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ABSTRACT

In this thesis we have obtained the index of refraction and the attenua-
tion coefficient per unit time, as well as per unit length, for an arbitrary
medium using Maxwell's wave theory, and expressed the results in terms of the
microscopic currents due to the motion of the particles in the medium. 1In
Maxwell's theory, the effect of the medium is characterized by a conductivity
tensor which relates the macroscopic current to the electric field. The con-
ductivity tensor is obtained quite generally by using Kubo's linear response
theory in terms of the microscopic currents.

The index of refraction and the attenuation coefficient per unit time
associated with the decay of EM waves in time for weakly absorbing media has
been found to be the same as those obtained by using the phcton transport
theory. However, the index of refraction and the attenuation coefficient per
unit length associated with the decay of EM waves in space are different
from those obtained by the transport theory even for weakly absorbing media.

We have also investigated in this thesis the contribution of the neutral
atoms to the absorption of photons in plasmas, by extending the Akcasu and
Wald's work on the absorption due to the inverse bremsstrahlung of electrons
in the field of neutral atoms to higher electron temperatures and higher
photon energies, and formulated this problem by using plane waves for electron
wave function. In this way we have obtained an expression for the absorption
coefficient per unit length due to the above absorption mechanism in terms
of the elastic and inelastic electron-atom scattering cross secticns allowing
the atoms initially to be in any excited state. We have calculated the absorp-
tion coefficient explicitly for hydrogen atoms, and presented the results !
graphically as a function of electron temperature and radiation frequency. I
Using these curves and the conventional formula for the absorption due to the
photoionization and its inverse, we have computed the net total absorption
due to the neutral atoms numerically, and compared our results to the absorp-
tion measured by Litvak and Edwards. In estimating the distribution of the
neutral atoms, as well as the size of the plasma produced by the laser pulse
in their experiment, we have used the point explosion theory with spherical
shock wave. The agreement between the calculated and measured absorptions
has been found to be better than a factor of 10 and in fact better than a
factor of 6 in all, but one, initial gas pressures (The observed discrepancies
may be attributed mainly to the use of the radius of the peak luminous volume,
which is assumed to be shperical, as the actual shock wave radius).

I s W e e B 0 i

In the absence of any accurate information for the plasma size, and of an
explosion theory which takes into account the finite initial volume of the
explosion caused by the laser beam, the agreement obtained is considered as a
strong evidence for the importance of neutral atoms in certain absorption

vii
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experiments in plasmas over ions, because the absorption calculated by con-
sidering the electron inverse bremsstrahlung in the field of ions only is
about 100 times less than the observed values.

viii
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CHAPTER I

INTRODUCTION

This thesis contains primarily an investigation of low-energy photon
absorption in an arbitrary medium. At low photon energies, the pair pro-
duction and ennihilation processes are negligible and scattering is char-
acterized by the Thomson cross section rather than Comptcn cross section.

In stellar systems, the Thompson scattering may be important, but in lab-
oratory plasmas it is usually negligible because of its small cross section.
Thuz our analysis in this thesis is restricted to the systems in which the scat-
tering is negligible, and the net photon absorption is primarily duve to brems-
strahlung and inverse bremsstrahlung, ionization and recombination, and
excitation and deexcitation.

The equations of radiative transfer for dispersive and nondispersive
media are usually developed by phenomenological consideration.(l-h) A
systematic, self-contained derivation of a photon transport equation for
nondispersive media from fundamental consideration was made in 1961 by
Osborn and Klevans.(5) In their derivation, a photon distribution func-
tion in analogy with the quantum mechanical distribution function for

particles(6) was introduced. The equation they obtained can be reduced to

the conventional radiative transfer equation obtained phenomenologically

for nondispersive media.

A year later, they extended their theory to dispersive media(7) by

(8)

making use of the concept of "dressed photon" first introduced by Mead.




A "dressed photon" has a different frequency @, in the medium than the
free space value ck, but it has the same wave length in the medium and

in free space. With the "dressed photon" technique they derived, in the
framework of the first order perturbation theory a photon transport equa-
tion for dispersive media. This equation differs from the radiative trans-

fer equation obtained phenomenologically in dispersive media by others.b )

(9)

In order to compare these two theories, Wald performed an experiment in
1966 in which he measured the absorption of microwave radiation in slightly
ionized helium. Although a better agreement is obtained by the photon
transport equation than the radiative transfer equation in his measurement,
conclusive evidence of the validity of the photon transport equation or
the invalidity of the radiative transfer equation cannot be inferred from
his measurement because the refractive defocussing effects are not neglibible.
Since the net photon absorption and the refractive index in dispersive
media caﬁ be easily deduced from the photon transport equation, the validity
of this equation can be tested if the net photon absorption and the refrac-
tive index can be obtained independently by an entirely different approach.
Such an approach to the calculation of the net photon absorption and the

(10)

refractive index can be achieved by using Kubo's theory for electric
conductivity and the Maxwell equations. In this approach, the absorption
coefficient and the index »f refraction are expressed in terms of the mi-
croscopic current due to motion of all particles in the medium. To facil- .

jtate the comparison we obtain in section II-1 the net photon absorption

and the refractive index using the photon iransport equation also in terms




4
of the microscopic current. The expected value of electric current is ob- i
L]
i
tained from Kubo's theory in section II-2. Using the expected value of the ‘
current in the Maxwell equation (II-4O), a dispersion relation between the l

wave vector k, the frequency w, and the electric conductivity can be ob-
tained. Two different sets of results for photon absorption and refractive
index in  weakly absa;bing media are obtained by considering the damping of
the electromagnetic wave in time and.in space. A comparison of the results
obtained from these two theories is presented in section II-3.

In order to display the various mechanisms contributing to the photon
absorption and also to estimate the order of magnitude of the various con-
tributions, we use & convenient and simple representation for the particle
system in Chapter III. Second quantization is used to express the various >
potentials between particles, as well as the interactions between particle
and radiation, in terms of the particle and radiation creation and destruc-
tion operators. Starting from the golden rule, one can obtain, with several
approximations discussed in section II-2, a simple expression which dis-
plays the varlous mechanisms contributing to the photon absorption, such
as the bound-bound transition, bremsstrahlung of electrons in the fields of
the neutrals and lons, the induced dipole transitions, etc. At the end of this
chapter we give a simple and crude investigation of the variation of photon ab-

sorption with time after the formation of a plasma. This investigation is mo-

tivated by the absorption measurements, being performed now in The University
of Michigan, in which a continuous He-Ne laser beam (63288) is incident on the

decaying plasma produced by exploding lithium wire. The validity of this




simple investigation could not be verified because the measurements have not
reached the final stage yet.

In Chapter IV, we will be concerned with the radiation absorption only
due to inverse bremsstrahlung of electrons moving in the field of neutral
atoms at high gas temperatures (~ 20 eV). The same problem at low gas tem-

peratures (~ 1 eV or less) was investigated in 1960 by Firsov and Chibisov(ll)‘

(12)

and recently extended by Akcasu and Wald. At low temperatures, the
electron energies are insufficient to excite an atom from its ground state
to an excited state. Assuming that all the atoms in the system are initially
and finally in the ground state, they calculated the various absorption con-
tributions due to neutral-inverse bremsstrahlung, induced dipole transition,
and exchange and interference effects by partial wave method and found that
the last three contributions for low temperature system are negligible as
compared to the first one.

An experiment measuring the absorption coefficient for the ruby
laser beam (69&33) in a hydrogen plasma produced by a giant pulsed laser

(13) Their calculated

beam was carried out in 1966 by Litvak and Edwards.
absorption coefficient obtained by considering photoionization and inverse
bremsstrahlung of electrons in the field of ions is two orders of magnitude
less than their measured result. Chapter IV is motivated primarily by this
large discrepancy.

The temperature of the plasma in Litvak and Edwards experiment is high

(6 ~ 20 eV). Most of the hydrogen atoms are found in excited states and

the energies of electrons are sufficient to excite the atoms from a level




to a higher level. The electron-atom scattering cross section increases when
the atom is in an excited state. As seen from Akcasu and Wald's work, this
cross section enters in the expression for radiation absorption. Since at high
temperatures, an appreciable number of hydrogen atoms are in upper levels and
the above cross section at these levels is high, one may expect the neutral
bremsstrahlung to be a dominant process contributing to the radiation absorption
in Litvaek and Edwards' experiment. This is one reason for extending in Chapter
IV the calculations by Akcasu and Wald to high temperatures. The other reason
is that the total number density of hydrogen atoms in different states, deter-
mined in the case of Litvak and Edwards' experiment by the initial gas con-
ditions with the assumption of ideal gas, is ten or more times the electron (or
ion) density depending upon the initial gas pressure.

In the formulation of the problem, we use the second order perturba-
tion theory in which electron states are represented by plane waves. In
this approximation, the electron-hydrogen cross section is calculated in the
first Born approximation. Although a more accurate result is expected by
using partial waves, the use of free electron wave function makes the prob-
lem more manageable.

If all the atoms in the system are initially and finally in the ground
state, as assumed by Akcasu and Wald, with the assumption that the cross
section involved is slowly varying up to the incident energv of electrons,
we obtain the same result as obtained by Akcasu and Wald through the partial
wave method (section IV-2).

An application of the above theoretical results to hydrogen plasma is




presented in sections IV-3, IV-4, and IV-5. In order to explain the measured
absorptions in Litvak and Edwards experiment by considering the photoionizetion
process and the inverse bremsstrehlung of electrons in the field of neutral
atoms, we use in section IV-7 the point explosion theory in estimating the
number density of neutral atoms in the plasma produced by the laser beam. The
comparison between our calculated absorptions and the measured results are dis-

cussed in section IV-8.

BRI e




CHAPTER 1II

PHOTON ABSORPTION AND REFRACTIVE INDEX

In this chapter we shall present two different approaches to the cal-
culation of photon absorption and refractive index in an arbitrary particle
system. The first approach is based on photon transport theory developed

(5,7) (10)

by Osborn and Klevans, the second one, on Kubo's theory of electric
conductivity. The comparison between the results from these two theories

will be made at the end of this chapter.

1. PHOTON TRANSPORT THEORY

(5)

In 1961, Osborn and Klevans used first order perturbation theory in

developing photon transport for nondispersive media, and a year later they(7)
extended the theory to dispersive media by meking use of the concept of

(8)

"dressed photon" first introduced by Mead. In this section we shall use
their results for dispersive media to express the photon absorption and the
refractive index in terms of the microscopic current due to motion of all
particles in the medium. This requires, in the first place, a description
of the hamiltonian of the particle system, the radiation field, and the
interaction between these two, as well as the introduction of the concept
of "dressed photon."

Consider a box of volume L° in the particle system under consideration.

The hamiltonian for the particles in this volume element interacting with a

radiation field can be written in the nonrelativistic theory as




q__._!—w
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eqj (
(Boy - —— Alzxej))2
= R = c =- ol PR )
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In the above equations, HR and ﬂ(r) are, respectively, the hamiltonian
and the vector potential of the radiation field. The symbols Mg €53
Boy» and Loy denote the mass, charge, momentum, and position of the j-th
particle in the o-th molecule. Here, we use the term "molecule" in a gen-
eral sense to refer to any aggregate of particles bound together. The num-
ber of constituent particles in a molecule is arbitrary. It proves to be
convenient to regard even an electron as a simple molecule as defined above.
V, is the potential between the particles in the s-th molecule and V' is the
potential between the molecules in LB.

Interactions between particles in different boxes via long-range coulomb
forces constitute a small effect upon photon-particle interactions within a
box and we may expect that neglect of this effect produces negligible error.

Then the photo-particle interaction of the system can be approximated as the

sun of the interactions in each box.




14)

The customary procedure( requires that the (transverse) radiation
field be periodic at the boundaries of a normalization box whose volume is
assumed here to be LB. The vector potential of the field at a point I

can then be represented by operators in the Schr8dinger picture as

-ik°'r

2rmhc t
Az) = 2 D © (& (K)g (k)4 (K)g, (k) (11-7)
and the hamiltonian of the radiation field turns to be

= T 2 ck (g (kg ()% (k)og (1)) (11-8)

+ y
where o&(g) and ox(g) are creation and destruction operators for photons
of momentum‘ﬁg and polarization A in free space. 5%(5) is a unit polarization

vector. The creation and destruction operators satisfy the commutation re-

lations

I
=

n
~—

N,

~
I~
<
R
—
P
=

t

(o]

(o (k), o
(o (), & ()] = 8, 5, (11-9)

Since the radiation is in constant interaction with the medium, Mead
introduced the concept of "dressed photon" by associating photons in the
medium with a different frequency W than Fhe free space value Ck, keeping
the wavelengths in medium and in free space the same. In doing this, he
used a different expansion of A(g) due originally to Bohm and Pines(lS)
and showed that the creation and destruction operators a:(g) and ak(h) for

creating and destructing photons of frequency w, are different from the free

t
space operators o&(g) and o&(g). They are related through the relationship
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A
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(II-10)

(11-11)

It is clear that o)\(g) and ak(g) become identical when w, = ck. It can be

&
verified easily that ax(l_:) and a):(g) satisfy the same commutation relations

as 03\(5) and o{(g) even with uy # ck.

The substitution of egs. (II-1l) into eqs. (II-6), (II-7), and (II-8),

i.e., expressing HPRE, A(r), and HR in terms of the operators a:(g) and

o, (), gives

2
Ar) = % l%:—e'ih'f (8 (k)g, (k)+a (-k)g, (k)]

B = BO + B + B2
HPR2 3 HoPR2 A HlPR2 ? HePR2
where
o2\
KO = 5 —E (o' (k)a (k)+a (K)a'(K))
czkgw 2
D G L CUCIN )
cekgm 2
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2
nhe
T Y AN RN
L ch(.Dk

(II-12)
(II-13)

(II-14)

(1I-15)
(1I-16)
(II-17)

(11-18)




11 .

2
whe

Hlpaz - T —a [a:(.}i)a:(-}_q)+ak(-_}i)ak(5)} (11-19) ]

g LBmUka
. meS -i(kk')r }'
H2PR2 i} kk§'k'g3 - oj e . o) [a:(E)Ek(5)+ak(15)§k(15))
- - L moJ (G}ok(l)kv) E
(o (-K)gy (K, (K)ey (K1) (11-20)

t
)‘E%'l‘.' means )\k;\'k' .
3

Then the hamiltonian for the whole system (particles in L’ plus radiation)

t
can be written, in terms of the operators ak(k) and ak(k), as H=H6+HI with

]
Hy = HRO+HP and HI=HPR1+(HR1+HOPR2)+(HR2+H1PR2)+H2PR2 where

222
Lye k ‘s
RS RS RN E °3’ o4 mk'w“ M (a) (k)e, (k)48 (ke (k) (11-21) ’
maj”k
Lne? 28 2
B2 + H1PR2 N %ﬁ 023 L3mo'jwk + wk-mk} [a:(k)a:(-k)w)\(k)a)\(-k)] (11-22)
a3

In obtaining the photon transport equation and refractive index, Klevans(7)

formulated the problem in the representation in which the particle state !n> and .

the photon state 'n> satisfy

HP|n> g En|n> HRO|'q> = En|q>
i.e., (11-23)

H' > =E > = +
<Inn nnlnn » E_=E ¢E

n n
With HI regarded as the perturbed hamiltonian. The obtained photon transport

equation is given by
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+ Q‘va)\(z,ﬁyt) =nn’znvn' {T‘I)L(E)'TL)\(E)} Tn'n',nﬂan,nn (II-QII)

where fx(g,h,t) is the expected number of photons with momentum hk and

B

polarization A in the volume L” located at the point r. The photons are

moving with the velocity vl in tke direction of the unit vector 2. v is
different for dispersive media from the speed of light c. Tn'q',nn is the

transition probability from the initial state |nn> to the final state

|n'n'> which is given, in first order perturbation theory, by

Tn'n',nq “'%? |<n'q'|H;|nn>>|26(En.n.-Enn). (11-25)

nK(E) is the occupation number of photons with#ik and A, and D is the den-
sity operator of the whole system (particles and radiation).
In addition to the photon transport equation, the refractive index of the

medium can also be obtained by letting

2D (s

-8
nn - nn,nn onn

= 0 (II-26)

no)

where snn is the shift of the energy level ErlTl for the state |nq>> and given

by

I 2
s p lnialnlng>|

I
= <nq|H |nn> +
n'ﬂ'?‘n'ﬂ EnT]-En'Tl'

snTl (11-27)

where P indicates the principal valve. S,, is a shift of the self-energy of
the medium when no photons are present and can be obtained by letting n=0
in eq. (II-27).

With the above results, we shall express the photon absorption coeffi-
cient and the refractive index of the medium in terms of the microscopic

2]

current due to motion of all particles in L~ in the following two sections.




