
ran

00
Äj STANFORD ARTIFICIAL INTELLIGENCE PROJECT

v _ MEMO NO, AI-69
lO
i>
i>
ID

PROJECT TECHNICAL REPORT

Q

September 15, 1968

John McCarthy, Professor of Computer Science
Principal Investigator

Edward Feigenbaum, Associate Professor of Computer Science
Associate Investigator

Arthur Samuel, Research Associate in Computer Science
Associate Investigator

D D C

^ N0Viai968

JlilblLlilJ
B

Sponsored by-

Advanced Research Projects Agency

ARPA Order No. htf

III
Reproduced by the

CLEARINGHOUSE
lor Federal Scienfilic & Technical
Inlormatlon Springfield Va. 22151

Tb'ji document hnn be«n ':.?-'
lot puWio relaow Md acti*i tta
di^Tibuilon is f^P3*,;>d___ '}

BEST
AVAILABLE COPY

STAETORD AKTIFICIAL INTELLIGENCE PROJECT September 15, 1968
MEMO NO. AI-69

PROJECT TECHNICAL REPORT

ABSTRACT: Recent work of the Stanford Artificial Intelligence Project
is summarized in several areas:

Scientific Hypothesis Formation
Symbolic Computation
Hand-Eye Systems
Computer Recognition of Speech
Board Games
Other Projects

The research reported here was supported in part by the Advanced
Research Projects Agency of the Office of the Secretary of Defense
(SD-I83).

1. Introduction

Research interests in the Stanford A.I. Project cover a number of

areas in machine perception, heuristic programming, symbolic computation,

and the mathematical theory of computation. This report summarizes

recent results, drawn largely from material that has been prepared for

publication in forthcoming conference proceedings.

Some of this work is finding immediate application. Our work on

hypothesis formation in organic chemistry has recently caught the interest

of research chemists and a rewarding interaction is developing. The work

on symbolic computation has already contributed to research in theoretical

physics and to the solution of complex engineering problems.

Hand-eye and speech recognition research is not 30 advanced In

relation to its objectives. Nevertheless, we have demonstrated success-

ful solutions to several important subproblems and are actively expanding

the domain of soluble problems.

Work on board games such as chess and checkers continues to be an

important part of artificial intelligence research, both as a source of

new ideas on the mechanization of problem solving and as a measure of

performance that allows rather direct comparison with human abilities.

The following sections discuss results in several areas.

Appendix A lists some recent publications of project participants.

Appendix B lists Stanford A.I, Memos to date.

2. Scientific Hypothesis Formation

Part I, below, is an excerpt from "Artificial Intelligence:

Themes in the Second Decade" by Edward A. Feigenbaum, This was an

invited paper at the 1968 IFIP Congress in Edinburgh.

1

*

TmmmmvanßKi*~im~m

BLANK PAGE

■

Part I.

Our primary goal was to study processes of hypothesis formation in

a complex task of a scientific nature involving the analysis of empirical

data. The task environment chosen as the medium for this study was the

analysis of the mass spectra of organic molecules: the generation of a

hypothesis to best explain given mass spectral data. This is a rela-

tively new area of organic chemistry of great interest to physical

chemists. In this sense, the problem is not a "toy" problem; and a

program that solves problems of this type is a useful application of

A.I. research to a problem of importance to science.

We have written a program to infer structural hypotheses from mass

spectral data. The program is called Heuristic DENDRAL. It was

developed at the Stanford University Artificial Intelligence Project

by a small group including Professor Joshua Lederberg of the Stanford

Genetics Department, Dr. Bruce Buchanan, Mrs. Georgia Sutherland, and

me, with the assistance of chemists and mass spectrometrists of the

Stanford Chemistry Department. It is an 80,000 word program written

in LISP for the PDP-6 computer, and was developed (and is run) inter-

actively under the time-sharing monitor (l, k-) 5).

Heuristic DENDRAL will perform the following two classes of tasks:

1. Given a mass spectrum of an organic molecular sample and

the chemical formula of the molecule, the program will

produce a short list of molecular "graphs" as hypotheses

to explain the given data in the light of the program's

models of mass spectrometric processes and stability of

organic molecules. The list is rank-ordered from the

most satisfactory explanation to the least satisfactory.

2. If no mass spectrum is given, but only a formula, the

program will produce a list of all the chemically plausible

isomers of the molecule in the light of its model of

chemical stability of organic molecules.

The flow diagram of the system is a closed loop consisting of

phases of data inspection, hypothesis generation, prediction, and test,

corresponding closely to a simple "scientific method" loop.

2-1

2-2

D
I
I

I
I
I

At the heart of the program is a systematic hypothesis generator.

It is based on an algorithm developed by Lederberg called DENDRAL which

is capable of generating all of the topologically possible isomers of

a chemical formula. The generator is essentially a topologist} knowing I

nothing about chemistry except for the valences of atoms; but the

generating algorithm serves as the guarantor of the completeness ' the

hypothesis space, in a fashion analogous to the legal move generator

in a chess program. Since the generating process is a combinatorial

procedure, it produces for all but the simplest molecules a very large

set of structures, almost all of which are chemically implausible though

topologically possible. Implicit in its activity is a tree of possible

hypothesis candidates. At the top node of the tree all the atoms are

found but no structures. At the terminal nodes, only complete structures ■

are found, but no unallocated atoms. Each intermediate node specifies a

partially built structure and a residual set of atoms yet to be allocated.

This tree is the implicit problem space for Heuristic DENDRAL.

Various heuristic rules and chemical models are employed to control the

generation of paths through this space, as follows:

1. A model of the chemical stability of organic molecules based

on the presence of certain denied and preferred subgraphs of

the chemical graph. It is called the a priori model since it

is independent of processes of mass spectrometry.

2. A very crude but efficient theory of the behavior of molecules

in a mass spectrometer, called the Zero-order Theory of Mass I

Spectrometry, used to make a rough initial discarding of

whole classes of structures because they are not valid in the

light of the data, even to a crude approximation.

5. A set of pattern recognition heuristic rules which allow a

preliminary interpretation of the data in terms of the presence

of key functional groups, absence of other functional groups,

weights of radicals attached to key functional groups, etc.

It is called the Preliminary Inference Maker. Its activity

allows the Hypothesis Generator to proceed directly to the most 1

plausible subtrees of the space.

1
I
I
I

I
1
I

I
I

The output of the Preliminary Inference and Hypothesis Generation

processes is a list of molecular structures that are candidate hypotheses

for an explanation of the mass spectrum. They are all chemically plausi-

ble under the a priori theory and valid explanations of the data under

our zero-order theory of mass spectrometry. Typically the list contains

a few candidates (but not dozens or hundreds).

Next a confrontation is made between this list of "most likely"

hypotheses and the data. For each candidate hypothesis, a detailed

prediction is made of its mass spectrum. This is done with a subprogram

called the Predictor, a complex theory of mass spectrometry in computer

simulation form. The Predictor is not a heuristic program. It is an

elaborate but straightforward procedure for deducing consequences of a

theory of mass spectrometry extracted by us from chemists and their

literature. The spectral prediction for each candidate is matched

with the empirical input data by a process called the Evaluation Function.

This is a heuristic, hierarchial, non-linear scoring procedure. Some

hypothesis candidates are immediately discarded because their predicted

spectra fail certain critical confrontations. The remainder are scored,

ranked, and printed out in rank order from most to least satisfactory.

For the class of non-ringed organic structures with which we have

been working up to the present time, the program's behavior approaches

or exceeds the performance of post-doctoral laboratory workers in mass

spectrometry for certain classes of organic molecules. These include

amino acids, with which for tangential reasons we have done much of

our work, and a large variety of simple organic groups that, however,

turn out to be considerably more complicated than amino acids from the

point of view of mass spectrometry.

Heuristic programming provided only the skelton for the problem

solving processes of Heuristic DENDRAL and the computer techniques to

handle the implementation. The heuristics of chemical plausibility of

structures; of preliminary inference; of evaluation of the predictions;

and also the zero-order and complex theories of mass spectrometry—these

were all extracted from our chemist colleagues by man-machine interaction,

with the process carefully guided by one of our research team. The

2-5

success of this mixed discipline for pulling out of the heads of

practicing professionals the problem solving heuristics they are using

has worked far better than we had any right to expect, and we are now

considering further mechanization of this process.

2-k

Part II. Additional Remarks

Because the theory of mass spectrometry is incomplete and piecemeal

we must rely heavily on chemist's intuitions about the processes

affecting chemical molecules within a mass spectrometer. This is

significant for two reasons: we must invest much time questioning

chemists about the processes (as opposed to looking into a published,

unified account of the theory), and we must be prepared to change the

computer program as often as chemists change their minds about any

aspect of any of these processes.

Much of our work is now concentrated on reducing the time needed

to extract new information from chemists. The dialog between chemist

and computer now frequently requires a human intermediary as translator

between the two. We would like to mechanize the dialog so that the

computex' can elicit information directly from the expert. Still more

desirable is an extension of the dialog program which will direct the

questioning by detecting gaps in its own model and will challenge the

chemist with possible counterexamples to new rules he has suggested.

Another time-saving scheme is to use the computer's complex theory

of mass spectrometry as the source of new pattern recognition rules.

This compresses two interactive sessions into one; and, more important,

results in a guarantee of consistency between prediction rules and

pattern recognition rules.

A very flexible computer program is required for modifying the

program as frequently as chemists revise specific details of their

accounts of mass spectrometry. We are working on new ways of organizing

the program to make the model building process easier, less expensive

in time, and more elegant. One step is to separate the chemical theory

from the parts of the program that manipulate the theory. Another is to

organize the theory so that all pares of the program can reference it

and chemists can easily change it. Still another is to keep the mani-

pulation in a simple form that can be easily conceptualized and easily

changed.

We are fortunate to have the cooperation of several members of the

Stanford Chemistry Department, for the last nine months two or more of

2-5

them have met twice weekly with our staff to improve the computer

program or to use the program for their own work. As a result of

this interdisciplinary research, we have collaborated on two articles

for publication in chemistry Journals (5, k). At the same time, we

have brought the program up to near human standards of performance in

the analysis of spectra of some types of molecules.

2-6

REFERENCES

1. B. Buchanan and G. Svaherland, "Heuristic Dendral: A Program for

Generating Explanatory Hypotheses in Organic Chemistry",

Artificial Intelligence Working Paper No. 62 (Computer Science

Department, Stanford university), to be published in D. Michie

et. al. (eds.), Machine Intelligence k (in preparation).

2. B. Buchanan, C. Djerassi, A. Duffield, E. Feigenbaum, J. Lederberg,

A. Robertson, and G. Sutherland, "Applications of Artificial

Intelligence for Interpretation of Mass Spectra. I. The

Number of Possible Organic Compounds: Acyclic Structures

Containing C, H, 0 and N." Forthcoming.

3. —, "Applications of Artificial Intelligence for Interpretation

of Mass Spectra. II. Low Resolution Mass Spectra of Ketones".

Forthcoming.

4. E. A. Feigenbaum, J. Lederberg and B. Buchanan, "Heuristic Dendral",

in Proceedings of the Hawaii International Conference on

System Sciences, University of Hawaii and IEEE (University of

Hawaii Press, 1968).

5. J. Lederberg and E. Feigenbaum, "Mechanization of Inductive Inference

in Organic Chemistry", in: B. Kleinmuntz (ed.) Formal

Representation of Human Judgment (New York, John Wiley, 1968).

2-7

3. Symbolic Computation

The following paper, titled "The Problem of Substitution", was

presented by Anthony C. Hearn at the IBM Summer Institute on Symbolic

Mathematics by Computer, held in Boston, July 1968.

Professor Hearn is associated with the Institute of Theoretical

Physics as well as the Artificial Intelligence Project at Stanford and

is an Alfred P. Sloan Foundation Fellow. In addition to the ARPA support

cited above, this research was sponsored by the Air Force Office of

Scientific Research, Office of Aerospace Research, U. S. Air Force,

under AFOSR Contract No. FW620-68-C-0075.

■ ■

I. INTRODUCTION

One of the most significant features of programs designed for non-

numeric calculation is that the size of expressions manipulätedy, and

hence the amount of storage necessary, changes continually during the

execution of the program. It is therefore usually not possible for the

user to know ahead of time just how much output his program will produce,

or whether the calculation will in fact fail because of lack of available

computer memory. The key to keeping both the size of intermediate

expressions and output under control often lies in the manner in which

substitutions for variables and expressions declared by the programmer

are implemented by the system. In this paper, we discues various

methods which have been developed to perform these substitutions in
1 2

the author's own system REDUCE. ' REDUCE, like FORMAC, is a program

designed for general algebraic computations of interest to mathemati-

cians, physicists and engineers. However, in spite of the many common

capabilities of the two systems, there are marked differences in the

design of each. REDUCE began as a system designed to handle the special

problems of non-commutative and tensor algebra encountered in calcula-

tions in elementary particle physics scattering theory. However, it

was found that the techniques employed were capable of extension so that

many problems involving manipulation of large algebraic expressions

by known algorithmic methods could be handled.

One major difference between REDUCE and FORMAC is that whereas

the latter is largely a machine-coded system, REDUCE has been programmed

entirely in LISP 1.5. The big advantage of using such a language is

that it is possible to develop a system which may be easily modified

and which is also relatively machine independent. Th\is the same program

is operating at Stanford on two entirely different machines, an IBM

36O/67 and a Digital Equipment Corporation PDP-6.

The plan of the paper is as follows. In Sec. 2, the simplest

type of substitution problem is used to introduce the REDUCE system and

discuss the general characteristics which permit the efficient coding of

many types of substitutions. In Sec. 5> the general problem of substi-

tution is discussed in terms of the mstching of expressions.

5-1

Finally, in Sec, k, the problem of substitution as a means of

reducing tl-e complexity of program output is discussed.

II. SIMPLE SUBSTITUTIONS

An assignment statement of the form

A = 2*B*C - 3*D**2 + COS(-X)»(COS(Y) (?.l)

has an entirely different interpretation in a non-numeric calculatipn than

m a PL/'I or FORTRAN program. In the latter case, the right-hand side

evaluates to a number which is then stored in a machine location

reserved for A- In a non-numeric system, the 'evaluation' of such an

expression is not so unambigoas. Here evaluation is usually referred

to as 'simplification1 in the sense that the expression is reduced

to a canonical form by various rules built into the program or provided

by the user. There are as many philosophies on what simplification of

expressions means as there are systems. FORMAC, for example, makes

substitutions for variables with assigned values and performs several

unambigous reductions of the expression. In Eq. (2.1), for example,

COS(-X) would be replaced by COS(x). However, the basic form of the

expression would remain the same, apart from conversion from infix

notation to an internal Polish prefix representation. In REDUCE,

however, reduction of an expression to canonical form is more complicated.

For one thing, this reduction always involves expansion of expressions,

an operation under user control in FORMAC, This flexibility is not

present in REDUCE because many of the operations associated with high-

energy physics calculations require the expression to be in a fully

expanded form. It has also been found that there is often a considerable

gain in speed of calculation and storage requirements if such expansions

are made at an early stage. To describe the canonical form used, it

is easier to begin by restricting ouruulves to rational functions of

polynomials in several variables. The simplification operation reduces

such expressions to a canonical form consisting of a pair of standard

forms which represent the numerator and denominator of the expression

respectively. The standard form used is similar to that described by

Collins in Ref, 5. In this, an expression in n variables f(x,,x ,,,x)

3-2

is written as a power series in one variable whose coefficients are

themselves functions of n-1 variables. Thus

1,x2...xn) - ^/ fi(x2...xn)x1 (2<2)

1=0

The polynomial coefficients are themselves expanded in a similar manner,

und the representation continued until only integers remain. In Backus

normal form, using the LISP dotted pair notation the REDUCE standard

form is:

<standard formr-

<standard term>

<standard power>

= <integer> |(<standard term> • <standard form>) (2.3)

= (<standard power> . <standard fonn>) (2.4)

= (<variable> • -cnon-zero positive integer>) (2.5)

Thus a standard term represents one term in the power series Eq. (2.2)

and a standard power represents a variable raised to a positive integer

power. Comparison with Eq. (2.2) also shows that the dotted pair

represents an implicit addition in Eq. (2.3)> multiplication in Eq. (2.4)

and exponentiation in Eq, (2.5).

In large expressions, the same fixed power of a given variable appears

many times in the expanded form of the expression. Thus a considerable

saving in storage is made by storing all standard powers uniquely on a

single ordered list. In some cases, other sub-expressions may occur

several times, but no explicit attempt is made to store these uniquely,

although this often occurs automatically.

An ordering convention based on the machine location of the

variables in core is used to decide the position of a variable in a

standard form. Thus two equal polynomials will have the same standard

form.

