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ABSTRACT 

In this thesis we have obtained the index of refraction and the attenua- 

tion coefficient per unit time, as well as per unit length, for an arbitrary 

medium using Maxwell's wave theory, and expressed the results in terms of the 

microscopic currents due to the motion of the particles in the medium. In 

Maxwell's theory, the effect of the medium is characterized by a conductivity 

tensor which relates the macroscopic current to the electric field. The con- 

ductivity tensor is obtained quite generally by using Kubo's linear response 

theory in terms of the microscopic currents. 

The index of refraction and the attenuation coefficient per unit time 

associated with the decay of EM waves in time for weakly absorbing media has 

been found to be the same as those obtained by using the photon transport 

theory. However, the index of refraction and the attenuation coefficient per 

unit length associated with the decay of EM waves in space are different 

from those obtained by the transport theory even for weakly absorbing media. 

We have also investigated in this thesis the contribution of the neutral 

atoms to the absorption of photons in plasmas, by extending the Akcasu and 

Wald's work on the absorption due to the inverse bremsstrahlung of electrons 

in the field of neutral atoms to higher electron temperatures and higher 

photon energies, and formulated this problem by using plane waves for electron 

wave function. In this way we have obtained an expression for the absorption 

coefficient per unit length due to the above absorption mechanism in terms 

of the elastic and inelastic electron-atom scattering cross sections allowing 

the atoms initially to be in any excited state. We have calculated the absorp- 

tion coefficient explicitly for hydrogen atoms, and presented the results 

graphically as a function of electron temperature and radiation frequency. 

Using these curves and the conventional formula for the absorption due to the 

photoionization and its inverse, we have computed the net total absorption 

due to the neutral atoms numerically, and compared our results to the absorp- 

tion measured by Litvak and Edwards. In estimating the distribution of the 

neutral atoms, as well as the size of the plasma produced by the laser pulse 

in their experiment, we have used the point explosion theory with spherical 

shock wave. The agreement between the calculated and measured absorptions 

has been found to be better than a factor of 10 and in fact better than a 

factor of 6 in all, but one, initial gas pressures (The observed discrepancies 

may be attributed mainly to the use of the radius of the peak luminous volume, 

which is assumed to be shperical, as the actual shock wave radius). 

In the absence of any accurate information for the plasma size, and of an 

explosion theory which takes into account the finite initial volume of the 

explosion caused by the laser beam, the agreement obtained is considered as a 

strong evidence for the importance of neutral atoms in certain absorption 

vii 
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experiments in plasmas over ions, because the absorption calculated by con- 
sidering the electron inverse bremsstrahlung in the field of ions only is 
about 100 times less than the observed values. 
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CHAPTER I 

INTRODUCTION 

This thesis contains primarily an investigation of Low-energy photon 

absorption in an arbitrary medium. At low photon energies, the pair pro- 

duction and annihilation processes are negligible and scattering is char- 

acterized by the Thomson cross section rather than Comptcn cross section. 

In stellar systems, the Thompson scattering may be important, but in lab- 

oratory plasmas it is usually negligible because of its small cross section. 

Thus our analysis in this thesis is reptricted to the systems in which the scat- 

tering is negligible, and the net photon absorption is primarily due to brems- 

strahlung and inverse bremsStrahlung, ionization and recombination, and 

excitation and deexcitation. 

The equations of radiative transfer for dispersive and nondispersive 

(l-M 
media are usually developed by phenomenological consideration.     A 

systematic, self-contained derivation of a photon transport equation for 

nondispersive media from fundamental consideration was made in 196l by 

(5) 
Osborn and Klevans.    In their derivation, a photon distribution func- 

tion in analogy with the quantum mechanical distribution function for 

particles   was introduced. The equation they obtained can be reduced to 

the conventional radiative transfer equation obtained phenomenologically 

for nondispersive media. 

(7) 
A year later, they extended their theory to dispersive media   by 

making use of the concept of "dressed photon" first introduced by Mead.' 



A "dressed photon" has a different frequency cu. in the medium than the 

free space value ck, but it has the same wave length in the medium and 

in free space. With the "dressed photon" technique they derived, in the 

framework of the first order perturbation theorjj a photon transport equa- 

tion for dispersive media. This equation differs from the radiative trans- 

(3 h) 
fer equation obtained phenomenologically in dispersive media by others.  * 

(9) In order to compare these two theories, Wald   performed an experiment in 

1966 in which he measured the absorption of microwave radiation in slightly 

ionized helium. Although a better agreement is obtained by the photon 

transport equation than the radiative transfer equation in his measurement, 

conclusive evidence of the validity of the photon transport equation or 

the invalidity of the radiative transfer equation cannot be inferred from 

his measurement because the refractive defocussing effects are not neglibible. 

Since the net photon absorption and the refractive index in dispersive 

media can be easily deduced from the photon transport equation, the validity 

of this equation can be tested if the net photon absorption and the refrac- 

tive index can be obtained independently by an entirely different approach. 

Such an approach to the calculation of the net photon absorption and the 

refractive index can be achieved by using Kubo's theory   for electric 

conductivity and the Maxwell equations.  In this approach, the absorption 

coefficient and the index of refraction are expressed in terms of the mi- 

croscopic current due to motion of all particles in the medium. To facil- 

itate the comparison we obtain in section II-1 the net photon absorption 

and the refractive index using the photon transport equation also in terms 



of the microscopic current. The expected value of electric current is ob- 

tained from Kubo's theory in section II-2. Using the expected value of the 

current in the Maxwell equation (lI-Uü), a dispersion relation between the 

wave vector k, the frequency CJü, and the electric conductivity can be ob- 

tained. Two different sets of results for photon absorption and refractive 

index in weakly absorbing media are obtained by considering the damping of 

the electromagnetic wave in time and in space. A comparison of the results 

obtained from these two theories is presented in section II-5. 

In order to display the various mechanisms contributing to the photon 

absorption and also to estimate the order of magnitude of the various con- 

tributions, we use a convenient and simple representation for the particle 

system in Chapter III. Second quantization is used to express the various 

potentials between particles, as well as the interactions between particle 

and radiation, in terms of the particle and radiation creation and destruc- 

tion operators. Starting from the golden rule, one can obtain, with several 

approximations discussed in section II-2, a simple expression which dis- 

plays the various mechanisms contributing to the photon absorption, such 

as the bound-bound transition, bremsstrahlung of electrons in the fields of 

the neutrals and ions, the induced dipole transitions, etc. At the end of this 

chapter we give a simple and crude investigation of the variation of photon ab- 

sorption with time after the formation of a plasma. This investigation is mo- 

tivated by the absorption measurements, being performed now in The University 

of Michigan, in which a continuous He-Ne laser beam (6328Ä) is incident on the 

decaying plasma produced by exploding lithium wire.  The validity of this 



simple investigation could not be verified because the measurements have not 

reached the final stage yet. 

In Chapter IV, we will be concerned with the radiation absorption only 

due to inverse bremsstrahlung of electrons moving in the field of neutral 

atoms at high, gas temperatures (~ 20 eV). The same problem at low gas tem- 

peratures (~ 1 eV or less) was investigated in i960 by Firsov and Chibisov 

(12) 
and recently extended by Akcasu and Wald.    At low temperatures, the 

electron energies are insufficient to excite an atom from its ground state 

to an excited state. Assuming that all the atoms in the system are initially 

and finally in the ground state, they calculated the various absorption con- 

tributions due to neutral-inverse bremsstrahlung, induced dipole transition, 

and exchange and interference effects by partial wave method and found that 

the last three contributions for low temperature system are negligible as 

compared to the first one. 

An experiment measuring  the absorption coefficient for the ruby 

laser beam (69^3Ä) in a hydrogen plasma produced by a giant pulsed laser 

beam was carried out in 1966 by Litvak and Edwards.     Their calculated 

absorption coefficient obtained by considering photoionization and inverse 

bremsstrahlung of electrons in the field of ions is two orders of magnitude 

less than their measured result. Chapter IV is motivated primarily by this 

large discrepancy. 

The temperature of the plasma in Litvak and Edwards experiment is high 

(9 ~ 20 eV).  Most of the hydrogen atoms are found in excited states and 

the energies of electrons are sufficient to excite the atoms from a level 



to a higher level.  The electron-atom scattering cross section increases when 

the atom is in an excited state. As seen from Akcasu and Wald's work, this 

cross section enters in the expression for radiation absorption. Since at high 

temperatures, an appreciable number of hydrogen atoms are in upper levels and 

the above cross section at these levels is high, one may expect the neutral 

bremsstrahlung to be a dominant process contributing to the radiation absorption 

in Litvak and Edwards' experiment. This is one reason for extending in Chapter 

IV the calculations by Akcasu and Wald to high temperatures. The other reason 

is that the total number density of hydrogen atoms in different states, deter- 

mined in the case of Litvak and Edwards' experiment by the initial gas con- 

ditions with the assumption of ideal gas, is ten or more times the electron (or 

ion) density depending upon the initial gas pressure. 

In the formulation of the problem, we use the second order perturba- 

tion theory in which electron states are represented by plane waves. In 

this approximation, the electron-hydrogen cross section is calculated in the 

first Born approximation. Although a more accurate result is expected by 

using partial waves . the use of free electron wave function makes the prob- 

lem more manageable. 

If all the atoms in the system are initially and finally in the ground 

state, as assumed by Akcasu and Wald, with the assumption that the cross 

section involved is slowly varying up to the incident enerpy of electrons, 

we obtain the aame result as obtained by Akcasu and Wald through the partial 

wave method (section IV-2). 

An application of the above theoretical results to hydrogen plasma is 
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presented in sections IV-J, IV-k,  and IV-5.  In order to explain the measured 

absorptions in Litvak and Edwards experiment by considering the photoionization 

process and the inverse bremsstrahlung of electrons in the field of neutral 

atoms, we use in section IV-7 the point explosion theory in estimating the 

number density of neutral atoms in the plasma produced by the laser beam. The 

comparison between our calculated absorptions and the measured results are dis- 

cussed in section IV-8. 



CHAPTER II 

PHOTON ABSORPTION AND REFRACTIVE INDEX 

In this chapter we shall present two different approaches to the cal- 

culation of photon absorption and refractive index in an arbitrary particle 

system. The first approach is based on photon transport, theory developed 

by Osborn and Klevans, '  the second one, on Kubo's theory    of electric 

conductivity.  The comparison between the results from these two theories 

will be made at the end of this chapter. 

1. PHOTON TRANSPORT THEORY 

(5) 
In 196l, Osborn and Klevans   used first order perturbation theory in 

(7) 
developing photon transport for nondispersive media, and a year later they 

extended the theory to dispersive media by making use of the concept of 

(R) 
"dressed photon" first introduced by Mead.    In this section we shall use 

their results for dispersive media to express the photon absorption and the 

refractive index in terms of the microscopic current due to motion of all 

particles in the medium. This requires, in the first place, a description 

of the hamiltonian of the particle system, the radiation field, and the 

interaction between these two, as well as the introduction of the concept 

of "dressed photon." 

Consider a box of volume L3 in the particle system under consideration. 

The hamiltonian for the particles in this volume element interacting with a 

radiation field can be written in the nonrelativistic theory as 



H = HK + Z 
o 5 

(P üüj — A(raj)}2 

2m, 
+ V. 

aj 

with 

+ V H0 + H 
PR 

H0 = H
R + HP 

HPR m  HPRI + HPR2 

where 

H
P
,2; 

a 

r P2. 

J OJ 
+ V 

H 
PR1 

|i^[2arA(laj)+M£aj)-Paj) 

(II-1) 

(11-2) 

(II-5) 

(II-M 

(II-5) 

(II-6) 

In the above equations,   H    and A(r) are,  respectively, the hamiltonian 

and the vector potential of the radiation field.     The symbols m  .,   e   .. 

p   ., and ra*  denote the mass,  charge, momentum, and position of the j-th 

particle in the o-th molecule.    Here, we use the term "molecule"  in a gen- 

eral sense to refer to any aggregate of particles bound together.    The num- 

ber of constituent particles  in a molecule is arbitrary.     It proves to be 

convenient to regard even an electron as a  simple molecule as defined above. 

V     is  the potential  between  the particles   in the  o-th molecule and V   is  the 

potential between  the molecules  in  L  . 

Interactions  between particles  in different  boxes  via  long-range coulomb 

forces constitute a small effect upon photon-particle interactions within a 

box and we may expect  that neglect of this effect produces negligible error. 

Then the phot.o-partic li-   interaction    of the system can be approximated as the 

sum of the  Lnteradions  in  each box. 



(Ik) 
The customary procedure    requires that the (transverse) radiation 

field be periodic at the boundaries of a normalization box whose volume is 

assumed here to be L . The vector potential of the field at a point r 

can then be represented by operators in the Schrödinger picture as 

2jthc -ikT, t 

to' -Älsf • * ^d^^t-iV*»"       (II-7) 

and the hamiltonian of the radiation field turns to be 

H* = E i-h ck {^(k^CkKa^Ck^ic)) (II-8) 

where a (k) and a (k) are creation and destruction operators for photons 

of momentum ftk and polarization \ in free space, c (k) is a unit polarization 

vector. The creation and destruction operators satisfy the commutation re- 

lations 

[O^(k), ^.(k1)] = [O^k), C^+,(k')] = O 

[^(^^.(k-)]^^^^. (II-9) 

Since the radiation is in constant interaction with the medium, Mead 

introduced the concept of "dressed photon" by associating photons in the 

medium with a different frequency ai than the free space value Bk, keeping 

the wavelengths in medium and in free space the same.  In doing this, he 

(15) used a different expansion of A(r) due originally to Böhm and Pines 

and showed that the creation and destruction operators a (k) and a (k) for 
K A, — 

creating and destructing photons of frequency o^ are different from the free 

space operators a (k) and a (k). They are related through the relationship 
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or 

k        k 

x 7       k        k 

a 

(11-10) 

c^(k) = ^-5;-((ck-KA)k)ax(k)+(ck-a)k)a^(-k)) 

2(oükck)
? (11-11) 

C^+(k) t-j ((ck+üik)ax
t(k)H-(ck-0Dk)ax(-k)) . 

2(cükck)
2 

It is clear that CX (k) and a (k) become identical when ox   =  ck. It can be 

t 
verified easily that a (k) and a '(k) satisfy the same commutation relations 

as a (k) and a (k) even with en ^ ck. 

The substitution of eqs. (ll-ll) into eqs. (II-6), (II-7), and (II-8), 

PR2 R t 
i.e., expressing H ,  A(r), and H in terms of the operators a (k) and 

\(k)i 8ives 

(11-12) 

(n-i3) 

where 

HPE2 = H0
PR2 ♦ H™2 ♦ H2

PR2 

c2k§ja 2 

c2k^D 2 

HR2 =^l -—- K^KVkKQcM-k)) 

H PR2 nfte . 

- L m^u^ 

(11-14) 

(11-15) 

(11-16) 

(11-17) 

(11-18) 



II 

H 
PR2 

rtfi; 
9L {ai

t(k)ai
+(-k)+a  (-k)a (k)) (11-19) 

ojKk   T5. '■ '^' -' ">■*" -'   ">>.'-'■>.' L m 
ofr 

H, 
PR2 

^■k' a3 

ntl e   .     -iCk-k' ),r J oj  e      - -     -aj   .   t r^ t<(ji)v<lK.(-l^(-Jl)J 
L maj       (^Vhl' ' 2 

\,-,-\ 

•{a.C-kV.C-kO+a.CkOivlk')) X^-'-K1 (11-20) 

I 

means.   A Ikt   . )M 

Then the hamiltonian for the whole system (particles in L plus radiation) 

can be written, in terms of the operators a. (k) and a (k), as ri=H'+H with 

H0 = H    +H    and H =H      +(H    +H0      )+(H    +H1      )+H2        where 

^.H. 

f    .      2 2U2 2"> 

—^— ♦      (a  (k)a  (k)+a (k)a (k)) m 
I    LmaA J 

R2  .   „ PR2 _ ft H   +Hi    m un 
? „2^2,,^, 

l     LmaA ^   J 

(11-21) 

(11-22) 

,(7) In obtaining the photon transport equation and refractive index,   Klevans 

formulated the problem in the representation in which the particle state   I n> and 

the photon state  ' T]> satisfy 

i.e.. 

HP|n>   = E  ln>     HR0
|TI>   =  E   |ii> 

n' V ' 

H' |nn>   ■  E    llH|>,   E      = E ^-E 
o nr) nt) n    T) 

(11-23) 

With H regarded as the perturbed hamiltonian. The obtained photon transport 

equation is given by 
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?f (r,k,t) 

—^ + !I-Vvfx(r,k,t) ^J.^, {\U)-\(k)} knSniPnti,!»! (II-2,|) 

where f (r^k^t) is the expected number of photons with momentum "hk and 

polarization \ in the volume L located at the point r.  The photons are 

moving with the velocity vfi in the direction of the unit vector ü.    v is 

different for dispersive media from the speed of light c.  In'ri'^nr] is the 

transition probability from the initial state |ni|> to the final state 

in'r]'> which is given, in first order perturbation theory, by 

Tn'r^nT!-^ |<n'r,1 IH1] n^ > |^(En, TI,-E^). (11-25) 

Ti (k) is the occupation number of photons with-ftk and \,   and D is the den- 

sity operator of the whole system (particles and radiation). 

