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ANNUAL RECORT
ARTIFICIAL STIMULATION OF EARTHQUAKES
NZW MEXICO INSTITUTZ OF MINING AND TiCHNOLUGY
Merle Hanson

Contract No, Flly 620-67-C-0113

The possibility of predictably creating artificial earthquakes through
fluid infection into geologic structures is the purpose of this investigation.
Seismic activity occurring in the Denver, Colorado, region which may or may not
have been caused by injecting fluids into the Rocky Mountain Arsenal waste
injection well has raised the question, An understanding of the phernomena was
undertaken through analytic means, Obviously this work has a direct application
for the objectives of underground nuclear test control,

This report contains a brief summary of the reasons why a stable two dim-
ensional elastic dynamics numerical calculational technique had to be developed.
In addition, the technique is described briefly in the general section of the
report and in more detail in the appendix., The results discuss some simulaticns
of brittle fractures propagating through an isotropic elastic media, Emphasic
is placed on the fact that the simulated fractures, using simple failurs
criteria, propagate at speeds greater than those normally predicted in the
literature. These simulations exhibit the fact that the description of dynamic
fracture phenomenon is more complex than those used,

Code solution comparison with analytic solutions in seismic problems
indicate that the method is sound., Further development of fracture models is
required tq understand the effect of high pressure fluids in creating or driving
fractures in geologic streata,

A photo stress meter was purchased during the contract year to use for

correlation purposes with the analytic model,




ABSTRACT

~ A discussion of a two dimensional elastic dynamics technique
developed to simulate seismic disturbances as a result of various
input or grid created disturbances. The method exhibits calculational
stability over other techniques using quadrilateral grids. A quieter
mesh results from which more information can be extracted from the
calculation., The results section discusses simulations of brittle
fractures propagating through the isotropic elastic media. Emphasis
is placed on the fact that the simulated cracks, using simple failure
criteria, propagate at speeds greater than normally predicted in the
literature. These simulations sxhibit that the description of dynamic
fallure is more complex than tlhose used.
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INTRODUCTION AND SUMMARY

This report summarizes the work performed during the first contract
year in the research on Artificial Stimulation of Eaurthquakes, Contract
No. FU4l620-67-C-0113, at the New Mexico Institute nf Mining ana Tezliuulogy.
Initially, the work was directed toward applying the elastic dynamics
description in the existing two-dimensional langrangian tensor hydrocodes
to the seismic problems requiring solution for this analysis. These
methods, when an appropriate damping was used, proved to be calculationally
stable; however, the damping term was not adequate for the low-power
level of disturbances calculated for the seismic problems; it tended to
spread a disturbance over large areas of the grid in a nonphysical mamer.
To oyercome this problem, equations describing a Cosserat continuum were
studied, but it was not physically realistic to apply the higher order
derivatives in terms of differences to the langrangian werh. Two
alternatives svident at this time for applying the dynamic finite element
technique to the seismic problem were (a) to use computers with larger
active storage, permitting the calculation of more mesh intersections and
thereby reducing the zone size so that the spreading of the disturbance,
while affecting the same number of zones, would cover a much smaller part
of the continuum o~ (b) tuv try to develop another description that would
include additional constraints in the equatlons describing strain, thereby
superseding the requirement for the damping constraints needed in some
of the oxisting tecluniques. For obvious reasons, the decision was made
to develop a calculational technique suitable for the simulation of seismic
type of problems. This technique was developed and is described briefly
in the appendix. Correlation with problems having analytic solutions has
not shown serious differences between the code solutions and the analytic
solutions. During the latter part of the contract year, this cods has
been applied to problems of hydraulically driven cracks and shear cracis.
Dynamic simulations of crack phenomena using the code do not compare in
crack velocity with generally accepted published results indicating that
dynamic failure of isotropic elastic media is quite complicated, A 1lit-
erature search is in progress for information that will help provide an
understanding of the cracking phenomena.