If fractional powers of var/ables or expressions are encountered

during reduction, then a new variable is created to represent that power,

and the user informed, ensuring that no fractional powers remain in the

standard form. Likewise, any real numbers encountered are usually converted

to the ratio of two integers, unless the user specifies floating point

arithmetic.

>3

An extension of the basic polynomial representation to include

other operators is made in a straightforward manner. Each operator in

the system has a simplification function as?ociated with it, and this

function may transform its arguments in one of two ways. First, it

may convert the expression completely into other operators in the system,

leaving no functions of the particular operator for further manipulation.

This is in a sense true of the simplification functions associated with

the operators +,* and / , for example, because the standard form

does not include these operators explicitly. It is also true of an

operator such as the determinant operator DET; the relevant simplification

function calculates the appropriate determinant, and the operator DET

no longer appears. On the other hand, the simplification process may

leave some residual functions of the relevant operator. For example, a

residual expression COS(Y) will remain after simplifying Eq. (2.1)

unless a rule for the reduction of cosines into exponentials is introduced.

These residual functions of an operator are termed kernels and are stored

uniquely like variables. Subsequently, the kernel is carried through

the calculation as a variable unless transformations are introduced for

the operator at a later stage. To include kernels in our standard form

representation, we simply replace Eq. (2.5) by

<standard power> :; = (<k:ernel> * <non zero positive integer>) (2.6)

and add:

<kernel> :: = <variable> | (<operator> ' <simplified list of
arguments>) (2.7)

Often an assignment statement such as Eq. (2.1) is intended in

the sense of a 'side relation' in that a substitution for A should be

made if it occurs in expressions encountered later in the calculation.

As the initial reduction of an expression to canonical form often

involves considerable computation, it is obviously desirable to simplify

it only when necessary, and then only once during a calculation. In

such circumstances, no evaluation of the expression is necessary at the

time of definition of the substituticn, and it may therefore be stored

in quoted form rather than evaluated form. To indicate this, Eq. (2.1)

might best be written

3-^

■

A = '2*8*0 - 3*D*-*2 + COSC-X^OSCY)' (2.8)

In REDUCE, a quoted assignment is introduced by the instruction LET,

as in

LET A = 2*B*C - 3>D^2 + C0S(-X)*C0S(Y); (2.9)

whereas an intended simplificaticn is written

SIMPLIFY A = 2*B*-C - 3*D**2 + C0S(-X)*C0S(Y); (2.10)

When em expression to be simplified contains variables which have

been previously assigned either quoted or evaluated values, the speed

of the calculation, and more important, the amount of storage used

often depends crucially on Just when the substitution for the relevant

variables is made. There are of course many ways to make such substi-

tutions. One way is to substitute for variables as they are met during

reduction to canonical form, recognizing, as AUTSIM does in FORMAC ,

those variables whose substitutions have themselves already been

reduced to canonical form to avoid repetitious calculation. Secondly,

substitutions can be made after reduction of the whole expression to

canonical form. Two simple examples will illustrate that neither method

is better in all circumstances. With the substitution (2.1) already

defined, consider the following assignments:

Al = (A - 2*B*C + 3*D**2 - COS(-X)*-COS(Y))**1000 (2.11)

Bl = A**1000 - A*-*1000 (2.12)

Both Al and Bl evaluate to zero, but in the former case, it is

obviously better to substitute for A before raising the expression to

the thousandth power and simplifying, whereas in the second case, the

opposite is true, Tnese are extreme cases, of course, but illustrate

Just what can happen if you are not careful. Both substitution mechanisms

are implemented in REDUCE and the decision as to whether the substi-

tution of variables is made during or after reduction to standard forms

is to a limited extent under user control. However, it has been found

in practice that the system can often make a better decision than the

average user in this regard.

We note in passing that a simplication of

Cl = (A - 2*B*C + 3*D**2 - C0S(-X)*C0S(Y))**1000

+• A**1000 - A*-*1000 (2.13)

5-5

would involve catastrophic term growth regardless of which of the above

methods of substitution is used. The user could of course avoid this

by simplifying Al and Bl as described above, and then adding them to

form Cl, However^ a simplification step such as Eq, (?.13) may occur

in the middle of an extensive calculation without the user's knowledge.

To ask the system to make such a simplification in a single step,

however, would require sophisticated heuristics to decide the optimal

substitution method for each variable encountered far beyond the

scope of present simplification systems.

As an extension of the simple variable substitutions discussed so

far, REDUCE allows the user to define substitutions for powers of variables,

and expressions which reduce to kernels or powers of kernels. Again,

these substitutions may be made either during reduction to canonical

form or after, and because of the organization of the system, are as

efficient to implement as substitutions for variables. We illustrate

this by discussing in detail the mechanism for substituting for kernels

or kernel powers after reduction of an expression to canonical form.

There are two ways by which this may be done. The first is to scan the

expression, and check whether each kernel has a substitution defined

for it. If it does, then at the first occurrence of this kernel its

substitution in canonical form must itself be checked for replacements by

the same routine and then stored in this new form. After this expression

has been substituted for the kernel, the search continues until the end

of the expression is reached. The reconversion of the expression to

canonical form can be made concurrent with the search procedure. This

method is sanewhat inefficient, however, as the same kernel often occurs

many times in the same expression. The secorxi method recognizes this,

and performs the rubstitutions in three passes. In the first, the lists

of kernels which are kept in the system are searched, and a change of

list structure made if a substitution is required. Since kernels and

kernel powers are stored uniquely, this change in list structure means

that every occurrence of the substitution expression has been changed in

all expressions, and so the current expression being simplified can then

be reconverted to standard forms by a second pass. The last pass,

5-6

which is quite trivial, restores the original list structure of all sub-

stituted kernels without affecting the reconverted canonical form.

In actual practice, REDUCE uses a combination of these methods; it

is assumed that the expression is large and the substitutions all

relatively small. So in checking whether a substituticn expression

itself ccrvtains terms which themselves have substitutions, the first

method is used, whereas the second method is used on the current

expression being simplified.

In substituting for powers of variables, or kernels, there are

occasions when a distinction has to be made between substituting for

that explicit power, and a general substitution for that power whenever

it occurs. For example, LET 1**2 = -1, implies that 1**3 = -I, l+*h = 1

and so on. However, in integrating an expression by explicit substitu-

tion, a substitution

X**2 = Y**5/3

is not intended to apply to higher powers of X,

This latter type of substitution is really a matching operation

and is treated as such by the REDUCE system. Thus a user would say

MATCH X**2 = Y**3/3; {2.1k)

to affect such a replacement. The general matching operation requires

an altogether different programming technique than we have used so far,

and is discussed in the next section.

Ill, MATCHING OF EXPRESSIONS

The substitutions considered so far have been rather limited in

scope, as they involve only substitutions for variables and kernels.

As we have seen, these are very efficient to implement because variables

and kernels are stored uniquely in REDUCE. However, a more general type

of substitution is often needed which requires extensive pattern matching

within a given expression. Such substitutions cannot be as efficiently

implemented as our earlier examples, since much more searching is

involved In their application.

The ideal system would allow for the replacement of any given expre-

ssion f(a,b,.x,y.) by another expression g(a,b,.x,y) v^here a,b,.

5-7

stand for fixed sub-expressions and x,y.. fo - arbitrary expressions. For

example, in Eq. (2.1), it might be convenient to replace COS(x)*COS(Y)

by (COS(X>Y) - C0S(X-Y))/2 . Presumably this type of replacement should

apply whenever an arbitrary product of cosines is encountered, so that

X and Y in the replacement rule should stand for any expression at

all. Thus X and Y are free variables as far as the substitution

rule is concerned. Similarly, if X is free, then the rule

SIN(X)**2 + C0S(X)**2 = 1 (3-1)
o o

should imply that sin (cos(log2)+3) + cos (cos(log2)+2)) is to be replaced

by 1.

This general matching problem, which we mentioned in an earlier
2

publication remains unsolved in a manner efficient enough to be used

in large scale calculations, and most systems, including REDUCE, compro-

mise at some point in the types of substitutions allowed. There is also

a basic ambiguity associated with any substitution rule involving addition,
2 2

such as Eq. O-l)« For example, given this rule, should 2cos (v) + sin (v)
2 2

be replaced by 1 + 2cos (v), 2 - sin (v) or be left unchanged? The

choice made can often influence the compactness or symmetry and hence

the intelligibility of the result, as we shall see in Sec. k.

Even though REDUCE does not implement a general pattern matching

algorithm, it does provide for substitutions for products of kernel

forms or expressions which reduce to this form by means of the instruction

MATCH.

The argument of MATCH is a list of equivalence expressions of the

lorm

<kernel form> * <kernel fonn> ... * <kernel form> = <expression> (3.2)

where a kernel form is an expression which reduces to a kernel on simpli-

fication. Examples of the use of MATCH are

MATCH A**2*B = 3*C,

C0S(X)*-C0S(Y) = (SIN(X+Y)-SIN(X-Y))/2; (3.3)

In the second example, the fact that X and Y may stand for any

expression is signified by the prior declaration

FREE X,Y; (3.if)

3-8

The implementatiDn of this algorithm involves setting up a list of

declared 'matches' and then scanning the relevant expression in canonical

form for kernels which appear in these matches. If such a kernel is found,

then all matches containing that kernel are added to the list of matches

with that kernel moved from the left to the right hand side of the sub-

stitution. This process then continues until one of two things occurs;

either a particular match is successful, in that all products in a

matching rule have been encountered, or the end of a standard term is

reached. If a match is successful, a second pass makes the required

substitutions in the relevant term.

If a match was made during the complete scan, of the relavant expression,

the whole process must then be repeated in case another /alia, match

developed during the previous pass. Thus the expression must be scanned

at least twice to implement such matches.

In spite of the limited nature of the types of substitutions allowed

in REDUCE, it is surprising how useful a matching operation of the form

defined in Eq. ^.2) can be. Tnis is especially true of problems involv-

ing analytic integration of multivariable expressions by table lookup

which occur quite frequently in elementary particle physics.

IV. SUBSTITUTIONS IE OUTPUT

Almost as catastrophic as the growth of expressions during a cal-

culation can be the growth of output to the astonished user. This is

not a trivial problem, because several physicists and engineers to the

author's knowledge have given up calculations when confronted with

fifty pages of output from a relatively simple problem in matrix

manipulation. It is obvious that if any real progress is to be made

in handling algebraic problems too tedious and complicated to be done

by hand, then a lot of research must be devoted to presenting output

m a compact, intelligible form. One way, of course, is to pick out

the leading terms in the expression by ord^r or magnitude arguments,

but this method often conceals symmetries in the answer which can

only be seen in the complete expression. Another method, developed by

5-9

7
Baker , is to recognize common sub-expressions within an expression

and replace them by a single variable, thus displaying the underlying

fundamental, or 'skeletal' structure of the expression. In many cases

however such underlying structure, if it exists, is hidden because of

the existence of various relations between the variables occurring or

functional identities such as Eq. (3-1). The example shown in Fig. 1

illustrates this point very well. Figure la shows a shows a 'raw'

expression produced by the computer. However, as in many problems

in physics and engineering, not all the variables appearing in the

expression are independent, and certain combinations have a nore relevant

physical interpretation than others,, The relations between the variables

used is given in Fig, lb, and it can be seen that of the thirteen variables

occurring, only six are independent. About five man hours spent

sitting in front of a CRT display modifying expressions and checking in

the computer that no errors were introduced by the hand modifications

resulted in the expression in Fig. 1c. Considerable reduction in the

size of the expression has been made by appropriate substitutions for

the variables appearing in the answer. The explicit skeletal structure

of this result could also be displayed by replacing the common sub-

expressions PR0P1+PR0P3 and PR*PR0P1+RS*PR0P3 by simple variables.

The goal of 'simplification' in this context is surely reduction of the

size and/or symmetrization of the expression. There is something of an

art involved in guessing the right substitutions, but it is obvious that

the computer could be programmed to do a lot of this automatically.

The author's progress in this area during the past year has not been

outstanding. However, some success has been achieved by successive

substitution for each relevant variable at each place that it occurs

in an expression, and then checking if the substituticn was successful

in that the number of terms in the expression decreased. However, this

method is painfully slow, so that a human and computer interactive

combination remain economically more attractive at the moment. This

type of problem is analogous in many ways to theorem proving on a computer,

and it is probable that similar heuristics will have to be developed

here before a successful solution can be found. There may be other

3-10

o

algorithmic methods which could be used also. Engeli for example,

has suggested dividing the expression by any substitution equivalent

to zero and thus keeping only the remainder for further manipulation,

but the author has found that this provides little reduction in expressions

involving low powers of many variables such as the exampl in Fig,, 1.

The problem of substitution then is one of the key problems to be

considered in designing and using a simplification system for large

expressions. Expressions must be kept small, both during a calculation

and at the end if anything really new is to be learned from doing

non-numerical mathematics on a computer.

5-11

(NfM *

(2 * PR0P1 * PR * RS - 2 * PROPI * PR ♦ RT - A * PR**2 * RS
A * PR**2 * RT - 4 ♦ PR * RS**2 + 14 * PR * R? * RT +

2 * PR ♦ RS * PR0P2 - 4 * PR ♦ RS * PS - 4 ♦ PR * RS * PT
4 * PR * RS * QT - 4 * PR * RS * QS - 4 * PR * RS * QR

10 * PR * RT**2 - 2 * PR * RT * PR0P2 + 4 * PR * RT * PS +
4 * PR * RT * PT + 4 * PR * RT * QT + 4 * PR ♦ RT * QS

4 * PR * RT * QR - 6 * RS**2 ♦ RT - 4 * RS * RT**2 - 6 *
RS * RT * QR - 6 * RT**5 ' + 6 * RT**2 * QR)

■•■ Wn*2 *

(- PROPI * PR * RS * RT + PROPI ♦ PR ♦ RT**2 + PROP! * P '
R * RT * PR0P2 + PROPI * RS**2 * RT + 2 * PROPI * RS * RT**2

2 * PROPI * Rij * RT * PT + PROPI * RT**3 + 2 * PROPI * Rl
♦ *2 ♦PS + 6 * PR**2 ♦ RT * QT - 2 ♦ PR**2 * RT ♦ QS + A *

PR**2 ♦ RT ♦ QR - 4 * PR ♦ RS * RT ♦ PR0P2 + 4 ♦ PR ♦ RS ♦ hT
* PS + 8 ♦ PR ♦ RS * RT * PT + 4 * PR * RS * RT * QT + 2

♦ PR ♦ RS ♦ RT * QS - 4 ♦ PR * RS * RT ♦ QR + 8 * PR * KS » PS
* QT + 8 * PR * RS * PS ♦ QR - 4 * PR ♦ RT**5 + 2 ♦ PR *

Rj**2 * PR0P2 + 4 * PR ♦ RT**2 * PT + 6 ♦ PR * RT**2 ♦ QT
4 * PR * RT**2 ♦ QS + PR * RT ♦ PR0P2**2 - 2 ♦ PR ♦ RT * PBO

P2 ♦ PS - 2 * PR * RT * PR0P2 * PT - 2 ♦ PR ♦ RT ♦ PR0P2 * QT
2 * PR ♦ RT * PR0P2 ♦ QS - 8 ♦ PR * RT * PS ♦ QT - 2 ♦ P

R * RT ♦ PS * QR - 2 * PR * RT * PT ♦ QR + 2 ♦ RS**2 ♦ RT * QT
+ 4 * ftS**2 ♦ RT ♦ QR - 4 ♦ RS * RT**3 - 2 * HS ♦ RT**2 *

PR0P2 + 4 ♦ RS * RT**2 * PS - 4 * RS ♦ RT**2 * PT + b * R
S • RT«-*2 * QT - 2 * RS * RT**2 ♦ QS - 2 ♦ RS * RT ♦ PR0P2 ♦ P

T + RS ♦ RT * PR0P2 * QR + 4 ♦ RS ♦ RT ♦ PS * PT + ?, * RS
♦ RT * PS * QR + 4 * RS * RT ♦ PT**2 + 4 * RS * RT * FT * GT

+ 4 * RS » RT * PT * QS + 4 * RT**3 * PS - 2 * RT**5 * QS
+ 4 * RT**3 * QR + 2 * RT**2 * PR0P2 * PS - RT**2 * PR0P2 *
QR - 4 ♦ RT**2 * PS**2 - 4 * RT**2 ♦ PS * PT - 4 * RT**2

♦ PS * QT - 4 * RT**2 * PS ♦ QS + 4 ♦ RT**2 ♦ PS * QR + 2
♦ RT**2 * PT * QR)

2 ♦ PROPI * RS * RT**2 * PS - 2 ♦ PR**2 ♦ RT * PR0P2 * QT
+ 8 * PR ♦ RS * RT**2 * QT + 2 * PR ♦ RS * RT * PR0P2 * QT

8 ♦ PR * RS * RT * PS * QT - 8 * PR * RS * RT * PS » QR - A
* PR * RS * RT * PT * QT - 4 * PR * RT**2 * PS * QT + 4 * PR

♦ RT**2 * PS * QS + 4 ♦ PR * RT * PR0P2 » PS * QT + 2 * PR * R
T ♦ PR0P2 * PS * QR + 4 ♦ RS**2 * RT ♦ PT ♦ QT - 4 ♦ RS * RT**
2 * PS * QT - 8 * RS ♦ RT ♦ PS * PT * QT - 4 * RS ♦ RT * PS *
PT * QR + 8 * RT**2 ♦ PS**2 * QT) /

(- 4 * PROPI ♦ PR * RS ♦ RT**2 * PR0P3)

a) Expression initially produced by computer.