13

a. Photon Absorption Coefficient
The processes involved in obtaining the photon absorption coefficient

are single photon emission and absorption. The only contribution to these

1 PR
processes comes from HPRl because HR F HOPRa, HR2, HlPR2, and H2 . are

bilinear in photon operators. Define the current operator due to motion

of all the particles in L3 as

e
I(z) = %5'"—3 (Ry30(z-rgy)+0(x-255)R64)> (11-28)
then
A
R o o fadr 3(x) —iz) (11-29)
3

where the integration takes over the volume L°. From eqs. (II-23) and

the definition of Dirac &=-function
ixt
oL h
8(x) = 7= Q e as, (11-30)

the substitution of eqs. (II-29) and (II-25) into eq. (Il-24) gives

of, (r,k,t)
——+ 0 W (D t) = Q (Dkt)
where
Dnp,ny .3 : : . o AE)
4 (5kt) -nZ;] p: [a&’r [a r.wfgt {r)l:.'<n|£(£)|n> <n[=={n+1>

A(z,t') A(r
s<nrl|=——[n>* <n'|I(zit")|n>-F <a|g(r)[a" > * <l n-1>
n

A(rt')
B<n-1|==—n>" <a"|Z(z;t")|n> ) (11-31)
with
% 't -% HPt
Jrt) =e I(z)e (11-32)

!

— Ll B

——r o ]
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iHROt -1 4R
A(r,t) = e A(r)e

(I1-33)
being the Heisenberg operators. The fir.t sum in the bracket of eq. (II-31) .
comes from photon emission by letting n'=n#lin eq. (II-24). The second
term comes from photon absorption by letting n'=n-1l.
Evaluating the matrix elements of A(r) and A(r,t) in Eq. (II-31) by

use of eqs. (II-12) and (II-33), and suming the intermediate states |n'>

and |n">, one obtains

At tnis stage we introduce several approximations which enable us to

reduce(%&zbg,t) to a simple form. The first approximation is to replace

Dnﬂ;nﬂ by DPnn DRUW' DP is the density operator of the medium only and

pHF

-gHP o
given by DP=e o /Tre with B:% being the reciprocal of the medium tem-

R
perature in the units of energy. D 1is the density operator of the radia-

- BHRO 5 BHRO
re

tion field and given by DR=e /T . This approximation implies

that the particle system and the radiation field are initially statistically

independent and permits us to perform the statistical averages over the

particle and photon states separately. The second approximation is equiv- 2

alent to replacing the average of a function by the function of the average

in performing the statistical average of the factor containing the photon
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occupation number, i.e.,

M
With these two approximations, Qk(zhh,t) reduces to

DELE ISE SN RENERSR IENCESN

un t! - ]
Q Lk t) 3 [&r [ 7dt { ik'(z'z )\]l+f>\(£,l_<)1dl+f>\(£-'l_<)
L™ ¥y

-iw t'

ALVt A )Jf (5,K)f, (zk )l}TrDP 3, (z) 4 (zt")
We recall that integrations over r and r' are extended to the same box of
volume LB. If we further assume that fx(z,h) is slowly varying over the box
volume then we can take the product of the square roots outside the integral.
Interchanging r and r' and letting t'=-t' in the second term, one finally

obtains, by using the property TrABC=TrBCA,

2 r(nkt) + 2 Dve (mit) = aflge g (nkt) + 5 (ko) (11-33)
where
t 2n 3 03 @ ot Lk (z-x
os\(l_gwk) 2 fd’r [d r_o_gdt e = TrD [J (r,t' ),J (r)] (II-3ka)
L fuwy
E, (k,a) = ; [Py [&r 7dt' e (zr') g P 3, (£)3, (;t") (11-35)
Loy,

are respectively the net absorption coefficient and the spontaneous emission
coefficient per unit time for photons of momentum fik and polarization A. 1In

an infinite homogeneous medium, TrDP[JX(z;t'),JX(g)] can depend only on the
difference of the positionz r-r'. In a large finite system, this translational

invariance will be approximately true in regions away from boundaries. One of

the integrations over the positién can be performed. Then




t | ,2_“_ 3 [ % [ iwkt' ih'(z'zl) P 1yt -
o (k) = 2= Ja'r Jat'e e D (I, (;t'), 4, (2)]  (II-34)

-00 .

In view of eq. (II-33) it is obvious that the photon absorption coefficient

per unit length is given by
t
(k, )
S o& =k
of () = ———— . (11-36)
In a later section we shall compare eqs (II-34) and (II-3€) to the
expressions for photon absorption obtained by Kubo's theory. The superscripts

s and t over the absorption coefficients per unit length and per unit time,

respectively, are introduced here to facilitate this comparison.

b. Index of Refraction
We mentioned before that the index of refraction in dispersive media

can be obtained by letting nZnD (S -8 __)=o. From eq. (II-27),

nn,nn " nn no)

|<n'n' |8 an> | @

I I
o = > < > ,
3%Dnn,nn(an Sno) gHan,nn[%“WIH [nq “OIH lno '+n2%.#gn E -E, ,
ny n'n
I 2
<n'n' >
-'Z' P l nn IH Ino l ] (II-37)
n'n %no EnO-En'“'

Recalling HI and Eqs. (II-5), (II-20), (II-21), and (II-22), it is readily

established that

2 s 0)
LaN e, ck-
I R1L .. PR2 Lk
<an|H [ng> = <nn|H +H " |np> =50 Z‘j =2, (2n, (k)+1) (1I-38)
° kb \s3 .3 w =
- L'm .w k
sj k
and -
| 2
R1 2 4nN_e ¢ k- .
<no|HI|no> = <no|H "+ HOPR |no > =)§(% H73 23 + . (II-39)
- L msju)k wk
where NS is the number of the molecules of kind S in L5 and eSj and msj °
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are the charge and mass of the jth particle in a molecule of kind S.
\ I 1 I t ! I
Note that <n'n|H |nn> = <n'o |H |no> = o for n'#n, and <nn' |H |nn> = o

for = ntl and for = o, n' = 1, then one obtains

o' |wllnn> 1% o f<ntqlling>]® | o J<ng'Htnn>]°

n'n'#nn  Enn-En'ne n'#n En-En’ n#n  Eq-Ey
v ol 2 T | 2
n-%n Enn-En'q' n.%n Enn-En'q'
n#n m#n
and
L<n'q'LHI|no>|2_ I<n'n'|Hﬂ_no>|2 (II-41)
n' n'#no Eno-En'y’ n'§n Eno-En'q' |

n#o

Using the property of Dirac &-function f(E)= [ f(x)5(x-E)dx, eqs. (II-LO)

=00

and (II-41) become

e § 2 o v 1 yPRL 2 ) OfSRNNS O R
gl nn2” oy e dSaintlEinn>] T Zanctatn:
on'fon EnnEneg: n'7n - = 8
n#n
and
<n'n'|H [no> . |<n'n'|H no > ‘no-"a'y’
Z l 1 LlHII 12 - z‘ 7;‘3{1\ l 1 |I PRlI ‘26(0)'- F_}.—_Tl— |
n'n'#no  Eno-Fp: 7' n'#n - Hw' ! '
n#n

The substitution of eq. (II-29) and the use of eq. (II-30) gives, after a

straightforward manipulation (see Appendix A),

p lowliie> |y Jen'ntiino>]”
n'n'#nq En'q'En"q' n'n'#no Eno'En"q'
= - Z;‘(H)\(E) fdjrfdjr'ofodw'ofdt' __ei“"t' eiE'(E'E')
. >\—L5wk = w'_mk
. m<n|J, (£')J, (x,-t"')-d, (£)9, (£;t")[n>. (II-42)
= P ] R SR
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By taking the statistical average over the photon state |q:>as in the case
of absorption coefficient, using TrABC=TrBCA and substituting eqs. (II-38), »

(11-39), and (II-L2) into eq. (II-37), one obtu.ins

LN 92
s_sj 2.2 2
o v T3 +c k%bk
ZrEfo(z,g) s3I Lmg
Ak 2
“k
iw't!
2 ® +(z-r' )
SENE fdirfdir;idt gidw' i,_wk e15 (5 )Ter [Jkkz}t'),Jk(z)] =0.
L 1w
k

Then the refractive index for dispersive media is obtained, in terms of the

microscopic current due to motion f all the particles in LB, as

hmo, (k,a )
nf s (iﬁ)e = 1+—f;k——m—k— (II-43)

where

im't! 2

& 1 5 'oo 1 i v & 15.(!_'_1:') D 14t L -

bk(g,wk) = Znba, Ja r_idt Plidw =y e TrD [Jk(g,t ),JK(;)] -wk (1I1-44)

2 gl tu (11-15)

qQ =477 II-45

s Lj msj

and the property that 11LP[JK(E;t5,JK(£)] can depend only on r-r' for an
infinite homogenecus medium has been used. In section II-3, we shall compare
eqs. (II-3L), (II-36), and (II-43) with the results obtained from Kubo's

theory.

2. KUBO'S THEORY

In 1957, kubo 10

developed the theory of linear response of a medium
to an external field (i.e., electromagnetic waves) acting on the medium. .

He showed that the response can be described by electric conductivity tensor

B 1§
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(16)

of the medium. In 1966 Dong applied the theory to fully-ionized plasmas. ]

In this section we shall use Kubo's theory to obtain the photon (or radiation)

absorption coefficient and the refractive index for an arbitrary, electrically

neutral medium which may be a neutral gas, or partially or full-ionized plasma.

From Maxwell's equations, one can obtain

13
VE(r,t) - SR EnY - 2
t c

-a-ag 3%(r,t) (II-46)

by assuming that the macroscopic charge density of the medium is zero, i.e.,
9E(x,t) = o. l

Thus E(r,t) is transverse. We used Lhe superscript e over J(r,t) in eq.

(II-46) to denote that it is the expected value of the current operator ‘i

J(r,t). By using the gauge in which the scelar potential vanishes, the !

electric field E(r,t) can be described by a vector potential A(r,t)

through the relationship

1

E(5,t) = - = 2 A5, b). (11-47)

c
Assume that the external field turns on at t=-x. Before the field is
imposed on the medium, we have
(o®, #P] = o.
At time t, the interaction hamiltonian between the system and the applied
external field can be written as |
2 1

e
O
v(t) 'Ozaamoj {Bo;j'A( Sk +A<r j’ Bo;j) N %2“1 c2 AQ(_OJ, i

]

Hl(t)+H2(t) (II-48)

[ ———— SN
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where
A(r, t
H1(t)=-fdt3r I(z)- LA (11-49)
1,3 Az, t)
Hy(t)=- 2 [&'r J, (5, t) (11-50) )
2
3, (z,t)=- 5;:’% 8(z-r Az 4o t) (11-51)

With g(;) defined as eq. (II-28). When the medium is acted upon by the field
A(r,t), the total current operator at the time t becomes
I(z,t) = I(r)+d, (z, t).
The expected value of J(r,t) is defined by
F(z,t) = TrlI(z)+d, (z,t)1D(t) (1I-52)
where D(t) is the density operator of the perturbed system at time t and

satisfies the Liouville equation

4 i p
3¢ D(t) = 3 [D(t), B+, ()4, (t)] (11-53) :
with the boundary condition D(t=—e)=D’.

For a weak perturbation, we shall obtain the current response Jf(;,t) to
first order in A. For this purpose we substitute
D(t) = DP+D, (t) (11-54)
into eq. (II-53) where D;(t) is the perturbation due to A and neglect the terms
[DP,He(t)] and [Dl(t),Hl(t)+H2(t)] in the resulting equation (note that H, is
first order and Hy is second order in A). Then, D; satisfies

& Dy(t) = £ [Dy(6), BPY + X [P,y (¢)) (11-55)

whose solution 1s readily found as

& Hy(t')e

i HP(t-t') % HP(t-t'
)]. (II-56)

t
D1(t) =% gt [Dp,e'




21

The substitution of eqs. (II-54) and (II-56) into eq. (II-52) gives, after

2
neglecting the terms containing A (r,t),

3%(x,t) = 0% (r) + TrDPy,

2 E:t)

o

& et
+:1i?1 fd5r'_°{dt' TrDP [Jz(bt), Jm(g,'t')] A—m%'-t—l (11-57)

where the subscripts £ and m(£,m=1,2,3) refer to the components of the vectors
and where the summation convention on the repeated indices is used. The
first term in eq. (II-57) is the expected value of the current in the unper-

turbed medium and is zero. The second term is given explicitly by

t)|n>.

2
- P ocply —od
D', (r,t) = - L DRy <n] ) = 8(z-x  )A(Ly,

Since the delta function is contained in the matrix element, the integration

over all the coordinates of particles will give

A £
TerJA(r,t) = -q® Apt) (11-58)
~A'= c
where q2 is defined in eq. (II-45). Then eq. (II-57) becomes
A (r,t) A (r;t")
z = =
I t) = -a® —— + = fd5r'_£dt' e0P[7,(z,t), T (mt))] —— . (II-59)

In order to calculate the absorption and refractive index in the frame-
work of Kubo's theory, we substitute eq. (II-59) into eq. (II-46) and use

eq. (II-47) to eliminate the vector potential in favo" of the electric field.

The result is

2

19 b o3, KB e \ :
r,t)- :5;3 Ez(_g,t) = fdr _o{dt (a"8(t-t")8(z-r" )8,

vE

4
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- i Ter[JZ(E,t-t'), Jm(g')]}Em(_g;t') (I1I-60)

or -
VE_E_(I_,t) - E(xr,t) = L' Jar ftdt'o(r-g,'t-t' )'E(r,t') (II-61)

c® 3t? c2 FEa - .

where g(B,T) is called the conductivity tensor. We shall give the explicit
form of g in the transformed domain later.

Equation (II-60) which describes the electric field in the medium can
be solved if one specifies the boundary and the initial conditions on §(£,t).
The solution can in general be constructed in terms of the solution of the

homogeneous equation of the following form

-(ik*r-iwt) (11-62)
(S ICT
=\
where k and w are related to each other through the dispersive relation. .
2 w2 Soiw
-+
€ e - IR g (ko) (11-63)
where o (g,w) is the scalar conductivity defined by

A

o (k,0) = ¢ -a(k,0) €

where o(k,w) is the transform of g(R,T) and explicitly given by

2 .
o (ko) = - 2 - Ly G T T E gl (1), 5 (x)) (11-6)

In the applications, one usually encounters two types of problem:
(1) initial value problem and (2) boundary value problem. In the first case,
one specifies an initial spatial distribution E(r,o) and solves for E(r,t)
for t>o0. The initial distribution can be expressed as superposition of the

terms of spatial modes of the helmholtz operator, i.e., eih z where k is real
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vector. The damping associated with each mode is obtained by solving the
dispersion relation as w(k) for a given real k.

In the second type of problem, one solves the Maxwell's equation (II-60)
for E(r,t) when E(r,t) is specified on the boundary as a known function of
time. The time dependence can be expressed as the superposition of terms of
the form eiam where w is a real number. The associated complex k is obtained
from the dispersion relation as 5(&). A sinusoidal plane wave impinging on
the side of an half infinite medium is a typical example for problems of the
second kind. The complex number 5@») in this case is the inverse relaxation
length in the medium.

We shall compare the Kubo theory to transport theory in these two typical

cases.

a. Damping in Time
As we mentioned above, we must solve the dispersion relation in this
case for a real k, and obtain the real and imaginary parts of w(g) for a

given k. It is convenient to substitute

= U.)a = (J.)Q <5
w (k) o iny (11-65)

where wo=ck, and n(g) is called the complex refractive index with ng and n,
as its real and imaginary parts. The electric field will decay in time as
-aJ.)It .

e where wy is the imaginary part of w(k). 2wy is the decay rate of the
electric field which is the quantity to be compared to the photon absorption

t
coefficient per unit time ax(ggnk) obtained in photon transport theory.

The substitution of eq. (II-65) into the dispersion relation eq. (II-63)
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gives
2 2
e Do~y . 1 an ny - bi o (k s )
2, 2,2 2 2,2 o (n+in ) A= n +in
(ng+n7) (ng*ny) oo 1 o 1

In order to solve the dispersion relation for the real and imaginary parts

of‘w(g), we shall consider a weakly absorbing medium, n1<<no. In this case the

dispersion relation can be approximated as

1 1 bni R I
B RS N
Le
where L e is exactly the frequency used in photon transport theory and
o}

OXR(E’ak) and oKI(E,wk) are respectively the real and imaginary parts of the
scalar conductivity UK(E’wk) given by eq. (II-64).

