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ANNUAL REPORT 

AflTIFICIAL STIMJUTION OF EAOThQUAKES 

NiW MEXICO INSTITUTE OF MINING AND TECKNULUGY 

Merle Hanson 

Contract Ho. Fkh 620-67-C-0113 

The possibility of predictably creating artificial earthquakes through 

fluiil infection into geologic structures is the purpose of this investigation. 

Seisrric activity occurring in the Denver»  Colorado,  region which may or may not 

have been caused by injecting fluids into the Rocky Mountain Arsenal waste 

injection well has raised the question.    An understanding of the phenomena was 

undertaken through analytic means.    Obviously this work has a direct application 

for the objectives of underground nuclear test control. 

This report contains a brief summary of the reasons why a stable two dim- 

ensional elastic dynamics numerical calculational technique had to be developed. 

In addition, the technique is described briefly in the general section of the 

report and in more detail in the appendix.    The results discuss some simulations 

of brittle fractures propagating through an Isotropie elastic media,    önphasls 

is placed on the fact that the simulated fractures, using s'mple failure 

criteria, propagate at speeds greater than those normally predicted in the 

literature.    These simulations exhibit the fact that the description of dynamic 

fracture phenomenon is more complex than those used. 

Code solution comparison with analytic solutions in seismic problems 

indicate that the method is sound.    Further development of fracture models is 

required to understand the effect of high pressure fluids in creating or driving 

fractures in geologic strata. 

A photo stress meter was purchased during the contract year to use for 

correlation purposes with the analytic model. 



ABSTRACT 

A discussion of a two dimensional elastic dynamics technique 

developed to simulate seismic disturbances as a result of various 

input or grid created disturbances.    The method exhibits calculatlonal 

stability over other techniques using quadrilateral grids.    A quieter 

mesh results from which more information can be extracted from the 

calculation.    The results section discusses simulations of brittle 

fractures propagating through the Isotropie elastic media.    Qnphasis 

is placed on the fact that the simulated cracks, using simple failure 

criteria, propagate at speeds greater than normally predicted in the 

literature.    These simulations 'ixhibit that the description of dynamic 

failure is more complex than those used. 
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INThODÜGTICN AND SUMtoRY 

This report smnmarizes the work performed during the first contract 

year in th« research on Artificial Stimulation of Earthquakes,   Contract 

No. FW^20-67-C-0113, at the New Mexico Institute of Mining ana Technulogy. 

Initially,  the work was directed toward applying the elastic dynamics 

' description in the existing two-dimensional Langrangian tensor hydrocodes 

to the seismic problems requiring solution for this analysis.    These 

methods,  when an appropriate damping was used, proved to be calculationally 

stable;  however,   the dauqping term was not adequate for the low-power 

level of disturbunues calculated for the seismic problems;  it tended to 

spread a disturbance over large areas of the grid in a nonpfaysical manner. 

To oyercome this problem, equations describing a Cosserat    continuum were 

studied, but it was not physically realistic to apply the higher order 

derivatives in terms of differences to the langrangian uarh.    Two 

alternatives evident at this time for applying the dynamic finite element 

technique to the seismic problem were    (a) to use computers with larger 

active storage, permitting the calculation of more merh intersections and 

thereby reducing the zone size so that the spreading of the disturbance, 

while affecting the same number of zones, would cover a much smaller part 

of the continuum o-      (b) to try to develop another description that would 

Include additional constraints in the eq lations describing strain, thereby 

superseding the requirement for the damping constraints needed in sane 

of the t^xistiu^ techniques.    For obvious reasons, the decision was made 

to develop a calculational technique  suitable for the simulation of seismic 

type of problems.    This technique was developed and is described briefly 

f in the appendix.    Correlation with problems having analytic solutions has 

not shawn serious differences between the code solutions and the analytic 

solutions.    During the latter part of the contract year,  this code has 

been applied to problems of hydraulically driven cracks and shear cracks. 

Dynamic simulations of crack phenomena using the code do not compare in 

crack velocity with generally accepted published results indicating that 

dynamic failure of Isotropie elastic media is quite conqplicated.    A lit- 

erature search is in progress for information that will help provide an 

understanding of the cracking phenomena. 



The possibility of predictably creating artificial earthquakes 

through fluid injection into geologic structures,  is the purpose of 

this investigation.    Earthquake activity in the Denver, Colorado, area 

during and after waste-fluid injection in the Rocky Mountain Arsenal 

injection well indicated that artificial triggering of earthquake activity 

ty injecting high-pressure flviii into toulogic strata nu^uu ue possible. 