Figure 1

3-12

PQ = M**2 - PROPl/2,

PR = QR + RT - RS,

PS = QS + RT - PROPl/2,

PT = QS - PR + RT,

QS = M**2 - PROP3/2,

QT = PS - QR - RT,

PR0P2 = PROP1 - 2*RT + 2*RS

b) Relations between variables,

(/,N^*4 - (pR0Pl+PR0P5)**2)*(- 2*IV)**2*QR - 4*QR*RT

+ 2*RT**2 - RT*(PR0P1+PR0P3)+(PR*PR0P1+RS*PR0P3)

+ 2*Mt>*2*PR*RS/RT)

^*,'V*2*QR*(PR + RS)*(2*M**2 + RT + (PR0P1+PR0P3))

2*[V^*2*PR*RS*(2*QR - 6*RT - 5* (PR0P1+PR0P3))

2*(QR - RT)*((PR*PR0P1+RS*PR0P3)*(M**2 - (PROP1+PR0P3))

+ 2*QR*RT*(PR0P1+PR0P3))

2«(QR**2 + RT**2)*(2*QR*RT - (PR*PROPl+RS*PROP3)

+ RT*(PR0P1+PR0P5)) + 6»I**2*RT**2*(PR0PI+PR0P3))

C 4*PR0Pl*PR0P3*RT*PR*RS)

c) Final result produced by man and machine.

Figure 1

3-13

REFERENCES

1. A. C. Hearn, "REDUCE User's Manual", Institute of Theoretical

Physics Stanford ITP-202, Stanford Artificial Intelligence

Memo No. 50 (re-ised) April 1968.

2. A. C, Hearn, "REDUCE, A User-Oriented Interactive System for

Algebraic Simplification", Proceedings of the ACM Symposium

on Interactive Systems for Experimental Applied Mathematics,

held in Washington D.C., August 196? (to be published).

3. A. C. Hearn, "Computation of Algebraic Properties of Elementary

Particle Reactions Using a Digital Computer", Communications

of the ACM 9, 575, (1966).

h. J. McCarthy, et. al,, LISP 1.5 Programmer's Manual, Computation

Center and Research Lab of Electronics, M.I.T. Press,

Cambridge Massachusetts, 1965.

5. G. E. Collins, Communications of the ACM 9, 578,(1966).

6. Tobey, R. G,, Bobrow, R. J., and Zilles, S. N., "Automatic

Simplification in FORMAC", Proceedings of the AFIP; 1965

Fall Joint Computer Conference, Part 1, November 1965, p. 37.

7. P. G. Tobey, "Experience with FORMAC Algorithm Design",

Communications of the ACM 9, 589, (1966).

8. Max Engeli private communication.

3-1^

k. Hand-Eye Systems

The following paper, titled "Computer Control of a Mechanical Arm

through Visual Input", was presented at the 1968 IFIP Congress by

Karl K. Pingle, Jonathan A. Singer, and William M. Wichman. Mr. Pingle

and Mr. Singer are research staff members of the Artificial Intelligence

Project. Mr. Wichman is a former graduate student, now with Sanders

Associates.

Hand-eye research at Stanford was initiated by Professor John McCarthy

and has recently come under the leadership of Professor Jerome Feldman.

luaniMiiiiJiii mill

BLANK PAGE

INTRODUCTION

A growing body of research within the field of Artificial Intelligence

has been concerned with giving computers the ability to interact directly

with their environment. Much of this effort has been concerned with

visual perception, while a smaller amount has been directed toward such

areas as computer control of mechanical manipulators.

Ernst [1] used a computer-controlled arm equipped with tactile

and position sensors to find and pick up blocks scattered on a table,

while pioneering work by Roberts [k] produced a computer program that

could recognize certain solid objects and their photographs. Recently

work has begun on systems that combine perception and manipulation in

a coherent way. Impetus for the development of such systems stems

from a number of sources. Even those systems with very modest capabili-

ties find immediate application in various assembly-line tasks, 0th3r

potential application areas include planetary probes, where communication

delays necessitate some degree of autonomy in the device.

Hand-eye work in the Stanford Artificial Intelligence Project is

aimed at bringing together the perception and manipulation processes

to perform interesting tasks. Related work is being done at M.I.T.

At Stanford, we have assembled a rudimentary system employing a vidicon

television camera and an electrically powered arm controlled by a program

running -under a time sharing system on a PDP-6 computer. This initial

system performs simple sorting and stacking operations on cubical blocks.

Our main goal is to develop conputer-hand-eye systems that are

better for some purposes than human systems. For example, they may be

faster, stronger, more economical, or more expendable. The problems of

perceiving three-dimensional objects in complex scenes and of manipula-

ting them without accidently striking other objects are quite challenging.

The following secticns discuss both the equipment and programs

employed in the current system and give some quantitative results.

System Description

1. Task Descriptions

The two tasks which the system is currently able to perform are

the sorting of cubes by size into separate stacks, and the alignment of

one cube or. top of another.

In the first task, the eye program locates a cube in the television

camera's field of view and passes the coordinates of the television

camera's vertices to the arm program. The size of the block is computed

and compared with block sizes in any stack already begun. If it matches

one of them within a set tolerance, the arm picks up the cube and places

it in that stack. Otherwise the cube is placed on the table as the

beginning of a new stack.

The second task begins with two cubes in full view of the vidicon.

The eye program locates one block, and the arm picks it up and removes

it from view. The second block is then located and the arm places the

first block on top of it. The arm is moved away and the eye program

measures the alignment error between the two blocks. The arm then

repositions the tap block so as to eliminate the error. 'This process

is repeated until the error is within a fixed tolerance.

Depth information in the foregoing tasks is inferred by a technique

known as the support hypothesis [k]. Simply stated, it says that fron

a single viewing position the location of any point in a known plane

can be determined. Mathematically this is simply a mapping between two

fixed planes, which within the Hand-eye system are the table top or

support plane, and the image plane of the camera.

2. Hardware

The current Hand-eye system consists of a vidicon television camera

and an electrically powered arm, both connected to a Digital Equipment

PDP-6 canputer.

The video signal is digitized and stored in the computer memory.

Any rectangular portion of the image up to 250 by 533 points in size may

be read under program control, with the light intensity at each point

encoded as h bits (16 levels).

The arm currently in use was designed and built by a group at

Rancho Los Amigos Hospital near Los Angeles as a device to be strapped

to a paralyzed human arm. Consequently, it is quite anthropomorphic

in size and form. It is powered by small permanent magnet gear-head

motors mounted on the arm, giving Joint velocities of U to 6 r.p.m.

k-2

without load. Position feedback is provided by potentiometers, one of

which is mounted at each of the six joints. The hand is a two finger

parallel grip device approximately the size of a human hand, and has

a maximum finger opening of three and a half inches. The maximum reach

of the arm is about 27 inches, and its weight is about 15 pounds.

Power to the actuator motors is provided by an external D.C. supply

controlled by instructions from the computer. This power takes the

form of 16 volt pulses of constant width, whose repetition rate is

determined by the controlling program.

Other peripheral equipment used includes a point plotting CRT

display, a standard TV monitor, and a teletype console. The arm and

camera are mounted on tcp ol d large table. The other equipment is

distributed around the table at convenient locations.

5. Software

All of the programs of the Hand-Eye system are run within the

time sharing system of the PDP-6. The present set of programs consists

of: an "eye" section which is capable of reading the camera and locating

cubes on the table; an arm section which, given the position of a cube,

can pick it up and move it to a desired position; a control program

which sequences the other programs; and calibration routines which

relate the camera and arm coordinate systems to the workspace.

This collection of programs occupies approximately 24,000 words of

storage including data areas. The eye programs and the arm control

routine are written in machine language, while the arm solution programs

and coordinate transformation are in Fortran.

INFORMATION FLOW

Figure 1 shows the logical flow of the program. Control routines

to be discussed later route the information from one section of the

program to another, modifying the flow slightly to perform various tasks.

Before running the program a calibration routine relates four points

on the table to their positions in the TV image by tracing around four

•iangles permanently placed on the table and locating their right angles,

whose position on the table is known to the routine. The program uses

k.3

o oo ü c;
,- HO

o o ^ -P

^, o J-> 3
t-> a r. ru

rH -rt g
a o o o
E w 'T o
♦a. U^.-

ÄO

u o S!
G -rl-P'
r-i-P ■" ■

«•H w'
M—i;
0

■-! oi
(-•
d

■f.

^ +3
! o •,—,
' G

r-
pq 0

o \ o
W

^0
■ ■ ^-, i fo ^^
r- v> c^.
:^ G n ■
o v. o
O 0

-J
;; o

■r< -;-> ;■;
■.J cj 0
-r-i « 'H
■f (.,-(M
;>, 'o ,-, •

s.« y
o o >
> O yi ; -. O O
3 O j

l^_

C> ,.;

vi

o a :;
G i.3 .. i
r-1

•H
o
0) 1 s <-1

t-
■p f -p

CO •H •H J •H
;■; C tG> 1

3 to ^
O -H •H ('iK <iJ

•m ,'£ n . P p

..J O .» ''- .^ m t i ^.5 IH

"^ ■ P >
W -P &-• fe b0 G

w
1

o o
r-n «a H

ö

o
'\ k . V 5

-*

[R

©

<••
o

-a
■H
>

Figure 1

this information to compute a matrix for transforming a point in the

camera coordinate system into the arm coordinates of its projection onto

the table [2], Since the transformation is two-dimensional^ only points

lying on the table are transformed correctly.

When an object is to be located, an edge following routine is called

[j]. It starts at the bottom of the image and scans across and up

looking for an edge and computing the average intensity of the back-

ground. When a change in intensity is detected, the program moves around

the outer edges of the object it has found making a list of the coordin-

ates of the points it finds on the edges. After each point is found, the

program moves to a point a small distance in the direction the edge is

running, and applies a gradient operator, using the nine points surrounding

the new point. If the magnitude of the vector produced by the operator

is over a set threshold, the program is assumed to still be on the edge.

Since the edges are usually several resolution elements wide, the program

uses a hill climbing technique to find the largest magnitude, which is

taken to correspond to the center of the edge. If the magnitude is

below the threshold, the program is assumed to be off the edge. It

then compares the intensity at that point with the average intensity of

the background to determine whether it is inside or outside the object

and moves in the appropriate direction to find the edge again. Having

found the center of the edge, the program uses the direction of the

vector to determine the direction of the edge. Only the outline of the

object is seen since the hardware does not yet provide the capability

to trace interior edges. Figure 2 shows the three types of outlines

the program finds. Only the solid lines are traced.

After the outline of the object has been traced, a curve fitting

routine converts the list of points into the coordinates of the corners

of the object in two passes. In the first pass, the routine goes

through the list of points, combining them into short line segments.

The second pass combines each adjacent pair of lines into a single line

if they are nearly parallel. Otherwise, the firrt of them is taken to

be a complete side of the object and the process is continued with the

second line.

^-5

Cornial Degenerate

Figure 2

Multiple

Figure 5

v.**

Figure k

a

Figure 5

 ^ d-

k-6

The output of the edge follower and curve fitting routine is a

data structure which represents the object in a way that simplifies

further processing. The data structure is generated by means of a list

processing language designed for this program. The data structure,

which resembles that of CORAL, is created by MACRO statements in the

PDP-6 assembly language which set up calling sequences aid. then call

subroutines in the langubge's processor. The edge follower can trace

around objects of any shape. The curve fitting routine, however, can

only fit straight lines to the points.

Before exiting the curve fitting routine, the coordinates of the

corners are transformed into the arm's coordinate system. The difference

between the actual location of the corners and the computed location is

generally less than .0^ inches and repeatable to about .03 inches.

The repeatability error is due to the resolution limitation of the TV,

as well as to slight jitter, quantization error, and noise. Much of

the location error is probably a result of errors in tne positions of

the points used to calculate the transformation matrix.

After the objects have been located, the program searches for the

cube nearest the camera. The object outline is tested in various ways to

determine whether or not it is a cube. These tests include checking

the number of points seen along the outline of the object and rejecting

the object if the number is too small, comparing the lengths of the

edges meeting at the lowest corner for equality, and testing the angle

between the edges for perpendicularity in table space. Special tests

are used when the block is seen head on, giving a degenerate outline

with only two visible corners on the table. Since only the outline is

traced and several blocks may be close enough together so that their

images overlap, the object may be the outline of several blocks. The

coordinates of the lowest corner in the image and of the two adjacent

corners are given to the arm routine. In the degenerate case, the invisi-

ble corner is given calculated coordinates. The coordinate transformation

is correct only when the points are on the table, and these are the only

points which are sure to be on the table. The arm program must calculate

any other information needed from these three points and from the knowledge

that the object is a cube.

^-7

In order for a manipulator to grasp objects with arbitrary positions

and orientations, it must have at least seven degrees of freedom;

three for position, three for orientation, and one for grasping.

In order to control such a device, we must calculate for the actu-

ators of the mechanism, the deflections that will locate it at a desired

point in the six-space of position and orientation. In the case of a

parallel jaw hand, the position to be reached can be described in terms

of a point and two orthogonal vectors, as shown in Figure 3, where

P3 is the point the hand must reach, la is the vector indicating the direc-

tion the hand is pointing (the approach direction), and T? is vhe orien-

tation of the plane of the hand about its approach direction.

The geometric configuration of the arm is shown in Figure 4.

1, 2,...,6,7 are the actuations, SI, S2, S3 are links in the arm, and

P0, PI, P2 are the shoulder, elbow, and wrist joints respectively.

Calculating the defection angles required to achieve a desired posi-

tion and orientation is done as follows: the arm is imagined to be in

the desired location. Using the shoulder position and the constraints

on the hand, the position of the wrist and elbow can be calculated.

This in effect determines the direction of each link in the aim, whence

the actuation angles can easily be calculated.

In general, there are multiple solutions to any given positioning

problem. There are two locations for PI (the elbow) which yield identi-

cal wrist positions. In addition, there is a pair of solutions at

each 'oint, since each one is symmetric. That is, the same link direction

"t (Figure 5) can be achieved by rotating a 180 degrees and deflecting

7? by the same angle e to the other side of line cf. Since there are

three joints, there are eight possible combinations for each of the two

elbow positions, or a total of 16 solutions. Not all of these are

realizable because the arm has mechanical stops limiting maximum deflec-

tions.

The existing control system used with the arm consists of an analog-

to-digital converter for reading potentiometers on joints, an output

register for motor pulsing, and a servo program. Since this program

must operate in real time within a time sharing system, it is treated as a

^-8

special case by the system, and is given control every 16,7 ms (60 Hz).

The program is a simple proportional servo which calculates the pulse

rate for each motor. Pulse width for each motor is manually adjustable,

and is set to a maximum consistent with the requirement that a single

pulse give as small a motion as is necessary for fine movements.

The delay between pulses to each motor is calculated by dividing

by r constant the position error and using the result (limited by a

minimum and maximum value) to determine the period of time before the

next pulee. Velocity damping is unnecessary since the joints have

a great deal, of internal friction.

CONTROL

The eye and arm routines are called by a control program coded to

perform a specific task. Two tasks are currently being performed;

sorting cubes by size and building a stack of blocks of each size, and

stacking one cube on top of another using the eye to attain more

precise alignment. Since both tasks are similar in their control, the

sorting program will be described in detail and the other one outlined.

The control program calls the edge follower, requesting a cube

position. After curve fitting and testing, if the control program decides

that the object returned is not a cube, or has not been traced well

enough, it calls the edge follower for another cube. If the object is

all right, the arm routine is called and given the block position.

The arm program checks the size of the cube to see if it has seen

a cube this size before. If it has, the arm picks up the cube and

puts it on the stack for that size. Otherwise, it computes a position

a small distance from the last stack and starts a new one. If the outline

given it contained a number of cubes, the arm will attempt to pick up

the lowest one on the TV image. With the bottom cube removed, the next

pass of the eye program will give the outline of the group without

that cube, and, eventually, the arm will have removed all the cubes

in the group. Thus we avoid the problem of analyzing the composite

outline.

To simplify processing, visual input is not used vhile moving and

stacking the cubes. When a cube has been picked up, the control program

can tell from the position of the fingers if the cube has been dropped.