In addition to the photon transport equation, the refractive index of the 

medium can also be obtained by letting 

£,%,n„ (Sn.-Sno) ' 0 (II-26) 

where S  is the shift of the energy level Ev for the state |nTi> and given Bl) ^ MT] I   I o 

by 

0 T) fnt)     nri n TJ' 

where P indicates the principal value.  Sno is a shift of the self-energy of 

the medium when no photons are present and can be obtained by letting T]=O 

in eq. (11-27)- 

With the above results, we shall express the photon absorption coeffi- 

cient and the refractive index of the medium in terms of the microscopic 

current due to motion of all particles in L in the following two sections. 
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a.    Photon Absorption Coefficient 

The processes involved in obtaining the photon absorption coefficient 

are single photon emission and absorption.    The only contribution to these 

„PR1 . „R1    „ PR2    „R2    u PR2        . „ PR2 processes comes from H        because H    ,  H0      ,   H    ,  H^      ,  and Hp        are 

bilinear in photon operators.    Define the current operator due to motion 

5 
of all the particles  in L    as 

£(X)-|JSJJ {£a^(r-ra(j)+&(r-ra;))£oJ), 

then 

„m.. /d3r i(l). m 

(11-28) 

(11-29) 

where the integration takes over the volume L  .    From eqs.  (11-25) and 

the definition of Dirac &-function 

Ixt 

B
W-ikC'* ai' (11-50) 

the substitution of eqs.   (11-29) and (11-25) into eq.   (11-2^) gives 

+ n  • VvfK(r,k,t) = Q^^^t) 
fcUl»I»t) 

öt 

where 

Us). 
\(X,k,t) - l-^P fft Id^r' jdt'   { I, <n|J(r)|n'>- <,|«*i|n4l 
ä nTl    -ft2 -oo n' c 

A(r't') A(r) 
Kn+ll— U>- <n•|J(r;t,)|n>-2;)<n|J(r)|n,, >  ■ <t||~ln-l> c n c 

A(r't') 
■ <TI-1|

:
^^ |TI> • <n"|j(r;t,)|n>   ) 

with 
iHPt 

J(r,t) = e* J(r)e * 
.iHPt 

(11-51) 

(11-52) 
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iii 

i^t 
A(r,t) = e^    A(r)e (11-55) 

being the Heisenberg operators. The fir.t sum in the bracket of eq. (II-5I) 

comes from photon emission by letting ii'aiplio eq. (11-2^).  The second 

term comes from photon absorption by letting TI' = TI-1. 

Evaluating the matrix elements of A(r) and A(r,t) in Eq. (II-31) by 

use of eqs. (II-12) and (11-55), and suming the intermediate states In^ 

and In"^ one obtains 

2nD, 
^(r^k.t) = Z—^^ /d5r Id\-'jtt'<n\Jx{r)JK{r;t')\n> 

1T1 L3fe, 

IO), t' ik'Cr-r') 
k   —  

B ( e    e {• ^(r,k)+l ^(r;k)+l-e 

-r -icu t' -ik^r-r;') 

\ 
\(£»i)\(£ !k)

1>l 

where 

J^(r,t) = J(r,t)-ex(k). 

At -nis stage we introduce several approximations which enable us to 

reduce 0\(r,k,t) to a simple form.  The first approximation is to replace 

PR     P 
DnT| n_ by D nn D .-, D is the density operator of the medium only and 

P -BH^5   -BH^3       1 
given by D ^e   /Tre    with ß^-r being the reciprocal of the medium tem- 

R 
perature in the units of energy. D is the density operator of the radia- 

tion field and given by D =e    /Tre    . This approximation implies 

that the particle system and the radiation field are initially statistically 

independent and permits us to perform the statistical averages over the 

particle and photon states separately. The second approximation is equiv- 

alent to replacing the average of a function by the function of the average 

in performing the statistical average of the factor containing the photon 
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occupation number, i.e., 

With these two approximations, 0. (x,Ji, t) reduces to 

L-ft^ 

k  -ik (r-r') 
•e     e —  . ^(l»*)*^*) |TrDP J^(r) ^(r/f) 

E (K,ai ) =-^- /d3r /d3r'7dfe    k    e1-'(-"-') TrDP J  (r)J  (r;t' ) (11-35) 

are respectively the net absorption coefficient and the spontaneous emission 

coefficient per unit time for photons of momentum tik and polarization \.  In 

p 
an infinite homogeneous medium, TrD [J (r;,'t' ),J (r)] can depend only on the 

difference of the position.- r-r'. In a large finite system, this translational 

invariance will be approximately true in regions away from boundaries.  One of 

the integrations over the position can be performed.  Then 

We recall that integrations over r and r' are extended to the same box of 

volume L . If we further assume that f (r,k) is slowly varying ove^ the box 

volume then we can take the product of the square roots outside the integral. 

Interchanging _r and r' and letting t^-t' in the second term, one finally 

obtains, by using the property TrABC=TrBCA, 

If ^(i:,k,t) + a'Dvfx(r,i,t) = -Q^k^f^r^t) + E^k/a^)  (11-33) 

where 

\W\) = "f1- /d3r /d3r'/dt'e  k e^* ^ ) TrDP[Jx(r; t' ^(r) ]  (H-jU) 

I 



,:n 5  0Ü- 

L( 

^k*' U-Cr-r'L -P 
^(k,^) =^- /d^r' /dfe " e- v-- ^TrD1 [J,(r;f), J (r)]  (II-3M 

In view of eq. (ll-^) it is obvious that the photon absorption coefficient 

per unit length is given by 

ax>'V 

In a   later section we shall compare eqs     (II-3I)  and  (II-36)  to the 

(11-36) 

expressions for photon absorption obtained by Kubo's theory.  The superscripts 

s and t over the absorption coefficients per unit length and per unit time, 

respectively, are introduced here to facilitate this comparison. 

b.  Index of Refraction 

We mentioned before that the index of refraction in dispersive media 

can be obtained by letting I D  nr(
Sn'"Sno ^" From cq " (II-27)> 

EAi^nn^tT8™) = LDnn,nTi 

• T P 
i„Ii i«I| v [«CnV |H   \nT\> I <nn H    nri>-<noH    no > +    7 , ,P A '  '      '—'—L- 

1 ' nri    n T\ 

. r        p    Kn'n'lH^nQl2 

n'r)Vr'0 ^o'^i''' 
(11-57) 

Recalling H and Eqs (II-5), (11-20), (II-21), and (11-22), it :s readily 

established that 

InN e„,       c^k-ojr 
.Rl .. PR2,      ..        v-h / . J_5Ä + ^iH^n^   . <nT,|ir%H0^|nn>   -X*<j: 

« li ^sj   3 
L m   .'jo, 

sj  k 

tu, 
(2T^(kKl)    (II-38) 

and 

T Rl PRP -h 
<no|H   I no >   = <no|H    + H^     "|no>   = 7  , 11 0 Kki( 

? 2  2 2-1 
r 

lnNses.i  +  
c k-(\ 

L ms<ja)k ^k 

.5 

(11-39) 

where N„   is  the number of the molecules  of kind S  in L    and e   .  and m   . 
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are the charge and mass  of the jth particle  in a molecule of kind S. 

Note that <n'T||H   |ni)>   - <n'oJH  | no >   =  o  for n'/n, and <n^ |H   |nt|>   =  o 

for T)' =  T]±1 and for rj = o,   n1   ■  1, then one obtains 

I l<n'r1'|H
I|nn>|2 m    j     |<n,n|HI|nn>|2 +    y     |<nn'| H11 nn> | ^ 

ri'nVnri       Enri-En'Ti' nyn En^n' »ffl|       ^"ETI ' 

+    r     kn'nVUH2^    r    Kn'n'JH1! n^ |2 

nyn      inn-En* TJ' rifn      ■nv^'n' 
^1 iV1! 

(Il-i40) 

and 

|<n'n  |H   |no> I 
)' 

<n'n'  H    no> 

n'^n       "no'in'n' 
rtfo 

n'riVno       Eno"En'T|' 

Using the property of Dirac &-function  f(E)=  /  f(x)&(x-E)dx,   eqs.   (II-40) 
-00 

and  (11-^1) become 

(II-1H) 

T ? PR 1 ? 
E       kn'VlH   In^l     =    I      J^   \<a'n'\n^    [nr^l   &( 

n'n'jfati       EnTi'^'n' n'^n-oo *»' 
CL' 

Enii^n'Tj' 
) 

and 

Z;     l<nyh   ["£>]     =    r      ;( |<nV|HPR1|no> 
n'riVno       Eno-En'r| nffn -o 1VJ0' 

K 0) 
'n:---"n  T; 

•ft 
)   . 

The substitution of eq.   (11-29)  and  the use of eq.   (II-30)  gives,   after a 

straightforward manipulation  (see Appendix A), 

v       |<n'n'|HI|nTi> |2 y |<nV iHI|no> [_ 
rfriVnt)      EnT)"En'Ti' n'ij ^no       E^-En-^' 

"  -Ä-V^ /^r/d5r7d.-/dt'  i  piÜ-(l-l') 
\ k   3 -öo    -00        a) -co, 

H<n|Jx(r')JK(r,-t,)-Jx(r)J^(r;t')|n> . (II-J42) 
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By taking the statistical average over the photon state |r)>as in the case 

of absorption coefficient, using TrABC=TrBCA and substituting eqs. (II-38), 

(11-39), and (II-U2) into eq. (II-37), one obtains 

itnN e 
I !   !J \2  2 

ffca 2-4 T5 k 

\k ^ ' 2 
CD 

k I" 
- -T2-; /a^/d^r'Tdt PjW V—e^'^^^TrD15  [J (r;t' ),J  (r)] ) = .. 

k 

Then the refractive index for dispersive nedia is obtained, in terms of the 

microscopic current due to motion f all the particles in L , as 

where 

ioi't'    . 2 

MVV = T-T- J^r'/dt'P/do)1 f e1^-'- )TrDP[J (r;t' ), J (r)] -*- (II-UU) 

and the property that TrD [J (_r,'t'),J (r)] can depend only on r-r' for an 

infinite hoaogeneoua Biediua has been used.  In section 11-3^ we shall compare 

eqs. (II-3M, (II-36)| «'id (ll-kf))  with the results obtained from Kubo's 

theory. 

2.     KUBO'S THEORY 

f l (V 
In 1957, Kubo    developed the theory of linear response of a medium 

to an external field (i.e., electromagnetic waves) acting on the medium. 

He showed that the response can be described by electric conductivity tensor 
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(16) 
of the medium. In 1966 Dong    applied the theory to fully-ionized plasmas. 

In this section we shall use Kubo's theory to obtain the photon (or radiation) 

absorption coefficient and the refractive index for an arbitrary, electrically 

neutral medium which may be a neutral gas, or partially or full-ionized plasma. 

From Maxwell's equations, one can obtain 

^(r,t) . A±-E(r,t)=^4je(r,t) 
2 ^2 

c  dt 
2 dt 

(II-U6) 

by assuming that the macroscopic -harge density of the medium is zero, i.e., 

y'E(r,t) = o. 

Thus E(_r,t) is transverse. We used ^he superscript e over J(r,t) in eq. 

(11-46) to denote that it  is the expected value of the current operator 

j(r,t). By using the gauge in which the scalar potential vanishes, the 

electric field E(r;, t) can be described by a vector potential A(r, t) 

through the relationship 

E(l,t) - - -^ A(r,t) (11-47) 

Assume that the external field turns on at t=-<».  Before the field is 

imposed on the medium, we have 

[DP, HP] = o. 

At time t, the interaction hamiltonian between the system and the applied 

external field can be written as 

2 

V(t) - -o^ (£oJ-A(roJ,t)+A(roj,t)-£oj) + £ ^ A^t) 
"ojl 

H1(t)+H2(t) (11-48) 
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where 

1      A(r,t) 
H (t)=-/^r J(r)- =  
i           c 

l  I        A(r,t) 

2 

L^th-L-^; 6(r-r jACr .,t) 
-A -    ÖJ m i c oj oj "oj 

(lI-i+9) 

(11-50) 

(11-51) 

With J(r) defined as eq. (11-28). When the medium is acted upon by the field 

A(r,t), the total current operator at thp time t becomes 

J(r,t) = J(r)+JA(r,t). 

The expected value of J(r,t) is defined by 

Je(r,t) = Tr[J(r)+JA(r,t)]D(t) (11-52) 

where D(t) is the density operator of the perturbed system at time t and 

satisfies the Liouville equation 

- D(t) = J ^(t), HP+H1(t)+H2(t)] (11-55) 

with the boundary condition D(ts«-oo)=D . 

For a weak perturbation, we shall obtain the current response J^(r,t) to 

first order in A. For this purpose we substitute 

D(t) = DP+D1(t) (11-5^) 

into eq. (11-53^ where D^(t) is the perturbation due to A and neglect the terms 

[DP,H2(t)] and [D1(t),H1(t)+H2(t)] in the resulting equation (note that I* is 

first order and Hg is second order in A). Then, D^ satisfies 

^D^t) =| [Ditt), HP] ♦! [DP^^t)] (11-55) 

whose solution is readily found as 

M-lJk 
jHP(t-f)     ^HP(t-fJl 

DP,e-*       H^t'K (11-56) 
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The substitution of eqs. (II-5J4) and (II-56) into eq. (11-52) gives, after 

2 
neglecting the terms containing A (r,t), 

J^(r,t) = TrD^r) ♦ TrDPJAi(r,t) 

♦ A /d5r' /df TrDP [J.(r,t), J (r;f)] kdSi*') („.^J 
•ft        -00 z> m U 

where the subscripts £ and m(i,m=l,2,3) refer to the components of the vectors 

and where the summation convention on the repeated indices is used. The 

first term in eq. (11-57) is the expected value of the current in the unper- 

turbed medium and is zero. The second term is given explicitly by 

e ? 

Since the delta function is contained in the matrix element, the integration 

over all the coordinates of particles will give 

ü 0 A(r. t) 
TrDPJfi(r,t) = -q^ =^  (11-58) 

—A — c 
2 

where q is defined in eq. (II-I45).  Then eq. (11-57) becomes 

A(rt)                                   ACr't') 
J^(r,t) = -q2 -~—  t J /dV /df TrDP[J.(r,t), Jjtft')]  -!~  ' (II-59) 

In order to calculate the absorption and refractive index in the frame- 

work of Kubo's theory, we substitute eq. (11-59) into eq. (II-U6) and use 

eq. (lI-i+7) to eliminate the vector potential in favo- of the electric field. 

The result is 

^(£,0- ^^ E£(r,t) ■ "g /d3r'_/df{q^(t-f)6(r.r')eM 
c  ot c 
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or 

J TrDP[J (r^t-f ), J (r' )]}E (r,'f ) 
^      * mm 

(11-60) 

JEir,t).~$-E{r,t)  = ^ /dV /df _a(r-r;t-t' )-E^'f )    (ll-6i) 

where a(R,T) is called the conductivity tensor. We shall give the explicit 

form of a in the transformed domain later. 

Equation (II-60) which describes the electric field in the medium can 

be solved if one specifies the boundary and the initial conditions on E(r,t), 

The solution can in general be constructed in terms of the solution of the 

homogeneous equation of the following form 

-(ik-r-icot) 

where k and CD are related to each other through the dispersive relation, 

k - — = - —T- a  (k,a)) 

where a (k,a)) is the scalar conductivity defined by 

(11-62) 

(11-63) 

where oikfOi)  is the transform of a(R,T) and explicitly given by 

ax(k,a))  . - i4- - ^ /d3r'  ^Te^V^ (^'WfJ^r, r),  J^r')] {ll-6k) 

In the applications, one usually encounters two types of problem: 

(l) initial value problem and (2) boundary value problem. In the first case, 

one specifies an initial spatial distribution E(r,o) and solves for E(r,t) 

for t>o. The initial distribution can be expressed as superposition of the 

ik * r 
terms of spatial modes of the helmholtz operator, i.e., e where k is real 
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vector. The damping associated with each mode is obtained by solving the 

dispersion relation as a3(k) for a given real k. 

In the second type of problem, one solves the Maxwell's equation (II-60) 

for E(r,t) when E(r,t) is specified on the boundary as a known function of 

time. The time dependence can be expressed as the superposition of terms of 

the form e   where CD is a real number. The associated complex k is obtained 

from the dispersion relation as k(a)). A sinusoidal plane wave impinginij; on 

the side of an half infinite medium is a typical example for problems of the 

second kind. The complex number k(a)) in this case is the inverse relaxation 

length in the medium. 

We shall compare the Kubo theory to transport theory in these two typical 

cases. 

a. Damping in Time 

As we mentioned above, we must solve the dispersion relation in this 

case for a real k, and obtain the real and imaginary parts of aj(k) for a 

given k.  It is convenient to substitute 

n(k)  n ♦In, ,—'   o  1 

where a)  =ck, and n(k) is called the complex refractive index with n and n, 
o  '      — o     I 

as its real and imaginary parts. The electric field will decay in tine as 

e  * where üüJ is the imaginary part of a)(k). äuj  is the decay rate of the 

electric field which is the quantity to be compared to the photon absorption 

t, V 
coefficient per unit time O' (k,a) ) obtained in photon transport theory. 

The substitution of eq. (II-65) into the dispersion relation eq. (II-65) 

' 
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gives 
2    2 n -n 2n n, 

i- -^A- + i   o L ü). 

Ok (kl  ~T7T~) , 2 2N2   ' , 2 2.2 "  OD (B +111, ) \v-, n +111, 
(n0+n1)     (no

+nl)     ov o  l'      o  1 

In order to solve the dispersion relation for the real and Imaginary parts 

of a)(k), we shall consider a weakly absorbing medium, n,«n . In this case the — ' 1  o 

dispersion relation can be approximated as 

2nn 

n     n     n oi o     o     one 
K (il»%) + i a> (li^OI 2  v \ v-' k \  v-' k' 

Ci>. 

where oo = — Is exactly the frequency used In photon transport theory and 
k  n0 

R I 
a (k>^, ) ard a (k^cu ) are respectively the real and Imaginary parts of the 
\    k     \    k 

scalar conductivity o (k,cu ) given by eq. (11-6^). 
A. ^  K 

Equating the real and Imaginary parts, one obtains the real refractive 

index 

the imaginary part 

2       ,       kl      I/,        » n    =   1 + — OL    (k,m      , 
o u)      X.    —    k 

k 

2flno      R, 
!1,   =   -  —  o,    (k,^) 

(11-66) 

1 o^     \ 

and the decay rate of the electric  field 

^A      ,       R, 
SBL = -   = luca   (k,a) ). 

I n_ \ k (11-67) 

The explicit form of a (k,cjü) was given in eq. (II-6M for complex üü. 

&r 

When a) = — ■ ODL>  we have 
no     y- 

a fk,%) - - Ü- . -^ /d5r. r^e-^e^'d-l')^^ (r,T), j (,.)] 