Equating the real and imaginary partsi, one obtains the real refractive

index
2 bn I
n_=1+ Y o (ka,) , (11-€6)
the imaginary part
2nn

o) R
17T e N (k)

and the decay rate of the electric field

2n

1%k R
2wI = - o = hnox (Eka). (11-67)

The explicit form of ox(g,w) was given in eq. (II-64) for complex w.
w

When o = L. w, , we have
No k
(k ) _ l(lé .]__. de . ‘3 -i(l)k‘reil_{.O(z-E')Ter[J (r ) J (rl)]
NEZN T T T Ay AN s S

By using the integration representation of the unit step function, i.e.,




a5

§ @ e-iST
u(r) = ;_ids T vith ewo

and letting v = -t' and ' = s*wk, then

iw't'

2 ® ® '
- g— 5 t 1 ] e iE‘(I-I ) p tet
10)\(5,&1{) Y + 2;mgxfd r' Jat' faw ol 1ic e TrD [J)\(z), J)\(I,t s

The real and imaginary parts of o)\(k,wk) can be obtained by noting that

1im ——l—— = P-—],'- - ind(wiw)
€+0 w-w+ie wW=w
as
o)\R(g,wk) = -2%% fd5r'zdt'ei“’kt'e15'(3'1')Ter[J)\(I;t'), 3, (x)] (1I-68)
in't!
I 1 2 ® ' k -r' 14t
o, (ko) = . fd5r'_£dt'1=_£dw ew_,% oLk (r-x )Ter[J)\(z,t )y 9, (2)]
2
iy (11-69)
Py

b. Damping in Space
As mentioned above, the dispersion relation must be solved in this case

for a real w=w, to obtain the real and imaginary parts of §(wo). It is con-

venient to let
K= (no+1nl)1_(_

where ck=w, . For a weakly absorbing medium nl<<no, the dispersion relation

eq. (II-63) can be approximated as

2 Lri R 3 I
ng-l + 2inn, = (o)\ (nol_c_,wo; + io)\ (nol_c_,wo)].

(o) wo
Then, the real refractive index and the imaginary part are

I
bro, “(n k,w )
R A o=
g Byl + =, (11-70)

—_— e, e

v

il I
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and

- . 2% R
n) = - n o (nk,w ) . (1I-71)

The E.M. wave absorption per unit length is

Ln
& (ko) = -2n Kk = g o R(nk, o). (11-72)
This is the quantity to be compared to the photon altsorption coefficient
per unit length of(g,wk) obtained in photon transport theory.
In eqs. (II-70), (II-71), and (II-72), & R(n k) and o X(n k,» ) have
the exact forms as egs. (II-68) and (II-69) except that the places where k

and w, occupy are respectively replaced by n05 and.wo.

3. Comparison of the Results From Two Theories

The resulting expreseion obtained by substituting eq. (II-68) into eq. (II- .
67) is identical to eq. (II-34) and,furthermore, eq. (II-66) with the substitution
of eq. (II«69) is the same as eq. (II-43) with the substitution of eq. (II-LL).
One can conclude that the photon absorption coefficient per unit time and
the refractive index obtained from photon transport theory are the same as
that obtained from Kubo's theory through damping in time only for weakly absorbing
media. Since eqs. (II-36) and (II-43) are not tlie same as eqs. (II-72)
and (II-70), respectively, the photon absorption coefficient per unit length
and the refractive index obtained in the former theory are different than
that obtained in the latter throry through damping in space even for a weakly
absorbing medium.

As mentioned in section II-1, the "dressed photon" concept used in

photon transport theory is to associate photons in medium with the same
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wavelength A\ = 21 as in free space, but a different frequency @y from ck.
It is obvious that the dressed photon technique is equivalent to damping
E.M. wave in time because the latter is to consider E.M. wave in medium as
a wave having the same wavelength as, but a different frequency from the
free space values., It is different from damping E.M. wave in space because
the latter is to regard E.M. wave in medium having the same frequency as,
but a different wavelength from the free space values.

From the above conclusions and reasons, it seems suggestive to for-
mulate photon transport theory by associating photons in medium with the
same frequency as, but a different wave number vector from that in free
space. Then the photon absorption coefficient per unit length and the
r. ractive index obtained from such formulated photon transport theory
may turn out the same results as obtained from Kubo's theory by damping
E.M. wave in space. It would not give the photon absorption coefficient
per unit time and the refractive index as obtained from Kubo's theory by
damping E.M. wave in time. However, the suggested formulation is more
desirable because most measurements have been usually done in measuring

photon absorption coefficient per unit length.

L SO



CHAPTER III

VARIOUS PHOTON ABSORPTION MECHANISMS

In chapter II, we have obtained the absorption coefficient for a photon
with momentum #ik and polarization A in dispersive media. We shall restrict
ourselves, henceforth, to a nondispersive medium. In order to display var-
ious mechanisms contributing to the photon absorption in a material medium
and also to estimate the order of magnitudes of the various contributions in
the lowest approximation we shall change the representation ({n>} for the
description of the particle system. In chapter II, the particle wave func-

tions |n> were chosen as the eigenfunctions of the total hamiltonian

2
2 [
B -2 [§'a—°1+vo]+v'
o moJ
which included the interaction between various constituent molecules. In

the present chapter we shall work with a representation which diagonalizes

only part of HP. The remaining part of HP will be treated as perturbation.

1. DESCRIPTION OF THE PARTICLE SYSTEM IN FIRST ORDER PERTURBATION APPROX-
IMATION

For a particle system which consists of neutral atoms, singly-charged

ions and free electrons, the hamiltonian of the system can be written as
WP o= i+ mt B+ VP

vp - VAA + vee + vii + vAe + VAi + vie

i
where HA, H , and H are, respectively, the hamiltonians of the neutral

28
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atoms, the singly-charged ions and the free electrons. VAA, v®€ and Vii
are the potentials between the same kind of "molecules" (atoms, ions and
free electrons), and VAe, VAi, and Vie are the potentials between the dif-
ferent kind of "molecules."
In addition to Hp, the interaction of the particles with the radiation
field can be separated as

L A
where Vas Ve’ and Vi are, respectively, the interactions of the atoms, the
free electrons, and the ions with the radiation field.

A convenient and simple representation which one can choose is that

the wave functions h1>=|a87> satisfy separately the Schr8dinger equations
HA|a>> - Eyla>

1 g >

EB|B>

i
Hy> = E |y>
|y 7|7

1
with v=vP + g}

considered as the perturbed hamiltonian. Since each of
HA,}f, and Hi can be separated as the sum of the hamiltonians for the
molecules of the same kind, the wave function |aB y> is the product of the
wave functions for the individual molecules in the system. 1In this rep-
reséntation we must calculate the transition probabilities at least to the

second order in V if we want to investigate absorption due to free-free

transitions of charged particles. The photon transport equation then becomes
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21D
o) nmn,n , '
TG + 2 We (r,k,t) =33n——,hq‘—q (ntn)l<n'n'|Vinn>
n'n'
<n'n'|Vin"q"><n"q"|V|nn> 2
M z'n : I lE n_E 1 I—LL | S(Ev "E ) (III-l) .
n ny n'n' nn nn
|

#nn,n'q'

For the reduction of eq. (III-1), we shall use second quantization

in which the potentials VAe, VAi, and V'° and the interactions Var Voo

and Vy are given by (see Appendix B)

2
bne Bp(K-K'+u-u') (2 u'):
VAe =7 ;(__ = <a'l|-z+ ei(gg )£J|a>Af(_Ig'a')Af(p_')A(Ea)A(u)
KK' 1”|u-u’ J=1
- lu-u'|
uu (11I-2)
Lne2s, (K-K'+1-1" z-1.
wa o1 il S )<a'|z- z e-i(E_5 )BJ| ><b'|z- L ei(-}g-K ).f3|b> .
KK'11' L5|K-K'|2 J=1 J=1
?5"5'5' ——]

m AT(K'a")AT(2'b" )A(Ka)A(2D) (11I-3)

2
Y 3] (.‘.'.l""_'_') - 1Y
vie . Z ne K Uu~u ’b'l-z+zzlei(g-2 )Pj|b>Af(£lbl)Af(ul)A(lb)A(u)
ﬂ' L5|u_u||2 J:l -— -— —
bb ==
uu' (I1I-4)
v ie 21(&:2 (K-K' a. ot LT
A é c | 3, KK "o o [ (K)e, (k)4 (<k)e, (-k)JAT(K'a' )A(Ke)
Ka' (I11-5)
eh 2n‘hce + + .
Ve =>§(‘;c' ?w— (o (k)e, (k)+q (-k)e, (-k)]-u & (u-u'-k)A (u')A(u) (1I1-6)
uu '
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2
_ ¢ le| 2nhc , 4/ 1
A -)\Zk e | 5. B (LK), d o - (0 (K)e, (k)+a (ke (<k)) AT(L")A(LDb)
1o
1 (I11-7)
where
Z 72=1 Exl-Ex
d ' = <a' . > ' = <b' p.lb> e 1 = .
4.1g a |J§FQJ|8 ’-d-bb |j§1-3| y Dyry X

In the above equations, A(u), A(Ka), and A(Lb) are, respectively, the destruction
operators for the annihilation of a free electron of the momentum #iu, an atom

of the external (center-of-mass) momentum HK and the internal state |a>

and an ion of the external momentum #if and the internal state |b>. At(u'),
Af(ﬁ'a'), and A*(i'b') are the creation operators which create a free electron,
an atom and an ion in different external and internal states. The symbol &
with subscript K denotes the Kronecker delta. £y is the position of the j-th
atomic electron in an atom or ion with respect to the position of its nucleus.
gga'a (or ggb.b) is the matrix element of the dipole operator with respect

to the internal atomic (or ion) states. 4“@'3 (or ﬁwb,b) is the energy

difference of the internal states |a'>and |a>(or|b'>and|b>) of an atom

(or ion).

2. TRANSITION PROBABILITY FOR PHOTON EMISSION

In this section, we shall make several approximations to reduce eq.
(III-1) to a simple form. The number of photons with momentum #ik and po-
larization A emitted from L3 per unit time can be obtained by letting n'sn+l

in eq. (III-1), i.e.
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E (k)(f (k)+]) = x D <n'm+l|V|nn>+ Z, <n'n+l|V[n"y"><n"n"|V]np> 2
N = ) nn' 4 nn, nn nl nn = T
n =nn,n’' 1 nn n"g"
B S(En,r*l-Enn) (I1I-8)

where EK(E) is the transition probability per unit time for emission of a
photon of momentum fik and polarization A. Let us consider first the direct
transition, the first term in the absolute square of eq. (III-8). Since the
potential VP between the particles contains neither the photon creaticn

nor destruction operator, then
<n'n+l|V|nq> = <°"'1+1|VA|°‘71>5BB'577' + <B'q+llvelﬁn>6wl 6771

+ <7'q+l|Vi|7q>5wv6Bav
where <B'q+l|Ve|Bq> 60:1'677' accounts for the direct photon emission through
the interaction of the free electrons with the radiation field. No such -
transition can exist because the energy and momentum conservation laws can
not simultaneously hold (see the justification in Appendix C). Then
<n'm+1|V[nn> = <a'nrl|Vylon>8,5.8 4+ <y'nrl|Vy[yn> 8y 8+

(IT1-9)

The second term in the absolute square of eg. (III-8) accounts for the
indirect photon emission through the intermediate states |n"n">. It has

the non-zero contribution only for n"=q and 1" =n+l.

<n'nt1|V[n"q"><n"q"|V]nn> Z <n'|VP|n" ><n"nr1[H T ng >
n"n"gnn,n’ n+l Enn Bty n'#n’ BB

. Z<n'm»l[npm[n"n><n"|vp|n>
n"#n En-En"

(1II-10)
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where we have used En'n+l-En =o from the energy conservation delta function
in obtaining the demoninator of the first sum. To simplify eq. (111-10),
the following three assumptions will be made throughout this chapter.

(i) The neglect of the potentials between the molecules of the same
kind (i.e., neglect of VAA, V('e, and Vii). This assumption is justified
because these potentials do not affect the photon emission and absorption

much, although they play an irportant role in the shape of the lines (pres-

sure broadening). Under this assumption, eq. (III-10) becomes

<n' n+llV|n" " <n" "|V|ml>

n" "7‘nn n'n+l Enn-En'y

E_ -E ®y'y

- z{<fs'n+1IVeIa"n><oz'fs"I\H“?lom» , <8 [V*las "><B"j+llvelﬁfl>}
B" op Ta'p" Earpt Eap

¢ 1" n_ 4 yl€ Vo lui€ian "
. Zfﬁ 1|Ve|g"n><8"y [VI|By> | 'y [VIClB"y><p ﬂ+l|Vel6n>} -

1 “E.n , -F (0.0
B Eq,-Egn, Egryr~Egn,

Z{ ﬂ+l|V1|y n><a' 7"[\#\ oy > <a'7'[\H-\llay"><7"q+ll\/i|yq>} .
Bp

E E N |-E 1"
crr o'y" ay oy
. <a'n+1|vA|a"n><a"a'IvAelaB> . <oz'B'I\H\ploz"B ><o'n+1|Valon> £
a" E_-E_u E , .-E . 7y’
g ap' a'g' “a'p
o o ilvala"n><ay [Vay> | <a'yt |Vt la"y ><o"nrl|vaon> :
Q E -E, , E -E ,, g’
or oy a'y' o'y
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- < qrilvily"n><p 'y v e By > R <B'7'lVie|B7"><7"n+l|Vi|7n>}6 '
4 Py "pty" Fgry Epy" =
(III-11)
The first sum accounts for the photon emission due to electrons moving
in the field of neutral atoms. We shall refer to this as the bremsstrahlung
of electronsin the field of atoms. This sum consists of two parts. The
first one corresponds to the emission mechanism in which an electron interacts
first with an atom through the coulomb potential and goes into an intermediate
state. It then interacts with the radiation field by emitting a photon.
The second part represents the emission mechanism in which an electron first
emits a photon and then intgracts with an atom. The second sum in eq.
(III-11) is the bremsstrahlung of electrons in the field of ions and the
third sum is the bremsstrahlung of ions in the field of atoms. Each of these
sums contains two parts corresponding to the same emission mechanisms as
described above,
The fourth (fifth and sixth) sum is the dipole radiation of atoms
(atoms and ions) induced by electrons (ions and electrons). The reason we
use this terminology is that the emitted radiation comes from the dipole
transition of the atoms induced by the interacting electrons.
(ii) The internal states of the ions are unchanged. This implies that
V;=0 because w, =0 for b'=b (see eq. (III-7)). Then the third and sixth

sums in eq. (III-11) vanish and eq. (III-8) becomes

<n'n+1|V|nn> = <a'n+1|Valan>sgg 8., (II1-12)
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under this assumption.

For structureless ions, such as hydrogen ions, V; takes the form of
eq. (III-6) for Ve. In this case, the third and sixth sums can be neglected
as compared to the first two sums because the mass of hydrogen ion is much
larger than the electron mass. Furthermore, eq. (III-12) is also true for this
case because the free hydrogen ion, just as the free electron, can not emit
or absorb any photon through direct transition.

(iii) All the cross terms after expanding the absolute square of eq.
(III-8) will be neglected.

Under the above three assumptions, eq. (III-8) becomes

DAe

- B3
E (65 (0)+1) = ¢ B(k) + ¢ B) + ¢ Pk) + ) + ¢ (k) (1mI-13)
where
BA 2n 2
= —_— i Vv > - =
6 (k) oo%nh Do an| <@ *1IVylon> [8(E,, ) -E, ) (III-14)
BrAe on <B'q+lIVe|B"n><a'p"lVAelaB>
€ (k) = 2=0D )
A o' oBn,0Bn  |F By - Eq'p”
BB'n
o
<a'p' |V |ap" > <p"n1lVelpn>
* g. Eq'pr~Eop” 5(Bqrprne1Fopy) S
Brie o <B'n+l|Ve|B"n><ﬁ"7'IVielB7>
¢ (k) = 2, = g,
A = yy' B Bn, 7B EB7'EB"7'
BB'n
B'y'|VviCp"y > <@ 1| Ve]Bn> |
+ X & (E, .. .-E_) (III-16)
g Egty1-Egn, B'Yh+l "Brn
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¢ DAe(k) - 2 g D | <a'ﬂ+llﬂ¢0"n><a"ﬁ'[VAelaB>
A AR I,
alqu
A 2
&
<a'B'|V |a"B><a"n+1]valan: l -
+az:' EQ'B'-EQ"B 6(ECI'B'T]+1 OBT]) (I1I-17)
e DA & el | <Q"T‘lIVA|a"q><a"7'IVAilay>
A =/ 7 aa' bk “arnary! g S
y'rm

.

. <a'7'1v‘\ja"7 ><0"r+1|Valan> |2
o" Eal,yl'Ea",y

5(E

o[.7.,]+1-Eo[,m) (I11-18)

are the numbers of photons of momentum hk and polarization A emitted per unit

time from L5, respectively, due to the atomic bound-bound transition (GKBA),

the bremsstrahlung of electrons in the field of atoms (e BrAe) and ions

A
¢ DAG)

(exBrie)’ the atomic dipole moment transitions induced by electrons ( "

(e DAi).

and ions
A

Since the radiation absorption due to electrons in the field of atoms
will be investigated in Chapter IV, the reduction of eaq. (III-15%) to the
form used in Chapter IV is now performed in detail.