If so it reverts to the search phase. After moving the cube to the proper

position and releasing it, the fingers are closed again to determine if

the cube is still there. If not, the stack has fallen over and the

control routine asks the operator to tell how many cubes are left on

the stack. The program continues to run through this loop until the

stacks are so high the arm cannot reach the top, or it runs out of

cubes.

For the other task [2], the transformation calculation is dene

twice, first using points on the plane and a second time using points

at a height above the table equal to that of a two-block stack. The

program finds two cubes and sets the second one it finds on top of the

first. It then moves the arm out of view of the camera and traces

around the stack. It puts the three lowest corners through the trans-

formation computeö on the table and the three highest through ths other

transformation. If the cubes are aligned perfectly, the top four

corners of the cubes will have the same coordinates, in two dimensions,

as the bottom corners directly below them. Otherwise, the program

computes the center of the cubes and their orientation, uses this

information to compute the rotation and translation necessary to align

them, and moves the upper cube accordingly. This process repeats

until the blocks are aligned to within a set tolerance.

CONCLUSION

The present system performs the various tasks at a speed considerably

slower than a person would. The visual portion is fairly fast; it takes

under five seconds to trace around an object and about 1/10 second to do

the curve fitting. The arm routines are limited by the speed of the arm

which must run rather slowly to maintain sufficient positioning accuracy.

The arm requires about 50 seconds to pick up and stack a block. In

the case where visual feedback is used, the program generally requires

two or three trials to position the block correctly. If many more

attempts are made, the accumulation of arm and position errors usually

prevents the program from ever succeeding; the top cube will eventually

be knocked off the stack and the process will start over.

i^-lO

Several additions and modifications to the program and hardware

are planned to improve the performance of the system, A new eye,

employing an image dissector, is being tested as a possible alternative

to the vidicon. So far tests have shown that the device has

more resolution and less noise than the vidicon although it is considerably

slower. We hope that with this device it will be possible to find

interior edges quite reliably. This should enable us to use visual

feedback without having to release the block being held, since the

information needed can then be determined from inspecting the edges

where the cubes meet.

A hydraulic arm has recently been completed which appears to be

faster, smoother and more accurate. This should permit more accurate

stacking and reduce the chance of stacks being knocked over by shaky

arm movements.

The transformation matrix calibration will be altered to produce

three dimensional coordinates, thus providing correct coordinates for

corners off the table and facilitating work with objects other than

cubes.

Finally, work is starting on a higher level language for describing

tasks and operating on the data structure so that the operator can input

a task in fairly general terras and the program will be able to carry it

out. Using this language we plan to develop a more powerful system

capable of a large number of manipulative tasks.

ACKNOWLEDGEMENTS

The authors wish to thank Professor John McCarthy for his suggestions

and support which were instrumental in the initiating of this project.

h-U

r
r
r
i

r
r
i
i
i

i
i

i

i

i

i
i
i

REFERENCES

[1] Ernst, Heinrich A. MH-1, A Computer-Operated Mechanical Hand.

Doctoral Thesis M.I.T. December I96I.

[2] Wichman, William M. Use of Optical Feedback in the Computer

Control of an Arm. Engineering Thesis, Stanford University.

August 1967.

[3] Pingle, Karl K. A Proposal for a Visual Input Routine. Stanford

A.I. Memo No. h2. June I966.

[k] Roberts, L. G. "Machine Perception of Three-Dimensional Solids"

in Optical and Electro-Optical Processing of Information.

p. l'^. M.I.T. Press. Cambridge, Massachusetts. 1965.

k-12

5. Speech Recognition

The following paper by John McCarthy, Lester Earnest,

r>. Raj Reddy, and Pierre Vicens is entitled "A Computer with Hands,

Eyes, and Ears". It will be presented at the 1968 Fall Joint

Computer Conference.

This paper overlaps the hand-eye paper to some extent, but

focuses on recent speech recognition work done under the leader-

ship of Professor Reddy.

MW—»*!

BLANK PAGE

I

—'i.iR!PE5i?3^"i' U'!"-'" ■•-^^W^W

I. INTRODUCTION

The anthropomorphic terms of the title may suggest an interest in

machines that look or act like men. To this extent it is misleading.

Our interest is in extending the range of tasks to which machines can

be applied to include those that, when performed by a human, require

coordination between perceptual and motor processes. We attempt to

suppress the egocentric idea that man performs these tasks in the best

of all possible ways.

In place of "eyes, ears, and hands" we could refer to "cameras,

microphones, and manipulators", but find latter terms less suggestive

of the functions that we wish to emulate. We leave the term "robot"

and the ideas that go with it to the science fiction writers who have

made them so entertaining.

Shannon, Minsky, McCarthy, and others had considered the possibility

of a computer with hands, eyes and ears at one period of another during

the latter part of the last decade. The main obstacles to the realization

of the idea were the unavailability of suitable computers and 1-0 devices,

and the prohibitive cost of such a system. Ernst and Roberts" were

among the first few who used a computer to realize these objectives.

Glaser, McCarthy, and Minsky5 proposed that the first major attempt at

the biological exploration of Mars should be made by a computer controlled

automatic laboratory, containing a wide variety of visual input devices

and mechanical manipulators which can under computer control perform many

of the tasks of bio-chemical laboratory, requiring only a limited super-

vision by the experimenter on earth.

The work reported here and a related project at M.I.T. were under-

taken several years ago to combine and improve techniques for machine

perception and manipulation. Progress has been slower than we hoped

because there have been many previously unrecognized problems and few

simple solutions. Nevertheless, we have a system that does such things

as recognize spoken messages that are combinations of terms previously

"learned", "see" blocks scattered on a table, and manipulate them in

accordance with instructions.

5-1

r >

\^ \

ui <C u - c o in gs
O 1

0» >.^

a. -
,n' >" >.v' yp
u ra

a 00 .S
(\i >< o

i

\ Z2-
'.i

u 2?; > —
OJUJ A

B in—tn

Q~ 0

3
—\
in!

= & ^ * ^

0)
-p

W

in

-p

C;

u
o

p
w

01
u
:'
bO

•H

5

5-2

Tne work is just beginning. Our existing system exhibits rcoxe

problems than solutions, but that was its purpose. The following

sections discuss considerations leading to the choice of equipment,

techniques used to convert the huge masses of television camera and

microphone data into useful information, and the control of arms.

II. SYSTEM CONFIGURATION

Major considerations in the choice of system components have been

off-the-shelf availability and ease of interfacing. This approach has

both advantages and die-advantages. The main advantage, of course, is

a relatively quick start. Figure 1 shows major components of the

existing system. Figure 2 is a photograph of the hand-eye system.

At the center of the system is a time-shared PDP-6 computer with

I51K words of core memory of 56 bits each and an 11 million word fixed-

head disk file. The PDP-6 was chosen for having a working time-sharing

system, ease of adding special 1-0 devices, and unrestricted data transfer

rates of up to 50 million bi,ts per second between memory and external

devices. The Librascope disk file has a 2h million bit per second

transfer rate and provides both . swapping and permanent file storage.

There are a number of local and remote teletypes, CRT displays, a

line printer, plotter, and tape units for general user services.

Our research objectives imposed several special requirements on the

time-sharing system. When a person begins to speak, the system must

ensure that the audio system is listening to him and must not swap out

the program just because its time is up. Similar considerations apply

to arms that are in motion. The system must also provide for communi-

cation between programs. The DEC time-sharing system was modified

locally to meet these requirements.

Visual input to the system is provided by a vidicon television

camera operating in accordance with EIA standards. The video signal is

digitized to four bits (l6 levels of light intensity) and sampled at em

instantaneous rate of 6.5 million samples per secend. Making use of

interleaving, any rectangular portion of the image, up to 666 x 500

points for the full field of view, may be read into memory under program

5-3

Figure 2. A Picture of the Hand-Eye Equipment

5-'4

control in two frame times (l/l5 second). For static scenes, finer

gray-scale resolution can be obtained by averaging measurements over

multiple frames.

The laboratory also has an image dissector camera which is capable

of measuring the brightness of image points in arbitrary order. It is

capable of directly resolving better than 1000 x 1000 points with a gray-

scale resolution of 6 bits or more. It is relatively slow if a large

number of points are to be read and suffers from settling-time problems

when large deflections are used.

A comparative study of optical sensors for computers, including the

possibility of a laser eye with direct depth determination, has been

made by Earnest .

Audio input to the system is provided through an A-D converter

connected to the PDP-6. Two different audio devices are current]'/

attached. In one, composed of a condenser microphone and a high quality

amplifier, the speech signal is sampled at a rate of 20,000 samples per

second and digitized to 9 bits. In the other, shown on Figure 3, the

output of a crystal microphone is amplified and filtered into three

frequency bands. In each band, the maximum amplitude of the signal and

the number of zero crossings are measured by analog circuitry. Every

10 milliseconds, each hold circuit is read by the A-D converter to 12 bits

and then reset for the next 10 milliseconds.

Input of the raw speech waveform without any preprocessing hardware,

such as a filter bank, has the disadvantage of requiring more processing

by the computer and more storage. But on the other hand, it provides the

user with a very flexible means of analysis and permits all kinds of

processes to be simulated. In fact, we believe that no solution should

be implemented in hardware until it has been proven to be one of the best

possible solutions by computer simulation. Reddy-7 states that prosodic

parameters of speech, requiring the use of segmentation and pitch

detection are more easily determined from the direct speech signal than

from the output of a bank of filters.

The second audio-device arises directly from the preprocessing

program of Reddy and Vicens . They use two smoothing functions which

5-5

Ampliliei

Filter I
150-900 H,

Filter II
900-2200 H-

Filterlll
2200-5000 H-

peak to peak
detector

Zero Crossings
counter

r^

^

peak to peak
detector

Zero Crossings
counter

^ Ul
X

r^

P

peak to peak
detector

Zero Crossings
counter

A-D

CONVER

* 1
Ul
OJ
in

a
n. «i

"O ; XI 1
ra i K.\
4) 1 C
K ÜJ 1

TERR

'.O

ccmiiuti.

'.J

Reset pulses

Pigure 3. SPEECH PREPROCESSOR

CLOCK

5-6

produce approximations of the same parameters (maximum amplitude and

zero-crossingö). This kind of system is required when one wishes to

analyze long utterances^ because a direct analysis of the speech wave

would consume large amounts of core storage and preprocessing time.

The example of speech recognition discussed below uses the pre-

processing hardware. The sampling rate of this device, being very slow

(5600 Mts/cec. N allows the central processor to process the input as

it, comes, whicn is an important consideration if real time speech

recognition is desired.

The electric arm was originally designed as a device to be strapped

to a paralyzed human arm. It has six degrees of freedom which permits

it to place the hand in arbitrary positions and orientations within

reach, plus a finger-closing motion. It is powered by small permanent

magnet gear-head motors mounted on the arm, giving joint velocities of

k to 6 r.p.m. with small loads. Position feedback is provided by

potentiometers mounted at each of the six joints. The hand is a two

finger parallel grip device approximately the size of a human hand and

has a maximum finger opening of 6.h centimeters (3.5 inches). The

maximum reach is about 68 centimeters (27 inches), and its weight is

about 7 kilograms (15 pounds). Power to the motors takes the form of

16 volt pulses whose width and repetition rate are controlled by the

computer program.

In its original form, this arm had a number of maladies such as

severe mechanical play in the joints and imprecision in the potentiometer

readings due to unstable mountings. Despite several improvements, the

arm is still rather slow, shakey, and inaccurate. The position of the

hand may differ from computed values by as much as a centimeter.

A hydraulic arm, recently completed, is faster, smoother, and more

accurate in its motions. It is also capable of dealing a fatal blow to

the experimenter, exhibits other antisocial properties such as leaking

hydraulic fluid, and tends to destroy itself periodically.

III. SCENE ANALYSIS AND DESCRIPTION

If we digitize the light intensity at every point in the whole

field of view of the television camera, the computer will receive

5-7

666 x 500 or 335,000 samples, or 1,332,000 bits of data per frame.

The problem of scene description is the formulation of a program which

will abstract meaningful descriptions of objects of interest in the

scene and their positions.

The problem of scene description must be distinguished from the

problem of classifying pictures into categories with which much of the

published theory deals. The first working description program was
2 7

reported by Roberts , Narasimhan suggests that richly structured

pictures such as bubble chamber pictures, line drawings, and others are

best studied in the form of picture analysis and description and proposes

the use of a linguistic model. Recent work by Miller and Shaw", and

Shaw" illustrates the power of the linguistic models in the analysis and

generation of pictures.

The linguistic models have the advantage that they can be used for

both analysis and generation of pictures, and that many of the powerful

tools developed for syntax-directed analysis of languages can be directly

utilized for the analysis of pictures. The weaknesses of the present

linguistic models, at least as far as the analysis of images of 3-D scenes

is concerned, are the following:

•Attempts at describing the connectivity of 3-dimensional objects,

using a data structure primarily developed for the description of

strings often results in unwieldy and awkward descriptions leading one

to doubt whether such descriptions really facilitate analysis. Extension

of the models to use list structures instead of strings should remedy

this weakness.

•The present linguistic models also suffer from many of the problems

of error recovery of syntax directed compilers. This is especially

critical when dealing with analysis of pictures; as a result of noise

and jitter in the input device spurious lines and edges may appear all

over the pictures, and often some of the expected edges may be missing.

• One of the main problems with images of 3-D scenes is not so much

how to describe what is visible but rather how to describe what is only

partially visible. Heuristics for handling degenerate views of objects

cannot be conveniently incorporated into presently proposed linguistic

models.

5-8

[

In view of the above corsideration it appears that generalizations

of linguistic models will be needed before they can be used effectively

for the analysis of images of 3-D scenes.

Our existing scene analysis program is related to the one used by
2

Roberts and has recently been described by Pingle, Singer, and

Wichman , Instead of repeating that description, we shall note some

shortcomings of the existing system and some possible solutions.

The existing eye program locates cubical blocks of various sizes

scattered at random on a contrasting background. Its "world model" has

room for just one block at a time and those that are partly obscured by

others may be perceived only after the intervening blocks have been

removed by the hand. Depth determination depends on the assumption that

all objects rest on a known planar surface.

The edge tracing program in use does not reliably detect subtle

differences in brightness between adjacent surfaces of the same or

similar objects. The block stacking tasks that have been undertaken

to date do not require this information.

A more general world model, in the form of a multiply-linked data

structures, is bping devised that will accommodate at least multiple

objects bounded by combinations of planar surfaces in arbitrary positions.

More powerful edge tracing procedures are being tested, and we plan to

employ some of the contiguity recognition techniques of Guzman together

with three-dimensional plausibility tests of postulated objects.

In related work, the problems of combining information from

several views and viewpoints into a single model is being attacked. We

expect these combined efforts to produce a much more complete description

of the work environment.

IV. SPEECH ANALYSIS AND DESCRIPTION

If we plot the changes in air pressure produced by a speech utterance

us a function of time we will see a waveform such as the one given in

Figured, This signal, as reflected by the changes in voltage generated

by the microphone, is digitized in our system to 9 bit accuracy every

50 us, resulting in a data rate of about 180,000 bits per second of

5-9

speech. In normal speech, every second of speech contains about 5 to

10 different sounds which usually require less than 50 bits to

represent in the written form. The problem of speech description, then,

is the development of a scl of procedures which will reduce the 180,000

bits of information to about 50 bits. Of course, human speech carries

other information such as speaker identity, emotional state, his

location, age, sex, health and other such features. But what is of

primary interest to us here is the message uttered by the speaker.

First attempts at speech recognition by a computer were restricted

to the recognition of simple sounds like vowels and digits, just as

preliminary attempts at picture recognition were restricted to the

recognition of characters. Tne approaches developed for the recognition

of simple sounds, such as the use of a metric in a multidimensional

space partitioned by hyperplanes, are not easily extendable for the

analysis of a complex sequence of sounds which may be part of a spoken

message. The structure of the message and the interrelationships among

the sounds of the message are the important factors.

Speech is, perhaps, the most extensively investigated of all the

human perceptual and motor processes. And yet a large body of this

research is not directly relevant for machine recognition of speech.

Even the relevant literature on the acoustic characteristics of speech

is more qualitative than quantitative and is meant for use by men
12

rather than by machines. Stevens has recently summarized much of the

known data on acoustic properties of speech sounds in a form amendable

for machine processing. Recent attempts at computer speech recognition

by Bobrow and KT att ^ and Reddy provide modelj which can be used for

the recognition of phrases, sentences, and connected speech. The latter

forms the basis of present work. The model currently being used consists

of four stages: segmentation, sound description, phrase boundary deter-

mination, and phrase recognition.

