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ABSTRACT

Functions of approximation to particular solutions that occur in the
ogival radome thermal-stress problem are presented. It was found by numerical
comparisons with the generating differential equations that the approximate
closed-form solutions display an error range of no more than plus or minus
one-half percent.

The solutions were derived to gain two major advantages: first, a reduction
of analytical complexity lessens the chance of computational error; and, second,
certain unwieldiness in numerical work is reduced or eliminated.

Computer results are tabulated for repeated future application in the
evaluation of thermal stresses in blunt and pointed radomes of compound-ogive

configuration,
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I, INTRODUCTION

General analyses of shell stresses are developed in textbooks, References
(1) to (5), inclusive, and Boley and Weiner (4) discussed thermal stresses.,
For heat-variant material properties in the wall of an ogival radome, axisym-
metric thermal stresses were studied in Reference (6).

In References (7) and (8), Rivello took up the problem of thermal stress
in cylindrical sandwich shells, and Dailey (9) employed the stiffness-matrix
method for axisymmetric shells of revolution. Weckesser, Hallendorff and
Suess (10) investigated materials for radome construction in high-temperature
applications., Thick-walled conical shells were examined by Weiss in Reference

(11)0

Pyroceram 9606 test data, temperatures around the nose of a blunt radome,
the Von Karman shape, temperature distributions in a test radome, and compound-
ogive profiles were investigated in References (12) to (16), inclusive, in
association with the present subject.

From numerical studies, it was found that particular solutions based on
applied temperature distributions obtained as infinite series made computer=-
ization more complex, inhibited analytical continuity, and increased an amount
of computation that was already rather cumbersome., Toc offset these difficulties,
closed=form approximate solutions applicable to particular cases are developed
in the present text. Moreover, computerized data on these solutions are
tabulated for future reference.

The ogival radome wall profile is sketched on Figure 1, where dimensions
and coordinate variables are defined also, A differential element of the
wall is drawn in Figure 2. On it are shown normal-stress resultants (Nv, NG)’
bending moments (MW’ Me), and the shearing-stress resultant (Q¢).

i
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Fig. 2 RADOME-WALL ELEMENT WITH STRESS RESULTANTS AND BENDING MOMENTS
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11X, NOMENCLATURE

A,B: Constants
2 Young's modulus of elasticity, psi
J,K: Constants
L: Operator
M: Bending-moment resultant, ippi
| N: Normal-stress resultant, ppi
Q: Shearing=-stress resultant, ppi
R: Radius, inches
| V: Wall-slope function, radians per inch
f Z: Geometric axis of radome
| ce Radome~-wall half thickness (c = h/2), inches
! h: Radome-wall thickness, inches
4: Span length of radome, inches
q: Auxiliary shear function, ppi
r: Radius, inches
} A: Denominator
B Wall-bending parameter, radians
‘ 0: Coordinate angle of rotation, degrees or radians
v Poisson's ratio
X ¢ Radome=wall curvature change, radians per inch
$7 Coordinate angle of azimugh, degrees or radians
The following notations are employed as subscripts:
a: Anterior or outer surface of radome
[ b: Base of radome
l c: Central surface of radome wall
g General
i3 Numerical indices: 0, 1, 2, 3,...

Origin or initial value (zero)
Particular

Secondary or inner surface of radome
Pertaining to wall slope (V)

i Spherical-coordinate directions

- < oV O

R,0
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IV, REFERENCE EQUATIONS

The differential equations derived in Reference (6) are:

rC Kﬂ RC

(LaW)(qH(a) = EhV + (1-v)K R + et Tard (1)
c c
) Jlrc I
(12-v)(EhV) = (V+6*) E Gk e (2)
c c

In these expressions, q is the auxiliary shear function defined by equation (3)
wherein is resultant or total shear, V represents change in slope of the
radome wall, v is Poisson's ratio, E is Young's modulus of elasticity, L is the
operator defined below in equation (4), r. and R, are the radii pictured in
I'igure 1 where the coordinate angle § also is shown, and the other terms are
constants.

r
cg!
9= R simy (3)
c
o r, & dq ch cosy
ol B R, siny E;g + coty a - k. tany )

Solutions of differential equations (1) and (2) are obtained as

.

. V=V +V 5
4% 9 T 9> P g =

where subscripts p, g denote the particular and general solutions, respectively.
Our purpose herein is to develop functions of approximation to the particular
solutions.

V, TOTAL SHEAR

The total shear (Qy) can be calculated with equation (3) from function q
for which the particular solution qp is given approximately by

r B R (B, + Bycosy)
qp = BB+ Rc + T, tany (6)

wherein the B, are constants, and the remaining quantities are illustrated in
Figures 1 and 2.
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VI, WALL-SLOPE E )

The b;rticular part V. of slope change V of the radome-wall profile is
calculated approximately wgth

-

' ch" RC(B,'+ By cosy)
vp = - R - r, tany @) |

roy

where the B! are constaats, and the radii (rc, Rc) and the coordinate angle are
identified 1n Figure 1.