Let the initial and final states of the electrons, the atoms and the

photons in the system be

lap> = |...n(Ka), n(K'a')...>|...n(u), n(u'), n(u")...>
la'B'> = |...n(Ke)-1, n(K'a')+Ll...>|...n(u)-1, n(u')+l, n(u")...>
In> = |...q)\(5)...>




37

|'r]+l> =

...n)\(g)+1...>
where n(ga) is the occupation number of the atoms of the external momentum 4tk
and the internal state |a:z n(g) is the occupation number of the electrons

of momentum #iu and same for nx(g). One of the intermediate states of the

electrons for which the matrix elements in eq. (III-15) does not vanish is

IB"> e

...n(u)-1, n(u'), n(u")+1...>

From egs. (III-2) and (III-6), eq. (III-15) becomes

L 26 RV [ M
¢ Brie(y . Won) #e . By (K-K'+u-u" )Py (ui-k)q, 15 (u-u )u".€
A = 'a' 9 2 ! " 2 =1 =\
Eai; m“w u |lu-u"| (Eﬁa'Eﬁ'a'+E2'Eg")
B (K-K'+uu ) (u-uk)Q, . (ulu
¥ fommge —RES L dSs E'Exles(EK'a"EKa+Eu"Eu+hm)

s |u'-'u'|2(E,1$'a"EEB+E5'-E£")

 N(u)N(Ka)(f, (k)+1).
where
2 1
Garalu-u’) = <a’|z- T ot EB ) B,
N(u), N(XKa) and fx(ﬁ) are the numbers of the electrons, the atoms and the
photons in LB, respectively. In obtaining the above equation, n(g) and
n(ga) have been neglected in comparison with unity and the statistical average
over the initial particle and photon states have been performed. For non-
relativistic electrons one can replace dg(u-u*k) by 8g(u-u'). It means

that the recoil momentum of the electrons can be neglected. Taking the

sum over u" after this approximation is made, one obtains

(k) = BETAC(k) (6 (k)41) (111-19)
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where
L6 K-K'+u-u' -u'
FxBnt\e(k) v L(on)"ef Bx (KK e Qg 1glu-u') (u-a' ) e, |2
b 5a§ = L9m2«w5 |u-u'|u R
uu -
B 6(E-}S,a,-E-}Sa+EE,-EE+-hm) N(u)N(Ka) (111-20)

is the transition probability per unit time for emission of a photon of
momentum £k and polarization A due to the bremsstrahlung of the electrons
in the field of atoms.

Using the following properties

3 .
L - 3 K
Ked’k  (2n)
p) .
ok s ) {25 (g sug)
I
eq. (III-20) can be written as
BrAe = ¢ BrAe _
E)\ (k) c}\ (_lg)NANe (I11-21)
where 5
6 -, (q)
BrAe(,\ _ Ome 3. 3., 3 -3, a'a2’ 2
C, "M (k) = 55 JaK JaK' Jau jatu' } Pa};, T 9 My (KM (u)
W q
= B(K-K'+u-u')8(Ey,, By ¢, ,-E +w) (II1-22)

g = u-u' and qx = g-gk.

NA and Ne are the number densities of the atoms and electrons in the system.

Pa=N(a)|NA is the ratio of the atomic density in the internal state |a>> to

the total density of the atoms in the system. It can be interpreted as the

‘-'m-_m




39

probability of finding the atoms in the state |a>. MA(E) and Me(E) are

the distribution frequencies of the atoms in de and of the electrons in dBu.

The further reduction of eq. (III-22) will be found in Chapter IV.

In the same way, the transition probabilites per unit time for photon
emission due to the other mechanisms as described in egs. (III-1k), (IV-16),
(III-17), and (III-18) can be written down. Letting the ion density of the
system be equal to the electron density the total transition probability
per unit time for emission of a photon of momentum ¥k and polarization A

due to all the significant mechanisms under the assumptions made is

Ek(k) e BA(E)NA . [CkBrAe(h) . C)\DAe(E) . C)\DAi(E)

(II1-2%)

where

3 v 2 42 . . i
[d 'k ;L P, Jow, d (x)M, (K)5(E, +-E ¥

a'a a'an' =" A= (T1I-24

6
(k) = —= fd5zd5/z'd5

2
. (9)
ib‘i‘“ fMi(i)Me(E)

L.dau' ngbZ'

' t - ) .z _
R 5(4-L'+u-u')8(E,,, B, 4E iE +iw) (IT1-25)

3

Z {wa.andayan)\Qana(g)

DAe _ Bre S adus
C (k) = — [dKa’K'd ® .

2
W

2
wa"ada"a}\Qa'a"(a)} MA(E)MG(B)
w 4 W
a a

udau' g P, 2.

al

q

-E +ho) (III-26)
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2 (a)
¢ PRy o fd kdk'd>1d 1" Z Py Py 2,3211;:__
A = N
-ﬁ w q
2
n Z{wa'a"da a"an"a(-q) } @y Gy ax a'a (Q)}
" w o, pyh w W
a'a a a
® MA(g)Mi(1)6(§-§'+£-£')s(gﬁ,a,-Eﬁa+§£,-E£+nm) (I11-27)
P ala . e |2 @i(q) = [ [z- T e8RS |p> |2
a'aN —a'a =\' "’ Q't)"l) )= z j=1

N(b
In eqs. (III-25) and (III-27), Py= —frl is the probability of finding an ion
e

in the state |b> and Mi(l) describes the distribution of the ion velocities.

3. PHOTON ABSORPTION COEFFICIENT

It has been shown 1in section III-2 that the transition probability
per unit time for emission of a photon of momentum Ak and polarization A
due to all the significant mechanisms EK(E) is given by eq. (III-23)., It
is possible from EA(E) to calculate the absorption coefficient for photons.
This calculation is now performed.

If "« is assumed that the medium is isotropic, then the absorption

coefficient for unpolarized photons is

L

(0] I
8nc

z Jan (A (k)-E, (k) (I11-28)

where AK(E) is the transition probability per unit time for absorption of
a photon of momentum ¥k and polarization A.

For M (K), (u) and Mi( L) being Maxwellian distributions and for the
'Ea/Q (e‘Eb/o)

internal states of the atoms (ions) populated as e where 0 is
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is the temperature of the system in energy unit, then the absorption and

emission transition probability are related by the equation

Ak)=e @ E (k). (I111-29)

From eqs. (III-23), (III-28) and (III-29), the absorption coefficient can

be written as f

N 2 .
@=CNy + CNN_ + C N (I11-30
where
w
e ° 1 BA
= - I111-31
o 8rc % faa, g, (k) (III-31) |
eg 1 BrAe DAe DAI
9 e E Jaay (€, 7 (k)+C ()G, T (k)) (I11-32)
aw
eg 1 Brie
C = Y fan C (k). (1II-33%)

2 8nc kA

L, TIME-DEPENDENCE OF «
A plasma will vary with time and eventually die out if there are nc
external devices to maintain it. The absorption coefficient o is a function
of time. The possible parameters in eq. (III-30) which may depend on time
are the neutral and electron densities, the temperature of the medium and
the probabilities Py and Pb of finding respectively the atoms and the ions J
in the states |a>> and |b3>. Since plasma temperatures are known to be

sensitive functions of time for most cases, C_, C, and C, are time-dependent.

b ————
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In this section, we shall investigate the time variations of the quantity

y(t) = ot) instead of a(t), by assuming that the.neutral and electron . ’

2

densities satisfy, respectively, the simple differential equations

dNe(t 2
‘- = ~yoNe(t) (I11-34)
dt
dNa(t
amle) ) a2() (II1-35)
dt
where 7y, is the recombination coefficient of the electrons with the ions.
The solutions of eqs. (III-34) and (III-35) are i
eo
N (t) oMot (I11-36)
YoNeot
N, (t) = (111-37)
A Ao 14y N t

where Neo and NAo are the respectively the neutral and electron densities at
the instant of the plasma formation. The substitution of egs. (III-36) and

(ITI-37) into eq. (III-30) gives

1 X M
Vo= (Mot

(I11-38)
where x = yNgot, ¥(t) = a(t)/N2Cq(t), A = Ny [Ngg and u(t) = Co(t)/Cy(t)

are dimensionless positive numbers. In obtaining eq. (II.-38), the di-

rect bound-bound transitions of the atomic electrons, i.e., the first term

in eq. (III-30) has been neglected. The reason for neglecting this term

is that it represents the atomic line absorption, and hence is negligi-

ble when the frequency of the photons is far away from the line fre-

quencies. In eq. (III-38) A 1s the ratio of the neutral to the electron
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density, a quantity of measuring the degree of ionization of the medium at % I
the instant of the plasma formation. p is the ratio of the inverse brems-
strahlung due to an electron in the field of an ion to that of an electron

in the field of an atom if the contributions due to induced dipole transitions
are negligible (see eq. (III-32)). In the case that Cl(t) and C2(t) are
sensitive to the time t, their ratio, p(t), may be insensitive to t because
the numerator and the denominator are both time dependent through the tem-
perature in the Maxwellian distribution of particles. We shall assume that

p is constant, then a maximum of y in eq. (III-38) occurs at a value

= o 1—1%3*& (II1-39,

provided A+2u<l because A, u and x are positive numbers. The variation
of y(t)=a(t)/n§ocl(t) with time is shown in Figure 1 for the plasmas with
A=1/9 and p=o0, 1/9, 2/9, 3/9 and 4/9. 1If the dependence of plasma tem-
perature with time is known, the variation of the absorption coefficient

a(t) can be obtained through the calculation of Cl(t).

— -
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Figure 1, Variation of oz(x/yoNeo),/NEOCl with the time after the forma-
tion of plasma.




CHAPTER IV
RADIATION ABSORPTION IN PARTIALLY IONIZED HYDROGEN

GAS DUE TO INVERSE BREMSSTRAHLUNG OF ELECTRONS
IN NEUTRAL ATOMS

(12)

In 1967 Akcasu and Wald investigated the radiation absorption due to
the inverse bremsstrahlung of slow electrons in the field of neutral atoms.
Since the temperature of the system they investigated was low (e~lev or less),
they assumed that all the atoms in the system are in the ground state, the
energics of the electrons are insufficient to excite an atom from its ground
state to an excited state, and the elastic scattering cross section for
electron-atom collisions appearing in the absorption formula cen be approx-
imated by its value at zero electron energy. Under these assumptions they
calculated the various absorption contributions due to inverse bremsstrahlung,
induced dipole transition, and exchange and interference effects; and found
that the last three contributions for low temperature system are negligible
as compared to the first one.

For hot plasmas, such as the one(15) produced by a giant pulsed laser
beam which we shall discuss later, the temperature of electrons in the plasma
is about 20 eV. At such temperatures, the above assumptions made by Akcasu
and Wald cannot hold. It is the aim of this chapter to consider the problem
for higher electron energies. The atoms in the system are allowed initially
and finally to be in any excited state as well as in the ground state. The

electron energy dependence of the elastic and inelastic cross sections will

be also taken into account. However, only the absorption due to

b5
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the inverse bremsstrahlung of high energy electrons in the field of excited
and ground atoms shall be computed. The other contributions, such as
induced dipole transition, etc., which at high temperature might not be

small as predicted at low temperature, will not be considered in this thesis.

1. ENERGY INTENSITY OF EMITTED RADIATION

In section III-3, we have obtained in eqs. (III-21) and (III-22) the
transition probability per unit time for emission of a photon of momentum
%k and polarization A due to the bremsstrahlung of the electrons in the

field of atoms as

6 e, (a)
8re” 3 3., 1.3, a'a 2
E (k) = =55 Ja'K JaK' [a"u EN(‘*)&Z. T 9% M, (K)
m W q
& 5(K-K'+u-u' )B(EK,a,-EKa+Eu,-Eu+fw) (Iv-1) )

where N(a)=NAPa is the number of the atoms in the internal state |a>>. In
eq. (IV-1) we have dropped out, for the time being, the integration Nefd3uMe(u)
which accounts for the effect of the Maxwellian electron distribution in order
to simplify the writing of the expressions below. We shall resume this
integration later in section (IV-4). The superscript BrAe in eq. (III-21)
for indicating the contribution due to bremsstrahlung of the electrons in
neutral atoms is also dropped out for the same reason.

For an isotropic medium, the energy intensity per unit energy emitted
in all directions and in two polarizations is related to Ek(g) by the equa-

tion(le)
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b
S(tw) = %——5 Jag, T E, (k) (1v-2)
c”(2n) A
where _S_zk is the direction in which the photon is emitted. Recalling that

9,=9°&, , one has

: 2 _B8n 2
fag, ; q =5 a,
and eq. (IV-2) becomes
866 30,0 p) 2
S(w) = == [ a JaK' Ja?u' o EN(a) F_, ()M, (K)B(K-K'+u-u")
3mm ¢ e
B 8(E -E, ,+A) (Iv-3)
where
Z ig-ps 2,
yal@) = l<a'] 2 é e'2Hja>|%/q
and

A=E -E +E -E  -fu.
a a u u
For a medium in thermal equilibrium, the atom momenta, ‘hg, are distrib-

uted according to the Mauxwellian distribution law, i.e.,

2.2
M (K)AK = ——; ° M3 47K (Iv-4,
(L\YNMO) !
and the integrations over d5K and dBK' in eq. (IV-3) can be carried out
6 A Ji X (A. .m 2)2
S (hw) = 2jfd u' q?N(a)Fa,a(g) \[____Ie Ly? E’u MYy
3am c aa' HQVene (1v-5)
2 q , 3 mo, N .
where x = —= and y = =%, Since d"u' = =y u'dE -d0 ,, the integration over
me u - u -u
d'iu' can be performed and eq. (IV-5) reauces to

o e
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L 2
= X A m 2
1 - - 4
s(hw) = 2@ L jag , [Omex age® T (), (a)(%)7 ¢ T2 (B m V)
*u Imin a8 (Iv-6)
here a = EE is the fine structu onstant = |u-u'| and = u+u'
where a = = ine structure c » Qin = Qo = . ]

As a result of the large mass ratio % of an atom to an electron, the
quantity x is a large number in most cases. Therefore one can approximate

the exponential factor in eq. (IV-6),

1
X2 X (A m 22 L my
Q7 expl- 25 G2 - v, oy ol - 5.

The last term my/2M,in the argument of this delta function accounts for the
recoil energy of thc atom. Thus eq. (IV-6) includes the effect of finite
atom mass. However, for the sake of simplicity, the atoms in the medium will

be assumed to be infinitely heavy for the remainder of this chapter. Then

eq. (IV-6) becomss '
& 1—6 _‘_h. o2 1 q . 5
S(fw) = 3 o = ngu fq$i>; dq q g.a‘N(a)Fa,a(q)S(Ea-Ea,+Eu-Eu,-’f‘w) (Iv-7)

2. DIFFERENTIAL CROSS SECTION

In this section, we shall express the energy intensity of emitted
radiation in terms of the differential cross section for electron-atom
collision. During collision, the electron momentum changes from fiu to %iu'
while the atom simultaneously undergoes a transition between the initial and
finalstates |a> and |a'> for which the atom internal cnergies are Ea and
Ea" respectively. The differential cross section in the laboratory system

(17,18) Al

of coordinates for such a process can be defined

T ————— .
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(1v-8)
n E“—'F (q)8(E -E ,+E -E ,)dn ,dE
a2 E, a'a e a a' u u'’=u'"u
o] -
where qgu, is the element of the solid angle in the direction of u' and
2
a_ = 5= is the first Bohr radius of hydrogen atom. The macroscopic diffcr-
me
ential cro-s section for the scattering process can be defined as
Zga, (Eu’Eu"q) = N(a)caa,(Eu,Eu,,q) (IV-9)

Since the various atomic transitions accompanying scattering processes
remain unseparated experimentally, the macroscopic differential cross secticn
is obtained by summing the ceontributicns of transiticns to all admissitle

final s‘ates of the scaltering a'cm as

,4 Eu' t E ey
Za(Eu,Eul}Q) = 2 Eu E‘v N(a)Fa|a<q)6<Ea-Ea|+Eu-Eu|)‘ IJ- )

0

Then the total macroscopic differential cross section of an electron scattered

by the atoms in all possible initial states is
Y (E ,E ,q) = —E-J Z N(a)F , (q)8(E -E ,+E -E . ). (Iv-11)
u’u’ 2 8'a a &' "u u

In terms of the differential cross section, eq. (IV-7) becomes

S(tw) = L S, (fw) (IV-12a)
aa' asa
where |
,l 5 2 he o E q
B = = & max ({TV-
S o0 (1) S <A ElEu, Jzu,vfm I i B Toar (B E . +w,q) (IV-12D)
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or
S (fw) -Ecpaefﬂi}s J " [imeaX300° T (E ,E +hw,q) © (1v-12¢)
A'e om ‘5u' "E 4w 'q . aq w el g

