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ABSTRACT 

Functions of approximation to particular solutions that occur In the 
oglval radome thermal-stress problem are presented.    It was found by numerical 
comparisons with the generating differential equations that the approximate 
closed-form solutions display an error range of no more than plus or minus 
one-half percent. 

The solutions were derived to gain two major advantages:    first, a reduction 
of analytical complexity lessens  the chance of computational error; and, second, 
certain unwieldlness  in numerical work is reduced or eliminated. 

Computer results are tabulated for repeated future application in the 
evaluation of thermal stresses  in blunt and pointed radoraes of compound-ogive 
configuration. 
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I.    INTRODUCTION 

1 

General analyses of shell stresses are developed in textbooks, References 
(1) to  (5),   inclusive,  and Boley and Weiner (4) discussed thermal stresses. 
For heat-variant material properties in the wall of an ogival radoce,  axisyra- 
metric    thermal stresses were studied  in Reference  (6). 

In References  (7) and  (8),  Rivello took up the problem of  thermal stress 
in cylindrical sandwich shells,  and Dailey (9) employed the stiffness-matrix 
method for axisymmetric shells of revolution.    Weckesser, Hallendorff and 
Suess   (10)   investigated materials  for radome construction in high-temperature 
applications.    Thick-walled conical shells were examined by Weiss  in Reference 
(11). 

Pyroceram 9606 test data,  temperatures around the nose of a blunt radome, 
the Von Karman shape,  temperature distributions in a test radome,  and compound- 
ogive profiles were investigated in References  (12) to   (16),  inclusive, in 
association with the present subject. 

From numerical studies,   it was  found that particular solutions based on 
applied temperature distributions obtained as infinite  series made computer- 
ization more complex,  inhibited analytical continuity,  and increased an amount 
oi computation that was already rather cumbersome.    Tc offset these difficulties, 
closed-form approximate solutions applicable to particular cases are developed 
in the present text.    Moreover,  computerized data on these solutions are 
tabulated for future reference. 

The ogival  radome wall profile  is  sketched on Figure  1, where dimensions 
and coordinate variables are defined also.    A differential element of the 
wall is drawn in Figure 2.    On it are  shown normal-stress  resultants  (N^,  Nft), 
bending moments  (M. , Mfl),  and  the shearing-stress resultant  (Q^). 

V v 

■v■*,*''sWSP^,|'' '''''MMAWiMNMiWflllMlinMItt1^^''^ 
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Fig. 2   RADOME.WALL ELEMENT WITH STRESS RESULTANTS AND BENDING MOMENTS 
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III.  NOMENCLATURE 

A,B 
E 

J,K 
L 
M 
N 
Q 
R 
V 
z 

Constants 
Young's modulus of elasticity,  psi 
Constants 
Ope rator 
Bending-moment resultant,  Ippi 
Normal-stress resultant, ppl 
Shearing-stress resultant,  ppi 
Radius,  inches 
Wall-slope function,  radians per inch 
Geometric axis of radome 

h/2),  inches c: Radome-wall half thickness  (c 
h: Radome-wall thickness,   inches 
£: Span length of radome,  inches 
q: Auxiliary shear function, ppl 
r: Radius, inches 

A: Denominator 
0: Wall-bending parameter,  radians 
6: Coordinate angle of rotation, degrees or radians 
v: Poisson's ratio 
X: Radome-wall curvature change,  radians per inch 
f: Coordinate angle of azlmuph, degrees or radians 

The following notations are employed as subscripts: 

a: Anterior or outer surface of radome 
b: Base of radome 
c: Central surface of radome wall 
g: General 

i,j: Numerical indices:  0,   1, 2,   3,... 
o: Origin or initial value  (zero) 
p: Particular 
s: Secondary or inner surface of radome 
v: Pertaining to wall slope (V) 

R,6,t: Spherical-coordinate directions 
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IV. REFERENCE EQUATIONS 

The differential equations derived in Reference (6) a re: 

r ~R 
= EhV + (1-'V)Ks_ ...£ + _ __£_ 

R r tal1t c c 
(1) 

(2) 

In these expressions, q is the auxiliary shear f unction defined by equation (3) 
wherein ~ is resultant or total shear, V represents change in slope of the 
radome wal l, \1 is Poisson 's ratio, E i s Young's modulus of elasticity, Lis t he 
opP.rato r defined below in equation (4), rc and Rc a re the radii pictured in 
igure 1 where the coordinate angle f also is shown, and the other terms are 

constants . 

