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A TACTICAL STUDY OF EVASIVE MANEUVERS 

ULF GRENANDER## 

ABSTRACT 

In this report some tactical aspect« of punuit and cvasion are Htudicd. 
The emphasia is on the analysis of the conceptual framework and on the 
construction of analytic models. In order that these models be able to de- 
scribe real pursuit situations, an attempt in made to incorporate kinematic 
and dynamic restrictions to the extent that is possible without making the 
model too difficult to handle. In particular, the relation between the evasive 
tactics and the method of prediction used by the pursuer is studied. In 
order to be as concrete as possible, a number of speci'il casrs are treated, 
some of which may be extended to cover more general situations. 
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1   INTRODUCTION 
The pur|Mmr of thin |>a[MT IM to (ÜHCUHH in quantitative 

U-nm aomt* aufxTtH of cvaHion and purauit. Thin it* one 
of the oldcHt problcniN in the hiHtory of military doc- 
trinoH, and much hau iM-t-n thought and written about 
it. Until World War II, moHt of this waa oxproHned in 
verbal, qualitative ways and could be aaid to cotiMtitute 
an important part of the general philuaophy of war. In 
recent year«, after the appearance of operation» analy- 
HIM, one ha« tried to formulate the problem« mathe- 
matically and to obtain numerical solutioni). It goes 
without saying that in many or perhap* moMt caae« this 
approach is doomed. The reason for thi« is clear: the 
logical structure of the problem is HO complex and het- 
erogeneouH, that it would be naive to think that the 
event« could be described by mathematical expreaaion« 
without a drastic IOHH of realism. Let us think, iVr ex- 
ample, of the claatucal naval engagement of type The 
Battle of Jutland. The outcome will depend upon certain 
factors that can be dincuased in probabilistic term«: the 
effects of reconnaiaaance, artillery fire, torpedo attacks, 
and mine field«. One can also include «everal tactical 
parameters: speed, armament, meteorological conditions, 
etc. Thus we could, at least in principle, meaaure and 
analyze the basic properties of the two war machines 
and use this to construct a mathematical model of the 
events. However, it would be almost ini|>oM«ibIe to in- 
clude in such a model the long chain of human deci- 
sions, the breakdown of communicatiorui, and all the 
mistakes and errors that can occur. Thus we would be 
forced to leave out one of the really essential compo- 
nents of the battle, and this would no doubt invalidate 
the analysis. 

On the other hand, it may be possible to treat limited 
problem«—perhaps forming part« of a battle—by the 
methods of operations analysis. This is so especially 
when the problem is well determined, with no or few- 
human decisions involved after the initial phase, and 
when the tactical factors can be assumed to be known. 

In recent years it has become customary to apply 
the methods of operations analysis to immense military 
problems, involving major parts of the strategy of a 
country or of one of its armed forces. By simulation 
techniques on electronic computers it is possible to 
obtain solutions that may seem realistic. In the author's 
opinion such overall solution« can be quite dangerous, 
if it is not clearly understood that they only represent 
one of several means for making decisions: such com- 
prehensive decisions stil! have to be made on politico- 
military grounds, taking into account many factors that 
are not included in the quantitative analysis. 

In limited problem« concerning tactics or the tech- 
nology of weapons, the possibilities of a numerical ap- 
proach are greater.  With the present development to- 
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ward« more or less automatic weapon systems this 
possibility is accentuated. 

In the following we shall only deal with certain tac- 
tical situations, admittedly of quite special character, 
but taken together covering an interesting area of appli- 
cation. No attempt will be made to formulate a general 
quantitative theory for pursuit and evasion. 

The main goal will be to penetrate the logical struc- 
ture of some typical problems concerning evasive ma- 
neuver« and to construct mathematical models appro- 
priate for a quantitative treatment. It is necessary to 
get a good idea of the conceptual framework, and a 
beginning is made hen', although it is not at all com- 
plete. As the reader will see, the resulting models vary 
a good deal among themselves, a« could IK- exacted, 
since they are made to fit radically different tactical 
situations. These models are jM-rhaps more important 
than the mathematical analysis that we attach to them. 
The analysis should only be interpreted as a tentative 
solution, indicating what sort of mathematical reasoning 
may be useful. If one decide« to really use one of these 
models or an adaptation of it, then a much more com- 
plete analysis will be needed anyway. 

The mathematical tools are mainly elementary game 
theory and stochastic processes. We shall use only the 
baMic notions of game theory, and the applications 
will be simple and direct. For the reader's convenience 
some notes are attached at the end of the paper, and 
it should be consulted for more information about the 
mathematical techniques used, a« well as for biblio- 
graphical  information. 

The study of evasive maneuvers must IK- one of the 
many objects of work for the groups of mathematicians 
involved in operation« analysis. As far as the author 
has been able to find out, little has been published on 
the subject, |)crhaps for reasons of secrecy. Therefore 
it is not possible to give a full historical presentation 
of the development of the subject. It wouid not be 
surprising if some of the following is known previously, 
although it has not been made publicly known. 

The first discussion of the problem in mathematical 
terms seem« to be due to Steinhaus (1900), who already 
in 1925 formulated the following problem. Two players, 
E and P, play a game: P pursues E, who tries to 
avoid being caught. Denote by TP and Tg the tactics 
used by P and E, respectively, and by t(TP, Tg) the 
time it takes for P to catch E. Steinhaus then suggests 
that it is reasonable to choose Tp and Tg such that 

((TV, 7V) = min max «(TV. TV). 
7>        Tg 

The reader familiar with game theory will notice imme- 
diately that this is close to the concept of optimal 
strategy. Actually, Steinhaus seems to have been aware 
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of th« bsMic problem of whether min max t alway« equal* 
max min/ No detailed (IIHCIJHMIOII in given in the pajx-r 
referred to. 

The aame problem hat been treaUnl recently by 
Kelendioridze (1061) He auumeH that P and E move 
in the n dimenaional «pace Ä", atid their inotiom» are 
doflcrilxHl  by the equation* 

P:i-**-n*.u), 

dy 
K   * " dt ~gÜ,v)- 

Here z and y are vectors deacribing the positiona of P 
and E, reapectively. The parameters uCÄ' and vkRc 

represent their tactical behavior, or, more preciaely, the 
tactic« are given a« functiontt u - u(t) and r r(/). Aa- 
suming certain regularity condition« and that u can 
take values in a cloaed convex polyhedron Qr c R', 
Kelendieridze trie« to find the tactics realizing the ex- 
tremal value max, minu <(u, r), where l(u, v) stands for 
the time it takes for P to establish contact with E. 
Such a solution of the extremal problem could be called 
an optimal pursuit tactic. He solves this problem for 
the caae that 

i = /(z, u)-i4.r4 Su, 

where A and B are constant n > n and n < r matrices, 
respectively. His main result is the following. If u(t), 
v(t) represent such an optimal tactic, and if x(t) and 
y(t) arc the corresponding trajectories leading to the 
pursuit time T, then there are vector valued functions, 

V(0-[Vi(0.Vi«). ■••.V-.O] 1 

z(o= im*i(o tnit)] 1 

such that /. = *< = 
dH 
dip,' 

// 
Vi ix 

I Vt 
dH 

X — 
dH 

ey,' 

Here, // is the Hamiltonian 

H~l(y>.f, ♦ X.g.), 
«-i 

and for all t in the interval (0, T) we have 

H[w(t), x(t), u{t), X(t), y(t), v(t)] - max min H[y), x,u,X,y, v]. 

Further, the above value of H is constant throughout 
the time interval, and f(T)= - X(T). 
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One should also mention a result of Zi^ba (1900). 
He considers motion in a plane where the pursuer is 
at the point {rp, yp) and his opponent at the point 
{x,.y,) Given two homogeneous t\inciionnvp(zp,yp,xp,yp) 

and (',(',. y«,',, yf) describing the absolute values of 
the velocities allowed, wo want to find functions ^)p 

v,i*p'!iK*0>yi) anti Vr' Vp^p-yp.^y»)- *uch thftt 

Vl + vl-v*,- 

Similarly, for the evader we want to tind similar func- 
tions 9, and y>t, such that 

vi t ^J - v]. 

The equations of motion are then 

yp^v,' 

*. <f„ 

y,   v.- 

with some initial condition. As payoff function we use 
the time it takes until capture happens; this time may 
be infinite. If the game is definite and under certain 
regularity conditions, Zif ba states a rule how to arrive 
at a first order partial differential equation for the time 
of capture, and this gives us the optimal tactics. 

Without going into details it is obvious that these 
results have a good deal in common in their approach 
to the problem. They assume the motions of the pur- 
suer and th" evader to be fairly general, subject to 
certain restrictions upon the velocities. These restric- 
tions can be space dependent, and actually that seems 
to be the case when these methods are of real interest. 
The same is true in the works of Isaacs (1954 a, b), 
although his set up is different. 

Using these results we can certainly deal successfully 
with some pursuit problems, at least in principle. 

To actually compute the solutions will be laborious, 
at least if we try to deal with the very complicated 
kinematic restrictions and the lack of complete informa- 
tion that sometimes obtain. 

It is natural to ask if we could arrive at useful solu- 
tions by restricting already from the beginning the be- 
haviors of the pursuer and his opponent. We could 
assume that their motions be described in probabilistic 
terms and specify a priori what type of stochastic be- 
havior we can allow, taking into account what we know 
beforehand about the capabilities of the two opponents. 
Naturally, we could not expect our solution to be quite 
optimal. Ou the other hand, we could hope to achieve 
a higher degree of realism, at least in those cases where 
the models can be made sufficiently detailed. 
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An early attempt in this directiun can be found in 
a paper by Yovitn & Jacluon (I95.r>). Although their 
paper is not written in the terminology of purauit prob- 
lems, it iH obvious that it can be interpreted in such 
a way. Consider a stationary Htochastic process x{t), 
hidden by noise n(f}. so what we can observe is only 
their sum y(t) — x{t) + n(t). By filtering the y(<) process, 
we try to restore x(i) as well as possible in the sense 
of the least squares criterion. If the spectra of x(t) and 
n(t) are known, then we can do this by the standard 
linear theory of stationary processes. On the other hand, 
we may view this as a game between two players, one 
of which controls the spectrum of the x-process and 
tries to prevent successful filtering. The other player 
tries to counteract this by choosing a suitable filter. We 
have a max min problem at hand. Yoviti & Jackson 
solve this problem for the case where the mean square 
value of an nth order derivative dHx(t)/dtn has been 
fixed in advance. We shall see later in the text how 
this corresponds to pursuit problems of considerable in- 
terest. 

Such max min problems arise in many pursuit prob- 
lems. If possible, one would like to have the solution 
to the corresponding game; especially one should in- 
vestigate if the game is definite. Grenander (1960) has 
studied the following problem. One player controls the 
spectrum of the stationary stochastic process x{t), with, 
say, a side condition on the total spectral energy. We 
could think of x(t) as an acceleration. The quantity 
that we are really interested in is of the form 

joa(t)x(t)dt, 

where a(t) is a given function; z may measure the loca- 
tion of the evader. The other player observes the past 
trajectory or x(t), t^O. He tries to use this observa- 
tion to predict z by some z* and has at his disposal 
all possible linear predictors. Using as a payoff func- 
tion the mean square error E[z - z*]%, it is shown that 
the game is definite. Further, the value of the game 
is simply the largest eigenvalue of the integral kernel 

K(x 
••"-/, 

mlDd   1.1   II> 

a(x+ tt)a{y+ u)du. 

The optimal forms of x(t) and of the predictor can be 
expressed directly through the corresponding eigenfunc- 
tion. 

This must be an important part of a theory of pur- 
suit and evasion. However, we shall nut start directly 
with these somewhat complicated probleniM. Instead we 
shall first consider some simpler problems and use these 
as our starting point. 

2. DESCRIPTION OF THE PROBLEM-BASIC 
NOTIONS 

2.1. Questions of Dimensionality 

Let us denote the v-vauer by E, or, if we have several 
evaders, by Ü7,, Et, Et, ... . At a certain time point t, 
let us denote by Et the position of E expressed in a 
suitable coordinate system. The dimensionality dg of the 
space in which E moves is not always well determined 
by the physical background of the problem. Often it 
depends upon what the really important aspects of the 
problem are. Take, e.g., a tank using evasive maneuvers 
in order to avoid being hit by antitank rockets. Because 
of its low angular velocity, its normal acceleration is 
practically negligible. Unless the time of flight of the 
rocket is unusually long, it may be convenient to de- 
scribe the position of the tank by a single coordinate, 
dg=l. (This question also depends upon the ballistic 
properties of the rocket, whether it is guided, an so on.) 
If the weapon used has a long time of flight we will 
have to work in two dimensions, dg = 2. 

The case ^=1 is mainly of theoretical interest, since 
in most military situations the evader has more degrees 
of freedom at his disposal. It seems that the most im- 
portant case would be d,= 2. We meet this situation, 
of course, when the motion of E is bound to the sur- 
face of the land or of the sea. But even when the 
problem may appear as three-dimensional, it can be 
convenient and realistic to assume that dg = 2. The 
evader E, say an airplane or missile, may be free to 
move in three dimensions, but circumstances may re- 
strict it to motion in the plane, in order that the navi- 
gation system, the bomb sight, or the weapon be able 
to function. More about this later. 

It is not nerössary to say much about dg = 3; it is 
obvious that three-dimensional pursuit problems ebound. 
But how about dE > 3, does this case have any prac- 
tical relevance? When the target E has a considerable 
extent in space, not negligible compared to the ballistic 
dispersion or to the accuracy of the reconnaissance, then 
one must take into account the geometric configuration 
of the target. This gives us (at most) three more de- 
grees of freedom, e.g. the Eulerian angles of a solid 
body. As a typical illustration we may men ton an air- 
plane pursued by a missile with an infrared homing 
device. The probability of the missile hitting the target 
will depend upon ihc angle between the hot exhaust 
of the jet and the line plane-missile. 

What has been said here about E and dB is applicable 
in part also to P and dp. 

In the author's opinion the general E- P problem 
to be discussed hero contains the fundamental diffi- 
culties already in its two-dimensional form. When the 
number of dimensions increases, we can expect a similar 
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increase in the computational (and possibly analytical) 
difficulties that makes it hard to work out a compro- 
heriHive solution. Difficulties of nn essentially new char- 
acter do not seem to enter. 

2.2. Restrictions 

When considering Et as a function of time there arc 
always strong restrictions upon its behavior. It is of 
the utmost importance that we do not lose these kine- 
matic restrictions when we decide upon a suitable mathe- 
matical model. Instead we must make them precise and 
express them in quantitative form. Sometimes, this re- 
striction simply means that Et must be in a given 
region S, which may depend upon time, EtES. More 
often the restriction is expressed in terms of the velocity 
vector ß, or of the velocity \£t\, perhaps jÄ,| <v. Here 
v may be given by physical reasons (maximun* speed 
of an airplane) or from tactic",! considerations (maxi- 
mum quiet speed of a submarine). Similarly, we may 
require that the acceleration be bounded, |i^|<a, or 
that some angular velocity be bounded, l^,] ^9?. In this 
connection we may think of the load factor of an air- 
plane. 