The possibility of predictably creating artificial earthquakes
through fluid injection into geologic structures, is the purpose of
this investigation. Earthquake activity in the Denver, Colorado, area
during and after waste-fZuld injection in the Rocky Mountain Arsenal
injection well indicated that artificial triggering of earthquake activity
hv injecting high-pressurc fluld into geologic strata mignt be possible.
We do not intend to imply that the injection of fluids at the RM well
caused the seismic activity in the Denver area; however, it is certainly
conceivable. An understanding of the phenomena was undertaken through
analytin means by simulating stress fields dynamically with a two-dimensional,
finite element technique. Although the analysis has not been completed,
the approach seems sound and in addition to solutions of dynamic release
of stress fields in rock needed for this task, the technique should prove
valuable for other seismological studies. Obviously, this work has a
direct application for underground nuclear test control, since a signif-
icant background of seismic noise created either intentionally or
unintentionally could mask underground nuclear shots. In addition, small
seismic disturbances could be misunderstood for underground nuclear shots
or vice versa.




GENERAL

A standard method for handling two-dimensional elastic-plastic
formlations in numerical form has been published by Wilkins [1] .

By his method, the strain rates within a langrangian mesh are
calculated from the velocities and co-ordinates of the mesh poi ts,

then integrated to obtain the strain. This method does not provide

the necessary constraints for a complete description of the strain and,
hence, the stress field. For this reason, the calculations are
absolutely unstable, so the method is sometimes stabilized by use of
what 1s called a rotational damping term [2]. The rotational damping
constraints are obtained by calculating pseudo pressures from the rates
of rotation of line segments on both sides of the mass point. The pseuwdo
pressures, which are proportional to differenze of the rates of rotation
of opposing line segments of a mesh point, are then applied to oppose
the motion of the mesh point to reduce the difference in the opposing
rates of rotation. This method appears to work well where the event to
be simulated occurs in short time periods compared to the rotation or
distortion of the mesh caused by the lack of constraint in the strain
description.

This technique for constructing difference equations in langrangian
form, when applied to seismic problems, spreads a cdisturbance in a non-
physical manner over large areas of the grid, making it extremeiy complex.
The rotational damping term, which calculates pseudo pressures of the order
of magnitude of the calculated stress level in the grid near the disturb-
ance, caused the spreading. Dimensions of the extended source were large
compared to a physically realistic detector dimension. Without the
rotational damping terms, the grid distorted nonphysically to the point
where little information could be extracted from the calculations. This
left two alternatives; either to attempt to build another formulation
where the constraints required for stability were contained in the numerical
algorithms or to attempt to use the existing formulations on larger computers,
which would allow the zoning to be sufficiently fine that the rotational
damping terms, while affecting the same number of zones, would cover only
smll parts of the total mesh und would not seriously affect the results
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of the calculation. Reduction of the zone size in the continuum
description would also reduce the calculational time step per cycle,
thereby increasing the number of cycles to be calculated for a given
problem., Increasing the number of cycles along with the greater number
of zones required to describe the continuum would make the computer
running time prohibitively long. In addition, one wants teo describe the
largest continuum possible with the computer equipment available, since
a nonphysical boundary will always create reflectinns from incident waves
in an elastic madium. Since it is not usually possible to simulate the
complete continuum to the detail required with existing computer equip-
ment, only small sections can be considered, thereby introducing non-
physical boundaries where the section of the continuum terminates. One
mipht absorb the energy at the boundary from an incident wave with a
given wave number, but in a two-dimensional description of elastic media,
waves of different numbers nearly always exist. For example, consider
the irrotational and equivolume waves in a Hookean material,

Because we wanted to simulate the largest segment possible of the
continuum to obtain the most information before reflected waves from the
boundaries affect the media of interest, we directed work toward develop-
ment of a formulation that could adequately per.'orm the calculation.

This resulted in a new two-dimensional elastic dynamics code, briefly
described in the appendix.

Correlation of this technique with problems having analyti:z solutions
has not shown serious differences between the code solutions and the an-
alytic solutions. The following observations have been made on a
computer simulation of Lamb's Problem (a source-detector problem on an
elastic isotropis half space):

1. P, S, and Rayleigh waves exist and were calculated at nearly
the expected velocities.

2. A point source seems to be extended only over the zone size

of the langrangian mesh.

3. The calculations were stable without arny damping, either tensor

or rotational.



4, The direction of motion resulting from the P, S, and Rayleigh

waves agrees with the expected motions.

Other observations have been made during checks and correlation
work with the code. The method calculates the correct stress per zone
in both the shear and normal cases. Dynamically, this code simulates
slightly reduced, but predicted, wave speeds. According to s stability
analysis, all finite elemental calculational techniques will show a
reduced wave speed. 'The amount a wave is slowed is a function of the
zone size, input disturbance rise time, and the calculational time step.
Dispersion errors can be expected if an input disturbance has a rise
time shorter than the f:a.stest wave traversal time for a langranglian zone,
Other checks are described in reference [3‘

The computational. code can handle up to 2400 mesh points on an
IBM 360 Model 44 computer. Computational speed with the code in its
present form is about 4500 zone-cycles a second on this computer.

