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A TACTICAL STUDY OF EVASIVE MANEUVERS*

ULF GRENANDER®**

ABSTRACT

In this report some tactical aspects of pursuit and evasion are studied.
The emphasis is on the analysis of the conceptual framework and on the
construction of analytic models. In order that these modeis be able to de-
scribe real pursuit situations, an attempt is made to incorporate kinematic
and dynamic restrictions to the extent that is possible without making the
model too difficult to handle. In particular, the relation between the evasive
tactics and the method of prediction used by the pursuer is studied. In
order to be as concrete as possible, a number of special cascs are treated,
some of which may be extended to cover more general situations.
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1. INTRODUCTION

The purpose of this paper is to discuss in quantitative
terms some aspects of evasion and pursuit. This is one
of the oldest problems in the history of military doc-
trines, and much has been thought and written about
it. Until World War II, most of this was cxpressed in
verbal, qualitative ways and could bo said to constitute
an important part of the general philosophy of war. In
recent years, after the appearance of operations analy-
sis, onc has tried to formulate the problems mathe-
matically and to obtain numerical solutions. It gocs
without saying that in many or perhaps most cases this
approach is doomed. The reason for this is clear: the
logical structure of the problem is so complex and het-
erogencous, that it would be naive to think that the
events could be described by mathematical expressions
without a drastic loss of realism. Let us think, ivr ex-
ample, of the classical naval engagement of type The
Battle of Jutland. The outcome will depend upon certain
factors that can be discussed in probabilistic terms: the
effecta of reconnaissance, artillery fire, torpedo attacks,
and mine fields. One can also include several tactical
parameters: speed, armament, meteorological conditions,
etc. Thus we could, at least in principle, measure and
analyze the basic propertics of the two war machines
and use this to construct a mathematical modei of the
events. However, it would be almost impossible to in-
clude in such a model the long chain of human deci-
sions, the breakdown of communications, and all the
mistakes and errors that can occur. Thus we would be
forced to leave out one of the really essential compo-
nents of the battle, and this would no doubt invalidate
the analysis.

On the other hand, it may be possible to treat limited
problems—perhaps forming parts of a battle—by the
methods of operations analysis. This is so especially
when the problem is well determined, with no or few
human decisions involved after the initisl phase, and
when the tactical factors can be assumed to be known.

In recent years it has become customary to apply
the methods of operations analysis to immense military
problems, involving major parts of the strategy of a
country or ol vne of its armed foreee By simulation
techniques on electronic computers it s possible to
obtain solutions that may seem realistic. In the author’s
opinion such overall solutions can be quite dangerous,
if it i8 not clearly understood that they only represent
one of several means for making decisions: such com-
prehensive decisions stil! have to be made on politico-
military grounds, taking into account many factors that
are not included in the quantitative analysis.

In limited problems :oncerning tactics or the tech-
nology of weapons, the possibilities of a numerical ap-
proach are greater. With the present development to-
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wards more or less automatic weapon systems this
possibility is accentuated.

In the following we shall only deal with certain tac-
tical situatious, admittedly of quite special character,
but taken together covering an interesting area of appli-
cation. No attempt will be made to formulate a general
quantitative theory for pursuit and cvasion.

The main goal will be to penetrate the logical struc-
ture of some typical problems concerning evasive ma.
neuvers and to construct mathematical models appro.
priate for a quantitative treatment. It is necessary to
get a good idea of the conceptual framework, and a
beginning is made here, although it is not at all com-
plete. As the reader will see, the resulting models vary
a good deal among themselves, as could be expected,
since they are made to fit radically different tactical
situations. These models are perhaps more important
than the mathematical analysis that we attach to them.
The analysis should only be interpreted as a tentative
solution, indicating what sort of mathematical reasoning
may be usecful. If one decides to really use one of these
models or an adaptation of it, then a much more com-
plete analysis will be needed anyway.

The mathematical tools are mainly elementary game
theory and stochastic processes. We shall use only the
basic notions of game theory, and the applications
will be simple and direct. For the reader’s convenience
some notes are attached at the end of the paper, and
it should be consulted for more information about the
mathematical tcchniques used, as well as for biblio-
graphical information.

The study of evasive mancuvers must be one of the
many objects of work for the groups of mathematicians
involved in operations analysis. As far as the author
has been able to find out, little has been published on
the subject, perhaps for reasons of secrecy. Therefore
it is not possible to give a full historical presentation
cf the development of the subject. It wouid not be
surprising i some of the following is known previously,
although it has not been made publicly known.

The first discussion of the problem in mathematical
terms seems to be due to Steinhaus (1960), who already
in 1026 formulated the following problem Two players
E and P, play a game: P pursues £, who tries to
avoid being caught. Denote by Tp and T the tactics
used by P and E, respectively, and by (T, T;) the
time it takes for P to catch E. Steinhaus then suggests
that it is reasonable to choose Tp and T such that

t(Tp, Tg) = min max ¢{(Tp, Ts).
Tp Ts

The reader familiar with game theory will notice imme-
diately that this is close to the concept of optimal
strategy. Actually, Steinhaus seems to have been aware
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of the basic problem of whether min max ¢ always equals
max mint. No detailed discussion is given in the paper
referred to.

The same problem ha: been treated recently by
«Lelendzeridze (1061). He assumes that > and £ move
in the n dimensional space R", and their motions are
doacribed by the equations

P. i“::- f(z, u),

.. d
K y“dfﬂv(y.v).

Here z and y arc vectors describing the positions of P
and £, respectively. The parameters u € R” and ve R’
represent their tactical behavior, or, more precisely, the
tactica are given as functions u = u(t) and v=v(t). As-
suming certain regularity conditions and that u can
take values in a closed convex polyhedron )'c R’
KelendZeridze tries to find the tactics realizing the ex-
tremal value max, min, ¢(u, v), where ¢(u,v) stands for
the timo it takes for P to cstablish contact with £
Such a solution of the extremal problem could be called
an optimal pursuit tactic. He solves this problem for
the case that
Z=f(z,u)= Ar + Bu,

where 4 and B are constant n x n and n < r matrices,
respectively. His main result is the following. If u(t),
v(t) represent such an optimal tactic, and if z(¢) and
y(t) are the corresponding trajectories leading to the
pursuit time 7, then there are vector valued functions,

'I’(‘) = [V’l(t)' V’I(‘)r ey V’n(‘)] ]
Z(‘) = [xl(‘)» 13(‘)v ¥er=Ty Xn(‘)]

such that /,=i,=?£, |
cy,
. oM
LA ex,’
CoH |
h=n= éx;:
- _oH
" ey

Here, H is the Hamiltonian
Ho 3 (yefa t 2ag2),
and for all ¢ in the interval (0,7') we have
H(wp(t), z(t), u(t), 2(t), y(t), v(t)] = m:ix mvin Hiy,x,u,X,y,v]

Further, the above value of H is constant throughout
the time interval, and y(T)= - x(7T).
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One should also mention a result of Zigba (1960).
He considers motion in a plane where the pursuer is
at the point (r,.y,) and his opponent at the point
(z,.¥,). Given two homogencous functions vy(z,, y,, Z,, y,)
and v,(z,y, %, y,) describing the absolute values of
the velocities allowed, we want to find functions g, -

Po(Tp ¥p. T, Y, aNd y, = v, (7,. ¥, 2,.¥,), such that
AR

Similarly, for the evader we want to tind similar func.
tions ¢, and y,, such that

2 2 2
Pe ' Yo Uy,

The equations of motion are then

2= ¢p
Y™ Vo
Z, @
U

with some initial condition. As payoff function we use
the time it takes until capturc happens; this time may
be infinite. If the game is definite and under certain
regularity conditions, Zigba states a rule how to arrive
at a first order partial differential equation for the time
of capture, and this gives us the optimal tactics.

Without going into details it is obvious that these
results have a good deal in common in their approach
to the problem. They ascuine the motions of the pur-
suer and th~ evader to be fairly general, subject to
certain restrictions upon the velocitics. These restric-
tions can be space dependent, and actually that seems
to be the case when these methods are of real interest.
The same is true in the works of Isaacs (1954 a, b),
although his set vp is different.

Using these results we can certainly deal successfully
with some pursuit problems, at least in principle.

To actually compute the solutions will be laborious,
at least if we try to deal with the very complicated
kinematic restrictions and the lack of complete informa-
tion that sometimes obtain.

It is natural to ask if we could arrive ut useful solu-
tions by restricting already from the beginning the be-
haviors of the pursuer and his opponent. We could
assume that their motions be described in probabilistic
terms and specify a priori what type of stochastic be-
havior we can allow, taking into account what we know
beforehand about the capabilitics of the two opponents.
Naturally, we could not expect our solution to be quite
optimal. On the other hand, we could hope to achieve
a higher degree of realism, at least in those cases where
the models can be made sufficiently detailed.
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An early attempt in this direction can be found in
s paper by Yovits & Jackson (1955). Although their
paper is not written in the terminology of pursuit prob-
lems, it is obvious that it can be interpreted in such
a way. Consider a stationary stochastic process z(t),
hidden by noise n(t), so what we can observe is only
their sum y(¢) = z(¢) + n(t). By filtering the y(¢) process,
we try to restore z(t) as well as possible in the sense
of the least squares criterion. If the spectra of z(t) and
n(¢) are known, then we can do this by the standard
linear theory of stationary processes. On the other hand,
we may view this as a game between two players, one
of which controls the spectrum of the z-process and
tries to prevent successful filtering. The other player
tries to oounteract this by choosing a sitable filter. We
have s max min problem at ha:d. Yovits & Jackson
solve this problem for the case \here the mean square
value of an nth order derivative d"z(t)/dt" has been
fixed in advance. We shall see later in the text how
this correaponds to pursuit problems of considerable in-
terest.

Such max min problems arise in many pursuit prob-
lems. If possible, one would like to have the solution
to the corresponding game; especially one should in-
vestigate if the game is definite. Grenander (1960) has
studied the following problem. One player controls the
spectrum of the stationary stochastic process z(t), with,
say, a side condition on the total spectral energy. We
could think of z(¢t) as an acceleration. The quantity
that we are really interested in is of the form

1
z= J a(t) «(t) dt,
0

where a(t) is a given function; z may measure the loca-
tion of the evader. The other player observes the past
trajectory or z(¢), ¢ <0. He trics to use this observa-
tion to predict z by some z* and has at his disposal
all possible linear predictors. Using as a payoff func-
tion the mean square error E[z-2*]%, it is shown that
the game is detinite. Further, the value of the game
is simply the largest eigenvalue of the integral kernel

min(l-z,1-y)
K(z, y)=-fo a(z+u)a(y+ u)du.

The optimal forms of z(¢) and of the predictor can be
expressed directly through the coresponding eigenfunc.
tion.

This must be an important part of a theory of pur-
suit and evasion. However, we shall not start directly
with these somewhat complicated problems. Instead we
shall first consider some simpler problems and use these
as vur starting point.

4

2. DESCRIPTION OF THE PROBLEM—BASIC
NOTIONS

2.1. Questions of Dimensionality

Let us denote the .vader by E, or, if we have several
evaders, by E,, E,, E,, .... At a certain time point ¢,
let us denote by E, the position of E expressed in a
suitable coordinate system. The dimensionality dg of the
space in which £ moves is not always well determined
by the physical background of the problem. Often it
depends upon what the really important aspects of the
problem are. Take, e.g., a tank using evasive maneuvers
in order to avoid being hit by antitank rockets. Because
of its low angular velocity, its normal acceleration is
practically negligible. Unless the time of flight of the
rocket is unusually long, it may be convenient to de-
scribe the position of the tank by a single coordinate,
dg=1. (This question also depends upon the ballistic
properties of the rocket, whether it is guided, an so on.)
(f the weapon used has a long time of flight we will
have to work in two dimensions, dg=2.

The case dg=1 is mainly of theoretirnl interest, since
in most military situations the evader has more degrees
of freedom at his disposal. It seems that the most im-
portant case would be dg=2. We meet this situation,
of course, when the motion of E is bound to the sur-
face of the land or of the sea. But ¢ven when the
problem may appear as three-dimensional, it can be
convenient and realistic to assume that dy;=2. The
evader K, say an airplane or missile, may be free to
move in three dimensions, but circumstances may re-
strict it to motion in the plane, in order that the navi-
gation system, the bomb sight, or the weapon be able
to function. More about this later.

It is not neccssary to say much about dg=3; it is
obvious that three-dimensional pursuit problems ebound.
But how about dg >3, does this case have any prac-
tical relevance? When the target K has a considerable
extent in space, not negligible compared to the ballistic
dispersion or to the accuracy of the reconnaissance, then
one must take into account the geometric configuration
of the target. This gives us (at most) three more de-
grees of freedom, e.g. the Eulerian angles of a solid
body. As a typical illustration we may men ion an air-
plane pursued by a missile with an infrared homing
device. The probability of the missile hitting the target
will depend upcn the angle between the hot exhaust
of the jet and the line plane-missils

What has been said here about E and dj is applicable
in part also to P and dp.

In the author’s opinion the general E— P problem
to be discussed here contains the fundamental diffi-
culties already in its two-dimensional form. When the
number of dimensivis increases, we can expect & similar
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increase in the computational (and possibly analytical)
difficultics that makes it hard to work out a compre-
hensive solution. Difficultics of an essentially new char-
acter do not seem to enter.

2.2. Restrictions

When considering E, as a function of time there are
always strong restrictions upon its behavior. It is of
the utmost importance that we do not lose these kine-
matic restrictions when we decide upon a suitable mathe-
matical model. Instead we must make them precise and
express them in quantit stive form. Sometimes, this re-
striction simply means that E, must be in a given
region S, which may depend upon time, E,€S. More
often the restriction is expressed in terms of the velocity
vector E, or of the velocity |E,|, perhaps [E,| < v. Here
v may be given by physical reasons (maximur: speed
of an airplane) or from tacticl considerations (maxi-
mum quiet speed of a submarine). Similarly, we may
require that the acceleration be bounded, |E,| <a, or
that some angular velocity be bounded, |¢,| <g. In this
connection we may think of the load factor of an air-
plane.

Conditions of this type can sometimes be replaced by
restrictions upon the corresponding average values; this
may be more reaiistic and deserves a brief discussion
here. In a certain situation we may be willing to admit
the possibility that some quantity, say an acceleration,
|E,|, may take large values, but under short periods
only. {t is then convenient to express the restriction
in integral form. Let tho admissible functions E, form
an ensemble € (the set of strategies for E). If we have
a probability measure P on £ (a mixed strategy), then
we knuw that under certain conditions there is a close
relationship between temporal average values and ensemble
mean valucs over £ We may tnen use conditions of the
form

flE,ldP<az,
4

flE,l’dP < B,

fl/[w.ndz«y. J

just to mention a few possibilitics. It is clear that a
wel'-chosen formulation of this sort of restriction must
be a compromise between realism and analytic tracta-
bility.