Conditions of this type can sometimes be replaced by 
restrictions upon the corresponding average values; this 
may be more reaüßtic and deserves a brief discussion 
here. In a certain situation we may be willing to admit 
the possibility that some quantity, say an acceleration, 
|£t|( may take large values, but under short periods 
only, ft is then convenient to express the restriction 
in integral form. Let tho admissible functions Et form 
an ennemble £ (the set of strategies for E). If we have 
a probability measure P on £ (a mixed strategy), then 
wc know that under certain conditions there is a close 
relationship between temporal average values and ensemble 
mean values over £. We may then use conditions of the 
form 

I \ßt\dP^a, 

WdP^ß, 

f[\tit\]dP<y, 

just to mention a few possibilities. It is clear that a 
wel'-chosen formulation of this sort of restriction must 
be a compromise between realism and analytic tracta- 
bility. 

2.3. Information and Uncertainty 

The positions Et and Pt of the evader and pursuer, 
respectively, are functions with certain properties, they 
are  elements of specified function spaces.  However, it 

w< uld not always be correct to assume that the two 
opponents know their own position (past or present), 
and still less their opponent's {»osition. Actually, this 
will depend very much upon what navigation syst- t is 
used and upon the method of localizing the oppon .t. 
Here, all possibilities exist on a scale between complete 
information and complete lack of information. It may 
happen that one has reasonably good information in 
both directions (say, in an artillery duel between two 
destroyers), that one has only little information in one 
or both directions (say, for a fregatt hunting a sub- 
marine), or that information is completely missing in 
one direction (small scale landing operation, without 
radar reconnaissance, attacked by guided missiles). The 
uncertainty may here be expressed is statistical term?; 
the hypothetical position is a stochasti.- variable with 
some probability distribution around thv. true position. 
It is important to note the difference between the case 
where this distribution is more or less constant, and 
that where it depends strongly upon time. The latter 
case can be exemplified by a navigation Hystem based 
on dead reckoning, say, baseu on inertial navigation, 
and assuming that no new fix is obtained during the 
time interval under consideration. The cumulative effect 
of initial errors of observation can have important con- 
sequences when studying optimal tactics. It is also im- 
portant sometimes to note that one side may have some 
information about the form and location of the trajec- 
tories of a missile but not about the time of firing. 

2.4. Purpose of Evader and Pursuer 

To study these tactical problems by operations analy- 
sis we must first of all decide what E and P seek to 
obtain. A simple assumption (usually too simple) would 
be to say that P wishes to reach E as soon as possible, 
while E wishes to postpone the encounter as long as 
possible. Often it is more realistic to assume that E 
has a concrete aim, say, to reach a given point, line 
or area, or that he wants to keep a certain average 
course (zigzagging to avoid contact with P). Perhaps E 
wishes to reach a certain point as quickly as possible, 
taking into account that the evasive maneuvers take 
time but have to be made in order to make the risk 
small that P get an opportunity to use his weapon 
system. A quite different aim is when E tries to ma- 
neuver in an unsystematic manner in order that P lose 
contact with him, so that he can get away unobserved 
(a hunted submarine). But even here we may get a aide 
condition: these evasive maneuvers must be made such, 
that the effect of the weapon system of the enemy can 
I« expected to be small. 

It is not necessary that f's aim is to use his weapons 
at all, instead he may try to collect information about E. 
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Hunting mibmahnos with helicopter is a typic«! caau, the 
helicopter makes the ol)Herv»tions a« (OIIOWH: it ■top«, 
lowers an active hydrophone into the sea und listens 
for the submarine in different direction«. If the sub- 
marine has been located but tries to get away, the heli- 
copter (P) must try to predict its future position, fro 
there, and start lisU-ning a^ain. 

2.6. Prediction 

When working on specific pursuit problemH one be- 
comes soon aware of the following logical relationship 
that is basic for the whole complex of problema. When 
E attempts evasive maneuvers, this will influence the 
tactical behavior of P: P will use a method of predic- 
tion in order to counteract the evasive maneuver«. In con- 
nection with mathematical prediction problems one usu- 
ally thinks of the Kolmogorov-Wiener theory for optimal 
prediotora. This theory has shown itself very useful in 
the design of fire control systems. It is of relevance 
in the present context too, but unfort mately it is too 
restricted for immediate application in many cases, as 
will be shown later on. 

It is practical to fix somo terminology. By the order 
of a predictor we shall mean the number of derivatives 
of the function E, at t = t0 that are used to predict 
the value of Eti.H, h>0. This notion, of course, applies 
only to a predictor that uses only the instantaneous 
values of E, and of some of its derivatives. A first 
order predictor is then of the form E%h = f(Et,fit). By 
a linear predictor we shall mean a predictor constructed 
as a linear combination of the past and present values 
of £„ or, more precisely, as a limit of such linear com- 
binations. This distinction is not always made clear in 
the literature. The classical prediction theory treats linear 
predictors only, and this can be a severe restriction. 

2.6. Optimality Criterion 

We have already discussed the object ives of the pur- 
suer and the evader. This discussion was in general 
terms and perhaps too vague. For a quantitative treat- 
ment it is necessary to define precisely an optimality 
criterion. This can be the probability of (at least one) 
hit, the expected number of hits, the probability that E 
nan reach a certain region unharmed or that he avoids 
being detected. It could also be quantities such as, the 
time till Pf — E^ or till \Pt~Et\^r. Perhaps one should 
use the length of the trajectory instead of the time 
spent in it. It is well known by the practising opera- 
tions analyst that the choice of optimality criterion is 
decisive for the outcome of the analysis, and that it 
is seldom or never possible to point out a uniquely 
determined criterion as superior to the other available 

criteria. If we aim at. some realism in our study, we 
must therefore be prepared to work with several cri- 
teria simultaneouMly, oven though this wil. make the 
theory more heterogeneous. 

2.7.  Different Type» of Solution 

When we have fixed the tactical situation and the 
optimaliiy criterion, we can try to work out a solu- 
tion on three different aspiration level«. 

(1) We may assume that one of the opponents has 
chosen this tactics in some way, and that this is known, 
at least partially, to the other one. This assumption 
could u? jiktified when the tactical behavior depends 
directly upon the technical equipment that one believe? 
will be used during the relevant period. Then we have, 
mathematically, an ordinary problem of variation, and 
we should study existence and uniqueness of solutions 
to an extremal problem, maxx/(x, y0). Above all, we must 
seek a suitable way to compute the solution, analyt- 
ically or numerically, in order to obtain a real solution. 

(2) On the other hand, we may not be able to assume 
a priori that the tactics of the opponent is known. In 
such a case we have a double extremal problem of the 
type m&xtTO\nyf(x,y). Often the tactics can be described 
by one or several functions, so that x and y will take 
values in some function space. It in not always true 
that there exists an optimal tactics. This way of looking 
at the problem may be considered as one half of a 
game: we look at it only from the point of view of one 
player and try to maximize his payoff, assuming that 
his opponent behaves in an optimal manner. 

(3) Finally we may try to solve the whole game: de- 
termine min,, max, /(x, y), and see if this value coincides 
with the value we already got. In such a case the game 
is definite, and mathematically the situation is favor- 
able. In general, the spaces of admissible strategies 
(usually randomized) will be so large that we cannot 
hope to meet definite games very often. It seems that 
the existing theory of games will give few concrete hints 
in this direction, and it will therefore be necessary to 
study in detail the specific situations. 

Normally we would prefer to work on the highes* 
level. However, in order to arrive at definite, and mcthe 
matically tractable, games, we would often have to im- 
pose strong restrictions and simplifications. This will be 
evident in the following chapters. Therefore, we are con- 
fronted by a choice: do we want a mathematically 
attractive and polished solution to a problem with little 
relation to reality, or do we prefer a less complete solu- 
tion of a problem formulated in a more realistic way? 
Many operations analysts (including the author) believe 
that the second alternative is often preferable to the 
first one. 
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3. THE DISCRETL APPROACH 

3.1. Qtntral Considerations 

Let us specialize and make the situation moro con- 
crete. A pursuer P and an evader E move in a plane, 
rf = 2, with certain kinematic regtrictioiis, at least as far 
as E is concerned. The Bneed« of P and E will be de- 
noted by V and r, respectively. To start with, it will 
bo assumed that P can move more freely than E, and 
that the speed ratio V/v > 1. We may think of ^ as a 
submarine carrying out evasive maneuvers submerged, 
but that its vertical motion can be neglected, so that 
its position is described by plane coordinates. P may 
be a helicopter trying to find and follow E. Or P may 
be one (probably one out of several) antisubmarine 
rocket fired from a submarine chaser. 

Let us assume that, at a certain moment, t --- 0, E and 
P observe each other, and that P has complete in- 
formation about the position and the velocity vector 
of E. (Later on we will have to relax this unrealistic 
condition.) It is irrelevant whether E has or does not 
have information about P's position and velocity vector, 
since P's continued motion is very free and hence not 
strongly dependent upon initial values. 

After t = 0, the oppom nts cannot observe each other 
for a while, and we are waiting for what will happen 
at some future time t — h. In the examples mentioned 
above, this may correspond to the time point when the 
helicopter lowers its hydrophone again or when the anti- 
submarine rocket reaches the plane where the target 
moves. During the interval (0, A) E has moved along 
some trajectory with the end point Eh^Q that can be 
situated in a rr^ion S of the plane, see Fig. 1. 

Fig. 1. The region S which the evader E can reach. 

The boundary to the right of S corresponds to E using 
his maximum speed. The lower and upper boundaries 
of <S correspond to maximum angular velocity. It is 
often reasonable to assume that E uses his highest speed 
all the time. If this is so, then S will look something 
like Fig. 2. The region will be long and narrow, unless 
E can steer so much that the region is made wider. 

Now we must define the tasks of P and E and the 
corresponding optimality criterion. If P tries to fire at 

^-^Z 

Fig. 2. The region which E can reach with maximum speed, 

E to hit and destroy him, then we may use the proba- 
bility of hit as a criterion. Let us suppose that this 
probability is a decreasing function f(R) of the distance 
R=\En-PH\. E will try to make R large by choosing 
among the possible values of En. P will do the op- 
posit«. 

Let us first study the case where P choosej a posi- 
tion Ph£S. Then wo can describe his tactics by a proba- 
bility distribution Fp over S. Similarly, E has some 
probability distribution Fs over S. If we, for simplicity, 
choose the criterion as - R*, it is clear that E wishes 
to maximize  U, and P wishes to minimize U, where 

t7=f      f     R^EJdFtodFp,,. 
JSktS JPktS 

The payoff function Äa is a continuous function of Ph 

and Eh. 
S is up'ially a compact pf.rt of the plane. A general 

result oi the classical game theory tells us that the 
game is definite, it has a value. It remains to deter- 
mine the corresponding tactics. In general we will do 
this numerically, but, if the situation is simple enough, 
analytical methods may succeed. To familiarize our- 
selves with the problem we shall in the next section 
consider a few simple cases. We will not meet anything 
mathematically exciting, nor will the models be of much 
practical value. Nonetheless, we hope to understand the 
pursuit problem better in this way, enabling us to go 
on to more interesting situations. 

3.2. A One-dimetisiomil Example 

Let us assume that S consists of an arc of a circle, 
say, an arc smaller than a half-circle, see Fig. 3. One 
can guess the solution: P shall go straight ahead, and 
E shall go to one of the end points of »S, with the 
probabilities \, \. To prove this, we note that if P goes 
to PA, and if E uses the tactics described, then the 
payoff is 

This inequality holds, since 
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Fig. 3. The case whcru S conaista of an arc of a circle. 

On the other hand, if P goes straight ahead, and if E 
goes to some point Eh, the payoff is at must 1%. Hence 
the two tactics described above are optimal, and the 
value cf the game is 1%. 

We leave to the reader to study the case of S being 
a circular arc with an opening angle of more than 180°. 

There does not seem to be any good reason why Ph 

should only be allowed to take values in S. However, 
with the (somewhat arbitrarily chosen) payoff function 
that we have used, ^(P^E^, the pursuer P will not 
lose anything by restricting himself to the region 5 
formed as the convex hull of S. 

Fig. 4. The case where S consists of a segment of a circle. 

Let us see how this would modify the discussion of 
our example. The region 5 is now a segment of the 
circle, see Fig. 4. The best tactics for E will be the 
same as before, whereas P should not steer to the mid- 
point of the chord bounding S. With notation used in 
Fig. 4, we have 

so that ^f+i/! = d, + y, + a;2^da. 

This is  one  of  the  inequalities  needed  to prove the 
statement. The other follows immediately. 

8 

Fig. 5. The case where S consists of a circular sector. 

3.3  A More Realistic Example 

The situation described can be said to correspond to 
the case when the evader uses his highest speed all the 
time. A somewhat more realistic assumption would bo 
to let S consist of a narrow region, resembling a thin 
crescent. We do not expect that this will lead to any 
drastically changed tactics. That may be the case, how- 
ever, when E sometimes slows down very much, so that 
S will have a form similar to a sector. For simplicity, 
let S be such a sector, see Fig. 5. To treat this case, 
we note that the payoff function is convex in the vari- 
able P: 

WE-xP^il-xlPN^xWE-PyW'+d-z^E-PtlW 

see Fig. 6. 
We have      R* ^ r* + i? Q2

 - 2xQr cos q> 

and ^-V>o. 

We know then (Fundamental theory for continuous 
games, see Notes) that the best strategy for P is pure, 
that the value of the game is 

t;=minmaxÄa(Ä, P), 
p       E 

and that the optimal strategy P0 for the pursuer is a 
solution of the equation 

maxÄ,(^,P0) = v. 
s 

To compute the value v we must first maximize 
R*(E, P) when E varies and P is kept fixed. The maxi- 
mum is attained when E is in one of the corners of 
the triangle ABC (Fig. ö). Then we minimize when P 
varies, and the minimum is realized when P is chosen 
as the center of the circle circumscribing ABC; this 
can be seen using a differential argument. It remains 
to determine the best strategy for E: it will be to go 
to one of the corners A, B, or C, with the probabilities 

Pr(B) = Pr(C) = p = 
1 

4 cos* v/2' 

Pr(A)--\-2p, 
y)< 

n 
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Kig. Ü. Demonstration that the payoff function is convex. 

Jt 
If l)

<V,<7r> wc choose iriHtead 

Pr(H)    Pr(C)    I, 1 

Pr(A)    0, I 

and  Pft should   bo taken a« the midpoint of the line 
segment AB. 

The latter case is proved in the same way as in 3.2. 
In order to prove the first case, we study the function 

f(P)=-{l-2p)r\ + prl + prl 

Denoting fj by x, we find 

f(P) = (1 - 2p) i* + p^ f Q2 - 2XQ cos if] 

+ plx* + Q*- 2XQ cos {yi - (p)] 

=■ 2pQt + x* - 2pxQ [cos 93 + cos (tp - 99)]. 

Considered as a function of x and y, f(P) will take its 
rainirvam inside S in the point 

V 
? = 2' 

x = 2pp cos ^. 

This minimum is now computed as 

min f(P) = 2pQ* - 4p,
e
, coe* |. 

The evader can maximize this expression by choosing 
for p the value given above, giving 

Fig. 7. The case where S is a circular cone. 

3.4. A Three-dimensional Example 

It is clear that wc can treat in a similar way situa- 
tions where S ha.s a more complicated form. In prin- 
ciple wc can also deal with three-dimensional versions 
of the same problem. It may be instructive to consider 
the case of S being a circular cone with the opening 
angle y and the side Q (Fig. 7). P'H best strategy 
is to steer toward the center of the sphere circum- 
scribing the cone. E shall go to the vertex of the cone 
with the probability 1 - p, and to the periphery of the 
circle bounding the base of the cone with probability p. 
On that periphery, E can choose any probability distri- 
bution the mean of which coincides with the center of 
the base. The probability p is given as 

P = 
1 

2cos*v/2" 

When rp is obtuse, we put p= I, and P should go to 
the center of the base. 