By using the integration representation of the unit step function, i.e.. 
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•1ST 

U(T) = -—  fds  r-   with e-K) 
2n -&>        s+ie 

and letting T = -t'   and m'  = S+OD , then 

io fk,a)J = t + -A-/dV   /df TdD« f"-— e^^^'W^ (r), J. (r;f)] 
k k k 

The real and imaginary parts of a (k,a) ) can be obtained by noting that 
\   k 

lim ——;— = P-— - in&(üü-aj) 
€-»o oü-oü+ie    oi-o) 

as 

üxR(k^) * SÄT /^r'Jdfe^^e^'^^'WcJ (r;f), J (r)] 
A.  ""  K    ^^^W       "00 A. A. ~" 

(11-68) 

,3 , "r^,^0?..... e*0'*' A*{jrk%)m^9t \^*J  ■ iS^ /«VJdf Pjd.' »J— e^ ^ 'trf^C^dJf), ^(1)] 

(11-69) 

b. Damping in Space 

As mentioned above, the dispersion relation must be solved in this case 

for a real a)=a)0 to obtain the real and imaginary parts of K(a)0). It is con- 

venient to let 

K = (n ♦In,)k —  v o  1'— 

where ck=CD . For a weakly absorbing medium n «n , the dispersion relation 

eq. (II-65) can be approximated as 

2 .  „.       ^i , R, ,   N.I/,   N-, n0-l ♦ 2in1no = - --- {o^ (n^,^; ♦ io (nok,coo)) 
o 

Then, the real refractive index and the imaginary part are 

kna.   (n k,a) ) 0        A.  o—' o 
n^ = 1 +   0 m (11-70) 
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and 

2n R/ (II-T1) ov
K(n k,GD ) . 

1    n CJD ^- ^ o-' o^ 
o o 

The E.M. wave absorption per unit length is 

\(|l«b) = -2V = ^ O^II^/Do). (11-72) 

This is the qusuitlty to be compared to the photon absorption coefficient 

per unit length a?(k,üü. ) obtained in photon transport theory. 

In eqs. (11-70), (11-71), and (11-72), ^(n^,^) and ^(n^/i^) have 

the exact forms as eqs. (11-68) and (11-69) except that the places where k 

and (X^  occupy are respectively replaced by n k and mQ. 

3. Comparison of the Results From Two Theories 

The resulting expression obtained by substituting eq. (11-68) into eq. (II- 

67) is identical to eq. (II-^ and,furthermore, eq. (II-66) -d.th the substitution 

of eq. (II-69) is the same as eq. (II-1+3) with the substitution of eq. (II-M). 

One can conclude that the photon absorption coefficient per unit time and 

the refractive index obtained from photon transport theory are the same as 

that obtained from Kubo's theory through damping in time only for weakly absorbing 

media. Since eqs. (II-36) and (lI-i+5) are not tlie same as eqs. (11-72) 

and (II-70), respectively, the photon absorption coefficient per unit length 

and the refractive index obtained in the former theory are different than 

that obtained in the latter th-ory through damping in space even for a weakly 

absorbing medium. 

As mentioned in section II-l, the "dressed photon" concept used in 

photon transport theory is to associate photons in medium with the same 
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St 
wavelength \ = — as in free space, but a different frequency ox    from ck. 

It is obvious that the dressed photon technique is equivalent to damping 

E.M. wave in time because the latter is to consider E.M. wave in medium as 

a wave having the same wavelength as, but a different frequency from the 

free space values.  It is different from damping E.M. wave in space because 

the latter is to regard E.M. wave in medium having the same frequency as, 

but a different wavelength from the free space values. 

From the above conclusions and reasons, it seems suggestive to for- 

mulate photon transport theory by associating photons in medium with the 

same frequency as, but a different wave number vector from that in free 

space. Then the photon absorption coefficient per unit length and the 

r ractive index obtained from such formulated photon transport theory 

may turn out the same results as obtained from Kubo's theory by damping 

E.M. wave in space.  It would not give the photon absorption coefficient 

per unit time and the refractive index as obtained from Kubo's theory by 

damping E.M. wave in time. However, the suggested formulation is more 

desirable because most measurements have been usually done in measuring 

photon absorption coefficient per unit length. 



CHAPTER III 

VARIOUS PHOTON ABSORPTION MECHANISMS 

In chapter II, we have obtained the absorption coefficient for a photon 

with momentum Jfik  and polarization \ in dispersive media.  We shall restrict 

ourselves, henceforth, to a nondispersive medium.  In order to display var- 

ious mechanisms contributing to the photon absorption in a material medium 

and also to estimate the order of magnitudes of the various contributions in 

the lowest approximation we shall change the representation [|n>) for the 

description of the particle system.  In chapter II, the particle wave func- 

tions | n> were chosen as the eigenfunctions of the total hamiltonian 

HP = Z 
a [5 i»*». 2m oj 

+ V 

which included the interaction between various constituent molecules.    In 

the present chapter we shall work with a  representation which diagonalizes 

only part of H  .    The remaining part of H    will be treated as perturbation. 

1.     DESCRIPTION OF THE PARTICLE    SYSTEM IN FIRST ORDER PERTURBATION APPROX- 
IMATION 

For a particle system which consists of neutral atoms,  singly-charged 

ions and free electrons, the hamiltonian of the system can be written as 

HP = / + H1 + H6 + VP 

vp = ^ + vee + v11 + /
e + Z

1 + vie 

/.  H where H  , H  , and H    are,  respectively,  the harailtoniens  of the neutral 

28 
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AA  op i i 
atoms, the singly-charged ions and the free electrons.  V^, V ' and V 

are the potentials between the same kind of "molecules" (atoms, ions and 

free electrons), and V  , V , and V  are the potentials between the dif- 

ferent kind of "molecules." 

p 
In addition to H , the interaction of the particles with the radiation 

field can be separated as 

where V., V , and V. are, respectively, the interactions of the atoms, the 

free electrons, and the ions with the radiation field. 

A convenient and simple representation which one can choose is that 

the wave functions |n> = |aß7> satisfy separately the SchrBdinger equations 

HA|a>   Ea|a> 

He|ß> = Eß|ß> 

H1!^ = E7|7> 

with V=V + H   considered as the perturbed hamiltonian.  Since each of 

A  e      i 
H , H , and H can be separated as the sum of the hamiItonians for the 

molecules of the same kind, the wave function |aß y>  la the product of the 

wave functions for the individual molecules in the system.  In this rep- 

resentation we must calculate the transition probabilities at least to the 

second order in V if we want to investigate absorption due to free-free 

transitions of charged particles.  The photon transport equation then becomes 
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2TtD 

SMU*)* a-2^(l*k»t) =n^     g3*53 (¥Tj)l<to,V|v|nn> 
1T1, 

n'Ti' 

y     <n'V|v|n"V><n"V'|v[n1>    [g 

yn^jn'T)' 
E    -E   ,   , nr]    n i] 

(III-1) 

For the reduction of eq.   (lll-l), we shall use second quantization 

in which the potentials  v     , V     , and V      and the interactions V., V  , 

and V^ are given by (see Appendix B) 

2 
A»           ^«e BK(K-K'+U-U') z     Uu-n')n /• . I  K- -    <a,|.z+ E ei(u-u   )'Pj|a>At(K.a.)At(H,)A(Ka)A(u) 

S'      L5|u-u,,r 

aa) 
uu' 

J = l 

iIII-2) 

Z1.   z 
hne2bK{K-K'+±-r ) 

S"        L^lK-K-l 

,       v    -i(K-K,)-p.l    ^_,,     ^ i(K-K,)-tfilv <a'   z- I e _J  a><b'   z- Z e   - -     I.J b> 
2 jsl j=l 

A^K'a' )A+^,b, )A(Ka)A(_/b) (III-5) 

2 
,               ^ne 8K(l-i'+u-u') Z'lUuu<)'n 

V16 =    E r^ = <b'\-z+rel{-±  )-Pj|b>AtU'b')A+(u,)A(ib)A(u) 
W       L^u-u'l2 

(III-U) 

v ie 

A * & c i 
Kä 

2jrfc 
— BfCW-lVD^^^,, •[c^(k)e^(k)+C^(-k)€^(-k)]AT(K'a,)A(Ka) 

(III-5) 

L CJD 

V   = Z- 6     Wt"8 | 
2jthc 
f- t°£(ä)lki±)+\i-}ikk(-*)l'}* &K(u-uI-k)A+(u')A(u) 

uu L (0 (III-6) 
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y _ie | 2n'ftc 
- c ^ h^-lKt^t ■{\(k)^(j5)^(-k)iK(-jE)J A^-b^A^b) 
ib 

/'b' 

L 0) 

(III-7) 

where 

z-1 E i-E x  x ^•a = ^'1 Ire,ila>, db,b = <b'|L£.|b>, %.x = -— 

In the above equations, A(u)> A(Ka), and A(lb} are, respectively, the destruction 

operators for the annihilation of a free electron of the momentum -ttu, an atom 

of the external (center-of-mass) momentum -fiK and the internal state |a> 

and an ion of the external momentum fi/ and the internal state |b> . A^u1), 

A (K'a1), and A (^'b') are the creation operators which create a free electron, 

an atom and an ion in different external and internal states.  The symbol 6 

with subscript K denotes the Kronecker delta. _g> is the position of the j-th 

atomic electron in an atom or ion with respect to the position of its nucleus, 

ed ,  (or ed, ,, ) is the rratrix element of the dipole operator with respect 

to the internal atomic (or ion) states, iko ,  (or "fiüi ,. ) is the energy 

difference of the internal states |a'>and | a > ( or|b ' > and |b>) of an atom 

(or ion). 

2.  TRANSITION PROBABILITY FOR PHOTON EMISSION 

In this section, we shall make several approximations to reduce eq. 

(lll-l) to a simple form.  The number of photons with momentum -fik and po- 

larization \  emitted from L per unit time can be obtained by letting T]'=TI+1 

in eq. (III-1), i.e. 
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E  fk)(f  (k)+3)=    Z^rD |<n'T1+l|v|nT]>+      T <n Vl| v| n"n" ><n"n" | V| nn> 
E    -E  it  it 

T) =nTi,n Ti+1 nrj   n T) 

■ 5(E ,    -E   ) (in-e; n r   i    nr| 

where E (k)  is the transition probability per unit time for emission of a 

photon of momentum-fik and polarization \.    Let us  consider first the direct 

transition, the first term in the absolute square of eq.   (III-8).    Since the 

p 
potential V   between the particles  contains neither "he photon creation 

nor destruction operator,  then 

<n'T1+l|v|nTi>   = <a'T1+l|VA|aT1>6ßß-67>'   + <ß ' TI+1| Ve|ßT1> 6^-   677- 

+ <7Vl|Vi|7r)>5QQ.6ßß, 

where <ß,T]+l|ve|ßTi>&     '6^,^,'   accounts for the direct photon emission through 

the  interaction of the free electrons with the radiation field.    No such 

transition can exist because the energy and momentum conservation laws  can 

not simultaneously hold  (see the justification in Appendix C).    Then 

<hVl|y|ntj> = <a'i1+i|vA|ar1>&ßß,6^, + <7 VilvJ-n^.b^, 

The second term in the absolute square of eq.   (III-8) accounts  for the 

indirect photon emission through the intermediate states   |n"Ti">.     It has 

the non-zero contribution only for T\"=T\ and r|"=T)+l. 

-, <n'n+l|v|n"Ti"><n%"|v|nn>   _    -     <n'| VP| n" ><n"nti|HPR1| nn> 

n-Wn^n'^l VEn%" =n>' E   ,-E  „ 
n      n 

I,<n'Ti-H|HpR1|n"n><n"|VP|n> 
+ nVn K ''i:  ■ E -E  „ 

n    n 
(111-10) 
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where we have used E ,  -E =o from the energy conservation delta function 
n'tj+l nT| 

in obtaining the demoninator of the first sum.  To simplify eq. (ill-10), 

the following three assumptions will be made throughout this chapter. 

(i) The neglect of the potentials between the molecules of the same 

kind (i.e., neglect of V^, Vre, and V11).  This assumption is justified 

because these potentials do not affect the photon emission and absorption 

much, although they play an important role in the shape of the lines (pres- 

sure broadening). Under this assumption, eq. (III-10) becomes 

I <n' ri-t-11 V | n" n   > <n" TJ" | VI nn > 

nrfEn'V nWKr^nVl E^-En'V 

- r<ß Vi|ve|ß%><a'ß"|vAp|Qß> + <Q'ß' Iv^lctß "Xß'VlIVelßn^ 

K Eaß -Ea'ß" ^•ß-'V' J 
Br,r 

lelQn I <ß'Tl+l|Ve|ß"Ti><ß'V|V     |ßy>   t ^J'y'IV     |ß"y><ß"T,+ l|vHßri> 1  . 
+ ^] 9.     -V   ..   . F   .    .-F   .. 5Oa' P*\ Wh'y' Eß'y^V- 

^ y r<7' r^11ViIy"n><o' 7" I/11ar >  + <&'y' l^lay" ><y"Ti+l\Vi\yr\> 
E    -E   ,   „ E   ,    i"E     ii 

or 7     07 
Bpp- 

r r<Q'nn|VAIa"n><a"ß' I/''Iaß> + <Q'ß'|VA' |a"ß ><Q"T]+i!vAlan>>l 
Q,l ^"Vß1 Ea'B''Ea"B i yy 

y y )'<Q'T,+ 11VA|a"n><Q'V 1 /11ay >  + <Q'7'I/'IQ''^ ><a"n+l|VAla"> 
<n E    -E  „   , 

cry    a > Vr'   a-r 
&ßß' 
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v r<y'n+l|Vl|y"n><ß'y"|Vle|ßy>        ^ß'y ' | Vie|ßy" Xy'^-t-ll Vj j 
7  ^ ßy   ßV ß'^' ßy 

QQ 

(III-11) 

The first sura accounts for the photon emission due to electrons moving 

in the field of neutral atoms. We shall refer to this as the bremsstrahlung 

of electrons in the field of atoms. This sum consists of two parts. The 

first one corresponds to the emission mechanism in which an electron interacts 

first with an atom through the coulomb potential and goes into an intermediate 

state.  It then interacts with the radiation field by emitting a photon. 

The second part represents the emission mechanism in which an electron first 

emits a photon and then interacts with an atom. The second sum in eq. 

(lll-ll) is the bremsstrahlung of electrons in the field of ions and the 

third sum is the bremsstrahlung of ions in the field of atoms. Each of these 

sums contains two parts corresponding to the same emission mechanisms as 

described above. 

The fourth (fifth and sixth) sum is the dipole radiation of atoms 

(atoms and ions) induced by electrons (ions and electrons). The reason we 

use this terminology is that the emitted radiation comes from the dipole 

transition of the atoms induced by the interacting electrons. 

(ii) The internal states of the ions are unchanged. This implies that 

V.=o because u^i^0 ^or b'=b (see eq. (III-7)). Then the third and sixth 

sums in eq. (lll-ll) vanish and eq. (III-8) becomes 

^Vl|V|nn> = <aVi|vA|aT1>6ßß.677. (111-12) 
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under this assumption. 

For structureless ions, such as hydrogen ions, V^ takes the form of 

eq. (III-6) for Ve.  In this case, the third and sixth sums can be neglected 

as compared to the first two sums because the mass of hydrogen ion is much 

larger than the electron mass. Furthermore, eq. (111-12) is also true for this 

case because the free hydrogen ion, just as the free electron, can not emit 

or absorb nny photon through direct transition. 

(iii) All the cross terms after expanding the absolute square of eq. 

(III-8) will be neglected. 

Under the above three assumptions, eq. (III-8) becomes 

BA, BrAe, Brie, DAe, DAi, 
Ejk)(f^(k)+i) = €^m(k) ♦ tx

D™{K) ♦ «^ .   (I) + \   00 + s.    OO   (nx-13) 

where 

BA, 2n ^ ^ 'J^f^^^V^r^a-vi-*^      *111-1« OB'H 

BrAe(k)=    r 2n D 
_     oa' -h    QßT),cißT) 

ßß'T] 

+ l <a'ß,IVAe|aß"><ß"Ti+l|Vplßn> 

y  <ß'T1-H|VP|ß"Tl><Q'ß"|VAe|Qß> 

^öß-Ea-ß" ? 

ß" ^•ß-'V" 

Brie,, . v    2n ^ 
e (k)  =     Z     — D 

ßß'il 

6(Ea,ß,T1+r
EoßTi) 

•• ,1 luiel 
r<ß'n-n|vP|ß"T1><ß'V|v   |ßy> 

Wr' 
.iei 

+ ^^'y'IV     |ß"y><ß%n|Vft|ßn> 
31 TP _P      .. Eß'v'-Ep"» 

9(,»'^rW 

(in-i5) 

(111-16) 
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DAe,   , y      2n n 

**■       -   := aß     b    ^»^ 
a'ßV) 

| v <Q'Ti-n|VA|a"n><Q"ß V     aß> 

EQß '^"ß' 

7<Q'ß'|V     [Q-ßXü^^llV^ar!- .E 

^'ß'-V'ß 
(III-I7) 

vr'AI(i) ■ i„ ¥ i> 1   J   <Q'n+l|VA|a"r.><Q"7'|VA] \Qy > 

^ry-Vy' 

i'^ilir1'!/»« 
+ I<Q'y|v-   io"/><Q"^i|VA|Q-i>|^(E ,  ,       .     ) (ni-ie) 

are the numbers  of photons of momentum hk nnd polarization \  emitted per unit 

3 BA 
time  from L  ,  respectively, due to  tlr- atorric bound-bound  transition  (e       ), 

i     BrAe\ the bremsstrahlung of electron?   in the  field of atoms   (e )  and ions 
\ 

(e  Br16),  -t-j^e atomic dipol« moment  transitions  induced by electrons   (e      e) 

and  ions   (e%
DAi). 

Since the radiation absorption  due to electrons   in  the  field of atoms 

will be  investigated in Chapter IV,  the reduction of ea.   (lll-l^)  to the 

form used  in Chapter IV is now performed  in detail. 

