Z»Xi is consumption by
aircraft #2. The sampling voriance for this estimator is estimated

by the formula for unequal cluster sizes, substituting P, for xelz

50
1 - == [5s0 50 50
2 480 2, 2202
Sy = —————[v. M, + Pyl M{ - 2P, Mixi]

50(M) 249

The proportion of common spares consumed by all bases for aircraft #2
is then estimated by weighting P, to allow for the difference between

the 40 bases and the entirce 100 bases:

480
v M,
- i
2 1200
Y M
1

P

480
where 2 Mi is the year's consumption at the 40 bases (representing
!
480 clusters), and Mi is the consumption for all 100 bases (equiv-
alent to 1200 clusters), The proportion consumed by aircraft #1 is esti-

mated by:

The sampling variance is the same for hoth P1 and P2, and is estimated

by weighting Si:
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Subsampling

Subsampling, or two-stage sampling, is a hybrid of cluster and
stratified sampling., The population is partitioned into N primaries,
and n of these primaries arc randomly selected, A subsample of m
secondaries is then randomly selected from each primary. This tech-
nique is sometimes extended to three or four stages, The discussion
that follows will consider the case wherc each primary contains
the same number (M) vf secondaries, and tnhe same number of secondaries

(m) are sampled from each primary,

E§§ n 4
| 1] m 2

B B

The main advantage of subsampling over one-stage sampling is

flexibility, It reduces to cluster sampling when m =M, or to strati=-
fied sampling when n = N; but in terms of the cost-precision tradeoff,

a scheme that falls somewhere between these two may be preferable,

The problem is to determine values of n and m such as to minimize
sampling variance for a given cost (or equivalently, to minimize cost
for a specified variance). Appendix II provides a method for solving
this problem that requires preliminary estirnates of (1) the coest of
sampling associated with each cluster (Cl)’ (2) rhe cost of sampling
secondaries within clusters (c,), (¥) the variance between cluster means

(Sg), and (4) the variance of secondaries within clusters (Sé).




For this purpose, these estimates do not require great precision
because the sampling variance is not highly sensitive to the choice
2
of m, It is usually easier to estimate ratios cl/c2 and Sw/Sg, in

which case tables are available to aid the evaluation of m (see Coch-

ran, page 282),

Example. Since the greater portion of USAF base-level reporting
systems have been designed primarily for management ard control pur-
poses, the needs of the planning and prograrming oriemted cnst analyst
are not always satisfied; it has generally been more expedient to put
accountability on an organizational basis rather than a program basis,
Certain base-support organizations provide service to a plurality of
programs, and in order to allocate activity on a program basis, the
cost analyst must often adopt some arbitrary pro-ration scheme,

The following example suggests how a subsampling design might be
used to estimate the average daily man-hours devoted by Civil Engineer-
ing squadrons to repair and maintenance of aircraft alert facilities
durirg a 90-~day period. It is assumed that a daily record of work-
orders is maintained in a general ledger, and that inspection of the
ledger will provide the data needed,

Assume that there are 126 C-E squadrons overseas and in the Z,1,;
eacn of these will be regarded as a primary cluster, Each cluster
consists of 90 days of information, The procedure will be to select
n squadrons at random, then select m days within each cluster, The
total man~hours devoted toajrcraft alert facilities maintenance during
the selected squadron-days will be found by examining the appropriate
ledger,

The first problem is to decide the optimum value of m, This re=-
2

B’ © 2°
two to 300 entries per day in each squadron's ledger, an allowance of

, . 2 ,
quires "guesstimates" of Sw’ S T and ¢ Since there are about

four hours per squadron-day seems reasonable, The cost, c,, of visit-

2)
ing each squadron would be in the neighborhood of one and a quarter

2
"working'" days, or 10 hours, S; and Sg are considerably more elusive,
but suppose that examination of ledgers from two or three repre¢senta-

tive squadrons suggests 230 and 40, respectively; the optimum subsample

size (m) is then determined as:
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32__8_! 2 40-—9~6
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=6.326

The number of clusters selected (n) can be determined in one of two
ways, depending on whether total cost or overall precision is held
constant, Suppose the total time allocated to the collection of data

is set at 40 workdays (320 hcurs):

C = nc, + nmc

1 2
320 = n(10) + n(6) (&)
n=2942%29

If, on the other hand, one can tolerate a sample mean variance of about

5 man~hours, the following furmula is solved for n:

5% =S—;(l-f)+i§(1-f)f -5
"§;e n 1 nm 2771
=80 . ny 230 o by o
=5 (129 * ey (1500 26
n=71%7

Systematic Sampling

Systematic sampling is not so much a sampling '"technique" as it
18 a refinement in the use of random numbers, It is discussed here
because it often produces the same effects as stratification or clus-
tering, and because it is almost an indispensable device when sampling

from very large frames,
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The procedure begins with the decision to sample some fraciion of
the population, say 1/12, The population is listed and & random num-
ber is selected between 1 and 12, say 8. For the sample, the eighth
unit, and every twelfth unit thereafter, are selected (i.e,, #8, #20,
#32, #44, etc,).

Systematic sampling has two advantages over simple random sampl-
ing., First, it is easier to draw the sample, since only one random

number is required, Second, it distributes the sample more evenly

over the population and therefore often provides more accurate results.

There are also two potential disadvantages. If the population
contains some periodic variation, and the sampling interval coincides
with that variation, the sample obtained may be badly biased. Second,

evaluation of sampling variance is contingent on knowing the behavior

- of the population with respect to the listing,

el g ki
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IV, _REFINEMENTS IN THE ESTIMATOR

The techniques previously discussed each dealt with some way of
partitioning the population preliminary to drawing the sample, The
estimator of the population mean, i, was the same in all cases: the
simple or weighted average of the sampled Xi.

There are many sampling situations where there exists some "auxil=
iary" variable which is known to correlate with the variable of in=-
terest, In such cases, sampling varjance can be reduced by instituting
a basic change in the estimatur so as to take advantage of the informa-
tion contained in the auxiliary variable, This is the case with ratio
and regression estimation, which are explained in this section, A
third technique, unequal probability sampling, uses the auxiliary
variable in determining selection probabilities as well as in the
estimator,

The format for this section is similar to that of Section III,
although the more complex designs inherently require more formula~
tions in their descriptions, A summary of the fundamental characteris-
tics of all the sampling techniques described in this document concludes

this section,

RATIO ESTIMATOR

In ratio estimation, two variables are observed on each sample
unit: Xi, the variate of interest, and wi, an auxiliary variable,
The auxiliary variable is such that its population mean, o is knownm,

The ratio estimate of the population mean of the X1 is given by:

The ratio estimator is biased, except in the situation where a
regression of X on W would be a straight line through the origin (i,e,,
the ratio xi/wi is approximately constant), The bias is negligible

in large samples,
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The sampling distribution is hard to pin down, since both X and
W vary from sample to sample, However, for large samples, the distri-
bution tends to normal and the bias in the approximate variance formula
becomes negligible,

In spite of these difficulties, ratio estimation can be a very
useful way to use extrancous information that is not directly of
interrst to the analyst, If this extra information is easily picked
up with the regular sample, the gain in precision is cheap, since only
the final computations are affected.