In order to prove these assertions, we first observe 
that E, trying to come as far as possible from P, 
always will go to some extreme point of the cone, either 
to the vertex K or to the periphery of the base. If E 
goes to the vertex with probability 1 - p, the proba- 
bility mass on the periphery will be p. On that pe- 
riphery, E chooses a point from a probability distribu- 
tion over the interval between - 71 and + n. If the 
probability mass on the line element rdy of that pe- 
riphery is written as yty) rcUp, we must have 

■i: y((p) d<p = p. 

—- -r,    max min /(P) = x* = 
2 008^/2' x      p 4co82y>/2' 

This shows that P should be chosen as the center of 
the circumscribing circle, as stated above. 

Instead,  if Ph  is  fixed in the center of the circle, 
and Eh varies, we get 

lln-^ll^t;, 
and this proves the optimality. 

We introduce an orthogonal coordinate system with 
the origin in the vertex, the x axis along the axis of 
the cone. Counting the angle y along the periphery 
from ihe positive y axis to the positive 2 axis, any 
point on the periphery will have the coordinates z = A, 
y = r cos 97, 2 = r sin 9?, where A ^ 0 cos %p and r = A sin \p. 

The center of gravity of the probability mass distri- 
bution on the periphery will then have the coordinates 
j/=a, 2 = /9( given by 
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r1 j     y{(f) sin <pd<p-~ pß. 

If f goes to the point (xyz), the expected value of the 
squared distance between P and E will be 

+ I     [(A - J-)
2
 ' (rco8 99-y)*+(r8in9?-2)2Jry(95)d93 

= (x - pA)2 + (y - pxf + (J - p/?)2 4 p(r2 + A2) 

-p2A2-p2a2-pV^ 

Here P, being able to choose the parameters x, y, and 2, 
can minimize »S' by putting x ph, y-^ pa, andz~pß. 

He will thus go to a point on the line between the 

vertex and the center of the distribution on the pe- 
riphery, such that the distance to the vertex is p times 
the length of the whole line. The minimized value is 

then 

min S --= p(r2 -I- A2) - p8(A2 + a* + /92). 
p 

Now E, being able to choose the parameter p and 
the probability distribution on the periphery, wants to 
maximize this expression. This will mean, first that he 
puts a = /3=0, i.e., that he chooses a probability distri- 

bution with the center in the center of the base, and 
second that he puts p equal to 

^A2 1 
P~   2A2'   2coatf/2' 

The value of the game is then 

max min S = 
s     p 

(rHA2)2 r2+A2 

4^t        A „~„ä.../o    x°v- 4 cos2 y)/2 

The strategy adopted by P thus means that he will 

go to a point with the same distance xon to all those 
points to which E can go. 

3.6. Incomplete Information 

We have assumed complete information at time / = 0: 
P knows the position and velocity vector of E with 
no observational errors. Let us now discuss how this 
should be modified when the errors of observation are 
so large that they should not be neglected. 

First, the simple but relatively uninteresting case 

where the only error is in the determination of the posi- 
tion Ej. We choose a coordinate system with its origin 
in EQ. The error of observation is a stochastic vector c, 
about whose probability distribution we assume only 
that second order momenta exist and that Ee = 0, The 

last condition means that if our method of observation 
has a systematic error, then this has been componaated 
for by a suitable correction. We will choose Ph as 

Ph~e¥r, 

where z is a vector that can be stochastic or fixed. 
In both cases it can bo described by a probability 

distribution Fp(x), possibly degenerate. Clearly, Fp does 
not depend upon e, since it is chosen by P who does 
not know the actual error of observation, e. We get 
the payoff, with Eh^y, as 

U(FP, Fs)~ (   j   <p{x - y) dFP (x) dFB (y), 
JEk JPk 

where 

?(*  y) = f h * * - y\\% dm = E. ||£ 1 x - y||2 

^E.|H|2+||x-y||2f2E.[£,(x-y)] 

This gives us 

U(FP,FE) = <t\- {   { Wx-yfdFpdFs, 

where the first term on the right side is a constant 

characteristic for the method of observation. The second 
term is of the type we have met before. Therefore 
we know, at least in principle, how to deal with this 

problem. 

S' 

Fig. 8. Observational error. 

So far, we have not allowed any error in the de- 
termination of the velocity vector EQ. In many cases, 
the error in determining the direction of E's trajectory 
is the important one. We may think of the ordinary 
plotting method. To handle this angular error too, kt 
us consider Fig. 8. For the sake of clearness the figure 

has been drawn with a very large observational error. 
The vector x can now be wr'tten as 

X=E+Tt. 

Here, f is the position relative to a coordinate system 

fixed in relation to the region 8', and T is a rotation 

I 
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operator eorrenponding to the angular error. We have 
a stochastic vector $ in Ji* or R* and a stochastic 
orthogonal operator T in R1 or Ks. The tactics of E 
and P are described by probability distributions FE 

and  **/.. For fixed values of f and y, we get the payoff 

5=E,.T||x-y||«=E,r||e4-n-y|i» 

\\E + Ti-y\\tdF(e,T), 
Jt.T 

where F(f, 71) describes the simultaneous probability 
distribution of e and T. Hence, 

ß = E,T ||£||2 + E,T Uff - y||» = a.2 + E.,r Hrf - y\\\ 

where of is a constant. To get some idea of how the 
second term differs from the cases we have studied, we 
consider the plane situation, x and ytR*. The nota- 
tion is given in Fig. 9. 

Fig. 9. Obaervational error in the plane case. 

We get 

m-y\\t=mr+\\yr-2(T^y) 

=ikr+iHi2-2iifii-ycos(a+9p) 
and 

l.rm - y\\a= Ur + M* - m ■ M e cos («i- ^0). 

Here we have defined the non-random quantities 0 and 
f0 through the relations 

cos (p dF{<p) = 0 cos (p0, 

sin <p dF(<p) = 9 sin (p0. 

With no systematic errors, the quantity (p0 will be close 
to zero, whereas 0 can differ considerably from 1. We 
have to study the payoff function 

instead of 
lkll^W-20||^|i-|M|co8a 

lk||>+||#-2||f||-|H|cosa. 

Apparently, the angular error affects the problem in a 
way that does not lead to complications in principle». 
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Errors in the determination of ||Ä0|| could also be 
important. The possible region for Eh does no longer 
behave as a rigid body: S' is not necessarily congruent 
with iS'. The length of S' (in general funnel-shaped) 
depends upon how close ||/£0|| is to its largest value, 
the maximum speed. Wo shall not enter into a discus- 
sion of such modifications; if the applications seem to 
require such an extension it seems to be possible. 

We can incorporate into the model the possibility of 
navigational errors of P. Let us say that P aims at 
Ph, but that the position really reached is Ph + d, where 
<5 is a stochastic vector. Assume that Ed-= 0 and that d 
is independent of Ph. We then get the payoff function 

Eap-p„-c-i^-nii2+^w. 
It differs from the previous formula only by an additive 
constant. 

3.6. Several Pursuers 

When we have more than one pursuer, we meet a 
more essential modification. Say that we consider the 
two pursuers Pj and P2. As usual, their optimal be- 
havior will depend upon what payoff function we use. 
This will reflect the purpose of the pursuers very clearly 
and with direct and practical consequences. 

For simplicity we will chose S as the interval (0,1) 
and consider the two payoff functions 

B^WE-Ptf, 
B^WE-PtW*. 

They measure the value of the achievements of Pl and Pa. 
Let us first see what happens if the total payoff is 

simply the sura B ^ Bl + Bt of the individual ones. The 
two pursuers Py and P3 play two identical games. P1 

and Pi shall behave as if they were alone, and steer 
toward the point Ph= %. E shall choose one of the 
points Eh = 0, Eh-l, with probabilities }, J. 

If, instead, .8= max {BvBt), we get the same result. 
To see this, let E behave as described, and P,^/*,, 
then 

payoff=i(l-Pl)
2+iP^i. 

Instead, if Pl = Pt= \, we get 

payoff^-i)8^, 

which verifies the statement; the value t•= J. 
Finally, if we choose B^ min (B1, Z?,) we get another 

result, but it will not be discussed here. 
There are of course many other situations, but these 

three illustrate some typical cases. The first, B-= Bl + Bt, 
implies an additive effect. It could be reasonable when 
we study the expected number of hits. It could also 
be relevant in hunting submarines, if the total pressure 
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effect on the Hubmaritu; is approximately ','qual to the 
sum of the individual pressure components. In recon- 

naissance it might also be used, or perhaps the more 
precise formula B Iix l 11, lil li2. The second case, 
5—max (ß,,/f2), could he relevant, if the total effect 
B depends upon the worst (largest) result of Bx and Br 

The third case, B xmn{BvB%), is based on the best 
(smallest) result of Bl and B%. It will lead to the well 

known notion of artificial dispersion that appears in 
artillery tactics. 

3.7. Criticism of the Results 

It is possible to criticize the di.screte formulation ol 
the problem that we have adopted in this chapter. In 
the discussion we have assumed that the point of time 
h is fixed and known. If this is not so, the region S 

is no longer determined by kinematic data, and the 

previous reasoning is not applicable directly. If h has 
a probability distribution known for E and P, then we 
can take into account the variability of h without essen- 
tial modifications. Otherwise, we get one more game 
parameter, h. In spite of its obvious importance, we 

shall not discuss this possibility. 
Another, more essential, objection to the discrete point 

of view is the following. After time h the bombardment, 
or the reconnaissance, etc., has been completed. But in 
general we will still be interested in E and P and in 
what happens to them afterwards. Perhaps the game 

is repeated over and over again. We get a sequence of 
cycles of more or less similar type. If these cycles can 
be assumed to be approximately independent of each 
other, then we could just apply the discrete model 
several times. Very often, however, do we have inter- 
dependence between the cycles. This is clear when the 

quantities A,, Aj, A3, ... are not known in advance. Let 
us assume, e.g., that in a naval situation £"s best tac- 

tics is to steer port or starboard (with probabilities J, J) 
with maximum angular velocity during the time A. If 
we have several consecutive cycles it might be optimal 
to keep the angular velocity constant. But then, P could 
predict the behavior of E already öfter the first cycle. 
We must look more carefully into the way the cycles 
influence each other. 

Our aim is then to study a sequence of cycles of in- 
dividual games. It seems to be a good starting point 
to investigate a continuum of cycles; this can be said 
to correspond to the case where A,, Aj, h3, ... are un- 

known. 

4. THK CONTINUOUS APPROACH 

4.1. d'enenil Con-tideratiom 

Let us .study the following typical situation. The 

evader E moves along some curve A', the form of which 
is subject to kinematic restrictions as discussed in Chap- 

ter 2. At time t the pursuer P has more or less com- 
plete knowledge of the curve E, for s- t. Using this 

knowledge, P makes a prediction Pt H, a predicted im- 
pact point or whatever one chooses to call it. In a 

certain sence, Pth can be said to approximate Et,h. 

Measuring the result by a payoff function B(Et<h, Pth), 
we have again an extremal problem. Here E controls 

the choice of trajectory Et, or rather, he chooses the 
probability distribution governing the stochastic pro- 
cess Et. P chooses the method of prediction. The events 
may turn out something like Pig. 10, where Pt h is the 
dashed line. The arrows denote the errors of predic- 
tion, to use a term that is not entirely adequate. 

Fig. 10. Paths of P and E. 

If the problem has not been specified in more detail 
it is difficult to say anything general about what op- 

timal tactics to use. It is clear, however, that the evasive 
trajectories Et must not form a highly regular system 
of functions. Indeed, if the trajectories were regular 

enough (analyticity, etc.), the pursuer could predict the 
future positions of E without error; at least this is so 
if we neglect observational errors. Such a complete pre- 

dictability is obviously unrealistic. The path Et must 
be allowed to be more irregular. This can express itself 
in different ways, e.g. that derivatives may not exist 
for orders greater than one. Sometimes we will be led 
automatically to such classes of function Et when we 
solve the extremal prob'em. Such classes of function are 

often very wide and not compact under natural topol- 
ogies. This introduces difficulties, since we cannot in 

general apply the fundamental theorem of game theory 
under these conditions. Difficulties remain, even if we 
limit ourselves to the determination of a max min solu- 
tion. While the reasoning in Chapter .'} was based on en- 
tirely elementary mathematical facts, we will need some- 

what more sophisticated ideas in the present chapter. 

i 

4.2. One-dimensiorud Pursuit 

We start, of course, with a one-dimensional problem. 
E moves along the real line with the trajectory Et. We 
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(onsidcr K'H vi-Umty v(t) (IK, ill m compoMod of two 
piirts, ,- and ,/(/), ,.(/) ,, | y«), -piic firnt term, r, is a 

coiiMfant and rorronpondH to the fact that K moves 

according to some ^ivon purpose. It may be a tank 

advancing against the enemy, To avoid being hit while 
advancing he makes evasive maneuvers. The time points 

when the individual shots are fired against, A' are not 
known by him in advance. The term y(l) describes the 
attemptH to evade. These values (positive or negative) 

are added to an average value r. We shall assume more 
precisely that y{t) forms a stationary, stochastic process 
with mean value zero. Such an assumption may seem 
reasonable, but it is more difficult to motivate the 
choice of particular probahility distributions for y(t\. 

Therefore we shall only assume that y(t) has a covari 
ance function r(t} corresponding to a spectral distribu- 
tion function F(X), so that 

Ey(t)    0. 
/•oo 

r{t) - Ey{.s) y(.H ) /)     I    cos tk dF(X). 

The kinematic restrictions make it improbable for \y(t)\ 

to take large values under long time intervals. Let us 

formalize this statement as 

r({))-Ey2{t)<C. 

We shall return later to this condition and discuss 
alternative forms of it. The set of strategies is here 
the set of all non-decreasing functions F{X) whose varia- 

tion does not exceed C. 

As far as /* is concerned, we shall study first what 
happens when he uses a linear first order predictor as 
follows. The value of ET if, observed at equidistant 
points of time tp n. The observed values of En and 
En j are used to predict En^. 

E*t\    En+ (En- En i) - 2En-E„ :. 

The formula is exact for uniform motion. We get the 

extrapolation error 

E„ti~~Enti~Enii- 2En v En  i, 

a second order difference. The mean square error a1 

is then 

ff
2 = E(^n + 1-2£^ En ,)' 

E J       (v\y[t))dt-\      (v\y(t))dt\ 

•n i 1 

-FJJ   ^y{*)k(s)<U 

where the functi-     k(s)    1 in the interval {n,n \ 1) and 

k{s)     -1 in (n-l,n). This gives us 

,;»- j       r(H    i)k{a)k(t)djiä 
J n    \   J n    1 

-f      I"     j    cos[(.<    t)X]dF(X)k(a)k(t)d*di. 
J n    I   J n     1   J 0 

Changing the order of integration, we find 

a2 rr r COHK* vükwmdjdidFU) 
JO    J n    i  J n    I 

^rx(X)<iF(X). 