Segmentation

If you consider the sound in Figure h you will see that it is not

clear where one word ends and another begins or where a particular sound

within a word ends and the next begins. This is because the shape of

5-10

'J

o u
z
O a:
OD

o

■:

n

>-9-

ir

i-

o
o

o
m
;< o

o

o
M

<D a
■p

CM

Ü

to
■H
CO

05

0)

•H

-8;-

5-ii

the vocal tract is continuously changing and there is no clear cut

point in time where we stop saying one sound and start another. To be

able to associate discrete symbols with the continuous speech wave, a

machine must be able to segment a connected speech utterance into dis-

crete parts.

To be able to segment speech we need to answer questions such as

"what is a sound?" and "How do you distinguish one sound from another?"

One can define a sound on purely acoustical basis: a sound is a part

of the speech wave in which the acoustic characteristics are similar

(a sustained segment) or one in which the characteristics vary with

tijne (a transitional segment). To distinguish one sound from another

according to the above definition we need a measure of similarity or

closeness between two adjacent units of speech.

Conventional metrics such as the Euclidean distance fail tc be

satisfactory. To be usable the closeness function should be based on

the following heuristics:

• Since some parameters are more variable than others the closeness

function should provide for appropriate weighting of parameters,

• Although most of the parameters may be similar a drastic change in

one parameter should result in a 'not-similar' indir-' .'...n.

• If the difference between two corresponding parameters is less than

a minimum, then the two parameters should be considered as identical.

• The greater the parameter value, the greater should be the

difference we are willing to accept, suggesting the use of a relative

error function such as dy/ys

• When the parameters are close to zero the relative error function

dy/y can take abnormally large values, suggesting the use of a function

sucn as k . dy//y",

A closeness function which satisfies the above heuristics and a

detailed description of segmentation are given by Reddy and Vicens .

The segmentation process can be summarized as follows. A preprocessing

procedure divides the speech wave into 10 ms minimal segments and

calculates estimators of four characteristic parameters: the amplitude

and zero crossings of the dominant frequency under 1000 cps and the

5-12

amplitude and zero crossings of the dominant frequency under 1000 cps.
Ik

An alternative for this preprocessing task is to use special hardware ;

it divides the speech wave into 10 ms minimal segments and accumulates

six parameters: amplitude and zero crossings of the signal in three

frequency bands: 150-900 Hz, 900-2200 Hz, 2200-5000 Hz.

A primary segmentation procedure calculates closeness values and

groups together adjacent minimal segments that may be regarded as

similar. A secondary segmentation procedure divides these primary

segments into smaller segments if the within-the-segment variation of

parameters is too high. The closeness values are recomputed between

the secondary segments, giving greater weight to the frequency com-

ponents than the amplitude components. If two secondary segments are

sufficiently close and are not local maxima or minima, they are combined

to form larger segments.

Sound Description

The purpose of generating a sound description is to abstract, from

the wide range of possible values of parameters, a label which would

adequately describe the nature of a sound segment. The higher the level

at which a sound is described, the easier it is for the pattern matching

and recognition routines to determine what was said. At one extreme

the description might consist of the average parameters of the segments

and the other a single label for the whole utterance. In between,

descriptions can be attempted at the level of phoneme groups, phonemes,

diphones, or syllables. The nature of our segmentation is such that it

is more appropriate for us to attempt description in terms of phonemes

or phoneme groups.

Phoneticians have classified the sounds we produce according to the

shape of our vocal tract. There are about kO such different sounds

(phonemes) in English. One natural description of a speech utterance

is in terms of its phonemic transcription. For example the word picks

could be described as consisting of four sounds, P, I, K, and S in that

sequence. However, various altophones of the same phoneme exhibit widely

varying acoustic characteristics depending on the context in which they

occur. This often results in a substantial overlap of characteristics

5-15

among similar phonemes. Thus it is not uncommon for the word bits to

have similar acoustic parameters to picks. This possibility of error

preludes the use of simple pattern matching routines. At present, we

generate descriptions in terms of phoneme groups: vowel, nasal,

fricative, stop, burst and so on. We will see later how such a

description is useful in reducing the search space.

The procedure used for the classification of segments into phoneme
5

groups is an extension of the one given by Reddy . If a segment is

noiselike, then it is labeled FRIGS. Otherwise if the segment-amplitude

is a local maximum, then the segment is labeled VOWEL. Otherwise the

segment is labeled STOP, NASAL, CONSONANT depending on segment parameters.

For example, the description generated for the word picks might be as

follows: "The sound consists of a stop, followed by a transition,

followed by a vowel, followed by a stop, followed by a fricative each

with the following parameters ...".

Word and Phrase Boundary Determination

Like many other aspects of English, the problem of determination of

word boundaries in connected speech is ambiguous. For example the sound

description /AISCREEM/ could have resulted from the words YI scream'

or 'ice cream'. The problem of word or phrase boundary determination

can be completely by-passed if the problem at hand requires only the

recognition of a limited set of words, phrases or sentences. Then the

sound description of the whole utterance can be stored in the lexicon

for future matching with a similar description. However, as the

lexicon gets larger and larger it becomes necessary to consider breaking

up a connected speech utterance into words and phrases which can then

be recognized by a phrase recognition program.

One obvious solution to this problem is to require the speaker to

pause for a few milliseconds between words or phrases. But this gets

to be annoying after a while. At present we are considering connected

speech utterances of the form

<coinmarid> ::= <function name> <argument list>

<argument list> ::= <argument> | <argument list> <preposition> <argument>

5-14

<function name>

<argument>

<preposition>

= PICK UP | STACK | ASSIGN | ADD | SUBTRACT |

= THE LARGE BLOCK | FAR LEFT | .ALPHA j BRAVO

= AT I OF I TO I FROM I ...

By carefully choosing the function names, the possible arpuments, and the

associated prepositions it is possible to determine the -word or phrase

boundaries. Certain keywords that ye can call phonemic context free

words play an important part in this determination. A good example of

ich a word is BLOCK, starting with a silence (B) and ending with a

silence (K), the only vowel is never altered by the adjacent phonemes.

As a result such heuristics as 'scan until you find BLOCK' may be done

with a low percentage of error. Use of restricted special purpose

command languages for communication to the computer such as the one

above is not unreasonable in view of the fact that we have had to make

a similar compromise for programming languages. How interesting the

spoken languages can get will depend on how reliably and precisely we

can generate sound descriptions.

Word and Phrase Recognition

Given a sound description of a word or phrase, we need a description

matching algorithm to determine what was said. If we can guarantee that

the description is an error-free phonemic transcription then all that

is needed is a simple classification net which grows as new sounds are

uttered. Since such a guarantee will not be forthcoming in the near

future, if ever, we need a recognition procedure which will cater to the

possible errors in the sound description. Two utterances of the same

phrase by a single speaker can exhibit different descriptions even under

the same environmental conditions. Due to minor changes in the emotional

state he may say it faster, slower, or with slightly different stress

and intonation resulting in a loss of segment, insertion of a segment,

or assignment of a wrong label, e.g., NASAL instead of STOP. This

possibility of error in the description poses the well kncwn lack of

synjhronization problem, i.e., if two descriptions of the same phrase

differ by one or more segments, the problem of determining which one it

is that is missing.

5-15

I
I
I
I
c
D
D

Given two descriptions which axe to be compared, a mapping procedure

determines the possible correspondences between segmental descriptions.

It uses the hi-uristic that VOWEL and FRIGS segments can be reliably

detected and first maps VOWEL for VOWEL and FRIGS for FRICS. The

remaining unmapped segments are then mapped on the basis of similarity

of parameters.

Given the correspondence between aogment descriptions, an evaluation

procedure compares the parameters of the mapped segments to determine if

they could possibly be two different utterances of the same phrase.

Similarity of the parameters is given based on the heuristics given for

the closeness function in the section on segmentation. Of course, any

unmapped segments have a detrimental effect on the similarity measure.

If the similarity value is over a certain threshold then the two de-

scriptions are considered the same.

If no candidate was found during the first try, the program,

assuming that it knows what was said, supposes that the FRIGS were not

well determined and were classified as a high frequency stop (burst)

or vice versa. If this is the case, a second search is attempted

mapping only VOWEL for VOWEL. All the remaining unmapped segments are

v.hen mapped on the basis of similarity of parameters as in the first

try (but with FRICS included).

If after this second try no satisfactory candidate was found, two

different actions may ^.ake place: in learning mode, the new description

is entered into the lexicon along with the print name; in recognition

mode, it is rejected.

Unless the candidates for pattern matching with an incoming

description are chosen carefully from the lexicon, it could take a

long time to determine what was said. To minimize the search space,

the lexicon is ordered on the basis of the number of vowel segments and

the number of FRIGS segments, furthermore the vowels are classified in

nine subclasses according to the values of their zero crossing para-

meters. The direct matching of these subclasses easily eliminates

some entries in the initial list of the possible candidates. Each

5-16

D
D
D
0
0
0
8
D
D
0

entry in the lexicon consi-cc of a packed version of the description

and parameters generated by the sound description procedure. A detailed

description and evaluation of the phrase recognition procedure is
15

given by Reddy and Vicens .

Remarks

The preceding subsections attempt to give an overview of the state

of accomplishment in speech recognition at our project. Segmentation

and phrase recognition procedures give correct results about 95 percent

of the time. This can be improved slightly by using more sophisticated

preprocessing routines. Work has barely begun on the determination of

classes of words and/or phrases for which boundaries can be determined

unambiguously in connected speech. A great deal of work remains to be

done in the generation of reliable sound description.

If a reliable description can be obtained in the form of a phonemic

transcription (or some such unit) we can reduce the search space of the

word and phrase recognition routines considerably, and we will be able

to unambiguously determine word boundaries for a larger class of words.

Only then can we hope to recognize words from a lexicon of, say,

20,000 words in close to real time. We have already mentioned that the

main difficulty in obtaining a reliable phonemic transcription is the

wide variability of acoustic characteristics of a phoneme depending

on context. Theoretically every phoneme can occur in l600 or so

different contexts. Many of them do not occur in natural speech and

the remaining can perhaps be grouped together into 10-20 contextual

categories for each phoneme. The hugh task that remains to be done is

the investigation and methodical cataloguing of the modifications to

the features of a phoneme, and the development of rules for transformations

on phonemic features based on context. It will perhaps be many years

before such a study is complete but a great deal can be done in computer

speech recognition even with incomplete results using the model proposed

here.

V. CONTROL OF A MECHANICAL ARM

In order to carry out complex manipulation tasks, it is necessary

to do planning for and control of the arm at several levels. At the

5-17

Ml. !

have and has been described by Pingle, Singer and Wichiuan .

An obstacle avoidance technique has been devised by Pieper

5-18

n
D
ii

top level there is a goal-seeking process ■which integrates the activities

of the various sensory, perceptual, model-building, and manipulation

processes. Next there must be planning of subtasks. For example, if

we are given a description of an object to be assembled and a description ■

of available components, we must plan which components will go in which

locations and the order in which they are to be placed.

Each subtask generates a sequence of motions (e.g., move hand H to

point P and open fingers). At this point, the model of the environment

should be checked for space occupancy conflicts (i.e., the arm shouldn't

bump into things accidentally). In case cf conflicts, we must replan the

arm motions and, possibly, the order in which components are put in

place.

Given that the hand is to reach a certain position, we must

calculate how each of the arm joints is to be positioned. For arms

with certain geometric properties, this can be a very quick and reliable

calculation. For others, it may involve a slow and uncertain iterative

process.

Finally, there is a process that servos the arm from place to

place, possibly with constraints on the velocity or force to be employed.

Our existing system exhibits each of these levels of planning and

control in some form, but without much generality. In most cases, an

ad hoc sequence of subroutine calls takes the place of a flexible

planning function. As one consequence, the arm readily runs into

objects in its vicinity. The calculation of joint positions required

to reach a given point is relatively straightforward for the arm? we

I
I
I
I

D
r.
i

It attempts to make the point of closest approach greater than a

specified value between all parts of the arm, modelled as a series of

cylinders, and an environment containing planes, spheres, and cylinders.

There is much to be done in the area of planning assembly tasks.

Many of the things that we do instinctively, such as building things

from the bottom up or from the inside out, need to be formalized and

translated into programs.

I
I!

I

E

i:

mmjnmm

VI. AN EXAMPLE

As an illustration of existing capabilitiea, we describe a system

that obeys the experimenter's voice caomands to find blocks visually

and stack them as ordered. The grammer chosen for this example is as

follows.

Syntax

< command > ::= < commandl > | < command2 >

< commandl > : := < orderl > I < orderl > EMPTY

< orderl > ::= RESCM | STOP

< command2 > ::= PICK UP < argument list>

< argument list> ::= < size indicator > EMPTY < position indicator >

< size indicator > ::= EMPTY | < size > BLOCK

< size > : := SMALL | MEDIUM | LARGE | EMPTY

< position indicator > : := EMPTY | < positionl > | < positions >

< positionl > ::= < position > SIDE

< positions > ::= < position' > < position'S < position word >

| < position" > < position' > < position word >

< position word > ::= ANGLE | CORNER

< position > :

< position^ ;

< position" >

Semantics

= < position' > 1 < position" >

= EMPTY | LEFT] RIGHT

:= EMPTY I UPPER I LOWER

The meaning of some of the terminal symbols is obvious, but some

others, like RESCM and EMPTY need explanation.

The command 'rescan' is used to indicate that the scene might be

disturbed and that the vision program should generate a new scene

description.

The terminal symbol EMPTY means no speech utterance at ail or

sounds not recognized by the word recognizer. If any of the non-terminal

symbols is finally reduced to EMPTY the middle value is assumed. For

example if < size indicator > = EMPTY , a block of medium size will be

assumed.

5-19

Sentences like 'pick up the small block standing on the upper

right corner', 'rescan the scane1, 'pick up any block' are correct

according to the grammar.

After the preliminaries such as training the phrase recognition

system and calibration of the arm and eye coordinate systems, the

picture recognition program looks at the image and generates a scene

description of ail the cubes present in the field of view. The

description for each block consists of the location, size and orient-

ation of the block.

Given a command, the speech analysis program segments the speech

and generates a sound description. This description is then used by

the scanner-recognizer which decodes it and passes the result of its

analysis to the main program.

The scanner-recognizer requires a good word recognizer utility

program. The recognition is done by scanning the speech utterance

description forward and backward using feedback from the grammar. The

decoding of a sentence like 'pick up the small block standing on the

right side' will be done as follows:

Recognize PICK UP

Then scan until BLOCK

If BLOCK backtrace to find size attribute

Backtrace from the end to find SIDE

Backtrace to find position attributes

At any step, feedback is used so that the only candidates considered

are those that are syntactically correct. For example, when the

program is trying to reduce the non terminal symbol < size > the

only available candidates for the matching process are the descriptions

of LARGE, SMALL and MEDIUM.

Based on the command, the arm is directed to pick up or stack a

block. If it is to pick upy the location and orientation of the block

•ire given. If it is to stack, the location of the stack is given. The

movie, to be shown, illustrates the response of the arm to various

commands, and presents the details of various analysis and description

generation processes displayed on a CRT,

5-20

arm

VII. CONCLUSIONS

Many of the problems discussed at the "~1 of the preceeding sections

can and will be solved in the next few years. However, it will probably

be a long time before a computer can equal the perception and dexterity

of a human being. This will require not only advances in the areas of

computer architecture and the quality of the external devices, but also

a better understanding of perceptual and motor processes.

Even the limited progress achieved so far can result in computer-

hand-eye-ear systems that are better suited for some purposes than human

beings. For example, they may see things and hear sounds that a person

cannot, and they may be faster, stronger, more economical, or more

expendable.

The fact that a computer may not be able to see all the things we

can see or carry on fluent conversation should not be a cause for extra

concern. Consider the case of programming languages. Although we have

not been able to communicate with computers in our natural language, we

have managed to achieve a great deal using contrived and ad hoc languages

like Fortran. There is no reason to suspect that the same will not be

the case with visual and voice input to the computers or with computer

control of manipulators.

We forsee several practical applications that can profitably use

the techniques described in this paper. One that is most often mentioned

is the possible bandwidth reduction in picture and speech transmission

systems. We believe that computer controlled carts which can navigate

themselves, and automated factories, where computer controlled mani-

pulators with visual feedback can handle many situations which cannot

be presently handled by fixed sequence manipulators, are also within

the range of the present state of the art.

ACKNOWLEDGEMENTS

The success of any system of this magnitude depends on the team

effort of many people. It is a pleasure to acknowledge the contri-

butions of Karl Pingle, who did most of the eye prograiu..: uig, and

Jeff Singer, who developed most of the arm and hand programs. Excellent

hardware and software system support were provided by Stephen Russell,

Gerald Gleason, David Poole, John Sauter and William Weiher.

5-2]

FEFERENCES

1. Ernst, H.A., 'MH-l, a Computer Operated Mechanical Hand1, Doctoral

Thecis, M.I.T., Cambridge, Massachusetts (1961).