The two-dimensional technique is now being applied to the phenomenon
of hydraulically driven fractures in brittle elastic isotrcpic media. In
addition, strata under high shear stress with preferrec lines of fallure
are being simulated. These shear-fracture patterns are being made to
help understand the phenomenon of water or other fluids ilubricating an
existing fault surface under large lateral loads. The calculations made
to date are discussed later in this report and apparently do not agree
with previous analytic solutions of the same types of problems. These
differences will have to be resolved. Superposition of stress fields
along with diffusion waves in the strata can then be attempted.

&



RESULTS

Several calculations have been made with the code. These include
simulations of both dynamic and static fractures. The stress field
around a static crack (Fig. 1 and 2), which was loaded by a hydrostatic
pressure within the crack, exhibits concentrations at the tip of the
crack and at both sides of the tip concentrations at the sides of the tip
are areas of high shear stress. The medium simulated had the lame'
constants A and u equal to 10" dynes per square centimeter and Poisson's
ratio equal to 0,25. This calculation was performed with the dynamic
code by forcing the dynamics to settle to a minimum energy configuration.
Greater detail in the stress field can be expected with smaller zones;
however, increasing the number of zones will also increase the calcula-
tional time. The calculational mesh used had 15 x 19 grid intersectioms.
Examination of the contours indicates that the stress field and the
distortion are not symmetrical, since the crack was not placed in the
center of the medium. A similar calculation was performed with the crack
discontinuity located symmetrically and a symmetric field was calculated.
The sawtooth effect seen on both sides of the crack on the computer plot
is caused by the routines that plot the contours, not by the dynamic code.
Other contours that do not show a smooth appearance occur in areas where
the contoured function has a shallow gradient.

Calculations of brittle cracks propagating through elastic isotropic
media have been performed. A simulation of a tensile crack was made on a
grid distorted for a tensile uniaxial stress field. The failure criterion
chosen for crack propagation was a simple tensile break. For example, the
langrangian zone would not support any tensile stress perpendicular to the
break or shear stress parallel to the break after either of the principal
stresses had exceeded a certain value. Since for the tensile test, the
zone would not show a crack closure, the shear stress did not have to be
modified for tangential movement of the crack surface in the event that
a normal force of compressiomn existed within the zone. The uniaxial
stress in the medium at the start of the calculation was static at a
value of 1 kilobar. Again the lame' constants A\ and u were 10" mmes/cm2
and .oisson's ratio was 0.25. With a density of 2.7 gm/cm3, the compressional




wave speed was 0.3333 om/u sec, and the distortional wave speed was
0.1924 cm/pu  sec. The start of the crack was initiated by simulating
the situation that three zones along one boundary of the grid would
suddenly support neither tensile nor shear stress through the center

of the zone parallel to two of the zone sides. Three runs were made with
three tensile failure levels chosen, 1.3, 1.5 and 1.8 kilobars. The
crack was sirmulated to propagate at distortional wave speed for the

1.5 kilobar tensile strength and slightly less in the case 1.8 kilobar
breaking strength. For the breaking strength of 1.3 kilobars, the
fracture propagated at a speed faster than the distortional wave speed.
For all three runs, the crack moved straight across the grid perpendicular
to the uniaxial stress field, showing no indication of branching or
splaying. A plot of the elastic flow field is shown in Figure 3 for the
tensile breaking strength of 1.5 kilobars.

Due to the elastic radiation patterns the energy released from tensile
fracture cannot propagate forward of the crack tip at speeds greater than
the distortional wave speed. The crack then should not propagate at
speeds greater than this, either. The code uses a finite size element,
and the beam effect of the finite calculational elements may be a factor
in the high crack velocity for the smaller failure level (1.3 kilobars).
In addition, dispersion could exist in the calculational technique because
of too high energy release rates in the fracture model, which may also
affect the fracture velocity. However, the failure phenomenon for a
dynamically propagating fracture may not be so simple as the one stated.
Currently, a literature search is under way to help resolve this and other
problems,

As a preliminary simulation of the effect of water lubricating a
sheared medimn with a plane of weakness, calculations were performed
with the mesh in a state of pure shear. The medium was relaxed with an
imposed shear of 0.01, corresponding to 1 kilobar shear stress using the
same Lame' constants and Poisson's ratlo as before. In this instancs;, a
plane of weakness was chosen laterally through the mesh; failure could
occur only along this plane. This would be analogous to marking a pane
of glass with a glass cutter and inducing failure along the scribed line.
The failure model chLosen was such that when the  shear stress along this

8

\




line exceeded a certain value, shear fracture would occur and a new
shear stress would be calculated proportional to the normal force, if
compressive, but opposite, to the direction of motion. In addition,

if the relative motion across the crack approached zero, the relative
motion was stopped and a static frictional force was used for the shear
force in the zone.