Here we hive introduced 

/*n t 1    /*i * 1 

xU) co*[(*-t)l]k(s)k{t)dsdt. 
J n    I  J n    1 

Substituting t    .f    u, 

/•nil   fv~i   ntl 

x(A) - I cos uX k(s) k(s - u) du da. 
J n    \  J u-i    n    I 

Changing the order of integration gives 

x{X)    2 I   cos «A k(s) k{s - u) da du 
J() J i- n    I i u 

r - 2    cosuA A{«) du. 
Jo 

Here the function h(u) is computed as 

(a) 0<d<l: 

rn\ 1 

A(u) = I k{a)k{a-u)da 
J n- 1+ u 

/•n +1 Pn 

= k{a-u)da- \ k{8-u)da 
J n Jn-l+u 

/•n + 1   u fn- u 

k{z)dz- k{z)dz 
J n   u J n- I 

= (l-u)-u+ 1 -«=2-3u, 

(b) l<w<2: 

/•n + l 

A(u) = k(a~u)da 
J n-l + u 

/•n + l - u 

k{t) (Ü = (n - 1) - (n f 1 - M) - u - 2, 
J n   1 

so that h(u) 
2~3u,   0<u<l, 

w-2,      1<M<2. 

The form of the function h(u) is seen in Fig.  11. 
We have to solve the variational problem 

■•/: 
xU)dF(k)  -mux,     j    dF(?.)<C. 
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Fig. 11. The function h{u). 

Since C lF{A) is a distribution function, it is clear that 
the maximum is attained by locating the whole varia- 
tion C in the point or points where the function x(A) 
has its largest value. This function can be written as 

x(X) = ~ [3 - 4 cos A + cos 2A] = 4 (-^Y*-) ■ 

xl \) 

Fig. 12. The function x(A). 

x(^) is shown in Fig. 12. The maximum is found from 
the equation 

This equation can be solved numerically, having a single 

root between 0 and 2n: 

^^2.331 ^133033'. 

The corresponding value of x is 

max x(A) = (2 sin 0*^2.10. 
x 

We get the minimum square error a2 ^2.10 6'. 

14 

Hence E shall chose his velocity as 

V(t) " V + ]/C COS (Aopj t + (f), 

where 97 is a phase angle chosen at random (with a 

rectangular distribution) in the interval (0,2;r). The 
resulting trajectory is 

x{t) = x(0) i rff       sin (;opt < + ^). 

To achieve some realism it may be necessary to impose 
some rtatriction on the acceleration v(t), rather than on 

the velocity itself. If we do this via the condition 

E[ 
/•oo 

t'(<)], = Jo A* «WKC,. 

we will get a modification of the previous variational 

problem. The solution is simply found by using Neyman- 

Pearson's lemma. Put 

m x(X) 

X* ' 

I    max l(X). 

Then, <7?pt = /C'j, and the optimum is realized by lo- 
cating all the variation Cl in the point or points where 
1{X) attains its maximal value I. This follows from 

a*^ rx(X)dFa)<irXidFa}<lCl. 
Jo Jo 

The equality sign is realized in the way just mention^. 
The form of the trajectory is easy to calculate. 

A still more realistic formulation of the problem may 
be obtained by restricting both the velocity and the accel- 

eration by the conditions 

J, x(X)dF(X)^in&x, 
0 F 

variance of the velocity =-       dF(X) < C, r 70 

variance of the acceleration dF(X)<Cl. 

This is a combination of the two previous formulations. 
A simple variational argument is needed to solve the 
extremal problem. Let us denote by s(F) the support 

of F: the set of all points X for which the increments 
F(X + e) - F{X - e) > 0 for every positive e. It is seen 
that a(F) is a closed set, and it describe.1, the frequencies 
used by E when he forms the velocity function y(t) 

from harmonic co'nponents. 
Let us assume that three different frequencies X^ X2, 

Xa£s{F). Choose a small positive number e, and change 
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F(X) in the (diHJoinl) inU-rvalH /„ (Xn t, Ar, ( f); 

n ■ 1,2,3; the spectral energy in thew intcrvalN should 
be increased by the amounts r)rn,  where 

j-, ( Zj I r3 

This means that the integrals appearii^ in the kine- 
matic restrictions are little affected if e is small enough. 

If T] is small enough, we still have AF(/n)-l rjxn -i), 

so that the new function is still non-decreasing. In order 
that F(X) shall be the solution,  we must have 

Othervise,  wo could increase the value of 

i: x(A) rfAV.) 

by replacing A^' by &F \ rjx in each of the three in- 
tervals and leaving F unchanged elsewhere. But this 
implies that the third relation must be a linear com- 

bination of the two first ones, 

xUnHo + W*.    n= 1.2,3. 

If we determine the constants a, h from the conditions 
for n= 1, 2, we get 

a       xi-Xi 

b = 
x(X2)->i(ki) 

At A? 
or 

«(A) 

M*(li) - AfxUj) + |x(A2|- ^(A,)] A2 + [x(A2) - x(A,)] A* 

If Ä2      Ä\ 

This equation should be satisfied for A = Aj, A2, A3. Assume 
that s(F) consists of at least two points Aj, A2; the oppo- 
site case could be dealt with directly. Since the above 
relation must hold for every X£s(F), and since F has 

no variation outside s(F), we get 

/•oo /%oo /•oo 

x(A)df(A) = o     (iF(A) + &     A^AKaCf fcC,. 
Jo Jo Jo 

The equality sign can be realized if s(F) contains some 
point ^(C,/C)*. Then we should determine ^. and A, 

such that they maximize 

C[Aix(Ai)-A!x(A8)] + CJ^-xUx)] 
A2_ Ai 

with mm(Xi,ki)<{C1/C)K We have thus reduced the 
problem to a finite-dimensional maximum problem. 

While this may present some minor numerical diffi- 
culties, it is clear that it is simple in principle. 
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During the above discussion we have assumed im- 

plicitly that sup J" x(A) d.F(A) is realized by some F. 
That tins is so, follows from the fact that the condi- 

tion j" A'rf^fA) ' ('1 implies that the set of spectral 
distribution functions at our disposal is weakly com- 
pact; no spectral energy can "escape to infinitely high 

frequencies" when considering all these F. From every 
sequence of F we can pick out. a weakly convergent 

subsequence, and this proves the assertion. 
Situations where we introduce more side conditions 

can be dealt with by a direct generalization of the above. 

4 3. A Modification of the Previous Problem 

Let us now return for a moment to the situation 
with the only restriction JodF(k)' C. It is quite natural 
to use the linear, first order predictor that was sug- 
gested, but it may be argued that one should not choose 

the predicted value of En<i all the way En En 1 from 
the last observed value En. Instead, P may do better 
by using the modified predictor 

E*n + i~En + k(En~En ,) + »(!    *), 

where it is some constant to be chosen, presumably in 
the interval (0 1). The last term has been added to 

make the predictor unbiased. The error of prediction 

is then 

oj;^ E(^n + i - En + i) 

= E{j"''[t; + y{8)]ds - I: f   [v + y(s)]da-v{l- k)\ 

= E|J      y{s)d*-k(    y(8)dA. 

Proceeding as before, we get 

(TJ=- I   xk(k)dF{k), 

MA)-«(AM W) + JtV(A), where 

with 

a{A) = y(A) 
2(1-cos A) 

0/.x    2(1 - 2 cos A + cos JA) 
PW = —       ^1 

4co8A(l - cos A) 

A* 

Introduce the quantities 

~T^m. 
ß'2 r 2 cos A + cos2k ,„,., 

, dF{k). 

The possible positions of the point (a,/?) in the plane, 
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when $*dF{X) <C, form a region I). Apparently, D is 
convex and compact. Further, for any probability dis- 
tribution function K{k) of the parameter k in (0, 1), 
introduce the moments 

f*i 
/: 

k'dKik). 

The point (//„,//,,/ij) is situated in some convex and 
compact region F. The reader may note that the con- 
cept of moment spaces could be used here, but we shall 
assume no knowledge of this concept. The payoff be- 

comes simply a/i0 -t ßfi1 t y/i. Hence, optimal strategies 
exist, say F and (/i0, ^i,,/ij). The latter must correspond 
to a pure strategy since, if fi0 and ^, have been fixed, 
we have 

to     W Ho 

Here equality holds for that pure strategy where K(k) 

has all its variation in the point k - /il Z//,,. To get the 
payoff as small as possible we shall make //2 as small 
as possible, since its coefficient, y, is positive. We can 

write down an algorithm for determining F and k. 

Compute xk{X) and its maximum x^ attained at A ^. 
Choose k such that xk is made a minimum 

mmxk = xk,, 
k 

aopt' A*.. 

The optimal prediction constant is then k = k0, and the 
velocity should be chosen as 

Et = v ^fäco* (tXo^ I <p). 

It has the same form as before, but with a different 
frequency. 

We can write xk(k) as a function of two variables, 
k and X: 

«*W = 2(-1-";i;
08A)[(l .*2)-2* cos A]. 

BX      4(1 -COS A) ,,      n     r 1       I 
-. = ., [k - cos /]    0   if cos A    k. 

4(1 -cos A) 
[(1 • A-V-LU-cosAj. 

After introducing  t = cos A  into the latter expression, 
it will vanish either if A    0, or if A satisfies 

2 sin A 
1 t 3 cos A 

Fig. 13. max^ *kß) as a function of k. 

This equation can be solved graphically, yielding A0pt ^ 
1.446.r), £0* 0.1240, and niinfc max,, *k (A) ^0.8245. 

Fig. 13 shows m&xxxk(?.) as a function of k. For 
A-< (7-4 TS)^ 0.07180, the maximum occurs for A = 0 
and is of the simple form (l-£2). For k exceeding 
that value, the function first decreases to a minimum 

0.8245 for it 

for -1 = 1. 

^0  and  then  increases again to 2.1002 

4.4 Other Types of Restriction 

In certain problems one might prefer to introduce 

the restrictions on velocities, accelerations, etc., in a 
different way. Instead of restricting their mean square, 
one may prefer to restrict their absolute values. It is 
clear that this could lead to a more realistic treatment, 
but also that it requires a more detailed specification 
of the stochastic processes involved. It will no longer 

be sufficient to describe the covariance function. To 
show how this can be done we shall study a specia! 

case of some importance. 
We can always neglect the presence of a constant and 

known velocity component, since such a component can 
be taken into account through a simple correction term. 
Let us assume that E uses nil of the remaining varia- 
tion, so that v{t) takes only the two values + v. We 
assign the probab'lity p to the plus sign and the prob- 
ability q=\~p to the minus sign. Denote by <„_,, 
tn, <n + i the points of time when v(t) can (but need not) 

change sign. We shall assume that in each interval 

In~ ('n i.'n). wc choose one of the two signs independ- 
ently of what happened in the other intervals. We also 

assum" that the length Tn *„. i /„ are stochastically 
independent and have the common distribution func- 
tion   F{x).   Such   a   point   process   is  called a renewal 
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process. That particular point process where F(x) is an 

exponential distribution is well known and can ho treated 

because of its Markovian property. There is no reason, 
however, to limit ourselves to that process. In order 

that our process shall be completely specified, we must 
also start it off by choosing a probability distribution 
(r{r) for the time betv een t U and the next random 

point among the tn. We deal only with stationary pro- 
cesses here, and then it is known from the general theory 
of renewal processes that 

Such a function can IK« represented as 

//(«)     I" la(u)d<f,(a). 

Here we have used the broken linear functions 

la(u) 

u 
1 -     , 0< M< a, 

a 

u^a, 

/: 

G{y) L f"11 Fi^dj'' 
where m is the mean value 

/•oo 

m r dF(j-) 

for the time between two successive points of time t„, 

Let us now compute the covariance function 

r(t) = E[v(s) v(s I t)] - [1 - 0(t)] v2 \ G(t) v2(p - rf, 

where the first term on the right-hand side corresponds 
to the event that no tn falls in the interval (.?, a ( t), 

and the second term corresponds to the complementary 

event.   Hence, 

r^ = \-G{t)[\~{p-qn 

If we still use the simple predictor ^J +1 == En ^ (En- En i), 

we get the error of prediction as beforo: 

J-ElEUt- E^rf-EU**1 r{t)k(t)d6 

= 2     r(u)h{u)du, 

with the same meaning for k(u) and h(u). We shall 
maximize a2, i.e., minimize the expression 

and a distribution function <f) on the positive real line. 

To maximize the integral 

(  H(u)h(u)du^ I   [l-0(u)]h{u)du^ - |   0(u)h{u)du, 
Jo Jo Jo 

we consider 

|   la{u)h(n)du. 

[I-(p-7)2]Jo(0(u)A(u)d«. 

Since the integral is always negative (use the fact that 
G{u) is non-decreasing and the mean value theorem for 
integrals), we shall maximize 1 - (p - q)2, which is done 
by choosing p =q - J. The rest of the problem demands 
a longer but not complicated argument. The function 

H(u) =-■ 1 - 0(u) has the properties 

(a) //(0) = 0, 

(b) II(u) is non-increasing, 

(c) H(u) is convex. 

which is a continuous function of a tending to zero as 
a tends to infinity. Denote by a0 the root (or one of 
the roots) of the equation Aa    max.   We get 

/•2 Too 

H{u)h(u)du ;.ad(f>(a)<Xa., 
Jo Jo 

and it is obvious that the maximum Xa, is realized by 

placing all the mass of <f>(a) in the point a = a0. If 

a>2, we get 

so that ,-a=   »      uh{u)du<0. 
da    a' Jo 

If 1 < a< 2, we get 

SO that 

a2 d*a = f (2«    3M
2
) du \  \   (u2    2u)du. 

da     Jo Ji 

= i(a8-3a2 t 2)<0. 

Finally, if 0<a< 1, wo get 

A,-J;(I ;;)(2U .ww,,, 

o2^- (a{2u    3M
2
) d« -a2(I-a)>0. 

da     Jo 

so that 

This means that a0~ I, and this is the unique value 

making Aa a maximum, since A0 A^ 0. Under the 
gi/en conditions the optimal evasive tactics consists in 
choosing one of the two directions of motion with the 
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same probability J for each, and in choosing the time 
between successivo l„ according to a probability dis- 
tribution such that 

This means that 0(11)=-«, 0<«<1 and (?(«)= 1 for 
u>l. The corresponding form of F(u) is thenF{u)^ 
0 for u < 1 and F(u) =1 for M > 1, so that the times 
t„+i-tn should bo constant and equal to 1. The only 
random element in this renewal process is that the 
initial value t0 should be chosen from a rectangular 
distribution. The extrapolation error is 

/: 
ai=2vi     (l-«)A(M)dM=i;1. 

We could posr a game problem here too, but we shall 
not discuss this any further. 

4.5.   Two-dimensional Pursuit—Simple Models 

When we turn to evasive maneuvers in the plane, 
things become a good deal more difficult. One reason 
for this is that we have so much more freedom in con- 
structing the models for the motion of E and P. Be- 
cause of the lot of alternatives, it seems impossible to 
fonfulate a theory that is both general and informa- 
tive. Instead, we will have to limit ourselves to ana- 
lyzing separate cases, and we shall try to select these 
so that they illustrate typical situations. Even so, we 
will meet some analytical problems, some of which seem 
to merit attention  because of their intrinsic interest. 

V v 

Fig. 14. The aimpleat two-dimensional csae. 

Consider the two opponents E and P at the time 
t ~ 0, when the distance between them is denoted by R. 
As usual, we denote their maximum speeds by v and 
V, respectively, with the speed ratio k = V/v > 1. If 
there are no other restrictions on their motion, it is 
clear that the pursuer will reach the evader after a 
finite time. The game is definite with the value 
R/(V-¥v) if, as before, we use as payoff the ti.ue till 
capture. The optimal behavior is for P to move at 
maximum speed towards E, and for E to move at 
maximum speed away from P, see Fig. 14. This simple 
result can he modified to fit the situation where the 
two players are restricted to certain regions. It does 
not seem probable that such results will be of much 
practical use. 