Let the initial and final states  of the electrons,  the atoms  and the 

photons  in the system be 

|aß>   =   |...n(Ka), n(K'a')... > | ...n(u),  n(u'),  n(u")...> 

|Q'ß'>   =   |...n(Ka)-l,  n(K'a')+l...> |...n(u)-l,  nCu'Wl,  n(u")...> 

,>   =   |...^(k)...> 
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|T1+I> - I ...nOO+i... > 

where n(Ka)  is  the occupation number of the atoms of the external momentum-Rk 

and the internal state   |a>.    n(u)  is the occupation number of the electrons 

of momentum-Ru and  same for IL(J^)<     One of the  intermediate states  of the 

electrons  for which the matrix elements  in  eq.   (III-15)  does  not vanish is 

|ß">   =   |...n(u)-l,  n(u'),  n(u")+l...> 

From eqs.   (III-2)  and  (III-6),  eq.   (III-15) becomes 

^ 
-} "».it.«    a? I > KaK'a'    T9 2 — —  ,      L m CJD 

uu Iä-ä"I ("ku-k't'^-V 
s K 

^ 6K(K-K,+ul-,u')6K(u-u,ik)Qa.   (uV) |2/ 
♦    L   ^--  a a--    u'ex\  biEvz'-Ete+Eu'-Vn+te) 

where 

a N(u)N(Ka)(f (k)+l). 

^ .a(u-u')  =<a'|z.  I  ei^-H')^!^. 

N(u), N(Ka)  and f  (k)  are the numbers  of the  electrons, the atoms  and  the 

photons  in  L  ,  respectively.     In obtaining the above equation,   ri(u )  and 

n(Ka) have been neglected in comparison with unity and the statistical average 

over the initial particle and photon states have been performed.     For non- 

relativistic electrons one can replace &K(ü"ü"is) ^y 6K(U-U').     it means 

that the recoil momentum of the electrons can be neglected.    Taking the 

sum over u" after this  approximation  is  made,  one obtains 

BrAe/ BrAe/ •KW ■ B^^QOUxOO+D (111-19) 
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where 

BrAe 00 =    I 
-       KaK a' 

uu' 

— 1 Ku-U')»C   ' 
T9  2 ^ 
L m CJD u-u 

&(EIf'.'-
EifQ

+E
11'-

E„+R:D)  N(u)N(Ka) (111-20) 

is  the transition probability per unit time for emission of a photon of 

momentum fik and polarization \ due to the bremsstrahlung of the electrons 

in the  field of atoms. 

Using the  following properties 

^ 
KedyK       (2it) 

d'K 

I? 

eq. (111-20) can be written as 

wnere 

EK
BrA°(k) = Cx

BrAe(k)NAN( 

C BrAe(k) 

(111-21) 

2 

252- /d5K Jd\'   /d3u /d3u' I  Pel,-^—- q^ MA(K)Me(u; 
i.l ÜÜ 

a BCK-K'+u-u^bCE   -E ^E -E Mb)) 
K'a'  Ka u'  u (111-22) 

^  = u-u' and q = q^e . 
A.     "A. 

N. and N are the number densities of the atoms and electrons in the system. 
A       0 

P ■H(t)|N. is the ratio of the atomic density in the internal state |a> to 

the total density of the atoms in the system. It can be interpreted as the 
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probability of finding the atoms in the state |a> . M^(K) and M (u) are 

3 5 the distribution frequencies of the atoms in d K and of the electrons in d u, 

The further reduction of eq. (111-22) will be found in Chapter IV. 

In the same way, the transition probabilites per unit time for photon 

emission due to the other mechanisms as described in eqs. (HI-lM, (lV-l6), 

(HI-IT), and (lll-l8) can be written down. Letting the ion density of the 

system be equal to the electron density the total transition probability 

per unit time for emission of a photon of momentum fik and polarization X. 

due to all the significant mechanisms under the assumptions made is 

yk) = ^M(k)»A * IC^Ck) * (^(k) * C^
A1(k)) NANe 

* C ^(k) N 2 
\    -  e (III-2; ; 

where 

C BA(k) - ^SSL    /A l  p^ r^f, d2,  (k)Ma(KV.(E8.-E.i^.   T X  -    OD        aaa  a'aaa\-A—   ö   '     I II-2i*j 

Brie, Bw fJ.J.,3J  . i'*u 
-(k) = ~- /r/d^i'd^ud u' 7  Pfa L-^  tL   M.(i)M fu' 

b  • b -  qi+    \ 1 - e - \ 2 5 m a) 

■ 6(i-i'+ü-ü')6(E/-b--Eib
+E

u'
Eu+'f:xJi;: (III-25 

DAe( ) = 8n^ /dVKld5ud5u, r p r 
\   -    2  J a aa, 2;. 

( 

a)a'a',da,a"\Qa"a^; 

^a'a"^ 

03 „ d „ Q . «(a) a a a aX a a ~ 

a a ) 

M (K)M (u) 
———^ 6(K-K'+u-u') 

■ ^V.'-W^u^ (III-26) 
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c-(*: 
-fl CO 

/dVk'd5id5r Zpa ^r-^^- 
■ib 

; 
(0 ,i -Hü a a ) 

■ M (K)M.0)&(K-K,+^-i')B(E^, ,-E +Ef,-Ef-Hfa)J (III-27; 

df, v - |d . -el2, Q2,^) - |<b'|z-Zf1ei^-J|b>|?. 
aaX   —aa—X'ob-1 A = I 

In eqs. (111-25) and (111-27), Pb= -*—^ is the probability of finding an ion Ne 

in the state |b> and M^^/) describes the distribution of the ion velocities. 

3.  PHOTON ABSORPTIUM COEFFICIENT 

It has been shown In section III-2 that the transition probability 

per unit time for emission of a photon of momentum fik and polarization \ 

due to all the significant mechanisms E (k) is given by eq. (111-23).  It 

is possible from E (k) to calculate the absorption coefficient for photons. 
\ 

This calculation is now performed. 

If '.i  is assumed that the medium is Isotropie, then the absorption 

coefficient for unpolarized photons is 

Q = -r^F /d  (A (k)-E (k)) 
one \   K \ -  \ — (111-26) 

where A (k) is the transition probability per unit time for absorption of 
K 

a photon of momentum flc and polarization \. 

For MA(K), M (u) and M, (_i) being Maxwellian distributions and for the 

-F /0   -F /Q 
internal states of the atoms (ions) populated as e a/  (•    ) where 0 is 
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is the temperature of the system in energy unit, then the absorption and 

emission transition probability are related by the equation 

A (k) = e 0  E (k). (111-29) 
K K 

From eqs.   (III-25),   (III-28)  and  (lII-?9),  the absorption  coefficient  can 

be written as 

a =  C N.   + C.N.N    + C0N o A 1 A e 2 e (III-50) 

where 

G    - ^i Z /d-OC  ^(k) 
o        one    \ k A.      — 

ft'JO 

e 
e    -1 v   ,,       f/, BrAe,   ,   „ DAe,   x  „ DAI,   ., 

c, =-^-—T Jm   [c       (k)+c      (k)+c      (k)] 1 one    ,K\ —      K K        — 

(III-31J 

(111-32) 

; 

c„ = ""^/d^c Brie(k), 
8nc k K un-35) 

It. TIME-DEPENDENCE OF a 

A plasma will vary with time and eventually die out if there are no 

external devices to maintain it.  The absorption coefficient a is a function 

of time.  The possible parameters in eq. (III-50) which may depend on time 

are the neutral and electron densities, the temperature of the medium and 

the probabilities P and P^ of finding respectively the atoms and the ions 

in the states |a> and |b>. Since plasma temperatures are known to be 

sensitive functions of time for most cases, C0, C^ and Cp are time-dependent. 
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In this section, we shall investigate the time variations of the quantity 

y(t) 
aitl 

NeoCl(t; 

instead of a(t), by assuming that the.neutral and electron 

densities satisfy, respectively, the simple differential equations 

dNe(t) . _ N2{t) 
dt     7o e^ j (III-3U) 

Skill -_ rftH2(t; 
dt      ' o e (111-35) 

where y0  is the recombination coefficient of the electrons with the ions. 

The solutions of eqs. (111-3^) and (111-55) are 

N 

AV ^   Ao  1+7 N „t 'o eo 

(111-56) 

(111-37) 

where N  and N. are the respectively the neutral and electron densities at 

the instant of the plasma formation.  The substitution of eqs. (111-36) and 

(111-57) into eq. (III-JO) gives 

where x = 70Neot, y(t) - oKt)/*J0C1(t)l \ ■ NAolNeo and u(t) = ^{'^/C^t) 

are dimensionless positive numbers.  In obtaining eq. (lIx-58), the di- 

rect bound-bound transitions of the atomic electrons, i.e., the first term 

in eq. (III-30) has been neglected. The reason for neglecting this term 

is that it represents the atomic line absorption, and hence is negligi- 

ble when the frequency of the photons is far away from the line fre- 

quencies. In eq. (III-58) \  is the ratio of the neutral to the electron 
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density, a quantity of measuring the degree of ionization of the medium at 

the instant of the plasma formation, yi  is the ratio of the inverse brems- 

strahlung due to an electron in the field of an ion to that of an electron 

in the field of an atom if the contributions due to induced dipole transitions 

are negligible (see eq. (1X1-32)).  In the case that C (t) and C (t) are 

sensitive to the time t, their ratio, M(t), may be insensitive to t because 

the numerator and the denominator are both time dependent through the tem- 

perature in the Maxwellian distribution of particles. We shall assume that 

(j is constant, then a maximum of y in eq. (111-38) occurs at a value 

provided \+2^1 because >., pt and x are positive numbers. The variation 

"eo-ix'' " " "D   "       "■ 

\=l/9 and |i=o, l/9, 2/9,  3/9 and k/9.     If the dependence of plasma tem- 

2 
of y(t)=a(t)/n C,(t) with time is shown in Figure 1 for the plasmas with 

perature with time is known, the variation of the absorption coefficient 

a(t) can be obtained through the calculation of C (t). 
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Figure 1. Variation of a(x/70Neo)/NeoC1 with the time after the forma- 

tion of plasma. 

' 



CHAPTER IV 

RADIATION ABSORPTION IN PARTIALLY IONIZED HYDROGEN 

GAS DUE TO INVERSE BREMSSTRAHLUNG OF ELECTRONS 

IN NEUTRAL ATOMS 

(12) 
In 1967 Akcasu and Wald    investigated the radiation absorption due to 

the inverse bremsstrahlung of slow electrons in the field of neutral atoms. 

Since the temperature of the system they investigated was low (6~lev or less), 

they assumed that all the atoms in the system are in the ground state, the 

energies of the electrons are insufficient to excite an atom from its ground 

state to an excited state, and the elastic scattering cross section for 

electron-atom collisions appearing in the absorption formula can be approx- 

imated by its value at zero electron energy. Under these assumptions they 

calculated the various absorption contributions due to inverse bremsstrahlung, 

induced dipole transition, and exchange and interference effects; and found 

that the last three contributions for low temperature system are negligible 

as compared to the first one. 

(15) 
For hot plasmas, such as the one    produced by a giant pulsed laser 

beam which we shall discuss later, the temperature of electrons in the plasma 

is about 20  eV. At such temperatures, the above assumptions made by Akcasu 

and Wald cannot hold.  It is the aim of this chapter to consider the problem 

for higher electron energies.  The atoms in the system are allowed initially 

and finally to be in any excited state as well as in the ground state.  The 

electron energy dependence of the elastic and inelastic cross sections will 

be also taken into account. However, only the absorption due to 

^ 
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the inverse bremsstrahlung of high energy electrons in the field of excited 

and ground atoms shall be computed.    The other contributions, such as 

induced dipole transition, etc., which at high temperature might not be 

small as predicted at low temperature, will not be considered in this thesis, 

1. ENERGY INTENSITY OF EMITTED RADIATION 

In section III-5, we have obtained in eqs. (111-21) and (111-22) the 

transition probability per unit time for emission of a photon of momentum 

ftk and polarization \  due to the bremsstrahlung of the electrons in the 

field of atoms as 

2 

\(i0 ■ ^rr /d3K /A' Z*3«' £ N(a) % -^-r— qf Mi) 2 3 
m ud 

-<       h        ^ "Av-' 

6(K-K'+u-u')5(E„, ,-E, +E ,-E+ftju) 
     Ka' Ka u' u 

(IV-1) 

where Nfa)=NAP is the number of the atoms in the internal state la>.  In 
A a ' 

eq. (iV-l) we have dropped out, for the time being, the integration N /d uM (u) 

which accounts for the effect of the Maxwellian electron distribution in order 

to simplify the writing of the expressions below. We shall resume this 

integration later in section (IV-1;). The superscript BrAe in eq. (III-21) 

for indicating the contribution due to bremsstrahlung of the electrons in 

neutral atoms is also dropped out for the same reason. 

For an Isotropie medium, the energy intensity per unit energy emitted 

in all directions and in two polarizations is related to E (k) by the equa- 

tion 
(12) 



S(fcü) = 

t.7 

C^gn)3   k ^ K 
(IV-2) 

where u     is the direction in which the photon is emitted.  Recalling that 

q "a'C. , one has 
K K 

fan     T     ?       Sn     2 

and eq. (IV-2) becomes 

6 
Sifw) = ^C" , / dK5/d';K' /d3u' q£?ZN(a) F , (q )Mn (K)6(K-K

,+u-u' ) 
2_^ nn'     aa   A-  

3nm c aa 

{ 

a 6(EK-EK,+A) 

where 

and 

P  (Ä) - |<a'|z- {;ei^-^|a>|V 
a a J = 1 

(IV-3 

A - E -E ,+E -E .-«U 
a a  u a 

For a medium in thermal equilibrium, the atom momenta, fik, are distrib- 

uted according to the Maxwellian distribution law, i.e., 

e   TWT d-'x 
z - 5 fi?K2 

MA(K)d5K —^ (iv-i»: 

5 3 and the  integrations  over d'K and  d K'   in eq.   (IV-3)  can be carried out 

8   fro)  --     =£■   ■   /d\r   q0)' N(a)F 
3jim c' 

r      ra)vM     - up (r     Ry  ) 
■i'i -ftqvPnO 

ME 
(IV-5) 

u a 3 f' 
where x = —r" and y ^ -i. Since d u '  = —^ u'dE  -d1    . ,  the  Integration over 

m© u +, u    —u • 

dfi   ,   can be performed and eq.   (rV-5)  reuuces to —u 
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1 . r.    2 x  - A  m g,* , ^V     /  £_1       111    C \ 

B(ftD) = — O5 -^ /dE , /qmax dqq
2 I  N(a)F , (qK-)^ e' ^P ^ " M ^ ^ 

5   - 2   u  q ,     mm* a a   JT /TTT ^ \ ftu        min    aa (IV-6) 

e2 
where a = -r- is the fine structure constant, q .  = u-u1  and q   = u+u'. 

•fie mm max 
M 

As a result of the large mass ratio — of an atom to an electron, the 
m 

quantity x is a large number in most cases.  Therefore one can approximate 

the exponential factor in eq. (IV-6), 

i 

/x\? x    / ^      m 2\2i k ^/ A   EL\ 

The last term, my/2M,in the argument of this delta function accounts for the 

recoil energy of the atom.  Thus eq. (IV-6) includes the effect of finite 

atom mass. However, for the sake of simplicity, the atoms in the medium will 

be assumed to be infinitely heavy for the remainder of this chapter.  Then 

eq. (IV-6) becomes 

Kite) = ^ O5 — jdEu' /qmaxaqq5 I N(a)F . (q)&(E -E ,♦! -E ,-*JD)     (lV-7) 
5   mu o    qmin    aa'    a a     a a  u u 

2.  DIFFEPENTIAL CROSS SECTION 

In this section, we shall express the energy intensity of emitted 

radiation in terms of the differential cross section for electron-atom 

collision. During collision, the electron momentum changes from-Ru to-Ru' 

while the atom simultaneously undergoes i transition between the initial and 

final states |a> and |a'> for which the atom internal energies are E and 

E ,, respectively. The differential cross section in the laboratory system 
a 

f 17 i ft 1 
of coordinates for such a process can be defined  '   as 



1*9 

a  , (E ,E ,,q) dn   ,dE , 

.JLJ^ 
(IV-8) 

F . (q)6(E -E ,+E -E .)dO .dE 
i 2 E   z'a^'   v a a'  u u' -u'  u 

where dfl , is the element of the solid angle in the direction of u' and 
—u — 

fi2 
a =   is the first Bohr radius of hydrogen atom.  The macroscopic diff r- 
0  me2 

ential cr :a section for the scattering process can be defined as 

Zaa'(Eu'Eu^) = N(a)0aa'(lVEu"q) (IV-9) 

Since the various atomic transitions accompanying scattering processes 

remain unseparated experimentally, the macroscopic differential cross leetica 

is ob'.ained by summing *.he  eootributloni of trftBSitioni to all tdmlMibie 

final spates cf the icSttcring a*cm as 

JT; I  (E ,E ^q) = -^N/r^ Z,  N(a)F , (q)ö(E -E ,+E -E , ) 
a u' u''    0 2 E  a     a a     a a  u u 

TV-' >) 

Then the total macroscopic differential cross section cf an electron scatt' red 

by the atoms in all possible initial states is 

^£ E (E ,E ,q) = -^V-r- T    N'a)F . (q)5(B -I .+E -E  ). v u' u,M/  Q 2 En aa'   ' a aVH/  a a'  u u 
ao 

In terms of the differential cross section, eq. (lV-7) becomes 

(IV-11) 

B(«h>) = Z   S    .(fto) 
aa'    aa 

(IV-12a) 

where 

Saa'(w) a . I ^2 ft.   ßE    J—Ji- f*mx dq>,5 r   ,(E ,E , ^,q) dv-i»; 
5        o mu    6    u      E  (-*fu)    qmin aa'    u' u' 
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/  ?      / E 
S(fta)) H i c^a

2 A- /dE , 7—^- /^^dqq3 Z (E ,E Hto.q). (lV-12c) 
5   o mu •'o u'  E , 4floD q .        u * u   ' ^ 

u      mm 

If ail the atoms in the medium are initia]ly and finally in the ground 

state as assumed by Akcasu and Wald, eqs. (lV-7) and (lV-8) become in this 

case 

rw* i  „, 16 5 ft foo   r
qmax 

A3    mu •'o u' Jqmindqq'F(q)6(Ei-Ei,-riüi)     (lV-15) .J„daq"F(q)6(] 
u u 

k 
a(q)  F(q) (iV-U) 

ao 

where F(q) denotes the matrix element evaluated with respect to the ground 

state of the atom and N is the number density of the atoms in the system. 