2. Roberts, L.G., 'Machine Perception of Three-Dimensional Solids',

Optical and Electro-Optical Processing of Information, MIT Press,

Cambridge, Massachusetts (1965).

5. Glaser, D., McCarthy, J. and Minsky, M., 'The Automated Biological

Laboratory', Report of the subgroup on ABL, summer study in

exobiology sponsored by the Space Science Board of the National

Academy of Sciences (196^).

k. Earnest, L.D., 'On Choosing an Eye for a Computer', AI memo No. 51,

Computer Science Department, Stanford University (1967).

5. Reddy, D.R., 'Computer Recognition of Connected Speech', J. Acoust.

Soc. Am., 42,329-547 (1967).

6. Reddy, D.R, and Vicens, P.J., 'A Procedure for Segmentation of

Connected Speech1, to be published in J. Audio Engr. Soc, l6,4 (1968),

7. Narasimhan, R., 'Syntax-directed Interpretation of Classes of

Pictures', CACM 9,3,166-173 (1966).

8. Miller, W. and Shaw, A., 'A Picture Calculus', GSG Memo kOf

Computation Group, Stanford Linear Accelerator Center, Stanford,

California (I967),

9. Shaw, A., 'The Formal Description and Parsing of Pictures',

Ph.D. Thesis, CS Report No. 9^, Computer Science Department,

Stanford University, Stanford (1968).

10. Pingle, K.K., Singer, J.A. and Wichman, W.M., 'Computer Control

of a Mechanical Arm Through Visual Input', To be published in the

proceedings of the IFIP '68 (1968).

11. Guzman, A., 'Some Aspects of Pattern Recognition by Computer',

MAC-TR-37, Project MAC, MIT, Cambridge, Massachusetts (1967).

12. Stevens, K.N., Unpublished paper (I968).

13. Bobrow, D.G, and Klatt, D., 'A Limited Speech Recognition System',

To be published in the proceedings of FJCC '68 (1968).

5-22

5-25

1
1

ih. Vicens, P.J., 'A Speech Preprocessing Device', Stanford Artificial

Intelligence Memo, to be published (1968).

15. Reddy, D.R. and Vicens, P.J,, 'Spoken Message Recognition by

A Computer', to be published (1968). I

16. Pieper, D., 'Kinematics of Manipulators under Computer Control',

Ph.D. Thesis, Stanford University, to be published (1968). 1
1
1
1
1
]

1
1
0

■I

]
I

]
3

6. Board Games

Research into game-playing programs is represented by the following

introduction to Barbara Huberman's Ph.D. thesis, "A Program to Play

Chess End Games". The full text is given in Memo AI-65.

Another line of research in this area is represented by

Dr. Arthur Samuel's "Studies in Machine Learning Using the Game of

Checkers", reported in Memo AI-52 and subsequently published in the

IBM Journal (November 1967).

wmm»

INTRODUCTION

This research is concerned with the process of translating book

descriptions of problem solving methods into program heuristics. Many

books have been written for the purpose of teaching how to perform

some task. The task under discussion may be almost any kind of activity,

including intellectual activities such as proving theorems in geometry

or solving differential equations. People are able to learn from these

books although the difficulty in learning varies from task to task.

Therefore we can consider the information in the books as sufficient

for people. It would be convenient if the book information could be

used by computer programs. We are interested in whether the information

is sufficient for computers, and if not, then we want to know what kind

of additional information is needed.

The fact that book information is sufficient for people does not

mean that it can be used directly. If the book describes an algorithm,

then sometimes only memorization is required of the reader; for example,

the method of finding truth values of sentences in propositional calculus

by means of truth tables can be learned by memorization. Many tasks,

however, require substantial learning before the student can understand

the book. The task of playing chess end games by computer provides a

simple but not trivial area for this research. By chess end games we

mean those games where the number of pieces on the board is small, but

the number of moves to checkmate large: for example. Two Bishops and •

King against King, or the various Pawn endings. Chess books give rules

for these end games which are not algorithms but are supposed to be

simple and complete enough that beginners at chess can learn to play

the end games fairly easily. A certain amount of intelligence is

required of the student, but still we expect to need only a minimal

amount of additional information. In this study the programmer will do

the translation. Since this translation from the chess books to the

program is not direct, as it would be in the case of truth tables, we

expect to learn something from the translation process.

6-1

: ■ ■ L - '»

Methods and Models

The model used for chess end games is a forcing tree. The program

is supplied with two functions better and worse (containing the methods)

6-2

I
I

Computer researchers are well aware by now of the fact that any

task requiring intelligence can be profitably approached by distinguishing

between models and methods. The model, wMch is a representation of the

structure of the problem [Minsky, 1961], determines the overall logic of

the program. The methods are the heuristics which the program uses

within this structure. For example, in the Logic Theory Machine

[Newell, Shaw, and Simon, 1957], the model is a backwards tree and is

represented by that part of the program called the "Executive Routine".

Within this framework substitution, detachment and chaining methods are

used; these are encodings of the way people apply the rules of inference

in propositional calculus.

Generally books are concerned only with teaching the methods which

should be used to solve problems in the task area. The methods must be

applied within a structure which is assumed in the book but not generally

defined explicitly. It is necessary to build a model of this structure

in the computer before information about methods can be taken from the

book.

We expect that different models are required for different tasks.

Very often the model is a backwards tree; the General Problem Solver

[Newell and Simon, 1961] is based upon this fact. However there are

problems which would require a different model: for example, bidding

in bridge. The closer the model used in the program is to the way that

the author of the book thinks about the problem, the easier it will be

to translate the methods of the book into heuristics for the program.

Chess end games could be handled by the General Problem Solver; however

in this research a model is used which is much closer to the abstract

model assumed in the chess books. In this way we hope to eliminate

making changes in the methods to account for a difference between the

program's model and the abstract model assumed in the book. This means

that any difficulty experience in translating the book methods into

program heuristics can only be due to inadequacy in the method description.

Model and Methods for Chess End Games

1
1
I
0
0
n
o
0
0

0
1
E

1
B

which compare positions. From a given starting position p , in which

the program has the move, it uses tree search to find positions q

which are better than p . It will search until such a position q

is found for every sequence of moves by the opposition. An example of

such a tree is given in Figure 1.1. The program will then make the

moves dictated by the tree until it reaches a q at the end of a

branch in the tree; then it recalculates the tree to force positions

better than q . This process continues until checkmate is reached.

worse is used by the program to cut off branches of the tree which lead

to disaster (stalemate, etc), and also to prune the tree. This model

is described in detail in Chapter 2.

The forcing tree model will be used for all the different end

games. However each erd game is played by different methods which will

result in different definitions of better and worse. This enables us

to examine the problems of translation from methods to program heuristics

several times and for games of varying degrees of difficulty.

better and worse are built up out of pattern recognition functions

of positions which can be defined in a natural manner from information

given in the chess books. The methods, or rules, of play are defined

in two ways in the books. First of all, written statements are made.

For example, in the description of the Rook and King against King game in

Capablanca [1955] we find: "The principle is to drive the opposing

King to the last line on any side of the board" and then the student

should "Keep his King as much as possible on the same rank, or...file,

as the opposing King". The play of other games (and in other books)

is described by similar rules. It is not difficult to convert a

principle into a pattern recognition function of positions because the

pattern is inherent in the principle. For example, to express the

first principle quoted above we define

f(x) ■ the opposition king is confined to an edge of the board in x ,

for x a position. Then we might decide a position q was better than

position p if

f(q) A-nf(p)

because the principle is satisfied by making the moves leading from p

to q .

6-5

- q

tlgure 1.1. Example of a Forcing tree. The program has the move In
|vj it must make a move leading to a position q judged better than p
I'or every sequence of moves by the opposition. Each iteration or the
pr-igr-im will produce a tree like this; several iterations will be re-
quired to reach checkmate.

6-1+

0
Q

D
I
I
I
I
i
B
D
D
I
I
I
I
I
I
I

.',- .. ■ . v «,.., -■. ■ • ■ . .- .-■ ^-^ ■■ ■'

The chess books supplement the principles with examples of program

play. The principles generally cover the gross features of the game

and form a framework for viewing the play of the game. The majority of

moves are o. .y partly derived from the principles; they are more directly

derived from the examples of program play. The examples contain more or

less complete information about methods of play; the difficulty comes

in deciding what pattern features of the positions are important.

Obviously, induction is required to make this decision. Each example

is considered representative of a large class of positions and a general

rule must be defined for that class. If the example is accompanied by

principles, this simplifies the induction by providing clues to important

features (see Figure 5.1). The induction leads automatically to the

kind of pattern recognition functions used in better and worse.

Goals of the Research

The primary goal of the research is to study the translation

process. We begin by stating two criteria which will help us achieve

this goal. First we would like to see if our model is a good one for

chess end games. Our first hypothesis is: the model used in the

program is a good representation of the abstract model assumed by

chess books. We can support this hypothesis by successfully running

the program on different end games. Furthermore, conditions can be

given on better and worse which permit us to prove informally that the

program works correctly. The proof depends heavily on the model and

could not be given for a different model (for example the General

problem Solver model).

Our second hypothesis is: the information in the chess books is

sufficient for the definitions of better and worse. The chess books in-

formation will suffice for worse for all disastrous positions are

described. For better much more information is needed; the books must

give rules for recognizing progress frequently enough that the tree

search between positions is reasonable. For example it is not enough

to have rules recognizing only checkmate positions.

Finally we turn our attention to the primary goal of studying the

translation process. We assume that the two criteria are satisfied.

6-5

6-6

ö
fl

::

i

o
0
Q

First we consider how closely the definitions of better and worse

correspond to the chess book methods, measuring the correspondence

by comparing program play with the book examples. Also we consider

the difficulty encountered in defining better and worse.

Outline of the Thesis

In Chapter 2) the overall organization will be described. A

detailed definition of the uses of better, worse, and tree search will

be given; this constitutes the model which we use for chess end games.

In Chapter 3 the form of the content« of functions better and worse

will be discussed. These functions are different for each end game,

since different methods are used for each game. However, the form

given for better and worse is used in all end games. Some rules are

given for better and worse which will enable us to prove that the

program is correct in the sense of being able to achieve checkmate

from a given starting position.

Chapters k> 5, and 6 each describe the definitions of better and

worse for a different end game. Rook and King against King is discussed

in Chapter kt two Bishops and King against King in Chapter 5, and

Bishop, Knight and King against King in Chapter 6. These games are

presented in order of difficulty. The rook end game is quite a

simple one; two Bishops is a game of moderate difficulty, while the

Bishop-Knight end game is very difficult. The process of translating

from the book information into pattern recognition functions will be

described, and reasons will be given for the programming decision.

Examples of program play will be included for each game.

Chapter 7 contains an informal proof of program correctness. This

proof is given after the various end games are described because it

depends on the heuristics used for each game.

Chapter 8 will contain an evaluation of the better, worse format

in terms of the two primary goals. Subjects covered will include

program efficiency, a description of a way to have the program do

some of the inductive learning, and extensions to other task areas.

In the following chapters, ordinary chess notations will be used

[Capablanca, 1935]. The program is written in LISP [McCarthy, Abrems,

Q

Ö

D
1.

I
I
I
L
l;

Edwards, Hart and Levin, 1965], and the reader is expected to have some

knowledge of this language. Function definitions are given using

notation and basic functions which are defined in Appendix A. They are

built up of the connectives = (equivalence), rj (implication),

A (conjuction), v (disjunctioa), and -1 (negation). These are used in

the same way LISP (not ALGOL) uses them; i.e., if in p A q , p is

evaluated and found to be false, then q is not evaluated.

6-7

REFERENCES

in addition to the chess books referred to in the body of the

thesis, several other books are mentioned here which were also found

useful.

Baylor, G. W., and Simon, H. A,, 1966, A Chess Mating Combinations

Program, Proceedings of the AFIPS Spring Joint Computer

Conference, Spartan Books, Washington D. C, 28: kjl-khl,

Capablanca, J. R., 1935, A Primer of Chess, Harcourt, Brace, New York.

Fine, R., 19^, Chess the Easy Way, David McKay, New York.

Foster, A. W., and Kemp, R. E., 19^3, Chess; An Easy Game, David

McKay, New York.

Greenblafct, R. D., and Crocker, S. D., 1967, The Greenblatt Chess

Program, Proceedings of the AFIPS Fall Joint Computer Conference,

Thompson, Washington D. C, 51: 8oi-8lO.

Horowitz, I. A., 1957, How to Win in the Chess Endings, David McKay,

New York.

Mason, James, 1905, The Art of Chess, Howard Cox, London.

McCarthy, J., Abrams, P. W., Edwards, D. J., Hart, T. P., Levin, M. I.,

1965, LISP 1.5 Programmers Manual, The M.I.T. Press, Cambridge,

Massachusetts.

Minsky, M.L., 196l, Steps toward Artificial Intelligence, Proceedings

of the I.R.E., 8-50; reprinted in Computers and Thought,

Feigenbaum, E., and Feldman, J, (Ed), McGraw-Hill, New iork,

406-^50.

Newell, A., Shaw, J. C., and Simon, H. A., 1957, Empirical Explorations

with the Logic Theory Machine, Proceedings of the 1957 Western

Joint Computer Conference. I.R.E., New York, 15: 218-259.

Newell, A., and Simon, H. A., 1961, GPS - A Program That Simulates

Human Though, Lernende Automaten, H. Billing, Munich, 109-124.

Slagle, J. R., 1965, A Heuristic Program that Solves Simple Symbolic

Integration Problems in Freshman Calculus, Computers and Thought,

Feigenbaum, E., and Feldman, J. (Ed), McGraw-Hill, New York,

191-205.

6-8

7. Other Projects

Our research in the mathematical theory of computation has beer

concerned mainly with the problem of proving properties of algorithms,

namely validity (i.e., termination and correctness) and equivalence.

Kaplan has investigated the problem of proving the equivalence of

program schemata, mainly by means of automata theory (regular expressions),

This work has been reported in Memos AI-59, AI-60, and AI-63, the latter

being his Ph.D. thesis.

Professor Manna has investigated the problem of proving the equi-

valence and validity of programs [Memo AI-0+] and of recursively defined

functions [AI-68, with A. Pnueli] by means of mathematical logic. This

research is now being carried further by McCarthy and Manna.

Research on grammatical inference [Memo AI-55] has been pursued by

Professor Feldman and his students. A theoretical paper will be published

shortly establishing a number of results on the decidability of the

grammatical inference question under various conditions.

The Artificial Intelligence Project continues to interact with

certain separately supported projects. Work in this axea includes

digital image formation from holograms (Reference 9, Appendix A),

computer synthesis of polyphonic sound, and computer extraction of

human belief systems (References 2, 5, and 21, Appendix A).

wmmmmm

BLANK PAGE

APPENDIX A

RECENT PUBLICATIONS OF PROJECT PARTICIPANTS

1) B. Buchanan and G. Sutherland, "Heuristic Dendral: A Program for
Generating Explanatory Hypotheses in Organic Chemistry",
in D. Michie et. al. (eds.), Machine Intelligence k (in
preparation).

2) K. M. Colby and H. Enea, "Inductive Inference by Intelligent
Machines", Scientia (French), Jan.-Feb. 1968.

5) K. M. Colby and H. Enea, "Machine Utilization of the Natural
Language Word 'Good'", Math. Bio., Feb. 1968.

k) E. A. Feigenbaum, J., Lederberg and B. Buchanan, "Heuristic Dendral",
Proc. International Conference on System Sciences, University
of Hawaii and IEEE (University of Hawaii Press, 1968).

5) E. A. Feigenbaum, "Artificial Intelligence: Themes in the Second
Decade", Proc. IFIP Congress 1968 (in press).

6) J. Feldman (with D. Gries), "Translator Writing Systems", Cornm. ACM,
February 1968.

7) J. Feldman (with P. Rovner), "The Leap Language and Data Structure",
Proc. IFIP Congress 1968 (in press).

8) J. Feldman, "Plans for the Stanford Hand-Eye Project", Proc. FJCC,
1968 (in press).

9) J. Goodman, "Digital Image Formation from Electronically Detected
Holograms" in Proc. SPIE Seminar on Digital Imaging Techniques,
Soc. Photo-Optical Instrumentation Engineering, Redondo Beach,
California, I967.

10) A. C. Hearn, "REDUCE, A User-Oriented Interactive System for Algebraic
Simplification, Proc. ACM Symposium on Interactive Systems for
Experimental Applied Mathematics, August 1967 (in press).

11) A. C. Hearn, "The Problem of Substitution", Proc. IBM Summer
Institute on Symbolic Math, by Computer, July 1968 (in press).

12) D. Kaplan, "Some Completeness Results in the Mathematical Theory of
Computation", ACM Journal, January I968.