Simulations on the sheared medium were performed with this failure
model. The fracture was started by removing the shear force in three
zones on one boundary of the mesh. Three calculations were made with
different failure levels in the fracture model. The levols chosen for
the parametric stuly were 1.3 1° , 1.5 T°v‘. and 1.8 1°,, vhere
'r°xy is the initial shear stress in the zone. In all three calculations,
the fracture speed stabilized at approximately the compressional wave
speed. The calculated differences in the three simulations caused by
the changes in the magnitude of fracture or slip level resulted in
changing the time required to build up to this speed.

Examination of some of the literature indicates that the shear
fracture should not propagate at the compressional wave speed and that
soms writers [h] propode a fracture toughness term as the fracture speed
increases. A term of the form A’\/dey/OX was included in the
fracture model to simulate the resistance to fracture as the fracture
speed increases. When this term was included, the fracture or slip
occurred when the shear stress became greater than a minimum fracture
shear and greater than the toughening term. In addition, fracture always
occurred if the shear stress became greater than soms maximum level.

In equation form, fracture would occur if

and Tnnw\/dey/dx

or

where the co-ordinate X is taken as the co-ordinate of the crack center
line and A is a constant. For this calculation A was taken as 0,08,




Using this fracture model, the fracture speed stabilized at about
0.83 of the compressional wave speed. This calculation showed that a
more corplete physical description of dynamic fracture is required.
Contour plots of the shear strain indicated that it did not increase
ahead of the crack tip as it had with the nonrate dependent term included
in the fracture model (Fig. 4). Plots of the wélocity vectors of the
mss points provide a good indication of the elastic radiation patterns
(Fig. 5). These patterns for shear and dilatational radiation are
superimpossd on the plots, but close examination will show the dilatation-
al patterns quite clearly. A mignification of the grid plot (Fig. 6),
which is actually a plot of the medium itself, evidences a twisting of
the crack, along with a tendency to open slightly, near the tip. The
stress field did not have a tensile stress imposed, so this opening
apparently results from the aynamic crack propagation.

Other calculations included simulations of slower energy release
rates from the crack opening. These studies were performed to determine
if the crack was releasing energy at too fast a rate for the code to
calculate properly. Since the code has to permit a crack to traverse
an entire zone at the instant of failure, the energy releass rate could
be causing a dispersion of the energy in the calculation. These
studies of slower release rates, where the fracture energy was released
over a longer period of time, did not indicate that dispersion contributed
to thy calculated high crack velocities. The effect of slower energy
release rates was, again, to slow the rate of buildup to a constant
fracture speed.

A1l the crack propagation simulations were performed with a 30 x 60
two-dimensional mesh. The problems were set up so that the fracture
would run parallel to the long side of the mesh. With the fractures
centered, a reflected wave from a parallel side of the mesh could not
impinge on the fracture discontinuity until 84 microseconds of problem
time had elapsed.

Discussion of these fracture simulations is included in this report
for completeness and to i1llustrate that dynamic fracture is a complex
phenomenon. The failure criterion used here apparently does not describe
the phenomenon of dynamic fracture.
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B. Cotterell [l&] states that if a crack is propagating in an infi-
nite plane, the crack extension force will continually increase unless
the crack is accelerating all the time. Experimental evidence, although
not conclusive, indicates that brittle fractures in steel quickly
assume a steady speed of propagation. If this is true, the fracture
toughness must increase with the stress intensity. It is unlikely that
such a phenomenon could continue indefinitely; at some stage, the excess
energy should be absorbed by a fracture branching.

Preliminary studies of the literature indicate that, analytically,
the study of moving cracks has been concentrated on two basic types:

(a) a crack of constant length traversing a uniform stress field at
constant velocity [ 5] and (b) a crack where length symmetrically
increases from zero with co?stmt velocity [llv, 5]. Natural cracks are
quite obviously of type (b), since type (a) assumes that the fracture
is healing behind a constant-length crack.

