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SUMMARY 

A new two parameter family of life length distributions 

is presented which is derived from a model for fatigue. This 

derivation follows from considerations of renewal theory for 

the number of cycles needed to force & fatigue crack extension 

to exceed a critical value. Some closure properties of this 

family are given and some comparisons made with other families 

such as the lognormal which have been previously used in 

fatigue studies. 
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2.  A MODEL FOR THE DISTRIBUTION OF LIFE 

We propose a basic framework and notation which is similar to that 

used previously in [ 3 ]. We consider only standardized material specimens 

which are subjected to fluctuating stresses by a periodic loading. By a 

load (or load oscillation) we mean a continuous unimodal function on the 

unit interval, the value of which at any time gives the stress imposed 

by the deflection of the specimen.  Let i.,£2,...  be the sequence of 

loads which are to be applied at each oscillation so that at the 1 

oscillation load 9,      is imposed. We suppose that the loading is cyclic 

in the sense that for some m > 1 and all 1-1,...,m 

Vi - W for a11 J ^k (2-ia) 

and the loading is continuous so that for all i"l,2,... 

Äi+1(0) - £1(1). (2.1.2) 

st 
Hence the (j+1) cycle  is the loading ^^n+i» • • • »Ä^n+m^ • 

We assume that fatigue failure is due to the initiation, growth and 

ultimate extension of a dominant crack. At each oscillation this crack is 

extended by some amount which is a random function due to the variation in 

the material, the magnitude of the imposed stress and a certain number of 

the prior loads and perhaps the actual crack extensions caused by the 

prior loads in that cycle. 

Thus we now make our first assumption 

1° The incremental crack extension X. following the application 

of the 1* oscillation is a random variable with a distribution which 

depends upon all and only the loads and actual crack extensions which 

have preceded it in that cycle. 



1.     INTRODUCTION 

It  Is well known that for the amount of fatigue data which can 

usually be obtained almost any two dimensional parametric family of 

distributions can be made to fit reasonably well.    In fact, in the 

region of central tendency the lognormal,  the Welbull,  the Gamma, 

etc., can all be fitted by parametric estimation and because of the 

relatively small sample sizes hardly any can be rejected by, say a 

Chi-square Goodness of Fit test.    However, when it becomes a question 

of predicting the "safe life" say the one thousandth percentile, 

there is a wide discrepancy between these models. 

For this reason a family of distributions which is obtained from 

consideraulons of the basic characteristics of the fatigue process should 

be more persuasive in its implications than any ad hoc family chosen 

for extraneous reasons.    In this paper we derive, using some elementary 

renewal theory, a two parameter family of nonnegative random variables 

as an idealization of the number of cycles necessary to force a fatigue 

crack to grow to a critical value.    We then examine some of its 

relevant properties. 

. 
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Thls assumption can be plausibly held for ground-alr-ground 

cycles in aeronautical fatigue studies and other such applications, 

st The crack extension during the  (j+1)       cycle  is 

Vl"Vl+",+ Vin       for        J-0'1  

where    X.     .     is  the   (possibly microscopic)  crack extension following 

the load    I.    applied in the 1      oscillation of the   (j+1)      cycle. 

It follows from Assumption 1°,  regardless of how much dependence 

exists between the successive random extensions per oscillation in each 

cycle, that the random total crack extensions per cycle are independent. 

Thus we could formally make a second assumption 

2°    The total crack extension    Y      due to the j      cycle is a 

random variable with mean    u    and variance    a      for all    J'1,2,... 

Our notation v;ill be 

n 

n w y i 

which has distribution function 

H (w) - P[W    < w],        for        n-1,2,...   . 
n n 

It follows from elementary probability considerations, see p. 189, 

[6], that the distribution of C, the number of such cycles until 

failure, in the case failure is defined as the crack length exceeding 

some fixed critical length u for the first time, is 
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P[C < n]  - 1 - H  (ü)). (2-2) ~ n 

Now 

P[C 1 n]  - P 
Y.-U 

1-1 0*47       o/n  . 
(2.3) 

and since the    Y      are independent and identically distributed random 

variables,  using the central limit  theorem for    n    large, Equation  (2.3) 

can be approximated by the normal distribution.    Let   91   be the 

distribution function of the standard normal variate with zero mean 

and unit variance defined for    -o» < y < «    by 

my) -   f    — e"* /2dt. (2.4) 

We now make explicit this assumption of equality 

3° the distribution of C from (2.2) is 

P[C 1 n] - 1 
\/n o/   \     /n o/ 

We ere cognizant of the fact that Assumption 3°  takes as exact, 

for the applications intended,  an approximate equality.    Such an assumption 

can only be Justified on physical grounds, not mathematical. 

Firstly,   if we suppose that we are dealing with a long cycle of 

oscillations which is as complex as the ground-alr-ground cycle in 

aeronautics It might be reasonable to assume that each cycle Itself 

consists of a large number of distinct phases of loading.    Even though 

the total crack extension per cycle is the sum of random variables 

which are not necessarily either independent or identically distributed. 