Wa do not intend to inply that the injection of fluids at the RIA well 

caused the seismic activity in the Denver area; however,  it is certainly 

conceivable.    An understanding of the phenomena was undertaken through 

analytic means by simulating stress fields dynamically with a two-dimensional, 

finite element technique.    Although the analysis has not been completed, 

the approach seems sound and in addition to solutions of dynamic release 

of stress fields in rock needed for this task,  the technique should prove 

valuable for other seismological studies.    Cbviously, this work has a 

direct application for underground nuclear test control, since a signif- 

icant background of seismic noise created either intentionally or 

unintentionally could mask underground nuclear shots.    In addition,  small 

seismic disturbances could be misunderstood for underground nuclear shots 

or vice versa. 
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GQJHIAL 

A standard method for handling two-djjnensional elastic-plastic 

formulations in numerical form has been published by Wilklns  [l] . 

By his method, the strain rates within a langranglan mesh are 

calculated from the velocities and co-ordinates of the mesh po    bt| 

then integrated to obtain the strain.    This method does not provide 

the necessary constraints for a complete description of the strain and, 

hence,  the stress field.    For this reason, the calculations are 
absolutely unstable,  so the method is sometimes stabilized by use of 

what is called a rotational damping term  [2].    The rotational damping 

constraints are obtained by calculating pseudo pressures from the rates 

of rotation of line segments on both sides of the mass point.    The pseudo 

pressures, which are proportional to differense of the rates of rotation 

of opposing line segments of a mesh point, are then applied to oppose 

the motion of the mesh point to reduce the difference in the opposing 

rates of rotation.    This method appears to work well where the event to 

be simulated occurs in short time periods compared to the rotation or 

distortion of the mesh caused by the lack of constraint In the strain 

description. 

This technique for constructing difference equations in langranglan 

form,  when applied to seismic problems, spreads a disturbance in a non- 

physical manner over large areas of the grid, making it extremexy complex. 

The rotational damping term, which calculates pseudo pressures of the order 

of magnitude of the calculated stress level in the grid near the disturb- 

ance,  caused the spreading.    Dimensions of the extended source were large 

conpared to a physically realistic detector dimension.    Without the 
rotational damping terms, the grid distorted nonphysically to the point 

where little information could be extracted from the calculations.    This 

left two alternatives; either to attempt to build another formulation 

where the constraints required for stability were contained in the numerical 

algorithms or to attempt to use the existing formulations on larger computers, 

which would allow the zoning to be sufficiently fine that the rotational 

dairying terms, while affecting the same number of zones,  would cover only 

small parts of the total mesh and would not seriously affect the results 

I 



of the calculation.    Reduction of the zone size in the continuum 

description would also reduce the calculational time step per cycle, 

thereby increasing the number of cycles to be calculated for a given 

problem.    Increasing the number of cycles along with the greater number 

of zones required to describe the continuum would make the computer 
running time prohibitively long.    Ih addition,  one wants te describe the 

largest continuum possible with the conpater equipment available,   since 

a nonphysical boundary will always create reflections from incident waves 

in an elastic madium.    Since it is not usually possible to simulate the 

complete continuum to the detail required with existing computer equip- 

ment,  only small sections can be considered,  thereby introducing non- 

physical boundaries where the section of the continuum terminates.     One 

might absorb the energy at the boundary from an incident wave with a 

given wave number, but in a two-dimensional description of elastic media, 

waves of different numbers nearly always exist.    For example,  consider 

the irrotational and equivolume waves in a Hookean material. 

Because we wanted to simulate the largest segment possible of the 

continuum to obtain the most information before reflected waves from the 

boundaries affect the media of interest,  we directed work toward develop- 

ment of a formulation that could adequately per orm the calculation. 

This resulted in a new two-dimensional elastic dynamics code, briefly 

described in the appendix. 

Correlation of this technique with problems having analytis solutions 

has not shown serious differences between the code solutions and the an- 

alytic solutions.    The following observations have been made on a 

computer simulation of Lamb's Problem (a source-detect or problem on an 

elastic isotropi': half space): 

1. P. S, and Rayleigh waves exist and were calculated at nearly 

the expected velocities. 

2. A point source seems to be extended only over the zone sice 

of the Langrangian mesh. 

3.    The calculations were stable without any dancing, either tensor 

or rotational. 



4.    The direction of motion resulting from the P, S, and Rayleigh 

waves agrees with the expected motions. 

Other observations have been made during checks and correlation 

work with the code.    The method calculates the correct stress per zone 

in both the shear and normal cases.    Dynamically, this code simulates 

slightly reduced, but predicted,  wave speeds.    According to »  stability 

analysis, all finite elemental calculational techniques will show a 

reduced wave speed.     The amount a wave is slowed is a function of the 

zone size,  input disturbance rise time, and the calculational time step. 

Dispersion errors can be expected if an input disturbance has a rise 

time shorter than the fastest wave traversal time for a langrangian zone. 