Knowledge of the exact relationship between X and W is not re-
quired, but in order for the precision of the ratio estimate to be

greater than a simple sample mean, it is necessary that the following
condition holds:

va
P w > 2CVx ? va B ow/u'w
CVx = Ux/ux

where pxw is the correlation coefficient between X and W, and CVx and
CVw are the coefficients of variation for X and W, respectively,

The variability of the auxiliary variate, W, is thus an important
factor; if its coefficient of variation is more than twice that of X,
the ratio estimate is always less precise, since P canmot exceed 1,
The preceding result is based on the approximate variance formula
and therefore is applicable to large samples; for vmall samples, the
condition would be more stringent, since the approximate formula is

usually an underestimate,

Example

A common use of the ratio estimator occurs when there has been
a complete census of the particular variable of interest in some pre-
vious time period, Suppose it is desired to estimate the current
average inventory of fuel at USAF air bases, and that for purposes of
the example these data are available or. a base-by-base basis only as of

the end of the previous vear, Let X1 be thr current inventory and wi
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the previous inventory at the 1th base in the sample, The population
average as of the end of the previous year wiil be indicated by Mo
Before applying the ratio estimator, it will be prudent to do-
termine its usefulness compared with a simple sample mean, It is
reasonable to assume that the ratio estimator will be unbiased (i.,e.,
xilwi is constant) since a force-wide adjustment in fuel inventories
would probably derive from some implicit general policy change that
has proportional effects on all bases, A quick check of this assump-
tion can be made by plotting X against W, noting whether 2 freehand

regression line passes through the origin, For example:

(If the regression line does not pass through the origin, and the sample
is not large, it would be preferable to consider the regression estima-
tor as described in later pages,) Attention is next directed to whether
the ratio estimator is more precise than the simple mean, using the cri-
terion P > %(cvw)/(cvx). In this case, CV,, and v, are probably the
same, since W and X are essentially the same variable, So the question
reduces to whether pxw is greater then one-half, which does not seem un-
reasonable unless base fuel inventories fluctuate widely over time, A
quick check is provided by observing whether the free-hand regression
line seems to "explain" more than one-half the variation in X,

If the foregoing analysis establishes the ratio estimator as ap=-
propriate, estimates of the mean and variance proceed according to
the formulas given in Appendix II, Supposing there are 150 air bases
in the population from which 20 are sampled, the calculations might
proceed according to the following worksheet (inventories are expressed

in thousand of barrels):
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Population Sample
ta Selection Sample Data
Item LA Xy
No. { (Frevious (Current . = - 2
Inventory) wi Iaventoyy) [ki- (X/W)(Wi)]
1 24 v 24 22 31.4
2 49 -- -- . --
3 56 -- -~ -- --
l[ ll9 vl’ 19 2 9,6
149 72 4 72 81 3.2
150 51 .- - - --
Totals 8250 940 1080 592.3
b, = 825G/150 = 55
W = 940/20 = 47
X = 1080/20 = 54

The ratio estimate of average fuel inventory is:

X, =<§)uw = G55 = 63
W

2

2 =
2 Q 1-f n | X\, - 1 «150 .
S§R oo LN Qu 30¢19) (0023 = 1.4

ksl

This example has not included any discussioca o how the data are to be
collected., This simplest case would be a simpl: random selection of
beses, but there is no reason why stratified cr cluster sampling should
not be used, if the characteristics of the population warrant it, 1In
the present example, it would prchably be useful to stratify by major

command, since base fuel consumpttion should be significantly more

ST TTCTRET TP TO YTPRNTCADY AL IR o L2
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homogeneous within c¢ommands than between commands, Remembering that
the stratified estimator of the population mean is just a weighted
average of stratum means, the stratified-ratio estimator can be written

where ii and ii are simple means of bases sampled from the ith com~

mand, The estimator of variance will be;

mi ii 2
X,, ~{=)w
) (tj (w) 11)
N 2 L {
M 1-f
i i m,=1
X M or

Thus, even a simple marriage of two sampling techniques complicates
estimation of variance, This problem is discussed in a general way

under the heading Complex Designs, beginning on page 57.

REGRESSION ESTIMATOR

The regression estimator is mor. appropriate than the ratio esti-
mator if the relation between X and W {s linear but does not go through

the origin, In this case, the estimate of the population mean is:
xr =X+ b(u“-w)

vhere b .s an estimate of the change in X when W 18 increased by 1.

The reasoning is that if the sample W is below average, one could ex-
pect the sample X to also be below averagc by an amount b(uw-i). The
value of b {s usually estimated from the sample using the lcast-squares
estimator:

n - -

LD

n - D
t(ul-w)“
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Contrary to the case in general regression analysis, it is not neces-
sary to assume exact linearity between X and W, nor chat the variance
of X for a given "i is constant (again, provided the sample size is
large). '

VAs vith ratio estimates, the regression estimate is gonerally
biased. But for large samples, the tatia of bias t« standard etroi
becomes small, making the bias negligible, Furthersore, there is no
bias if an exact linz2ar relationship exists between X and W, What
constitiu. < a "large" sample depends on how X and W are correlated,
and cannot be summarized by a rule of thumb,

For large samples, the regression estimate is more p;ec;se than
the simple sample mean provided that there is some correlation between
X and W; it is more precise than the ratio estimate unless the rela-
Thus,

there is nothing to lose in usiag ~ regression estimator except the

tion between X and W is a straight line through the origin,

extra time spent in calculation,

Example

An interesting application of the regressiun estimator is the use
of "eyeba!l" estimates for the auxiliary variables, For example, sup-
pose there is a proposal to replace some training equipment at an air
base, but it is first necessary to assess the salvage value of the old
equipment. The analyst, or a salvage expert, would quickly survey
each item of equipment, roughly estimating its approximate salvage value,
Then a random sample would be selected, and the exact salvage value
of each sampled item determined by close irspection, The regression
estimator is chen applied, labeling the individual rough estimates
wi, the average of all rough estimates B, and the more thorough esti~
mates Xi.