(3) 

L q 
r c d:a ~ qRc cost 

= R sin'f ~ + cott df - r t ant 
c c 

(4) 

Solutions of differential equations (1) and (2) are obtained as 

v = v + v 
p g 

(5) 

where subscripts p, g denote the particular and general solut ions, respec i vely . 
Our purpose herein is to develop functions of approximation to the particular 
solutions. 

V, TOTAL SHEAR 

The total shear (~) can be calculated with equation (3) from function q 
for which the particular solution qp is given approximately by 

r Be R (~ + Be cost) q = R + _.£.._ + _.;;c _____ _ 
p ~ R r tan'f 

c c 
(6) 

wherein the B. are constants, and the r emaining quantities are illustrated in 
l. 

Figures 1 and 2 . 

5 
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VI.    WALL-SLOPE CHANGE 

I 

II 
Hie particular part V    of slope change V of the radome-wall profile Is 

calculated approximately with 

r V      R (B;+ IV  cosi) 
V    ■ B.1  - p      T R r    tan> c c       ^ 

(7) 

where  the  B'   are constants,  and the radii   (r  ,  Rc) and  the coordinate angle are 
Identified  In Figure  1. 

I 
I 

VII.    NORMAL-STRESS  RESULTANTS 

The normal-stress resultants are expressed In terms of  the  foregoing relations 
as follows: 

(8) 

N ep 

B.R 

^       r c 

E 
0 
D 
i: 

si   - -^    esc2*  + r
C       ^     (B7+ ^   cos*) (9) L 

c   L c • 

ion       " 

B 

q R    cos* 

R    cosf 

which contain the constants and variables  referred to In connection with equat 
(6). 

VIII.    BENDING CURVATURES 

The components  of curvature change produced by bending of the  radome wall 
are: 

V    cosljl 
Cep '      r 

r        R c        c 
CO S*    + i- 

R    cosljl 
esc2*  +    c  -     . 

rc  tan* (B;+ ^  cos*) 

(10) 

(11) 

which contain the constants and variables  referred to in connection with equation 
(7). 

I 
I 
I 
1 
I 
I 
I 
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IX.    TEMPERATUP.; FUNCTIONS 

As developed  in Reference  (6),  temperature functions are defined by the 
following expressions. 

at = Eet/(l-v) (12) 

+c +c 
/ra dy r Ra dy 

(13) 

-c 

+c +c 

/ratydy f   Ratydy 
(14) 

-c 

With x = y/c,   the thermal strain (et) obtained  in Reference  (12) can be written 
as  follows. 

et = (-241.2 + 3.445T) x 10"  ,   -1 s x ^ (V (15) 

=  (-119.1 + 2.958T) x  lO-6,   0 S x ^ 0.5 (16) 
■ 

' =  (+190.3 + 2.221T) x lO"6 ,  0.5 <: x *: 1 (17) 
'I 

I The  preceding  relations are  applicable  to  the  entire  radome for  the   temperature 
range of 

70oF S T S  1400oF (18) 

and  are used  together with  T, which is  expressed by 

T =  T(x,i|t)  =  f(x)  Ta«,) (19) 

iigiiiai'iiiiiiw 
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where Ta is  the outer-surface  temperature distribution plotted on Figure  3.    The 
spanwise  linear temperature distribution shown in Figure  3 as 

T
0  " T  (t) - 589 + 705 cos* (20) 

was employed  in the reported computations.    And f(x) giving the distributive 
character over the  thickness of  the wall is 

f(x)  =    \     fnxn = 0.257 + 0.358x + 0.305xa + 0.084X3 (21) 

wherein the polynomial coefficients f    are shown in the expanded form on the 
right. 

When the  integrations of equations   (13) and  (14) are carried out with 
equations  (12) and  (15)  to (21),  the  resultant temperature functions are obtained 
as written below. 