Other checks are described in reference [3. 

The coiqputational code can handle up to 2400 mesh points on an 

IBM 36O Model ^ computer.    Computational speed with the code in its 

present form is about 4-500 zone-cycles a second on this computer. 

The two-dimensional technique is now being applied to the phenomenon 

of hydraulically driven fractures in brittle elastic Isotropie media,    üi 

addition,  strata under high shear stress with preferred lines of failure 

are being simulated.    These shear-fracture patterns are being made to 

help understand the phenomenon of water or other fluids lubricating an 

existing fault surface under large lateral loads.    The calculations made 

to date are discussed later in this report and apparently do not agree 

with previous analytic solutions of the same types of problems.    These 

differences will have to be resolved.    Superposition of stress fields 

along with diffusion waves in the strata can then be attenpted. 

. 



RESULTS 

Several calculations have been made with the code.     These Include 

simulations  of Loth dyrMimic and  static fractures.    The  stress field 

around a static crack (Fig.  1 and 2),  which was loaded by a hydrostatic 

pressure within tha crack, exhibits concentrations at the tip of the 

crack and at both sues af the tip concentrations at the  sides of the tip 

are areas of high shear stress.     The medium simulated had the lame* 

constants X  and   n  equal to lO" dynes per square centimeter and Poisson's 

ratio equal to 0.25.    This calculation was performed with the dynamic 

code by forcing  the dynamics to settle to a minimum energy configuration. 

Greater detail in the stress field can be expected with smaller zones; 

however,   increasing the number of zones will also increase the calcula- 

tional time.    The calculational mesh used had 15 x 19 grid intersections. 

Examination of the contours indicates that the stress field and the 

distortion are not symmetrical,   since the crack was not placed in the 

center of the medium.    A similar calculation was performed with the crack 

discontinuity located symmetrically and a symmetric field was calculated. 

The sawtooth effect seen on both sides of the crack on the computer plot 

is caused by the routines that plot the contours, not by the dynamic code. 

Other contours that do not show a smooth appearance occur in areas where 

the contoured function has a shallow gradient. 

Calculations of brittle cracks propagating through elastic Isotropie 

media have been performed.    A simulation of a tensile crack was made un a 

grid distorted for a tensile uniaxial stress field.    The failure criterion 

chosen for crack propagation was a simple tensile break.    For example, the 

langrangian zone would not support any tensile stress perpendicular to the 

break or shear stress parallel to the break after either of the principal 

stresses had exceeded a certain value.    Since for the tensile test, the 

zone would not show a crack closure,  the shear stress did not have to be 

modified for tangential movement of the crack surface in the event that 

a normal force of compression existed within the zone.    The uniaxial 

stress  in the medium at the start of the calculation was static at a 

value of 1 kilobar.    Again the lame1  constants  X  and ji   were lO" dynes/cm 

and loisson's ratio was 0.25.    With a density of 2.7 gm/cm ,  the congressional 
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wave speed was 0.3333 cm/^x. sec, and the distort ion* 1 wave speed was 

0.1924 cni//z  sec. The start of the crack was initiated by simulating 

the situation that three zones along one boundary of the grid would 

suddenly support neither tensile nor shear stress through the center 

of the zone parallel to two of the zone sides. Three runs were made with 

three tensile failure levels chosen, 1.3, 1.5 »nd 1.8 kllobars. The 

crack was simulated to propagate at distortlonal wave speed for the 

1.5 kilobar tensile strength and slightly less in the case 1.8 kilobar 

breaking strength. For the breaking strength of 1.3 kllobars, the 

fracture propagated at a speed faster than the distortional wave speed. 

For all three runs, the crack moved straight across the grid perpendicular 

to the unlaxlal stress field, showing no Indication of branching or 

splaying. A plot of the elastic flow field Is shown in Figure 3 for the 

tensile breaking strength of 1.5 kllobars. 

Due to the elastic radiation patterns the energy released from tensile 

fracture cannot propagate forward of the crack tip at speeds greater than 

the distortional wave speed. The crack then should not propagate at 

speeds greater than this, either. The code uses a finite size element, 

and the beam effect of the finite calculational elements may be a factor 

in the high crack velocity for the smaller failure level (1.3 kllobars). 

In addition, dispersion could exist in the calculational technique because 

of too high energy release rates in the fracture model, which may also 

affect the fracture velocity. However, the failure phenomenon for a 

dynamically propagating fracture may not be so simple as the one stated. 

Currently, a literature search Is under way to help resolve this and other 

problems. 