Supposing the population cantains 120 items of equipment and a

sample of 20 {e to be drawa, the following analysis might result:




N S I, %t s oo
i

e s e

=51~
Population Sample
Data Date
= = = = 2 yon(y o112
1:;: LI IR A X | @D | @0 | @000 607 TE-0-be - )
1 190 - -- - -- -- --
2 220 220 214 5 5 25 25 1.7
3 230 230 223 14 15 120 225 ~-9,0
4 110 _ . . . . . .
119 180 180 176 -33 -35 1155 1225 54.8
120 90 -- -- -- -- - -- --
Totals $23760 ¥ 4300 | 4180 0 0 10350 14083 605.8

b, = 23,7€9/120 = 198
W =4300/20 =215
= 209

X = 4180/20
T(X;-X) (W W)

s"(ui-w)z

b = = 10,350/14,083 = .73

The regression estimate of average salvage value is given by:

\\7

=X+ b(uv-ﬁ)

The varlance of

2 ¢ g 20
X, a(n=2)
20
1%

70(18) (605.8) =

= 209 + .73(198-215) =

this estimate is estimated "y

T [ x)-b(w -w)]

96.6

Although the rough estimates (Hi) are biased, one could expect

the bias to be constant from item to item, except for random variation,

If this random variation is not too great, the regression estimator

will be unbiased for small samples,

For this reason, it is important
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that the same person make all the rough estimates.* It is also impor-
tant that this person not know what items fall into the sample until
the rough estimates have been mede, Provided the latter condition
holds, the consistency of rougr estimates can be checked by plotting
the samplz X, versus the W,. ‘

UNEQUAL PKOBABILITY SAMPLING

This technique utilizes an auxiliatyivariable in determining selec-
tion probabilities as well as in a special estimator, As previously
mentioned, the idea is to find a variable which is closely correlated
with the particular varisble of interest, Probabilities of selection
are set proportional to the former, the sample is collected, and the
following estimator is used:

n
3z _32_1 .
p oN P ‘

where X1 is the variable of inteizst, wi is the auxiliary variable,
W A

and Fi = iéi is the probability of selecting Xi.

Unequal probability sampling is a great aid in increasing preci-
sion, when an auxiliary variable with the proper characteristics is
aQailable. The technique has received much attention in the past ten
years or so despite problems in application, For example, in replace-
ment sampling the calculation of variance is straightforward, When
sampling with nonreplacement, however, there are problems of control~
{ and estimating variance that are beyond the scope of this
paper, Furthermore, the exact form of the sampling distribution is not
known, Suffice it to say that gains are to be made when X and W are
closely correlated, but that the complete theory of this kind of sampl-

ing is still being developed in current research literature (see

An alternative way to arrive at rough estimates is for the ana-
iyst to develop an estimating relationship on the basis of historical
information, using such parameters as original cost, age, and usage rate,
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bibliography). A simplified example will be given to illustrate the
power of the technique,

Example I

Suppose it is decided to estimate the total persomnel stationed
on five military installations in some remote region of Northern
Canada, using a sample of three, It is expected that the average
number of personnel presently stationed at each>insta11ation {vari-
able X) is closely correlated with the average number of personnel of
the previous year (variable W), the data for which areknown, The pro-
cedure is to choose three random numbers between 1 and g Wi, making
the selection of sample points on the basis of a cumulative list of

variable W. Hence:

Cumulative Random
Base wi wi Number %1
i 22 22 14 25
2 36 58 37
3 21 ~79 62 29
4 34 113 97 34
5 11 124 12
Totul | 124 137

The usual estimate for simple random sampling would be:

u'i-u;:‘x N 4 x, +X,) =2(25 + 29 + 34) = 152
ntL vl 3 4 3

The unequal probebility estimate is:

n
IR A W s W D
nlP. n\p P P
P { 1 F3 Py
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1/:1_25(12 )+ 29(12%) + 30(12 ]

W

where - o{ = zwi is the probability with which the sample point entered

the sample 1

There‘are a total of ten possible samples of size three that
could be drawn from this population, The following table compares

the simple random sample estimate with the unequal probability esti-

mate for each case;

Bases sampled 123 124 125 134 135 145 234 235 245 345

Simple random 152 160 123 147 110 118 167 13¢ 138 125
Unequal prob- :

ability 147 131 135 145 149 133 141 145 129 143

Except for two cases, the unequal probability estimate is closer to
the population value of 137, The standard error for the unequal prob-
ability estimaves is 7.3, whereas that for simple random sampling is
17.8, 1If W and X were more clesely correlated, one would expect even

better results,

Example II

Sampling with unequal probabilities is often used to yield a
"self-weighting'" sample in cluster sampling or subsampling when the
clusters are of unequal size, This is fhe context in which Hansen
and Hurwitz first introduced the technique,

When sampling n clusters from a total population of N clusters,
where the cluster size, Mi’ is the same for each cluster, the popula-
tion mean is estimated by averaging the cluster means:

n'(

xcl

:.'Slr-

However, if cluster size varies from clust . cluster, a weighted

estimator would be more precise:
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~where M is the average cluster size, This expression can be manipu~

lated as follows:

. where P is the probability of selecting the it cluster, So far,

i
all of the P,'s have been che same, Suppose, however, that each Py

i .
.. is made proportional to its corresponding M The probability of

1.

above formula gives:

n ) 03 a
T = Hin_(ii.- .’x(_z.)..l.—
xcl Z N nM)\ﬁ) xi ~\n n ZX{

which 1s the same as the simple unweighted estimator, Thus, the
sample is said to te self-weighting: X is the‘apprOPriate estimator
for X even though cluster sizes vary,

The technique for selecting the clusters with unequal probabili-
ties is the same as outlined before, except that the basis for selec-

tion 1is now a cumulative list of cluster sizes, rather than the

auxiliary varxiable, The worksheet for such a sample might have the

following format:

fs
!

selecting each cluster is then n(M, /MN). Substituting this into the »
i
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Cunulative} Random

Cluster | M M Number X
i i : 1

1 14 14 -- ~~

2 22 36 25 105

3 7 " 43 .- --
% 18 61 . 47 .92
-5 23 84 82 112
6 12 96 .- ; -

The estimated population mean is then:

xcl =

(WY

COMPARISON OF DESIGNS

(105 + 92 + 112) = 103,

The task of compiling some sort of quantitative comparison of the

foregoing sample designs is not realistic, since so much depends on

the characteristics of the particular population under study (see Des

Raj, Zarkovich), It may be helpful to briefly categorize the attri-

butes of the various designs and estimation procedures as they relate

to accuracy and cost:

Simpie random sample

Stratified sampling

Cluster sampling

Sub-sompling

Systematic sampling

Simplest design,

Nearly always more precise than
simple random ssmple.