Nte • Ko + ^ C08*'        Nt* ' Nte + "T (K»+ ^ cos*) 

Mte ' Jo + Jx C08*'        Mtt " Mte + "T (J8+ J3 c08*) 

(22) 

(23) 

The constants J.,  K^ are  the same as   those appearing  in equations  (1) and  (2) 
and, by the methods just described, were 'found to be 

K    « 4.648Eh/(l-v) x  1Ö1 ,       1^» 6.792Eh/(l-v) x  IC^ 

Kg  = 4.393Eh/(l-v) x 107 ,       1^   - 3.420Bh/(l-v) x l(f 

Jo =  1.269Eha/(l-\0  x  l& ,     Jj   - 0.989Ehs/(l-v) x  l(f 

J    =  1.704Eh8/(l-v)x  107 ,       J,   = 2.195Eh2/(l-v)  x  107 

(24) 

(25) 

(26) 

(27) I 

I 

mmummmmm 
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and  the material properties were evaluated from test data on Pyroceram 9606  in 
Reference   (12);  i.e.. 

E -  16,400,000 psi        v - 0.244 (28) 

where E is accurate within four percent and v within 2.5 percent over temperature 
range (18). 

X.  DETERMINATION OF CONSTANTS 

By putting expressions (6) and (7) into (1) and (2), we secure formulas 
for numerical determination of constants B^ and B^.  These constants are com- 
puted in the following sequence. 

\ 

J.    (l-v8)(J1+K1Rc) 

RC     ö+FTT     ' 
(l-v)(va+04)(J1-HCRr) 

^   - (l^)EhR * (29) 

(v2+B4)(J3+K,Rc) 

Mi ' h -AB-K, 

^=0t-2 + 0nfr^' 

[ A,   -     (3 + cotat) + 
r  (3 + 2 cot2*) 

R    sin« 
Jmean 

\ ? -2 + 5 ' v ^  -  (**+ v)\ 
Eh 

vAg  + 2^ 

^ Eh 

B7     =       %+? 

(N^+ß*)^ 

^ " (A| + er )Eh 

L,  =2 i + R    sirt3* 

mean 

10 

(30) 

0*   - -v8  + l2(l-va)(Rc/h)s (31) 

(32) 

(33) 

(34) 

(35) 

(36) 

i 

r 
i 

i 
E 
li 

[ 
1. 
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For slender ogives, cot^  and rc/Rc are snuill and sin^f approaches unity. 
The  terms   (32) and   (36),  therefore,  have slight variation,  and one can employ 
mean values computed as arithmetical averages with  initial and  final values 
of the coordinates.    For the bicentric-ogive radome described  in Reference  (16), 
we have 

r .   = 0.238", 
cl 

i   .   =  6.625", cb 

=  0.25", 

♦j   = 64°  19'   23" 

♦b  = 900 

R    = 64.679" c 

(37) 

(38) 

(39) 

and  the numerical   results  are  listed  in Tables   1 and  2, 

XI.     COMPUTER RESULTS 

As  part of the overall computer program,  values of  the  functions occurring 
in the  particular solutions were calculated in Program Problem  164.    The 
associated constants are reported  in Table  1; and functional numerical data, 
in Table 2.    All of the computer results  that are reported in Tables  1 and 2 
were computed and   stored  In double  precision bu»: shown here  in single precision. 
The double  precision numbers are needed  in simultaneous solutions  for general 
constants of  integration, which are evaluated from specified boundary conditions 
imposed at  the  juncture between nosecap and mainbody and at the base of the 
radome where  it  is  joined to a missile body. 

XII.     DISCUSSION 

I 

^ 

Formulation of closed-form approximate particular functions   (q-, V  , N»   , 
) are presented as equations  (6),   (7),   (9),  and  (11)  for  the mainbody of 

thfe bicentric-ogive radome described in Reference  (16).    They were programmed 
for numerical  evaluation at  thirteen points along  the   length of  the mainbody 
lying  in the  interval fjS f  £ 90°, where  ^   = 64°  19'   23" and  the base of 
the  radome  is  located at 90°   (Figure  1). 

The  results  are  reported  for  future  reference,  because  they are used  in 
each analysis of  thermal stress  and deformation irrespective  of  the boundary 
conditions   imposed  on the  radome.     Specific values  occur  in  the  fulfillment 
of boundary requirements which  provide  simultaneous  equations  that  occur in 
calculation of  integration constants appearing in the general   integrals of 
differential equations  (1)  and   (2). 