As a preliminary simulation of the effect of water lubricating a 

sheared med:' m with a plane of weakness, calculations were performed 

with the mesh in a state of pure shear. The medium was relaxed with an 

imposed shear of 0.01, corresponding to 1 kilobar shear stress using the 

same lame1 constants and Poisson's ratio as before. In this instance, a 

plane of weakness was chosen laterally through the mesh; failure could 

occur only along this plane. This would be analogous to marking a pane 

of glass with a glass cutter and inducing failure along the scribed line. 

The failure model chosen was such that when the shear stress along this 



line exceeded a certain value, shear fracture would occur and a new 

shear stress would be calculated proportional to the normal force, if 

conpressive, but opposite, to the direction of motion.  In addition, 

if the relative motion across the crack approached zero, the relative 

motion was stopped and a static frictional force was used for the shear 

force in the zone. 

Simulations on the sheared medium ware performed with this failure 

model. The fracture was started by removing the shear force In three 

zones on one boundary of the mesh. Three calculations ware made with 

different failure levels in the fracture model. The levals chosen for 

the parametric study were 1.3 T0 , 1.5 T0 , and 1.8 T0 , where 

T   is the Initial shear stress in the zone. In all three calculations, 
*y 

the fracture speed stabilized at approximately the conpressional wave 

speed.    The calculated differences in the three simulations caused by 

the changes in the magnitude of fracture or slip level resulted in 

changing the time required to build up to this speed. 

Examination of son» of the literature indicates that the shear 

fracture should not propagate at the conpressional wave speed and that 

some writers [^   propose a fracture toughness term as the fracture speed 

increases.    A term of the form   ÄV3Txy/<Jx w»s includud in the 

fracture model to simulate the resistance to fracture as the fracture 

speed increases.    When this term was included, the fracture or slip 

occurred when the shear stress became greater than a minimum fracture 

shear and greater than the toughening term.    In addltior.,  fracture always 

occurred if the shear stress became greater than some maximum level. 

In equation form, fracture would occur if 

V    >   Tmin andT^VaTxy/ax 

T    n 

where the co-ordinate X is taken as the co-ordinate of the crack center 

line and A is a constant.    For this calculation A was taken as 0.08. 



Using this fracture model, the fracture speed stabilized at about 

0.83 of the congressional wave speed. This calculation showed that a 

more complete physical descrip4 ion of dynamic fracture is required. 

Contour plots of the shear strain indicated that it did not Increase 

ahead of the crack tip as it had with the nonrate dependent tarm included 

in the fracture model (Fig. 4). Plots of the velocity vectors of the 

mass points provide a good indication of the elastic radiation patterns 

(Fig, 3). These patterns for shear and dilatational radiation are 

superimposad on the plots, but close examination will show the dilatation- 

al patterns quite clearly. A magnification of the grid plot (Fig. 6), 

which is actually a plot of the medium itself, evidences a twisting of 

the crack, along with a tendency to open slightly, near the tip. The 

stress field did not have a tensile stress imposed, so this opening 

apparently results from the oynamic crack propagation. 

Other calculations Included simulations of slower energy release 

rates from the crack opening. These studies were performed to determine 

if the crack was releasing energy at too fast a rate for the code to 

calculate properly. Since the code has to permit a crack to traverse 

an entire zone at the instant of failure, the energy release rate could 

be causing a dispersion of the energy In the calculation. These 

studies of slower release rates, where the fracture energy was released 

over a longer period of time, did not indicate that dispersion contributed 

to th3 calculated high crack velocities. The effect of slower energy 

release rates was, again, to slow the rate of buildup to a constant 

fracture speed. 

All the crack propagation simulations were performed with a 30 x 60 

two-dimensional mesh. The problems were set up so that the fracture 

would run parallel to the long side of the mesh. With the fractures 

centered, a reflected wave from a parallel side of the mesh could not 

impinge on the fracture discontinuity until 84 microseconds of problem 

time had elapsed. 

Discussion of these fracture simulations is Included In this report 

for completeness and to illustrate that dynamic fracture is a complex 

phenomenon. The failure criterion used here apparently does not describe 

the phenomenon of dynamic fracture. 

10 
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B, Cotterell \k\   states that if a crack is propagating In an Infi- 

nite plane, the crack extension force will continually increase unless 

the crack is accelerating all the tine. Experimental evidence, although 

not conclusive, indicates that brittle fractures in steel quickly 

assume a steady speed of propagation.  If this is true, the fracture 

toughness must increase with the stress intensity. It is unlikely that 

such a phenomenon could continue indefinitely; at some stage, the excess 

energy should be absorbed by a fracture branching. 

Preliminary studies of the literature indicate that, analytically, 

the study of moving cracks has been concentrated on two basic types: 

(a) a crack of constant length traversing a uniform stress field at 

constant velocity [5] and (b) a crack where length symmetrically 

increases from zero with constant velocity [4, 5]• Natural cracks are 

quite obviously of type (b), since type (a) assumes that the fracture 

is healing behind a constant-length crack. 