Equation (iV-lii) is just the microscopic differential cross section of an 

electron elastically scattered by an atom in the ground state.  In terms 

of the velocity, v^ulm, of the electron, the integral microscopic cross 

section can be written as 

2mv 

a(v) = ^f J1 F(q)du= 8n(^-)2 /*  qF(q)dq.       (17-15) 
a2 -1 aomv   0 
o 

Combining eqs.   (IV-15) and (lV-15)  gives 

„/.   \      «    ib    3 2 ,m.3  1   c" f
vmaxJ    3  r   /   x      v da . I(te) = NA Tya0 (-)    - /dEu.   /^dvv    [aCv) + - -  j 

B 6(E -E   ,-f/i)) (IV-16) 
u    u 

V+V' JV-V'  1 tmmm      S\ 
where vmov = ~~Z— and »_•_ ■ '*■ k.    Eq.   (IV-16)  indicates that the intensity 

iTioix p Bu n p ■ 



V* 

51 

of the bremsstrahlung is not determined by the value of elastic scattering 

cross section at the incident electron energy, as might be expected in- 

tuitively, but it depends on the variation of the cross section in the 

velocity region (v . -v  ). Tf a(v) is slowly varying up to the incident 

energy of electrons, one can approximately evaluate the integral over dv 

in eq. (lV-6) for a low temperature system 

1 

B(B») - NA^a(o)c(^)
3/2(2.f )(l-^)ia       (IV.17) 

mc       u    u 

where a(o) is the cross section of the electron elastically scattered by the 

atom in the limit v-»o. Equation (IV-I?) is identical to that obtained by 

(12) Akcasu and Wald  'by the partial wave method. This identity shows that the 

method of this chapter by using plane wave for the electron wave functJ n 

will yield in the above approximation the same result as obtained by partial 

wave method if one uses the experimentally measured scattering cross-section 

of ground state atoms in both methods. 

Although eq. (IV-16) is obtained by assuming that all the atoms in the 

medium are initially and finally in the ground state, it is also applicable 

to the atoms being initially and finally in the same excited state.  In 

this case, a(v) in eq. (IV-16) is the cross section of an electron elas- 

tically scattered by the atoms in the excited state and N is replaced by 

N(a), the number density of the atoms in the excited state |a> . 

For inelastic scatterings of electron-atom collision, the energy in- 

tensity emitted through such processes can also be obtained from eqs. 

(IV-12) by knowing the differential inelastic scattering cross sections. 

i 



J2 

It is obvious that the energy intensity calculated from eqs. (IV-12) 

and (IV-16) will be more accurate if the experimentally determined cross 

sections are available. Unfortunately, the cross sections are not all 

experimentally measured. We shall calculate, for the sake of consistency, 

all the relevant cross sections in Born approximation even though some of 

them have been experimentally determined.  In order to get various cross 

sections in Born approximation, one has to calculate Faia(q) for various 

atomic states. F
a'a(q) is also contained in eq. (IV-7), the expression 

for the energy intensity of emitted radiation. However, once F .„(q) is 

calculated, one can obtain the intensity of the emitted radiation directly 

using eq. (IV-T) rather than first evaluating the cross section and then 

using eqs. (IV-12) and (IV-16). 

As we shall apply the theory developed above to the hydrogen case in the 

next section, it is suitable here to show some of the electron-hydrogen 

cross sections calculated in Born approximation and partial wave method. 

The elastic cross sections calculated in Born approximation when the hydrogen 

atoms are initially and finally in the ground state |100> as weil as in the 

states |200>, |210>, |211>, and 121,-1 > of the first excited energy 

level are given by 

aioo   1 r 
na          5U    L 

0 

h      2    ~\ 
5U +9ir+7 

(1+^ J 

CT200         1 r     2iob6+ 
2 ~         2 

*a0        52 IT 
200 i- 

-t-lV70b +UjOb +6^^^b^+69^1b +U277b+208L") 

fl+b)7 J 
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ö 
210 2 

550" L 

a21-1        2 
2 ~      2 

«0
8     5U 

70b +l490b5+lU70b +2625b5+50 
2 " 

a211 
2 ' 

(l+b)T 

r              14        5          2            - 
10b +50b^+100b +95b+37 

L                 (ubp 

2     2 2 2      2 2 
where b=ljU and U =u a  with -h u /2m being the incident energy of the 

p 
electron. These cross sections are plotted in Figure 2 together with a,nr. 

which is calculated by partial wave method  *    and agrees well with 

f ?l) 
experimentally measured resultsv''.  a-^QQ was calculated before by Mott 

(17) 
and Massey   %  but for the states in excited levels no elastic cross sections 

for electron-hydrogen collision have been calculated in either Bom approx- 

imation or partial wave method.  Therefore, we had to calculate f^oo» a210 

and 0211 using the Born approximation explicitly for the purpose of compar- 

ison with n-^QQ. For inelastic cross sections when the hydrogen atoms are 

initially in the ground or in an excited state, most calculations in the lit- 

(19 22-27^ 
erature have been performed on Bo.n approximation.   ' ^ '-1 ' 

Figure 2 shows tha". the elastic scattering cross section for the hydrogen 

p 
atom in the ground state cal-ulated in Born approximation is less than C-,QQ 

which agrees well with the measured values. The discrepancy becomes large when 

the incident energy of electron decreases. Furthermore, the elastic cross sec- 

tion for the atom in a higher level is much larger than that for the atom in 

a lower level because the size of the atom is bigger.  This may cause a larger 

radiation absorption when atoms are mostly in excited states as in the case of 

a hot plasma. 
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Figure 2.    Elastic cross sections for hydrogen atom in the states  (l00>, 
l200>,   |210>,   |211>,   |21-1>. 
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5.  Z N(a) F , (q) FOR HYDROGEN ATOM 
a a     a a 

As mentioned above, F , (q) of an atom or the scattering cross 

section of eiectron-atora collision plays an important role in the energy 

intensity emitted due to electrons moving in the field of atoms. Since 

we shall compare the radiation absorption coefficient, which is related 

to the emitted energy intensity (see later), to the measured values 

in a hydrogen plasma, we need to calculate  E N(a) F , (q) for the 
a a     a a 

hydrogen atom. Let a wave function of a hydrogen atom be labeled by |nim> 

where n,i, and m are, respectively, the principal, orbital angular momentum, 

and magnetic quantum numbers. Since the wave function of a hydrogen atom 

2 
in the energy level En has n degeneracies for a spinless orbital electron, 

one can write 

I   N(a)F . (q) - { ^ |<n'i'm'| l.eiq,r|n/m> |2     (XV-lS) 
aa1    a a    nim 2J* 

B'lV q 

where r'(n) is the number density of the hydrogen atoms in the energy En. 

In writing eq. (IV-18), we have assumed tyiat the states of the hydrogen 

atoms with the same n but different possible values of / and m are equally pop- 

ulated. Expanding the absolute square in eq. (IV-18), one can write 

Z(N(a)F  (q) =^1^ {G(n,W) ♦ E G(n,n;q)}     (17-19) 
aa'    a a     q n n

2 n'/n 

where 

G(n,n,q) '  n?2Re Z <n/ra| ei2-,-|n/m> + E ^n/'m'|ei£-|nim> | 2        (IV-20) 
im im 

i'm' 

« 
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G(n,n;q) « Z ^n'rm'| e 2--|nim> | . (IV-21) 
im 

I'm' 

Although the elastic cross section for hydrogen a^otn in the ground 

state and some of the inelastic cross sections when the atom undergoes 

(17 22-27) 
certain transitions have been calculated,  '      there are no explicit 

expressions for G(n,n>q) and G(n,n^q) available in the literature except 

for G(l,l,q), G(l,2,q), G(l,3,q), and G(l,U,q).  In order to get G(n,n,q) 

and G(n>njq) explicitly, for other values of n and n' we shall use the 

method introduced by McCoyd, Milford, and Wahl    which we present below 

for completeness. 

By introducing the normalized hydrogen atom wave function |n/m> = 

I n.(r) Y^m(n) and expanding 

00 

;
ii- - Z [M2p+l)]2iPJ   (qr)Y    (£), 

p»o po 

one can write 

^'i'm'le1-2-!nim> 
t±t' 
Z       K   tm   f.<   K n» n'/'(c3) (IV-22) 

where 

*m   tm   I*.«   s  iP[^(2P+l)f /Ynn(£)Y .(£)¥*. (£)d^ p^/m,/ m po —     /m —    / m   — 

.p+2ra '(•»D^tKlM«'«?^^)       (IV-2,) 

'1 2 3\ 
withf ) being the Wigner "5j" symbol,  and 

m mm, • 
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K  mt   n'/'(q)   ■   /Nn/(r)N!w(r)   ^((lr) 
p,nz,n z on*        n * P 

r dr 

R      .    i.(7')"A   .     ..i   Jx e    j   (rx)L      .(cx)L    ,   ..(c'x) p,n/,n,iw/        ni,n'i'  •'o p n+iv n' + i" 
dx (IV-2J+) 

In eq.   (IV-2U), J   (yx) are spher.'.cal Bessel functions,  L      are the associated 
V ' n 

Laguerre polynomials and 

2   si,   2   A%,*tP* A*l%*l        * 
nz,n  £ na        n a n+n 

' 00 

MM., 
ni n'/' 

M      . .["(-g-^n-i-l):] 
n/ |jna0

; 2n(n+i):J 

1 
2 

(IV-25) 

ß =  /+i,+2,   c'  = 2n/(n+n'),  c = 2n,/{n+n') y = qaQnn'/{n+n') 

From eqs.   (IV-22) and  (IV-23),  one can perform the summations over m 

and m'   in eq.   (IV-21) by using the orthogonality property of the 3J   symbol, 
(28) 

m1=-J1 m2=-J2 K\*2y V1! 
J2J

5
,N 

2iSl   V3     m3ra5' 

then eq. (IV-21) becomes 

G(n,n;q) = Z ^n'/'m'| eia--| n/m> |: 
Im 

(IV-26) 

Z  lRn n/ n.,.(q)|
2(2P+l)(2m)(2i,+l)(

Pii)2 

When the Laguerre functions are expressed as polynomials (29) 

2i+i n-l-I 
Ln+1    (P) =    Z      (-1)S+1 

s=o 

SistiXX 
(n-/-i-s):(2/+i+s):s 7PS (IV-2T) 
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the radial Integra] In eq. (IV-<?U) reduces to sums of integrals which in- 

tegrate directly in terms of hypergeometric function 

The hypergeometric function F(a,b,c,z) is the analytic solution of the 

hypergeometric differential equation  ' 

l(fl)F" ♦ [(a+b+l)z-cj F'+abF = o. 

About the singularity z=o, it takes the form 

ab    a(a+l)b(b+l) 2 ,    * 
P(n,b,e,t) = i + T z + tf^B 

; S ♦ ...     (IV-2Q) 

where |z|<l  Then F(a,b,c.7,) will be a polynomial when a or b is a negative 

2i+l ,  N integer.  For the terms having the odd power of x in the product of L    (ex) 

2*'+l                         P+l-ß' and L ,   (c'x), one can prove that b = ■  is a negative integer and 

b<-l.  Therefore the radial integral of eq. (IV-28) will be a polynomial for 

these terms.  If a  r t is not a negaiive integer, F(a,b,c,z) should be 

expressed about th« sit.g-.larity at z=l instead of z-o 

(lV-30) 

TKclPla+b-c)   /,     Nc-a-b „, .   , w ,     * 
*    n(a)rrb)—   (     z) F(c-a,c-b,l+c-a-b,l-z) 

then r'(a,b,c,z)   is a polynomial   in   (l-z) because c-a  is a  negative integer 

2/+1 
or zero  for the terms  having the even  power of x  in  the product of L (ex) 
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2t ' + 1 
and L ,        (c'x).    The first term in eq.   (IV-JO) vanishes becausepCc-a)-»*» 

when c-a approaches a negative integer or zero. 

With the tabulated values of the "5j" symbols and the above described 

calculation of the radial integral, one can, in principle, find G(n,n,q) 

and G(n,njq)  for any values of n and n'.    It is obvious that the calculations 

for large values of n and n'  are tedious.    We shall calculate G(n,n,q) and 

G(n,n;q) only for ^^ = 1,2,5 below. 

From eqs.   (IV-20),  (lV-22),  (IV-23), and (IV-26) and from the tabulated 

(32) 
values of the "3j" symbols, one can obtain (see Appendix D) 

G(l,l,q) =   a-R0,10,10>))' (lV-3ia 

G(l,2,q) = 4,10,20{^ + ^,10,21^) (lV-5ib) 

G(l,5,q) = «o,10,3oM + 5Rf,io,51^) + 5R2,l0,32((l^ (lV-3lc) 

n(2,2,q) = ^2R0^0^?0(q) ♦ 4,20,20,^-^0,21,21,^' 

+ 5R0,21,21(q) + 6R2,21,2l(^ + 6R?,20,21^) (TV-51d) 

G(2,3,q) = Ro,20,30^ + 5R?,20,51(q)  +  ^2,20,32^ + 5Rl,21,30^) 

+ 5Ro,2l,3l(q) + ^l^ljl^ + ^1,21,32^) + 9Rf,21,32(^     (IV-^e) 

G(3,3,q) - 9-2R0^0^0(a) ♦ Ro,3o,30(q) -6R0,51,31(q) + 5R0,51,31(q) 

50 D2 + «s^iy«) -««o^y«) ♦ ^/32(52u) * f K&MM 
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+ ¥ R?,52,52(^ + 6R?,30,5l(q) + 10R1,50,3 2^) + 12Rl,5l,52(q) 

l8R
5,51,52<q)- (iv-51f) 

where R      ,     ...(q) are determined by eqs.  (IV-2M thru (lV-50).    From 
j)fnltn  I 

straightforward   but tedious manipulations, one obtains R ,,,{q) for 

n and nl»l,2,5 with the following results: 

B0,10,10^ 

R0,10,20^ = 2 

Rl,10,21^ 

R0,10,50(q) =     ,,_2,k 

(1 + 

2 2 

XL 
a   2 

„202 
q  ao 

2 
{9+Uq

2a20f 

13 
a   2 

1 
7      qa ,2        H o 

2 

1 

a 
(9+4q a 

^5 

5V< ^5t
2) 

(«+!) 

«iWui -»«a* ^ 
(**i > 

5   I 

^,20,20^) " 

14  14       2 2  , 
2q a  -3q a +1 o o 

(HA*? 
1 ^   2 2 .. 

,   ,       J qao(q  V^ 
Rl,20,21^ " 5       f" 2 2^ 

(1+q  • J (IV-52) 
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R0,21,21^ 

2 2  . 
q a -1 

R2,21,21(q) 

o 2 2 

2q a
9 

(1+q  *0) 

Ro,20,50^) 

-1 

5
6     7 dn2)5 

R
l,20,51(q) 

'    5
6 (l^2)5 

R2,20,52(q) 

"l.Sl.JO^' 
5
6 dn2)5 

^10,2    2,,   8 _, 
R0,21,31^^    56        ^f 

llz2    S/. 2 .» 
,  »     2 5   7 (3y -1) 

2>21^i 56       ^^2)5 

ll,21,52(q)  ■      J4 
2^!zill!z5l 

(in2)5 

,(q) 
^^3 

5,21,52-'      5i5/2 (^2)5 
(IV-52) 
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sdn2)6 

'1,30,3^) • j tttda^aa!^ 

«k.A_« 
);31)51(„.. ^ ^aj^a 

Jdn2)6 

"»^lO - ^ s^^f2' 5     dn2)6 

H#,x „(„.. £ -üIWM) 
5    (m2)6 

5-51,52 3       (in2)6 

5(1*1 r 

,5     .2,,.2 
R. ..  .0(q)  .  - ^—   I   (5r-7) 

2'52'521- 3-5   ,...2,6 
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where | = -qa    c -.d 7 » -qa   .    The substitution of eqs.   (IV-52) into eqs.   (lV-51) 
2    o 5o 

gives, by a straightforward manipulation, 

G(l,l,q) -  {1- 

&J 
(IV-55) 

G(L,2,q) - 

J3 2 2 2    q a 
o 

(9^qV)5 (TV-5IO 

_/,  ,    v      8bc(5x+2) 9    2 2 

(^+x) 
(TV-55) 

G(2,2,q) =  2x(1fx+-^-+       10 

(1+x)2      (1+x)^      (1+x) 
7}   , x-qX      (IV-36) 
b o 

G(2,3,q)  ■ ^l x{ 
2lV:„f_5l5_     ^160   ..il^Lj    x = 56 2a2(lV-57) 

'/'      (1+x)5      (1+x)6     (1+x)7' 
25"   o 

G(5,5,q) ■ «(' JL ♦    9     +    a     ♦    te . . -256. 
1+X      (1+x)2      (1+x)5      (l+x)1*      (1+x)5 

260 UP IkO    . 9 2 2 
+  _ +   _  -}   , x = ^q ao 

(1+x)6      (l+x)T      (1+x)8 
(IV-38) 

Equations (IV-J^) and (lV-55) are identical with the results obtained by 

(22) (17) 
R. McCarroll    using a method introduced by Mott and Massey.v 
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k.    RADIATION ABSORPTION IN PARTIALLY IONIZED HYDROGEN PLASMA 

With expressions of G(n,njq) obtained in the last section, the energy- 

intensity emitted for the atom undergoing the transition from the level 
5 1      Eu 

E to ERi and for Maxwellian electron distribution 2Tt(n0)   NgEy e  can be 

obtained from eq. (IV-7) 

Snn.(ftu) = 
}/ fi no?      m     .*  - -5- .*   ^max dq N(n) .       .   , 

^min    n 

&(E -E +E -E ,-feb). 
n n'  u u' (IV-59) 

Since the radiation emission coefficient per unit length for an isotropic 

medium and unpolarized radiation is given by 

E(te] = -— /do I Ex(k), one   K ,  ^ — 

one obtains from eq. (lV-2) 

(IV-1+0) 

2 2 
Enn («») = n c 

0.5 
Snn .(to) 

- 
52   ; 
3^2 

«2 3 n n 

(nGm 

N 
e 

00 

/dE 
0    u 

■ 6(En -En' ^u-Eu -to)) 

9 ,°°   c^max dq N(n) „.       , » 
/dE , /    -f -«* G(n,n;q) 

^min 

(IV-1H) 

for the particular emission process E^j+E^Eyi+E^-Hti). Its inverse process, 

i.e., E ,+ E ,+to->Eu+En, is the one for radiation absorption, and the absorp- 

tion per unit length can be obtained by interchanging (u,u') and (n,n') 



n n     3^2 («em) ^o)5   0 o u'clmin q n'2 

■ &(En.-En+ Eu,-Eu+hi)). 