Sirpler frame and reduced travel
costs,

Usuully less precise than simple
randum sample.

Flexibility in bslancing cost-precision
trade-cff, especially when convenient
cluster siza {s toc small for atrati-
fication and too large for cluster

sampling.
Ease in selecting ssmple points.

Mey give better representation, de-
pending on frame.

May be biased, derending on frame.

e
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Ratio estimator 0 Usually more precision than simple estimator.

o "Significant” bias in small samples.

Regression estimator 0 More precision than simple estimstor.

o "significant" bias in small samples.

Unequal probabilities o Usually more precision tﬁan equal probabilities,

o

Difficult to assess sampling error.

Usually, the circumstances of the analysis readily suggest the
most appropriate design or combination of designs., For example, USAF-
wide sampling immediately leads to the possibility of stratification
by major command or some geographical classification; also, the
presence of a convenient auxiliary variable makes ratio or regression
estimators attractive, \

On the other hand, there are often factors to comsider that do
not readily fit into the framework of cost-precision tradeoffs, Ome
such factor is the need to minimize the imposition of field work on ’
USAF perso. :el who have other responsibilities (e.g., maintenance
chiefs or accounting clerks); the essence of sample work is loyal
adherence to good procedure, and it is often more fuss than the busy
serviceman can handle, More often than not, the situation will be
such that there is no completeiy objective approach to designing the
sample, :

In any case, the gencral procedure is the same as with all prob-
lem solving: specify the objectives, survey fuoctors related to the
problem, identify altermative solutions, quantify the problems as B
much as possible to redvce subjective uncertainty, and make such in-

tuitive decisions as are recessary.
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V. SOME REAL LIFE COMPLEXITIES

This Section gives recognition to some topics which often arise
in the application of sampling techniques and whick seem particularly
relevant to the forecasting nature of cost anaiysis. Complex sample
design is discussed and an example of a saupliug study recently
conducted by the Cost Analysis Division, Headquarters Strategic Air
Command, is described. The Secticn concludes with a discussion of the
application of sampled data in regression analysis.

COMPLEX DESIGNS

Theory surrounding the subject of complex sample designs is gen-
erally less developed than for the basic designs, and documentation of
research ie¢ highly frugmented among various journal publications and a
few books.

Two kinds of complexity are worth noting: (1) compounding of de-
sign and (2) compounding of purpose.

Compounding Designs

Sometimes the characteristics of the population are such that it
is convenient to compound the various basic designs. Drawirg on the
example in the previous section where the calvage value of some train-
ing equipment was estimated, suppose a USAF-wide estimate was desired.
The most simple scheme might be to select a simple random sample of 30
Lises, then apply the regression escimator within sach. A wore precise
estimate might be achieved by designing a "complex" sesmple slong the
following lines: (1) stratify bases on a two-way scheme using mejor
command and geography as clessifications, vesulting in about 15 atrata;
(2) select two bases for wach strata with unequal probadilities, using
numbar-of-airmen as the auxilisry veriasble; (3) cud-sempie saveral {teme
of equipnent from esch base; (4) estimate the totsl salvege value for
each base vith a regresaion estimstor, using the sslvage expert's "eye-
ball" estimates as the suxilisry verisble. The total USAF estimete

e
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would be given by:

15/Y, Y
1 _1_1)
bd 2"'(1’ +3

i 3

vhere Y, and Y, are the two estimated base totals from eath stratum,

1 b A
and Pi and Pj are their respective probabilities of selection. It
would be extremely difficult to estimate what the sampling variance

from such a design would be. The rationale for the procedure wes gen-

erated by ressoning subjectively at each stage of the design that some
particuler technique would cont_.ibute most to precision in the final
estimete. Although an objective estimate of the sampling error is not i
imown, an upper limit may be set by computing the error that would re-
sult from a less complex design.

There are simplified methods for computing the sampling error once
the sample has been drawn. One way is to use the technique called rep-
lication. Instead of drawing the entire sample in one operation, only 1
a fraction of the sample points are drawn, and the procedure is repeated

-until the total semple is drawn. The vnriance of the sampling distribu-
tion is then computed from the several estimstes. The example above,
fur example, might be completed in three sepzraie samples, the differ-
ence being that for each sample, only one-third as many units of train-

ing equipment are selected from each base. The overezll ssmple size is :
still about the same. Sampling varisnce is estimated as foilows:

3
2 . s 2
2 - BX D
vhery X (1 = 1, 2, 3) is the estimste {rom the 1“‘ ssmple and X is the
average of the three sampioa. The use of replication in sample design

is trertud extensively in Deming. Discussion of othar methods is found
in Zarkovich,

Multi-Pucposs Surveys F 5
Survey design hos been described ss & process of e oluating altex-

netive methode in terms of relative cost and precisio-. This is rea-

sonably straightforwerc wvher only one charscteristic ' under messurerant.
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It often happens that the sampler takes advantage of the situation by
observing several characteristica instead of one. For example, a sur-
vey oi airmen mav involve observations on age, training, motivationm,
and rank, Determinarzion nf optimum design is now considerably less ub-
jective, The proper sample size for one characteristic may provide no
useful information on & second characteristic, and give superfluous
precision on a third, One cheracteristic may be perfectly suiled for
a stratified design while a companicn characteristic is more adaptable
to something else. Objectivity requires the assessment of the relative
utility of the differént informetion sought. These problems are dis-
cussed in Kish and in Yates.

- A related complexity is found in the so-called "analytic" surveys.
The objective of an ana.ytic sﬁtvey generally is to make comparisons
between sub-populations, where the sub-populations camnot be framed
(1.é,, sampling units can be iden-ified by sub-population only after
the sample is taken). Referring to the sample on page 42, (sub-samp-
ling from Civil Engincering Squadron work-order ledgers), the purpose
might well have been to compare the resources devoted to several pro-
grem cAategories. Each squadron-day selected in the ssmple would con-
aist of work-orcers in one or more categories, leading to estimates of
totsl activity devoted to esch program. So, in effect, several samples
are being conducted, cne for each sub-population. The feature that
i:akes this different from othar procédures heretofore discussed is that
the sample sixe from each sub-population 10 also & variable. Further-
more, the sample sizecs are nagatively correlated sud cannot be treated
85 independent variables. Procedures for handling this situaction are
discussed in Yates and in Hartloy (the latter reference is probably the
more straightforward). The genaresl problem of analytical statistics
from tomplex sampies is summarized by Kish (pages 582-587), including
a brief Jdescription of seven approaches to cowputing or approximating
stendard ervors.