VII, NORMAL-STRESS RESULTANTS

—|

The normal-stress resultants are expressed in terms of the foregoing relations
as follows:

[t ]
Ocoraod

q Rc cosy
P r 1'
[
]
B, R R, .. . R cosy f
Nep =|B-— ]coeﬁ o [csct + < tant](n’+ By, cos¥) 9 s
c c c
which contain the constants and variables referred to in connection with equation L
).
{
VIII. BENDING CURVATURES
The components of curvature change produced by bending of the radome wall I
are:
V_ cosy I
p r
° i
By B 1 Rc cosy
=] e—— oy — _ 2 ! 1
X*p - R cosy + >~ |csc ¢+ ok (B,+ By cos¥) (11) I
c c c c
which contain the constants and variables referred to in connection with equation
7). '
6
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As developed in Reference (6), temperature functions are defined by the A
following expressions. 4

With x = y/c,
as follows.

The preceding

range of
70°F S T < 1400°F (18)
and are used together with T, which is expressed by
T = T(x,¥) = £(x) T (¥) (19) ]

IX, TEMPERATUP. FUNC.IONS

g, = Eet/(l-v) (12)
+c +c
rctdy Rotdy
= = (
ty r ? Nte R (13)
c c
-c -C
+c +c
Fotydy Rotydy
e " r Mg = R (14)
c c

-C -C

the thermal strain (et) obtained in Reference (12) can be written

= (=241.2 + 3.445T) x 10=, -1 <x< O (15)
= (-119.1 + 2.958T) x 10=°, 0 < x < 0.5 (16)
= (+190.3 + 2.221T) x 10®°, 0.5 s x < 1 (17)

relations are applicable to the entire radome for the temperature
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where T, is the outer-surface temperature distribution plotted on Figure 3., The
spanwise linear temperature distribution shown in Figure 3 as

T, = T,(¥) = 589 + 705 cosy (20)

was employed in the reported computations. And f(x) giving the distributive
character over the thickness of the wall is

3
£(x) = fnxn = 0,257 + 0.358x + 0.305%° + 0.084x%° (21)

n=

wherein the polynomial coefficients fn are shown in the expanded form on the
right.

When the integrations of equations (13) and (14) are carried out with
equations (12) and (15) to (21), the resultant temperature functions are obtained

as written below.

R
C

Nog = K + K cosy, Ny = Neo * r—c (Kg+ K cosy) (22)
RC

Mg =J, +J cosy, My = Moo +-§ (J3+ J, cos¥) (23)

The constants J,, K; are the same as those appearing in equations (1) and (2)
and, by the metkods just described, were found to:be

K, = 4.648Eh/(1-v) x 1¢*, K= 6.792En/(1-v) x 10 (24)

K, = 4.393Eh/(1-v) x 10, K = 3.420Eh/(1-v) x 10 (25)

J, = 1.269Eh® /(1-v) x 10*, J, = 0.989Eh®/(1-v) x 10* (26)

J, = 1.704E0?/(1-v)x 100, 1 = 2.195Eh?/(1-v) x 16 (27)
8

e PP T — w—h‘
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and the material properties were evaluated from test data on Pyroceram 9606 in l,
Reference (12); i.e., |
E = 16,400,000 psi v = 0,244 (28) [

where E is accurate within four percent and v within 2.5 percent over temperature
range (18).

‘- |
X, DETERMINATION GF CONSTANTS i
By putting expressions (6) and (7) into (1) and (2), we secure formulas i
for nuuerical determination of constants B; and Bj'_. These constants are com-
puted in the following sequence. g 1

J. (1-v?)(J,+K R ) (1-v) (V4 ) (K R ) -

B, = —- ‘K‘C, B = e o (29) il
R, (+6%) R, (1+6° )Eh R_ !
(48" ) (3, +K R,) f

A xg : By = A K (30) af
c -
b= B2 + g, B = - + 20-V)R /M) (3D) i
rc(3 + 2 cot®y) b
& =| (34 cot®y) + X sinf (32) l
S mean ‘
A+ b . A - (B+ VB |

& = E' ..2 + %5 ? %' = Eh (33) I
'
VAy + 2B, .
~ 7 En (34) .
(8, -v)K, PR ’
B, = Ei g B, = @ + 8 )En (35) .
rc .
o, =211 +.-Rc—smv— (36) J

mean

b
10 .
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For slender ogives, coty and r /Rc are small and siny approaches unity.
The terms (32) and (36), therefore, have slight variation, and one can employ
mean values computed as arithmetical averages with initial and final values

1 of the coordinates. For the bicentric-ogive radome described in Reference (16),

we have

r , = 0.238", ¥, = 64° 19' 23" (37)
, ', = 6.625", ¥, = 90° (38)
= 0.25", R = 64,679" (39)

[o]

g
)

and the numerical results are listed in Tables 1 and 2.