2.3. Information and Uncertainty

The positions E, and P, of the evader and pursuer,
respectively, are functions with certain properties, they
are elements of specified function spaces. However, it
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would not always be correct to assume that the two
opponents know their own position (past or present),
and still less their opponent's position. Actually, this
will depend very much upon what navigation syst- 1+ is
used and upon the method of localizing the oppon .t.
Here, all possibilities exist on a scale between complete
information and complete lack of information. It may
happen that one has reasonably good information in
both directions (say, in an artillery duel between two
destroyers), that one has only little information in one
or both directions (say, for a fregatc hunting a sub-.
marine), or thav information is completely missing in
one direction (small scale landing operation, without
radar reconnaissance, attacked by guided missiles). The
uncertainty may here be expressed is ntatistical termes:
the hypothetical position is a stochasti variable with
some probability distribution around thc true position.
It is important to note the difference between the case
where this distribution is more or less constant, and
that where it depends strongly upon time. The laiter
case can be exemplified by a navigation system based
on dead reckoning, say, base« on inertial navigation,
and assuming that no new fix is obtained during the
time interval under consideration. The cumulative effect
of initial errors of ohservation can have important con-
sequences when studying optimal tactics. It is also im-
portant sometimes to note that one side may have some
information about the form and location of the trajec-
tories of a missile but not about the time of firing.

2.4. Purpose of Evader and Pursuer

To study these tactical problems by operations analy-
sis we must first of all decide what E and P seek to
obtain. A simple assumption (usually too simple) would
be to say that P wishes to reach E as soon as possible,
while E wishes to postpone the encounter as long as
possible. Often it is more realistic to assume that I
has a concrete aim, say, to reach a given point, line
or area, or that he wants to keep a certain average
course (zigzagging to avoid contact with P). Perhaps £
wishes to reach a certain point as quickly as possibie,
taking into account that the evasive maneuvers take
time but have to be made in order to make the risk
small that P get an opportunity to use his weapon
system. A quite different aim is when E tries to ma-
neuver in an unsystematic manner in order that P lose
contact with him, so that he can get away unobserved
(a hunted submarine). But even here we may get a side
condition: these evasive maneuvers must be made such,
that the effect of the weapon system of the enemy can
be expected to be small.

It is not necessary that P’s aim is to use his weapons
at all, instead he may try to collect information about E.
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Hunting submarines with helicopter is a typical cawo, the
helicopter makes the observations as follows: it stope,
lowers an active hydrophone into the sea wnd listens
for the submarine in different directions. If the sub-
marine has been located but tries to get away, the heli.
copter (P) must try to predict its future position, go
there, and start listening apain.

2.5. Prediction

When working on specific pursuit problems one be-
comes soon aware of the following logical relationship
that is basio for the whole complex of problems. When
E attempts evasive maneuvers, this will influence the
tactical behavior of P. P will use a method of predic-
tion sn order to counteract the evasive maneuvers. In ocon.
nection with mathematical prediction problems one usu.-
slly thinks of the Kolmogorov-Wiener theory for optimal
predistors. This theory has shown itself very useful in
the design of fire control systems. It is of relevance
in the present context too, but unfort.nately it is too
restricted for immediate application in many cases, as
will be shown later on.

It is practical to fix som» terminology. By the order
of a predictor we shall mean the number of derivatives
of the function E, at ¢=¢, that are used to predict
the value of K,.,, A >0. This notion, of course, epplies
only to a predictor that uses only the instantaneous
values of E, and of some of its derivatives. A first
order predictor is then of the forn: K7, , = f(E,, E,). By
a linear predictor we shall mean a predictor constructed
as a linear combination of the past and present valucs
of £, or, more precisely, as a limit of such linear com-
binations. This distinction is not always made clear in
the literature. The classical prediction theory treats linear
predictors only, and this can be a severe restriction.

2.8. Optsimality Criterion

We have already discussed the objectives of the pur-
suer and the evader. This discussion was in general
terms and perhaps too vaguo. For a quantitative treat.
ment it is necessary to define precisely an optimality
criterion. This can be the probability of (at least one)
hit, the expected number of hits, the probability that £
can reach a certain region unharmed or that he avoids
being detected. It could also be quantities such as, the
time till P,= E,, or till |P,— E,| <r. Perhaps one should
use the length of the trajectory instead of the time
spent in it. It is well known by the practising opera-
tions analyst that the choice of optimality criterion is
decisive for the outcome of the analysis, and that it
is seldom or never possible to point out a uniquely
determined criterion as superior to the other available
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criteria. If we aim at some realism in our study, we
must thercfore be propared to work with several cri-
teria simultancously, even though this wi), make the
theory more heterogeneous.

2.7. Different Types of Solution

When we have fixed the tactical situation and the
optimality criterion, we can try to work out a solu-
tion on three different aspiration levels.

(1) We may assume that one of the opponents has
chosen this tactics in some way, and that this is known,
at least partially, to the other one. This assumption
could v icetified when the tactical behavior depends
directly upon the technical equipment that one believer
will be used during the relevant period. Then we have,
mathematically, an ordinary problem of variation, and
we should study existence and uniqueners of solutions
to an extremal problem, max, f(z, y,). Above all, we must
seek a suitable way to compute the solution, analyt.
ically or numerically, in order to obtain a real solution.

(2) On the other hand, we may not be able to assume
a priors that the tactics of the opponent is known. In
such a case we have a double extremal problem of the
type max, min, f(z,y). Often the tactics can be described
by one or several functions, so that z and y will take
values in some function space. It is not always true
that there exists an optimal tactics. This way of looking
at the problem may be considered as one half of a
game: we look at it only from the point of view of one
player and try to maximize his payoff, assuming that
his opponent behaves in an optimal manner.

(3) Finally we may try to solve the whole game: de-
termine min, max, f(z,y), and see if this value coincides
with the value we already got. In such a case the game
is definite, and mathematically the situation is favor-
able. In general, the spaces of admissible strategies
(usually randomized) will be so large that we cannot
hope to meet definite games very often. It seems that
the existing theory of games will give few concrete hints
in this direction, and it will therefore be necessary to
study in detail the specific situations.

Normally we would prefer to work on the highest
level. However, in order to arrive at definite, and methe-
matically tractable, games, we would often have to im-
pose strong restrictions and simplifications. This will be
evident in the following chapters. Therefore, we are con-
fronted by a choice: do we want a mathematically
attractive and polished solution to a problem with little
relation to reality, or do we prefer a less complete solu-
tion of a problem formulated in a more realistic way?
Many operations analysts (including the author) believe
that the second alternative is often preferalle to the
first one.
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3. THE DISCRETE APPROACH
3.1. General Considerations

Let us specialize and make the situation moro con-
crete. A pursuer P and an evader K move :n a plane,
d=2, with certain kinematic restrictiois, at least as far
as E is concerned. The sneeds of P and E will be de-
noted by V and », respectively. To start with, it will
be assumed that P can move more freely than E, and
that the speed ratio V/v>1. We may think of E as a
submarine carrying out evasive maneuvers submerged,
but that its vertical motion can be neglected, so that
its position is described by plane coordinates. P may
be a helicopter trying to find and follow E. Or P may
be one (probably one out of several) antisubmarine
rocket fired from a submarine chaser.

Let us assume that, at a certain moment, t =0, £ and
P observe each other, and that P has complete in.
formation about the position and the velocity vector
of E. (Later on we will have to relax this unrealistic
condition.) It is irrelevant whether E has or does not
have information about P’s position and ve.ocity vector,
since P's continued moticn is very free and hence not
strongly dependent upon initial values.

Alter t=0, the opponents cannot observe each other
for a while, and we are waiting for what will happen
at some future time ¢=h. In the examples mentioned
above, this may correspond to the time point when the
helicopter lowers its hydrophone again or when the anti-
submarine rocket reaches the plane where the target
moves. During the interval (0,A) £ has moved along
some trajectory with the end point E, =@ that can be
situated in a reqion S of the plane, see Fig. 1.

Fig. 1. The region S which the evader E can reach.

The boundary to the right of S corresponds to £ using
his maximum speed. The lower and upper boundaries
of S correspond to maximum angular velocity. It is
ofien reasonable to assume that E uses his highest speed
all the time. If this is so, then S will look something
like Fig. 2. The region will be long and narrow, unless
E can steer 50 much that the region is made wider.

Now we must define the tasks of P and E and the
corresponding optimality criterion. If P tries to fire at
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Fig. 2. The region which E can reach with maximum speed.

E to hit and destroy him, then we may use the proba-
bility of hit as a criterion. Let us suppose that this
probability is a decreasing function f(R) of the distance
R=|E,— P,|. E will try to make R large by choosing
among the possible values of E,. P will do the op-
posite.

Let us first study the case where P chooses a posi-
tion P, €S. Then wo can describe his tactics by a proba-
bility distribution Fp over S. Similarly, £ has some
probability distribution Fg over S. If we, for simplicity,
choose the criterion a8 — R3, it is clear that E wishes
to maximize U, and P wishes to minimize U, where

U= f f RM(P,, E,) dF5,dFs,.
ExeS J PasS

The payoff function R* is a contiauous function of P,
and E,.

S is usnally a compact pert of the plane. A general
result or the classical garie theory tells us that the ]
game is definite, it has a value. It remains to deter-
mine the corresponding tactics. In general we will do
this numerically, but, if the situation is simple enough,
analytica! methods may succeed. To familiarize our-
selves with the problem we shall in the next section
consider a few sumple cases. We will not meet anything
mathematically exciting, nor will the models be of much
practical value. Nonetheless, we hope to understand the
pursuit problem better in this way, enabling us to go
on to more interesting situations.

3.2. A One.dimensional Example

Let us assume that S consists of an arc of a circle,
say, an arc smaller than a half-circle, see Fig. 3. One
can guess the solution: P shall go straight ahead, and
E shall go to one of the end points of S, with the
probabilities §, . To prove this, we note that if P goes
to P,, and if E uses the tactics described, then the

payoff is
yE+ 35> 13,

This inequality holds, since




>0

Fig. 3. The case wherv S consists of an arc of a circle,
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2 2
On the other nand, if P goes straight ahead, and if £
goes to some point E,, the payoff is at most i§. Hence
the two tactics described above are optimal, and the
value cf the game is .
We leave to the reader to study the case of S being
a circular arc with an opening angle of more than 180°.
There does not seem to be any good reason why P,
should only be allowed to take values in S. However,
with the (somewhat arbitrarily chosen) payoff function
that we have used, R*(P,,E,), the pursucr P will not
lose anything by restricting himself to the region §
formed as the convex hull of S.

Fig. 4. The case where S consists of a segment of a circle.

Let us see how this would modify the discussion of
our example. The region S is now a segment of the
circle, see Fig. 4. The best tactics for E will be the
same as before, whereas P should not stecr to the mid-
point of the chord bounding S. With notation used in
Fig. 4, we have

f=d-y'+a,
B=(d+y?+ 2

so that R+ E=d+ P+ 222t

This is one of the inequalitiecs needed to prove the
statement. The other follows immediately.

8

Yy

¥

C

Fig. 5. The case where S consists of s ciroular sector.

3.3. A More Realistic Example

The situation described can be said to correspond to
the case when the evader uses his highest speed all the
time. A somewhat more rcalistic assumption would be
to let S consist of a narrow region, resembling a thin
crescent. We do not expect that this will lead to any
drastically changed tactics. That may be the case, how-
ever, when £ sometimes slows down very much, so that
S will have a form similar to a sector. For simplicity,
let S be such a sector, see Fig. 5. To treat this case,
we note that the payoff function is convex in the vari-
able P:

|~ zP,~ (1-2) Py||* <z||E - Py|*+ (1 - ) |E - Py",

see Fig. 6.
We have  R*=r?+ 2?p® - 2zprcos ¢
2 p2
and %—g— =2p*>0.

We know then (Fundamentai theory for continuous
games, see Notes) that the best strategy for P is pure,
that the value of the game is

v=min max R*(E, P),
P K

and that the optimal strategy P, for the pursuer is a
solution of the equation

max R}E, P,y) = v.
K

To compute the value v we must first maximize
RYE, P) when E varies and P is kept fixed. The maxi-
mum is attained when E is in one of the corners of
the triangle ABC (Fig. 5). Then we minimize when P
varies, and the minimum is realized when P is chosen
as the center of the circle circumscribing ABC; this
can be seen using a differential argument. It remains
to determine the best strategy for E: it will be to go
to one of the corners A, B, or C, with the probabilities

1

Pr(B)= Pr(C)= P= foosty)2’ v< g

Pr(A)=1-2p,
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Fig. 6. Demonstration that the payoff function is convex.

n .
If [<y<a, we choose instead

Pr(By Pri’) 14,
Pr(A)- 0,

and P, should be taken as the midpoint of the line
segment AB.

The latter case is proved in the same way as in 3.2.
In order to prove the first case, we study the function

f(P)= (1= 2p) ri + pri+ pr3.
Denoting r, by z, we find
f(P)= (1 -2p) 2*+ p[z* + o* - 2zp co8 ¢']
+pla* + 0" — 22¢ cos (y — ¢)]
= 2pp* + 2* — 2pxp[cos ¢ + cos (y — ¢)).

Considered as a function of x and ¢, f(P) will take its
minirum inside S in the point

Y 4
P~

=9 _h .
4 Po cos

This minimum is now computed as

min f(P) = 2pp® — 4p*p* cos? g

P
The evader can maximize this expression by choosing
for p the value given above, giving

02

4 =
4costy/2

= ———— . 3 = 2
z 2 con /2" mﬁxm:n/(P) x

This shows that P should be chosen as the center of
the circumscribing circle, as stated above.

Instead, if P, is fixed in the center of the circle,
and E, varies, we get

1Pa— E,|I* <v,
and this proves the optimality.
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Fig. 7. The case where S is a circular cone.

3.4. A Three-dimensional Example

It is clear that we can treat in a similar way situa-
tions where S has a more complicated form. In prin-
ciple we can also deal with three-dimensional versions
of the same problem. It may be instructive to consider
the case of S being a circular cone with the opening
angle y and the side p (Fig. 7). P’'s best strategy
is to steer toward the center of the sphere circum-
scribing the cone. E shall go to the vertex of the cone
with the probability 1— p, and to the periphery of the
circle bounding the base of the cone with probability p.
On that periphery, E can choose any probability distri-
bution the mean of which coincides with the center of
the base. The probability p is given as

1
P=y costy/2’

When y is obtuse, we put p=1, and P should go to
the center of the base.