Example: SAC Aircraft Maintensnce

The exeanple that follows is & rather deteailed description of @
research progras recently undertaken in SAC, The project is of
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direct interest here because (1) it illustrates a vather complex
sample Jdesign problem, and (2) it provides a case study of data col-
lection at a level of aggregation useful to a cost ana.yst,

Tie Cost Division at SAC Headquarters used probability sampling
to collect some maintenance man-hour and material cost data on the
KC-135, the B-52 (G and H series), and the UH~lF, Sampling was ne~
cessitated by the desire to obtain data from the original source
documents, a procedure invoiving considerable effort; probability selec-
tion was chosen because of a preference for unbiased estimates and be-
cause there was no apparent blsii for assuming @ more precise judgment
ssmple. ' Since the . -lection procedures are similar for all three air-
craft, emphisis will be on the Kc-i35-samp1e;

Motivation. The pxcject had three primcry objectives. The firat
ané mest important was to evaluate the general behavior of maintenance
requirements as an aircraft ages. Current aircraft costing models
often assume (at least implicitly) that maintenance costs slope down-
ward during the initial months following deployment into the ferce, then
level off after "shake-down" is accomplishzd. SAC cost araelysts hypoth-
esize that, instead of leveling off indefinitely, costs temd to rise
again as the equipment gets older, There is eonsidérable interest i{n re-
soiving the question since (1) there is some uncertainty as to when the
strategic aircraft in the force will be replaced, &nd (2) the proposed
Resources Management System has suggested changes in military mansgement
thet could triple SAC's responsibility in programming and budgeting for
maintenance resources, |

The second objective of the ssmple was to explore the relationship,
if eny, between maintenance man-hours and othar maintenance costs. It
is common practice to pro-vate base arintenance costs 2mong the various
sircraft systems on the basis of man-hours. Since uoai syatems require
relativaly grester parts requivements then others, the valiiity of such
practice is questionable.

The thixd objective vas to inveatigate errors in recording and re-
porting -ntptenanco meterial consumption. Thers is evidence that parts

dats ere sometives treated in cavalier {ashion from crew level on up the

L Wi




line to final reporting, If sources of error can be identified and sub-
sequently reduced, the maintenance data will have greater utility for

financial planning,

The Population, The population to be sampled consisted of the doc~
uments on vhich maintenance personnel record their work (AFTO 210, 211
and 212), This includes parts and labor expended oy the base mainte-
nance shops (field maintenance, CAS&E maintenance, etc.); bench stock
items are omitted, but this is a very insignificant portion of overall
maintenance. These source documents are eecily identified by aircraft
tail-number. ' ‘

Design. Sample design was addressad primaerily to the first objec-
_tive of the study, and the other two were more or less regarded as by-
products of the first. The general iiea was to obtain estimates of
maintensnce labor and material costs for each of several age groups,
then observe whether *he est!mates conform to the hypothesized curve
(dafa on engines wenld be recorded‘sepurately since engines move around
'ftom aircraft to aircraft). Initizl delivery dates of the KC-135s rauge
from 1958 to 1965, providing eight yearly age groups.

From the standpoint of precision, the sanpie deaién'shouldblssure
good representation over a number of veriables besides age that affect
meintensnce. For sxample, some variatinn can probably be associated
with base-to-base differencea in climate and meintenance management .
Differences in flying-hout progrums (e.g., ready ll‘tt vs, regulat ata-

. tus) are iikely to be even .ecre significamt. '

“Wi*h rcgexrd to cost and selection control, the best design would
clustar the maintapance dozvmeat. by sircraft tail numbter since this
is the msnner in which they are fiied a: Lase ievw -, any other arrange-
ment would involve the field workeri: ia sampia selection or require
mucit additional time in constructing & sampling fr~mse. By designatiang
the sampling unic as all meintenance pecformed on a given tircraft wiih-
in a given time interval, Jample selection can be accomplished entirelv
at SAC Neadquarters. ,

Sinc. litcle was known about the magnitude cf verisnce that cuuld

be expected, the design approach was to deeide how much riwe could
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be expected from the base personnel who would be doing the field work,
then select as many aircraft as possible. The Cost Analysis Division
at SAC Headquarters has at its disposal the part-time services of omne
man at every SAC base, and it was desired that each man be equally in-

volved in the study. After examining the work involved in searching

for the documents, copying labor and parts data, and searching cata-
logues for parts costs, it was decided to sample one>Kc-13S on each
base over a two-month period (June and July, 1967). Sin-e the number
of aircraft varies from base to base, this plan necessitated sampling
with unequal probabilities. The design was further complicated by the
fact that the proportions of aircraft in the different age groups also
vary from base to base.

The final choice was a two-stage design, with the first stage fol-
lowing a procedure first introduced by Goodman and Kish,* and the sec-
ond stage using simple random selection.

For the first stage, primaries were designated as comprising those
aircraft on a given base that belong to the same age group; thus with

31 bases and 8 age groups, there was a maximum of 248 (31 x 8 = 248)

clusters. Each cluster was assigned a probability of selection that
is roughly proportional to the number of aircraft therein (exact pro-
portionality was precluded since the total aircraft per hase varied).
The next step was to construct 21 "acceptable" samples such that each
sample contained one primary from each base and at least one primary
from sach age group; the samples were simultaneously assigned probabil-
ities such that if one adds up the protabilities of all samples in
which any particular primary appears, the sum will equal the probability
originally ussigned that primary. Finally, one of the samples was ran-
domly chosen with probability as assigned.

In the second stage, one aircraft was chosen at random from each

selected primury.

The overall effect of both stages was to selact a sample that {s

stratified according to base and "controlled" by age group, while giving

*
Gooénlnnnnd Kish, 'Controlled Selection--a Technique in Probabil-
ity Sampling,” Journal of the Amsrican Statistical Association, Vol. 45,
PP. 350-372. Also see Kish, Survey Sampling, 1965, pp. 488-496.
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all aircraft approximately equal selection probabilities (ihe probabil-
ities varied from about ,03 to ,06), The price of having such a con-
trolled sample in an unbalanced population is that there is no unbiased
estimavor of sampling variance, However, a weighted estimator for
variance is available that leads to overestimation, whichk is less objec~
tionable than underestimation, Since any estimate of variance is itself
subject to sampling error, the bias may not he too important, In any
case, the bias would only be associated with the sample's first stage,
from which sampling error should be small compared to that from the
second stage,

In analyzing the data, separate estimates were made for each age
group, and the resulting group means were subjected to regression ana~
lysis using age in years as the independent variable, The use of group
means instead of the raw data was necessary in order to (1) give each
age group equal weight in the regression (sample aircraft were unevenly
allocated among age groups) and (2) to accommodate the stratification
and probability aspects of the sampling--that is, to help dampen other
scurces of variability and reveal any age-related behavior, Since the
age~-group means were derived from samples of various sizes, the usual
assumption of equal variance along the regression line was clearly
violated; the implication is loss in efficiency in obtaining the least-
squares fit.