13) J. Lederberg and E. Felgenbaum, "Mechanization of Inductive Inference
in Organic Chemistry", in: B. Kleinmuntz (ed.). Formal
Representation of Human Judgment (New York, John Wiley, 1968).

A-l

- ■

lif) J. McCarthy, L. Earnest, D. R. Reddy, and P. Vicens, "A Computer with
Hands, Eyes, and Ears", Proc. FJCC 1968 (in pre: j).

15) K. Pingle, J. Singer, and W. Wichman, "Computer Control of a
Mechanical Arm through Visual Input", Proc. IFIP Congress 1968
(in press).

16) D. R. Reddy and Ann Robinson, "Phoneme-to-Grapheme Translation of
English", IEEE Trans. Audio and Electroacoustics, June 1968.

17) D. R. Reddy, "Computer Transcription of Phonemic Symbols",
J. Acoust. Soc. Am., August 1968.

18) D. R. Reddy and P. J. Vicens, "Procedure for Segmentation of
Connected Speech", J. Audio Eng, Soc., October I968.

19) D. R. Reddy, "Consonental Clustering and Connected Speech
Recognition", Proc. Sixth International Congress on
Acoustics, Tokyo, 1968 (in press).

20) A. Samuel, "Studies in Machine Learning Using the Game of
Checkers", IBM Journal, Nov. 1967.

21) L. Tesler, H. Enea, and K. Colby, "A Directed Graph Representation
for Computer Simulation of Belief Systems", Math. Bio. 2, 1968.

A-2

APPENDIX B

ABSTRACTS OF

ARTIFICIAL INTELLIGENCE MEMOS

2.

mi
J. McCarthy, Predicate Calculus with "undefined" as a Truth-Value,
March.

The use of predicate calculus in the mathematical theory of
ccmputation and the problems involved in interpreting their
values.

J. McCarthy, Situations, Actions, and Causal Laws, July.
A formal theory is given concerning situations, causality and
the possibility and effects of actions is given. The theory
is intended to be used by the Advice Taker, a computer program
that is to decide what to do by reasoning. Some simple examples
are given of descriptions of situations and deductions that
certain goals can be achieved.

F. Safier, "The Mikado" as an Advice Taker Problem, July.
The situation of the Second Act of "The Mikado" is analyzed
from the point of view of Advice Taker formalism. This indicatcG
defects still present in language.

H. Enea, Clock Function for LISP 1.$, August.
This paper describes a clock function for LISP 1.5.

H. Enea and D. Wooldridge, Algebraic Simplification, August.
Herein described are proposed and effected changes and additions
to Steve Russell's Mark IV Simplify.

D. Wooldridge, Non-Printing Compiler, August.
A short program which redefines parts of the LISP 1.5 compiler
and suppresses compiler printout (at user's option) is described.

J. McCarthy, Programs with Common Sense, September.
Interesting work is being done in programming canputers to solve
problems which require a high degree of intelligence in humans.
However, certain elementary verbal reasoning processes so simple
that they can be carried out by any non-feeble-minded human have
yet to be simulated by machine programs.
This paper will discuss programs to manipulate in a suitable
formal language (most likely a part of the predicate calculus)
ccmmon instrumental statements - The basic program will draw
immediate conclusions from a list of premises. These conclu-
sions will be either declarative or imperative sentences. When
an imperative sentence is deduced the program takes a correspond-
ing action. These actions may include printing sentences.

B-l

1963 (cont.)

moving sentences on lists, and reinitiating the basic deduction
process on these lists.
Facilities will be provided for communication with humans in
the system via manual intervention and display devices connected
to the computer.

8. J. McCarthy, Storage Conventions in LISP 2., September,
Storage conventions and a be sic set of functions for LISP 2 are
proposed. Since the memo va.3 written, a way of supplementing
the features of this system with the unique storage of list
structure using a hash rule for computing the address in a
separate free storage area for lists has been found,

9. C. M. Williams, Computing Estimates for the Number of Bisections
of an N x N Checkerboard for N Even, December.

This memo gives empirical justification for the assumption that
the number of bisections of an N x N (N even) checkerboard is
approximately given by the binomical coefficient

(+)
where 2A is the length of the average bisecting cut,

10. S. R. Russell, ^j^^^^j^^^J^^j^^^^x^. December.
Experience with writing large LISP programs and helping students
learning LISP suggests that spectacular improvements can be mt.de
in this area. These improvements are partly an elimination of
sloppy coding in LISP 1.5, but mostly an elaboration of DEFINE,
the push down list backtrace, and the current tracing facility.
Experience suggests that these Improvements would reduce the
number of computer runs to debug a program a third to a half,

11. D. Wooldridge,, Jr., An Algebraic Simplify Program in LISP, December.
A program which performs obvious (non controversial) simplifying
transformations on algebraic expressions (written in LISP prefix
notation) is described. Cancellation of inverses and consolidation
of sums and products are the basic accomplishments of the program;
however, if the user desired to do so, he may request the program
to perform special tasks, such as collect common factors from
products in sums or expand products. Polynomials are handled
by routines which take advantage of the special form by polynomials;
in particular, division (not ctnf'ellation) is always done in
terms of polynomials. The progra1. (run on the IBM 7O9O) is
slightly faster than a human; however, the ccmputer does not need
to check its work by repeating the simplification. Although
the program is usable - no buys are known to exist - it is by no
means a finished project, A rewriting of the simplify system is
anticipated; this will eliminate much of the existing redundancy
and other inefficiency, as well as implement an identity-recognizing
scheme.

B-2

196^

12. G. Feldman, Documentation of the MacMahon Squares Problem, January.
An exposition of the MacMahon Squares problem together with some
"theoretical" results on the nature of its solutions and a short
discussion of an ALGOL program which finds all solutions are
contained herein.

13. D. Wooldridge, The New LISP System (LISP 1.^), February.
The new LISP system is described. Although differing only
slightly it is thought to be improvement on the old system,

Ih. J. McCarthy, Computer Control of a Machine for Exploring Mars,
January.
Landing a 5000 pound package on Mars that would spend a year
looking for life and making other measurements has been proposed.
We believe that this machine should be a stored program conputer
with sense and motor organs and that the machine should be mobile.
We discuss the following points. 1. Advantages of a computer
controlled system. 2. What the conputer should be like.
3. What we can feasibly program the machine to do given the
present state of work on artificial intelligence, h. A plan
for carrying out research in computer controlled experiments
that will make the Mars machine as effective as possible.

15. M. Finkelstein and F. Safier, Axiomatization and Implementation,
June.
An example of a typical Advice-Taker axiomatization of a situation
is given, and the situation is programmed in LISP as an indica-
tion of how the Advice-Taker could be expected to react. The
situation chosen is the play of a hand of bridge.

16. J. McCarthy, A Tough Nut for Proof Procedures, July.
It is well known to be impossible to tile with dominoes a checker-
board with two opposite corners deleted. This fact is readily
stated in the first c^der predicate calculus, but the usual
proof which involves a parity and counting argument does not
readily translate into predicate calculus. We conjecture that
this problem will be very difficult for programmed proof pro-
cedures.

17. J. McCarthy, Formal Description of the Game of Pang-Ke, July.
The game of Pang-Ke is formulated in a first-order-logic in
oiu.er to provide grist for the Advice-Taker Mill. The memo
does not explain all the terms used.

B-^

196^ (cont)

18. J. Hext, An Expression input Routine for LISP, July.
The expression input routine is a LISP function, Mathread []
with associated definitions, which reads in expressions such as
(A+5 - F(X,Y,Z)). Its result is an equivalent S-expression.
The syntax of allowable expressions is given, but (unlike
ALGOL's) it does not define the precedence of the operators;
nor does the program carry out an explicit syntax analysis.
Instead, the program parses the expression according to a
set of numerical precedence values, and reports if it finds
any symbol out of context.

19. J. Hext, Programming Languages and Translation, August.
A notation is suggested for defining the syntax of a language
in abstract form, specifying only its semantic constituents.
A simple language is presented in this form and its semantic
definition given in terms of these constituents. Methods are
then developed for translating this language, first into a
LISP format and from there to machine code, and for proving
that the translation is correct.

20. R. Reddy, Source Language Optimization of For-Loops, August.
Program execution time can be reduced, by a considerable amount,
by optimizing the 'For-loops' of Algol Programs. By judicious
use of index-registers and by evaluating all the sub-expressions
whose values are not altered witnin the 'For-loop', such
optimization can be achieved.
In this project we develop an algorithm to optimize Algol Programs
in List-structure form and generate a new source language
program, which contains the "desired contents in the index
registers" as a part of the For-clause of the For-statement
and additional statements for evaluating the same expressions
outside the 'For-loop'. This optimization is performed only
for the innermost 'For-loops'.
The program is written entirely in LISP. Arrays may have any
number of subscripts. Further array declarations may have
variable dimensions. (Dynamic allocation of storage.)
The program does not try to optimize arithmetic expressions.
(This has already been extensively investigated.)

21. R. W. Mitchell, LISP 2 Specifications Proposal. August.
Specifications for LISP 2 system are proposed. The source
language is basically ALGOL 60 extended to include list
processing, input^output and language extension facilities.
The system would be implemented with a source language trans-
lator and optimizer, the output of which could be processed by
either an interpreter or a compiler. The implementation is
specified for a single address computer with particular
reference to an IBM 7090 where necessary.
Expected efficiency of the system for list processing is

B-h

196^ (cont)
■ ^

significantly greater than the LISP 1.5 interpreter and also
somewhat better than the LISP 1.5 compiler. For execution of
numeric algorithms the system should be comparable to many
current "algebraic" compilers.
Some familiarity with LISP 1.5, ALGOL and the IBM 7090 is assumed.

22. R. Russell, Kalah - The Game and the Program, September.
A description of Kalah and the Kalah program, including sub-
routine descriptions and operating instructions.

23. R. Russell, Improvements to the Kalah Program, September.
Recent improvements to the Kalah program are listed, and a
proposal for speeding up the program by a factor of three is
discussed.

2k. J. McCarthy, A Formal Description of a Subset of Algol, September,
We describe Microalgol, a trivial subset of Algol, by means of
an interpreter. The notions of abstract syntax and of "state
of the computation" permit a compact description of both syntax
and gemantlQR, We advocate an extension of this technique as
a general way'of describing programming language.

25. R. Mansfield, A Formal System of Computation, September.
We discuss a tentative axiomatization for a formal system of
computation and within this system we prove certain propositions
about the convergence of recursive definitions proposed by
J. McCarthy.

26, R. Reddy, Experiments on Automatic Speech Recognition by a
Digital Computer, October,

Speech sounds have in the past been investigated with the aid
of spectrographs, vo-coders and other analog devices. With
the availability of digital computers with improved i-o devices
such as Cathode Ray tubes and analog to digital converters, it
has recently become practicable to employ this powerful tool
in bhe analysis of speech sounds.
Some papers have appeared in the recent literature reporting
the use of computers in the determination of the fundamental
frequency and for vowel recognition. This paper discusses the
details and results of a preliminary investigation conducted at
Stanford. It includes various aspects of speech sounds such as
waveforms of vowels and oonsonants; determination of a funda-
mental of the wave; Fourier (spectral) analysis of the sound
waves formant determination, simple vow i recognition algorithm
and synthesis of sounds. All were obtained by the use of a
digital computer.

B-5

1965

27. J. McCarthy, A Proof-Checker for Predicate Calculus, March.
A program that checks proofs in J. A. Robinson's formulation
of predicate calculus has been programmed in LISP 1.5. The
program is available in CTSS at Project MAC and is also avail-
able as a card deck. The program is used for class exercises
at Stanford.

28. J. McCarthy, Problems in the Theory of Computation, March.
The purpose of this paper is to identify and discusc a number
of theoretical problems whose solutions seem feasible and likely
to advance the practical art of computation. The problems that
will be discussed include the following:
1. Semantics of programming languages. What do the strings
of symbols representing computer programs, statements, declar-
ations, labels, etc., denote? How can the semantics of pro-r
gramming languages be described formally?
2. Data spaces. What are the spaces of data on which computer
programs act and how are they built up from simpler spaces?
5. How can time dependent and simultaneous processes be
described?
k. Speed of computation. What can be said about how much
computation is required to carry out certain processes?
5. Storage of information. How can information be stored
so that items identical or similar to a given item can be
retrieved?
6. Syntax directed computation. What is the appropriate domain
for computations described by productions or other data format
recognizers?
7. What are the appropriate formalisms for writing proofs that
computer programs are equivalent?
8. In view of Gbdel's theorem that tells us that any formal
theory of computation must be incomplete, what is a reasonable
formal system that will enable us to prove that programs termin-
ate in practical cases?

29. C. M. Williams, Isolation of Important Features of a Multittoned
Picture, January.

A roughly successful attempt is made to reduce a multi-toned
picture to a two-toned (line drawing) representation capable
of being recognized by a human being.

30. E. Feigenbaum and R. W. Watson, An Initial Problem Statement for
a Machine Induction Research Project, April.

A brief description is given of a research project presently
getting under way. This project will study induction by machine,

B-6

1963 (cont)

using organic chemistry as a task area. Topics for graduate
study research related to the problem is listed.

Jl. J. McCarthy, Plans for the Stanford Artificial Intelligence
Project, April.
The following is an excerpt from a proposal to ARPA and gives
some of the project plans for the near future.

32. H. Ratchford, The 138 Analog Digital Converter, May.
A discussion of the programming and hardware characteristics of
the analog to digital converter on the PDP-1 is given; several
sample programs are also presented.

35« B. Huberman, The Advice Taker and GPS, June.
Using the formalism of the Newell-Shaw-Simon General Problem
Solver to solve problems expressed in McCarthy's Advice Taker
formalism is discussed. Some revisions of the formalism of can
and cause described in AI Memo No. 2 are proposed.

3iK P. Carah, A Television Camera Interface for the PDP-1, June.
This paper is a discussion of several methods for the connection
of a television camera to the PDP-1 computer. Three of these
methods are discussed in detail and have in common that only a
36 bit portion of any horizontal scanning line may be read and
this information is read directly into the workirg registers of
the computer. The fourth involves a data channel to read infor-
mation directly into the core memory of the computer, and is
mentioned only in passing. The major concepts and some of the
details Of these methods are due to Marvin Minsky.

35. F. Safier, Simple Simon, June
SIMPLE SIMON is a program which solves the problem of finding
an object satisfying a predicate from a list of facts. It
operates by backware chaining. The rules of procedure and heur-
istics are discussea and the structure of the program is outlined.

36. J. Painter, Utilization of a TV Camera on the PDP-1, September,
A description of the programming required to utilize the TV
camera connected to the PDP-1 and of the initial collection of
programs.

37. K. Korsvold, An „On Line Algebraic Simplify Program, November
We describe an on-line program for algebraic simplification,,
The program is written in LISP 1.5 for the «^-32 computer at
System Development Coiporation in Santa Monica, California.
The program has in its entirety been written and debugged from
a teletype station at Stanford University.

B-7

196^ (cont)

37. K. Korsvoid, Appendix B, to A.I. 37
This appendix contains the program written in m-expressions.
The four functions ADDK, TIMESKL, *GSD and *RFD are not included
since they are written in LAP.

B-8

I

1966

38. D. Waterman, A Filter for a Machine Induction System, January.
This report contains current ideas about the Machine Induction
Research Project, and attempts to more clearly define some of
the problems involved. In particular, the on-line data acquisi-
tional problem, the filter, and the inductive inference problem
associated with the filter are discussed in detail.

39. K. Pingle, A Program to Find Objects in a Picture, January.
A program is described which traces around objects in a picture,
using the picture scanner attached to the PDP-1 computer, and
fits curves to the edges.

kO. J. McCarthy and J. Painter, Correctness of a Compiler for
Arithmetic Expressions, April.
This is a preprint of a paper given at the Symposium on Mathe-
matical Aspects of Computer Science of the American Mathemati-
cal Society held April 6 and 7, I966. It contains a proof
of the correctness of a compiler for arithmetic expressions,

kl. P. Abrams and D. Rode, A Proposal for a Proof-checker for Certain
Axiomatic Systems, May.
A proposed design for a proof-checker to operate on many axiomatic
domains is presented. Included are descriptions of the organiza-
tion and operation of the program to be written for the PDP-6.

h2. K. Pingle, A Proposal for a Visual Input Routine, June.
Some comments are made on the characteristics believed desirable
in the next eye for the Stanford Artificial Intelligence Project
and a proposal is given for a program to input scenes using the
eye,

h3° R. Reddy, An Approach to Computer Speech Recognition by Direct
Analysis of the Speech Wave, September.
A system for obtaining a phonemic transcription from a connected
speech sample entered into the computer by a microphone and an
analog-to-digital converter is described. A feature-extraction
program divides the speech utterance into segments approximately
corresponding to phonemes, determines pitch periods of those
segments where pitch analysis is appropriate, and computes a
list of parameters for each segment. A classification program
assigns a phoneme-group label (vowel-like segment, fricative-like
segment, etc.) to each segment, determines whether a segment
should be classified as a phoneme or whether it represents a
phoneme boundary between two phonemes, and then assigns a
phoneme label to each segment that is not rejected as being a

B-9

■ ..