Let us include some more factors in the formulation 
of the problem. Usually, E tries to roach some target, 
to steer in a certain direction, etc. Let us say that he 

Fig. 15. Constant speed and alternating course. 

wants to steer towards some region R in the direction 
a = 0, where a is an angle referred to some fixed di- 
rection, see Fig. 15. Suppose he travels at constant 
speed v, but is exposed to continuous gunfire, bom- 
bardment, etc. To avoid being hit he makes turns, 
Aa,= ar+i -a», at certain points of time, say, equidis- 
tant for simplicity. Under fairly general conditions we 
can express the probability that a certain salvo (bomb, 
etc.) hits E as & function p(Aa). Usually this function 
will be decreasing in |Aa|. E will try to keep down 
the value of this function. At the same time he wants 
to keep down the time it takes to reach the target, 
which means that cos"1 a should be kept as close to 1 
as possible. The average number of hits will be pro- 
portional to the expression 

E U p(a,fi-a»;!. ;cos a, j 

it  should  be  minimized by E. Supposing the evasive 
motion to be stationary, we shall minimize 

a = 
2 

2   J 

1 
„ cos X 

"2 

p(x-y)dF(x,y) 

under the condition that the marginal distributions of 
at, and a, + i are equal: 

Fix, 7i/2) - F{x, - jt/2) = Fin/2, x)-F(- n/2, x). 

Here, F(x, y) denotes the joint distribution of a, and 
0,+!. The minimum is attained if p(Aa) is a contin- 
uous function. 

If we assume instead that the behavior should be 
reversible in time, so that .F ia a symmetric distribu- 
tion, then 

1 
JJ [cos 

- + 
x    cos y 

p(x-y)dF{x,y), 

where the integration shall be carried out over the half 
square x<y, \x\< ^71, \y\< JTI.  To find the minimum. 
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wo coniiidor the fK)int (or jx)intH) {x,y) for which 

1 
■I- 

1 
cos x    cos y 

p{x - y)    min. 

If (xo'Vo) '8 BUCh a point. wo K01 ft »ymmctric distri- 
bution F by placing the mass \ in each of the point« 

(x0,y0) and (y0,x). In other words, the evader Htcfrs 

altornatingly along the course x0 ai)d the course .y0. 

The initial direction is chosen among these two with 

probabilities J, J. Note, that this b<'havior is essential- 

ly deterministic. This is because the prediction method 

of P has been fixed implicitly by the choice of the func- 

tion p(Aa). If the method of prediction is also allowed 

to vary, wo get a game situation, and this will force 

E to use a truly stochastic  behavior. 

4.6. A More General Model—Behavior of the Evadfr 

We now leave this primitive model of evasive ma- 

neuvers and turn to a more general and flexible system. 

We wish to describe the motion of E when he travels 

in the plane with the constant speed v but with a 

(randomly) varying course (pt. Choose a coordinate 

system (a^^) where the a:2 axis will be taken as the 

average direction of E's motion, see Fig. 16. Choose the 

origin so that at time t = 0, we have a;, (0) = t, (0) = 0. 

*,l 

I 
I 

Fig. 16. Constant speed and continuously varying course. 

We then have 

hit) = v \   sin <f,ds, 
Jo 

I;i(0 = v I   cos(p,ds. 

The angle y, will be considered as a stationary stochas- 

tic process written as 

*■-!'.. 
g(s~u)dS{u), 

using the predictive representation of the process. Here 

f(«) is a time homogeneous process with independent 

increment and with the variances £[£(«) - f(<)]* = |« - <|. 

The function g(u) is real-valued and quadratically in- 

tegrable.   In  other  words,   the evasive maneuvers are 

governed by a noise generator with the outsignal f(u) 

that is fed into a linear filter with tbo res|Kmse func- 

tion g{t). The outsignal of the filter is the course angle q,. 

For a complete description of the probabilist c struc- 

ture, we must know the distributions of f(ii), oo < 

u< on. The most convenient way to describe such a 

distribution is to use the characteristic function of ^(M), 

which can be written as 

V(z,u)    Ee"«"". 

The   process  ^(w)   being  time   homogeneous and   with 

independent increment, this can be rewritten as 

Vb, u) ,fY(*> 

where yiz) is some function of z. 

According to the famous theorem of Lövy-Khinchin, 

one can represent y(2) in terms of a certain integral, 

but we need not do this here. The only restriction At 

the moment is that £(u) shall have a symmetric dis- 

tribution, so that ip{-z,u) = y)(z,u), or y(-t)'-y(z). 

If desired, one can remove this restriction with little 

difficulty. 

The most important special case is when {(u) has a 

normal distribution, so that 

V^.tO-exp (-w^j. 

We then know that {(u) is a continuous function with 
probability one; actually this case is the only one with 
this property. It is not differentiable in the usual sense. 

Another important case is when f(u) changes ab- 
ruptly with the jumps ±d. The distribution of f(u) is 
then composed of two Poisson components 

V(2,tt) = exp [uA(e^-l)] exp [«;(«"'-1)], 

y(i) = X{e*'-l) + Xie-*'- 1) = 2A(co8 dz- 1). 

Concerning the response function g(u), a common as- 
sumption is to postulate the form 

g(u) = Ae au. 

This  means that we have an RC filter, corresponding 

to the differential equation 

d<pt 

dt 
(Uf, 4 A 

dm 
dt ■ 

Note, that the derivatives appearing in this equation 

do not exist, but the relation can be interpreted as a 

stochastic differential equation with no lack of rigor. 

Sometimes we must represent g{u) by more complicated 

functions,  say, by exponential polynomials correspond- 
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ing to a higher order, linear Htochastic differential equa- 
tion with constant cooffieients. 

Using thi.M quite adaptable model we have some 
hope of describing pursuit situations with some degree 
of realism. Therefore, we shall examine this model more 
carefully than the previous ones. First some simple re- 
marks. The velocity component« of the stochastic vector 
*(0=[ii(0-*a(0] »re given by 

3-l{t)    v sin 9?,, 

ijM-vcosy,, 

the length of the vector being || i{t) \\ = v. The accelera- 
tions are 

jr2(t)        rsin (ft(ft. 

In the case g(u) Ae au the accelerations do not exist, 
but they do generally if g(u) is a higher order expo- 
nential polynomial.    In that case, jf(0) = 0, and we get 

where we have introduced the Fourier transform 

•oo 

0(A)-      etuXg(u)du. 
Jo 

It is easy to compute the expected future motion. 
Since f, and hence cp, have symmetric distributions, it 
follows that E sin (pt = 0  Further, 

E coB<pt=lEe,v'+lEe-i9' 

■   ft 
-JEexp   »        g(t~u)d$(u) 

.     J      00 

fit 

+ iE exp   -i        g(t-u)d${u)  . 
L J -oo 

To compute these integrals, we use the fact that the 
increments d£(u) are independent. The multiplicative 
property of characteristic functions gives us 

•t 

Ecos^-Jexp        y[g(t-u)]du 
J -   00 

•t 

+ Jexp y[~g(t-u)]du 
J       CO 

•( 

-exp y[g{t~u)]du 
J - oo 

•oo 

= exp Y[g(u)]du. 
Jo 

This means that the expected motion is uniform in the 
direction of the average motion, i.e., the r.i axis, and 
its 8|H'ed is proportional to v. It- has been reduced by 
the factor of proportionality 

exp      y[g(u)]du. 
Jo 

In a similar  way,  one  can   determi'ic  tht   covariance 
matrix of the vector (sin (pa, cos 9^) 

We have 

^n     ' 12 

( 21     ^ 23 

Cn-Enmi(f!l    JE[2    r'r«    e *'*'] 

i 1     exp (    y[2g(u)]du 

and 

CM = E cos2 (pfl - [E cos p,]8- J E[2 4 e^fl + c 2i*ß] 

Hence, 

20 

Ex, (0=0, 
•00 

Ea:j(0 = fexp       y[g{u)]du. 
Jo 

- [E cos ffl]2 = 0   1 + exp 
•00 

y[2g{u 
Jo 

)]du 

/•so 

exp2       y[g(u 
Jo 

)]du. 

Finally, it is clear, because of the symmetry of the 
distribution of (pa, that the second order mixed mo- 
ment C12 = C21 = 0. 

Let us calculate the covariance function for sin y,. 
say, for A >0. 

7?l(A) = Esin^, 8in97, + A 

= -JE[(«'r'-e""'){e,^ + *    e "''**)] 
•o 

Jo 
-kc*p I   y[g(u) + g{h 

+ Jexp 
/•oo 

y[g{v 
Jo 

»0 

Jo 

u)]du exp 
J( 

Jo 

y[g{u)]du 

) -(7(A + u)]rfwexp J   y[g{u)]du 

•/1 

Jo 
+ lexp|   y[g(u)-g{h < u)]duvxp     y[g{u)]du 

Jo Jo 
/«OO /•/! 

-iexP       y[g(u) + g(h + u)]ducxp     y[g(u)]du 
Jo . 0 

'h ( /«oo 

= iexp       y[g(u)]du\cxj)      y[g(u) - g(h \ u)]du 
Jo [       Jo 

•00 

-exp      y[g(u) + g(h ( u)]du . 
Jo 

In an analogous manner, one derives for the covariance 
function of cos tp, 

•00 

ÄC(A) = E cos <p, cos <p, + h- exp2      ylgiu)] du 
Jo 

= iE[(e'^fe "•)(<■ ""•+* + e-"''^)] 
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'•Vl  y\y{»)]du 

l-Ji'xp I  yf(7(M)]rfu|cxi)      y[g{u)    g{h > u)]du 

-(,xl,2|   y[i/(M)]rfw- 

'I'hcsc cxpn-HHions ore useful to determine, among other 
tilings, the diH|)orsioii of the future positions of E: 

K||.r(0     E.r(0||2    EK(0     Ex,«)!2 ! E(.r2(0     Er2(0]2 

V2   (       (     (/.',(«       ,s)   :   /?,{„      ,s)]f/M^ 
Jo  J(l 

- 2t)a I [Äc(«) t //,(»/)](<    u)du. 

4.7. Linear Predictors 

Now let us study what happens when P observes E 

at equidistant times t- ..., n-I, n, ..., and predicts 
A',,., with the formula 

£:,,-£„! (En    En ,)    2En-En ,. 

This means that he uses the vector analog of a simple- 

prediction formula that we have discussed. As men- 

tioned above, this is an approximation to the usual 
plotting procedure. We can determine the prediction 
error by starting from the relation 

1 r /«FH 1 /»n -|2 

2 ||£n.i    #*,,!] cos(ptdt- coa(ftdt\ 

-f- sin 9", rf< -        sin y, dM , 

so that, as in the preceding section, 

I   „ ii „ ,,»      ||2 _   I       a 
jE || *„ + j       An + l | 

v2 r\ 
)[i?c(u)ti?.(u)]rf«. 

with  the same  function  h(u).    We  get  the  extremal 

problem 
r2 

/=      h(u) R{u) du = max, 
Jo 

where 

Ä(«) = exp U y\g(v)\dv\ 

xexp Y[g(v)~9(u+v)]dv 
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- const. 

The variance J*72(t')rff is HupjK>Med to bo fixed in 
advance, and y and g are the fu net ions described be- 

fore. In the expression for li, we have left out the 

constant mean value term, since this would not effect 
the value of /, as a consequence of jlh(u) du- 0. 

The most important case is perhaps that where the 
guidance signals are normally distributed. The expres- 

sion then reduces to 

Ä(u)-exp-jjJ   s^rfü + J    g'Wdv 

fao r OK 

gl(v)dv    2       g{v)g(v I u)dv 
J u Jo 

+ 

Introducing 
Jo 

1 f00 

it is easy to verify that V is the variance and Q(U) the 
correlation function of the stochastic process ft. Thus 

/-/(p)- I   h(u) exp {V[n(u)- l]} du. 
Jo 

The reader may find it instructive to derive this for- 
mula directly, without using the predictive representa- 

tion of the ft process. 
The extremal problem may not be easy to soive 

completely by analytical methods. However, we can 
say something about the solution. First we must be 
sure that the maximum can really be attained. We can 
write, using Bochners theorem about positive definite 

functions. 

Qi 
^o 

cos uXdF{X). 

Here, F(X) is a distribution on the positive half-axis. 
The set of F function.; is not compact, so that we do 
not arrive directly at the desired conclusion. An addi- 

tional argument is needed, and we put 

sup I{Q)^I. 
o 

There is a sequence (>,(«), Qjiu),..., with the corre- 
sponding distribution functions Fl{X), F2(A), .... such 
that /(pn)-►/ = sup/(ß). It is always possible to select 

a subsequence Fn,(A), Fnt(X),... , converging to a bounded 
non-decreasing function 0(A) for every finite A. The 
variation 0{ ( oo) - 0(0) < 1, but we cannot exclude the 
inequality sign directly.   However, 

evI{e m) = f h{u 
Jo 

)exp[Ven,(u)]du= y l.V'C,, 
-0 v 
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with 
^0 

x(X)4Kla) 

Since x(X) >0, it follow« that no mass of the Fni(k) can 
flow out toward f <*■>, sinco this would make the C,, 

and henco I{Qn,), Hraaller than neceaaary Hero we have 
used the fact that x(X) decreases to zero when X tendH 
to +00. Thus, Fni(X) converges weakly, and 0(X) is an 
ordinary distribution function, so that 0(+ 00) - 0(0) = 
1, and G(X) realizes the maximum of /(p) It is tempting 
to use convexity arguments to «how that the maximum 
is unique,  but thin ha« not been done. 

We can characterize qualitatively the distribution 

function F(X) that realize« the maximum. Let s(F) be 
the support of F(X). We now use the same sort of 
variational argument a« before (p. 15 ff). If Xv Xj are 

two arbitrary points in fi{F), and Ff(X) ha« been mod- 
ified in the neighbourhood of ^ and Xj, we must have 

HF) > l{Fr) 

= 1(F) f eV        h{u) cos A, u exp { V[Q(U) - l]}du 

h(u)cos X2u exp{V[o(u)-\]}du\ + o(e). 

Hence, 

A(«) cos Au exp { F[()(u) - 1]} rf« 
Jo 

= C constant, ail X£s(F). 

But the left side is an entire function of X. If s(F) 

has an accumulation point in the finite part of the X 

axis, the function on the left must be identically equal 
to C. Since this is impossible, it follows that the support 

of F is discrete: the optimum spectral distribution func- 
tion has all its mass in a finite or denumerable set of 

frequencies ApAj,.... The corresponding point masses 
will be denoted by Fv F2, .... ^F,= l. The correlation 
function has the form 

Q{U)^^F, cos X,u. 
r 

It may be noted that if the X arc infinitely many, so 
that A= + 00  is an accumulation point, it follows from 
the Riemann-Lebesgue lemma ihat C^O. 

If V is small, we have approximately 

I(Q)Z V f h(u)Q(u)du. 
Jo 

This leads to the same maximum problem that we 
solved in a previous place. Expanding the exponential 
function in series, we get an expression for the error. 