Some initial results are shown below:

Average Labor Hrs Average Material Costs
(000's) (000's)
1.5 60}
* o
[} [ ]
1.0.] ©® o ' 40 .
¢ e ° . o
.0- 201 [ ] .
1 e
Age —» Age -
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The labor hours data conformed to the general hypothesis that mainte-
nance increases with aircraft age and, when fitted in least-squares
fashion to a parabolic curve, survived an F-test at ,95 confidence
(the F-test was a useful bench-mark despite violation of some underly-
ing assumptions); analysis of mater.al costs did not fare well at this
level of aggregation, Subsequent exarination entailed a closer look
at individual sample aircraft and a distribution of labor hours and
material according to maintenance shops, The results were presented
at the March 1968 OSD Cost Research Svmp>sium,”

The good performance of the labor hcurs regression is curiously
inconsistent with the very large variability of the raw data within
age-groups, At least part of this contradiction can be explained by
the efficiency of the sample design; the design should have provided
broader representation than would be expected from, say, simple randum
sampling, which is the usual data collection technique for regression
analysis, This illustrates one of the¢ several considerations surround-
ing data collection that are discussed in the next section on estimat-

ing relationships,

ESTIMATING RELATIONSHIPS AND SAMPLE DESIGN

Very little attention in statistical literature is addressed explic-
itly to the use of sampled data in regressior analysis, a technique often
used to derive estimating relationships for military cost analysis. There
exists, in estimating relationship studies, the implied assumption that the
data base constitutes a sample of some larger population (unless the regres-
sion is simply intended to describe a particular set of points), and the
main concern is whether that sample is representative, Moreover, it tis
simple random sampling that is implied; the more complicated designs (strat-
{fication, unequal probabilities, etc.) are ignored because they are not
generally used to build data bases, The intent is now to suggest how these
designs might be so used in connection with least squares simple linear re-
gression., The presentation can be made clearcr by cstablishing a conceptual
scheme within which data collection can be described. Accordingly, the data
collection process will be divided iato three phases:

*
Jean Mullery, Aircraft Maintenance Cost Research, XC-133, Director-
ate of Budget, Headquarters Strategic Air Command,
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(1) Partitioning the population., The population is divided
into sub~-populations that may be treated either as

strata or clusters,

(2) Data selection, This phase includes any methods of
determining what data will fall into the sample, The
data from any given sub-population wiil comprise a sub=
sample, In clustering, each sub-sample would thus in-

~ clude the 2ntire sub-population, whereas only a portion
would be included with stratification,

(3) Dats reduction, The data in each subw~sarple are reduced
to a single mean value, using some egtimator (simple
mean, ratio estimator, etc,): the data base now consists
of one value per stratum, or ome value per cluster,

Regression can be performed on tha data base either after the sec-
ond phase (eliminating reduction) or after the third phase. If regres-
sion is performed after the second phase, there are two alternatives
available: (1) a single regression on all data, or (2) weizhted aver-
ages of regression coefficients calculated separately {rom each suyb-sample.
The following flov chart characterizes the total process of data col-
lection and subsequent data analysis:

%“ Data collection —J] Data analysis —«‘
Phase 1 Phase 2 Phase 3 |
Partition Selection Reduction Reg.ession on all data

-

Regression within
subsamples

Weighted uverage
of regression
cosfficients

There appear to be two basic motives f~r using reduced data vather
than the original Jample: (1) to adjust for unequal sample siszes in
the various sub-populations, and (2) to utilize the speciai u:incou*
for incressed accuracy.

*

The ratio and regression estimators will be referced to collec-
tively as the '"'special" estimators so as to avoid confusion with the
use of regressfon to develop forecasting relacionships.
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If sample sizes within sub-populatioas are unequal, and it {s de-

sired that all sub-populations be of equal importance in determining

the regression line, a sort of "weignted" regression is produced by us-
ing reduced data; =2ach sub-population i{e represented by the same number
of data points, namely, one. However, if it 18 preferable to weight on

the basis of individual observations rather than sub-populations, the
data should not be reduced,
1f the opportunity should present itself, it would seem prudent

to use one of the special estimators of the unequal probability estima- | { !
tor t) reduce the data within each sub-population. These estimators |
woulcd provide mcre accurate estimates of the true sub-population moans,
Py o hence lead to more accurate regression estimates. However, this

accrracy 15 gained at the cost of using some auxiliary variable, and 4

it might be prefe. aole to use this variable as a second independent

VB v A

varisble in the regression equation. The objective side of deciding
which way the exira variable should be used involves the usual cost-
pracision trade-off (which use will provide greater precision for a
glven cost?), On the subjective side, the decision might be governed
by whcther the extra variable can appropriately be specified {n the
estimating relationship; a variable might be closely correlated with
the independent variable but still be ruled out of the regression model
because there is no logical causal relationship, or because its future
behavior is as doubtful as the dependent variable. In either of these
cases, the extra variable could be suitably used as an auxiliary vari-
ghle in a special estimator or unequal probability estimator. When
using the special estimators, each sample point wili contain three kinds
of cvbserv tions: one sach for the dependent variable, the i{ndependent
variadle, and the auxiliary variadble. In unequal probability sampling,
only the independent and .spendent variable will be observed since val-
ues for the auxiliary variable are known prior to sampls selection.

The sampling techniques that have been discussed in this paper
can be categorized in%o the thces phares as folloun:'

*Notc that {n using this menner of classification, the techniques .
of stratifici.ion and clustering include only the act of population ;
partitiouing; the functions of sample point selection and estimation ‘
of the population mean fall into the tszond and third phases.




Partitioning [Stnti fication
Clustering

Systematic random sampling
Sampling with unequal probabilities

Reduction Simple mean
Special eatimators (ratio and regression)

Selection [Simple randon sampling

Sampling with unequal protabilities falls into two categories because
selection according to this procedure requires the subsequent use of
the unequal probabilicy estimator. Sub-sampling was omitted from the
list since it is really a hybrid of the other desigmns.