If all the atoms in the medium are initially and finally in the ground
state as assumed by Akcasu and Wald, egqs. (IV-7) and (IV-8) become in this

case

16 A Anax
S(4: = = i
)~ By 3 mu f;aEu' fqmindqq3F(q)6(Eu-Eu.Jhw) (Iv-13)
o(q) = ie F(q) (IV-1k)
a

o
where F(q) denotes the matrix element evaluated with respect to the ground
state of the atom and NA is the number density of the atoms in the system.
Equation (IV-1k4) is just the microscopic differential cross section of an
electron elastically scattered by an atom in the ground state. In terms

of the velocity, v=hulm, of the electron, the integral microscopic cross

section can be written as

amy
8n 1 2 2 .4
olv) = = [ Fla)du = (=) .~ aF(q)da. (Iv-15)
a L omv [o]
(o]
Combining egqs. (IV-13) and (IV-15) gives
16 B > 1! & Vmax. 3 v dg -
Y4 = — — -— - + -— gE—
S(¥w) NA 3ﬂo.;ao (h) . foEu, fvmindvv [a(v) o
= S(Eu-Eu,-m) (Iv-16)
v+v' -v'
where v .. = + B and ., = 1173_1. Eq. (IV-16) indicates that the intensity




WSy
ooy | K - by

51

of the bremsstrahlung is not determined by the value of elastic scattering
cross section at the incident electron energy, as might be expected in-
+tuitively, but it depends on the variation of the cross sectidn in the

velocity region (v ) If o(v) is slowly varying up to the incident

-V
min "max

energy of electrons, one can approximately evaluate the integral over dv

in eq. (IV-6) for a low temperature system

1
stw) = 1,122 (o e(=5 0 3/2(. B2y, B2 (v-17)
u u

where o(o) is the cross section of the electron elastically scattered by the 5
atom in the 1imit v+o. Equation (IV-17) is identical to that obtained by 4'
Akcasu and Wald(le)by the partial wave method. This identity shows that the QE
method of this chapter by using plane wave for the electron wave functicn ';
will yield in the above approximation the same result as obtained by partial 'W
wave method if one uses the experimentally measured scattering cross-section |

:
of ground state atoms in both methods. j

Although eq. (IV-16) is obtained by assuming that all the atoms in the
medium are initially and finally in the ground state, it is also applicable
to the atoms being initially and finally in the samc excited state. 1In
this case, o(v) in eq. (IV-16) is the cross section of an electron elas-
tically scattered by the atoms in the excited state and NA is replaced by
N(a), the number density of the atoms in the excited stéte |a:>.

For inelastic scatterings of electron-atom collision, the energy in-
tensity emitted through such processes can also be obtained from egs.

(IV-12) by knowing the differential inelastic scattering cross sections.
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It is obvious that the energy intensity celculated from eqs. (IV-12)
and (IV-16) will be more accurate if the experimentally determined cross
sections are availeble. Unfortunately, the cross sections are not all
experimentelly measured. We shall calculate, for the sake of consistency,
all the relevant cross sections in Born approximation even though some of
them have been experimentally determined. In order to get various cross
sections in Born approximation, one has to calculate Fa'a(Q) for various

atomic states. (q) is also contained in eq. (IV-7), the expression

Fora
for the energy intensity of emitted radiation. However, once Fa,a(q) is
calculated, one cen obtain the intensity of the emitted radiation directly
using eq. (IV-7) rather than first evaluating the cross section and then
using eqs. (IV-12) and (IV-16).

As we shell apply the theory developed above to the hydrogen case in the
next section, it is suitable here to show some of the electron-hydrogen
cross sections calculated in Born approximation and partial wave method.
The elastic cross sections calculated in Born approximation when the hydrogen
atoms are initially and finally in the ground state |100:> as well as in the

states |200>, |210>, |211>, and |21,-1> of the first excited energy

level are given by

%100 2 [7_ BUh+9U2+7]

na02 3U2 (1+U2)5

2 2

%00 1 [2081_ 210b6+1u70b5+u15Ob“+65u5b5+6951b2+u277b+2081]
e, 520

- (1+b )7
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Sio _ 3 [1137 i 7Ob6+1490b5+1h70bh+2625b3+3087b2+2289b +1137]
n802 55U2 (l+b)7
21, 3l 9 [37- 1°bh+50b3+100b2+95b+57j
na02 n802 5U2 (l+b)5
2

where b=l4U2 and U2=u28 with-h2u2/2m being the incident energy of the

(e}

electron. These cross sections are plotted in Figure 2 together with oP

100
(19,20)

which is calculated by partial wave method and agrees well with

experimentally measured results(el). 0100 Was calculated before by Mott
and Massey(l7), but for the states in excited levels no elastic cross sections
for electron-hydrogen collision have been calculated in either Born approx-
imation or partial wave method. Therefore, we had to calculate oopg, 0o1g
and ooy using the Born approximation explicitly for the purpose of compar-
ison with oy4q. For inelastic cross sections when the hydrogen atoms are
initially in the ground or in an excited state, most calculations in the 1lit-
erature have been performed on Bo:n approximation.(l9’ 22-27)
Figure 2 shows tha" the elastic scattering cross section for the hydrogen
atom in the ground state cal~ulated in Born approximation is less than 0500
which agrees well with the measured values., The discrepancy becomes large when
the incident energy of electron decreases. Furthermore, the elastic cross sec-
tion for the atom in a higher level is much larger than that for the atom in
& lower level because the size of the atom is bigger. This may cause a larger

radiation absorption when atoms are mostly in excited states as in the case of

a hot plasma.




w’i P e

54

%100
i | | | | |
0 .2 4 6 8 1.0 .2 4

U2 (ATOMIC UNIT)

Figure 2, Elastic cross sections for hydrogen atom in the states |100>,
|200>, |210>, |211>, |21-1>.
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5. %, W) F , (q) FOR HYDROGEN ATOM

As mentioned above, Fa,a(q) of an atom or the scattering cross
section of electron-atom collision plays an important role in the energy
1nten§ity emitted due to electrons moving in the field of atoms. Since
we shall compare the radiation absorption coefficient, which is related
to the emitted energy intensity (see later), to the measured values
in a hydrogen plasma, we need to calculate aza N(a) Fa,a(q) for the
hydrogen atom. Let a wave function of a hydrogen atom be labeled by |nlm:>
where n,!, and m are, respectively, the principal, orbital angular momentum,
and magnetic quantum numbers. Since the wave function of a hydrogen atom
in the energy level E, has n2 degeneracies for a spinless orbital electron,

one can write

2

L N(a)F , (q) = L N({n) |<n'l'm'|1-eiq.r|nlm>|2 (1v-18)
aa' a‘a nim n<q
n'f'nm

where (n) is the number density of the hydrogen atoms in the energy E,.

In writing eq. (IV-18), we have assumed that the states of the hydrogen

atoms with the same n but different possible values of !/ and m are equally pop-
ulated. Expanding the absolute square in eq. (IV-18), one can write

4 2

zoner, (@) =328 Gnne) ¢ T ctmnra) (aveis)
aa Q% n n'y¥n

where

G(n,n,q) = n°2Re ¥ <nlm|eig"£|nlm> + 2 |<nt'm’ |e13.£|nlm> |2
Im Im

'nm'

(Iv-20)

e, T
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G(n,n)q) = T |<n'tm'|ei-9-°£|ntm> |2. (Iv-21)
Im

'm'

Although the elastic cross section for hydrogen atocm 1in the ground
state and some of the inelastic cross sections when the atom undergoes
certain transitions have been calculated,(l7’ e2-21} there are no explicit
expressions for G(n,n,q) and G(n,n}q) available in the literature except
for G(1,1,q), G(1,2,q9), G(1,3,q), and G(1,4,q9). In order to get G(n,n,q)
and G(n,n}q) explicitly, for other values of n and n' we shall use the
method introduced by McCoyd, Milford, and Wahl(es) which we present below
for completeness.

By introducing the normaliz~d hydrogen atom wave function |nhn> =

N nl(r) Y,.,(2) and expanding
1

ig'r _ s 2 P,
e pgs[h“(2p+l)] 173 (ar)¥ (2),

one can write

. 1’
<n‘l'm'|ei-q' £|nlm> = z

Y R (q) (Iv-22)
P'll-l'l p,im,2'm' "p,nt,n't’
where 1
y = 1Plun(2p*1)1% [Y_ (@)Y, ()Y, .(2)dn
p,Im,.'m' : po=""IMm=""f'm''=
_ .ptem’ —af plt\ /pl!
=1 (2p+1) v (21+1) (2t +1)Cm_n> (ooo (Iv-23)
13235
with being the Wigner "3j" symbol, and
m,m,m
"__ — ——— —




o1
Rp)nl’n'l'( IN (r 'l'( r) Jp(qr)radr
= Rp,nl,n'[('Y) n's' f;):Be J ( ( )Leé::}'(C'X)dx (IV-Q&)

In eq. (IV-2L4), j (yx) are spherical Bessel functions, Lmn are the associated
p

Laguerre polynomials and

v a.nn'
n't' = (ﬁ—)l(n'i l Z+n')l+l o n-lM A
o o
1
2 3(n-2-1)!1] 2
Mnl . -[(nao) 2n(n+l)!] (1v-25)

B = g+1'+2, c' = 2n/(n+n'), ¢ = 2n'/(n+n') y = qaonn'/(n+n')

From eqs. (IV-22) and (IV-23), one can perform the summations over m

and m' in eq. (IV-21) by using the orthogonality property of the 3} symbol,(28)
S RIS 3125 e
2 = m m m.m 2:) +1 j 3 ® .
my==J; " '32\ 1"2 1 2"3 s S I
then eq. (IV-21) becomes
G(n,n}q) = lZ |l<n't'm' Ieig"-r-lnlm> |2
m .
L'm' (1v-26)
2 plL 2
= R + +1 ‘4
uz,pl p,ne,nt gt (@) (@1 (201) (201 +1) (0 )
(29)
When the Laguerre functions are expressed as polynomials
21+1 n-4-1 2
L S+1 __  {(n+1)) s
AL s§0 (L) ot-18) (e es)s: (1v-27)
B .
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the radial integral in eq. (IV-24) reduces to sums of integrals which in-

tegrate directly in terms of hypergeometric function(Bo)

1 '
PMpse +1) ® (el pbe' oo 2°
2%(p+ﬁ'+l) 2 2 2 2 2 ! 12

B' -x
X e 73 (rx)ax = ——
° 2 ln(p%) (1+)°)

The hypergeometric function F(a,b,c,z) is the analytic solution of the

hypergeometric differential equation(so’al)

2(z=1)F" + [(a+b+l)z-c] F'+abF = o.
About the singularity z=o, it takes the form

(Iv-209)

F(a,b,c,z) =1 + %? 2 + ala+l)b(b+1 22 )

2'c(c+l)

where |z|<l. Then F(a,b,c.z) will be a polynomial when a or b is a negative

+
integer. For the terms having the odd power of x in the product of Li:ll (ex)
YRS +1-B'
and Lif+t} (¢'x), one can prove that b = E—%-é- is a negative integer and

b<-1. Therefore the radial integral of eq. (IV-28) will be a polynomial for
these terms. 1 a or b is not a negative integer, F(a,b,c,z) should be

expressed about the singularity at z=1 instead of z=o

(¢ (c-a-b

Ac-a Ji(c-b) F(a,b,1ta+b-c,l-2)

Fla,b,e,2) =

(Iv-30)

L Blellasie) 10 e 1t 1

then F'(a,b,c,z) is a polvnomial in (1-2) because c-a is a negative integer

+
or zero for the terms having the even power of x in the product of Li:ll (ex)

—t
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‘4
and L§f+l} (¢'x). The first term in eq. (IV-30) vanishes because[T(c-a)+o

when c-a approaches a negative integer or zero.,

With the tabulated values of the "3j" s;;bols and the above described
calculation of the radial integral, one can, in principle, find G(n,n,q)
and G(n,n)q) for any values of n and n', It is obvious that the calculations
for large values of n and n' are tedious. We shall calculate G(n,n,q) and

G(n,n}q) only for n,n'=1,2,3 below.

From eqs. (IV-20), (IV-22), (IV-23), and (IV-26) and from the tabulated

values of the "33" symbols,(az) one can obtain (see Appendix D)
2
G(1,1,q) = {1'RO’10,10’(Q)] (Iv-31a
6(1,2,q) = R (q) + 38 (a) (IV-31b)
»<1 0,10,20'% 1,10,21\4
6(1,3,a) = B 10 30(a) + 3RS (a) + 583 10 30(a) (Iv-31c)
794 0,10,30'4 1,10,31\4 2,10,32\4

2 »
6(2,2,9) = 4-2Ry 50 020(a) + By 20 00,(2)=6Ro 21,21, (4]

* 385 51 21(0) * €R5 51 51(a) + 6RT o () (1Iv-314)

2 2 2 2
6(2,3,a) = Ry 20,30(2) * 3By 20,31(2) + 5B3 o9,30(a) + 3By 5 30(a)
2 2 2
+ 330’21’31(q) + 6R2’21,31(q) + 6R1,21,32(Q) + 9R§’21,32(Q) (Iv-31e)

2 2
G(j,j,q) = 9-2Ro,30,30(a) + RO,}O,BO(q) '&0,31’31(Q) + 3%,31,31(‘1)

2 2 50

0 _2
0,32,32'0 * T B3 55 35(a)

B s
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90 _2 2 2 2
* T Ri,32,32(0) + €8] 50,31(2) + 10Ky 50.55(2) + 128 5, 5p(0)

2
where R ,.,(q) are determined by eqs. (IV-24) thru (IV-30). From
p,ni,n't
straightforward but tedious manipulations, one obtains Rp . n,l,(q) for
) )
n and n'=1,2,3 with the following results:
1
Ro,10,10(2) = > 2
q°a
0,2
1+ —2)
1
gt e
R qQ) = 2
0,10,20 22
v, (9+4q ao)3 .
T
R () =2 " 3
1,10,21 (9+hq?a2)>
¢ 2
32 2143 %)
R (a)
0,10,30
»10,3 (u+g2)“
Rl
2 2 L+
Ry,10,31(a) = 37 2 "S—}é‘;}
(u+t")
2 2
2 .2 2
Ra,10,32(2) = 21/2 . N
ol 577C  (L+g°)
2quah-3q282+1
(q) = = =
Ro,20,20 N
(1+q7a )
o
1 22
5 a8 (978 -1)
R (q) » 3"
1,20,21 22,4
(1+4q 8 (Iv-32)
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qeai-l
R (a)
0,21,21 (1+q2a§)h
) 2q2ai
R (a) =
2,21,21 (l+q2ae)u
(o]
By
v (@) - B 757 - 1912+ 115
ola) =
S 56 (1+72)5
2
2 L 7(157 -28,°+5)
R (q) =
1,20,31 56 (1+/2)7
P
2
R, Rl s 21532 72(7 -2)
,20,32 %3 (1+72)5
5
1
B
% - 232 5 (u5y -7812f§)
1,21,30 56 (14,2 >
" (a) & 210L2 72(572-5)
9,21,51 56 (l+72)5
) . o152 252 1)
2,21,31 6 (14,2
1,21,32'% _2 2 5
5 (l ")
5
1
R (q) = - :28 75
3,21,32 515/2 (1+72)5

(1Iv-32)
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_ 96218070t 042

R (q)
0,30
o 5(10)°
P
6 4
" (q) = 25 50987368 “+29¢%6)
1,30,31 NEX:
2
22 £2(3e"10e%0)

R2’30’32(q) = 2,6

375 (1+6°)

12§6-h3§h+22§2-3

3(1+£)0

Ro’31’31(Q) = =

Ry 51 a1(a) = 2 208 "58%2)
231,53 3 (1+52)6

1

) o 50 20t 108%)

Ry,31,32(a 3 (1egd)b

1
252 3(¢2.1)

Bs,31,32(0) = =5 N

2

ggh-lo; +2

3(1+¢%)0

R0,32,32(q) = )

o0

2,. 2
£ (3¢°-7)
Re,32,32(0) = - 5

(14¢%)° (Iv-32)
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R (q)gg.l:_gi_
4,32,32 3 (1+g2)6

2

where § = 2qao ed y = gqao. The substitution of egs.

gives, by a straightforward manipulation,

(Iv-32) into egs. (IV-31)

G(1,1,q) <%q %> (IV-33)
215q232
G(l,2,q) (TV-3L)
(9+ha7a")’
G(l:59q) = 8—13322_21 y X = % q2a§ (Iv-35)
(b+x)
6(2,2,0) = 2x(E ¢+ —Bm e 20 L 2y | xegBe® (1v-36)
(1+x) (1+x) (1+x)
134
6(2,3,q) = 23 (=212 - - 11606 11287} Zg 242 (1v-37)
5 (1+x) (1+x) (1+x)
8
G(},},Q) = x[l+x 9 = + 5 5 + 5 h - 256 5
(1+x) (1+x) (1+x) (1+x)
, 260 : + 140 - - 140 8) - %qzai (1V-38)
(1+x) (1+x) (1+x)

Equations (IV-34) and (IV-35) are identical with the results obtained by
(17)

22
R. McCarroll( ) using a method introduced by Mott and Massey.

— T Ty
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4, RADIATION ABSORPTION IN PARTIALLY IONIZED HYDROGEN PLASMA
With expressions of G(n,n}q) obtained in the last section, the energy

intensity emitted for the atom undergoing the transition from the level

1 Ey
En to En' and for Maxwellian electron distribution 2n(n0)- 2 NeEuE e-u-can be
obtained from eq. (IV-T)
2 Ey
2., & na} o Amax d
S, (fiw) = 22 AmL__ S v fane ® deu I, 4 M2) 5(n,n30)
3\/—2 (mem) Unin n
- +E - s 5
= a(En EYE Eu,-/fn» (1Iv-39)

Since the radiation emission coefficient per unit length for an isotropic

medium and unpolarized radiation is given by

1
E(tw) = e fdnk E E, (k), (Iv-40)
one obtains from eq. (IV-2)
n2c2
Ennv(ﬁD) = w} nnv(ﬁl))
Eu
=33_ﬁncap fan . QIEE,Iqmax—qJ—G(nn,q)
32(9 3/2:»3 o % aqpin ¢ ne
m 8(E -E +E -E, ,~1w) (Iv-b1)

for the particular emission process E +E ~E, +E +fw. Its inverse process,

ilee., B jo* En.+‘h.o-’Eu+En, is the one for radiation absorption, and the absorp-

tion per unit length can be obtained by interchanging (E:E') and (n,n')




65

252 ) - T q,
32 A nc}i}N 2 [3E fmax_g_(_lG(n k)
32 (nom)” %’ © © . o U dyin ¢ n'?