»■-.'.Ä.-S.iJ.-*..    I    »»-!<..   J. 
■£*-**-     ■■ 
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the number of summands might be sufficiently large to make it reasonable 

to assume that the total crack extension per cycle, namely Y., is itself 

approximately normal. 

Secondly, because in the case mentioned above, fatigue is measured 

in the thousands of cycles and in many other applications in the millions 

of cycles, it is felt that such large numbers of random variables make 

3° an eminently practical assumption especially in view of its simple 

analytic form. 

This distributional form, parameterized differently, has been 

previously obtained by Freudenthal and Shinozuka in [7]. In that report, 

which was unpublished, only a heuristic derivation based on engineering 

considerations was presented and then ad hoc fitting procedures were 

used to substantiate the validity of that model with several sets of 

fatigue data. 

As a possible alternative one could postulate that the distribution 

of the crack extension might be different for the earlier cycles than it 

would be for the later ones. One of the first suppositions might be to 

make the distribution of the extension per cycle depend upon the size of 

the crack at the start of the cycle. One such assumption and the result- 

ing distribution of the total crack length at the end of n cycles is 

presented in Section 4. We do not make that assumption here but instead, 

for reasons of simplicity, proceed with the study of the implications 

of the one above. 

We write 

nui) 
6-7 (2.5) 

u 
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and replace n by the nonnegative real variable t > 0. If we now 

denote the continuous extension of the discrete random variable C by 

T, a continuous nonnegative random variable, then It follows by 3° 

and (2.5) that T has the life distribution 

where 

and 

F(t:c.,e) - W~ C(t/ß)]   for   t > 0 a 

a >  0, ß > 0 

c(t) t) - P - t . 

(2.6) 

(2.7) 

This two-parameter family of distributions Is a plausible model for 

the distribution of fatigue life. The set of all life distributions 

of the form (2.6) for a,ß > 0 will be denoted by &   and most of 

this paper will be devoted to the study of its properties. We shall 

also refer to the law which has the distribution (2.6) with the 

somewhat shorter notation F(a,ß). 

Of course, there are motivational derivations for other 

distributions as well. The Weibull distribution, which is well 

known for its applications as a life length distribution and for 

fatigue life in particular, is obtained as a special case of the 

extreme value distributions, see p. 302, [8]. The Gamma family 

has also been obtained as a distribution of life by utilizing a 

model of a bundle of strands which are supporting a tensile load, 

see [A]. 

It is instructive to make a comparison between the derivation 

of the family of distributions &   and an appropriate adaptation of 
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the classical heuristic argument,  found for example p.  219,  Cramer [5], 

as it might be used to obtain the lognormal distribution of the time 

until failure in fatigue.    This argument  is presented,  along with 

derivations of other distributions, by Parzen In [9].    We should also 

mention that damage accumulation due  to fatigue vas first treated as a 

renewal problem in that paper. 

4- 
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3.  SOME PROPERTIES OF 9 

Let T have the distribution defined in (2.6). Note that T 

is a two-parameter random variable with ß as a location parameter 

since it is the median of the distribution.  (We show later that 6 

is neither the mode nor the mean.) Notice also that a is a shape 

parameter and 3 a scale parameter. As we have seen — C(T/3) is 

a standard normal random variable with mean zero and unit variance. 
2 

If we let X be 9?(0, ~) we see that, in distribution, 

2X - C(T/0). (3.1) 

If we define the function    ^    by 

*(x) - r1(2x)    for all real   x, (3.1.5) 

then 

T - ßiKX). (3.2) 

From elementary algebra we find that 

.Kx) - [P(x)l2 (3.3) 

where 

P(x) - x + /x2+l . (3.A) 

So by (3.2) 

T - ß[l + 2X2 + 2x/l+X2 ] (3.5) 

1 
where X is 9?(0, 7-). Hence we have Immediately 

c2 
E(T) - 6(1 + y) (3.5.1) 

* 
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E(T2) - ß2(l + 2a2 + —-) 

2 5a2 

var(T) -  (a&ra + ^f-) (3.5.2) 

and we note that for fixed    a    the variance of T    increases as the scale 

parameter  (median)    ß    increases.    This is not true for the lognormal 

distribution but empirical evidence shows that it is true for the fatigue 

lives themselves. 

By noting that 

1 /     2 —r-r ■ -x + /1+x   ■ p (-x) 
p(x) 

(3.5.3) 

we see that, whenever -X has the sane distribution as X, we have by 

(3.3), in distribution. 

1  - p(X) and   l 

p(X) MX) iKX). (3.6) 

Thus there follows immediately from (3.2) the 

Theorem 3.1. If T has a fatigue life distribution F(a,ß),  in 

&   then — has a distribution in &   given by F(a, —). Moreover, for any 

real a > 0,  the random variable aT has a distribution in &   given by 

F(a,aß). 

It is known that every random variable with distribution defined by 

(2.2) for which the Y. are nonnegative and have densities which are Pölya 

frequency functions of order 2, has an increasing failure rate, see [1]. 