An understanding of fracture phenomena in geologic strata has 

fundamental importance to the work undertaken in this contract. The 

indications of the analysis performed and discussed in this report show 

that a complete literature search is imperative and that further analysis 

and correlations must be made. 

11 



CCNCLDBICNS 

The two-dimensional elastic dynamic code developed for use in the 

seismic problems produces a much quieter mesh from which more information 

can be extracted than do some of the existing formulations. Correlation 

with the source detector problem (lamb's problem) on an Isotropie half 

space shows that the method is sound. Simulations of fluid-driven 

fractures and a fluid-lubricated fault surface under lateral load indicate 

that simple fracture models do not provide a complete description of the 

dynamic failure phenomenon. Further development work on fracture models, 

with an accompaning literature search, is required. 

12 
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Difference Equations For Two-Dimensional Flow 

A.G. Petschek and M.E.  Hanson 

ABSIEACT 

An iraproved technique for handling two-dimensional elastic flow 

is applied to several physical problems.    The method differs from 

older methods in that no unresisted distortions of the mesh are allowed. 

A much quieter mesh results, and more information can be extracted from 

the calculation. 

13 
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APPENDIX 

FINITE DIFFERENCE EQUATIONS FOR THE TWO DIMENSIONAL 
ELASTIC DYNAMICS CODE "TEMS" 

This description is given in rectangular coordinates. 

A.    THE CALCULATIONAL GRID AND MASS ZONING 

A two dimensional Langrangian grid is placed in the  material^ 

dividing the material into rectangles.    Figure 7 is a schematic of the 

grid and a numbering system for the center and corners of the zones 

used in this description of the code.    In particular 

0=   k   +   |-, A    +   |- 1    =   M 

©■kff«l-|- 2=k, A+l 

®= k - i«^ - i        3 = k +1. i + i 

0=   k   -   j, L   +  Y 4=k+l,i 

The mass at each vertex of the rectangles is calculated initially (at 

time zero) and held constant for the entire calculation.    This ensures 

conservation of mass in the calculation.    The mass concentrated at 

each vertex is taken as   1/4   the sum of the masses of the adjoining 

zones.   For example: 

T©" p&A<h (A» 
m,       =    -   (rr>_+ rr'    + m    + m     ) w     4   © ©  ©  © 

The masses at the other vertices are calculatec  »innlarl-,. 

The area of a quadrangle is taken as 
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AA= (A,) " ♦ (At.) • 

..  % n      1  r    n.    n        n. j     n.    n        n. n.    n        n/] 
^Qf   2 LX2 ^^3   - ^4 > + X3 (V4   mrz) + X4 (y2   " ^3 U 

/A    .n       1 r    n.    n n.j     n,    n        n. n.    n        n.1 (V0= 2 lx2 ^4 - yi ) +x4 {h ■ ^ , +xi {yz -un 

(A2) 

A    and  A      are the areas of the triangles   I   and  IL 

B.    STATE EQUATIONS 

The compression at cycle   n   is given by 

n f'l 
i ' 

[A
0
] 

[A"] /». 
(A3) 

The code permits the effective bulk modulus to be given by an expansion 

of the form 

i 
^-1  n = a + 

n 

IM J 2b (17." - 1) + 3c (7;." - I)2 + 4d (17" - I)3 (A4) 

where the coefficients   b,  c,  d ...    are empirical fits to experimental 

shock data and can be found in the literature,  for example Walsh et al. 

[?] .    The coefficient   a   is the linear bulk modulus of the material. 

Given one of the Lame constants and Poisson's ratio the remaining Lame 

constants can be found for linear elasticity.    Poisson's ratio is taken 

to be constant so that the Lame "constants" are given by 

Mi   "   2Ki   (1 +1/      ' 
(A5) 

X.n - fiiiiL 

where /i,    is the shear modulus and v    is Poisson's ratio. 
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C.    STRAINS AND STRESSES 

Consider a rectangle whose original corners were at (X, Y), 

(X + L, Y), (X + L,  Y + K), (X,  Y + K) and let the corners presently 

be at(x,  y), (x + L2,  y + k2), {* + I y V +k3), (x + L^  y +k4) as 

shown on Figure 8 . 

Now consider a point whos. ^ original coordinate was (X + U, 

Y + V) and whose present coordinate is (x + u,  y +v).    Expand   u   and 

v   as in Eq. (A25). 