If   I' i« large,  we use the expression 

00       fit 

He)- 1P.   Q'(u)h(u)du, 
► -0       Jo 

where p, is the Poisson probability (V'/v^e ^ and y" 
correspond« to the rth convolution . '(X). But the re- 

lative concentration of the Poisson distribution in- 
creases with V, and we can therefore exiH'ct to get an 
almost optimal «olution by placing all the ma«« of F(X) 
in the frequency A0pt K, where Aopt was the value de- 

termined in section 4.3; note, that V is the mean value 
of the  Poisson distribution. 

If V is in the intermediate range, we must compute 
the solution numerically. This is not a task of routine 

character and presents considerable difficulty. Both the 
analytical and the numerical problem seem to deserve 

more attention. 

4.8. N on-linear Predictors 

In this discussion we have assumed, so far, that the 
method of prediction had been fixed in advance. Actu- 
ally, we used a highly specialized linear predictor of 
the first order. Now we turn the problem around and 

look for the best predictor (linear or not) when he 
stochastic properties of the evasion are given. Sur- 
prisingly in this case the non-linear prediction problem 

can be solved. 
With the same notations as before, we assume that 

the vector process x(t) has been observed in the past, 
- 00 < < c; 0. We want to determine the best predictor 

x*(/t) in the sense of the least squares criterion of the 
future value x(h), h>0. Using our observations, we can 
reconstruct (ft and |( for t<0. The optimal predictor, 
the regression, is always the conditional expected value 
of the future value given the past observations. Using 

the notation E0 for the conditional expected value 
operator defined by 

EQZ^ E{z\zs observed for s<0). 

we get 
fin fih 

x*(h) = vE0      am<pt(U=v      E0 sin 9?, d/, 
Jo Jo 

x* (h) -' vE0 I    cos f. dt ~ v      E0 cos «p, dl. 
Jo ^ 0 

But. 

E0«^' = E0expt2 M     !7(<-U)rf|(u)+J   ?(<-«)#{«) I 

= exp h        g{t - u) d£{u)  E exp  iz     g{t - u) d£(u) 

iz        g(t ~ u)d£(u)   exp   I   y[zg(t - u)]du  . 
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Thin given UK 

E0 sin (pt-~ y, sin 7*, 

Efl COH f,     yt COM (/*, 

where we   have introduced 

y(-exp       yfflt((-u)]d« 
Jo 

and the optimal linear predictor cp* of the courHe angle qt 

<P*i- Eo<Ft- I      g(t-u)d{{u). 

The function yt tells us with what speed the predicted 

point x*(t) moves when I varies. 
The minimum prediction error can be calculated in 

the same way that we got the covariances. The cal- 
culations are a bit cumbersome, and it will be enough 
to show how it is done for the normal distributions. 

We get 

1
iE||.r(A)--'-,{A)ir-   '«E^A)    xUh)]2 

v v 

+ ^E[x2(h)-xt{h)]i 

E(sin (p, - y, sin 97*) (sin y, - y, sin (f*) ds dt 
Jo Jo 

+       I   E(co8 <p, - y, cos (p*) (cos 9?, - yt cos 9?^) ds dt 
Jo Jo 

= I        E cos {tp, - (ft) ds dt 
Jo Jo 

+ y,ytEcoa((p*-(f*)dsdt 
J 0 J 0 

— y. E cos {cp* - (pt)dsdt 
Jo Jo 

- I ytE{cosft-(pi)dsdt. 
J 0 J 0 

Now we use the normality.    If x is normally distrib- 
uted  = iV^O, a), we have the elementary relation 

Eco8x=iE(f'J + € ,1) = e"♦,',. 

Hence, in our case, 

1
2E||x(A)-x'(A)||2= f   f K{s,')dsdt, 

v Jo Jo 

where the Hyrnmetric integral kernel K(s, t) is given for 
s < t by the expression 

K{8, 0 = E cos (f, - ft) '. y,y, E cos (9* - q*) 

- y, E cos (93? - 9?,) - y, E cos (9?, - <p*). 
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Here we have 

V. - fft ' I     ffi* - u)d£(u) -        g{t - u)d$(u) 
00 J      OC 

= J     [g(<-«)- 9(t - «)]dt(u) -  \ g(t-u)df(u). 

The terms in the last expression are indej)endent, and 
their variances can thus IK

1
 added, giving the variance 

of (ps - 9?, as 

var (9?, - 95,) - [g(s - u) - g(t - u)f du + \     g%(v)dv. 
J  "o Jo 

The first terra of K(*, t) is therefore 

E cos (9-,    9,)    exp   - ^ [g{8-u)-g(t-u)]*du 

x exp 
1   f  ' 
" Jo 

x exi 

+ exp 

The   remaining   terms   are  computed analogously, and 
we get 

K(s, t) - exp I - 2 J     [g{t - u) - g{a - u)]* du\ 

CP("2jo    ^(U)dU) 

(-^J  Jgit-^-gis-utfdu} 

xexp(-2 J g^t-^duj 

xexpl--      /(s-u)d«J 

-pxp(~2j    [git~u)~g{8-u)]*du 

xexpl--J   ^(t-«)d«j 

xexp(-%) I   gi(s-u)du\ 

- ex? I ~ 2 J      ^ ~ U) ~ ^ ~ W)]2 du) 

xexpl - .      g2(s -u)du\ 

CP(~2 J 9iV-u)du)- x exi 

The last three terms in this expression are equal, one 
of them with positive sign and the other two with 
negative. Their sum is therefore equal to one of them 
with negative sign. 
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I 

The first term can I«'  written 

CP|     2   J     ^(f    u)du+ ]      'J^*    u^du 

+ \     g*(v)dv\+ \     git-u)g{8-u)du 

= exp I  2 J   g2^dv' J  y%(v)dv 

Fur this problem there is an attractive method of nolu- 

tion, and wo «hall dmcuHH this possibility.   We have 

+ j </V)^   -M     g(t-u)g(s-u)du\ 

= exp  -       gi(v)dv^   l      g(t - u)g(8~ u) du\. 

The other term is 

-expj-- gi(t-u)du *   \     gi(s-u)du 

+     g,(t-u)du+     öf2(s-u)du 
Jo Jo 

+     g(t   «) gi*   u)du\ 

= -exp  -      g*{v)dL'\       g{t - u)<j(s    u)du\. 

Introducing for the variance the notation 

Jo 
we get 

K(8,t) ^e'y cxp        g(t- u)g(a- u)du 

-exp        g{t - u) g(3 - u) du\ 

= exp   -F+l     g(t-u)g(s-u)du\ 

x   expj     g{t-u)g(s-u)du\- l\. 

We now turn to the extremal problem of determining 

the maximum of 

K=!   \ K(s,t)dsdt=l2E\\x(h)'-x*(h)f 
Jo Jo v 

when the value of V is given. The kernel K depends 
in a non-linear way on the unknown function g(t). It 
may be of interest to observe that if the evasive 
maneuvers are not too large, so that the linear ap- 
proximation is applicable, we get the same problem, 
but with the kernel 

Jo Jo 
i)dsdt 

rh   rh   /»mind. 0 

= 1 j g(t - u)g(s - u)dudsdt. 
Jo Jo Jo 

The region of integration is bounded by the five planes 

8= U,       8  -- k, 

tu,     t = h, 

u   0. 

We introduce s u - x and t~u=y. The Jacobian is 
1, and the boundaries are transformed to 

y - 0,     i/ = A - u, 

u -0. 

Thus, u lies between zero and H(x, y) min (A - x, 

h y), whereas x and y both lie between Ü and h, 
giving 

A', - I dug{x)g(y)dxdy 
Jo Jo Jo 

I H(x,y,)g(x)g{y)dxdy. 
Jo Jo 

Let X be the largest eigenvalue of the integral equation 

Ay(z)= f  H(x,y)y(y)dyt 
Jo 

andy(a;) a corresponding eigenfunction normalized so that 

I   yt{x)dx--=V. 

Under the side condition jo*gi(t)dt= V, we h ve 

for an arbitrary g{t) of predictive type. 
On the other hand, if y(x) is the eigenfunction men- 

tioned above (whether it is of predictive type or not), 
the prediction error is at least equal to Kl (y) according 
to traditional prediction theory. The optimal evasive 

tactics is then realized by the function y(x). It is easy 
to calculate y(x). Indeed, the integral equation can IK 

written 

I 
"mim». O 

A'jMH | y{l -u)y{8 - u)du 
Jo 

r 
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Xy(x) =(h-x)\   y(y) dy + j    (A - y) y{y) dy, 
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which after two differentiations becomes 

HO that Y(x)    Ae"" f /ie "", 

It in »atunil to ask if thiH game HJtuution is definiU'. 
Let us investigate the problem in slightly more general 

terms. Let a(t) be a given continuous function defined 
on the interval (0, h) and form the stochastic variable 

with x      1/A.   This function satisfies the integral equa- 
tion only if cos xA=0, i.e., the eigenvalues are 

A. I   a(t)<Pt 
Jo 

dl 

and hence, 

and 

A = max A*: 4 A» 

n 

"/(x) 
C cos — x,    0 < a: < A, 

0 otherwise. 

The constant C should be chosen so that HyH* equals 
the given value of V. The corresponding covariance 
function is given by 

After having observed the stochastic process <pt for 
t' 0, we want to predict the value of Ay with the 
best linear predictor pq. Consider the game with the 

payoff function B((f\ p) \\A(p Pf\\2 E[A(p p(p]2, 

where (ft is a stationary process with finite variance, 
say, equal to  1. 

In the problem that we have just met we had a(0 = l, 
and we had determined max, min,, Il((f, p), which turned 
out to be the largest eigenvalue of a certain integral 

equation. In the present case we should find the largest 
eigenvalue of the equation 

r(t) f J     c 

g(t~ u)g{    u)du^C 

x (t- ut cos -- udu= - 
4m  1* tt 

71 
(A-Ocos-t 

for  0<t<h.    It   is represented graphically for C*=2, 
A    1  in Fig.  17. 

Fig. 17. The covariance function r(t). 

The optimal evasive tactics against the optimal predic- 

tion is then the one generated by a normal process 
with the given covariance function. 

f Jo 
Ay(x) U{x,y)y(y)dy< 

with the symmetric kernel 

H(x>y)^ I «(an u)a(y + u)du. 
Jo 

It  is convenient   to  first  approximate a(t) by a step 
function 

an(t)-ay = aiV ^    h\ 

v v+ 1 
if - h^t< h,  v = 0,\ n-I. 

n n 

It is clear that 

j   a{t)Vtdt- j   an{i)<pt(U   <\\<ft\\- (   \a(t)-an(i)\dt, 
W Jo Jo Jo 

so that, if n is large enough,  we commit only a small 
error when we replace ^^ by 

f 1    " 
an(t)(ptdt 2. Qvfv 

Jo n »-o 

where n I g,dt. 
J rh:n 

Note that {(pv} forms a stat' nary process with a var- 
iance at most equal to  1, since 

IkJ-^r  '"ik-IK h\Wth<h 
J [r n) ft 
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If we use only the obHcrved values of yv instead of 
ft, wc get at loaat a« laige a value for miiip max,, 
B{(p, p). On the other hand, if {y,,} ruriH through all 
the Htationary processes with a variance at most equal 
to 1, wc get again to the discrete problem. But this 
value can be expressed in another way. Using Cramer's 
«pectral representation, we can write 

'/> 
vi dZ(k), 

with || AZ(/l)||2^ AF(A) - increment of the spectral dis- 
tribution function corresponding to the process {(f^}. 

Further, 

min,, max,, \\A(jp -^ ||  . max^ miiip H/lf/1    ^||, 

and only etjuality is possible. Hence, the game is de- 
finite, and its value equals the largest eigenvalue of 
the integral equation. 

4.9. The Case with Constant Velocity in One Direction 

We now consider another, but closely related, pursuit 
problem. The evader E moves in a plane with a mo- 
tion whose x component can be completely or at least 
approximately described  as  uniform  motion (Fig. 18). 

Variance 

We also have 

of 9^,= dF(X)::h. 

1 V 
- 2. <**<?» 

«    0 

1 /Vl 

2^,=        {aa)-c(k)]dZ(X), 
so J -n 

I n ,x 

where «(A) -     2L «».«'. 
«   ü 

i 

c(A)= 2 <-yx, 
00 

and  the   series   ^c^tp,, is assumed to converge in the 

mean.  But then, 

1  2 o,<Pv- 2 c.^J - I     \aa)-c(X)\2dFa), 
Wü oo !!       J   * 

Fif:. IS   Motion with oonatsnt eompunont in the x direction. 

We denote the acceleration in the y direction by «p(<) - 

y(t), to resemble the notation used above. After h units 
of time, E has travelled the distance 

r Jo 
(h - /) (p, dt 

so that 

max H^n^-p^H2^ max |a(A) - c(A)|2 

Now we can apply a theorem for Toeplitz forms (see 
Notes) and see that 

min max ||/1„93 - p^lj2 

is at most equal to the largest eigenvalue of the sym- 
metric n x n matrix  with the elements 

in the y-direction. Identify this expression with our 
A(p that shall be predicted, using the knowledge of the 

past trajectory of E. Put h^ I for simplicity. Since 
now a(t) =l~t, we shall determine the largest eigen- 
value and the corresponding eigenfunction y(t) to the 
integral equation 

with K(t,s) 

ky{t)=      K{t,s)y{s)ds 

(   \l-u 
Jo 

t) {I — u-s) du 

h\ + 

+ a(A)o jl   - 
/# 

for p^q; p, q 0, 1, ..., K- 1. For large «, this eigen- 
value is approximately equal to the largest eigenvalue 

of the integral equation we had before. Hence 

26 

for 8<t; K{s, t) = K{t, s).   With similar but slightly more 
complicated calculations as before, when a(t) = l, we get 

y(t) = Cj (cos xt i cos hxt) + C2 (sin xt + sin hxt), 

where  A = x '.   The  constant  x  shall be the smallest 
positive root of the equation 

cos x • cos A* = - 1. 

The coefficients C1 and Cj shall be determined so that 
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y(l)   o, 

yJ(<)dt    given variance. 

We get approximately «>1.88, BO that the value of 
the game is 2 0.08. The optimal evasion is obtained 

by feeding random noise £{t) into a linear filter with 
the response function X(t); the output of the filter is 
the acceleration of E in the y direction. 

4.10.  The Ca.se ivith Two Variable Velocity Components 

Let us investigate the following type of evasion. 
The evader E moves in a plane, the velocity vector 
r(<)= [Xi{t), Xjit)] forming a normal, stationary stochas- 
tic process with the spectral density matrix 

f/nU)    /uUH 
U.a) /«wr 

where /,I(A) and fn(X) are the spectral densities of the 
coordinates r^t) and x2{t), respectively, and where 

/i2(^) /ziM i8 the (complex valued) cross-spectral den- 
sity between x1(t) and T2(<). The kinematic restrictions 
are given as 

J  - 00 
U) t o2a)/„(A)]rfA<^. 

This form is general enough to describe many impor- 
tant restrictions. Perhaps the most important case is 

the symmetric one, o^A) = c^fA) =-o(A), where both co- 
ordinates are treated in the same way. This would, e.g., 
be the case when the restriction is on the mean square 
value of the acceleration or velocity: a(A) = X* in the 
first cae-j, and a^)^1 in the second. 

The first order linear predictor will be used: 

E^Eo + hxiO). 

To study the miss distance 6 belonging to prediction 
h steps ahead, we write 

■=/: 
x(t) dt - M0). 

The earlier discussion was built on the criterion Eb*. 