In order to prove these assertions, we first observe
that E, trying to come as far as possible from P,
always will go to some extreme point of the cone, either
to the vertex V or to the poriphery of the base. If £
goes to the vertex with probability 1—p, the proba-
bility mass on the periphery will be p. On that pe-
riphery, E chooses a point from a probability distribu-
tion over the interval between —x and +a. If the
probability mass on the line element rdg of that pe-
riphery is written as y(¢) rdp, we must have

'f y(g)dp=p.

We introduce an orthogonal coordinate system with
the origin in the vertex, the z axis along the axis of
the cone. Counting the angle @ along the periphery
from the positive y axis to the positive z axis, any
point on the periphery will have the coordinates z= A,
y=rcosp, z=rsingp, where h=pcosy and r=Asiny.

The center of gravity of the probability mass distri.
bution on the periphery will then have the ccordinates
y=a, z=f, given by




r! f ¥(¢) cos pdp - pa,

f'f y(¢) sin g dp = pp.

If P goes to the point (ryz), the expected value of the
squared distance between P and E will be

S=(1-p) 2ty 2}
+Jﬂ1[(h—.1c)2 t (reosp —y)*+ (rsing - 2)Y)ry(g)dp

= (x— ph)*+ (y— px)® 4 (x = pB)* + p(r* + hY)
. pzhs _ piaﬂ — pZﬂl_

Here P, being able to choose the parameters z, y, and 2,
can minimize S by putting r - ph, y = pa, and z = pf.
He will thus go to a point on the line between the
vertex and the center of the distribution on the pe.
riphery, such that the distance to the vertex is p times
the length of the whole line. The minimized value is
then
min 8= p(r* + &) - p* (' + o+ )

Now E, being able to choose the parameter p und
the probability distribution on the periphery, wants to
maximize this expression. This will mean, first that he
puts a= =0, i.e.,, that he chooses a probability distri-
bution with the center in the center of the base, and
second that he puts p equal to

A 1

The valuc of the game is then

max min S = L 5 S s
P 4 dcosty/2 Fopt
The strategy adopted by P thus means that he will
go to a point with the same distance z,, to all those
points to which E can go.

3.5. Incomplete Information

We have assumed complete information at time ¢ =0:
P knows the position and velocity vector of £ with
no observational errors. Let us now discuss how this
should be modified when the errors of observation are
so large that they should not be neglected.

First, the simple but relatively uninteresting case
where the only error is in the determination of the posi-
tion £,, We choose a coordinate system with its origin
in E,. The error of observation is a stochastic vector ¢,
about whose probability distribution we assume only
that second order moments exist and that Ee=0. The

10

last condition means that if our method of observation
has a systematic error, then this has been compensated
for by a suitable correction. We will choose P, as

Ph:"ﬁ +‘.T,

where z is a vector that can be stochastic or fixed.
In both cases it can be described by a probability
distribution Fp(x), possibly degenerate. Clearly, Fp does
not depend upon ¢, since it is chosen by P who does
not know the actual error of observation, ¢. We get
the payoff, with E,=y, as

vEnF- | se-nare dfa),
where
glr - y) = f lle + =~ yli? df(e) = Eofle + = - yl?
= Ed[lell* + [}z - ylI* + 2E.[e, (z — y)]
=oi + |l - ylI*
This gives us

U(Fy, )=t + j f e y|[* dF dFy,
Ex JPa

where the first term on the right side is a constant
characteristic for the method of observation. The second
term is of the type we have met before. Therefore
we know, at least in principle, how to deal with this
problem.

Fig. 8. Observational error.

So far, we have not allowed any error in the de-
termination of the velocity vector E,. In many cases,
the error in determining the direction of E’s trajectory
is the important onc. We may think of the ordinary
plotting method. To handle this angular error too, lct
us consider Fig. 8. For the sake of clearness the figure
has been drawn with a very large observational error.
The vector x can now be written as

z=¢+T¢.

Here, £ is the position relative to a coordinate system
fixed in relation to the region ', and T is a rotation
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operator corresponding to the angular error. We have
n stochastic vector & in K® or R® and a stochastic
orthogonal operator T in R? or R®. The tactics of K
and P are described by probability distributions Fg
and *,. For fixed values of £ and y, we get the payoff

B=E.r|lz—y|*=E.r e+ TE-y|?
= f lle + TE—y||*dF(e, T),
eT

where F(e, T) describes the simultaneous probability
distribution of ¢ and 7. Hence,

B=E.r el + E.r|Té—yl" = of + Evr | T¢ - yl",

where ¢f is a constant. To get some idea of how the
sccond term differs from the cases we have studied, we
consider the plane situation, z and y € R?. The nota-
tion is given in Fig. 9.

Tt

—
'l
Fig. 9. Observational error in the plane case.

We get

17 = yl|* = |1 T&I* + llyll* - 274, 9)

= |1I1* + ligll® — 201&ll - lyll cos (e + @)
and

Eeol|T€ — yll* = &lI* + Nlylf* — 20 €01 - 19l 6 cos (a + o).

Here we have defined the non-random quantities § and
¢o through the relations

fcos @ dF(p)=0cosg,,
J‘sin g dF (@) = 0 sin ¢,.

With no systematic errors, the quantity ¢, will be close
to zero, whereas (0 can differ considerably from 1. We
have to study the payoff function

&M+ Nlyii* — 26 &) - [lyll cos
instead of
&P+ Nlyll® — 21|&]] - lyll cos .

Apparently, the angular evror affects the problem in a
way that does not lead to complications in principle.
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Errors in the determination of ||Eyf could also be
important. The possible region for E, does no longer
behave as a rigid body: S’ is not necessarily congruent
with S. The length of S’ (in general funnel-shaped)
depends upon how close [|E,| is to its largest valuc,
the maximum speed. We shall not enter into a discus-
sion of such modifications; if the applications seem to
require such an extension it seems to be ossible.

We can incorporate intc the model the possibility of
navigational errors of P. Let us say that P aims at
P,, but that the position really reached is P, +J, where
d i3 a stochastic vector. Assume that E§ =0 and that §
is independent of P,. We then get the payoff function

Eo[|E — Py = 6|* = |E — Pol|* + B, |6

It differs from the previous formula only by an additive
constant.

3.8. Several Pursuers

When we have mcre than one pursuer, we meet a
more essential modification. Say that we consider the
two pursuers P, and P;. As usual, their optimal be-
havior will depend upon what payoff function we use.
This will reflect the purpose of the pursuers very clearly
and with direct and practical consequences.

For simplicity we will chose S as the interval (0, 1)
and consider the two payoff functions

B,=||E- P, }
B, = "E_ Pz"’-

They measure the value of the achievements of P, and P,.

Let us first see what happens if the total payoff is
simply the sum B-= B, + B, of the individual ones. The
two pursuers P, and P, play two identical games. P,
and P, shall behave as if they were alone, and steer
toward the point P,=4. E shall choose one of the
points E,=0, E,=1, with prcbabilities §, 3.

If, instead, B=max (B,, B,), we get the same result.
To see this, let E behave as described, and P, < P,,

then
payoff=}(1 - P,)*+ } Pi > }.

Instead, if P,=P,=4}, we get
payoff = (E - §)* < 1,

which verifies the statement; the value v=}.

Finally, if we choose B= min (B,, B,) we get another
result, but it will not be discussed here.

There are of course many other situations, but these
three illustrate some typical cases. The first, B = B, + B,,
implies an additive effect. It could be reasonable when
we study the expected number of hits. It could also
be relevant in hunting submarines, if the total pressure
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effect on the submarine is approximately equal to the
sum of the individual pressure components. In recon-
naissance it might also be used, or perhaps the more
precise formula B- B, + B, B, B,. The second case,
B=max (B,, B,;), could be relevant, if the total effect
B depends upon the worst (largest) cesult of B, and B,.
The third case, B- min (B, B,;), is based on the best
(smallest) result of B, and B,. It will lead to the well
known notion of artificial dispersion that appears in
artillery tactics.

3.7. Criticism of the Results

It is possible to criticize the diserete furmulation of
the problem that we have adopted in this chapter. In
the disruwdon we have sasumied that the point of time
h is fixed and known. If this is not so, the region S
is. no longer determined by kinematic data, and the
previous reasoning is not applicable directly. If A has
a probability distribution known for £ and P, then we
can take into account the variability of A without essen-
tial modifications. Otherwise, we get one more game
parameter, k. In spite of its obvious importance, we
shall not discuss this possibility.

Another, more essential, objection to the discrete point
of view is the following. After time & the bombardment,
or the reconnaissance, etc., has been completed. But in
general we will still be interested in E and P and in
what happens to them afterwands. Perhaps the gams
is repeated over and over again. We get a sequence of
cycles of more or less similar type. If these cycles can
be assumed to be approximately independent of each
other, then we could just apply the discrete model
several times. Very often, however, dv we have inter-
dependence between the cycles. This is clear when the
quantities h;, Ay, ky, ... are not known in edvanee. Let
us assume, e.g., that in a naval situation E’s best tac-
tics is to steer port or starboard (with probabilities §, })
with maximum angular velocity during the time A. If
we have several consecutive cycles it might be optimal
to keep the angular velocity constant. But then, P could
predict the behavior of B aleeady oftee the first pycle
We must look more carefully into the way the cycles
influence each other.

Our aim is then to study a sequence of cydles of in.
dividual games. It seems to be a good starting point
to investigate & continuuta of cycles; this can be said
to correspond to the case where h,, hy, hy, ... are un-
known.

4. THE CONTINUOUS APPROACH

4.1. CGeneral Considerations

Let us study the following typical situation. The
evader £ moves along some curve £, the form of which
is subject to kinematie restrictions as discussed in Chap-
ter 2. At time ¢ the pursuer P has more or less com-
plete knowledge of the curve K, for s-7¢t. Using this
knowledge, P makes a prediction P, ,, a predicted im-
pact point or whatever one chooses to call it. In a
certain sence, P, can be said to approximate K, ,.
Measuring the result by a payoff function B(E,,,, P, ),
we have again an extremal problem. Here E controls
the choice of trajectory E,, or rather, he chooses the
probability distribution governing the stochastic pro-
cess K. P chooses the mrthod of prediction. The events
may turn out something like Fig. 10, where P, , is the
dashed line. The arrows denote the errors of predic-
tion, to use a term that is not entirely adequate.

Fig. 10. Paths of P and K.

If the problemn has not been speeifivd in more detail
it is difficult to say anything gencral about what op-
timal tactics to use. It is clear, however, that the evasive
trajectories E, must not form a highly regular system
of functions. Indeed, if the trajectories were regular
eaough (analyticity, etc.), the pursuer could predict the
future positions of E without error; at least this is so
if we neglect ubservational errors. Such a complete pre-
dictability is obviously unrealistic. The path E, must
be allowed to be more irregular. This can express itself
in different ways, e.g. that derivatives may not exist
for orders greater than one. Sometimes we will be led
automatically to such classes of function £, when we
solve the extremal problem Such elasses of function are
often very wide and not compact under natural topol-
ogies. This introduces difficulties, since we cannot in
general apply the fundamental theorem of game theory
under these conditions. Difficulties remain, even if we
fimit ourselves to the detormination of & max win solu-
tion. While the reasoning in Chapter 3 was based on en-
tirely elementary mathematical facts, we will need some-
what more sophisticated ideas in the present chapter.

4.2. One-dvmensional Pursuit

We start, of course, with a one-dimensional problem.
E moves along the real line with the trajectory E,. We
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consider E's velocity o(t)  dE, dt as composed of two
parts, voand y(t), oty e oyt). The
constant and  corresponds to the fact that K moves

first term, v, IS a

according to some given purpose. It may be a tank

advancing against the enemy. To avoid being hit while
advancing he makes evasive maneuvers. The time points
when the individual shots are fired against £ are not
known by him in advance. The term y(t) describes the
attempts to evade. These values (positive or negative)
are added to an average value v. We shall assume more
precisely that y(t) forms a stationary, stochastic process
with mean value zero. Such an assumption may seem
difficult

choice of particular probability distributions for y(t).

reasonable, but it is more to motivate the
Therefore we shall only assume that y(t) has a covari
ance function r(t) corresponding to a spectral distribu-

tion function F(A), so that

Ey(t)- 0,
r(t) - Ey(s)yls t ) f cos tAdF(2).
0

The kinematic restrictions make it improbable for |y(¢)]
to take large values under long time intervals. Let us
formalize this statement as

r(0)= Ey*(t) < C.

We shali return later to this condition and discuss
alternative forms of it. The set of strategies is here
the set of all non-decreasing functions F(4) whose varia-
tion does not excved C.

As far as P is concerned, we shall study first what
happens when he uses a linear first order predictor as
follows. The value of E; i observed at equidistant
points of time ¢, n. The observed values of E, and
E, | are used to predict E,,,.

'E:OI £%—+(E% Ab% 1) ZEn-E; 1.

The formula is exact for uniform motion. We get the
extrapolation error

1]
Lntl -En*l Enol_'QEn*‘En 1)

a second order difference. The mean square error o
is then

5 tE(En’l-

n+l n
E[f (v g/(t))(lt—f
n n 1
nt+l 2
-E [f 1 y(s) k(s) (Is:l ,

where the functi-  k(s) - 1 in the interval (n,n t 1) and
k(s) - —1 in (n—1,n). This gives us

2En'l En 02

2
(vt y(t))d;]
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nol
f J. r(s ) k(s) k() ds dt

nel ne+l o0
f J‘ J‘ cos [(8 - t) AJdF(A) k(s) k(t) ds dt
n 1 n 1} 0

Changing the order of integration, we find

o0 nol nl
f J. f cos [(¢ — 1) A) k(s) k(t) dsdt dF(A)
0 n 1 n-1

= J'mx(l) dF(A).
]

Here we have introduced

f J‘ cor [(s —t) A) k(s) k()

Substituting t s u,

ves n+l
x(4A) f f cos ud k(s) k(s — u) du ds.

u-s8 n 1

Changing the order of integration gives

s nt+l
x(A) 2f Co8 u}.f k(s) k(s —u)dsdu
s=n ltu

= 2f cos ud h(u) du.
0

Here the function h(u) is computed as

(a) O<u<l:

h(u) = f k(s) k(s —u)ds
n-l+u

f = k(s —u)ds
n-1l+u

n+l u n-u
f k(z) rlz—JA k(z) dz
n-1

=(l-u)—u+1l—-—u=2-3u,

I

(b) l<u<?2:
n+l
h(“)=‘f k(s —u)ds
n-1+u
n+l-u
n-1
2- U<
8o that h(u)~=[ 3u, O<u<l,
u—2 l<u<?2,

The form of the function k(u) is seen in Fig. 11.