= 8(E -E + E, -E tho). (Iv-L2)

Then the absorption coefficient, i.e., the net absorption per unit length,

is (by noting that G(n,n',q)=G(n',n,q))
y) = =
olnn'( ) An'n(m) Enn'(m)) i
‘h n c a} 2 2 q d :
= %- 572 N o [dE [dE ™% 2 g(n,n'q) .
3N2 (nom) o Wo W Amin ]
Eu Eu'-Eu é
NSn! fn ) (2] r *
® 2 e [ N(n) -1) B(En-En'+Eu-Eu,-frm). (IV-43) ".'
¥
l.\
For thermal equilibrium, the number densities of hydrogen atoms are populated i :
[ ]
as : E,'-Ep I
N(n' "' Tl i
- — O IV'“L‘\
N(n) 2 (
n g
then
n By x
- q
o (M) =NC (e-1) JdE e © [aE , [ pox -9—(-2 G(n,n}q)
Imax & n i J
@ 5(E,-E, +E,;-E, 14w (1Iv-45) -
where
f‘ 5 2
z
._QT. .ﬁ_“—%%—; (IV-llb)
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Substituting eqs. (IV-3?) through (IV-28) into eq. (IV-15), one finally

obtains op,+(hw) as

tw
o = e \
ann(h») = Co(e -1t gnn(h»,O) N(n)Ne (IV-b7)
for n = n', and as
hw
(tw) = C (e P -1)hw &, (hv,0) N
a . = C (e -1l g i (hw,0) (n)Ne (Iv-18)

for n{m'. Here the upper sign of g,,' is to be taken when n<n', and the lower
sign when n>n'. The definitions of gy, gr*,'nv end gpn' are given below with

the convention that gnn' = gty N(n')/N(n).

5 tw

1 @ 1+d, 6d?+9d_+l 6d,+9d,+1 - 5 X

gll(fw,O) = E ffx[ln Tra + B.d 3 Je (Iv-L7a)
T 6(1+d.) 6(1+d,)"
o) < 2 f3 1+b,  6b +2lb +hEbosllb_+12

g..(w,8) = = fdx(2In +
22 by 1+b. 3(1+b_)5

6bh+2hb3+h6b2+hhb +1%2 - L4 X

1 + + + + }e 0 (IV-h?b)
3(1+b, )°

1 ® 1+S, 5hs§+333s§+1oelsf+1hsos§+1056s?+6hss_+177

N T [dx (9tn 7= + =
1 - 6(1+S.)
6 5 L 3 2 "
5LS+3338{+1021S ,+145085+10568 ++6L458 4+ 177 o
= - Je (IV-b7e)
6(1+s,)
=+
e i
g 5(,0) = 2708 el fox(—t—p - —L—je  ° (17-18a)
(9+hci2hL) (9+h€;2b+)




+ 2 +
375(6236-)-178(6235-)699

8.4
+ 23 + *
g (w,0) = —— f ¢
23 511 2% 23 1 (l+€i B-)é
. 23
et o
& 2 + 2%
) 375(6236+)-178(z256+)+599 e- S x
+ 6
(1+€236+)

2
2ma jhw P 1 9
B, B Wxsdxr)’, a4, =75, 8, =50

h
-E
6 + n' n
By = Catll g €an' l o 21, nn' :
- o
, = € for hw < E_,-E
nn n
E ,-E
n' n
o
= e for fw>E_,-E
n' n

For huﬁEn,-En, gnn'(‘hw,O) will be evaluated by

E_-E
2

)
_— 29 ~ 6 8 2 3..k.c
gle(‘h.o,o) = (3) e o [6-2cl+c:L cj*c,e El(c))
5 Eé-El
- ¥y e = 2_3 L4 Leo
gD(ﬁw,O) = 213 e hw[12-602+1&c2 5c2-c2+c2e (6+c2)El(c2))

(Iv-18b)

(1v-L48c)

(IV-474)

(Iv-484)

(Iv-L8f)

(Iv-48g)




- _23 ° o _6n 1283 2 191 3
83 0w,0) = 37 e fo 99 -5 %5t S5 %5t T30 S

_ b6 b 48 5 b e3125 116 L8 2 —
5 c5 5 c5 + c5 e ) + =S 5 5 5)E ( (IV-48h)
where
9n° on° o5h° ody -
© 2. * %" 2 %" _21—5- » E)(x) = {l eV (Iv-148k)
32ma"0 9ma "0 288ma "0 y

The above expressions of g;n. and g, are obtained from eq. (IV-45) con-

sidering the cases n<n' and n>n' separately. The property that G(n,n;q)=G(n}n,q)

and the population law for thermal equilibrium, i.e., eq. (IV-LL4), have been
used in obtaining eq. (IV-48). The values of El(x) are available in tab-

(33

+
ulated form, n,(h'.o,O) and gm,(ﬁw,o) are dimensionless numbers which

we have calculated numerically. Figures 3 through 11 show the results of the
+ +
computations for gnn(fm),o) and gnn,(ha),o) as functions of fiw end T. g , is

about 10 times less at high temperature and much less at low temperature than

€n’

5. VALUES OF gnn(ha),o) FOR n>3,

As seen in sections IV-3 and IV-4, the value of gnn(ﬁw,e) is obtained
through the calculation of G(n,n,q) which is tedious for n>3. Here we
shall use interpolation, instead of the direction calculation through the
method in section IV-3, to get the values of gnn(‘h'.o,e) for n>3 by knowing

that the absorption coefficient due to inverse bremsstrehlung of an electron
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in the field of a neutral atom becomes the absorption coefficient due to
inverse bremsstrahlung ¢f an electron in the field of an ion when n goes to

infinity, i.e.,

ann(ﬁw’o) OPIQﬁmAO)
Lin S = N (Iv-49)
=0 e Ie
BI
where N_ is the number density of ions and o (fw,0) is the absorption

I
coefficient due to inveise bremsstrahlung of electrons in the field of ions.

s (13)

(fw,©) has been given for hydrogen atom as

2 /2
BI 8 c 3 E3
a (fw,0) = ———= = (oa ) g.. NN (IV-50)
1/2 4 o) 1/2 ff ITe
3(30) Y ol/2?
where v is the frequency of the radiation, E is the ionization potential of
(34,35)
a hydrogen atom and Bop is the free-free Gaunt factor depending on

temperature and the absorbed radiation frequency. With the value of gff,
one can find the upper bound of & when n+ through egqs. (IV-47), (IV-49),
and (IV-50). Since we shall compare our calculated absorption coefficients
with the measured results which were achieved for the ruby laser frequency
under six different temperatures, the upper bounds are obtained for these

1
conditions and plotted as ;E in Figure 12 together with 8,7 g22, and 333
obtained from Figures 3 through 5. Then the values of & for n>3% can be
obtained by interpolation on the smooth curve which is connected through the
values of gll’ 322, 333 and the upperbound.

t
Since &n' is about ten times less than &n when n=1 and is getting

much less than & when n and n' both increase, the contributions to the

s il == o

{#
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Figure 12. g, (fw,T) vs. l/n‘ for ruby laser frequency.
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+
absorption due to g;n for ngn' can be neglected as compared to the contribu-

tions due to &,.° With this neglect, the absorption coefficient due to the

sum of the contributions in different siates is

of fw,o) g Ohn(ﬂb’g)

L

=c (Y -1t N T g (4w,0)N(n). (IV-51)
[o] e nn

With the values of gnn:*w,g) determined above, one can obtain from eq.
(IV-51) the radiation absorption coefficient due to inverse bremsstrahlung
of e .ectrons in the field of hydrogen atoms if the electron density Ne'
the neutral densities in the different energy levels N(n) and the temperature

of the hydrogen plasma are given.

6. EXPERIMENTAL CONDITIONS AND THE MEASURED ABSORPTION RESULTS

Ir 766 Litvak and Edwards(la) measured the absorption coefficient of
the ruby laser frequency (x=69u38) focr different initial gas pressures in
a hydrogen plasma produced by a giant pulsed laser beam. The output of the
laser eam for producing the plasma is é - 5 MW peak power with a pulse
width of about 18-3%6 nsec. A 25-cm focal length lens was used to focus
the laser output near the center of a brass cubic cell which contains hy-
drogen gas. The initial gas pressures before the .ight went in were 1kL.T,
35, 55, 115, 215, and 1015 psi. Although the initial gas temperature was
not mentioned in Litvak and Edwards work, we assume that it was room tem-

perature.
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The measurements of the absorption coefficients for the different
initial gas pressures were performed at the peak luminosity which occurred
near the end of the laser pulse. The electron density and the plasma tem-
perature for each initial pressure corresponding to the absorption measure-
ments were also measured. Table I shows their measured results of plasma
temperature T, electron density Ne and absorption (aL)obs for different
initial gas pressure pl. L is the plasma absorption thickness which Litvak
and Edwards assumed to be varied from about lem for 1L.7 psi to lmm for
1015 psi.

In order to explain the measured absorption results, Litvak and Edwards

also calculated the absorption coefficient av from the expression

E
—_— £
8 02( )5 E3/2 2 2 g nce ":;—D

N - EC 2E A _50)
172 % o) T3 N8 * T & Bpy 3 )(1-e ) (1v-52

04 =
3(3n v oy

v

which accounts for photoionization and inverse bremsstrahlung of electrons

N
in the field of ions. Eq. (IV-52) is obtained(3 ) from the absorption

coefficient of a hydrogen atom in the energy level En due to photoionization

and its inverse

Aw
PI _6ha 2 E.3 m )
o = 53/2 ma_ (=) = (1-e )N(n) (1v-53)
through the use of Saha equation
2nh2 3/2 2 E\, 2
N(n) = (ﬁ-) n expC:l?E)Ne (Iv-54)

e i et

- e S
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(34, 35)

where &en is the Gaunt factor for free-bound transitions. The cal-
culated av shown in Table I is two orders of magnitude less than the mea-
sured result under the assumption that the plasma thickness varies from
about lem for 1lL.7 psi to lmm for 1015 psi. This large descrepancy in-
dicates that the measured absorption can not be explained by the photo-
ionization and the inverse bremsstrahlung of electrons in the field of
ions through the use of Saha equation.

In the following sections we propose to explain the absorption which
is measured in this experiment by considering the photoionization process
and the inverse bremsstrahlung of electrons in the field of neutral atoms.
In this explanation we shall not use the Saha equation to predict the num-
ber of neutral atoms in the plasma, but rather we shall determine it from

an investigation of the explosion caused by the laser pulse.

7. DESCRIPTION OF AN INTENSE POINT EXPLCSION

It was shown bty litvak and Edwards from the consideration of the mea-
sured pressure and cnergy variations with time that the giant laser pulse
produces an intense p-int explosion with a spherical shock wave. The prob-
lem for an intense point explosion has been investigated by Sedov.(56)
After the energy Eo;sib. rbed into the gas with initial pressure pl and
mass density pl for initiating the explosion, a shock wave forms &snd ex-
pands in the course of time. Sedov defined p2, p2 T2 and r2 as the total

mass density, the pressure, the temperature and the radius of a point be-

hind the shock wave at the time t after the explosion. Furthermore,




1
!
t° = r° () 2 (1v-55)
151
and
1
r° = (-ﬁ—o)3 (1V-56)

were defined and Litvak and Edwards called them as the characteristic time
and shock radius at which the counter pressure of the undisturbed gas nearly
stops the expansion of a sphericai explosion. By solving the equations of
motion, continuity and energy, one can determine the density, pressure and

T
temperature distributions (ﬁl,'ll, and Er) as functions of-ﬁl, as well as

e Po 2 » o
the pressure and the density behind the shock front (;I and ;—) as func-
1

by
tions of £ = —%. The symbols p,p,T, 8nd r are respectively the density,
by

the pressure, the temperature and the radius of a point between the shock
front and the explosion center.which depend on time implicitly through
r2(t). Reference (36) contains the graphical representations of the above
distributions for the adisbatic index y=l.4. For our later use and for a
quantitative understanding of their variations, we reproduce-Jl,'JL, and

Po” P2
T
— in Figures 13-15. From Fig. 13, one can see that during the early times

T2
after explosion, most particles are concentrated behind the shock wave and
a negligible amount of particles occupies the central region of the explo-

sion.

In addition, Sedov also obtained the following equations
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Figure 13. Density distribution in
a point explosion behind spherical
shock wave.

Figure 14. Pressure distribution in
a point explosion behind spherical
shock wave.

Figure 15. Temperature distribution

in 4 point explosion behind spherical
shock wave,




for spherical shock wave where gq is

speed in the undisturbed gas to the shock wave velocity.

which depends on y ana the shock wave geometry.

Po 1
by 7-l+2q
Po 2y-(y-1
- +
P, (y+1)a
. P
a=Fr g
1
o]
. = (ggg_)s t2/5
2 Py

the square of the ratio of the sound

a is a quantity

For the plasma in Litvak

and Edwards experiment y=5/3, and for a spherical shock wave one can find

o from reference (3%6) as a=2.

equations

o
where T=t/t",

By taking E° to be the energy absorbed from the laser, Litvak and

Then one obtalns from the above mentioned

r
2, _32
1 8+12515
P2 _ 240-2501°
P 1000f°

(1v-57)

(Iv-58)

(Iv-59)

Edwards obtained the characteristic shock radius r© from eq. (IV-56) which
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is given in Table I. lhe initial mass density ©, and gas pressure p) of
the plasma are known. We calculated the characteristic time t© shown in
Table I from eq. {1V-55) which checks with the Litvak and Edwards result.

In addition, Litvak and Edwards determined spectroscopically the peak
luminous volume, The sbsorption was measured at the time when the peakh
luminous volume cccurred. Although the luminous volume has been observed
to have a nonspherical shape due to the rapid axial motion occurring during
the laser absorption, for a quantitative discussion, we shall assume that it
has spherical shape and coincides with the shock volume at the instant when
the peak luminosity occurred (we shall justify this assumption presently).
Then the radius r_ of the peak luminous volume can be found from its volume.

The values of r_ for each initial pressure are given in Table I together

=

with the corresponding values of I = zf . Under the spherical assumption
r

of the peak lumin-us iume, r, turns to be 0.062cm, much less than lecm

which is assumed by [itvak and Edwards as the absorption length in the

plasma. We shall late the tctal absorption using the value of rs

as obtained above secticn V-0,

In order to juctiry the above assumption, we now calculate the time
t at which the peak luminosity occurs (i.e., the time at which the absorp-
tion measurement is tuken) from eq. (IV-57) and the value of { corresponding
to the peak luminosity volume in Table I. The results are also given in
Table I. We observe that t varies between 17-31 nsec. As we mentioned
before, the width of the laser pulse varried in the experiment between

18-36 nsec, The early part of the pulse produces the plasma, and according
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to Litvak and Edwards, the peak luminosity occurs near the end of the pulse.
Hence, the values of t calculated above agree reasonably well with the |

experimental conditions.