Below is a schematic diagram of the full set of feasible designs
that can be put together from these techniques. .
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The selection and reduction techniques are numbered for simplicity.

(1) Simple random sampling.

(2) Systematic random sampling.
(3) Unequal probabilities.

(4) Simple mean.

(5) Special estimstors.

With no nartitioning, there is no alternative to simple random sampling
and regre. on the non-reduced data. Partitioning, on the other hand,
allows 18 different basic designs, i.e., there are 18 paths by which
the final regression analysis can be reached. Any other design would

3
;r;
1
i

essentially be an extension of those above. For example, a schematic
for collection procedures based on sub-sampling indicates that there

is simply a replication of the selection phasec:

Partition Cluysters

T TR T e R e e, et pob s

Selection (1) f
(clusters)
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Selection (I1)
(units within clusters)
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The foregoing has provided a rather cursory treatment of the prep-
aration of estimating relationships from sampled data. If data are
gathered by simple random sampling, subsequent regression analysis is
straightforvard. More complex schemes lead to difficulties tn inter-
preting regression results. Yor example, unequal probability saspling
will usually lead to underestimated prédiction {ntervals. Strattfica-
tion vill sometimes produce biased rejieasion ccefficients. These prob-
lems fall into the general area of analytic surveys and are currently
being addressed in a peripheral way by such men as Rartley, Kish, and

Konti jn.
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VI, SURVEY PROCEDURE

The preceding pages have provided a summary of thcse aspects of
probability nanplins that relate to the design of sample selection pro-
cedures. Some peripheral topics, such as questionnaire design and train-
ing of field workers, have been ignored as outside the scope of the
paper but can be found in such texts as Stephan and McCarthy; quota
sampling, a widely used non-probability method, is discussed also in
Stephan and McCarthy, and In Kish.

The following generalized chronology of a sample survey is intended
to 'wrap things up." These steps amount to formalization of the typi-
cal decisionmaking proce=as, but conscious observance of them i3 essen-
t{al to the mechanics of a« valid survey, therzby forcing a rational

approach to the analysis.

FORMULATE THE FROBLEM

The first and most important step i{s to identify the objectives
in a rather formalized way so that any subsequent planning alternacive
can be clearly evaluated with respect tc i{ts contribution to those ob-
jectives. The analyat is not merely seeking information; he i3 seeking
information that will eventually become part of the basis for s.me spe-
cific decision or class of decisionr. It would be well to itemize the
objectives and, as far as possible, to model the eventual decision
process. Where the survey is part of a p~oup effort, it is squally im-
portant :o clarify each parson's rols and to establish & consensus of
group objectives. Having defined the problem, the analyst should refer
back to it often to svoid becoming over-engrosced on the details of
planning and adwuinistrition.

DEFINE THE POPULATION

The objectives of ths avestigation determine the population from
which information is d¢: (red--the target population. The target popu-
lation L3 often different from that actually sampled. Although careful
plsaning will tend to elimipate this difference, there are sowe situations




where the discrepancy simply cannot be physically or economically re-
solved. The obvious example is the use of historical data in planning

for the future. Another example 18 the exclusion of portions of the

population that are too inconvenient to sample. Upper limits can some- 2

times be computed for the bias introduced, but usually some judgment

must be exercised to evaluate the extent to which the sampled population

mirrors the target population. This judgment should be documented in ¥

the form of a list of assumptions, disclaimers, and uses for which the

survey results are appropriate.

SPECIFY PRECISION

The sypecification of desired precision is an important first step
in the design of a survey, although this specificatioh may be simply
to obtain the greatest precision for a given badget. In any case, it i
would seem »rudent to examine the survey objectives with respect to the
accuracy required in the estimates. If the estimates are to be the
bases for comparisons, it makes little sense for them to have greater
precision than the standards against which they are compared. Some stud-
ies are so heavily burdened with non-statistical uncertainty (e.g.,
peorly documented data or requirements uncertainty) that high precision
may be superfluous.

In complex efforts, such as large models that require partitioning
into several sub-models, it would be well for the analysts concerned to
discuss together the precision of the various coriponents with respect
to (1) the ultimate use of the model, (2) the interrelationship of es-
timates within the model, (3) the max{mum attainable precision for the
various estimates, and (4) budget and time ronstraints. The logical
time for such discussion would be after the model has been designed and

preliminary investigation of the various subject areas hus besn accomplished.

CONSTRUCT A FRAME
To construct a sampling frame s to divide the population into
sampling units (ciuster, strata, and/or simple population units}. such

that every element of the population belongs to one and only onc untt.




The frame is an ordering scheme, or list, that facilitates consistent

and unbiased selection of sampling units from the population. 1f more
than one sanple design is under consideration, the ‘rame must be flex-
ible so as to suit any one of them (e.g., the population might be divided
into strata and the population units grouped into clusters).

SELECT A SAMPLING PLAN

After a preliminary investigation, the analyst should be able to
identify characteristics of the population that can be used to design
a sampling procedure that is more effi:ient (less variance for a given
sample size) than a simple random sample. These characteristice should
suggest several alternatives. an available auxiliary variable may lend

3 itself either to regression estimation or to sampling with unequal prob-

abilities. The alternatives can usually be narrowed down to one or two
by making a prior{ assumptions about the different sampling variances
and costs. It may be neceasary to make the final choice on the basis

of a pre-test that would try out the various plans on a small scale.

CONDUCT FIELD WORK

There is little to be said here, provided the plannuing has been

carefully done. However, if the analyst is not doing his owr field

work, there should be provisions made to check the quality of the data
as soon as it starts coming in. In any case, the analyst should do his
] own sample point selection; the field worker should be concerned omly
with collection. There should also be a procedure drawn up to handle
non-response, the failure of some selected sample point to be available

for sampling.

SUMMARY , ANALYSIS, AND DOCUMENTATION

The Jata shouid be examined for erroneous observations, and the

estimates calculated., The sampling error should also be calculated,
anc the sampling procedure summarized,
As an aid to future gsurveys, {t is useful to make a detailed sum-

macy of the sampling procedure, including costa that were encountered,
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peculiar sampling problems, and characteristics of the population, such

as within-strata variances, These might help later surveys by giving

more confidence to a nriori assumptions and eliminating the need for

pre-tests.