Then the absorption coefficient, i.e., the net absorption per unit length, 

is (by noting that G(n,n,,q)»G(n;n,q)) 

(IV-1+2) 

v^ • v«^ ■ V^ 

ITSr—^/2JJ     ei    u0    u       qmin   Q 
5^2 (nöm)"   DBT 

Eu Eu'-Eu 

n n' 

For thermal equilibrium, the number densities of hydrogen atoms  are populated 

as En1"En 
N(n') _ ^ e        © 
N(n) 2 

(iV-lili' 

then 

a nn 

to Eu 
c ^      "   0    r00 f^max dq N(n)     ,       ,   \ 

.W = NeCo(ee-l)/odEue ^u.  / f "V ^»^ 

&(En-En,+Eu-Eu,-Ru>) 
(lV-i45) 

where 

Co = 
52      £Jc2J       i 

3^   (nem)?/y  " 
(XV-I16) 
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Substituting eqs. (IV-^J) through (lV-!8) into eq. (IV-^), one finally 

obtains anni(ha)) as 

O (ftp) ■ C (t -Ijto g (ho.O) N(n)N (XV-li?) nn       o nn e »   i / 

for n = n', and as 

a .(to) • C (« -l)hjü g' ,(hJü.O) N(n)N (lV-i+8) 
nn       o nn e 

for n^n'. Here the upper sign of gnn. is to be taken when n<n', and the lower 

sign when n>n'. The definitions of gnn, gj{n- and g^- are given below with 

the convention that g^n' ■ gn'n ■(»,)/*(n)« 

p p hu 
, oo    l+d+  6d ^9d +1  6d+t-9d++l " T x 

g?1(to,e) = ^ /dx{/n --— + —: —-   r]e     ' ilV-h7a) 
6(l+d_)    6(l+d+) 

I oo     l+b+  6b +2kh^+keh2+khh  +1' 
^(t^.e) - - fcu. — .     '      '      ; — 

L ' 2 fo> 

3(l+b+)^ 

i    oo l+S+      5^S +355S5+lü21SJl+li+50S5+1056s2+6icS +177 

55     ' l8 1 I+S- 6(W.)7 

6     --)      k      -^      p is 
5^S++535S++1021S++li450S++1056S++6i45S++l77    '   Q  

x 

6(US+)7 
)e (IV-I47C) 

8^(^,0)  =  P10f* e1    /dx(—^   L  ]e        0      X (lv.L8a) 
1     (9^^?b. )4      (9+^-^+)" 



67 

81 +    + 
g-5(fta),0)  = - f^c /dx 

15 '^»-^   M^M; L - -rx 

8
   15ei5 i   \$««^)3    (e±i/++ 

8,14 

UV 

2~3-    +    +    fl    r^(e^.)?lT8(e^-)^99 

'25 

(IV-i48b) 

575(€^+)-178(.;^+H599 
'25r 

25 
6 

- 7  e 
(IV-JJ8C) 

2manfia) ^      r—^ x2     .        I k      c    _2b 
b± = "T 

.(^^x±^/^1)^  cL+=f b±,  S± = ^ (lV-l47d) 

.Vl1 
56 ± • ■'    n 

^l» V1 

f    ,  « e 
nn' 

ta 
8 for-fr-u < En,-En 

E  ,-E 
n'     n 

for *.üü>En,-En 
(lV-»48d) 

Forfta^E   ,-E  ,  g"     (^,6) will be evaluated by 
n      n      nn 

VEi 

ijg*»,«) - (f>9 e 9  iS l^X-?^01 E
1

<c), (IV-it8f) 

Ei!i 
2 .. 5     ^^  C2( s^.Z;.    6  /j12-6V^ 5cHSe ^=2)V=2'> 

515V1  ' '     013 

(lV-U8g) 
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a    (ha).ö) » »rt- e • f599 , .    „ , . M c   + 1282 c2 _ J^2i c5 

»36   <t     ^8   5 ^    ^   e^l« x 116 i*8   2%_ ,    V1 - —Ä— c    - — c    + c    e ?(—• +   c + ^ c   )E (c   )| 
15     3       5    3       3^5 335    5; r l" 

where 

(IV-li8h) 

9« 2fi 2%L 
'1 9      '    fl 9      •   ^ 

32ma 0 9ma Ö ^      288ma Q 
o o o 

ft  -*y r .V"-{f' (lV-l(8k) 

The above expressions of gj^i and g^i are obtained from eq. (IV-45) con- 

sidering the cases n-cT and n^' separately. The property that G(n,n;q)=G(n;n,q) 

and the population law for thermal equilibrium, i.e., eq. (IV-1+4), have been 

used in obtaining eq. (IV-1+8). The values of E (x) are available in tab- 

(3* + 
ulated form. . g .(fioj.O) and g" .(ftoj,©) are dimensionless numbers which 

nn nn'  ' 

we have calculated numerically. Figures 3 through 11 show the results of the 

computations for g (ftcu,©) and g~ .(fto),©) as functions of-fio) and T. g~ , is 
Tin  '      nn nn 

about 10 times less at high temperature and much less at low temperature than 

nn 

5. VALUES OF g (W©) FOR n>3. 
nn 

As seen in sections rV-3 and IV-i*. the value of g (•ftcjü,©) is obtained 
' nn  ' 

through the calculation of G(n,n,q) which is tedious for n>5. Here we 

shall use interpolation, instead of the direction calculation through the 

method in section IV-5, to get the values of a    (fujü^) for n>3 by knowing 

that the absorption coefficient due to inverse bremsStrahlung of an electron 
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in the field of a neutral atom becomes the absorption coefficient due to 

inverse bremsStrahlung c t an electron in the field of an ion when n goes to 

infinity, i.e., 

lim 
nnv |   a ffim^Oj 
N(n)N N N 

I e 
(IV-1+9) 

BI, 
where N is the number density of ions and a ("hcDjO) is the absorption 

coefficient due to inverse bremsStrahlung of electrons in the field of ions 

a (fta),0) has been given    for hydrogen atom as 

BI,,     „>       8 

5(3«) 

c2 5 E5/2 

I7i T ^o) TTil % NiN
e 

(iv-50) 

where v is the frequency of the radiation, E is the ionization potential of 

a hydrogen atom and g  is the free-free Gaunt factor ' '   depending on 

temperature and the absorbed radiation frequency. With the value of g , 

one can find the upper bound of g  when ntrn  through eqs. (IV-U7), (lV-4yj, 
nn 

and (IV-50). Since we shall compare our calculated absorption coefficients 

with the measured results which were achieved for the ruby laser frequency 

under six different temperatures, the upper bounds are obtained for these 

conditions and plotted as —- in Figure 12 together with g , g , and c 
n2 11      22 ^55 

obtained from Figures 5 through 5.    Then the values of g     for n>5 can be 
nn 

obtained by interpolation on the smooth curve which is connected through the 

values of g , g , g,^ and the upperbound. 

+ 
Since g . is about ten times less than g  when n=l and is eel tine 

nn 

much less than g  when n and n' both increase, the contributions to the 
nn ' 
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IQ" icr3 
lO"2 lO"1 

Tiw(ev) 

Figure 5-    g^^T). 
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IQ"2 lO"1 

"Rw (ev) 

Figure I».    gg2(Aii,T). 
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Figure 5-    L.(i»ff)< 
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Figure 6a.    g^2(4iü>,T), 

: 
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Wev) 

Figure 6b.    g^^ft). 
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Figure ya.    g'2(**D,T). 
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Figure 7b.    g'2(^T). 
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Figure 8a.    g    (4mfT). 
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IO-5r 

T)w(ev) 

Figure 8b.    g^ (<xo,T), 
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Figure 9«.    g"  (*a),T). 



80 

Figure 9b.     g'{4im,T). 
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Figure 11.    g'  {fa>,T). 
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i 

Figure 12. gnn(^5a), T) vs. l/n for ruby laser frequency. 

I 



Qk 

absorption due to g , for n^n' can be neglected as compared to the contribu- 

tions due to g  i With this neglect, the absorption coefficient due to the 
nn 

sum of the contributions in different states is 

a:fw,Q)  « E a (fto.O) 
n nn 

= c (e& -l)fcB N F g (fiD.elNin)  (lV-51) 
o e v nn 

With the values of g [ficD.O) determined above, one can obtain from eq. 
nn 

(IV-51) the radiation absorption coefficient due to inverse tremsstrnhlung 

of e .ectrons in the field of hydrogen atoms if the electron density N . 
e 

the neutral densities  in the different  energy levels N(n) and the temperature 

of the hydrogen plasma are given. 

6,     EXPERIMENTAL CONDITIONS AND THE MEASURED ABSORPTION RESULTS 

In   .^66 Litvak and Edwards measured the absorption coefficient of 

the ruby laser frequency (\»69
1
45A)  for different  initial gas pressures  in 

a hydrogen plasma produced by a  giant  pulled  laser beam.     The output  of the 

laser beam for producing the plasma  is 7 -  5 MW peak p^wer with a pulse 

width of about 18-56 nsec.   A 25-cm focal  length   lens was  used to  focus 

the laser output near the center of a brass  cubic ceil which contains hy- 

drogen gas.    The initial gas pressures befure the-  ilghl   went  m were 114.7, 

35, 55,   115, 215, and 1015 psi.    Although the  initial gas temperature was 

not mentioned in Litvak and Edwards work, we asjime    that  it was room tem- 

perature. 
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The measurements of the absorption coefficients for the different 

initial gas pressures were performed at the peak luminosity which occurred 

near the end of the laser pulse. The electron density and the plasma tem- 

perature for each initial pressure corresponding to the absorption measure- 

ments were also measured. Table I shows their measured results of plasma 

temperature T, electron density N and absorption (aL) ,  for different 
' e obs 

initial gas pressure p . L is the plasma absorption thickness which Litvak 

and Edwards assumed to be varied from about 1cm for IKT psi to 1mm for 

1015 psi. 

In order to explain the measured absorption results, Litvak and Edwards 

also calculated the absorption coefficient a    from the expression 

Q 

5(3«) 
1/2 fi 
- icmr — rr(gff. 

V0V 

2E v 
ff   9  n ^fn 

.n2Q 
)(l-e  Q ) (IV-52) 

which accounts for photoionization and inverse bremsstrahlung of elections 

in the field of ions.  Eq. (lV-5?) is obtained '   from the absorption 

coefficient of a hydrogen atom in the energy level E due to photoionization 
n 

and its inverse 

FI 6ta 2 , E N5    fn /, a      = -rrr- na     (—-)    —-  (1-e 
_3/2 o ^ficu7        5 
5 n 

fua 
9 

)N(n) (IV-55) 

through the use of Saha equation 

.(».(M^/V.^ (lV-5^) 
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where g^ is the Gaunt factor for free-bound transitions.   '    The cal- 
fn 

culated a shown in Table I is two orders of magnitude less than the mea- 
v 

sured result under the assumption that the plasma thickness varies from 

about 1cm for 1U.7 psi to 1mm for 1015 psi. This large descrepancy in- 

dicates that the measured absorption can not be explained by the photo- 

ionization and the inverse bremsstrahlung of electrons in the field of 

ions through the use of Saha equation. 

In the following sections we propose to explain the absorption which 

is measured in this experiment by considering the photoionization process 

and the inverse bremsstrahlung of electrons in the field of neutral atoms. 

In this explanation we shall not use the Saha equation to predict the num- 

ber of neutral atoms in the plasma, but rather we shall determine it from 

an investigation of the explosion caused by the laser pulse. 

7.  DESCRIPTION OS  AN INTENSE POINT EXPLOSION 

It was shown by Lltvak and Edwards from the consideration of the mea- 

sured pressure and energy variations with time that the giant laser pulse 

produces an intense [.   Int explosion with a spherical shock wave.  The prob- 

(56) 
lem for an intense point explosion has been investigated by Sedov. 

o 
After the energy i I 1 lbsorbed into thegM with initial pressure p and 

ma ss density p for initiating the explosion, a shock wave forms and ex- 

pands in the course of time. Sedov defined p , p T and r as the total 
2'   2 . 2 2 

mass density, the pressure, the temperature and the radius of a point be- 

hind the shock wave at the time t after the explosion. Furthermore, 
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1 

I 
Pi 

t0 ■ r0 A) 2 (IV-55) 

and 

r0 = (^)5 (IV.56) 
Pi 

were defined and Litvak and Edwards called them as the characteristic time 

and shock radius at which the counter pressure of the undisturbed gas nearly 

stops the expansion of a spherical explosion. By solving the equations of 

motion, continuity and energy, one can determine the density, pressure and 

temperature distributions (—. -*-, and —) as functions of —, as well as 

P2      Pp 
the pressure and the density behind the shock front (— and —) as func- 

Pl     Pi' 
r2 

tions of / = —. The symbols p,p,T, and r are respectively the density, 
r0 

the pressure, the temperature and the radius of a point between the shock 

front and the explosion center which depend on time implicitly through 

r (t). Reference (36) contains the graphical representations of the above 

distributions for the adiabatic index 7=lJ4. For cur later use and for a 

JL   -L 
P2'  P2

J 

T 
— in Figures 15-15. From Fig. 15, one can see that during the early times 

2 

quantitative understanding of their variations, we reproduce -, —-, and 

after explosion, most particles are concentrated behind the shock wave and 

a negligible amount of particles occupies the central region of the explo- 

sion. 

In addition, Sedov also obtained the following equations 
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O.h      0.6  0.8  1.0 fa 

Figure 13. Density distribution in 
a point explosion behind spherical 

shock wave. 

Figure ik.     Pressure distribution in 
a point explosion behind spherical 

shock wave. 

Figure 15. Tinperature distribution 

in a point explosion behind spherical 
shock wave. 
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7+1 
^   y-l+2ci 

^2  = 2y-(y-l)q 
P1  (7+i)q 

= 25 i_ 
q ~ ^ ^ Q 

(0£j5 t2/5 

for spherical shock wave where q is the square of the ratio of the sound 

speed in the undisturbed gas to the shock wave velocity, a is a quantity 

which depends on y  ana the shock wave geometry. For the plasma in 1Ltvak 

and Edwards experiment 7=5/3, and for a spherical shock wave one can find 

a from reference ( 56) as 05=2. Then one obtains from the above mentioned 

equations 

• 

1.12 
rG 

.2^/5 (2T2) (IV-57; 

52 

"1   8+125/5 
(IV-58: 

where T*t/t   . 

£2      2U0-250r 
5 (iv-59) 

1000/ 

By taking E0 to be the energy absorbed from the laser, Litvak and 

Edvards obtained the characteristic shock radius r0 from eq. (IV-56) which 
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is given in Table I. i'he initial mass density P^ and gas pressure P]_ of 

the plasma are knovm. We calculated the characteristic time t0 shown in 

Table I from eq. (IV-55) which checks with the Litvak and Edwards result. 

In addition^ Litvak and Edwards determined spectroscopically the peak 

luminous volume.  The absorption was measured at the time when the peai- 

luminous volume occurred.  Although the luminous volume has been observed 

to have a nonspherical ahape due to the rapid axial motion occurring during 

the laser absorption, for a quantitative discussion, we shall assume that it 

has spherical Bhtpe and coincides with the shock volume at the instant when 

the peak luminosity occurred (we shall justify this assumption presently). 

Then the radius r of the peak luminous volume can be found from its volume. 

The values of rj t r each initial pressure are given in Table I together 

r2 
with the corresponding values of / = — . Under the spherical assumption 

r0 

of the peak lumln     I une, r« turns to be 0.062cm, much less than 1cm 

which is assiii,-. i l , ; ;ak and Edwards as the absorption length in the 

plasma. We shall i Lat( the total at/s^rption using the value of r-, 

as obtained at ve     tion ..-8. 

In order t  |UE1 ;,. the above assumption, we now calculate the time 

t at which the peak Lumli ifllty occurs (i.e., the time at which the absorp- 

tion measurement Ls taken) from eq. (IV-57) and the value of 1 corresponding 

to the peak Luminosity volume in Table I. The results are also given in 

Table 1. We oLserve that t varies between 17-51 nsec. As we mentioned 

before, the width of the laser pulse varned in the experiment between 

18-36 nsec.  The early part of the pulse produces the plasma, and according 
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to Litvak and Edwards, the peak luminosity occurs near the end of the pulse. 

Hence, the values of t calculated above agree reasonably well with the 

experimental conditions. 

Since t  is small for the time at which the peak luminosity occurs, 

the total mass density Op behind the shock wave, i.e., at rn)   is obtained 

from eq. (IV-58) to be about four times the initial density D,, as also 

pointed out by Litvak and Edwards.  The pressures p behind the shock wave 

at the time the peak luminosity occurs, and at the time t=0.1nsec are 

obtained from eq. (IV-59) and shown in Fig. l6.  For comparison, the pressure 

measured at t=0.j.tisec is also shown in the same figure.  The measured pres- 

sure at t=0.1usec. is six times the pressure predicted by the explosion 

theory at the same instant for the initial pressuresp=lU.7 and 55p^i. 

At higher initial pressures, it decreases and  reaches about the same pres- 

sure as predicted for p-|_=1015 psi.  If one extrapolates the measured pres- 

sures up to the time at which the peak luminosity occurs, a descrtpancy is 

observed between the extrapolated value and the pressure predicted by the 

point explosion theory for the same instant.  Here also, this descrepancy 

is large for low initial gas pressures and small xor high initial pressures. 

This may indicate that the point explosion assumption is better justified 

at high initial gas pressures than at low initial pressures. Since the 

focal volume of the laser beam is elongated in the direction of the beam, 

and since the energy absorption decreases away from the source due to the 

attenuation of initial laser beam producing the shock, an egg-shaped shock 

front is perhaps a more accurate description than the spherical shock front 
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—•— t =0.1 usec, predicted by point explosion. 

—X"~ * = 0*1 Msec, measured by Litvak and Edwards. 