We have to solve the variational problem

o’ f x(A)dF(A) - max, f dF()<C
( F 0
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Fig. 11. The function A(u).

Since C 'F(A) is a distribution function, it is clear that
the maximum is attained by locating the whole varia-
tion C in the point or points where the function x(4)
has its largest value. This function can be written as
1 - cos ).)’

"(M“f, (3 —4cos A+ cos2i)= 4(__.}‘_ &

X

o 1 1 L I
i mi2 Inia T

L~ 1

2 T T

A
Fig. 12. The function x(4).

x(A, is shown in Fig. 12. The maximum is found from
the equation

tg;=1.

This equation can be solved numerically, having a single
root between 0 and 2x:

Aope ~ 2.331 ~ 133°33’.
The corresponding value of x is

max x(4) = (2 sin A,,)% ~ 2.10.
2

We get the minimum square error o*~2.10C.

14

Hence K shall chose his velocity as

v(t) = v4 VC o008 (A ! + @),

where ¢ is a phase angle chosen at random (with a
rectangular distribution) in the interval (0,2n). The
resulting trajectory is

. Ve .

z(t)=2(0) + vt+ ,— 8in (Ao ¢+ @).

Ao

To achieve some realism it may be necessary to impose
some reslriction on the acceleratlion v(t), rather than on
the velocity itself. If we do this via the condition

E[s(t))* = fz’ dF(A) <C,,

we will get a modification of the previous variational
problem. The solution is simply found by using Neyman-
Pearson’'s lemma. Put

x(A)
At

[ - maxI(A).
2

12) -

Then, o?,.=1-C,, and the optimum is realized by lo-
cating all the variation C, in the point or points where
l(A) attains its marimal value !. This follows from

o= fwx(z) dF(A) <l f ) A'dF(A) <IC,.
0 1]

The equality sign is realized in the way just mentioned.
The form of the trajectory is easy to calculate.

A still more realistic formulation of the problem may
be obtained by restricting both the velocity and the accel-
eration by the conditions

Jm x(A) dF(A) = max,
F

0

variance of the velocity = f dF(4) <C,
0

variance of the acceleration = j AdF(A) <C,.
0

This is a combination of the two previous formulations.
A simple variational argument is needed to solve the
extremal problem. Let us denote by s(F) the support
of F: the set of all points 4 for which the increments
F(A+€)—-F(A—¢)>0 for every positive . Ii is seen
that s(F) is a closed set, and it describe: the frequencies
used by E when bec torms the velocity function y(¢)
from harmonic co.aponents.

Let us assume that three different frequencies 4,, 4,,
Ay € 3(F). Choose a small positive number ¢, and change
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F(A) in the (disjoint) intervals I, (A, ¢ A, i ¢);
n=1,2,3; the spectral energy in these intervals should
bo increased by the amounts nr,, where

rnitrixy 0

%Il } )\:fl'-_: { ;.g-rg 0.

This means that the integrals appearing in the kine-
matic restrictions are little affected if € is small enough.
If n is small enough, we still have AF(,)+ gz, -0,
80 that the new function is still non-decreasing. In order
that F(A) shall be the solution, we must have

x(A) x, t x(Ay) 2, ' x(Ag) 2y = 0.

Othervise, weo could increase the value of

J x(A) dF()

0

by replacing AF by AF t nr in cach of the three in-
tervals and leaving F unchanged elsewhere. But this
implies that the third relation must be a linear com-
bination of the two first ones,

x(A,)=a+ b, n=1,23.

If we determine the constants a, b from the conditions
for n=1,2, we get

A~ A

B-a
e x(A2) — %(4)
A-i
or
x(A)
. A3x(Ar) — Ax(Ae) + |%(Ae) — %(A1)| A% + [(A2) — %(4))] A*
A '

This equation should be satisfied for A = 4,, 4,, A;. Assume
that s(F) consists of at least two points 4;, 4,; the oppo-
site case could be dealt with directly. Since the above
relatiom inust hold for every A€s(F), and since F has
no veriation outside s(F), we get

J'm x(A)dF(A)= a.rodF(l) # bfwﬁ.zdl"().) <aC+bC,.
0 0 0

‘The equality sign can be realized if s(¥) contains some
point <(C,/C)}. Then we should determine A; and 4,
such that they maximize

C[AZx(h) — Aix(Ae)] + Culx(A2) — x(Ay)]

-4
with min (4, 4,) <(C,/C)}. We have thus reduced the
problem to a finite.dimensional maximum problem.
While this may present some minor numerical diffi-
culties, it is clear that it is simple in principle.
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During the above discussion we have assumed im-
plicitiy that sup [ x(4)dF(4) is realized by some F.
That this is 8o, follows from the fact that the condi-
tion §*A'dF(A) - C, implies that the sct of spectral
distribution functions at our disposal is weakly com.
pact: no spectral energy can ‘“‘escape to infinitely high
frequencies” when considering all these F. From every
sequence of F we can pick out a weakly convergent
subsequence, and this proves the assertion.

Situations where we introduce more side conditions
can be dealt with by a direct generalization of the above.

4.3. A Modification of the Previous Problem

Let us now return for a moment to the situation
with the only restriction {dF(4) - C. It is quite natural
to use the linear, first order predictor that was sug-
gested, but it may be argued that one should not choose
the predicted value of £, ., ail the way £, - E, , from
the last observed value E,. Instead, P may do better
by using the modified predictor

4:¢l::Enfk(En"En 1)+U(l k)v

where k is some constart to be chosen, presumably in
the interval (0.1). The last term has been added to
make the predictor unbiased. The error of prediction
is then

0§=E(E,.” - E:n)’

=E{f"”[v+ y(a)]da—kr [v+ y(s))ds — v(1 —k)}
o -1

n

=E{f“ly(a)da— kfn y(s) da]’.
n n-1

Proceeding as before, we get

ok = f:m(l)di’(l),
where % (A) = a(A) + kB(A)+ Ky (A),
with
)= ity = 2130,
T bt d S R R 1

Introduce the quantities
a=y=2 f L=cond ) pa,
0 A

ﬂ__2J' 1-2cos A+ cos2i

0 v dF(2).

The possible positions of the point (a, ) in the plane,
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when [*dF(A) < C, form a region D). Apparentiy, D is
convex and compact. Further, for any probability dis-
tribution function K(k) of the parameter k in (0, 1),
introduce the moments

1
= f k' dK (k).
0

The point (ug, ;. u3) i8 situated in some convex and
compact region F. The reader may note that the con-
cept of moment spaces could be used here, but we shall
assume no knowledge of this concept. The payoff be-
comes simply  auqy + fu, t yu,. Hence, optimal strategies
exist, say F and (u,. pu,. u;). The latter must correspond
to a pure strategy since, if uo and u, have been fixed,

H2 .(”l)z‘

Ho \lo
Here equality holds for that pure strategy where K(k)
has all its variation in the point k= u,/u,. To get the
payoff as small as possible we shall make u, as small
as possible, since its coefficient, y, is positive. We can
write down an algorithm for determining F and k.

Compute x,(1) and its maximum x, attained at A = A,.
Choose k such that x, is made a minimum

we have

min s, = x,,
k
Aopt. = lk.-

The optimal prediction constant is then k= k,, and the
velocity should be chosen as

E,=vt VC cos (tAope + ).

It has the same form as before, but with a different
frequency.

We can write x,(A) as a function of two variables,
k and A:
2(1 — cos A)

X (A) = )‘2

(1« k*) - 2k cos A).

dx _4(1 - cos 2) [k—cosA] O if cosd- k.

ok A
;:=2§;11[(1 © k) - 2k cos A] 4 2 -A:mz)-ﬂmin}.
4(1 - ’
(1 };ml)[(l k%) - 2k cos A).

After introducing k= cos A into the latter expression,
it will vanish either if 4 0, or if A satisfies

24in A

: 1+ 3cosi
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Fig. 13. max, x, (4) as a function of k.

This equation can be solved graphically, yielding 4., ~
1.4465, k,~0.1240, and min, max; x, (4) ~ 0.8245.

Fig. 13 shows max; »x(A) as a function of k. For
k< (7-4)3)~0.07180, the maximum occurs for 4=0
and is of the simple form (1 4?*. For k exceeding
that value, the function first docreases to a minimum
0.8245 for k--k, and then increases again to 2.1002
for k=1.

4.4 Other Types of Restriction

In certain problems one might prefer to introduce
the restrictions on velocities, accelerations, etc., in a
diffcrent way. Instead of restricting their mean square,
one may prefer to restrict their absolute values. It is
clear that this could lead to a more realistic treatment,
but also that it requires a more detailed specification
of the stochastic processes involved. It will no longer
be sufficient to describe the covariance function. To
show how this can be done we shall study a special
case of some importance.

We can always neglect the presence of a constant and
known velocity component, since such a component can
be taken into account through a simple correction term.
Let us assume that E uses all of the remaining varia-
tion, so that v(t) takes only the two values +v. We
assign the probability p to the plus sign and the prob.
ability g=1-p to the minus sign. Denote by ¢, ;
t,. tn.1 the points of time when v(t) can (but need not)
change sign. We shall assume that in each interval
I,=(t, 1.t,), we choose one of the two signs independ-
ently of what happened in the other intervals. We also
assum~ that the length 7, ¢,,,—t, are stochastically
independent and have the common distribution func-
tion F(x). Such a point process is called a renewal
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process. That particular point process where F(z) is an
exponential distribution is well known and can he treated
because of its Markovian property. There is no reason,
however, to limit ourselves to that process. In order
that our process shall be completely specified, we must
also start it off by choosing a probability distribution
(/(x) for the time betveen ¢ -0 and the next random
point among the t,. We deal only with stationary pro-
cesses here, and then it is known from the general theory
of renewal processes that

l v
Gly) mfo Il - F(z)]dr,

where mois the mean value

o

m f xrdF(r)
0

for the time between two successive points of time ¢,

!n+l‘

Let us now compute the covariance function
r(t)=E[v(s) v(s + )] [1 - G(6)]e* 1 G(t) v*(p — )%,

where the first term on the right-hand side corresponds
to the event that no t, falls in the interval (s, s i t),
and the second term corresponds to the complementary
event. Hence,

¢
O 1-aon- -0

If weo still use the simple predictor E5 ., = E, + (E, - E, ),
we get the error of prediction as before:

n+l

2
ot~ E(E% 1~ EnyiF~ E [ f n(t)k(r)ds]
1

n-

2

= 2f r(u) h(u)du,
0

with the same mcaning for k(u) and A(u). We shall

maximize ¢?, ie., minimize the expression

~

3
(1-(p- q)']J (G(u) h(u)du.

0

Since the integral is always negative (use the fact that
G(u) is non-decreasing and the mean value theorem for
integrals), we shall maximize 1 — (p — ¢)% which is done
by choosing p=g - §. The rest of the problem demands
a longer but not complicated argument. The function
H(u) =1~ G(u) has the properties

(a) H(0)=0,
(b) H(u) is non-increasing,

(c) H(u) is convex.
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Such a function can be represented as
H(u) f L, (u)dg(a).
0
Here we have used the broken linear functions

|- u, O<u<a,
ly(u) a
0, wza,

and a distribution function ¢ on the positive rcal line.
To maximize the integral

2 2 2
J‘ Il(u)h(u)dw-f (1 - G(u)]h(u)du= -—J’ G(u) h(u) du,
0 0 0

we consider
Aq j-la(u)h(u)du,

0

which is a continuous function of a tending to zero as
a tends to infinity. Denote by a, the root (or one of
the roots) of the equation 4, =max. We get

2 oo
f H (u) h(u)du f ladd(a) < Agy,
0

0

and it is obvious that the maximum 4,, is realized by
placing all the mass of ¢(a) in the point a=ay 1f

a>2, we get
g u
}.‘,:j (l = )h(u)du,
0 a

2
d}‘°=alif uh(u)du< 0.

0

so that
If 1<a<2, we get

/14=f0l(2—3u)(1 —Z) du ¢ f:(u—2) (l —:) du,

g0 that
1 a
a? i, =f (2u - 3u?) du t f (u* - 2u)du
da 0 1
= §(a*3a® i 2)<0.

Finally, if 0<a<1, we get

A, f (l ':)(zu 3u?) du.
0 (

a'(:: —'f (2u  3u)du - a*(1 - a) >0.
0

s0 that

This means that ay--1, and this is the unique value
nmaking A, a maximum, since 4, A, 0. Under the
given conditions the optimal evasive tactics consists in
choosing one of the two directions of motion with the
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same probability § for each, and in choosing the time
betweer. successive f, according to a probability dis.
tribution such that

H(u) =1~ G(u) = I, ().

This means that G(u)=u, 0<u<l and G(u)=1 for
u>1. The corresponding form of F(u) is then F(u)=
0 for u<1 and F(u)=1 for u>1, so that the times
tn+1— ¢, should bo constant and equal to 1. The only
random element in this renewal proces. is that the
initial value ¢, should be chosen from a rectangular
distribution. The extrapolation error is

1
o= 2v’f (1 — u) h(u) du = v2.
0

We could pose a game problem here too, but we shall
not discuss this any further.

4.5. Two-dimensional Pursuit—Simple Models

When we turn to evasive maneuvers in the plane,
things become a good deal more difficult. One reason
for this is that we have so much more freedom in con-
structing the models for the motion of £ and P. Be-
cause of the lot of alternatives, it seems impossible to
formulate a theory that is both general and informa-
tive. Instead, we will have to limit ourselves to ana-
lyzing separate cases, and we shall try to select these
so that they illustrate typical situations. Even so, we
will meet some analytical problems, some of which seem
to merit attention because of their intrinsic interest.

' |

e o
--------------

1’4 v

Fig. 14. The simplest two-dimensional case.

Consider the two opponents E and P at the time
t=0, when the distance between them is denoted by R.
As usual, we denote their maximum speeds by v and
V, respectively, with the speed ratio k=V/v>1. If
there are no other restrictions on their motion, it is
clear that the pursuer will reach the evader after a
finite time. The game is definite with the value
R/(V +v) if, as before, we use as payoff the ti.uc till
capture. The optimal behavior is for P to move at
maximum speed towards E, and for £ to move at
maximum speed away from P, see Fig. 14. This simple
result can be modified to fit the situation where the
two players are restricted to certain regions. It does
not seem probable that such results will be of much
practical use.