The coefficients   a   through   f   can be obtained by solving Eq. (A26) 

which gives 

a" = IJL bn=   LJK 
c 4 

d" = k2/L en = k4/K (A6) 

cn = U3 - A2 -  i4)/LK fn = (k3 - k2 - k4)/LK 

The distortion of the grid will produce,  in general,  both a 

rotation and a distortion of each individual mesh.    As the rotation 

will lead to strains which, by Hooke's law.Eq. (A10),produce large 

stresses,  it is necessary to account for the rotations separately.    In 

the distorted mesh,  a line of constant   V   has a slope given by Eq. (A27). 

Rotating the distorted mesh through the angle   -^ puts this line  parallel 

to its original orientation.   After rotation through this angle, thi ooint 

originally at   U, V, is at   u',  v1   where 

u' = u cos Ö   + v sin Ö . . _. 
(A7) 

v 1 = v cos B    - u sin a 
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The strains arc accordingly 

(«   •)    =      —.„ /    = (a + cV) cos $    + (d + fV) sin Ö     - 1 x' 0 u 

n 
{( $f = Ai^Lj^L. =(e +fU)nco8Ön-(b + cU)nsinön- 1 (A8) 

fl ,n      dfv' - V) dfu* - U)        ,,        .,,n        -n     .        ,...n  .   * n (yy,£)    =     '     au ^     +     S     fiy'    =(b +cU)  cos a     +(e+£U)sine 

Eliminating the trigonometric functions b/'use of Eq.  (A27) gives 

{€6)n = ( V^a + cV)2 +(d +fV)2 - 1)" 

6\n      [(ae - bd) -I- U(af - dc) 4 V(ec - bf) 

L V(a + cV)    +(d +fV) 

n 
(A9) 

/v   ö^n.   ftt *tV)(a LCV] i(d+fV)(e +fU)] 

L    vfTT-2 2 
n 

y'x' 
cV)    i (d + fV) 

using Hooke's Law,  the stresses at a point along the line of constant 

V  are 

+ X)n« • )+Xn« ? )n ^y.y.)   s(2/i+Xr(y )+X"(<xr   I 

(^x.) -H- (yy.x.) 

Similarly a line of constant   U   in the distorted mesh has a slope 

given by Eq.(A28). Rotating the distorted mesh through the angle 

-(^ puts this line parallel to its original orientation.    After rotation 

the point origina ly at   U,    V   is at   u'(    v'   where 

(A10) 
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u* = u cos ^>   - v sin'^> 

v* = v cos (j)    + u sin^ 
(All) 

the strains are accordingly 

,    <f) ."      ^(u1 - U)        . ...n in .n , n 
(< | )    = -!i-i—^rr—"- = (a + cV)   cos 9    - (d + fV)   sin^>    - 1 

(c <*> f m 
d{v'd'V)    m (e + fu^cos ^n + (b + cU)n8in^n - 1        (A12) 

^.^■^^^^^^^(^^cosr 

+ (a + cV)   sin^> 

Again eliminating the trigonometric functions with Eq. (A28) gives 
o 

(ae - bdy ♦ U(af - dc) ♦ V(ec - bf) _   ' 
uj )n ■ 

\/(e + £U)2 + (b + cU) 

U * f = (V(e +fU)2 + (b + cU)?' - 1)" 

I 

f  )n= 
^  > 

(a ♦ cV) (b -I- cU) + (d + fV) (c +fU)' 

y/(e +fU)2 +(b + cU)2 

(A13) 

The stresses at a point along the line   U = constant are 

(^,)n = (2MMnUxf )n+ Xn(ey*)n 
X'X' 

(orx'y')n = fiyJY )n 
(AM) 

v 
The anj'.lr' ^> is t.nkcn positive in the clockwise direction and the an^lc 
0   is    taken positive in the counterclockwise direction. 
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Occasionally it has been desirable to recover the stress field 

in the original frame in which case the stresses in the interior of the 

zone are defined by 

(crxx)n = (ox'x')ncOS   ^ +(<Jy>y.)n8in   ^-2(Tx,y,)nsin^co8 V 

(ayy)n = (Vy')ncos ^+ (ox'x')n 8in ^ + 2^T
x.y.)n8in^ C08 V' 

where 

•i 

T  .  . * (or .   , + a  ,   ■)  /2 
jc'y1 y'x1        x'y' 

tan^ = (tanö" - tan <f>n)/Z 

This amounts to averaging the rotation and shear stresses 

computed along the lines U = constant and V = constant. 

D.    THE MOMENTUM EQUATIONS 

For the dynamics,  the stresses are integrated on    the quarter 

zones about the mass point   k, i .    For example,  the integration is 

carried out along the dashed line segments about the mass point k, i 

in Figure 7. 