While our random variable T does not have this property, its average 

failure rate is nearly nondecreaslng.  Specifically, it has the properties 

of our subsequent remarks (2.2) and (2.3). The class of failure rates 

which are nondecreaslng on the average has been studied in [2] and was 

shown there to have some closure properties which are physically plausible. 

-t- 
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Remark 3.2. T has an average failure rate which approaches 

a positive constant. 

Proof.  Without loss of generality, take a - ß ■ 1 and define 

Q(t) - -*n{l -WU(t)]},   hCt)-^-. 

Writing Mill's ratio 

then applying L'Hospital's rule to h(t) for t -► ^ and using (A.1.1) 

of the next section we obtain 

h(t) s amiüj r./t). (i-t"2? hu;   i-ma)] ^ (t)   2M[at)] • 

We know that as 4 ->■ » we have 

M(O - 1 - -7 + — + oa"5). 
r   r 

Hence 11m h(t) - r but Q(l) - £n 2 > -r .  This proves our contention 

that h does not always Increase but approaches a positive constant.|| 

Remark 3.3. Actual numerical calculation shows that the average 

failure rate h decreases slowly for t > 1.64, as Illustrated in Figure 1, 

Surprisingly enough we regard this particular feature of the 

distribution as a virtue since it is in agreement with the observed 

facts.  Typical fatigue data, such as given in [7], show that we cannot 

assume that the failure rate is always increasing.  Such data can be 

explained as being the mixture of distributions each with increasing 

failure rate such that the combined failure rate decreases for a time. 
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However, almost any model which is the mixture of distributions, even 

two Weibull distributions with the same shape parameter but different 

scale parameters, would necessarily be so cumbersome mathematically that 

the statistical problems which arise would be difficult analytically. 
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Flgure 1 

Graphs of the density f, the distribution F,  the hazard rate q, 
and the average hazard rate h where for t > 0 

f(t) -"^expl-f-^+l} 

F(t) - / f(x)dx,  q(t)-if^y. h(t) - ^ q(x)d} 
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4.  A SECOND MODEL FOR THE DISTRIBUTION OF LIFE 

In this section we replace the Assumption 2* by the alternative 

one 

2' The crack extension Y .  during the (n+1)  cycle, given 

that the total crack length was s at the start of the cycle, 

is a normal random variable with mean p + 6s,  for some constant 

2 
6^0, and variance o  for each n»l,2  

By formula (2.2), to find the distribution of C it is necessary and 

sufficient that we find the distribution of W ,  called H . 
n n 

By assumption 

pfViiy W   -8] n 910 Y-U-^s ) 

and  for    n-1 

IHK H^y) -W^) -oo   <   y    < (A.l) 

Now by definition, setting y - x - s 

Wx>-/"^^dV8>- (4.2) 

We can now prove the 

Theorem 4.1.   The total crack length W , at the end of the 

th *) 
n  cycle, is normal with mean u  and variance o  where J                                                     n n 

2n 
Jn  6 ̂((l+6)

n-l],   of-o2-^!^. (4.3) 
(1+6) -1 

Proof by induction. The statement is true for n-1. Assume it true 

for n,  then from (4.2) 
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Hr>1(x)- fm^u^n^) 

where 

x-u        o umus      v" IT?- 

But this we recognize as the usual convolution of two normal random 

variables and hence the result is 

H
n+l

(x) 

'*$$ 

Hence by simplification we find that 

V1-y+  (1+6) V        o2+1 - a2 +  (1+6)V 

and one checks that  formulas given do satisfy the recursion relations 

(A.3).|| 

Strictly speaking a proper distribution, analogous to that 

obtained in (2.6), which would be the continuous extension of the 

present case, cannot be generated since  P[C < «>] < 1. 

For, one can see that 

p -0) 

P[C < n] -<K(-S—) 
n 

and as n ->■ <*    we have v /a    -* -f-  v (1+6) -1 < <». 
n n  öo 

Of course this would not be of practical significance, since we must 

restrict ourselves to situations where ^ > 3,  otherwise 2' vould be 
wn      

physically unrealistic.  Hence lim — > 3/2/6  for 0 < 6 < 1, and 
\i n-x» n 

11m — > 3 for any 6. 
an 
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5.     CONCLUSION 

A derivation, based on plausible physical considerations, for 

a family of distributions  is,  by itself,  not a conclusive argument 

that such a particular family should be used in life studies.    No 

family,  however reasonable its derivation, can be accepted for use in 

fatigue  life studies until it  is confronted with actual fatigue data 

obtained under various conditions and the distribution  is shown to 

represent adequately the life lengths which are obtained. 

In order to do  this one must have  the theory of estimation for 

this family completed.     The derivation of parametric estimators and the 

ancillary computing formulas for this family will be presented in a 

latter study.    Also further studies of the application of this 

distribution to the calculation of "safe life" will be made.    Thus  the 

confrontations of this family with actual data will be carried out,  to 

provide  the Justification for this presentation. 
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