1966 (cont)

phoneme boundary. About JO utterances of one to two seconds
duration were analyzed using the above programs on an inter-
connected IBM 7O9O - PDP1 system. Correct identification of
many vowel and consonantal phonemes was achieved for a single
speaker. The time for analysis of each utterance was about
hO times real time. The results are encouraging and point to a
new direction in speech research.

kk. J. Painter, Semantic Correctness of a Compiler for an Algol-like
Language, Revised March, 1967.
This is a semantic proof of the correctness of a compiler. The
abstract syntax and semantic definition are given for the language
Mickey, an extension of Micro-algol, The abstract syntax and
semantics are given for a hypothetical one-register single-
address computer with Ih operations, A compiler, using recursive
descent, is defined. Formal definitions are also given for state
vector, a and c functions, and correctness of a compiler. Using
these definitions, the compiler is proven correct.

^5. D. Kaplan, Some Completeness desalts in the Mathematics Theory
of Computation, October.
A formal theory is described which incorporates the "assignment"
function a(i, k, |) and the "contents" function c(i, |). The
axioms of the theory are shown to comprise a complete and
consistent set.

h6. S. Persson, Some Sequence Extrapolating Programs: A Study of
Representation and Modeling in Inquiring Systems, September.
The purpose of this thesis is to investigate the feasibility of
designing mechanized inquiring-systems for finding suitable
representations of problems, i.e., to perform the "creative"
task of finding analogies. Because at present a general solution
to this problem does not seem to be within reach, the feasibility
of mechanizing a particular representational inquirer is chosen
as a reasonable first step towards an increased understanding
of the general problem. It is indicated that by actually design-
ing, programming and running a representational inquirer as a
program for a digital computer, a severe test of its consistency
and potential for future extensions can be performed.

kj* B. Buchanan, Logics of Scientific Discovery, December.
The concept of a logic of discovery is discussed from a philo-
sophical point of view. Early chapters discuss the concept
of discovery itself, some arguments which have been advanced
against logics of discover, notably by N. R, Hanson, and
S. E. Toulmin. While a logic of discovery is generally under-
stood to be an algorithm for formulating hypotheses, other
concepts have been suggested. Chapters V and VI explore two
of these: (A) a set of criteria by which a hypotheses could be
judged reasonable, and (B) a set of rational (but not necessarily
effective) methods for formulating hypotheses.

B-10

1967

^8. D. Kaplan, Correctness of a Compiler for Algol-like Programs, July.
A compiling algorithm is given which maps a class of Algol-like
programs into a class of machine language programs. The semantics,
i.e., the effect of execution, of each class if specified, and
recursion induction used to prove that program semantics is
preserved under the mapping defined by the compiling algorithm.

^9. G. Sutherland, DENLRAL - A Computer Program for Generating and
Filtering Chemical Structures, February.
A computer program has been written which can generate all the
structural isomers of a chemical composition. The generated
structures are inspected for forbidden substructures in order
to eliminate structures which are chemically impossible from
the output. In addition, the program contains heuristics for
determining the most plausible structures, for utilizing supple-
mentary data, and for interrogating the on-line user as to desired
options and procedures. The program incorporates a memory so that
past experiences are utilized in later work.

50. A. Hearn, Reduce Users' Manual, February.
REDUCE is a program designed for general algebraic computations
of interest to physicists and engineers. Its capabilities
include:
1) expansion and ordering of rational functions of polynomials,
2) symbolic differentiation,
5) substitutions in a wide variety of forms,
k) reduction of quotients of polynomials by cancellation of

common factors,
5) calculation of symbolic determinants,
6) calculations of interest to high energy physicists including

spin l/2 and spin 1 algebra.
The program is written completely in the language LISP 1.5 and
may therefore be run with little modification on any computer
possessing a LISP 1.5 compiler or interpreter.

51. L. Earnest, Choosing an Eye for a Computer, April.
In order for a computer to operate efficiently in an unstructured
environment, it must have one or more manipulators (e.g., arms
and hands) and a spatial sensor analogous to the human eye.
Alternative sensor systems are compared here in their performance
on certain simple tasks. Techniques for determining color,
texture, and depth of surface elements are examine.
Sensing elements considered include the photomultiplier, image
dissector, image orthicon, vidicon, and SEC camera tube. Per-
formance measures strongly favor a few (and undemonstrated)
configuration that may be termed a laser jumping spot system.

B-ll

1967 (cont.)

52. A. L. Samuel, Some Studies in Machine Learning Using the Game of
Checkers II - Recent Progress., June,

A new signature table technique is described together with an
improved book learning procedure which is thought to be much
superior to the linear polynomial method described earlier. Full
use is made of the so called "alpha-beta" pruning and several
forms of forward pruning to restrict the spread of the move
tree and to permit the program to look ahead to a much greater
depth than it otherwise could do. While still unable to outplay
checker masters, the program's playing ability has been greatly
improved. Some of these newer techniques should be applicable
to problems of economic importance.

53. B, Weiher, The PDF-6 Proof Checker, June.
A description is given for the use of a proof checker for
prepositional calculus. An example of its use as well as
the M and S expression for the proof checker are also included.

5k. J. Lederberg and E. A. Feigenbaum, Mechanization of Inductive
Inference in Organic Chemistry, August.

A computer program for formulating hypotheses in the area of
organic chemistry is-described from two standpoints: artificial
intelligence and organic chemistry. The Dendral Algorithm
for uniquely representing and ordering chemical structures
defines the hypothesis-space; but heuristic search through the
space is necessary becuase of its size. Both the algorithm and
the heuristics are described explicitly but without reference
to the LISP code in which these mechanisms are programmed.
Within the program seme use has been made of man-machine inter-
action, pattern recognition, learning, and tree-pruning heuristics
as well as chemical heuristics which allow the program to focus its
attention on a subproblem and to rank the hypotheses in order of
plausibility. The current performance of the program is
illustrated with selected examples of actual output showing both
its algorithmic and heuristic aspects. In addition some of the
more important planned modifications are discussed.

55- J- Feldman, First Thoughts on Grammatical Inference, August.
A number of issues relating to the problem of inferring a grammar
are discussed. A strategy for grammatical inference is presented
and its weaknesses and possible improvements are discussed. This
is a working paper and should not be reproduced, quoted or believed
without the author's permission.

56. W. Wichman, Use of Optical Feedback in the Computer Control of en
Arm, August.

This paper reports an experimental investigation of the appli-
cation of visual feedback to a simple computer-controller block-
stacking task. The system use«) a vidicon camera to examine a
table top containing two cubical blocks, generating a data
structure which is analyzed to determine the position of one
block. An electric arm picks up the block and removes it from

B-12

196? (cont.)

the scene, then after the program locates the second block,
places the first on top of the second. Finally, the alignment
of the stack is improved by analysis of the relative position
error as seen by the camera. Positions are determined through-
out by perspective transformation of edges detected from a
single viewpoint, using a support hypothesis to supply sufficient
information on depth. The Appendices document a portion of the
hardware used in the project.

57. A. C. Hearn, Reduce, A User-Oriented Interactive System for
Algebraic Simplification, October.

This paper describes in outline the structure and use of
REDUCE, a program designed for large-scale algebraic computations
of interest to applied mathematicians, physicists and engineers.
The capabilities of the system include:
1) expansion, ordering and reduction of rational functions of

polynomials,
2) symbolic differentiation,
3) substitutions for variables and expressions appearing in

other expressions,
k) simplification of symbolic determinants and matrix expressions,
5) tensor and non-commutative algebraic calculations of interest

to high energy physicists.
In addition to the operations of addition, subtraction, multi-
plication, division, numerical exponentiation and differentiation,
it is possible for the user to add new operators and define rules
for their simplification. Derivations of these operators may also
be defined.
The program is written completely in the language of LISP 1.5 and
is organized so as to minimize the effort required in transferring
from one LISP system to another.
Some particular problems which have arisen is using REDUCE in
a time-sharing environment are also discussed.

58. M. D. Callero, An Adaptive Command and Control System Utilizing
Heuristic Learning Processes, December.

The objectives of the research reported here are to develop an
automated decision process for real time allocation of defense
missiles to attacking ballistic missiles in general war and to
demonstrate the effectiveness of applying heuristic learning to
seek optimality in the process. The approach is to model and
r.imulate a missile defense environment and generate a decision
procedure featuring a self-modifying, heuristic decision function
which improves its performance with experience. The goal of the
decision process that chooses between the feasible allocations is
to minimize the total effect of the attack, measured in cumulative
loss of target value. The goal is pursued indirectly by considering
the more general problem of maintaining a strong defense popture,
the ability of the defense system to protect the targets from both
current and future loss.

B-15

196? (cont.)

Using simulation and analysis, a set of calculable features
are determined which effectively reflect the marginal
deterioration of defense posture for each allocation in a time
interval. A decision function, a linear polynomial of the
features, is evaluated for each feasible allocation and the
allocation having the smallest value is selected. A heuristic
learning process is incorporated in the model to evaluate the
performance of the decision process and adjust the decision
function coefficients to encourage correct comparison of
alternative allocations. Simulated attacks presenting typical
defense situations were cycled against the decision procedure
wi^h the result that the decision function coefficients con-
verged under the learning process and the decision process
bfcame increasingly effective.

-ii,

1968

59. D. M. Kaplar, A Fomal Theory Concerning the Equivalence of
Algorithms, May.

Axioms and rules of inference are given for the derivation of
equivalence for algorithms. The theory is shown to be complete
for certain subclasses of algorithms, and several applications
of the theory are illustrated. This paper was originally
presented at the Mathematical Theory of Computation Conference,
IBM Yorktown Heights, November 27-30, 1967.

60. D. M. Kaplan, The Formal Theoretic Analysis of Strong Equivalence
for Elemental Programs, June.

The syntax and semantics is given for elemental programs, and
the strong equivalence of these simple ALGOL-like flowcharts is
shown to be undecidable. A formal theory is introduced for
deriving statements of strong equivalence, and the completeness
of this theory is obtained for various sub-cases. Several
applications of the theory are discussed. Using a regular
expression representation for elemental programs and an un-
orthodox semantics for these expressions, several strong equi-
valence detecting procedures are developed. This work was
completed in essentially its present form March, 1968.

61. T. It.o, Notes on Theory of Computation and Pattern Recognition.
May.

This is a collection of some of the author's raw working notes
during the period Dec. 1965-Oct. 196? besides the introduction.
They have been privately or internally distributed for some
time. Portions of this work have been accepted for publication;
others are being developed for submission to journals. Some
aspects arid ideas have been referred to and used, sometimes with-
out explicit references, and others axe developed by other
researchers and the author. Hence we have decided to publish
this material as Computer Science Technical Report, although the
author is planning to submit all of these works to some jcurnals^
adding several new results (not mentioned in this report),
improving notations, definitions and style of presentation in
some parts and reformulating completely in other parts.
The author appreciates it very much if the researchers who use or
refer to the results and ideas of this report communicate with
him. The publication of this report was encouraged by
Prof. George E. Forsythe and Prof. John McCarthy.

62. B. Buchanan and G. Sutherland, HEURISTIC DENDRAL: A Program for
Generating Explanatory Hypotheses m Organic Chemistry, July.
A computer program has been written which can formulate hypotheses
from a given se4" of scientific data. The data consist of the mass

B-15

1968 (cont.)

spectrum and the empirical formula of an organic chemical com-
pound. The hypotheses which axe produced describe molecular
structures which are plausible explanations of the data. The
hypotheses are generated systematically within the program's
theory of chemical stability and within limiting constraints
which are inferred from the data by heuristic rules. The
program excludes hypotheses inconsistent with ohe data and
lists its candidate explanatory hypotheses in order of de-
creasing plausibility. The computer program is heuristic in
that it searches for plausible hypotheses in a small subset of
the total hypothesis space according to heuristic rules learned
from chemists.

65. D. M. Kaplar^ Regular Expressions and the Equivalence of Programs,
July.
The strong equivalence of ALGOL-like programs is, in general, an
undecidable property. Several mechanical procedures are discussed
which nevertheless are useful ir the detection of strong equi-
valence. These methods depend on a regular expression represent-
ation of programs. An unorthodox semantics for these expressions
is introduced which appreciably adds to the ability *o detect
strong equivalence. Several other methods of extending this
ability axe also discussed.

6^. Z. Manna, Formalization of Properties of Programs, July,
Given a program, an algorithm will be described for constructing
an expression, such that the program is valid (i.e., terminates
and yields the right answer) if and only if the expression is
inconsistent. Similar result for the equivalence problem of
programs 13 given. These results suggest a new approach for
proving the validity and the equivalence of programs.

65. B. Huberman, A Program to Play Chess End Games, August.
A program to play chess end games is described. The model used
in the program is very close to the model assumed in chess books.
Embedded in the model axe two predicates, better and worse,
which contain the heuristics of play, differem, for each end
game. The definitions of better and worse were obtained by
programmer translation from the chess books.
The program model is shown to be a good one for chess end games
by the success achieved for three end games. Also the model
enables us to prove that the program can reach checkmate from
any starting position. Insights about translation from book
problem solving methods into computer program heuristics are
discussedj they are obtained by comparing the chess book methods
with the definitions of better and worse, and by considering
the difficulty encountered by the programmer when doing the
translation.

B-16

■ ■:JS

1968 (conü.)

66.. J. Feldman axid P. Rovner, An Algol-Based Associative Language,
August.
A high-level programming language for large complex relational
structures has been designed and implemented. The underlying
relational data structure has been implemented using a hash-
coding technique. The discussion includes a comparison with
other work and examples of applications of the language. A
version of this paper will appear in the communications of
the ACM.

67. E. Feigenbaum, Artificial Intelligence- Themes in the Second
Decade, August.

In this survey of artificial intelligence research, the substantive
focus is heuristic programming, problem solving, and closely
associated learning models. The focus in time is the period
1965-I968. Brief tours are made over a variety of topics:
generality, integrated robots, game playing, theorem proving,
semantic information processing, etc.
One program, which employs the heuristic search paradigm to
generate explanatory hypotheses in the analysis of mass spectra
of organic molecules, is described in some detail. The problem
of representation for problem solving systems is discussed.
Various centers of excellence in the artificial intelligence
research area are mentioned. A bibliography of 76 references
is given.

68. Z. Manna and A. Pnueli, The Validity Problem of the 91-Function,
August. .

Several methods for proving the weak and strong validity of
algorithms are presented.
For proving the weak validity (i.e., correctness) we use
satisfiability methods, while for proving the strong validity
(i.e., termination aiid correctness) we use unsatisfiability
methods.
Two types of algorithms are discussed: recursively defined
functions and programs.
Among the methods we include known methods due to Floyd, Manna,
and McCarthy. All the methods will be introduced quite in-
formally by means of an example (the 91-function).

B-17

•
.

scuritV Clnssificr.tion -JL
DOCUMENT CONTROL DATA - K S. D

(Security cjnssificution ot tUto, body of abstract and Indculnt* annotation muni /»c antcrrd whi>n thr owmtl report fx cLi-tntfifi} I .
ill, OHl&lNATlNO ACTIVITY (Corpoiale malhor)

jj Artificial Intelligence Project
Computer Science Department
Stanford University

2«. RLPONT iECUhl rv CkAtklflC* TlOf

Unclassified
ib. CROUP

J. REPORT TITl.e

Project Technical Report

4. DCSCRIPTIVC NOTES (Typo ol npotl and Inclumlr» dmlOM)

A.I. Memo
. 5 At/THORIS) (Flrtl nmmo, middl» Inlllml, Imtl naate)

John McCarthy, Edward Feigenbaum, Arthur Samuel

S. REPORT DAT£ r
September 13, 1968

7«. TOTAL NO. or PACES

91
76. NO. OF REFS

45
M. CONTRACT OR GRANT NO.

SD-183
6. PROJECT NO.

00. OniCINATOFTS RCPOKT NUMBLKIS*

AI-69

»ö. OTHER filZPORT NOiSt (Any other number* thmt xtoy be mill£nod
tbia report)

L
. 10. DISTRIBUTION STATEMENT

Statement No. 1 - Distrj mtion of this document is unlimited

II. SUPPLEMENTARV NOTES 12. SPONSORING MILITARY ACTIVITY

I 13. ABSTRACT

Recent work of the Stanford Artificial Intelligence Project is summarized in

several areas:

Scientific Hypothesis Formation
Symbolic Computation
Hand-Eye Systems
Computer Recognition of Speech
Board Games
Other Projects

DD ^..^73
Security Classification