An understanding of fracture phenomena in geologic strata has
fundamental importance to the work undertaken in this contract. The
indications of the analysis performed and discussed in this report show
that a complete literature search is imperative and that further analysis
and correlations must be made.

11




CONCLUSIMNS

The two-dimensional elastic dynamic code developed for use in the
seismic problems produces a much quieter mesh from which more information
can be axtracted than do some of the existing formulations. Correlation
with the source detector problem (lamb's problem) on an isotropic half
space shows that the method is sound. Simulations of fluid-driven
fractures and a fluid-lubricated fault surface under lateral load indicate
that simple fracture models do not provide a complete description of the
dynamic failure phenomenon. Further development work on fracture models,
with an accompaning literature search, is required.
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MANUSCRIPTS SUBMITT™D® F(R PUBLICATIMN

Difference Equations For Two-Dimensional Flow

A.G. Petschek and M.E. Hanson

ABSTRACT

An improved technique for handling two-dimensional elastic flow
is applied to several physical problems. The method differs from
older methods in that no unresisted distortions of the mesh are allowed.
A much quieter mesh results, and more information can be extracted from

the calcwlation.
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APPENDIX

FINITE DIFFERENCE EQUATIONS FOR THE TWO DIMENSIONAL
ELASTIC DYNAMICS CODE "TEMS"

This description is given in rectangular coordinates.
A. THE CALCULATIONAL GRID AND MASS ZONING

A two dimensional Langrangian grid is placed in the material)
dividing the material into rectangles. Figure 7 is a schematic of the
grid and a numbering system for the center and corners of the zones

used in this description of the code. In particular

1 1
®=k+'i'.l.+'i' I = ki
1 1
@:k-}-i-,t--i- 2=k,l'+1
=k - +.4 -+ 3 ikt k, k%L
2’ 2 2
1 1
@:k--i-,l.-!--i- 4 =k +1,1

The mass at ecach vertex of the rectangles is calculated initially (at
time zero) and held constant for the entire calculation. This ensures
conservation of mass in the calculation. The mass concentrated at
each vertex is taken as 1/4 the sum of the masses of the adjoining

zones. For example:

. OAO
O (A1)
1
m = = (m_+m _+m_+m_)
N ONONONO)

The masses at the other vertices are calculatec similarl:.

The area of a quadrangle is taken as

App. !
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AI and Au are the areas of the triangles I and II.

B. STATE EQUATIONS

The compression at cycle n is given by

n 0
n_P2 | _|A
K "[Po]i' ]i (A3)

Al
The code permits the effective bulk modulus to be given by an expansion

of the form

n_[0p]n_ n_ n 2 n 3
K, = dﬂ]i =a+2b (9, 1)-!-3c(‘))i - 1) +4d (g, - 1) (A4)

where the coefficients b, ¢, d ... are empirical fits to experimental
shock data and can be found in the literature, for example Walsh et al,
[7) . The coefficient a is the linear bulk modulus of the material.
Given one of the Lam{ constants and Poisson's ratio the remaining Lamé
constants can be found for linear elasticity. Poisson's ratio is taken

to be constant so that the Lam '"constants" are given by

Kn(l -2V

n
b il+v)

K

N[ w

(A5)

n

A=

=

By
-2y

(]

where p is the shear modulus and v is Poisson's ratio.
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C. STRAINS AND STRESSES

Consider a rectangle whose original corners were at (X, Y),
(X+L,Y), (X+L, Y +K), (X, Y +K) and let the corners presently
Yy +k3), (x +1

be at (x, y), (x + "2' y + kz), (x +1¢ y +k4) as

3’ 4’

shown on Figure 8,

Now consider a point whos« original coordinate was (X + U,
Y 4+ V) and whose present coordinate is (x +u, y +v). Expand u and

v as in Eq. (A25).