We must integrate the appropriate stresses along the line 

V = K/2 over the segment   0<U<L/2   or   L/2<U<L   depending on 

the zone corner bordering on the mass point.    Likewise the integration 

must be carried out for the appropriate stresses along the li*- :    U ■ L/2 

over the segment   0<V<K/2   or   K/2<V<K.    Either the strain defi .itions 

(A8) and (A12) or (A9) and (Al 3) may be used.    We will use the definitions 

(A8) and (A12) to correspond to the form in the text of the report.    The 

integrations in cither case arc trivial 

(A15) 

(A16) 
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■■■■■■u 

X2 
(F  ,,)."=/' '     [(2^+X){(e +fU)co8 0 -(b.+ cU)8inö - l} 

+ X |{a + cK/2) cos 0 + (d + fK/2) ain$  - l] ]  dU 

x n 
(F  txl)i

n mt    [fi{[h + cU) cos Ö + (e + fU) sin B\]   dU 

(A17) 

where   x     and   x_   are the appropriate limits either   x    = 0, x? = L/2 

or x    = L/2, x    = L,  and 

|f«vC'/    [{2/1+x) {(a + cV)coa f • <d + £v)sin i - j 

n 
+ X"[(e + fL/2) cos ^ + (b + cL/2) sin «£ - l|]  dV (A18) 

(Fx,   jNJ     [/i{(d +fV)cos^ +(a +cV)sin^}]    dV 

where   x    =0,    x    = K/2 or   x    = K/2, x    = K   depending on the position 

of the zone about the mass point.    Then 

n 
(F  , i" = (2/A + X).nr(e +afL/4) cos Ö - (b + acL/4) sinö - l]      L/2 

+  X." [(a + cK/2) cos Ö + (d + fK/2) sir. 6 - l]     L/ft (A19) 

(F   lx,).    =/!."   [(b + OcL/4) cos 0 +(c +afL/4) sinö]      L/2 
i 
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and 

n r n 

(F  ,   ,).    MZ/i + X)"   |(a +acK/4) cos^) -(d+afK/4) sin^) - l]    K/2 

n 
+  X" [(e + fl./Z) cos «/> + (b + cL/2) ain </> - ll       K/2 (A20) 

n 
|F,   l)i

n s/i.11 [(d+a£K/4) cos^) +(a +acK/4) sin^l        K/2 

where the subscripts   i   denote the zone centers, for example    those 

numbers enclosed in circles in Figure 7,  in relation to mass point 

k, L  ,  and   n   is the cycle number. 

0=1 for Equations (A19) for zones \\) and PH 

0=1 for Equations (A20) for zones HJ and (l) 

0=3 for Equations (A19) for zones \Z\ and ^3^ 

0=3 for Equations (A20} for zones ^3^ and nH 

As in the text, the first subscript designates the normal to the surface 

across which a stress in the direction of the second subscript is 

exerted.    The primes on the subscripts denote that we are in a frame 

rotated with respect to the original frame. 

We must then rotate these forces back to the original frame to 

apply them to the momentum equation. 

«•r-.      «n     ,_.        ,n /-»n     .»-.        .n.     ^n (F  ,  ).   =   F   ,   ,).   cos 0     -   F   ,   .).   sin 0 
y'x i y'x' x Y y  ! 

(A21) 

•«      »"     .«        »n r\ n     ,_        .n An 
(F   •   )•    = (F   i  j)-    cos   Ö     +   F   ,   ,).    sin 0 

y y1        y r ■ y'x'i 
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and 

(F  .  )n = (F  ,  ,)" cos ^n H (F- ,  ,)n8in</,n 

x'x i x'x' i r x'y' x T 

The velocities can be computed from the force field by 

v"+1/2 ■ ^K.; "m * K'JQ- '
F

X.X^- i'.^«'«^ 

+ "»^ <Fy^- "r^) ^QW""*, 

C + 1/2 = »M* " '^ [(Fyy^+(FVy^- (FyV^- ^y'y'© 
n 

(A2Z) 

(A23) 

+ (Fx'y^"(Fx-y^(Fx'y^+(Fx.y^]At"/mk#i 

The positions can be incremented by 

n + 1 n n +1/2.   n + 1/2 
x    . = x,    , + x, At 
k.i k.L k.i 

n + l_ n n + 1/2A n + 1/2 

E.    TIME STEP 

In accord with thcCourant   criterion,   the time step is taken to 

be the minimum over the mesh of 

(A24) 

App. 9 



A  n + 1/2      _A   n + 1/ 
At = CAr /a 

where 

n + 1 .'♦Vs. 

S   is the longest diagonal of the quadrangle,    a   is the local 

dilitational wave speed and   C   has been taken to be 0. 6 . 