—A— for the time at which the peak luminosity occurs, 
predicted by point explosion. 

i i i i i I XJUL I    I I  ' ■ t i i 
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Pi (atmospheres) 

Figure 16. Relative pressure P2/P1 behind shock front vs. p-^ 
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as we assumed above. Furthermore, the initial volume of explosion which can 

be taken as the focal volume (10 cm") of the laser beam is not negligible as 

compared to the shock volume (8 x 10 cm ) even at 0,1 ^sec. This may also be 

a contributing factor to the discrepancy in the measured and calculated pres- 

sures. 

The point explosion assumption, as pointed above, predicts the lo- 

cation of the shock front reasonably well. Since we need the result of the 

point explosion theory only to estimate the neutral density distribution 

within the shock volume and the shock ox.re in our absorption calculations, 

and since the pressure behind the shock front does not enter our absorption 

formulas, the above discrepancy in the estimation of pressures is not 

critical for our purpose. 

8. ABSORPTION CALCUIATION BASED ON NEUTRAL DISTRIBUTION INSIDE A SHOCK 

WAVE 

In this section, we shall calculate the absorption due to the photo- 

ionization pre -ess and the inverse bremsstrahlung of electrons in the field 

of neutral atoms by using the particle distribution inside a shock wave, .1 

i.e., Fig. 15.  In doing this, one has to determine first the population 

of the excited levels of the hydrogen atoms as a function of position in 

the plasma. We assume local thermal equilibrium among the neutral atoms, 

i.e., eq. (IV-UU) so that the relative populations of the excited levels 

is not an explicit function of position (it may depend on position through 

temperature). Then the local absorption coefficient due to the inverse 

bremsstrahlung of electrons in the field of neutrals can be written 
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9h 

QBV) ■ ^ An(a),0) Ne(r) K(l,r) ||SJ (IV-ÖO) 

where N(n)/N(l) = n e Jn  and A (üO,0) is a function of temperature and 

radiation frequency. An(a),Q) increases with n, approaching finite value 

A (a3,0) as n-*». Since En-»-E as n-*o, the above summation diverges unless it 

is truncated at some n=n*.  The physical reason for truncating the summation 

at tome n=n* can be explained as follows:  Because of the 'nteraction of 

an atom with the nearby particles in a plasma, the ionization potential 

will be lowered when the atom is inside a plasma. An excited atom in a 

level above n* must be treated as an ion and a free electron even though 

the level may be below the ionization potential of an unperturbed atom. 

Several theories for the determination of n* and the lowering of the 

ionization potential AE have been proposed in literature. Drawin and 

Felenbok    have reviewed these theories and showed that they all yield 

similar results, i.e., 

2       Pn 
n* ^ (S+l) — (lV-61) 

ao 

where  Pn  is  the Debye  radius given by 

AE -  (S+l) -t (IV-6?) 

(10,39) 

tJD 

r—*z—] 
Ll4Jte2(Ne+7z^Ni)J 

I   H  ~— I1/2 (iv-63) 
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In eqs. (lV-6l) and (IV-62), S is the ionization stage of the particle 

under consideration and S~0  for neutral atoms. The quantities N. and z. 
11 

in eq. (IV-65) are respectively the density and charge of neighboring ions and 

for hydrogen plasma, zi-l and Ni=N . We have calculated and tabulated in 

Table I the values of n* for each initial gas pressure using the measured 

electron density and temperature in the experiment by Litvak and Edwards. 

After having determined n* in eq. (lV-60), we now consider the posi- 

tion dependence of the number density in eq. (lV-60). According to the 

intense point explosion theory, the relative mass density distribution 

follows the curves in Fig. 15 for the early times after explosion. One 

observes that the particles occupy vitually a very narrow spherical shell 

of a thickness of the order of 0.2 Fn« We shall refer to this region as 

the shell region in below. The central region contains very few particles. 

However, the temperature increases very rapidly in this region towards 

the center and the pressure is constant with a value of approximately pp/j. 

We shall refer to this region a 5 the central hot c:re. Let the relative 

number density of the atom at +he point r between the shock wave and the 

explosion center be cp(r)»N(r)/Np and the relative electron density at the 

n* 
point r be ■pp(r)-N (r)/N- where N(r) ■ Y  N(n,r) and No and Ne are respec- c    e    e n=l 

tively the total neutral density behind the shock front and the average 

electron density inside the shock volume. From the conservation of the 

particles 

r 

IM /drr2[N2cp(r)+NeCPe(r)] = « ^ 

J 
/ 



vh«re N    : s •   ■ •;   aensit;»     i bydrogen ttoni before the explosion 

(i.e.,  bef< re  tl s   incidence   >f the laser beam) and r    is  the radius of the 

■hoOk wave.     A1*  ■ .   ■  •  the  variable,  we have 

Nl        Ne   1     2 
/dxx qp(x) = ==" - TT /dxx -,   (x) 

5N,        N, 
(IV-6M 

and 

f-     2 5jdxx -p  (xj  =  I 
o e 

where 

(IV-65) 

x = 

-5     3 The Ifisei   bee       ■    :   rased within a volume of 10      cm    which is smaller 

than the peak Lu   inoua   .   LuM of 10      cm    at the time of the absorption 

measuremfjiit. e T: .   .        ,       :   the  laser  bean,  focal volume  is  about 5 times 

less than the rad         ■■   tbe peak  luminous volume.    No geometry correction 

is needed  In I   '               ,.; the optical path.    Hence the absorption due to 

the inYen (  electron«   In the f:eld of neutral etoms  can 

be expreea   ;, ■               ing the relativ-:  r.umber densities  into eq.   (IV-60), 

as 

V     Wn(a),0)NB   ^r^ (X)«P(K). (IV-66) 
»1 .] e ^     N      d e 

Equation ''' '■ annot b« easily calculated without any assumption 

about 9a(x)| ';''x ''■ '■■ tenpertture distribution. The problem will be 

complicatei \'t:-r.    l 'rat ire distribution (see Fig.   15)  in the shock 
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vave as  a  function of position  is  considered.     The plasma  temperature and 

the electron density are measured through the line broadening of H    which 

depends upon the electron and neutral densities.    Since most   of the hydrogen 

atoms are confined in the shell region behind the shock front,  the electron 

density and the plasma temperature measured through the line broadening is 

more likely to indicate the average temperature and electron density in 

the shell  region.     Furthermore,  the degree of ionization  is  not uniform 

in the shock volume.    Due to the very high temperatures,  the hydrogen gas 

•an be exyected to be fully ionized  in the hot core.    However,  the degree 

of Ionisation is  more likely to decrease towards the shock  front because 

the temperature there is of the order of 10      K and thus not sufficient for 

onization.     One may conclude from this argument that the electron density 

wi.l also be a decreasing function of the radius.    However, the rapid in- 

crease in the particle density towards the shock front may result  in a 

uniform electron density distribution in spite of the decrease in the de- 

gree of ionization.    Hence we shall assume that the temperature and the 

electron density are uniform in the  shell  region with the measured values. 

The contribution to the absorption in the hot core where we expect 

almost full  ionization  is negligibly small as  compared to the measured 

absorption.     The  mechanisms  responsible for photon absorption  in this 

region are the  inverse bremsstrahlung of electrons  in the field of ions and the 

photoionization.     In fact,  since the gas  is almost fully ionized,  the relative 

contribution of the photoionization process  is srrall as  compared to the in- 

verse bremsstrahlung of electrons in the field of ions.     Litvak and Edwards calou- 
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lated the absorption in this region using the measured electron density and 

temperature, and assuming the Saha equation in estimating the neutral density. 

Even if one assumes a plasma +hicknees of 1cm, 'heir result accounted only one 

percent of the measured absorption.  But according to explosion theory the 

size of the hot core is of the order of 0.12cm. so that the absorption is 

less than 0.1^. of the measured value. 

We thus calculate that the main absorption takes place in the shell 

region where the gas is partially ionized. Under these assumptions, eq. 

(IV-66) becomes 

(aL)BN = f A (a>f0)| N Ski r^ /Wx),       (iv-67) 
n=1 n     e 2  N   2 _1 

where we include the hot core also for convenience even  If its contribution 

is small.     The neutral density distribution cp(x)  is shown in Fig,   15 and 

has an appreciable value only for x close to 1,     It  is  sufficient for our 

purpose,  but not necessary, to approximate 

^   ,   . 2,        Nl-Ne 
j   fp(x)dx      / cp{x)xdx 
o   v   ' o   x   ' 5N2 

Then eqs.   (IV-6T)  reduces,   in view of eq.   (lV-51),  to 

3 V / z '   n=l      '■' 

where 

z =    /   2n e      ' 
n«l 

is  the truncated partition  function of hydrogen atom with the calculated 
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TABLE  I 

MEASURED AND CALCULATED ABSORPTIONS FOR RUBY 
LASER FREQUENCY  IN THE HYDROGEN PLASMA 

PI(psi) 1U.T 55 55 115 215 1015 

T(0K) 2.2xl05 2.0xlOP 2.Uxl0 1.5xl05 l.^xlO5 9.0x10* 

N  (cmT5) 
e 

h.lxlO18 io19 5xl018 io19 8.5xlOL8 io19 

tc(nsec.) k.9 »4.5 »».3 h.O 5.2 1.7 

r0(cm.) 0.52 0.U6 0.J46 0.1»3 0.5^ 0.18 

r (cm.) 0.062 0.062 0.062 0.062 0.062 O.OI42 

/ 0.12 0.15 0.15 0.114 0.18 0.25 

t(nsec. ) 17 18 18 21 31 27 

n* Ik 12 Hi 11 11 10 

N1-Ne(cm':5) 
1Q 

U.9xlO 7 20 
1.2x10 

20 
2.0x10 i.lxlO20 20 

7.7x10 
21 

5.7x10" 

z 998 598 1062 562 537 lliO 

a (cm   ) 
V 

0.012 0.011 0.020 0.15 0.12 0.6 

(aL)obs. 0.72 0.80 1.91» 5.0 2.6k U.12 

(aL)BN 0.015 0.087 0.062 O.I47 0.75 i».9 

(^)PI 0.0i47 0.20 0.18 1.15 2.26 H».9 

(aL)BN+PI O.062 0.29 0.2U 1.60 5.01 19.8 
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values given in Table I. 

In a similar way, one can obtain the absorption due to the photoioni- 

zation and its inverse from eq. (IV-53) as 

fijt) 

(OL) 
PI       128         2,E   5.       '   0>         NrNe   n*2gfn    -En/ 

= —7-  na     (r-)  (1-e )  r         E—T" e 
,5/2  o vhjj 2  z  n=l n3 •  (IV-69) 

Taking r as the radius of the peak luminous volume which is assumed to 

BN        PT 
be spherical, we have calculated the absorptions (aL)  and (oL)  from 

eqs. (IV-68) and (IV-69).  The results are given in Table I together with 

M. •     1   TNBN+PI their sum (oL) 

ll 

9.     DISCUSSIONS 

,     NBN+PI 
From Table I,  one can see that the calculated absorptions  (aL) 

due to the photoionization and the inverse bremsstrahlung of electrons in 

the field of neutron atoms are not always in good agreement with the measured 

result   (oL) .    .     It  increases  from the value of ten times  less  for P,"ll»«7 psi 
obs 1     r 

to the value of five times larger for p =1015 psi than the measured absorp- 

tion. According to the description given by Litvak and Edwards, the shape 

of the luminous volume was not exactly spherical.  Although their description 

was not explicit enough for their experiment, they referred to other similar 

experiments in which the cigar-shaped or egg-shaped luminous regions were 

observed in the direction of the laser beam. Furthermore, the discrepancy 

between the measured pressure and that predicted by the intense point ex- 

plosion theory with a spherical shock wave is larger at low initial gas 

pressure than at high pressure. This may suggest that the shape of the shock 
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volume at  low initial gas pressure    deviates more from spherical at high 

initial pressure.     If we intepret r    as the major radius of the luminous 

volume,  then we may predict a  larger absorption than we calculated by using 

a  spherical  luminous volume.     In  fact,  this may be the reason why Litvak 

and Edwards  assumed the absorption thickness of 1cm for p =li+.7 psi.     If 

this  assumed absorption thickness  is   correct,   r    would be 0.5cm,   instead 

of 0.062cm,  and the calculated absorption with r =0.5cm will be almost the 

same as  the measured value at p =lh.J psi,  provided  that  the neutral density 

distribution along the major axis has a similar distribution to that in the 

spherical case shown in Fig.   13.    At any rate, our interpretation predicts 

the absorption better than a  factor 10,  in fact in most cases even better 

than a   factor of 6.    Furthermore,   our calculation  explains  the  increase of 

the absorption with the initial üressure, independently of the possible 

dependence on the pressure of the apparent plasma size. 

Another factor which may be contributing to the above discrepancy is 

the assumption of a uiform temperature and electron density distribution 

in the shell region behind the shock  front.    However,   the  error due to 

this  assumption is not expected  to be  significant,  because we have  found 

only a decrease by a factor of 2/3    assuming    a    linear    electro»-, 

density distribution in the  shell region and taking the  electron density 

to be zero at the shock front. 

The calculated absorption due to the photoionization and its  inverse 

is about three times the absorption due to the inverse bremsstrahlung of 

electrons  in the field of neutral atoms for n* =  10.     It depends on n*. 
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For small n*, its contribution is dominant and for large n* it is negligible 

as compared to the inverse bremsstrahlung of electrons in the field of neutral 

atoms. Furthermore, photoionization can occur only for the levels above and 

equal to n such that E-I^< ftjo and the absorption due to this process varies 

-1* 
as 1/ 5- For low energy photons, such as the carbon dioxide laser (\al0.6xl0 

cm, ftD=0.117ev), its contribution will be negligibly small as compared the 

absorption due to the inverse bremsstrahlung of electrons in the field of 

neutral atoms. 

The absorption per electron and per neutral atom in any level n due to 

the inverse bremsstrahlung of electrons in the neutral atoms is smaller than 

the absorption per electron and per ion due to the inverse bremsstrahlung 

of electrons in the ions as indicated in Fig. 12. They are of the same 

order of magnitude for almost all n and becoming equal when n-*».  The rel- 

ative importance of these two mechanisms depends on the ratio of the neutral 

to ion densities N./N..  If N./N. is a large number, the inverse bremss- 
A7   i A'   i B ' 

trahlung of electrons   in the field of neutral atoms  is  important,  otherwise 

it  is  small. 



CHAPliR V 

CONCLUDING REMARKS 

In the first part of this thesis we have compared the photon transport 

theory in dispersive media to the Maxwell's wave theory by considering the 

index of refraction and the photon absorption per unit time as well as per 

unit length. In the photon transport theory the effect of the medium is 

taken into account by assigning a different frequency to photons of a given 

wave number in the medium, than their frequency in vacuum. It is implied in 

this theory that the wave number is the same in the medium and in vacuum. 

In Maxwell's theory, the effect of the medium is characterized by a 

functional which relates the macroscopic current to the electric field. 

When linearized, this functional is completely defined by the conductivity 

tensor in the transformed (k,s) domain. The conductivity tensor is obtained 

quite generally by using Kubo's linear response theory in terms of the micro- 

scopic currents. Thus, we can calculate the index of refraction and the 
• i 

damping coefficient both in time and space in the framework of the Maxwell's 

theory first in terms of conductivity and then in terms of the microscopic 

currents with Kubo's theory.  In other words, we can express the above 

observable macroscopic quantities, in terms of microscopic quantities through 

the Maxwell's equations which describe the electromagnetic phenomena in 

arbitrary media macroscopically. 

It is at this stage one can compare the photon transport theory to the 

105 
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Maxwell's wave  theory,  because  in  the  former the index of refraction and 

the damping coefficient both in time and space are expressed   in  terms of the 

microscopic  currents. 

Following the above procedure,  we have  found that both theories yield 

the same  results  for the  index of refraction and the damping coefficient per 

unit time only  in the weakly absorbing media.    When the medium is  strongly 

absorbing,  the results  look quite different although we have not  estimated 

the difference numerically in  specific problems. 

As  to the damping in space,  the  expressions obtained from the two theories 

for the  index of refraction and the damping coefficient per unit  length are 

similar only  if the medium is both weakly   absorbing and  slightly dispersive. 

More explicitly,  the damping coefficient per unit length is obtained in a weakly 

absorbing medium  (i.e.,  n, « n^)  as —— CT, (nA.jjo) and   a  (k, —)respec- 
'1 0 n c    \     0  ' n^c    K n,, o o o 

tively in the Maxwell's theory and  the transport theory.     Clearly if n »1, 

the results  are  identical. 

We feel  that a better correspondence between the transport and wave 

approaches  in  regard to the damping  In  space  can be established  if the photons 

are dressed such that the frequency is  required to be    he same but the wave 

number is  allowed to be different  in the  medium.    More research  in this 

direction seems  to be called for. 

The radiation absorption due to inverse bremsstrahlung of electrons  in 

the field of neutral at )ms  is  formulated by using free electron wave functions. 

In this approximation, the calculations   involving atom-electron cross sections 

turn out to be identical to the use of the  first  Born approximation.     The 
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elastic cross  section  for hydrogen atoms in the ground state calculated in 

Born approximation  is  less than the cross  section calculated from the partical 

wave method.     This  discrepancy is   large at     specially low electron  energies. 

Since the  elastic  cross  section predicted by the partial wave method  is  in 

good agreement with the experiment,  a  more accurate formulism of the absorp- 

tion problem can be achieved by using the partial wave method rather than 

plane waves.     However,   since the elastic and   inelastic collisions  of electrons 

with the atoms  in excited states are also  involved in the problem,  the use 

of the partial wave method Mould make the problem much too  complicated. 

Undoubtedly, the use of free electron wave functions in the problem will intro- 

duce some error, perhaps predicting smaller values for the absorption.    How- 

ever, at this  stage,  one  is  satisfied with an order of magnitude agreement 

between the measured and calculated absorptions due to the uncertainties  of 

the experimental condition.    This justifies the approach we have taken in 

this work. 

In the formulation of the radiation absorption, the second quantization 

is used to express the potential between atom and electron as well as the 

interaction between particle and radiation in terms of the particle and 

radiation creation and destruction operators. In this process we considered 

only the binary collisions. In addition, we assumed the atoms in the medium 

to be infinite heavy. These assumptions are adequate for our stated purpose 

in this thesis. 