The coefficients a through f can be obtained by solving Eq. (A26)

which gives

n

a =tz/L b =l4/K
n_ ‘ n_
d" = k, /L e" =k, /K (A6)
= (e, -1, - L)/LK = (k, - k. - k,)/LK
Fildg= tgv 9 =(ky -k, -k,

The distortion of the grid will produce, in gencral, both a
rotation and a distortion of each individual mesh, As the rotation
will lead to strains which, by Hooke's law,Eq. (Al0),produce large
stresses, it is necessary to account for the rotations separately. In
the distorted mesh, 2 linec of constant V has a slope given by Eq. (A27).
Rotating the distoricd mesh through the angle - puts this line -arallel
to its original orientation. After rotation throughthis angle, thc >oint

originally at U, V_ is at u', v' where

u'=ucos 8 +vsinl (A7)

vcos @ -usinb

v!
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The strains are accordingly

' = n
(e O = 2= V) (a4 eV)cos §™ + (a4 V) ein B - 1

ou

R
(eﬂ)ﬂ = _6__(_\'_67\/)__ = (e + fU)“cosen -(b + cU)"sin 9" -1 (A8)
( )n_a(v'-V)n+aiu'-ULn_b n n U eing ™
yy'x' = 20U 3V =(b +cU) cosf  + (e +£U) sin

Eliminating the trigonometric functions by use of Eq. (A27) gives

(8" = (Via+ev)® +(a+ev)® - 1)°
(e " = [(ae e L 1] " (A9)
*/(a * cV)2 +(d +£V)Z
(y e)n . [(bxrcU)(a +°cV) +(d +£V) (e + fU)-l n
ylxl [ z 'E l
‘\/(a+cV) i {d +£{V) J

using Hooke's Law, the stresses at a point along the line of constant

V are
n_ n,_ @0 n,_§0§ \n
(O‘y.y.) = (2p +)) (Ey. ) +A (€. )
(A10)
(ol ="y 2"

Similarly a line of constant U in the distorted mesh has a slope
given by Eq.(A28). Rotating the distorted mesh through the angle
-¢ puts this linc parallel to its original orientation. After rotation

the point origina'ly at U, V is at u', v' where
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u'zucos¢ -vsing
. (Al1)
v'=vcos¢ +using
the strains are accordingly
n
(ex? ) = 'QL\L'O%J—)— =(a+cV) cos d" - (d +£V) sin¢" -1
N
(ej,’ ) = ﬂlﬁy)— =(c +1U)"cos ¢" + (b + cU)"sind" -1 (Al2)
n_ (v - V)" | ' -U)° n n
(rx.‘{’,.) = BUL + (“av) =(d +{V) cos¢
+(a + c\/)“sinc‘&n
Again eliminating the trigonometric functions with Eq, (A28) gives.
(€x¢: . [(ae - bd) + U(af - de) + V(ec - bf) _ 1] 4
«Ae + fU)z +(b + cU)z
(ey‘{’ P = (Ve + 1U) + (b + ) - )" (A13)
i
(y & P [(2teV)(b+cU) +(d+1V) (e +1U) n
Tary' 17 ) 2
%e +{U) +(b + cU)
The stresses at a pojnt along the line U = constant are
(G = (20 M (e )" + e 80"
(A14)
(o_x|y')n = F-n()’x#;,. )n

+ ]
The angle g‘) is taken positive in the clockwisc dircction and the angle
@ is taken positive in the counterclockwisc direction.
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Occasionally it has been desirable to recover the stress f{icld
in the original frame in which case the stresses in the interior of the
zone arec defined by
n 2 n , 2 n
) cos ¥ +(c‘y,y,) sin_ ¥ - 2 (Tx'y') sin{ cos Y

n
(cxx) = (o-x'x'

n n 4 n 2 n_. ,
(O‘yy) =(o’y,y,) cos W+(o‘x.x.) sin 4J+Z('rx.y.) sin v’ cos Y

where

n
7x'yt o (o-y'x' +°'xlyt) /2

tany = (tan 8" - tan 4,“)/2

This amounts to averaging the rotation and shear stresses

computed along the lines U = constant and V = constant.
D. ThE MOMENTUM EQUATIONS

For the dynamics, the stresses are integrated on the quarter
zones about the mass point k,. . For example, the integration is
carried out along the dashed line segments about the mass point k, .

in Figure 7.