Let us include some more factors in the formulation
of the problem. Usually, E tries to reach some target,
to steer in a certain direction, etc. Let us say that he

18

Fig. 15. Constant speed and alternating course.

wants to steer towards some region R in the direction
a=0, where a is an angle referred to some fixed di-
rection, see Fig. 15. Suppose he travels at constant
speed v, but is exposed to continuous gunfire, bom-
bardment, etc. To avoid being hit he makes turns,
Ax,= &,y —a,, at certain points of time, say, equidis-
tant for simplicity. Under fairly general conditions we
can express the probability that a certain salvo (bomb,
etc.) hits £ as a function p(Aa). Usually this function
will be decreasing in |Aa|. E will try to keep down
the value of this function. At the same time he wants
to keep down the time it takes to reach the target,
which means that cos !« should be kept as close to 1
as possible. The average number of hits will be pro-
portional to the expression

A ] S
;_COS a'p %y av)j»
it should be minimized by E. Supposing the evasive
motion to be stationary, we shall minimize

S I
a= . - P plz —y)dF(z,y)

V="

under the condition that the marginal distributions of
«, and «,,; are equal:

F(x,n/2)- F(x,—n/2)=F(n/2,2) - F(— a/2, z).

Here, F(z,y) denotes the joint distribution of &, and
®,+;. The minimum is attained if p(Aa) is a contin-
vous function.

If we assume instead that the behavior should be
reversible in time, so that F is a symmetric distribu-
tion, then

1 1
a= H [Cos A y] plr—y)dF(z,y),

where the integration shall be carried out over the half
square z<y, |z|< }7, |y|<3}a. To find the minimum,
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wo consider the point (or points) (x,y) for which

[v = ai: l ]p(.t—y)'-- min.
CO8 X COBY

If (x4, y,) is such a point, we get a symmetric distri-
bution F by placing the mass § in cach of the points
(20, ¥o) 8ud (yo.z). In other words, the evader steers
alternatingly along the course r, and the course y,.
The initial direction is chosen among these two with
probabilitics §, §. Note, that this behavior is crsential-
ly deterministic. This is because the prediction method
of P has been fixed implicitly by the choice of the func.
tion p(Aa). If the method of prediction is also allowed
to vary, we get a game situation, and this will force
E to use a truly stochastic behavior.

4.6. A More General Model— Behavior of the Evader

We now leave this primitive model of evasive ma-
neuvers and turn to a more general and flexible system.
We wish tc describe the motion of E when he travels
in the plane with the constant speed v but with a
(randomly) varying course ¢,. Choose a coordinate
gystem (z,,z,) where the z, axis will be taken as the
average direction of E’s motion, see Fig. 16. Choose the
origin so that at time ¢t=0, we have z,(0)=2,(0)=0.

ol

-

\
==

SN AN

Fig. 16. Constant speed and continuously varying course.

We then have
¢
r, () = vf sin ¢, ds,
)

t
Z,(t) = vJ. cos @, ds.
0
The angle ¢, will be considered as a stationary stochas-
tic process written as

7= f ~gle~ u)dE(u)

using the predictive representation of the process. Here
é(u) is a time horogeneous process with independent
increment and with the variances E[&(s) — £(t)]*=|s — ¢|.
The function g(u) is real-valued and quadratically in-
tegrable. In other words, the evasive mancuvers are
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governed by a noise gencrator with the outsignal §(u)
that is fed into a linear filter with the response func.
tion g(¢). Tho outsignal of the filter is the course angle ¢,.
For a complete description of the probabilist ¢ struc-
ture, we must know tho distributions of &(u), o <
u< oo, The most convenient way to describe such a
distribution is to use the characteristic function of &(u),
which can be written as

yi(z, u) Ee'*tw),

The process §(u) being time homogeneous and with
independent increment, this can be rewritten as

iz, u) - 7@,
where y(z) is some functien of z.

According to the famous theorem of Lévy-Khinchin,
one can represent p(z) in terms of a certain integral,
but we need not do this here. The only restriction ot
the moment is that &(u) shall have a symmetric dis-
tribution, so that v(—z,u)=;(z,u), or y(—z)= y(z).
If desired, one can remove this restriction with little
difficulty.

The most important special casc is when {£(u) has a
normal distribution, so that

v(z, u) ~exp (— u%’),
y(a)= - ¢z~

We then know that £(u) is a continuous function with
probability one; actually this case is the only one with
this property. It is not differentiable in the usual sense.

Another important case is when §(u) changes ab-
ruptly with the jumps +4. The distribution of £(u) is
then composed of two Poisson components

y(z, u)=exp [uA(e® - 1)) exp [ul(e - 1)), }
p(e) = Ae?* — 1) + A(e " — 1) = 2 A(cos 8z — 1).

Concerning the response function g(u), a common as-
sumption is to postulate the form

glu)=Ae %

This means that we have an RC filter, corresponding
to the differential equation

do, dg(t)
a- Tt A

Note, that the derivatives appearing in this equation
do not cxist, but the relation can be interpreted as a
stochastic differential equation with no lack of rigor.
Sometimes we must represent g(u) by more complicated
functions, say, by exponential polynomials correspond-
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ing to a higher order, linear stochastic differential equa-
tion with constant coefficients,

Using this quite adaptable model we have some
hope of describing pursuit situations with some degree
of realism. Therefore, we shall examine this model more
carefully than the previous ones. First some simple re-
marks. The velocity components of the stochastic vector
Z(t)=(2,(¢), £,(¢)] are given by

Z,(t) - v sin w,,}
Zg(t) == v cos ¢,

the length of the vector being ||Z(t)|| = v. The accelera-
tions are

#, () = v cos @, ¢y, ]

Fo(t) - —vsin @,
In the case g(u) - A e ° the accelerations do not exist,

but they do generally if g(«) is a higher order expo-
nential polynomial. In that case, g(0)=0, and we get

2 [
E||@)|* - »*Ey (e)]z_—.;’]; f 6@ aa,

where we have introduced the Fourier transform

G(l)—*—f e g(u) du.
0

It is easy to compute the expected future motion.
Since £, and hence ¢, have symmetric distributions, it
follows that E sin @,=0. Further,

E cos g, =4 Ee'® + } Ee '™

=$Eexp [if‘ git - u)dﬁ(u)]

+ 4E exp [—i J.t g(e— u)dE(u)] .

To compute these integrals, we use the fact that the
increments d&(u) are independent. The multiplicative
property of characteristic functions gives us

t

Ecostp,ziexpf

v[g(t—n)]du
t
+ 4 exp J- y[—g(t—u)]du

t
= exp f ylg(t — w)]du

= exp fo_ ylgtu)] du.

Ez,(t)=0,

Ez,(t)=vexp f ylg(u)) du.

0

Hence,

20

This means that the expected motion is uniform in the
direction of the average motion, ic., the r, axis, and
its speed is proportional to v. It has been reduced by
the factor of proportionality

exp f ylg(u)) du.

0

In a similar way, one can determine thc covariance
matrix of the vector (sin g, cos ¢z)

C &
C _ l 11 12 ] .
031 022
We have

. P g
Ch=Esintq, JE[2 €72 ¢ )

- l) [l vpr‘ yl:!g(u)]du]
- 0
and

Cys=Ecos® g5~ [E cos pgl? = E[2 1 €784 e 299

—[E cos ¢p]* = i [l + cxpf y[2g(u)]du}

0

—eXP’fo ylg(u)]du.

Finally, it is clear, because of the symmetry of the
distribution of ¢,, that the second order mixed mo-
ment Cp;=Cy = 0.

Let us calculate the covariance function for sin ¢,.
say, for h>0.

R, (k)= E s8in ¢, 8in @, , »

= —}E[(e' —e 'Tr) (e!Peir - ¢ 19,13)]
K

= —texp F ylg(u) + g(h + u))du (‘XPJ ylg(u)]du

0 0

+}exp J.wy[g(u) =~ g(h+u)]du exvf yi{g(u)]du

] 0

o0 h
+}GXPf y[g(w) —g(h i w)]du (‘XPJ ylg(u)]du

0 0

—}exp me[g(u) +g(k + u))du exp [o y[g(u)]du

0

]

h
=4 expf ylg(u)]du {cxpj ylg(u) — g(h + u)]du

0 0

- epr. ylg(u)+ gth + u)]du}.

0

In an analogous manner, one derives for the covariance
function of cos ¢,

TRt TS S

00

R.(h)=E cos @, co8 @, 5 — exp’f y[g(w)] du

0

= *E[(el¢.+e l'},) ((’ 904h 4 p""r-u)]
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- vxpzf J)'[g(u)]du
0
h =]
: 51'pr‘ ylg(u))du [('xpf ylglu) gth + u)}du
i (-xpf .y[g(u) ioglu h)]du]
0
—m&p’f ylg(u)]) du.
0

'l‘l . .
1ese expressions are useful to determine, among other
things, the dispersion of the future positions of K:

Ellxt) Ex®)f* Elr @

t t
vzf f {”c(“ DE ]{’(u ,v)](lu ds
0 0

!
: szf [R.(u): R,(u)](t u)du.
0

Exr,()F ! E[r(t) Ex,(0))

4.7. Lincar Predictors

Now let us study what happens when P observes £

at equidistant times ¢- ..., n-1, n, ..., and predicts

FE, ., with the formula
‘:OI_ En g (En B E" ]) 'QEH_E" 1-

This means that he uses the vector analog of a simple-
prediction formula that we have discussed. As men-
tioned above, this i3 an approximation to the usual
plotting procedure. We can determine the prediction
error by starting from the relation

n+l n 'I2
[f cos @, dt -- f o8 g, (ItJ
n n-1

n+l n
+ [f sin ¢, dt —f sin ¢, dtJ 5
n n-1

so tuat, as in the preceding section,

T p
*
'.zllbn»l'bnol”

. : 1
vgl"“ErHl_ L:+l“2=vz 02

v2 2
4 f hw) (Re(w) 1 Ry(u)]du,
0

with the same function h(u). We get the extremal

The variance [ ¢*(v)dv is supposed to be fixed in
advance, and y and g are the functions described be-
fore. In the expression for K, we have left out the
constant mean value term, since this would not effect
the value of I, as a consequence of [§h(u) du= 0.

The most important case is perhaps that where the
guidance signals are normally distributed. The expres-
sion then reduces to

R(u) = exp — },{fuy’(v)dv+fmg'(v)dv
0

0

+J'wg’(v)dv '2fwg(v)g(v { u)dv].
u 0

V f g () dr,
0

o(u) :,J gvyglu + v)dv,
0

Introducing

it is casy to verify that V is the variance and g(u) the
correlation function of the stochastic process ¢, Thus

2
I- I(Q)—’J‘ h(u) exp {V]p(u)— 1]} du.

0

The reader may find it instructive to derive this for-
mula directly, without using the predictive representa-
tion of the ¢, process.

The extremal problem may not be easy to scive
completely by analytical methods. However, we can
say something about the solution. First we must be
sure that the maximum can really be attained. We can
write, using Bochner's theorem about positive definite
functions,

o(u) = fwcos uAdF(A).
0

Here, F(A) is a distribution on the positive half-axis.
The set of F function: is not compact, so that we do
not arrive directly at the desired conclusion. An addi-
tional argument is needed, and we put

sup I(p)=1I.
e

There is a sequence p,(u), py(u),..., with the corre-
sponding distribution functions F,(4), F,(4), ..., such

ERebig 2 that I(p,) =1 =sup I(p). It is always possible to select
/= fo h(u) R(u) du = max, a subsequence F, (4). F, (1), ..., converging to a bounded
wWhorc non-decreasing function G(4) for every finite A. The
. variation G(+ o) - G(0) <1, but we cannot exclude the
R(u) = exp [f }'[g(v)Jdv] inequality sign directly. However,
0
® A 21
<oxp [yt gtu+ o] - con Mo = | b exp Voutdu= 5 | ve,
0 0 r=0 .
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with ¢, f " AR ().
0

Since x(A) 20, it follows that no mass of the F, (A) can
flow out toward + ov, since this would male the C,,
and hence I(p,,), smaller than necessary. Here we have
used the fact that x(A) decreases to zero when A tends
to + oo. Thus, Fpn(4) converges weakly, and G(A) is an
ordinary distribution function, 8o that G(+ o) - G(0) =
1, and G(A) realizes the maximum of J(p). It is tempting
to use convexity arguments to show that the maximum
is unique, but this has not been done.

We can characterize qualitatively the distribution
function F(A) that realizes the maximum. Let s(F) be
the support of F(1). We now use the same sort of
variational argument as before (p. 15 ff.). If 4, 4, are
two arbitrary points in s(F), and F, (1) has been mod-
ified in the neighbourhood of 4, and 4,, we must have

I(F)> I(F,)

2
=I(F) + ¢V [f h(u) cos A, u exp { V[p(u) — 1]} du
0

2
——f h(u) cos Ayu exp {V [o(u) — l]}du} + o(e).

0

Hence,

2
f h(u) cos Au exp {Vip(u)— 1]} du

0

= C constant, all 1€s(F).

But the left side is an entire function of A. If s(F)
has an accumulation point in the firite part of the A
axis, the function on the left must be identically equal
to C. Since this is impossible, it follows that the support
of F is discrete: the optimum spectral distribution func-
tion has all its mass in a finite or denumerable set of
frequencies A,,A;,.... The corresponding point masses
will be denoted by F,, F,, ..., > F,= 1. The correlation
function has the form

o(u)=23 F, cos A,u.

It may be noted that if the A are infinitely many, so
that A= + oo is an accumulation point, it follows from
the Riemann-Lebesgue lemma ihat C=0.

If V is small, we have approximately

2
I(p) = Vf h(u) o(u) du.
0

This leads to the same maximum problem that we
solved in a previous place. Expanding the exponential
function in series, we get an expression for the error.
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H V is large, we use the expression

2

I(p) = Zop.f 0" (u) h(u)du,

0

where p, is the Poisson probability (V’,v!)e ¥, and p*
corresponds to the vth convolution . '(4). But the re-
lative concentration of the Poisson distribution in.
creases with V, and we can therefore expect to get an
almost optimal solution by placing all the mass of F(1)
in the frequency 4, 'V, where 4., was the value de.
termined in section 4.3; note, that V is the mean value
of the Poisson distribution.

If V is in the intermediate range, we must compute
the solution numerically. This is not a task of routine
character and presents considerable difficulty. Both the
analytical and the numerical problem seem to deserve
more attention.

4.8. Non-linear Predictors

In this discussion we have assumed, so far, that the
method of prediction had been fixed in advance. Actu-
ally, we used a highly specialized linear predictor of
the first order. Now we turn the problem around and
look for the best predictor (linear or not) when he
stochastic properties of the evasion are given. Sur-
prisingly in this case the non-linear prediction problem
can be solved.