Appendix

ESTIMATORS

This appendix gathers together the estimators of means and vari-
ances along with formulas fer determining sample allocation. The vari-
ous designs are treated in the same order as in Sections III and IV,

STRATIFIED SAMPLING

The population mean is estimated by ist’ the weighted average of
the stratum means:
N

= ) =
Xst ;Kiﬁ X1 number of strata

sub-population size of ith stratum

<]
u

sample mean from 1th gtratum

X |

= average sub-population size

The estimate for sampling variance of i;t is also a "weighted" average:

2
2 M2 2 th
S~ = S(—~) 8-~ , S = sampling variance from i~ stratum
X ANH/ x X
st i i mi
—_ 2
) (xi 'xi) my
i\m -1) i
i
th
m, = sauple size from i~ atratum.

The total sample may be divided among strata according to the pro-
portional allocatien scheme:

ui (o o Hi

1f estimates are available for the varisnces vwithin each stratum (ci)
€23 the costs of sempling from esch stratum (cl). optimal sllocation
nay be used:

A i
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CLUSTER SAMPLING

Given that n primaries are selected, each containing M, secondaries,

i

the estimator of the population mean of secondaries is given by:
nM n_
e DL Y
Xe1 oM n

nMi
) xij = gum of all secondaries sampled
ii = mean of the ith cluster.

The variance of this estimate is genrerated soleiy by differences be-

tween clusters., The estimate of sampling variance is

S2
£ ~-20-6;£=2
Xe1 "

where Si is the estimrtor for variunce between the cluster means, Ei:

- = 2
82 - (xi'xcl)
B n-1

The general criterion for choosing cluster size is to minimize
the product of sampling variance times total cost (both of which vary,

depending on cluster size:

s-

pinimize (V)(C) = ;g(n'C) = S .¢ (ignoring fpe)

2
B
Sg = variance among cluster means

¢ = cost of observing one cluster

Unequal Cluster Sizes

In some situetions the number of secondaries p~r cluster, Ht' may

itseif be variable. This complicates the theoiy and the estimetors and
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introduces bias of the type associated with ratio estimators. The es-

timator for the population mean is:

n M1
TTLX
R | |
cl n
Twu
i

Sampling variance is estimated by

=

1-f n n -
s; =73 mi + xilmi - 2K, DX,
¢l nM) (n-1)

n
£ N
M
1 th
x1 - inj = total of i~ cluster

M = average cluster size

Since X is based on the ratio of two variables (x1 and Mi)’ these es-
timators have a bias that increases as the variability of the M1 in-
creases. As a rule of thumb, the bias may be overlooked when the cc-
efficient of variation for H1 {s less than .2; i.e.,

Otherwise, the sample size should be large (see Kish, page 276).

SUB-SAMPLING

The population mean is estimeted as the average of primary means:

X =

n.
[ 1] E xi

- 3 [

The saupling variance has two components, ote representing variation
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w]7=

between primaries and one reprecenting variation among secondaries
vithin primaries. The estimator is:

s2 g2

2 B W
sx" =a (A-f) + 5 (-£)f,

2 1 - =2
sB n-1 B(xi-x)

- \2

2 1
s 1%

nm
W n(m-1) ZE(x

xij is the jth sample unit in the 1th cluster,

The optimal number of secondaries to select from each primary is é
given by: K

Z|‘uk,

¢, = cost of sampling one primary
("fixed" cost)

¢, = cost of sampiing each secondary
{"vaciable' cost)

If the value computed is equal to 1 or less, then m = 1; {f the value
is greater than M, one-stage (cluster) sempiing should be used,

The determination of n, the number of primsries selected, depends
on vhether total cost or precision i{s to be held constent. In tha lat-
ter case, n is found by solving the sampling variance formuls. If totel
sost, C, is fixed, the following formuls {s solved for n:

Cs ucl + nmc

2

P e e . . PO
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The usze of the foregoing methods for determining n and m requires
preliminary estimates of s oo Sg, and Si. For this purpose, these
estimates do not require great precision because the sampling variance
is not highly sensitive to the choice of m. It is usually easier to
estimate ratios c1/c2 and Silsi, in which case tables are svailable to

aid the evaluation of m (see Cochran, page 282).

Unequal Cluster Sizes

As in simple cluster sampling, sub-sampling becomes more diffi-
cult if cluster size, Mi’ is variable. An estimator of the population
mean i{s:

n—
7 - ZMiX
88

i

n
™.
An estimator of the sampling variance is

-f \ 2"-‘2 n zm‘ix -’1E2
2 -(EE ]l Hriden

ss

M = average cluater size,

The bias in these estimators again relates to the variability of "1’
and can be made negligible by making n lsrge (see Cochram, page 300).

SYSTEMATIC SAMPLING
The estimator of X in systematic sampling is the ssme as for simple
random sampling:

o
> 4
x-——i-
n




There is no single reliable method »f estimating the sampling vari-

ance because so much depends on the way the population is listed, Var-
iance formulas for specific kinds of populations can be found in sampling

taxts,

RATIO ESTIMATOR

The ratio estimate of the population'mean of the X is given by:

_— %
W (5

For large sample sizes, the approximate sampling variance is estimated

by: n 2
< X ]
-2y
é_;l;[L[i I i
R n l n-1

REGRESSION ESTIMATOR

The regression estimate of the population mean of the X variable

is given by:
xr =X + b(uw - W
The least-squares estimator for b is:

n
(X, ~X) (W, -W)
E(wi-mz

b =

The sampling variance for large samples is estimated by:

2 | _1-f B o = 12
St * w2y T LORbO, -]
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UNEGUAL PROBABILITY SAMPLING
The estimate of the populstion mean is provided by:

n

X
X "WRL?P

i

where P1 is the probability of selecting Xi.

ment sampling {3 estimated by:

The variance for replace-

The variance for non-replacement sampling can be estimated by:

"
2 £
s =Y (pir - P“Xx_i ) _’fl)
Xnpr o\ 1 P, ¥
1> i
where Pi and Pj are the respective probabilities with which Y1 and Yj

vere included in the sample, and P1j is the joiut probability with

which beth Yi and Yj were included. This estimator is unbiased if Pij
is non-zero for all i and j.

Non-replacement sampling offers the same kind of efficiency ad-
vantages for unequal probtability sampling as in sampling with equal
probabilities, and is therefore widely used. However, while the bene-
fitas with equal probabilities are reflected in the finite population
correction factor (page 23), the corresponding theory for unequal prob-
abilities finds no such simple expression. A "unified,” or all-
inclusive theory has not been forthcoming; current litevature is gener-
ally focused on various azpects of three related problems: (1) the
control of the P1 through selection procedurea, (2) the control of the
P1j through selection procedures, and (3) the conditions under which
estimates behave sccording to the central limit theorem (i.e., tend to
be normelly distributed).
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