This will often be natural, at least as a first attempt. 
Sometimes it will be necessary to be more realistic and 
introduce the probability of hit, p, as a function of the 
miss distance, p - p{h). This is clear, especially when 

we have to take into account the ballistic dispersion. 
Note, that the following reasoning can be modified 
without too much trouble it we want to include the 

superimposed error of observation. Then we observe, 

not x(t), but z{t) + £(t) for t<0, where e{t) is the error 
vector.   Pure  speculations  will  not  help  us much to 

decide  what form the function p(b) should have.   For 
simplicity, we assume that p(b) is proportional to 

exp- 

Other choices of p(6) dealt with individually. 
The vector 6 -= (ftp b3) has a normal distribution whose 

second order moments 

m, Eft,^,    M=l,2. 

form a 2 x 2 matrix M 

M 
m ii m 12 

m 21 »71 22 J 

We can write down the expression for the probability 

of hit 

Ep(6) 
C 

27r/detif 

w 
2a2 -b'M xb 

C 

27i\'deiM 

where 

j dfc, dh2 

r r cxp{-jfe'iv ih)djbldbtf 
J  - 00   J   -  00 

But this is an integral of well-known form, and it can 

be evaluated as 

Ep(6) = C i det N 

det AT 
C l'det NM 

6: 

^det // + -if) 

It is in E'» interest to choose his tactics so that E p(6) 
is small, i.e., det (^7 + M) is as large as possible under 
the given side conditions. To carry out this, we ob- 

serve that, putting 

7(A) 
MX 

a ~-A 

we get 

Eft? 
/•oc 

qa)ixxa)dx, 
J       00 

/•oe 

Eft2= qWfti(X)dX, 

J   -00 
Eb 

We should then maximize the determinant 
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i- 

dct (a21 i M) 

W f   {^ qlnd>\  la1 !   \X qfnd}\ - I P  qll2dX 

The kinematic restrictions huvo been imposed upon 
fn{X) and /12(A). In whatever way these functions have 
been chosen, we can maximize the determinant by 
putting /i2(A)^-0; this is admissible, since it does not 

violate the inequality l/^U)! < ^/„(^/„(/l)- The phys- 
ical interpretation of this is that the evasion can be 

governed by two uncorrelated (incoherent) velocity com- 
ponents, E xl (t) Xj (<)    0. 

Let us go ahead and determine /,,(/) and /M(A)   We 
have 

if    det{a2I ( M) rr4 , aJ P qfdk 
J      & 

/•oo fi JO 

I qtndX        qf.i2dX, 
J    oo J    oo 

where we have put /,, I /22 /. If .S', and S2 are the 
supports for /,, and /22, res|K'ctive]y, the usual varia- 
tionai argument gives the following. Vary the value of 

^(A) at the frequency A, 6 A',, and at the same time 
the value of /,(A) at A2€^2, so that the equation 

J Si J s. 

still holds.   A simple calculation gives us 

qtt) 
a, (A) 

KM) 

= £,    for all Ae.S',, 

C2    for all XeS2, 

together with the relation 

('1   JTAt*- 

Here we have defined 

/• 

Ja, /22 dX, 

Al I A2    A, 

and the constants C, and C2 must IK? chosen among 
the values that are taken by the functions q(X) a, {X) 

and giX), a2(X), respectively. The expression to be maxi- 
mized is then 

M-JlqfndX t <y2\qf22dX + jqfudXjqfndX 

This is an elementary maximum problem with two 
variables (\ and Cv and with side conditions as above. 

For given functions rt|(A),rt2(A), and 7(A), we can deter- 
mine the maximum directly. 

We remark that, in order that the previous reasoning 
shall be complete, it is necessary to verify that the 
suprenmm of M is attained so that an optimal solution 
really exists. This is not difficult. First, wo must op- 
erate with d¥n{X) instead of with/„(A)dA. Further, we 
shall demand that linii^, „, |a((A)| - I 00. If one looks 
into this, one sees that this is really a compactness 
condition for the set of admissible spectral distribution 
functions. Using this compactness, we can complete the 
proof of the existence of an optimal solution. 

4.11.  Thrrrdinuihsiondl Pursuit 

By MOW we should have some idea of how a two- 
dimensional pursuit problem can be dealt with. When 
we turn to three dimensions, we do not expect to meet 
any new fundamental difficulty, but of course higher 
complexity and more cumbersome calculations. Let us 
takf a brief look at a simple three-dimensional situation. 

Fig. 19. The angles a and f. 

The evader E moves in space with the constant sjM'ed 
r in a direction described by the unit vector e{t) at 
time t. Introduce the angles a and 9? as in Fig. 19, 

0 <a< n, 0 9?< 2jt. Let a - 0 be the direction in which 
E wishes to travel. Then it is natural to ask, just as 

before, that cos a be kept as close as possible to 1, 
at least on the average. The expression vE cos« is 
the expected velocity component in the direction a 0 
and should be made as large as possible, i.e., close to v. 

When / varies we shall let Et form a polygon in space, 
or, in other words, e(t) shall be stepwise constant, so that 

e(0 = e,,    t^Kt,^,] 

...<t.i<t0<tl< ....J 
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The time points t, Hhall h«' chosen HO aw to form a 

PoiHson proceHS with intensity A, HO that on the average 
we get A changeH of direction per time unit. The stochas- 
tic vectors e„ shall bo independent and have the same 

probability distribution over the surface of the unit 
sphere, We then get trajectories looking something like 
Fig. 20, where the angles #„ between the two consec- 
utive course vectors «„ and e,(i are of importance in 
the following. This mathematical model for the velocity 
vector ve(l) is a stationary stochastic process with the 
mean value vector 

m^vEel - re, E cos a. 

Fig. 20. Motion with course changing at random interval». 

We have represented it in a rectangular coordinate 

system with origin in E0 and with the first coordinate 
axis in the direction a^ 0. We introduce the covariance 
function 

r(«-0 = E[e(«)-m,€(f)-m], 

where (x, y) means the inner product of the two vec- 
tors x and y.  We then get 

r(h) = /Jr{no event in an interval of length Ä} • £ H?, - mil* 

I /V{at least one event in an interval of length h) 

•£(6, - m, f, - m). 

The second mathematical expectation vanishes because 
of the independence of e, and e2, so that 

r(A)-e A''-E||e,-w;!, = Ce x\ 

Perhaps this model is too simple to describe real evasive 

maneuvers. However, it can be modified to a more 

flexible model. 
Let  us first consider the case where P uses a first 

order linear predictor.  The true position, 

after one time unit is then approximated simply by 

i>r(0). The mean square prediction error a* is given by 

the expression 

/r*      ii r1 

V II Jo 
[e(l)-t(0)]dt 

But, 

a^ \    I   E{e(t)    m,€(fl)    m)dsdt 

-21   E{e(t)-m,e{0)-m)dt 
Jo 

IE ||«(())-mil*     I    |   r(*    t)dsdt 
Jo Jo 

2\   r(t)<H I r(0) 
Jo 

- (;[[' \\ "• nd*di   2f p ^'^ i i 
LJo Jo Jo 

It is in E'H interest to make C-E||f - mlj1 as large 
as possible. If we demand that the side condition 

m,;; E cos a > fe be satisfied, and since 

C    EV^    mr)
2-EVc?    ^m.2-! 

i i i 
m 

v\   e(t)dt, 
Jo 

I       .-i      «.2       —.J 

it follows that maximum is attained by putting m,11» 
m, ^ 0. The notation e„,m,, stands for the coordinates 
of the unit vector e and the mean value vector m, 

respectively. Intuitively, this is quite clear: the mean 
direction should be chosen as a = 0, because every sys- 
tematic deviation from this direction makes m, smaller 

without causing trouble for the predictor. 
The previous reasoning is not limited to predictors 

of the first order. Instead, let P choose the best pre- 

dictor (in the sense of the least squares criterion), linear 
or not. One knows that this is given as a regtest on 

expression, or, in other words, as a conditional ex- 
pectation. The conditional expectation of t(t) when 

e(a),«<^0, is known is given by 

r*(t) -= c(0) /'/•{no change of the course during (0, ()} 

♦ m Pr{at least one change} 

-e(0)e Xt \ m(l-«*'). 

The smallest possible prediction error is then 

ii r1        r1      II* 
(T»p,- r'E       e(()d/-     t*[t)di\ 

II Jo Jo II 

II r1 rl 
^D'E       [e(()-m]A-     e Xt{t{Q)-m\M 

II Jo Jo 
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Jo Jo 
r(s -t)cUdt 

X\t 2slzfj\m^{l^f)'m. 
This expression is proportional to C and is maximized, 
just as before, by choosing m, =m8^0. 

In order to compare the result of the first order and 
the general predictor, wc should compare the two ex- 
pressions 

<T?     2 
1 

\-e > 

•nd     cv--xV—Tr{~rT 

4.12. Pursuit Prol>lem* of a More General Type 

We have mentioned in section 2.1 that one can me« t 
pursuit problems where it is natural to introduce more 
than three degrees of freedom. This is when it is nec- 
essary to take into account the geometrical shape of E 
or P, and when it is not allowed to approximate them 
ac points. This will be necessary if the form of the 
target is oblong, and if the effect of the weapons (or 
reconnaissance) is proportional to the area shown by 
the target. 

Another situation whore the directional effect is so 
strong that is should nut be neglected is when the 
target is a heat source and infrared techniques are used. 

Fig. 21. Motion from pt to pl minimizing some effect from a fixed 
point q. 

We shall indicate how problems of this type can be 
studied. Let us start with a simple situation of a cer- 
tain interest: then evader E tries to move from one 
point, p0, to another, pv see Fig. 21. Certain restric- 
tions are given for the motions, e.g. the speed v may 
be given. Other restrictions will be discussed later on. 
During his motion, E is exposed to the effect of some 
activity, say, bombardment from a point </. Assume 
that this effect is additive; if it is a bombardment we 

may think of the expected number of hits. We shall 
aasume the effect to be proportional to three factors, 
(1) some function p{r) of the distance to q, (2) the 
time of the activity, and (3) the area of the target 
shown in the direction of q. The third factor, y, is usu- 
ally a function of the angle 6, yyiB). Wo are thinking 
of E M a rectangle with length L and width B. We 
then get y = y(0) - Llsin 0| f Ä|co8 0|. The total effect is 

e(y) -Jy(0)p(f)A. 

where  the  line   integral  shall  be extended over some 
trajectory y joining the points p0 and pl. 

Let us rewrite the expression using the arc element ds: 

dtp 

d* 

dr 
ds r(y)    j pirULr 

= * (p(r)[Lr\d<p\ + B\dr\]. 
V   J   y 

The admissible trajectories y form a set, F. If F is 
such that r and (p are non-decreasing functions of t, 
wc can leave out the absolute value signs and get the 
simpler expression 

e{y) =      L P(r) rd<P + ~ P(r)dr ■ 

The integrand is usually not a total differential, since 
then «(y) would be independent of the path y. We can 
make it into a total differential through multiplication 
by a function of r and (p. In other words, wc can find 
an integrating factor F=F(r,(p), such that 

w Ji \ 
- p(r)rd<p+     p(r)dr= „dyi, 
v v f 

where dip = a(r, 93) dq) + b(r, <p) dr 

is  the  total  differential of a function y^ y>(r,q>).   To 
find the integrating factor, we should have 

F{(p, r) [Lp{r) rd<p + Bp(r) dr] ■= total differential, 

which requires that 

8lLp{r) + FL~[p{r)r]~d~BP(r). 
cr or d(p 

We get the linear first order partial differential equation 

BF f)F 
Bp(r)       -Lp{r)r   ~ = L[p(r)r]'F. 

cq> tr 

The characteristic system of this equation is 

d(p dr dF 
Bpir)" ~Lp(f)r"Zrj)(r)r]'r 

) 
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with the HoIutioiiH 

Ht-ncc, with a wellbehaved function <I>, 

Fp{r)r -Olrexp^ A 

We might chooHo Q>(x)    x, and gH 

or UHi' some other choice of 0. 
We want to minimize the total effect 

«(y) -IW inf., 

when y varies over the set P. This problem belongs 
to the calculus of variation, but it is of very simple 
form, and it will be convenient to discuss it directly. 
We need not use the special form of the differential; 
it has been introduced to serve as an illustration. In- 
stead, we will try to minimize e(y) in somewhat greater 
generality. Suppose that, for any y£T, we have dr>0, 
dyX), and that the contour curves y = const, divide 
the plane as indicated in Fig. 22, so that y is a non- 
decreasing function of a on every y. 

Fig. 22. Surfaces of constant y. 

siblc topologieal prüjKjrtiwi of the family of curves 
{y -6'}, and the set V can vary a good deal. We shall 
not go into this here, but confine ourselves to u few 
remarks. 

The first of the two side conditions d<p>0, dr>0 

seems natural in many situations, but this cannot be 
said about the other one. We might sometimes prefer 
to work with the ezpression 

e(y)     | («(r, (/)<*</, l b{r.<p)\dr\]. 

It is difficult to see how the previous reasoning could 
be applied directly. 

We have not discussed the smoothness conditions 
that should be im|)OHed on the trajectories. Few reg- 
ularity difficulties will arise if tp und r are assumed to 
be of bounded variation. Neither in there any great 
difficulty in verifying that the maximum in attained. 
To see this, the interested reader is advised to study 
some special case. 

If dqp^h, but dr. can take both signs, we can only 
give some vague hints about how the method could be 
made to work. Consider a trajectory y joining /)„ and p,. 
Suppose that y consists of a number of ares yt, v= 
1,2,..., n, such that dr has constant sign on each of 
these arcs. If the end points of y„ are denoted pj and 
Pi, the following holds. In order that y should be 
optimal, each y, must have the similar optimality prop- 
erty. For given values of pj. Pi. we can then deter- 
mine the conditional optimal form of y,. We must then 
let po, pi vary to find the global maximum. If the 
optimal y is of this form, the problem has been reduced 
to a finite minimum problem. Especially if n is small, 
n = 2 or n = 3, we have some hope of finding the opti- 
mum explicitly. Otherwise, the computational diffi- 
culties will probably prevent a successful solution along 
these lines. 

Let us now approach this problem from the point 
of view of the classical calculus of variation. The total 
effect was additively built up from infinitesimal con- 
tributions that could be written as 

Pir)y{d)~. 

We mentioned one special case where 

q(d)^L\*ind\ + B\co8 9?| Consider the segment of y in the strip between the 
contour lines yi^C and y= C + e, E must pass through 
the strip, and it is to his advantage to do this where In general, y(d) will depend upon the geometric confi- 
JP is as large as possible.   This will help us in choosing guration   of  the target.   This dependence can be very 
the  optimal  trajectory.    In  special cases, the idea of complicated, and we cannot assume directly any general 
this heuristic reasoning is not too difficult to complete, formula   for y(0) if we seek a realistic mod«-!.   Let as 
A general treatment is complicated by the many pos- write, however. 
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eiy) ■ f ?(')#) ^- \  L{f,rtr')d<f, 
J Y v       J y 

where L is a function of 90, r r(9), and r' r'{(p). If 

L ia sufficiently smooth, we have an ordinary varia- 
tional problem of standard type. The treatmf nt is 
straightforward: we vary the function r(9) 

rAf)^r((f) i-«(9?),1 

and get for the new trajectory yf, corresponding to rt(y)), 

r»i rvi r 
e(yr)=-       L((f,rt,r',)(l(p-        \L((p,r,r') 

J ft J«• L 

the velocity '' in a direction tfiven in terms of the 
angles a and 0. A differential equation relates r, a, and 
0 to each other, und expresses that the velocity v is 
directed along the tangent of p's trajectory. If p is 

exposed to some additive activity during its motion, 
we will try to find the trajectory that minimizes 

(  'K[r,ot(r),oi'(r)]dr. 
Jo 

+ e{(p) ,   2/(9?, r, r') ( e (y) -_■ , L((p, r, r') 
cr vr 

+ higher order terms. 

d(f 

After a partial integration, we get, taking into account 
the side conditions eifq)- eiyJ-O, 

Jr. Ifr     <r ty. 
e{(p) d<p \- ... . 