One  can observe  from Table 2  that q-  increases monotonically  from the 
nosecap  junction   (at ^)  to  the radome  base   (at  90°).    But  total  shear in 
the  particular solution behaves oppositely as computed with  the   following 
relation. 

r' 

u 

flMiiiiiiiiiiiW"'""""' 
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Table   1.    Constants   in Closed-Form Particular Solutions 

Symbol Value Symbol Value 

0* 

0*    +^ 

0* 

Ag 

2 +4 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

755,387.78 

2.24 

3.25 

755,385.79 

755,392.81 

755,396.35 

1.859,424 

0.460,533 x 10-2 

2.067,534 

0.629,548 x lO"5 

0.799,994 x lO"5 

0.110,662 x 10-6 

6.795,812 

0.581,105 x 10-6 

0.453,511 x 10-6 

♦ 
Table 2.    Functional Values of Particular Solutions 

"q    x ICT •   *~ 

(d-m-s) 

N0    x l(f 

Eh Eh V    x  10* 
P Rc^, 

10* 

64-19-23 

65-06-39 

66-45-43 

68-31-56 

70-27-15 

72-01-27 

73-44-23 

75-27-58 

77-25-18 

79-06-45 

81-06-53 

83-43-13 

90° 

0.328,962,85 

0.605,553,02 

1.191,282,1 

1.781,837,4 

2.373,419,8 

2.817,373,3 

3.2^.1,446,1 

3.664,639,9 

4.067,873,5 

4.370,315,4 

4.672,765,4 

4.975,213,2 

5.277,579,8 

18.083,065 

20.680.353 

19.793,691 

18.415,570 

16,851,096 

15,549,685 

14.110,889 

12.648,412 

10.976,944 

9.521,078,6 

7,785,791,5 

5.513,499,7 

■  O.OOl.i19,1 

-1.040,084,8 119,874,77 

-0.438,696,15 14,835,188 

- .296,856,92 0.662,232,44 

- .312,404,94 - 1.191,796,8 

- .361,440,69 - 1.621,952,3 

- .406,894,98 - 1.671,379,0 

- .456,230,82 - 1.611,040,9 

- .503,095,07 - 1.492,807,3 

- .551,223,87 - 1.322,628,6 

- .587,846,96 - 1.157,576,3 

- .624,688,70 - 0.948,900,12 

- .661,404,10 - .663,819,83 

- .694,981,63 + .056,732,43 

12 
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q  R    sin« 
Q      - -L£  (40) 

T C 

Here,   the sine increases from sinfj   ■ 0.901250 to sin *.   = 1;  and rc/R ,  from 
0.003679 to 0.102429.    Therefore 

a   (tj) = 80.586,510Eh x 10-*   » 3.304 ppi (41) 

S   (90°) = 51.524,273Eh x 10"'   = 2.112 ppi (42) 

and  similar comparisons can be made  for the other functions in Table 2. 

13 
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XIII.     CONCLUDING REMARKS 

Approximate functions for particular solutions of governing differential 
equations are presented  in the text.    They were developed to avoid cumbersome 
infinrte series and to express  the relevant  functions  in closed  form.    The 
generating equations are  satisfied  (numerically) by the derived expressions 
such that discrepancies   lie in a range of plus or minus one-half percent. 

Major advantages of these solutions are simplification that reduces 
the  likelihood of numerical errors and certain unwieldy characteristics  in 
numerical work are minimized or eliminated. 

Computerized data on ogival radorae  thermal-stress functions are collected 
that can be  ased  in future  stress calculations. 
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I)     ABSTRACT 

"•Functions of approximation to particular solutions that occur in the ogival 
radome thermal-stress problem are presented.   It was found by numerical com- 
parisons with the generating differential equations that the approximate closed- 
form solutions display an error range of no more than plus or minus one-half 
percent. 

The solutions were derived to gain two major advantages:   first,  a reduction 
of analytical complexity lessens the chance of computational error and, second, 
certain unwieldiness in numerical work is reduced or eliminated. 

Computer results for repeated future application in the evaluation of thermal 
stresses in blunt and pointed radomes of compound-ogive configuration are 
tabulated. 
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