With the same notations as before, we assume that
the vector process x(t) has been observed in the past,
—oo<t<0. We want to determine the best predictor
z*{(k) in the sense of the least squares criterion of the
future value z(k), h >0. Using our observations, we can
reconstruct ¢, and &, for t <0. The optimal predictor,
the regression, is always the conditional expected value
of the future value given the past observations. Using
the notation E, for the conditional expected value
operator defined by

Eoz - E {z]z, observed for s <0},
we get

z} (h)=vE, J

0

h h

sin g, dt=v J‘ E, sin ¢, dt,

0

h h
x3 (k) = vE, f cos q,dt = v f E, cos ¢, dt.

0 0

But,
[}
E,e“® = E,exp iz [f gt — u) d&(u) + f

0

¢

g(t—u)df(u)]

0 t
=exp [izf gt —u) df(u)] E exp [izf gt —u) df(u)]

0

0 4
-exp [izf g(t — u)dé(u)] exp [j ylzglt - u)]du] .

0
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This gives us

E, sin ¢, = y, sin ¢7¢,
E,cos ¢,y cos ¢;,

where we have introduced

t
Y1~ CXp f ylg(t —u)]du

0

and the optimal linear predictor ¢; of the course angle ¢,

0
Pt E0¢t:f gt — u)d&(u).

The function y, tells us with what speed the predicted
point z°*(t) moves when ¢ varies.

The minimum prediction error can be calculated in
the same way that we got the covariances. The cal-
culations are a bit cumbersome, and it will be enough
to show how it is done for the normal distributions.
We get

| , .
o Ellz®) == *= o Eln (h) 1 (B)F
1 =
o E(z,(h) - x: (h)]
A fh
-j J’ E(sin ¢, - y, sin @;) (8in ¢~ y, sin ;) ds dt
0+0
T
+ f f E(cos ¢, — y, cos ;) (cos ¢, — y, cos ¢; ) ds dt
0 Jo

h A
=J' f E cos (¢, — @) dsdt
0J0
h rh
+f f v, E cos (g7 — @7) dsdt
0Jo
h A
—f f v, E cos (¢] — ¢,) ds dt
0Jo
A A
-—f f v E(cos ¢, — @) dadt.
0 Jo

Now we use the normality. If r is normally distrib-
uted = N(0,0), we have the elementary relation

Ecosr=} E(e*+e ")=¢ 1

Hence, in our case,
l h fh
2E||x(h)—x‘(h)||’=f f Kis, ) dsdt,
LA 0Jo

where the symmetric integral kernel K(s,¢) is given for

8t by the expression

K(s,t)=E cos (¢, — ¢,) | y,E cos ((p,‘ q‘,')
—y,E cos (¢ — ¢)— 7. E cos (¢, — ¢r).
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Here we have
t

¥ - { U(R“u)d.‘(u)'—f gt — u)d§(u)

f (96— )~ glt = w)] dé(u) - f g(t— ) dé )

The terms in the last expression are independent, and
their variances can thus be added, giving the variance

of ¢,- ¢, as
3 -9
var (g, q,)= f lg(s —u)—g(t —u))*du + f g'(v) dv.

0

The first term of K(s, t) is therefore

l t s
xexp‘—‘) f g’(v)du}.
e 0

The remaining terms are computed analogously, and
we get

E cos (¢, ¢,) ~exp [— ‘1, f. [g(s — u) —g(t—u)]? d“}

K(s,t)= exp ( - ; f‘ [g(t — u) —g(s — u))? du)

t-8
X exp (—; f g’(u)du)
0

0
+ exp ( - % f [g(t—u) —g(s —u)]* du)

- o0

4
xexp(—%f g’(t—u)du)
0
xexp(——% f'g’(s—u)du)
0

1 0
—exp (-éf [g(¢ — u) — g(s — )} du

¢

xexp(—%j g’(t—u)du)
< Jo
| I

xexp{ = | g°(s— u)du
=Jo

1 [° .
Y R

r

:<oxp(—1f gz(s—u)du)
~“ Jo
l t

xoxp(—zfg’(t—u)du).
0

The last three terms in this expression are equal, one
of them with positive sign and the other two with
negative. Their sum is therefore equal to one of them
with negative sign.
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The first term can be written

exp{—;[f‘wg’(t u)du + f’wy’(a u)du
+£ .g’(v)dv] +ffwg(t—u)g(s—u)du]

= exp [— ; U‘ RaAGL f:y’(v)dv
+£ 'g=(v)du]+f:g(:-u)g<s—u)du}
=exp{- f:g’(v)dv + f'wg(t—u)g(s—u) du].

The other term is

1 0 0
-—exp[—-2 [J gt —u)du -+ f g2 (s —u)du
¢ s
+f g’(t-'u)du+J. g"(s—u)du]
0 (1]

+f' gt —u)g(s- u)du}

= —exp[—fmg’(v)dv 4 fo gt —u)g(s—- u)du].
0 00

Introducing for the variance the notation

|4 =fzg2(z) dzx,

0
we get

K(s,t)=¢V [expf' g(t—u)g(s—u)du

0
- epr. git—u)g(s—u) du]

- 0

0
= exp [— V- f gt —u)g(s—u)du]

x [exp{f’g(t —u)y(s— u)du] - l] :
0

We now turn to the extrcmal problem of determining
the maximum of

A A
K=f J' K(s tydsde= " E|z(h)— z(h) |
0 0 v

when the value of V is given. The kernel K depends
in a non-linear way on the unknown function g(¢). It
may be of interest to observe that if the evasive
maneuvers are not too large, so that the linear ap-
proximation is applicable, we get the same problem,
but with the kernel

min(s, t)
Kl(.sr,t)‘ff gt —u)g(s - u)du.

0
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For this problem there is an attractive method of solu-
tion, and we shall discuss this possibility. We have

h h
ko[ [ K aa
(/] 0
h h fmin(s, ¢)
=f J f g(t —u)g(s — u)dudsdt.
0 0 JoO

The region of integration is bounded by the five planes

s=u, 8-h,
t—-u, t=h,
u - 0.

We introduce s u =z and ¢t—u=y. The Jacobian is
1, and the boundaries are transformed to

=0, x-=h—u,
y=0, y=h-u,

u = (0.

Thus, w« lies between zero and H(x,y) min (h- 2,
h -y), whereas z and y both lic between 0 and kb,
giving

h h H(z, y)
Inff f f dug(x)g(y) drdy
0 0 JO

h h
=f f H(z,y,)g(x) gly)dx dy.
0 0

Let A be the largest eigenvalue of the integral equation

h
Ay(x)= j H(z,y) y(y) dy,
0

and y(z) a corresponding eigenfunction normalized so that

rh

J Y (z)dz=V.
0

Under the side condition [§° ¢g*(t)dt- V, we h ve
K, (g) <AV =K,ly)

for an arbitrary g(t) of predictive type.
On the other hand, if y(z) is the eigenfunction men.
tioned above (whether it is of predictive type or not),
the prediction error is at least equal to K, (y) according
to traditional prediction theory. The optimal evasive
tactics is then realized by the function y(z). It is easy
to calculate y(r). Indeed, the integral equation can bx
written
I‘h

Ay(x) = (h—r)f Yy dy + J ~y) y(y) dy,
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which after two differentiations becomes

Ay"(x) 1 y(z) - 0,

80 that y(r) - Ae™ + Be ™,

with x' - 1/4. This function satisfies the integral equa-

tion only if cos xh- 0, i.c., the cigenvalues are

4 ht

}"‘:iZk i 1)

k=0, £1, £2,...,

41t

and hence, A=max L= —,
K n

C cos e z, O<z<h,

7(@) 2h
0 otherwise.

and

The constant C' should be chosen so that ||y||* equals
the given value of V. The corresponding covariance
function is given by

0

T
Co8

0
t) - . - u)du- C* -
r(t) fmg(t u)g( - u)du fM ok

n C? n
X (t—u, coséhudu—é [(h—t) cosé—ht],

for 0<t<h. It is represented graphically for C?=2,
h 1 in Fig. 17.

10

r(?)

08

a6

0L

0 1 1 | 1

0 0.2 04 06 08 1.0

Fig. 17. The covariance function r(t).

The optimal evasive tactics against the optimal predic-
tion is then the one generated by a normal process
with the given covariance function.

FOA Reports, Vol. 2, No. 4, 1968

It is natural to ask if this game situation is definite.
Let us investigate the problem in slightly more general
terms. Let a(t) be a given continuous function defined
on the interval (0, h) and form the stochastic variable

1
A, Af a(t) ¢, dt.
0

After having observed the stochastic process ¢, for
t-°0, we want to predict the value of A¢ with the
best linear predictor pg. Consider the game with the
payoff function B(g, p) |[A¢ pe|? E{de pgl?,
where ¢, is a stationary process with finite variance,
say, equal to 1.

In the problem that we have just met we had a(t)=1,
and we had determined max, min, B(g, p), which turned
out to be the largest cigenvalue of a certain integral
equation. In the present case we should find the largest
eigenvalue of the equation

h
Iy(z) f He, y) yiy)dy.

0

with the symmetric kernel

minth ., h y)
H(x,y):f a{x 1+ u)a(y + u)du.

0

It is convenient to first approximate a(t) by a step

function
vl
a,t)=a,=a ( o h)

. |
if Yase<t"
n n

h, v=0,1,...,n—1.
It is clear that

1 1 h
f a(e)(p,dt—f a,(t)q, d:H ||¢,”-j la(t) — a, ()] dt,
0 0

0

so that, if n is large enough, we commit only a small
error when we replace Ag by

h 1 2
J. an(l)¢¢dt : “ Z aQqy,

[} y-0

(wviDh n
[ nf ¢, dt.
¥

rhin

where

Note that {¢,} forms a stat -nary process with a var-
iance at most cqual to 1, since

v+ n)h
Ilqullfnf gt R g din
(v n
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H we use only the observed values of ¢, instead of
¢ we get at least as large a value for min, max,
B(g.p). On the other hand, if {¢,} runs through all
the stationary processes with a variance at most equal
to 1, we get again to the discrete problem. But this
valuo can be expressed in another way. Using Cramér’s
spectral representation, we can write

7 f © eiaz),

with || AZ(A)||* = AF(A)= increment of the spectral dis-
tribution function corresponding to the process {¢,}.
Further,

Variance of ¢, ~ f " dF(3) - h.

We also have

n-1 1 n
l' Z a,q,— E Cy :J. [(l(}.) “ C(A)] dZ(l),

n oo )

n 1

where a(d)- 3 a, e
n o

and the series D ¢, ¢, is assumed to converge in the
mean. But then,

2

ln-l -1
l'n Z avfpv— wavfpu

0
so that

= J." la(d) — e(A) |2 dF(A),

max || 4,9 — ppl*= max la(d) — c(A) %
:

Now we can apply a theorem for Toeplitz forms (see
Notes) and see that

min max |4, ¢ - pg|?
14 L'4

is at most equal to the largest eigenvalue of the sym-
metric n ¥ n matrix with the elements

hw=£,[a(1 —:h)a(l —Z h)
-ia(l KIS h)a(l ¢ h)+...
n n
+a(h)a(l —-q;ph)],

for p<q; p,¢=0,1,..., n—1. For large n, this eigen-
value i3 approximately equal to the largest eigenvalue
of the integral equation we had before. Hence
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min, maxg ||Ag - pg| - max, min, |[d¢  pq].

and only equality is possible. Hence, the game is de-
finite, and its value cquals the largest eigenvalue of
the integral equation.

4.9. The Case with Constant Velocity sn One Direction

We now consider another, but closely related, pursuit
problem. The evader £ moves in a plane with a mo-
tion whose x component can be completely or at least
approximately described as uniform motion (Fig. 18).

y

Fig. 18 Motion with constant component in the r direction.

We denote the acceleration in the y direction by ¢(t) -
%(t), to resemble the notation used above. After k units
of time, E has travelled the distance

h
f (h—1t) g dt

0

in the y-direction. Identify this expression with our
Ag that shall be predicted, using the knowledge of the
past trajectory of E. Put A=1 for simplicity. Since
now a(t) =1-t, we shall determine the largest eigen-
value and the corresponding eigenfunction y(f) to the
integral equation

1
ly(t)-‘f K(t, s)y(s)ds
0

1 ¢
with K{t, s) =f (I—u—8)(1 —u—3s)du

0

for s<t; K(s,t)= K(¢,s). With similar but slightly more
complicated calculations as before, when a(t)=1, we get

y(t) = C| (cos xt + cos hxt) + C,(sin xt + sin hxt),

where A=x % The constant x shall be the smallest

positive root of the equation
cos x-cos hx= —1,

The coefficients (', and C, shall be determined s that
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y(l) 0,

!
J ¥} (t)dt - given variance.
0

We get approximately x>1.88, so that the value of
the game is  0.08. The optimal evasion is obtained
by feeding random noise £(¢) into a linear filter with
the response function A(t); the output of the filter is
the acceleration of E in the y direction.

4.10. The Case with Two Variable Velocity Components

Let us investigate the following type of evasion.
The evader E moves in a plane, the velocity vector
z(t)= [z, (t), x,(t)] forming a normal, stationary stochas-
tic process with the spectral density matrix

{/.M) /n(z)j
fa(d)  far(A) ]’

where f,,(A) and f,,(2) are the spectral densities of the
coordinates z,(t) and z,(t), respectively, and where
fi2(4) /2;().) is the (complex valued) cross-spectral den.
sity between z,(t) and z,(t). The kinematic restrictions
are given as

f [a, () f11(R) + ag(A) f2a(A)]dA < A4.

This form is general enough to describe many impor-
tant restrictions. Perhaps the most important case is
the symmetric one, a,(A) = a,(A) == a(A), where both co-
ordinates are treated in the same way. This would, e.g.,
be the case whon the restriction is on the mean square
value of the acceleration or velocity: a(d)=A* in the
first caes, and a(d)=A' in the second.
The first order linear predictor will be used:

E, = Ey + hz(0).

To study the miss distance b belonging to prediction
h steps ahead, we write

3
b= J x(t) dt — hz(0).
0

The earlier discussion was built on the criterion Eb?.
This will often be natural, at lcast as a first attempt.
Sometimes it will be necessary to be more realistic and
introduce the probability of hit, p, as a function of the
miss distance, p - p(b). This is clear, especially when
we have to take into account the ballistic dispersion.
Note, that the following reasoning can be modified
without too much trouble it we want to include the
superimposed error of observation. Then we observe,
not z(t), but z(t) + &(t) for t20, where ¢(t) is the error
vector. Pure speculations will not help us much to
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decide what form the function p(b) should have. For
simplicity, we assume that p(b) is proportional to

_ lef?
eXp— 5 -

Other choices of p(b) dealt with individually.
The vector b = (b, b,) has a normal distribution whose
second order moments

m,~Ebb, i,j-1,2 ...,

form a 2 x2 matrix M

M- [m,, mxz,.