F.   THE MAPPING TECHNIQUE 

Evidently,  one ought to difference the equations so that there 

are no unresisted distortions of the mesh.    This has been done as 

follows:   consider a quadrilateral which was originally rectangular 

and had its lower left hand corner at X,  Y.    Let the lower left hand 

corner now be displaced to x,  y   and the point originally at X + U, 

Y + V   be displaced to   x + u,    y + v.    Expand the present position as 

a function of the original position as follows 

u = aU + bV + cUV + . . . 

v + dU + eV +fUV + . . . 

Just six parameters in the expansion have been written down because 

this is enough to specify completely the positions of the corners and is 

as many as can be determined by those positions.    The term proportional 
2 2 

to   UV   is preferable to one proportional to   U     or   V     because it maps 

the edges of the original rectangle into straight lines and this ensures 

that the meshes of the distorted lattice fit together without gaps or 

overlap. 

The coefficients   a through   f   may be found from the coordinates 

of the grid.    That is,  if the intersections of grid lines around the mesh 

are numbered from 1   to   4   as before, the one with   U = V = 0   is numbered 

1,  and the original rectangle had the dimensions    L   by   K,   then a 

through   f   are found from 

(A25) 
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u2 = aL 

v2=dL 

u    = aL + bK + cKL 

v3 = dL + eK + fKL 
(A26) 

4 

v, = eK 
4 

Given   a   through  f ,  one may compute the diaplacments   u - U 

and   v - V   and from the displacements the strains as a function of position 

throughout the mesh. 

To compute accelerations,  the mesh is bisected in the   X   and   Y 

directions,  and the masses of the four adjacent quarter zones as  associated 

with each mesh point.    The force is computed by integrating the stress 

around the circumference of the mass.    To do this the stresses on the line 

segments   U = L/2,    0<V<K/2;   U = L/2,  K/2<V<K   and so forth are 

required.    These can easily be computed from the strains,  provided 

proper account is taken of the rotation of the mesh.    To do the latter, 

we rotated the zone until the line along which the stress was to be com- 

puted,  i.  e.    V = K/2   or   U = L/2   was parallel to its original direction, 

i.  e.  the   X   or   Y   axis.    This implies a rotation through an angle 

0     ,     -1   d -ffK/2 
i = tan        —±   j, Jo a +cK/2 (A27) 

in the former case and an angle 

tan 
•1   b -l-cL/2 

e +fL/2 (A28) 

in the latter.    If the rotations are not taken into account,  Hooke's law 

as used below will give rise to large fictitious stresses. 
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After rotation the strain in the   x   direction along the line of 

constant   V   is 

<*j  = (a +  jcK) CO80  + (d +  ffK) sin Ö - 1. (A29) 

The primes indicate that a rotated coordinate system is in use. 

The stresses are,  in the case of plane strain (no distortion 

perpendicular to the plane considered) by Hooke's law, for instance 

o- ,  , = (2^ + X) [ (e + fU) cos Ö - (b + cU) sin Ö - l]    ^t- 

X [ (a +   |- cK) cos Ö  + (d + j fK) sin Ö  - l] 

(A30) 

Whereat and X are Lame constants and the first subscript designates 

the normal to the surface across which a stress in the direction of the 

second subscript is exerted. 

The corresponding forces are obtained by integrating along the 

appropriate half bisector of the mesh to give,  for instance 

FyV=   /dU    ^y,y, =(2/i+X)[(e+ifaL)cosÖ  -(b+ifaL)sinö - l]   jL 

+ X [(a + j cK) cos Ö + (d + j fK) sin Ö - 1 ] r L 

{A31) 

where the limits on the integral are   0   and   L/2   or   L/2   and   L,  and 

a   is    1   in the former case and   3   in the latter.    Then the force is rotated 

back into the original Eulerian frame,  that is 

F   ,    = F   ,   , cos Ö + F   ,   , ein Ö 
y y      y y yx 

(A32) 

F   .    = F   ,   . sinö  + F   ,   , cos 6 
y'x y'y1 y'x1 
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Finally the force is summed over the eight line segments surrounding 

the intersection,  and is used to accelerate the mass centered there. 

G.    GENERAL 

The boundaries of the mesh can be treated as having phantom 

zones with no tractions,  normal forces or masses.    The code will not 

correctly calculate displacement disturbances with frequencies shorter 

than the time acquired for a dilatational disturbance to cross 4 zones. 

If these disturbances are produced on the boundaries of the mesh, dis- 

persion of the induced wave trains is observed. 

A tensor viscosity has been developed and used with the code. 
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Figure 1    Grid for static crack with distortion magnified by 10.    hydrostatic pressure 
in the  crack was taken as  1  kilobar,   lAme'  constants for media were 
X      =    M    = 0.1 megabars. 
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Figure 7.    The grid and numbering scheme for the difference equations. 
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Figure 8.    Comparison of undistorted and distorted meshes indicating the 

meaning of   u   and   v. 