Since ! is small for the time at which the peak luminosity occurs,

the total mass density o, behind the shock wave, i.e., at r.,, is obtained
o

2
from eq. (IV-58) to be about four times the initial density Py, as also

pointed out by Litvak and Edwards. The pressures P, behind the shock wave

at the time the peak luminosity occurs, and at the time t=0.lusec are

obtained from eq. (IV-59) and shown in Fig. 16. For comparison, the pressure

measured at t=0.lusec is also shown in the same figure. The measured pres-

sure at t=0.,lusec. is six times the pressure predicted by the explosion

theory at the same instant for the initial pressures;&;lb.? and 35psi.

At higher initial pressures, it decreases anc reaches about the same pres-

sure as predicted for p;=1015 psi. If one extrapolates the measured pres-

sures up to the time at which the peak luminosity occurs, a descrepancy is

observed between the extrapolated value and the presssure predicted by the

point explosion theory for the same instant. Here also, this descrepancy |
is large for low initial gas pressures and small tor high initial pressures.
This may indicate that the point explosion assumption is better justified
at high initial gas pressures than at low initial pressures. Since the
focal volume of the laser beam is elongated in the directiion of the beam,
and since the energy absorption decreases away from the source due to the

attenuation of initial laser beam producing the shock, an egg-shaped shock

front is perhaps a more accurate description than the spherical shock front

st ——————— —_— et SR
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o =o= t = 0.1 usec, predicted by point explosion.
—X= t = 0.1 usec, measured by Litvak and Edwards.
[ —a=— for the time at which the peak luminosity occurs,
predicted by point explosion.
100 =~
- 2
P1
10 =
b
o
1 Jllllll 1 llllllll [ i ¢ 1 111
0.3 1 10 100

p: (atmospheres)

Figure 16. Relative pressure p2/p1 behind shock front vs. P;-
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as we assumed above. Furthermore, the initial volume of explosion which can
be taken as the focal volume (lo-scmB) of the laser beam is not negligible as

ch.j) even at 0.1 usec. This may also be

compared to the shock volume (8 x 10
a contributing factor to the discrepancy in the measured and calculated pres-
sures,

The point explosion assumption, as pointed above, predicts the lo-
cation of the shock front reasonably well. Since we need the result of the
point explosion theory only to estimate the neutral density distribution
within the shock volume and the shock -irze in our absorption calculations,
and since the pressure behind the shock front does not enter our absorption
formulas, the above discrepancy in the estimation of pressures is not
critical for our purpose.

8. ABSORPTION CALCUIATION BASED ON NEUTRAL DISTRIBUTION INSIDE A SHOCK
WAVE

In this section, we shall calculate the absorption due to the photo-
ionization process and the inverse bremsstrahlung of electrons in the field
of neutral atoms by using the particle distribution inside a shock wave,
i.e., Fig. 13. In doing this, one has to determine first the population
of the excited levels of the hydrogen atoms as a function of position in
the plasma. We assume local thermal equilibrium among the neutral atoms,
i.e., eq. (IV-4L) so that the relative populations of the excited levels
is not an explicit function of position (it may depend on position through

temperature). Then the local absorption coefficient due to the inverse

bremsstrahlung of electrons in the field of neutrals can be written




9L

BN iy N(n)
= . N N -
a (r) ngl An(w,Q) e(r) (1,r) L) (IvV-60)
2 -Eqyl@
where N(n)/N(1) = n"e and An(w,O) is a function of temperature and

radiation frequency. An(w,O) increases with n, approaching finite value
Aa(w,Q) as n+. Since E,+E as n-», the above summation diverges unless it
is truncated at some n=n*, The physical reason for truncating the summation
at some n=n* can be explained as follows: Because of the interaction of

an atom with the nearby particles in a plasma, the ionization potential
will be lowered when the atom is inside a plasma. An excited atom in a
level above n* must be treated as an ion and a free electron even though

the level may be below the ionization potential of an unperturbed atom.
Several theories for the determination of n* and the lowering of the
ionization potential AE have been proposed in literature. Drawin and

(37)

Felenbok have reviewed these theories and showed that they all yield

similar results, i.e.,

2 )
n* ~ (S+1) = (Iv-61)
a
)
AE ~ (8+1) = (IV-62)
Pp
where p, is the Debye radius(38’39) given by

KT 1/2
Pp = (1Iv-63)
> [hnee(Ne+§szi)J
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In egs. (IV-61) and (IV-62), S is the ionization stage of the particle
under consideration and S=0 for neutral atoms. The quantities Ni and Zi
in eq. (IV-63) are resmectively the density and charge of neighboring ions and
for hydrogen plasma, z;=1 and Ny=N_. We have calculated and tabulated in
Table I the values of n* for each initial gas pressure using the measured
electron density and temperature in the experiment by Litvak and Edwards.
After having determined n* in eq. (IV-60), we now consider the posi-
tion dependence of the number density in eq. (IV-60). According to the
intense point explosion theory, the relative mass density distribution
follows the curves in Fig. 13 for the early times after explcsion. One
observes that the particles occupy vitually a very narrow spherical shell
of a thickness of the order of 0.2 r,. We shall refer to this region as
the shell region in below. The central region contains very few particles.
However, the temperature increases very rapidly in this region towards
the center and the pressure is constant with a value of approximately p2/5.
We shall refer to this region a3 the central hot core. Let the relative
number density of the atom at the point r between the shock wave and the
explosion center be Q)(r)=N(r)/N2 and the relative electron density at the
point r be Q)e(r)=Ne(r)/Ne where N(r) = ;g;N(n,r) and N, and Ne are respec-
tively the total neutral density behind the shock front and the average

electron density inside the shock volume. From the conservation of the

particles

oy

r
A hn
hn £drr [Nem(r)+Ne®e(r)] = 3 N,

~ -

> o




where Nl “he tnl or density of hydrogen stoms betore the explosion

(i.e., before tt ierce of the laser beam) and r  is the radius of the
shock wave. Arter chengirg the variable, we have
N N
,i:ixx':-'p(x) = .5I+ - _N_e zdxxec;e(x) (Iv-6L)
P
and
3axas, (x) = 1 (1v-65)
where
x==.
2
The laser bear. sas fo2used within a volume of 10-5 cm5 which is smaller
than the peak lwrin- volume of l()-3 cm5 at the time of the absorption
measurement., The ¢ ' { the laser beam focal volume is about 5 times
less than the rad ~he peak luminous volume. No geometry correction
is needel in it : the optical path. Hence the absorption due to
the inverse ba : » o1 electrens in the field of neutral atoms can
be expresseod, : the relative number densities into eq. (IV-60),
as
2'. }ixAn{w,g)N N Luifet) r o (x)op(x). (1v-66)
=1 -1 e2 N 2'e
Equation (Iv-r t be easily calculated without any assumption
about Pg(x), cix tne temperature distribution. The problem will be
complicated when tne cerature distribution (see Fig. 15) in the shock
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wave as a function of position is considered. The plasma temperature and
the electron density are measured through the line broedening of Ha which
depends upon the electron and neutral densities. Since moust of the hydrogen
atoms are confined in the shell region behind the shock front, the electron
density and the plasma temperature measured through the line broadening is
more likely to indicate the average temperature and electron density in
the shell region. Furthermore, the degree of ionization is not uniform
in the shock volume. Due to the very high temperatures, the hydrogen gas
can be exrected to be fully ionized in the hot core. However, the degree
of ionization is more likely to decrease towards the shock front because
the temperature there is of the order of th °K and thus not sufiicient for
onization. One may conclude from this argument that the electron density
wi.l also be a decreasing function of the radius. However, the rapid in-
crease in the particle density towards the shock front may result in a
uniform electron density distribution in spite of the decrease in the de-
gree of ionization. Hence we shall assume that the temperature and the
electron density are uniform in the shell region with the measured values.
The contribution to the absorption in the hot core where we expect
almost full ionization is negligibly small as compared to the measured
absorption. The mechanisms responsible for photon absorption in this
region are the inverse bremsstrahlung of electrons in the field of ions and the
photoionization. In fact, since the gas is almost fully ionized, the relative
contribution of the photoionization process is small as compared to the in-

verse bremsstrahlung of electrons in the field of ions. Litvak and Edwards calcu-

g=
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lated the absorption in this region using the measured electron density and
temperature, and assuming the Saha equation in estimating the neutral density.
Even if one assumes a plasms thicknees of lcm, their result accounted only cne
percent of the measured absorption. But according to explosion theory the
size of the hot core is of the order of 0.1l2cm. so that the absorption is
less than 0.1% of the measured value.

We thus calculate that the main absorption takes place in the shell
region where the gas is partially ionized. Under these assumptions, eq.

(IV-66) becomes

* 1
(aL)BN z nriZlAn(w,Q)NeNe MNEZ r, ffx@(x), (Iv-67)

where we include the hot core also for convenience even if i*.sconuributicn
is small. The neutral density distribution ¢(x) is shown in Fig. 13 and
has an appreciable value only for x close to 1. It is sufficient for our
purpose, but not necessary, to approximate

N, -Ne

3N

Fox)ax [ olx)xlax =
[o] (o] P

Then eqs. (IV-67) reduces, in view of eq. (IV-51), to

fw n*
BN o N)-N 2 -E,/0
(EH 8 % coﬁn(e -> T2 z : Ne z gnn2n € o (1v-68)
n=1

where
* b -
r%,2n2e En/Q

n=1

is the truncated partition function of hydrogen atom with the calculated
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TABLE I

MEASURED AND CALCULATED ABSORPTIONS FOR RUBY

LASER FREQUENCY IN THE HYDROGEN PLASMA

pl(psi)
T(°K)
Ne(cmtj)
t°(usec.)

r°(cm.)

r2(cm.)

t(nsec.)
n*

Nl-Ne(cm.

(ol )obs.

(aL)BN

(OL)PI

BN+PI

3

14,7
2.2x10

h.5x1018

0052
0.062

0.12

14
h.9x1019
998
0.012
0.72
0.015

0.0k7

0,062

35
2.0x10°

107

b.3
0.46
0.062
0.13
18
12

20

1.2x10

598

:0.011

0.80

0.087

0.20

0.29

55
2.4x10
5x1018
b3
0.L4b
0.062
0.13

18

1k
2.OxlO?O
1062
0.020
1.94%
0.062

0.18

0.2k

115

1.5x105

10”2
k.0
0.43
0.062
0.1k

21

11

k. 1x10°
362
0.15
3.0
0.47

1.13

1.60

0

215

l.bxlO5

8.5x1018
3.2
0.34
0.062
0.18

31

11
7.7x1020

337

0.12

0.75
2.26

3.01

1015
9.0x10

10"

lc7
0.18
0.0k2

0.23

10
5.7x10?
100
0.t
k.12
L9
14.9

19.8

L
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values given in Table I.
In a similar way, one can obtain the absorption due to the photoioni-

zation and its inverse from eq. (IV-53) as

"o, NN fgegfn -Ep/0

2 z n=1 n3 € . (IV-69)

PI 128 2 ,E.0
(aL) = = 35/2 na_ (3) (1-e

Taking r2 as the radius of the peak luminous volume which is assumed to
BN PI

be spherical, we have calculated the absorptions (aL)  and (alL) = from

eqs. (IV-68) and (IV-69). The results are given in Table I together with

+
their sum (aL)BN PI.

9. DISCUSSIONS

. BN+PI
From Table I, one can see that the calculated absorptions (al)

due to the photoionization and the inverse bremsstrahlung of electrons in

the field of neutron atoms are not always in good agreement with the measured

result (aL)obs. 1t increases from the value of ten times less for P =14.7 psi

1
to the value of five times larger for pl=lOl5 psi than the measured absorp-
tion. According to the description given by Litvak and Edwards, the shape

of the luminous volume was not exactly spherical. Although their description
was not explicit enough for their experiment, they referred to other similar
experiments in which the cigar-shaped or egg-shaped luminous regions were
observed in the direction of the laser beam. Furthermore, the discrepancy
between the measured pressure and that predicted by the intense point ex-

plosion theory with a snherical shock wave is larger at low initial gas

pressure than at high pressure. This may suggest that the shape of the shock
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volume at low initial gas pressure deviates more from spherical at high
initial pressure. If we intepret r2 as the majsr radius of the luminous
volume, then we may predict a larger absorption than we calculated by using
a spherical luminous volume. In fact, this may be the reason why Litvak
and Edwards assumed the absorption thickness of lem for pl=lh.7 psi. If

this assumed absorption thickness is correct, r_ would be 0.5cm, instead

2
of 0.062cm, and the calculated absorption with r2=0.5cm will be almost the
same as the measured value at pl=lh.7 psi, provided that the neutral density
distribution along the major axis has a similar distribution to that in the
spherical case shown in Fig. 13. At any rate, our interpretation predicts
the absorption better than a factor 10, in fact in most cases even better
than a factor of 6. Furthermore, our calculation explains the increase of
the absorption with the initial pressure, independently of the possible
dependence on the pressure of the apparent plasma size.

Another factor which may be contributing to the above discrepancy is
the assumption of a uniform temperature and electron density distribution
in the shell region behind the shock front. However, the error due to
this assumption is not expected to be significant, because we have found
only a decrease by a factor of 2/5 assuming a 1linear electrcn
density distribution in the shell region and taking the electron density
to be zero at the shock front.

The calculated absorption due to the photoionization and its inverse

is about three times the absorption due to the inverse bremsstrahlung of

electrons in the field of neutral atoms for n* = 10, It depends on n*,.
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For small n*, its contribution is dominant and for large n* it is negligible
as compared to the inverse bremsstrahlung of electrons in the field of neutral
atoms. Furthermore, photoionization can occur only for the levels above and
equal to n such that E'gmf ho and the absorption due to this process varies
as l/n5. For low energy photons, such as the carbon dioxide laser (>\=lO.6x16b
cm, Tw=0.11Tev), its contribution will be negligibly small as compared the
absorption due to the inverse bremsstrahlung of electrons in the field of
neutral atoms.

The absorption per electron and per neutral atom in any level n due to
the inverse bremsstrahlung of electrons in the neutral atoms is smaller than
the absorption per electron and per ion due to the inverse bremsstrahlung
of electrons in the ions as indicated in Fig. 12. They are of the same
order of magnitude for almost all n and becoming equal when n+. The rel-
ative importance of these two mechanisms depends on the ratio of the neutral
to ion densities NA/Ni' If NA/Ni is a large number, the inverse bremss-
trahlung of electrons in the field of neutral atoms is important, otherwise

it is small.
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CHAPIER V

CONCLUDING REMARKS

In the first part of this thesis we have compared the photon transport
theory in dispersive media to the Maxwell's wave theory by considering the
index of refraction and the photon absorption per unit time as well as per
unit length. In the photon transport theory the effect of the medium is
taken into account by assigning a different frequency to photons of a given
wave number in the medium, than their frequency in vacuum. It is implied in

this theory that the wave number is the same in the medium and in vacuum.

In Maxwell's theory, the effect of the medium is characterized by a
functional which relates the macroscopic current to the electric field.
When linearized, this functional is completelydefined by the conductivity
tensor in the transformed (h,s) domain., The conductivity tensor is obtained
quite generally by usingKubo's linear response theory in terms of the micro-
scopic currents. Thus, we can calculate the index of refracticn and the
damping coefficient both in time and space in the framework of the Maxwell's
theory first in terms of conductivity and then in terms of the microscopic
currents with Kubo's theory. 1In other words, we can express the above
observable macroscopic quantities, in terms of microscopic quantities through
the Maxwell's equations which describe the electromagnetic phenomena in

arbitrary media macroscopically.

It is at this stage one can compare the photon transport theory to the
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Mexwell's wave theory, because in the former the index of refraction and
the damping coefficient both in time and space are expressed in terms of the
microscopic currents.

Following the above procedure, we have found that both theories yield
the same results for the index of refraction and the damping coefficient per
unit time only in the weakly absorbing media. When the medium is strongly
absorbing, the results lock quite different although we have not estimated
the difference numerically in specific problems.

As to the damping in space, the expressions obtained from the two theories
for the index of refraction and the damping coefficient per unit length are
similar only if the medium is both weakly absorbing and slightly dispersive.

More explicitly, the damping coefficient per unit length is obtained in a weakly

. . g R hr R Wo
absorbing medium (i.e., ny << no) as —=— ox(nok,um) and ;;; GK(K’ ;;)reSpec-

tively in the Maxwell's theory and the transport theory. Clearly if nozl,
the results are identical.

We feel that a better correspondence between the transport and wave
approaches in regard to the damping in space can be established if the photons
are dressed such that the frequency is required to be Lhe same but the wave
number is allowed to be different in the medium. More research in this
direction seems to be called for.