My My

We can write down the expression for the probability
of hit

C
2n Vdet M

><J‘°<> on ex [—"bnz—b'M 'b} db, db

- . p 24 1 @0,

Sy r r exp{~ 4 b'N 'b}db, by,
2nldet M J-o J -

I -1
where N=((—’—,+M") .

Ep(b) =

But this is an integral of well-known form, and it can
be evaluated as

— N ‘_if,t'_N, / . | R
Ep(b) = CYf 4oy~ C Vet NM

¢ .
-
Vdet (1+—, M)
g

It is in E’s interest to choose his tactics so that E p(b)
is small, i.e., det (¢*I + M) is as large as possible under
the given side conditions. To carry out this, we ob-
serve that, putting

thi 1

g |5 = —h

we get

Ebi = J. q(A) f1,(4) dA,

Ebi = J q(4) fra (A) dA,

Eb by = f q(A) f13(A) dA.

We should then maximize the determinant
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det (6*1+ M)

= [02 *'J‘w ’I/n‘M] [‘72 d on (1/22‘“] "U.w q9/12dA

The kinematic restrictions have been imposed upon
f11(A) and f,(4). In whatever way these functions have
been chosen, we can maximize the determinant by
putting f,,(A)=-0; this is admissible, since it does not
violate the inequality |f,,(A)! < Vf1,(4) f3(2)- The phys-
ical interpretation of this is that the evasion can be
governed by two uncorrelated (incoherent) velocity com-
ponents, Ex, (¢) z,(t) - 0.

Let us go ahead and determine f,,(A) and f,3(2) We
have

2

o0

M- det (a®1+ M) o o’J. qfdA

[ anr [ atuan

where we have put f,, i f,, f If S, and S, are the
supports for f,, and f,,, respectively, the usual varia-
tional argument gives the following. Vary the value of
fi(4) at the frequency 2,€5,, and at the same time
the value of f,(4) at 4,€.,, so that the equation

J‘ a, f,dA i f ayf,dd A
Si Ss

still holds. A simple calculation gives us

qd) _
a;(A)
q(4)

ay(3) =(, forall A€,

C, forall A€S,,

together with the relation

c _a’»+ A!
1 02+ Az 2

Here we have defined

nd

A,= J a, f, da,

4, Jaz faa dA, ’

A,+ 4, - A,

and the constants C, and (; must be chosen among
the values that are taken by the functions ¢(4) a,(3)
and q(A) ‘ay(A), respectively. The expression to be maxi-
mized is then

M - 0’_[9/)1‘1'1 t U’f‘l’zzd;~+ J“”n’“fq,ndl

U’C’l Al + C’CQ Az + ('IAICZAz'
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This is an eclementary maximum problem with two
variables (', and C,, and with side conditions as above.
For given functions a,(4), a,(4), and ¢(4), we can deter-
mine the maximum directly.

We remark that, in order that the previous reasoning
shall be complete, it is nccessary to verify that the
supremum of M is attained so that an optimal solution
rcally exists. This is not difficult. First, we must op-
crate with dF, (A1) instead of with f,(A)dA. Further, we
shall demand that lim,, |a,(l)| i oo, If one locks
into this, one sees that this is really a compactness
condition for the set of admissible spectral distribution
functions. Using this compactness, we can complete the
proof of the existence of an optimal solution.

$.11. Three-dimensional Pursuit

By now we should have some idea of how a two-
dimensional pursuit problem can be dealt with. When
we turn to three dimensions, we do not expect to meet
any new fundamental difficulty, but of course higher
complexity and more cumbersome calculations. Let us
take a brief look at a simple three-dimensional situation.

e(t)

£
Fig. 19. The angles @ and ¢.

The evader E moves in space with the constant speed
¢ in a direction described by the unit vector e(t) at
time ¢. Introduce the angles a and ¢ as in Fig. 19,
O<a<n 0 p<2a. Let a =0 be the direction in which
E wishes ‘o travel. Then it is natural to ask, just as
before, that cosa be kept as close as possible to 1,
at least on the average. The expression vE cosa i
the expected velocity component in the direction & 0
and should be made as large as possible, i.c., close to v.
When ¢t varies we shall let E, form a polygon in space,
or, in other words, e(t) shall be stepwise constant, so that

e(t)y=e,, t,<t<t,,,,

<ty <tg<t < ...
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The time points ¢, shall be chosen so as to form a
Poisson process with intensity 4, so that on the average
we get A changes of direction per time unit. The stochas.
tic vectors e, shall be independent and have the same
probability distribution over the surface of the unit
sphere. We then get trajectories looking something like
Fig. 20, where the angles #, between the two consec-
utive course vectors e, and e,,, are of importance in
the following. This mathematical model for the velocity
vector ve(t) is a stationarv stochastic process with tho
mean value vector

m=vEe, = ve,E cos a.

Fig. 20. Motion with course changing at random intervals.

We have represented it in a rectangular coordinate
system with origin in E, and with the first coordinate
axis in the direction a= 0. We introduce the covariance

function
r(s—t)=E[e(s) —m,e(t) — m],

where (z,y) means the inner product of the two vec-
tors r and y. We then get

r(h) = Pr{no event in an interval of length h} - E||e, - m|*
¢ Pr{at least one event in an interval of length A}
‘E (e, —m, eg—m).

The second mathematical expectation vanishes because
of the independence of e, and e,, s0 that

r(hy=e **-Elle, —m ' =Ce *

Perhaps this model is too simple to describe real evasive
maneuvers. However, it can be modified to a more

flexible mode!.
Let us first consider the case where P uses a first

order linear predictor. The true position,
1
v f e(t)dt,
0
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after once time unit is then approximated simply by
v¢(0). The mean square prediction crror o® is given by

the expression

o

v

=B

1
f [e(t) — (0)] dt
0

But,

02 1 £l
FJ’ f E (e(t)  m,e(s) -m)dadt
E 0vO0

1
- 2J E (e(t) —m, e(0) — m)dt

0

i
+ E|e(0) ~m"’--‘f j r(s - t)dsdt
0v0

!
—2f r(t)dt | r(0)

0

) i
. ()[f f e M s dt 2f e Mdt l:I'
0Jo 0

It is in E's interest to make C - E|[¢e m]|?® as large
as possible. If we demand that the side condition
m, - Ecos a > b be satisfied, and since

3 3 3
C EX(, m) -EXel >mi-1-—|m|
1 1 1

lemdmd e},
it follows that maximum is attained by putting my=
my = 0. The notation e,,m, stands for the coordinates
of the unit vector ¢ and the mean value vector m,
respectively. Intuitively, this is quite clear: the mean
direction should be chosen as a =0, because every sys-
tematic deviation from this direction makes m, smaller
without causing trouble for the predictor.

The previous reasoning is not limited to predictors
of the first order. Instead, let P choose the best pre.
dictor (in the sense of the least squares criterion), linear
or not. One knows that this is given as a regres: on
expression, or, in other words, as a conditional ex-
pectation. The conditional expectation of e(t) when
e(8),8 <0, is known is given by

e*(t) = e(0) Pr{no change of the course during (0,2)}
t m Pr{at least one change}

=e(0)e ¥+ m(l—e?),

The smallest possible prediction error is then

1 1 3
oty - v’E’ f e(t)dt—j e*(t)dt
0 1]
1 1 3
= vIE j [e(l)*m]dt-—J. e M[e(0) — m)de
(1] 0
29




1M
= t"‘[ f r(s—t)dsdt
0ovo

— 201 l_:,e_j l

1-¢ 4\*
2 " r(t) dé + v® (——;‘——) r(0).
This expression is proportional to C and is maximized,
just as before, by choosing m, = my = 0.
In order to compare the result of the first order and
the general predictor, we should compare the two ex-

pressions

2 ) 1- - A 1- A

gy =f' _A—C_ ¢ __e—_
Cv l{l A ] 1

o 2[ _1-ef] (1-e Y
and cv*"z{' 1 } ( 3 )

4.12. Pursust Problems of « More (General Type

We have mentioned in section 2.1 that one can mect
pursuit problems where it is natural to introduce more
than three degrees of freedom. This is when it is nec-
essary to take into account the geometrical shape of E
or P, and when it is not allowed to approximate them
ae points. This will be nccessary if the form of the
target is oblong, and if the effect of the weapons (or
reconnaissance) is proportional to the area shown by
the target.

Another situation where the directional effect is so
strong that is should not be neglected is when the
target is a heat source and infrared techniques are used.

Fig. 21. Motion from p, to p, minimizing some effect from a fixed
point q.

We shall indicate how problems of this type can be
studied. Let us start with a simple situation of a cer-
tain interest: then evader E tries to move from one
point, p,, to another, p,, see Fig. 21. Certain restric-
tions are given for the motions, e.g. the speed v may
be given. Other restrictions will be discussed later on.
During his motion, E is exposed to the effect of some
activity, say, bombardment from a point ¢. Assume
that this effect is additive; if it is a bombardment we
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may think of the expected number of hits. We shall
assume the effect to be proportional to three factors,
(1) some function p(r) of the distance to ¢, (2) the
time of the activity, and (3) the area of the target
shown in the direction of q. The third factor, y, is usu.
ally a function of the angle 8, y=y(6). Wo are thinking
of E as a rectangle with length L and width B. We
then get y=y(0) = L|sin 0| + B|cos 6]. The total effect is

e(y) =-f y(6) p(r} dt,
14
where the line integral shall be extended over some

trajectory y joining the points p, and p,.
Let us rewrite the expression using the arc element ds:

e(y) J;p(r) [Lr Zf!+8 ]dt

1
-1 P L rldgl s Blarl,
14

dr
da

The admissible trajectories y form a set, I'. If T is
such that r and ¢ are non-decreasing functions of s,
we can leave out the absolute value signs and get the
simpler expression

L B
e(y)= f [v p(r) rdp + " p(r)dr] .
Y

The integrand is usually not a total differential. since
then ¢(y) would be independent of the path y. We can
make it into a total differential through multiplication
by a function of r and ¢. In other words, we can find
an integrating factor F = F(r, ¢), such that

L B 1
> pir)ridp + > plr)dr= F dy,

where dy=a(r.p)de + b(r, ¢) dr

is the total differential of a function y=y(r,¢). To
find the integrating factor, we should have

F(@,r) [Lp(r) rdp + Bp(r) dr] = total differential,

which requires that
oF 0 oF
£ Lp(r)+ FL o LPIN)T] = op Bp(r).
We get the linear first order partial differential equation

oF oF ,
Bp(r) a-w— Lop(r)r =~ =L[p(r)r] F.

-

The characteristic system of this equation is

de dr dF

Bp(r) Lplr)r Lip(r)r] F’
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with the solutions
r exp L ¢ = C,,
B
Fp(ryr=-C,.

Hence, with a wellbehaved function @,

Fp(r)r - ® (r exp l,; ¢).

We might choose ®(z) - z, and get

L
" pn P g
or use some other choice of ®.
We want to minimize the total effect

1
€ )==J‘«d = inf.,
V=] pdv

when y varies over the set I'. This problem belongs
to the calculus of variation, but it is of very simple
form, and it will be convenient to discuss it directly.
We need not use the special form of the differential;
it has been introduced to serve as an illustration. In-
stead, we will try to minimize e(y) in somewhat greater
generality. Suppose that, for any y €T, we have dr > 0,
d@ >0, and that the contour curves y=const. divide
the plane as indicated in Fig. 22, so that y is & non-
decrcasing function of s on every y.

R

?-.C+£

y-c

%

Fig. 22, Surfaces of constant v.

Consider the segment of y in the strip between the
contour lines y=C and y=C + ¢. £ must pass through
the strip, and it is to his advantage to do this where
F is as large as possible. This will help us in choosing
the optimal trajectory. In special cases, the idea of
this heuristic reasoning is not too difficult to complete.
A general treatment is complicated by the many pos-
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sible topological properties of tho family of curves
{y--C}, and the set I can vary a good deal. We shall
not go into this here, but confine cursclves to a few
remarks.

The firat of the two side oconditions dg >0, dr>0
soems natural in many situations, but this cannot be
said about the other one. We might sometimes prefer
to work with the expression

e(y) J’ (a(r, ¢)dy t b(r, q-)ldrl].
4

It in difficult to see how the previous reasoning could
be applied directly.

We have not discussed the smoothness conditions
that should be imposed on the trajectorics. Few reg-
ularity difficulties will arise if ¢ and r are assumed to
be of bounded variation. Neither is there any great
difficulty in verifying that the maximum is attained.
To see this, the interested reader is advised to study
some special case.

If dg >0, but dr. can take both signs, we can only
give some vague hints about how the method could be
made to work. Consider a trajectory y joining p, and p,.
Suppose that y consists of a number of arcs y,, v=
1,2,..., n, such that dr has constant sign on each of
these arcs. If the end points of y, are denoted pg and
pi. the following holds. In order that y should be
optimal, each y, must have the similar optimality prop-
erty. For given values of py, pi, we can then deter.
mine the conditional optimal form of y,. We must then
let pg, pi vary to find the global maximum. If the
optimal y is of this form, the problem has been reduced
to a finite minimum problem. Especially if n is small,
n=2 or n=3, we have some hope of finding the opti-
mum explicitly. Otherwise, the computational diffi-
culties will probably prevent a successful solution along
these lines.

let us now approach this problem from the point
of view of the classical calculus of variation. The total
effect was additively built up from infinitesimal con.
tributione that could be written as

ds
p(r) ¥(6) ~.

We mentioned one special case where
q(0) = L|sin 6| + B|cos ¢|.

In general, y(0) will depend upon the geometric confi.
guration of the target. This dependence can be very
complicated, and we cannot assume directly any general
formula for y(0) if we seck a realistic model. Lev us
write, however,

31

o . e it i i W i

.



? ds )
# e(y) f p(r)yy(0) =f Lig.r,r')dg,
1 y [ y

where L is a function of ¢, r r(¢), and r" - r'(¢). If
L is sufficicntly smooth, we have an ordinary varia-
tional problem of standard type. The treatmont is
straightforward: we vary the function r(g)

re(g) = rlg) “ e(@). |
elgy) = elg) -0, |

and get for the new trajectory y,, corresponding to r(¢),

LA ¥
e(}’l) = j L(?’. e, 'al) dq’ : f [L((P» T, T')

Pe Ge

ﬁ ! ? ') ’
telg) . Lig.r.r) 4 e(g) S Lig,r.r )] dg
cr or

+ higher order terms.