XI, COMPUTER RESULTS

As part of the overall computer program, values of the functions occurring
in the particular solutions were calculated in Program Problem 164. The
associated constants are reported in Table 1; and functional numerical data,
’ in Table 2. All of the computer results that are reported in Tables 1 and 2

were computed and stored in double precision but shown here in single precision.
p The double precision numbers are needed in simultaneous solutions for general
constants of integration, which are evaluated from specified boundary conditions
imposed at the juncture between nosecap and mainbody and at the base of the
radome where it is joined to a missile body.

XII, DISCUSSION

-

Formulation of closed-form approximate particular functions (q,, Vp, Ne .
X‘ ) are presented as equations (6), (7), (9), and (11) for the mainbody of P
che bicentric-ogive radome described in Reference (16). They were programmed
r for numerical evaluation at thirteen points along the length of the mainbody
lying in the interval ¥, ¥ < 90°, where ¥, = 64° 19' 23" and the base of
the radome is located at 90° (Figure 1).

' The results are reported for future reference, because they are used in
each analysis of thermal stress and deformation irrespective of the boundary
4 conditions imposed on the radome. Specific values occur in the fulfillment
of boundary requirements which provide simultaneous equations that occur in
calculation of integration constants appearing in the general integrals of
differential equations (1) and (2).

One can observe from Table 2 that q, increases monotonically from the
, nosecap junction (at §;) to the radome base (at 90°). But total shear in
t the particular solution behaves oppositely as computed with the following

relation.

11
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Table 1. Constants in Closed=Form Particular Solutions
Symbol _ Value Symbol _ Value I-
gt 755,387.78 By 0.460,533 x 10-2 "
8, 2,24 By 2,067,534 E
b 3.25 E, 0.629,548 x 10-°
A 755,385.79 By 0.799,994 x 10-° I
B+ 2 755,392.81 By 0.110,662 x 10-° 1
B -2+ 4 755,396.35 B! 6.795,812 |
B! 0.581,105 x 10-° l
A 1,859,424 By 0.453,511 x 10-°
8
Table 2. Functional Values of Particular Solutions 1
V q. x 100~ Ne x 1
] (dom-s) = = = v, x 10t R Xy, % 10 i
1 64-19-23  0.328,962,85 18.083,065  -1.040,084,8  119,874,77 -
2 65-06-39  0.605,553,02 20.680.353  -0.438,696,15 14,835,188 L
3 66-45-43  1,191,282,1 19.793,691 - .296,856,92 0.662,232,44
4  68-31-56  1.781,837,4 18,415,570 = .312,404,94 - 1.191,796,8 i.
5  70-27-15  2.373,419,8 16,851,096 - .361,440,65 - 1.621,952,3
6  72-01-27  2.817,373,3 15,549,685 - ,406,894,98 - 1.671,379,0 g
7 73-44-23  3.261,446,1 14,110,889 -~ .456,230,82 - 1.611,040,9
8  75-27-58  3.664,639,9 12.648,412 - ,503,095,07 =~ 1.492,807,3 I
77-25-18  4.067,873,5 10,976,944 - .551,223,87 - 1.322,628,6
10  79-06-45  4.370,315,4 9.521,078,6 - .587,846,96 =~ 1.157,576,3 1
11  81-06-53  4.672,765,4 7.785,791,5 =~ .624,688,70 - 0.,948,900,12
12 83-43-13  4.975,213,2 5.513,499,7 - .661,404,10 - .663,819,83
13 90° 5.277,579,8 - 0,001,¢39,1 - ,694,981,63 + .056,732,43

12
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Q* ale (40)

Here, the sine increases from siny, = 0.901250 to sin *b = 1; and rc/Rc, from
0.003679 to 0,102429. Therefore

Q,(¥,) = 80.586,5108h x 10=* = 3.304 ppi (41)

°wp(9o°) = 51.524,273Eh x 10-° = 2,112 ppi (42)

and similar comparisons can be made for the other functions in Table 2.

13
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XIII, CONCLUDING REMARKS

=

Approximate functions for parti-ular solutions of governing differential
equations are presented in the text, They were developed to avoid cumbersome
infinite series and to express the relevant functions in closed form. The
generating equations are satisfied (numerically) by the derived expressions
such that discrepancies lie in a range of plus or minus one-half percent.

Major advantages of these solutions are simplification that reduces
the likelihood of numerical errors and certain unwieldy characteristics in
numerical work are minimized or eliminated.

Computerized data on ogival radome thermal-stress functions are collected
that can be used in future stress calculations.

= N e
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