In order that this variation shall vanish for every e((p), 

we get the classical equation 

dr~ dr'df' 

It is known that this heuristic argument does not al- 
ways lead to a minimum. Let us note the following, 
however. 

This approach is flexible, since we can choose y{0) 

freely and make it fit the concrete problem. But it 
does not include the previous method as a special case, 
since in this the function y{0) was not differentiable. 
Without introducing any essential changes, we can use 
the same approach for the case where the point q moves, 
see Fig. 21. It is clear that this modification is of 
practical interest. Let us discuss the following situa- 
tion. The point q moves along the straight line L, 

Fig. 23.  The point p tries to reach q and moves with 

v9 

We have assumed that the motion is such, that r de- 
creases monotonically from the initial value r0 to 0. 
Clearly, this is a variational problem of the same type 

as before. 
Let us now return to the equat'on 

dr    cr' df 

and see what happens in a special case. Assume that 
the influence of the distance is negligible, p(r) = C, and 
'hat  the dependence  upon the direction has the form 

y(0)     ^i cos2 0 + ftWfl     (Ar2 i^Y + a W. 

This can be said to correspond to the target having 
elliptical configuration.   We then have 

1  \   ybr^air'f dw. 
v J<r. 

This is very simple, since L does not contain q>, so that 

d 

dtp 
L-r 

dr' 
BL  ,^BL  ,_ . dL_ ,  d2L 

dr        cr dr'        dr'dtp 

= r 
dL    d*L 

dr    dr' dq) 
0, 

which gives us 

L — r- ,■- constant k. 
dr 

Fig. 23. Modifying tho previous problem to the case where q is 
moving. 

32 

Solving this, we get 

)/hr^a(r'f~  /   ^'^ - = it, 
/6r24a(r')» 

and br2    k^hr2 + a{r')%. 

Hence, r' is given  by 

,      ^l/ftV-Mr2 
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Hi) that (fir) -'/(r. ^r. IcVa 

,r)/r2 

h 

dr. 

The conntant k Hhall be determined so that the tra- 
jectory paHHeH through the point p,, (^(r,)    9?,. 

Note that if we want to include the distance func- 
tion p(r), very little need be changed in the above. 

We meet a more difficult problem when we try to 
combine the directional dependence that we have dis- 

cusHed with stochastic elements in the evasive maneu- 
vers and in the ballistic properties of the weapons. 
The prediction introduces an error 6, just us before. 

But now we also have the ballistic dispersion t] around 
the point of aim, E*h. It is natunl to consider f> and 
t] as stochastic vectors. The target, whose arc will be 
denoted by A, will be rotated through some angle tp 
during the time h. The evasive maneuvers are carried 

out not only to increase 6, but to influence the angle 
(/. so that the target will be more difficult to hit. In 

general, these two quantities are not independent of 
each other. For very narrow (needle formed) targets 
the change in (p can be more important than d. 

To take these factors into account, we must make 
more precise assumptions on the probabilistic properties 

of the relevant quantities. Earlier we worked mainly 
with criteria such as miss distance, and we could use 
linear methods based on the first and second order 
moments of these probability distributions. This is no 

longer so. To study the directional effect of the geo- 
metric form of the target, we must integrate over the 
area A oriented with a certain angle qp, see Fig. 24. 
To be able to do this, we must know the frequency 
function appearing as the integrand. 

Fig. 24.  Directional effect. 

To make this more concrete, we shall assume that 

the vectors b and r] are normally distributed. This is 
a standard assumption in such problems, but that does 
not mean that it is a good approximation. Further, 
we must know the distribution of <p, which leads us 
to an interesting question. Wc can express the distribu- 
tion of (p in terms of the functions g{t) and y[z), if the 

evasive tactics is given by 

as in an earlier section. In the important case where 

y{z) is a second order polynomial, the angle qp is nor- 

mally distributed. Another type of evasion is as follows: 
y{t) is a normal process with mean square e2 = E[y[t)^, 

and i(t) is determined so that the velocity is approxi- 

mately constant, [x(<)l2 * [#(*)]*"*''■ This is possible only 
if e* is small, e/v< 1. This model is suitable for describing 
small, non-systematic evasive maneuvers from a fixed 

trajectory, here thought of as a straight line. Since 

COS (ft 
m     = m 

'[jt(t)]2. im*   v' 

it is clear that cos qt is also approximately normal. 
Many variants of this model are possible. 

Another circumstance should be observed. Let the 

angle q? have a frequency function p((f)- In general, 
we are only interested in the value of y modulo 2;T. 

Let us denote the angle qj reduced to the interval 

( — n,n) by a. Then, a has a frequency function 7(«) 
that can be computed directly as 

?(*)      1   /K«    "-Ar.-t),       7i< a< 71. 
k-    00 

In the case where 99 has almost all its probability mass 
in a small interval, we need only use one term in the 
above sum. If the evasion uses more violent turns, we 
may have to use several of the terms. In the special 
case of a normal distribution we would get 

1        " 
q(<*)~   ,/    ■     2,  exp 

ayZn k    « 

(a-2Jfc:t)8 

2 a2 

which can be identified as a d-function. 
The analytic treatment of stochastic maneuvers can 

be a good deal more complicated when we have direc- 
tional dependence. Let us discuss briefly the case of 
normal distributions. With the previously introduced 

notation, we have 

PritjtT.A 4 d}. 

Here, A is the target area with the orientation it had 
at t = 0. The set T^A denotes the congruent region 
after a rotation by the angle (p. The set Tv^4 + d de- 
notes the set TyA translated by the vector 6, the error 

of prediction. The vector r] means the ballistic error. Let 
us first calculate the conditional probability for a fixed 

value of d 

x{t)    x(0) + v     cos (p, da, 
Jo 

y(t) = y(0) + v    sin 9, ds, 
Jo 

Pr Pr{rj£TvA m -E jj/W'fy 
T„ Aii 

where /(»j) is assumed to be a normal frequency function 
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fin) 
l ,    - ,# i ,a"1 ,'1(> (absolute) frequency function—needed to cal- 

cxp (     h ti M   tl)- . ,       ,    ■    .        ,11 , , • 
2n I dct 3/ c-ulate the desired probability of hit—we munt perfonn 

one   more   integration.   To  be   able  to carry out thiH, 

The   symbol E stands  here for mathematical oxpecta-     ^ »iu»t know the distribution of 6 and its influence 
tion, integration over the \alues of 7^.  After substituting     »pon f.   This will depend upon the construction of the 

TyT) I A~y,  «e get the relation 

and 

where 

ht(y) = 

Pr 

Pr 

1 

2 n K det if 

JjE/[r/(y-<5)lrfy 

J   \hMdy, 

Eexp[- {(y-^'T^M 'T'^y- d)]. 

We can write the orthogonal matrix Tf as 

cos (p    sin (p 

sin q>    cos (f 

so that htiy)^ E exp - J ^ 
2^kdetilf 

where ^ is a bilinear form in cos qp and sin (p. Denote 
the normed eigenvectors of the symmetric matrix M'1 

by {,, f, with the corresponding eigenvalues ml, m2. 

We get 

TvHy - <5) = ||y - <5|| (fi cos ((p + <x) + f, sin ((p ^ a)} 

and 

Q-(y-d)'T,M 'T'.iy-d) 

= || y - <51|* {m, cos2 (99 4 a) + m2 sin2 (y 4 a)} 

= || y - (J II2 {(m, - TO2) cos2 (99 + a) + m2}. 

Since  det M-= mi1 mi'
i,  and  if y=co8 (99 + a) has the 

frequency function 
1 

U»  20' 1 
p(«)S—       e 

al 2^ 
we have 

A»(y) 
^ /w, m. 

(271)* a 

r00      [  u2 r r 

||y-6||2|du 

m, wi2 

2nor|/||y-(5j2(»il-m2) f 1 ,V 

+ m. 

exp |y-<5| m» 

This is a conditional frequency function (for given value 
of d), and it should be observed that the parameters 
in   this  expression depend in general upon d.   To ob- 

prediction system, and an analytic treatment of this 
question would require a complete specification of the 
predictor. We shall not attempt to do this here, but 
it should be emphasized that the present discussion 
should be seen only as an illustration of how the prob- 
lern  can  be approached. 

Fitf. 20. Optimal trajectory over a defended area. 

Consider the following pursuit problem. The area A 

should be defended against an invader (airplane, mis- 
sile) E (Fig. 25). We assume that p identical defensive 
weapons (AA guns, ground-to-air missiles) have been 

located in the points A^Az* ••• .-^p- While E closes in 
on the target, he is exposed to fire from the defensive 
weapon system, and the effect of this is assumed to 
be continuous and additive. We get the total effect 

correspond;ng to a trajectory P 

«UV f iiwii^-^iM—i f UKII^-^H)^, 
Jr »-1 v *-i Jr 

where v is the constant speed, and the function 
u>(||./!,,—i?||) characterizes the weapon, whose effect 

should depend only upon the distance ||/1„ -.£'||. The 
function w is presumably a decreasing function, possibly 
with an exception for very sh jrt distances. For large 
arguments, w vanishes. If one wishes one can modify 
the model in such a way that w also depencU upon the 
direction of the vector Ap-E. 

The trajectory F starts in a given point E0, that can 
be chosen as the point of infinity. The end of the tra- 

jectory is free but should be insiue A. Note that A 
is really the area inside which E should use his own 
weapon in order to achieve the result he desires. The 
real target may very well be somewhere else, inside or 
outside A. Among all the admissible trajectories, we 

should choose the one that minimizes the value of the 
optimality criteria J^F). 
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Tliis problem is very Himilar to what we have dis- 
euHHod before. It may bo interewting to note, however, 
that thm is a claHHical extremal problem from geomet- 
rical opti('H.   Introduce  the function 

w{E)    \lui\\A,    E\ 

and chooHe the curve that  minimize.s the integral 

I, da 

uiK) 
mm. 

But if we consider a medium where the speed of light 
is given by the function w[E), the above relation is 
identical with the well-known principle of Fermat that 
the lig'it rays follow paths that minimize the time it 
takes to travel along them. If we know the light veloc- 
ity w{E), we can determine, at least approximately, 
these trajectories numerically, using the law of refrac- 
tion. In this way we get a simple algorithm to solve 
these special  pursuit  problems. 

The value of min «'(P) depends upon how the defen- 
sive weapons have been placed, i.e., upon A1, A2, ..., Ap. 

From the point of view of the defender, it is natural 
to choose such an arrangement of .4,^ .421, ... ,/lj, that 

this value is made as large as possible. We try to find 

max min i/'(r). 
A.      r 

We  shall   not   attempt   a  solution  of  this  interesting 
problem. 

The reader whose patience has enabled him to follow 
the long and sometimes laborious discussion in this paper 
will be aware of the fact, that there exists, so far, no 
coh -rent and general theory for solving pursuit prob- 
lenis, It is hoped, however, that he has got an idea 
of the philosophy of evasive maneuvers expressed in 

quantitative term«. 

NOTES 

In the text we have used mathematical tools all of 
which may not be familiar to the reader. Therefore we 
shall describe some of them briefly here and give ref- 
erences where the reader can find more information on 

these subjects. 
As far as game theory is concerned, we have used 

only elementary facts. We use many times the funda- 
mental theorem for continuous games on the unit square: 

If the payoff function M(x,y) is continuous in O^a;, 

y ^ I, one has 
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max mm 
f o    Jo Jo 

M(r, y) dF(x) dO(y) 

~ mm max 
ü F Jo Jo 

M{T,y)dF{x)da(y). 

Here, F and 0 are distribution functions over the unit 
interval. It should be noted that the analogous state- 
ment holds for a continuous game played over a compact 
region in Euclidean space En. 

It is often convenient to solve the game as follows. 
Suppose that we can find a constant v Pnd two dis- 

tribution functions F0 and (i0. such that 

f  M(x,y)dG0{y)--  v 
Jo 

(   M{x,y)dF0(x)^v 
Jo 

Then r is the value of the game,  and  F0 and 6'0 are 
optimal strategies. 

When the continuous payoff function is strictly convex 
in y, there is a simple optimal strategy for the .econd 
player, so that G is reduced to a step functi m, say 
with the step at y = r.   The  value of the game is then 

v    min max M(x, y). 

Similarly if M(x,y) is strictly concave in //. 
More information on this subject can be found in 

the books of Mc Kinsey (1952) and Biackwell <Sr Gir- 

shick (1954). 
More knowledge is assumed about stationary stochastic 

processes. If xt is a continuous (in the mean) stationary 

process of finite variance and with mean zero, its co- 
variance function can be written as 

r(A) = Ext+hxt~ r e"* 
J     oo 

dF{X). 

This is Bochner's representation. F{X) is a bounded 
non-decreasing function. With this is associated Cra- 

mer's representation 

r( = ^ e,a 

J 00 
dza), 

where  Z(A) is a process with uncorrelated increments, 

such that 

E[Z(A')-Z(A')]2 = |F(A')-F(A')|. 

A process is called purely non-deterministic if the 
manifolds L2 (x\ t) spanned by x for all s • t have the 
property that 

lim  L.iix-yt)    0. 
(-»    oc 
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Such  a   process  can bo writton as an infinite moving 

average 

g(l    s) d£(s). 

where g(t) is quadratically integrablo with respect to 
Lebesgue measure, and i(s) is a stochastic process with 
uncorrelated increments, with 

E [£(*')-f(.0]24<'-*'l- 

The representation is not unique. It is most convenient 
to choose the predictive form, where L.i(x;t) = L2{^;t), 

all t, with a notation similar to the one introduced 
above. Then, the best linear prediction x*^ of xtih 

when we have observed x,. s ^t, is 

w <j(t + h ~ a) di(8). 

The minimum prediction error is 

al-:E[x:+fl-xt>H]2^ j*\g(s)\2ds. 

This is discussed in detail by Doob (19.r)3, Chapter XI). 
We use repeatedly known facts about (weak) con- 

vergence of distribution functions, compactness of sets of 

distributions, etc. In this context the reader is referred 
to Gnedenko & Kolmogorov (1954,  Chapter 2). 

In one proof we use a theorem about Toeplitz forms. 

It can be found in Grcnander & Szegö (1958, Chapter 9). 
In connection with linmr stochastic differential equa- 

tions, we run into the old problem of how they should 
be interpreted when the derivatives do not exist. A 

simple way is to demand that the corresponding rela- 
tion holds after multiplying the equation with an ar- 
bitrary  continuous  function  and   integrating formally. 

The infinitely divisible distributions that appear in the 
text are also discussed by Gnedenko & Kolmogorov {op. 

cit), where also the representation of Levy-Khinchin 
can be found. This may be of use in a more thorough 
treatment of certain pursuit problems. 

In 4.4 we use the notion of a renewd process. This 
is a point process, such that the distances between 
successive points are independent and identically dis- 

tributed stochastic variables. This distribution is related 
to the distribution from a fixed point to the next fol- 
lowing (event), see  Parzen (1902, Chapter 5). 
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