After a partial integration, we get, taking into account
the side conditions &(¢,) = e(q,) = 0,

b [aL o' L

o ("r'ik’;)] e(@)de +....

e()’t) - e(}’) = f

e

In order that this variation shall vanish for every &(g),
we get the classical equation

It is known that this heuristic argument does not al-
ways lead to a minimum. Let us note the following,
however.
This approach is flexible, since we can choose y(0)
freely and inake it fit the concrete problem. But it
i does not include the previous method as a special case,
since in this the function y(f) was not differentiable.
Without introducing any essential changes, we can use
r the same approach for the case where the point ¢ moves,
see Fig. 21. It is clear that this modification is of
practical interest. Let us discuss the following situa-
tion. The point ¢ moves along the straight line L,
Fig. 23. The point p tries to reach ¢ and moves with

L

. C
%

Fig. 23. Modifying the previous problem to the case where q is
moving.
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the velocity ¢ in a direction given in terms of the
angles o and 0. A differential equation relates r, a, and
f to each other, and expresses that the velocity v is
directed along the tangent of p's trajectory. If p is
exposed to some additive activity during its motion,
we will try to find the trajectory that minimizes

e fhK[r. a(r), & (r)] dr.

0

We have assumed that the motion is such, that r de-
creases monotonically from the initial value ry to 0.
Clearly, this is a variational problem of the same type
as before.

Let us now return to the equation

oL _ 'L
or or'op

and see what happens in a special case. Assume that
the influence of the distance is negligible, p(r)=C, and
hat the dependence upon the direction has the form

RN Y V 2 d‘P{ d')a
y(0) Vecos®0+ bsinf br (ds) +a(d8 .

This can be said to correspond to the target having
elliptical configuration. We then have

V) o]

e(y) %J;V[br (ds) +a 7 4

- fﬁ Vor® ¢ a(r')? dep.
v [

This is very simple, since L does not contain @, so that

0 [ ,8L] oL , oL , ,oL , &L
[ = i Tt St = P
op or or cr cr or op

2
__r,[aL_ 0 L],—‘o,

o or' o
which gives us

, 0L
L—17r"-, = constant k.
or

Solving this, we get
a(r’)?

Vbrt+ a(r')? - —k
FEROLY Vbr®+ a(r')

and br?  kVbrts a(r')®.

Hence, " is given by

' b2rt — Kbyt
T t‘/ ke
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. A ’ kVa
8o that qlr) =q(r)t - dr.
" by Vr’— b
b

The constant k shall be determined so that the tra-
jectory passes through the point p;, ¢(r,) - @,

Note that if we want to include the distance fune-
tion p(r), very little need be changed in the above.

We meet & more difficult problem when we try to
combine the directional dependence that we have dis-
cussed with stochastic elements in the evasive maneu-
vers and in the ballistic properties of the weapons.
The prediction introduces an crror 4§, just as before.
But now we also have the ballistic dispersion 9 around
the point of aim, E}. It is natural to consider § and
n as stochastic vectors. The target, whose arc will be
denoted by A4, will be rotated through some angle ¢
during the time k. The cvasive manecuvers are carried
out not only to increase &, but to influence the angle
¢. so that the target will be more difficult to hit. In
general, these two quantities are not independent of
cach other. For very narrow (ncedle formed) targets
the change in @ can be more important than 4.

To take these factors into account, we must make
more precise assumptions on the probabiiistic properties
of the relevant quantitics. Earlier we worked mainly
with criteria such as miss distance, and we could use
lincar methods based on the first and second order
moments of these probability distributions. This is no
longer so. To study the directional effect of the geo-
metric form of the target, we must integrate over the
arca A oricnted with a certain angle ¢, see Fig. 24.
To be able to do this, we must know the frequency
function appearing as the integrand.

¥

-‘-Tn.*_______
'--_____‘H

PAE,
Fig. 24. Directional effect.

To make this more concrete, we shall assume that
the vectors 4 and % are normally distributed. This is
a standard assumption in such problems, but that does
not mean that it is a good approximation. Further,
we must know the distribution of @, which leads us
to an interesting question. We can express the distribu-
tion of @ in terms of the functions g() and y(z), if the
evasive tactics is given by

¢

x(t) — x(V) 4 vj cos ¢, ds,
0
t

y(t) = y(0) + vf 8in @, ds,
0
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as in an carlier section. In the important case where
y(z) is a nsecond order polynomial, the angle ¢ is nor-
mally distributed. Another type of evasion is as follows:
y(t) is a normal proccss with mean square e = E[4(t)]?,
and z(t) is determined 8o that the velocity is approxi-
mately constant, [2(¢)] + [y(¢)]* > v®. This is possible only
if £2is small, ¢ 'v<1. This model is suitable for describing
small, non-systematic evasive mancuvers from a fixed
trajectory, here thought of as a straight line. Since

co8 g~ | y(t) _ .'/(‘)’

VI#®)? « () v
it is clear that cos ¢, is also approximately normal.
Many variants of this model are possible.

Another circumstance should be observed. Let the
angle @ have a frequency function p(g). In general,
we are only interested in the value of ¢ modulo 2.
et us denote the angle ¢ reduced to the interval
(—n, ) by a. Then, « has a frequency function g(e)
that can be computed directly as

00

gla) X pla- 2%ka), -a<a<na.
k-~ o0

In the case where ¢ has almost all its probability mass
in a small interval, we need only use one term in the
above sum. If the evasion uses more violent turns, we
may have to use several of the terms. In the special
case of a normal distribution we would get

£ (¢~ 2kmn)?
g(a) T ZwexP 2
which can be identified as a #-function.

The analytic treatment of stochastic maneuvers can
be a good deal more complicated when we have direc-
tional dependence. Let us discuss briefly the case of
normal distributions. With the previously introduced
notation, we have

Pr{r}€ T,4 14}

Here, A is the target area with the orientation it had
at t=0. The set T,A denotes the congruent region
after a rotation by the angle ¢. The set Ty A4+ ¢ de-
notes the set T,A4 translated by the vector ¢, the error
of prediction. The vector  means the ballistic error. Let
us first calculate the conditional probability for a fixed
value of &

PrPr{neT, A1 6|6}~ E f/(r;)dn.

TqA-H’

where f(n) is assumed to be a normal frequency function
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T

T

1
== exp (-3 g'M 'y
fn 2x bdet M : X I

The symbol E stands here for mathematical expecta-
tion, integration over the values of ¢o. After substituting
Ten ! 8-y, we get the relation

Pr: f f:/[Tq/‘(y -0)|dy
A

and Pr= f fha(y) dy,
A

where

~Eexp[ -4y ~8)'Te M 'Ty(y-8)]

h — -
') 2a Vdet M

We can write the orthogonal matrix T, as

cos in
TV‘ = { q) i W lv

—8in g cosg@

so that hs(y) = Eexp-10Q,

27 Vdet M

where @ is a bilinear form in cos ¢ and sin ¢. Denote
the normed eigenvectors of the symmetric matrix M
by &£, with the corresponding eigenvalues m,, m,.
We get
T, (y—8)=|ly— 6] {& cos (p+ a) + & sin (¢ - a)}
and
Q=0 TeM "Tyly—0)
= |ly — 8||* {m, cos® (¢ + @) + my sin® (¢ + a)}
= ||y — 8|1* {(m, — m,) cos? (p + &) + m,}.

Since det M =m,'my* and if y=cos (p+ «) has the
frequency function

(u)-\, 1 e u? 20°
. V2 '
we have
V"-';"‘t
ha(y) 2mlo
00 u2 2 1
X ' exp ) ”3/_‘5” (ml-m2)+(}2
#mylly o | du
2
= - , M M exp - ly _)'5 I my.
2acV||ly-96 12 (my-my) it 1/6* =

This is a conditional frequency function (for given value
of 4), and it should be observed that the parameters
in this expression depend in general upon 4. To ob-
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tain the (absolute) frequency function—needed to cal-
culate the desired probability of hit—we must perform
one more integration. To be able to carry out this,
we must know the distribution of § and its influence
upon ¢. This will depend upon the construction of the
prediction system, and an analytic treatment of this
question would require a complete specification of the
predictor. We shall not attempt to do this here, but
it should be emphasized that the present discussion
should be seen only as anillustration of how the prob.
lem can be approached.

Fig. 25. Optimal trajectory over a defended area.

Consider the following pursuit problem. The area A
should be defended against an invader (airplane, mis.
sile) E (Fig. 25). We assume that p identical defensive
weapons (AA guns, ground-to-air missiles) have been
located in the points A4, 4,,...,4,. While E closes in
on the target, he is exposed to fire from the defensive
weapon system, and the effect of this is assumed to
be continuous and additive. We get the total effect
corresponding to a trajectory T’

14 1 14
u'(l“)-=f‘ S wila, - Epa-" 3 frw(||A,-E|

v-1 v=1

)ds,

where v is the constant speed, and the function
w(||4, - E||) characterizes the weapon, whose effect
should depend only upon the distance |4, — E|. The
function w is presumably a decreasing function, possibly
with an exception for very short distances. For large
arguments, w vanishes. If one wishes one can modify
the model in such a way that w also depends upon the
direction of the vector 4, E.

The trajectory I' starts in & given point E,, that can
be chosen as the point of infinity. The end of the tra-
jectory is free but should be insice A. Note that A
is really the area inside which E should use his own
weapon in order to achieve the result he desires. The
real target may very well be somewhere else, inside or
outside 4. Among all the admissible trajectories, we
should choose the one that minimizes the value of the
optimality criteria w(I).
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This problem i3 very similar to what we have dis-
cussed before. It may be interesting to note, however,
that this is a classical extremal problem from geomet.
rical optics. Introduce the function

w(k) {zw(”A, 1’)”)}
v~1

and choose the curve that minimizes the integral

ds ‘ )
(k) min.

But if we consider a medium where the speed of light
i3 given by the function w(£), the above relation is
identical with the well-known principle of Fermat that
the light rays follow paths that minimize the time it
takes to travel along them. I we know the light veloe-
ity w(E). we can determine, at least approximately,
these trajectories numerically, using the law of refrac-
tion. In this way we get a simple algorithm to solve
these special pursuit problems.

The value of min w(I') depends upon how the defen-
sive weapons have been placed, ie., upon 4, 4,, ..., A,.
From the point of view of the defender, it is natural
to choose such an arrangement of A4,,.4,,,...,4, that
this value is made as large as possible. We try to find

max min w([).

a, 1

We shall not attempt a solution of this interesting
problem.

The reader whose patience has enabled him to follow
the long and sometimes laborious discussion in this paper
will be aware of the fact, that there exists, so far, no
cohrent and general theory for solving pursuit prob-
lems. It is hoped, however, that he has got an idea
of the philosophy of evasive maneuvers expressed in
quantitative terms.

NOTES

In the text we have used mathematical tools all of
which may not be familiar to the reader. Therefore we
shall describe some of them briefly here and give ref-
erences where the reader can find more information on
these subjects.

As far as game theory is concerned, we have used
only clementary facts. We use many times the funda-
mental theorem for continuous games on the unit square:
If the payoff function M(z,y) is continuous in 0=z,

y 1, one has
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1t
max minf f M(x,y)dF(x)dG(y)
¥ G 0J0
1 £l
= min nmxf f M(r,y)dF(r)dG(y).
(7] F 0J0

Here, F and (/' are distribution functions over the unit
interval. It should be noted that the analogous state.
ment holds for a continuous game played over a compact
region in Euclidean space K"

It is often convenient to solve the game as follows.
Suppose that we can find a constant » aud two dis-
tribution functions Fg and (/,. such that

M(r yydGyly) - v,

1
J
1
J. Mr,y)dFy(x) > v.

0
Then v s the value of the game, and Fy and G are
optimal strategies.

When the continuous payoff funetion is strictly convex
in y, there ix a simple optimal strategy for the sccond
player, so that ( is reduced to a step function, say
with the step at y =c. The value of the game is then

v--min max M(r, y).
v I

Similarly if M(x,y) is strictly concave in y.

More information on this subject can be found in
the books of Mc Kinsey (1952) and Blackwell & Gir-
shick (1954).

More knowledge is assumed about stationary stochastic
processes. 1f x, is a continuous (in the mean) stationary
process of finite variance and with mean zero, its co-
variance function can be written as

00

r(h)=Ez., 2, =f e"*dF(2).

]

This is Bochner's representation. F(4) is a bounded
non-decreasing function. With this is associated Cra-
mér's representation

5 :fm e‘udZ(l),

00

where Z(A) is a process with uncorrelated increments,
such that

E(Z(A) ~ Z(A")=|FA) - FQA")|.

A process is called purely non-deterministic if the
manifolds L, (r;t) spanned by z for all 8-t have the
property that

lim L,(x;t) 0.

t—+ oc




T

v

Such a process can be written as an infinite moving
average

t
T f gt s) dé(s),
where g(t) is quadratically integrable with respect to

Lebesgue measure, and §(s) i3 a stochastic process with
uncorrelated increments, with

E[£() - &M - |+~ "],

The representation is not unique. It is most convenient
to choose the predictive form, where L,(x;t) = L,(&;¢),
all ¢, with a notation similar to the one introduced
above. Then, the best lincar prediction xf,, of z,,,
when we have observed z,. 8 <t, is

t
Tien= f gt + b — 8) d{(s).
o0
The minimum prediction error s

h
0'% = E[rl‘fh _x”h]2= J; |g(s)|2ds,

This is discussed in detail by Doob (1953, Chapter XI).

We use repeatedly known facts about (weak) con-
vergence of distribution functions, compactness of sets of
distributions, ete. In this context the reader is referred
to Gnedenko & Kolmogorov (1954, Chapter 2).

In one proof we use a theorem about Toeplitz forms.
It can be found in Grenander & Szego (1958, Chapter 9).

In connection with linear stochastic differential equa-
tions, we run into the old problem of how they should
be interpreted when the derivatives do not exist. A
simple way is to demand that the corresponding rela-
tion holds after multiplying the equation with an ar-
bitrary continuous function and integrating formally.

'The infinitely divisible distributions that appear in the
text are also discussed by Gnedenko & Kolmogorov (op.
cit.), where also the representation of Lévy-Khinchin
can be found. This may be of use in a more thorough
treatment of certain pursuit problems.

In 4.4 we use the notion of a renewal process. This
I8 a point process, such that the distances between
successive points are independent and identically dis-
tributed stochastic variables. This distribution is related
to the distribution from a fixed point to the next fol-
lowing (event), see Parzen (1962, Chapter 5).
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