The neutral density deternined through the Saha equation  (which holus 

when all the particles are in  local thermal equilibrium) and using the 

nüM** 
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measured electron density and temperature in Lltvak and Edwards experiment is 

about three orders of magnitude less than '"he initial particle densi'.y= The 

absorption calculated by Litvak and Edwards in considering only the photo- 

ionization and the inverse bremsstrahlung of electrons in the field of ions 

through the use of Saha equation is negligible as compared to the measured 

result. 

According to intense point explosion theory, most particles are concen- 

trated in the shell region behind the shock front and a negligible amount 

of particles occupies the central hot core. Local thermal equilibrium 

among the neutral atoms, instead of Saha equation, is assumed in this shell 

region.  The absorptions calculated by considering the photoiom^ation and 

the inverse bremsstrahlung of electrons in the field of neutral atoms in 

this shell region are not in very good agreement with the measured results. 

However, the agreement is always better than a factor of 10 and in fact 

better than a factor of 6 in all but one case. The discrepancies between 

the calculated and measured results may be attributed mainly to the use 

of the radius of the peak luminous volume, which is assumed to be spherical, 

as the actual shock radius. 

In this thesis we have calculated the absorption coefficient per unit 

atom and electron due to the inverse bremsstrahlung of electrons in the 

field of neutron atoms as a function of the electron temperature and radia- 

tion frequency, and presented the results graphically.  With these curves 

and the conventional formula for photoionization, one can now estimate the 

total absorption due to the photoionization and the inverse bremsstrahlung 
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of electrons  in the field of neutrals  if the neutral density in the plasma 

is known. 

The interpretation of the Litvak and Edwards absorption measurements in 

this thesis by considering only the above absorption mechanisms due to the 

neutral atoms  and using the point explosion theory with certain plausible 

arguments to guess the electron density and temperature distributions is mainly 

suggestive.     In the absence of any accurate information for the plasma size and 

of an explosion theory which takes into account the finite  initial volume of 

the explosion,  the agreement obtained  in this work between the measured and 

calculated absorptions is considered as a strong evidence for the  importance 

of neutral atoms in the interpretation of the absorption experiments in plasmas. 

In fact,  the absorption due to t.he neutrals may even be the dominant heating 

mechanism which causes the explosion. 

More experimental work aesigned primarily  for the verification    f the 

importance of the neutral atoms is needed. 



APPENDIX A 

DERIVATION OF EQUATION  (ll-i42) 

In Chapter  II, we already obtained the following expressions 

<nV    H     nTi> 
PRl, E    -E 

T    Jam' J LJ^-I      I     I     5(a)' 4> ")'    (A-l) 
TOD 1i 

.    ,       11 12 „,       i      i   , i     RP11      ^  12 ■ i "    I J l^n-T      H no> | 
r   i<nViH inQ>l = r /d. 

n'V^no        Eno-EnV ^^ 
T)   »O 

^m? 

E    -E   ,   , 
no    n Ti 

6(0)'-    "V-   '   )•    (A.2) 

Thp substitution of eq.   (11-29)  into the above expressions gives after using 

eqs.   (11-25)  and  (II-50), 

— /d r /d^r'   /dt'   Jdo)' a  
y       Kn'r!1 I H   | mi 

"FrtS „i   , /„^        E    -E   ,   , Ti -".."(■ i 
n TJ fni| nil    n - 

a {    7 <tti)iJ(r] 
n'»n 

A(r: 
n,r|+l><ri'rl+l|j(r't' )■ 

A(r;t' 

Mr)                                                      A(r;t')   , 
+    T <nTi|J(r)- =-;:-  In'^-lXn'^-llJU^')- ^^   'nr^} (A-5) 

n i»n 

y    |<n'Ti' I H '|no> 

n'ri'^no       E    -E   ,   , 
' no    n't) 

II I 2 7 „, 00 to»'*' 
= ^7 /a5r /d5r'   /df   /da.' Ä-—- 

2im _oo      - oo CO 

Mr; 
I  <no|J(r)• —=- 

n'fn C 
n'l     Xn'I ,   J r't'   • =-=  no> (A-M 
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Equation (A-U) and the first sum in the bracket of eq. (A-}) comes, respectively 

letting v-1^ in eq. (A-2) and T,'.^l in eq. (A-l).  The second sum in from 

the bracket of eq. (A-j) comes from letting V^-l in eq. (A-l). Evaluating 

the matrix elements of A(r) and A(r,t) by eqs. (11-12) and (11-55) and assuming 

that the radiation field does not change appreciably over L , then 

T      P 
t  ^n'n'lH^nr^l

2    Y    |<n'VlH I no > ' 

n'VM  Enr"En'V      "^'^  '^"'ti'V 

r (k)  5   5   -   f« J   i{*'^.)t'     ik.( 
= Y -h  ;d5r /d5r' /df /da)' <   e - - -  _rj a) n *n 

■ <n|J (rlln'Xn'lJ, (r't')ln> ♦ 
i{^)t'    _ik(r.r,) Y 

n'Vn 
} 

<n|J (r)|n"><n"|J (r;t')|n> (A-5) 

where J (r,t) = J(r,t)
,€, (k).  Let a)"=u)'+u) in the first term and a)"=-aj'+'jj 

in the second term of eq. (A-5), then 

I 
1     ? |<n' n' | H Inr^ |     _   |<n' V | H ^ no > ' 

n'V^n  Bnn n't) 

(k) kD-t' \(lL)    T     >    oo     oc    !  ;'  l     .  ' 

I   K n'/n 

•WV 

^H 
•^•d-l') .X^lJ^ln-Xt^lJ^f )|n>] (A-6) 

n *n 
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Interchanging (r^'} and letting t'=-t' in the second term of eq. (A-6), and 

summing the intermediate states ln'> and |n">, one finally obtains eq. {ll-k2] 

y       Kn'Vl HI|nr> |g    _   ^n'ri' |HI|no> |2 

B'n'^nti   ^n^n'V     n'./^no  E
no"

EnV 

\^ * ^ ^ oo JtO't* f ,. 
-  /     ,' Id r Jd r    Jdt    /cu    -;  e  

^K L (B|| - OC - 00 ~\ 

<n|j (r')J  (r,-t'j-J  (r)J  (r;f)|n> (II-J»2) 
K r.   ~ \   ~     \ 



APPENDIX B 

SECOND QUANTIZATION 

,  V    , V      and the 

interactions V, , V , and V. in terms of the particle creation and destruction 
A' e'     i p 

operators by second quantization.  In section III-l, v ' represents the sum 

of the potentials between an electron and an atom, i.e., 

om 
cm 

where 

2 2 

m IVlkl       j-1   IV£arImi 

is the potential between the a-th atom and the m-th free electror. with 

fp and Rp being the positions of the free electron and the nucleus. _nr^ is 

the position of the j-th atomic electron with respect to R^.  In second 

Ae 
quantization,  V      can be written as 

2 
VAe = F    ^'a'u' |-   ,7,e   ,   H-    f-f—"^ ^iKau>A+(K'a, )A+(u')A(Ka)A(u) (B-l) 

Ka     -     -        |R-r|       j = llR*Pj-£i " " "      '    K-  '  K-  '  v- 
K'a' 
uu' 

where A(u) is the destruction operator of destructing a free electron of 

momentum'fiu and A(Ka) is that of destructing an atom of the external momentum 

'fiK and the internal state la>. A (u* ) and A (K'a') are, respectively, the 

creation operators of creating a free electron of momentum'fiu' and an atom 

111 
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of external momentum ^iK' and the internal state 'a^ 

The wave function of a free electron is given by 

u> 
L5/2 

: ; • r 
e  (B-2) 

and the wave function of describing the external and internal states of an 

atom s given by 

lKa>       i   eiK-Ria> 

J'2 (B-5) 

where we have assumed that the center-of-mass  coordinates of the atom cola« 

cide with its nucleus  coordinates.    Substituting eqs.   (B-2) and  (B-3)   into 

eq.   (B-l),  one obtains 

.                Une 6  fK-K'+u-u') z     ..       ,. 
VAe = F     ^-_^_<a-,.z+f el(u-u')-£j 

K'a'        u   '- -   ' 

a> 
J = l 

uu 

a A  (K'a' )A  (u' )A(Ka)A(u; 

where the subscript K of 6^ denotes the Kronecker delta, 

In the same way, one can obtain 

(1II-2) 

Z1.    F 
KaK'a ' 

IbT'b' 
L5|K-K'|? 

■  S -KK-K')^., 
<a I z- 2 e «J a > 

>1 

z-1 
<b'|«- Z ei(-'-')£J|b>A+(K'a,)At(i,b,)M:Ka)A(/b)    (III-3) 

j = l -     -    -   - 



le = I 

113 

—/""""   <b'i-z/rel(^ ),^ib> 
It L^lu-u' 
7'b 

7.-1 
-   I   . 
J-l 

UU 

B AV'*)')A+(u')A(_/b)A(u) (III-U) 

where A (_/b) and A(lb) have the same meanings as A (K'a') and A(Ka). 

In section III-l, V, is the interaction of the atoms with radiation 
A 

e z 
VA = - Z-^i- p  .A(r .) = - r^^£ -ACr ) + I — £.-A(r .) 
A   aj m .c -^aj oj     o m c -^r a     -j-^mc ^j aj 

whsre A(r) is given by (II-7). m and m, p and p ., and r and r .=r +p . 
  a       a     aj    —o    —aj —a PJ 

are, respectively, the masses, the momenta, and the positions of the nucleus 

ani the j-th atomic electron in the cr-th atom. Neglecting the first si sum 

as compared to the second one because m »m, V can be written, in second 

quantization, as 

P  
z + 

V = F ^'a'l— I p.-A(r.)|Ka>A (K'a'^Ka) 
A  »_  -   mc ..^.i .1 -     -    - Ka 

K'a' 
J-l 

Assuming that the center-of-mass coordinates of an atom coincide its nucleus 

coordinates, the substitution of eqs. (II-7) and (B-5) bives 

VA -z - 
Kk mc 

Ka 

K'a' 

2iAc 

<L5 cu 
BK(K-K

,-k){Ojc(k)ck(k)"K^(-k)cx(-k))'<«'| f e - £J£ |a> 

K  A (K'a' )A(Ka) 
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Using dipole moment approximation e   —j~l, one obtains, after substituting 

1   rtjint   1 

^ ^m [HA  '£j] 

int 

A 
where H   is the hnmiltonian of the internal motion of an atom, 

 1 

VA = r   T.^T-^(iS-K'-üK.   ä .  -[cc (k)e (k)+fv (.k)ex (-k)] A     xkcr3 K —    aa-aa      \ k —      \ \    — 
Kä L" 
K'a' 

A   (K'a')A(Ka) (III-5) 

where <ftu ,  = E ,-E is the energy difference between the internal states 
a a   a  a 

la'> and la> and ed ,  = <a' I  Z ep,|a> is the dipole moment transition of 
j = l -j 

the atom from the state l«> to the state 'a' > . 

In the same way, the interaction of the free electron with the radiation 

field 

Ne r 

V = F — p.'A(r.) 

c&n be written, in second quantization, as 

V    = L   — 
e kk   mc 

uu' 

Z—-  lOx
+(k)e^(k)+C^(-k)ex(-k)).u &K(u-u'-k) A

+(u')A(u) 

L CJD 
:III-6) 

The  interaction between the ions and  the radiation  is  given,   in second 

quantization,  as 

v. -Z  ^ 
1    \k   c 

ib 

I'b' 

1 

L ay 

(III-7) 
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where •fifD        = E
h,-E.   and 

WO'lY^I«» 
z-1 

i 



APPENDIX C 

NO PHOTONS EMITTED OR ABSORBED THROUGH THE 
INTERACTION OF FREELY-MOVING ELECTRONS WITH 

A RADIATION FIELD 

In appendix B, we have obtained that the interaction of freely-moving 

electrons with a radiation field is given by 

e Kk 
uu' 

eft 
rnc 

2ÄS-.  {C^(k)^(k)+c^(-k)^(-k)]'u 6K(u-u'-k)A^(u1)A(u), 

V I» <D 

Assume that the photons can be emitted through the interaction, the number 

of photons with momentum ftk and polarization \ emitted per unit time from L'' 

will be, from section III-2, 

X ßß'T]fl P^P^ e P     Tl+L       P1) 

Let the initial and final states of the electrons and photons be 

|PTJ>   =   |...n(u), n(u')...> | ...TI(1C)...> 

|ß;r1+l>   =   |...n(u)-l, n(u') + l...>|,..T^(k) + !...>, 

then 

,2.2 
a (k) = Z   ÜH^-iL (u.€   )2(f (k)+l) N(u) 6„(u-u'-k) 5(1  ,-1 *»} 

m CJOL'' 

2^2„2 
Z   ^J*   (u-j, )2(f(k)+i) N(u) 5(1   k-lMHto) 

,       2    3 S    m a)L 
-\'   v \ u-k    u 
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Since the energy conserved delta function is contained in the above expression, 

n (k) is not zero if 

E , -E <4kD = o 
u-k u 

i.e. 

„        r. C     Ik CosQ = - + - - 
v  2 u 

(C-l) 

where 6 is the angle between k and u and v is the speed of the incident electron, 

Since —>  1 and k and u are positive, (C-l) cannot hold. Therefore no photons 

will be emitted through the interaction of freely-moving electrons with a ra- 

diation field.  In the similar way, one can obtain that no photons will be 

absorbed through the interaction of freely-moving electrons with a radiation 

field. 



APPENDIX D 

DERIVATION OF EQß. (lV-51a) THKOUGH (iV-Jlf) 

For derivation of eqs. (lV-31a) through (lV-51f), the values of the 

following 5J symbols taken from the literaturev^ 'are needed. 

h J2 J5 ■l m2 m3 
VBU   rrip rru/ 

1 0 1 0 c 0 *  1/3 
2 0 2 0 0 0 1/5 
2 I 1 0 0 0 2/15 
2 2 ? 0 0 0 * 2/35 
3 1 2 0 0 0 ♦ 3/35 
h 2 2 0 0 0 2/35 
0 i 1 0 I -1 1/3 
2 1 1 0 1 -1 1/30 
0 2 2 0 1 -1 * 1/5 
0 2 2 0 2 -2 1/5 
2 2 2 0 1 -1 1/70 
2 2 2 0 2 -2 2/35 
k 2 2 0 L -1 8/315 
h 2 2 0 2 -2 1/630 

when one needs the values of (1 * 31 other than its square, the negative 
ym]_ m2 my 

square root of the number should be taken If it is preceded with the star 

symbol ♦. Since the sum of j, jp and j, for each row in the above table is 

even, each of the JJ symbols in th above is invariant in a permutation of 

any two columns. 

For convenience, we rewrite here eqs. (IV-20), (IV-22), (IV-23), and 

(IV-26) 
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G(n,n,q) = n~-2R    E <n/m| e1^-| nim>   + E     |<n/'m'| e1^-| n/m> | 
im ta (IV-20) 

/ m 

G(n,n;q)  = Z     |<n'/'m'| e1^*1! nim> | 2 

la 
I'm' 

(IV-26) 

'f(.p
lVn<,n'r<Qf(2^)(2'tl)(2',n)0? 

i+r 

<„',■»■ |e^-r|nlm>   ■p.|i?«-|YWi-.l'-,l,P.«M,«,(,) (IV"^2, 

p,£m,/'m'   =  i ^   F     / iv yom-m/   \ooo/ 

where p takes  the integers between  li-Tl and   t+l'   .'uch that p+i+i'   =  even, 

otherwise (       '   )vanishes' \oooy 

For n'=n=l,  it is easily to obtain that 

G(l,l,q)  ■  tl-R0#l0#10(q))a (lV-51a) 

For n'^n,  one obtains  from eq.   (IV-26)  that 

^'^ ^»U,?,^''2^2''*1' fco)' 

= R2 (q)   +  5R2 (q) (iV-Jlb) 
0,10,20Vq;       ^   1,10,21VH; 

«W.«)- E^jo-rUM^iUw^fc) 
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= R0,10,50(q) + 5R2l,10,3l
(q)  + 5R2,10,52

(q) (IV-51C) 

G(2,5,q)  -    ZR^ (q)(2p+l)(2i1 

V coo y 

+l)(2/t+l)('pirY 
\ ooo y 

+     Z5RnPl   ,,.^K2P 

= R0,20,30(q)  + 5Ri,20,51^)  + 54,20,12^ 

+ 5RUyq) + 5R0,2I,5l^)  + 6R2,21,31(q) 

+
 <2I,52(q) + <21,52(q) (lV-31e) 

For n,=n=2,3, one obtains from eqs..   (IV-20) and (lV-26) that 

G(2,2,q) = I^ate{<a00|«la-|a00>   + <210|ei^-|210>   + 2 <21l|ei^-|211>) 

ll'p  P»"»«1 \ooo / 

G(5,5,q) = 9-2Re[<300|ei£-|300>   + <310|ei^-|310>   + <320| 3-|320> 

+ 2 <31l|ei-ä-|311>   + 2 <32l|ei£-|321>   +  2 <322| e1-2-|322> ) 

The terms  in the brackets of the above two equations are computed through 

the use of eqs.   (IV-22) and  (IV-25).    Then 

Q<t.t.«) ■ k-M^joU) - *\21>21M * *\sltS1M * Vn,n(»>-«^,8i,a<«>l 



L21 

t/p
5Rp%i,.,'('')»ti)(?',ti>(o.»T 

+ «J,»^«' * »^i.si«''' <IV-51<') 

C(3,5,0) = »-««0#y(>w(«) * »oti,}i.M * 5B0,52,32(q)J 

+ 
■'P 

T.B2        /..(q)(2p+l)(2i■ + l)(POi,) 
i'p   P>50,^/ \ooo / 

♦    rrf-,   ,,1(q)(2p+l)(2/,+l)('Pi/'N) 
I«-    P,5l,5* \ooo/ 

^-p     P,52,3/ \oooy 

■ s-2F,0,50.50<a' * Ro,5o,50(q) - 6Ro,5i(5i
(<') * 5Ro,5i,3.(q) 

" "V».»«'' + 5R0,52,J2
(q) * <J0.S1<,) * 12E?,51,32(q) 

+ <51,3l
(q) ^f RP,}2,}2

(C' * «"Uy«' ' l8R5,,l,52(q' 

+ f RU,32(,))- (IV-3lf) 
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