We must integrate the appropriate stresscs along the line
V = K/2 over the segment 0SUSL/2 or L/2SU<SL depending on
the zone corner bordering on the mass point, Likewise the integration
must be carried out for the appropriate stresses along the li== U = L/2
over the segment 0SVSK/2 or K/2<V<K. Either the strair. defi..itions
(A8) and (Al12) or (A9)and(Al13) may be used, We will use the definitions
(A8) and (A12) to correspond to the form in the tcxt of the report. The

integrations in cither case are trivial

App. 6
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X
(FY.y.)in =fx: [(Z}L +k){(e +1fU) cos § - (b + cU) 8in § - 1}
n
+ x{(a +cK/2) cos 8 +(d + £K/2) 8in 8 - 1}] du (A17)

(Fy,x')i“ =f:lz[p.{(b + cU) cos 8 + (e + fU) sin 9}]ndu

where x. and x, are the appropriate limits either xl = 0, X, = L/2

1 2
or x, = L/2, x, = L, and
n x4
(Foie)y =fx [(Z;H \) {(a +cV)cas - (d +£V) sin¢ - 1}
3
n
+x{(c +1L/2) cos ¢ + (b + cL/2) sin ¢ - 1}] av (A18)

(Fx,y,)i“ - f:4 [#{(d +£V) cos ¢ +(a +cV) sin ¢}] "av
3
= K/2 or x

where x, = 0, x = K/2, %

3

of the zone about thc mass point, Then

= K depending on the position

4 3 4

n
(Fy',)in - (zp+x)i“[(e + afL/4) cos @ - (b + acL/4) sinf - 1]1 L/2

n
+ A0 [(a + cK/2) cos 8 +(d + fK/2) sin O - 1] L/3 (A19)
i

n
)n =p n [(b +acL/4) cos 8 + (c +afL/4) sinO] L/2

(Fy'x' i i i

App. 7




and

n
(Fx'x')in = (Zp,+)‘)i" [(a tacK/4) cos ¢ - (d +afK/4) sin ¢ - l]i K/2
n n
+ N [(e +11./2) cos ¢ + (b + cL/2) sin ¢ - 1] i K/2 (A20)
n

(Fx'y i

2 ept [(d +afK/4) cos® +(a +acK/4) sin gb] K2

i
where the subscripts i denote the zone centers, for example those
numbers enclosed in circles in Figure 7, in relation to mass point

k,¢ , and n is the cycle number.

1 for Equations (Al9) for zones @ and @
1 for Equations (A20) for zones @ and @
3 for Equations (Al9) for zones @ and @
= 3 for Equations (A20) for zones @ and @

As in the text, the first subscript designates the normal to the surface
across which a stress in thc direction of the second subscript is
exerted, The primes on the subscripts denote that we are in a frame

rotated with respect to the original frame,

We must then rotate thesc forces back to the original frame to

apply them to the momentum equation,

n n n n ., n
(Fy,x)i =(Fy,x,)i cos § -(/Fy,y,)i sin 0
(A21)
n n n n . n
(Fy'y)i = ( y'y')i cos 8  + (Fy'x')i sin §

App. 8



and

n n ., ,n
(F_. ), =(F, 15t g " cos p" x'y')i sin ¢
(A22)
n 1" sing ™
(Fx'y)i = (F %5 ) i cos qf) F_ x' i sin ¢

The velocities can be computed from the force ficld by

2 3 -
n+l/ -3 n 1/2+[

xk.l. T Tk, L (Fx'x)CD- (Fx'xb- 3 g, !

xx)@)
n

L= (F , ) =(F , ) |at"/m
@ y x@ y x@ y x@] k, o

. n+l/2 _, n-l/Z [
Ykt R4}

+(F

y@ Fy y)(@' (Fy'y)@j (Fy'y)@)

HF Ly

r - + F
oy ey elplatin,
The positions can be incremented by

. n+l n n+l1/2, n+1/2
ket ek At

1
(1]
»

(A24)

n+l n n+l/2, n+1/2

Vi, * Yl At

E. TIME STEP

In accord with the Courant criterion, the time step is taken to

be the minimum over the mesh of

App. 9




A" +1/2 =cmn+ 1/a

where

Arn+1=An+l/S,

S is the longest diagonal of the quadrangle, a is the local

dilitational wave speed and C has been taken to be 0. 6.

¥. THE MAPPING TECHNIQUE

Evidently, one ought to difference the equations so that there
are no unresisted distortions of the mesh, This has been done as
follows: consider a quadrilateral which was originally rectangular
and had its lower left hand corner at X, Y. Let the lower left hand
corner now be displaced to x, y and the point originally at X + U,

Y + V be displacedto x +u, y + v. Expand the present position as

a function of the original position as follows

u=alU+bV +cUV +...
v+dU +eV +fUV + ...