The radiation absorption due to inverse bremsstrahlung of electrons in
the field of neutral atoms is formulated by using free electron wave functions,
In this approximation, the calculations involving atom-electron cross sections

turn out to be identical to the use of the first Born approximation. The
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elastic cross section for hydrogen atoms in the ground state calculated in
Born approximation is less than the cross section calculated from the partical
wave method. This discrepancy is large at specially low electron energies.
Since the elastic cross section predicted by the partial wave method is in
good agreement with the experiment, a more accurate formilism of the absorp-
tion problem can be achieved by using the partial wave method rather than
plane waves. However, since the elastic and inelastic collisions of electrons
with the atoms in excited states are also involved in the problem, the use

of the partial wave method would make the problem much too complicated.
Undoubtedly, the use of free electron wave functions in the problem will intro-
duce some error, perhaps predicting smaller values for the absorption. How-
ever, at this stage, one is satisfied with an order of magnitude agreement
between the measured and calculated absorptions due to the uncertainties of
the experimental condition. This justifies the approach we have taken in
this work.

In the formulation of the radiation absorption, the second quantization
is used to express the potential between atom and electron as well as the
interaction between particle and radiation in terms of the particle and
radiation creation an@ destruction operators. In this process we considered
only the binary collisions. In addition, we assumed the atoms in the medium
to be infinite heavy. These assumptions are adequate for our stated purpose
in this thesis.

The neutral density determined through the Saha equation {which holus

when all the particles are in local thermal equilibrium) and using the




106

measured electron density and temperature in Litvak and Edwards -:xperiment is

about three orders of magnitude less than the initial particle density. The .
absorption calculated by Litvak and Edwards in considering only the photo-
ionization and the inverse bremsstrahlung of electrons in the field of ions
through the use of Saha equation is negligible as compared to the measured
result,

According to intense point explosion theory, most particles are concen-
trated in the shell region behind the shock front and a negligible amount
of particles occupies the central hot core. Local thermal equilibrium
among the neutral atoms, instead of Saha equation, is assumed in this shell
region. The absorptions calculated by considering the photoionization and
the inverse bremsstrahlung of electrons in the field of neutral atoms in
this shell region are not in very good agreement with the measured results.
However, the agreement is always better than a factor of 10 and in fact
better than a factor of 6 in all but one case. The discrepancies between
the calculated and measured results may be attributed mainly to the use
of the radius of the peak luminous volume, which is assumed to be spherical,
as the actual shock radius.

In this thesis we have calculated the absorption coefficient per unit
atom and electron due to the inverse bremsstrahlung of electrons in the
field of neutron atoms as a function of the electron temperature and radia-
tion frequency, and presented the results graphically. With these curves
and the conventional formula for photoionization, one can now estimate the

total absorption due to the photoionization and the inverse bremsstrahlung
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of electrons in the field of neutrals if the neutral density in the plasma
is known.,

The interpretation of the Litvak and Edwards absorption measurements in
this thesis by considering only the above absorption mechanisms due to the
neutral atoms and using the point explosion theory with certain plausible
arguments to guess the electron density and temperature distributions is mainly
suggestive. In the absence of any accurate information for the plasma size and
of an explosion theory which tekes into accoun% the finite initial volume of
the explosion, the agreement obtained in this work between the measured and
calculated absorptions is considered as a strong evidence for the importance
of neutral atoms in the interpretation of the absorption experiments in plasmas.
Iﬁ fact, the absorption due to the neutrals may even be the dominant heating
mechanism which causes the explosiorn.

More experimental work designed primarily for the verificaticn of the

importance of the neutral atoms 1s needed.




APPENDIX A

DERIVATION OF EQUATION (II-L2)

In Chapter II, we already obtained the following expressions

Vo I 2 - 0.0 PRl 2 E 'Ev '
: l<n£ L# nn>]" 5 fa |<n qizﬁ}i' [nn> | s(w'--l’l-,ﬁi—‘"'—)' (A-1)
n'n'#on EanEary n,#n "

n'#n

I 2 RR1 2 E -E
|<n'n']| H |no>| 5 [ |<n'n'| K |no> | no ’n'n'
= dw' 2 &(w'- —Tﬂ-). (A-2)
n'n'#no Eno-En'n' n in -
n ¥0O

The substitution of eq. (II-29) into the above expressions gives after using

eqs. (II-23) and (IL-30),
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Equation (A-4) and tne first sum in the bracket of eq. (A-3) comes, respectively
from letting r,':]xk in eq. (A-2) and n'=n*l in eq. (A-1). The second sum in
the bracket of eq. (A-3) comes from letting n'=n-1 in eq. (A-1). Evaluating
the matrix elements of A(r) and A(x,t) by eaqs. (II-12) and (11-33) and essuming

that the radiation field does not change appreciably over Lj, then

I I 2
o lennlullog>|® 5 lsoiw'lB lne>l
n'n';‘nn En'n-En'n' n'n'#no E -E ,_,

no n'n
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where Jk(_r_',t) = g(_r_',t)°_e_)\(l<_). Let w"qn'ﬂbk in the first term and w"=-u.>'+wk

in the second term of eq. (A-5), then
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Interchanging (r,r') and letting t'=-t' in the second term of eq. (A-6), and

summing the intermediate states In'> and |n">, one finally obtains eq. (II-L2)

|<n'q'|HI|m~>[2 5 JSn'q'IHIlno>l2

n'n'#ny Enn-En'n' n'n'#no Eno-En'n'

(k) - - iw't!
= - L fdar fdir' fat' [ :),,
Nk 2y, e -m WSy

ik+(r-r')
gia VEL

® <n|J)\(_1_" )J)\(z,-t')-J)\(I)J)\(_x_",t' )In> (II-42)




APPENDIX B

SECOND QUANTIZATION

In this appendix, we shall express the potentials V'°, Ve, vl anal the
interactions VA’ Ve, and Vi in terms of the particle creation and destruction

operators by second quantization. In section III-1, VAe represents the sum

of the potentials between an electron and an atom, i.e.,

o me/;;

where
vAe vy ze2 N % e2
oS IBo-zmI J=1 IBU+QUJ 'Em'

is the potential between the g-th atom and the m-th free electron with
Iy and Ry being the positions of the free electron and the nucleus. p.4 is
the position of the j-th atomic electron with respect to R,. In second

q q € q
quantization, VA can be written as

2 2
e ze t +
vA =) <K'a'u'l|- + |Kau>A (K'a')A (u')A(Ka)A(u) B-1
& Fewl- 2 sEiTEvpp] o (K'a")A ' (u')A(Ka)A(u (B-1)
Kla|
uu'

where A(g) is the destruction operator of destructing a free electron of

momentum‘ﬁg and A(Ka) is that of destructing an atom of the external momentum
t t

4K and the internal state [a>. A (u') and A (K'a') are, respectively, the

creation operators of creating a free electron of momentum'ﬁg' and an atom
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of external momentum AK' and the internal state la'>.
The wave function of a free electron is given by

1 eig-z
2/

lu> = (B-2)

and the wave function of describing the external and internal states of an

atom is given by

e == la> (B-3)

where we have assumed that the center-of-mass coordinates of the atom coin-
cide with its nucleus coordinates. Substituting egs. (B-2) and (B-3) into

eq. (B-1), one obtains

b TI625K (_}S-_}S ! +u-u ")

Ve - )} 2 <a'l-z+ % ei(E-E').£J|a>
K'a’ -y’ J=1
t 0
2 A (K'a")A (u')A(Ka)A(u) (1II-2)

where the subscript K of &y denotes the Kronecker delta.

In the same way, one can obtain

hneasx(g-gw_[-i' )

q Z [
i r - 3 5 <a'|z-fe.i('lg-5 )£J|a>
KaK'a 17 |K-K'| J=1
ibi'b' —
z=1 . '
m <oz 0 et SRy o5 a gra i alkan(m)  (11ro)
J=1
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hnegbK(_t_-iwg-P_' )
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vie= ¥ > o' [-z+ T et @R )Ry , '
1o L3|u-u'| afal
1o T |
t t
2 A (L'0')A (u')A(Lb)A(u) (III-4)

t t
where A (4b) and A(4b) have the same meanings as A (K'a') and A(Ka).

In section III-1, VA is the interaction of the atoms with radiation

" E _ .y ze Z e
VA~ %mjcpojé(zﬁ)— omchﬁ(Ed) +ojz-1mcEj—£oJ)

where A(r) is given b I1-7). and m and and r and r ,=r +
A(z) is given by (II-7) L » By on’ =0 =0J <o P‘GJ

are, respectively, the masses, the momenta, and the positions of the nucleus

and the j-th atomic electron in the o-th atom. Neglecting the first sum

as compared to the second one because m >>m, VA can be written, in second
c

quantization, as

Z t
vV =Y <K'a'l< A Ka>A (K'a')A(Ka).
v e e e
E'a'

Assuming that the center-of-mass coordinates of an atom coincide its nucleus

coordinates, the substitution of eqs. (II-7) and (B-3) gives
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Using dipole moment approximation e-lk.gjﬁl, one obtains, after substituting

5 2 = 5™ I,

int
where HAn is the hamiltonian of the internal motion of an atom,

2
VL b ek Ko, (6] (), (k) vy (), ()]
Ka b
glal
 A'(K'a" )A(Ks) (111-5)

where'ﬁba,a = Ea,-Ea is the energy difference between the internal states
la'> and la> and ega’a = <a'| jZlep |a> is the dipole moment transition of
the atom from the state !a> to the state la'>,

In the same way, the interaction of the free electron with the radiation

field

Y =
vV = S
e 3=1 me EJ —(—j)

can be written, in second quantization, as

v, =>\Zk :—g 2:60 ta)\(k e, (k)+a (-k)e, (-k)).u 8, (u-u'-k) Af(g')A(B) (I11-6)

U.U

The interaction between the ions and the radiation is given, in second

quantization, as

ie Enﬁc
vi-xg c | 12 OglLeL’ =Ky gy iy, (04 (ke (k)voy (=), ( )AL b')A(LDb)
1o
Tl (IT1-7)
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where fmb'b = Eb,-Eb and
15 el
- ! = <b' Z’ B b>.
6= 'l T g,




APPENDIX C
NO PHOTONS EMITTED OR ABSORBED THROUGH THE
INTERACTION OF FREELY-MOVING ELECTRONS WITH -
A RADIATION FIELD

In appendix B, we have obtained that the interaction of freely-moving

electrons with a radiation field is given by

2’

eh c Y

v, =)\21;—§ -m—(;\ ) 03\ (k)g, ( 0)\ (-k)}-u &, (u- u'-k)A (u )A(u).
uu '

Assume that the photons can be emitted through the interaction, the number
of photons with momentum #ik and polarization A emitted per unit time from L

will be, from section III-2,

1 2 -
n, (k) -BBZq,] Bn,pq BT L|V_[Bn> | 8(Eg: 417Es )

Let the initial and final states of the electrons and photons be
|Bn> = |...n(u), n(u')...> |...nx(5)...>

[Byn*1> = |...n(u)-1, n(u') + l...>|...r|)\(5) +1...>,

then

uE,

2
n, (k) =1§i'£gﬂglfﬁ- (

(5, (6)+1) W(a) Bylu-n'-k) B(E,,-E,#in)

W
|

- 1 2R ()%, (0)40) W) BB, B )

116




117

Since the energy conserved delta function is contained in the above expression,

nx(g) is not zero if

E _-E #w = o
u-k u
i.e.,
c l k
;= == = C-
Cose = = B (c-1)

where © is the angle between k and u and v is the speed of the incident electron.
Since %jf 1 and k and u are positive, (C-1) cannot hold. Therefore no photons
will be emitted through the interaction of freely-moving electrons with a ra-
diation field. 1In the similar way, one can obtain that no photons will be ‘1
absorbed through the interaction of freely-moving electrons with a radiation

field. 1




APPENDIX D

DERIVATION OF EQS. (IV-31a) THROUGH (IV-31f)

For derivation of egs. (IV-3la) through (IV-31f), the values of the

following 3J symbols taken from the literature(je)are needed.

5, 35 35\
1 d2 J3 0m my m

ml m2
1 O 1 0O ©0 0 * 1/3
2 0 2 0 0 0 1/5
2 1 1 o 0 o0 2/15
2 2 2 0o 0 o0 * 2/35
3 1 2 o 0 0 * 3/35
L o2 2 o 0 o0 2/35
0 1 1 o 1 -1 1/3
2 1 1 0 1 -1 1/30
0 2 2 0 1 -1 * 1/5
0 2 2 o 2 -2 1/5
2 2 2 0 1 -1 1/70
2 2 2 0 2 -2 2/35
L2 2 0 1 -1 8/315
L 2 2 0 2 -2 1/630

when one needs the values of <?1 J2 J other than its square, the negative

m) m2m

RS

square root of the number should be taken if it is preceded with the star

symbol *, Since the sum of Jl and 33 for each row in the above table is

Jo
even, each of the 3j symbols in the above is invariant in a permutation of
any two columns.

For convenience, we rewrite here egs. (IV-20), (IV-22), (IV-23), and

(Iv-26)
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G(n,n,q) = r12-2Re z <ntm|eig'£|ntm> + T |<nt'm'|e 2L nm> |2
im im

l'm' (IV-QO)
G(n,n}q) = L |<n't'm'|eig'.£|ntm> |2
Im
'm'
(Iv-26)
N Y IA
= + +
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Y R
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t | 1 t
Y g (2040) {(2141) (22 41) (‘;;‘m> (‘;‘)é) (1v-23)
’ b4

where p takes the integers between 1f-£'l and f+1' such that pti+L' = even,

otherwise (pl l>vanishes )
000

For n'=n=1, it is easily to obtain that

6(1,1,q) = (1R, 1o,1o(q”2 (Iv-310)

For n'#n, one obtains from eq. (IV-26) that

2
_ 2 , pot'
G(1,2,q) = l'ZpRp’lo’zl.(q)(ep’fl)(et +1) OOO)

2 2
=R5,10,20(%) * 3Ry 10,21(%) (Iv-31b)

\2
2 o1y ( PO
G(1,3,q) = ,%Rp,lo,ju(qmp*l)(a‘ *1) <Ooo>

.
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2 2 o
) Roxlo:ao(q) * BRl:lo,jl(q) ¥ 5]:?2,10,32“;) (Tv-31c)

2
- 2 , pol'
G(Q)B’Q) I%RP,QO,ﬁl'(Q)(Qp.‘.l)(al +l)<ooo>

. pl!
+z'Zp§RP:21 5,.( q)(2p+l)(22'+1 ( >

= Ro,2o s0(a) + 3RS 0. 51(a) + 5B5 50 3p(a)

2 2 2

* 3Rl,2].,30(Q) * 3Ry p1,31(9) * 6By o) 54(0)

+ 685, (a) + 9R° _ _ (a) (Iv-31e)
1,21,32 3,21,32

For n'=n=2,3 one obtains from eqs. (IV-20) and (IV-26) that

6(2,2,q) = 4-2Re(<200]e 3 L| 200> + <210|e*S'Z|210> + 2 <211|e?®E|211> )

2
2 , ptt'
+ “Z,lep,al,a,.(q)l (2p+1)(22+1)(2t +1)<ooo)

6(3,3,a) = 9-2Re(<300| e} 3'E[300> + <310]e'2°E[310> + <320| '3 E|320>

+ 2 311l 311> + 2 <3o1|e?E|301> + 2 <322|el3E|320> )

2 plt' E
* o Bo 30,30 ()17 (2pH1) (201 ) 2 +1)(ooo>

The terms in the brackets of the above two equations are computed through

the use of eqs. (IV-22) and (IV-23). Then

NS + + + -
G(2,2,9) = ¥-2(Ry o (@) * 2Ry o) 5y (Q) + 2R, ) 5y (a) Ry, 21,210 2Ry 21,21(0))
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A2
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= 1-2R) 20,2009) * By 00,00(9) - Ry 5y o1 (9) * 3Ry o) 5(0)
+ 6R° (q) + 6B (a) (Iv-31d)
1,20,21 2,21,21
G(3,3,q) = 9-2[R0,30,30(q) + 3Ro,31,31(Q) R, 32, 3e(q)l
pot' P
‘2 RS o 50 (a)(201) (22 +1) ()
pl?' <
+ 1'211)3 b 51,30 (9)(20F1)(207+1) (ooo>
p2!' e
Z SRp 32, 3l.(q)(2p+l)(2l +1) <OOO>
= 9-2R (q) + R (q) - 6R (q) + 3R (a)
0,30,30 0,30,30 0,31,31 0,31,3]
10R (3) + 5B (q) + 6B (q) + 12R° (q)
0,32,32 0,32,32 1,30,31 1,31,32
2 50 2 2 2
R 10 1
PR, 51,3100 P TR, 55 5o(0) F AR, S 5o(a) + 18RS, o o(a)
90 .2 N
+ Z Rh,32’32(q). (1v-31f)

]
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