(A25)

Just six parameters in the expansion have been written down because

this is enough to specify completely the positions of the corners and is

as many as can be determined by those positions., The term proportional
to UV is preferable to one proportional to UZ or V2 because it maps
the edges of the original rectangle into straight lines and this ensures
that the meshes of the distorted lattice fit together without gaps or

overlap.

The coefficients a through f may be found from the coordinates
of the grid. That is, if the intersections of grid lines around the mesh
are numbered from 1l to 4 as before, tlhie one with U =V = 0 is numbered
1, and the original rectangle had the dimensions L by K, then a

through f are found from

App. 10




u2=aL
v2=dL
u, = aLL + bK + cKL

3 (A26)
dL + eK + fKL

<
H

3
u4=bK
v4=eK

Given a through f , one may compute the displacments u - U
and v - V and from the displacements the strains as a function of position

throughout the mesh.

To compute accelerations, the mesh is bisected inthe X and Y
directions, and the masses of the four adjacent quarter zones as associated
with each mesh point. The force is computed by integrating the stress
around the circumference of the mass. To do this the stresses on the line
segments U = L /2, O<V<K/2; U =L/2, K/2<V<K and so forth are
required. These can easily be computed from the strains, provided
proper account is taken of the rotation of the mesh. To do the latter,
we rotated the zone until the line along which the stress was to be com-
puted, i. e. V =K/2 or U=L/2 was parallel to its original direction,
i. e. the X or Y axis. This implies a rotation through an angle

9 -1 d+fK/2

T oKz (4en

in the former case and an angle

.. -1 b+cL/2

b oot TTERE HE)

in the latter. If the rotations are not taken into account, Hooke's law

as used below will give rise to large fictitious stresses.

App. 11




After rotation the strain in the x direction along the line of

constant V is

¢x9' = (a + %CK) cosf + (d+ %fK) sin 8 - 1. (A29)

The primes indicate that a rotated coordinate system is in use.

The stresses are, in the case of plane strain (no distortion

perpendicular to the plane considered) by Hooke's law, for instance

010 = (2p+N) [(e +U) cos § - (b +cU) sin§ - 1] +

vy (A30)

X[(a+ %cx) cosf +(d +%fK)sin9 - 1]

Where u and \ are Lamé constants and the first subscript designates
the normal to the surface across which a stress in the direction of the

second subscript is exerted.

The corresponding forces are obtained by integrating along the

appropriate half bisector of the mesh to give, for instance

- - 1 - (b +1 0-111
F i = [fau O'Y‘y‘-(2p+)\)[(e+4faL)cose (b + faL)sinf - 1] FL
(A31)
+X[(a+%cK)cosB+(d+%fK)sin9-IJ%L

where the limits on the integral are 0 and L/2 or L/2 and L, and
a is 1 in the former case and 3 in the latter. Then the force is rotated

back into the original Eulerian frame, that is

F, =F cosf +F it sin 0
Yy yy y (A32)
Foig = Fyigr 8in0 +F , , cos 8
App. 12




Finally the force is summed over the eight line segments surrounding

the intersection, and is used to accelerate the mass centered there.

G. GENERAL

The boundaries of the mesh can be treated as having phantom

zones with no tractions, normal forces or masses. The code will not

correctly calculate displacement disturbances with frequencies shorter
than the time acquired for a dilatational disturbance to cross 4 zones.

If these disturbances are produced on the boundaries of the mesh, dis-

persion of the induced wave trains is observed.

A tensor viscosity has been developed and used with the code.

App. 13




GRID POSITIONS

1400.453896 MICROSEC

TIME

CYCLE 2235

PROB 304U

2.00

.00

7.0

8.0

0.00

CMu-J

[ 3]
m
—
w2

Figure 1 Grid for static crack with distortion magnified by 10, Hydrostatic pressure
in the crack was taken as 1 kilobar, lame' constants for media were

A

Y]

= 0,1 megabars.
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The shear

failure model included the toughening term described in the report.
maximum contour is

0.1 megabars.

u

.001, minimm contour is -.004,

Sawtooth effect on both sides of the crack is caused by the plotting

Time of plot is 96.7 u sec after crack was initiated.

Contours of the shearing strain for the shear or slip fracture.
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Figure 7. The grid and numbering scheme for the difference equations.
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X,Y+K X+L, XL, ] y+k

U,V uy

_J X+l.2
X,Y XsLY Xy Yk

Figure 8. Comparison of undistorted and distorted meshes indicating the

meaning of u and v,




