
m 

ys^ 

jyPA^EL-A FABSE-HEKaUEST LANGUAGE 

R. M. Balzer and D. J, Färber 

D ü C mmm 

^Äiar' wont 
\IÄNCBD BESEÄi^H PBOJBCTS AGENCY 

% ßpno 
SANTA  MONICA  •   CA11I>0«NIA- 

CLEARINGHOUSE 
ffntii :   -.   i t., ■-■ 

n* 



ARPA ORDER NO. 189-1 

MEMORANDUM 
RM-5611-ARPA 
OCTOBER J968 

j 

APAFEL-A PARSE-REQUEST LANGUAGE 
R. M. Balzer and D. J. Färber 

This rowarch is supportod by llip Advanced Rpscirrh Prnjrrls Agonry nndrr Conirml 
No. DAHCnS 67 C 0111. Views or eonelusions ronlalncd in lliis slndy sliould not lie 
interpreted as represenlinp the ofTieial opinion or poliey of ARPA. 

DISTHHUmON STATEMENT 
Tiiis diHinnenl lias lM-en appro\ed for j)nl>lie relea-eand sail-; itsdi^trilnition is unlimilrd. 

7^ md getfutiCm 
■ iSr.   «Am   tt       •     BAMt«   MOMiC«     •     CAI"0*MI*     •     tS 

1 



-iii- 

PREFACE 

This Memorandum describes a parsing capability em- 

bedded within the PL/I progranming language. This exten- 

sion allows users to specify the syntax of their parse 

requests in a BNF-like language and the semantics associated 

with a successful parse request in the PL/I language. 

The APAREL system has been designed for a wide range 

of parsing applications including macro expansion, symbol 

manipulation, on-line command parsing, analysis of program, 

and translation of progranming languages. 



-v- 

SUMMARY 

This Memorandum describes APAREL, an extension to an 

algorithmic language (PL/I) that provides the pattern- 

matching capabilities normally found only in special 

purpose languages such as SN0B0L4 and IMG,  This capability 

is provided through parse requests stated in a BNF-like 

fon it. These parse requests form their own programming 

language with special sequencing rules. Upon successfully 

completing a parse request, an associated piece of PL/I 

code is executed. This code has available for use, as 

normal PL/I strings, the various pieces (at all levels) of 

the parse. It also has available as normal PL/I variables, 

the information concerning which of the various alternatives 

were successful. Convenient facilities for multiple input- 

output streams, the initiation of sequences of parse re- 

quests as a subroutine, and parse time semantic checks are 

also included. 

APAREL has prov a convenient in building a powerful 

SYNTAX and FUNCTION macro system, an algebraic language 

preprocessor debugging system, an on-line command parser, 

a translator for Dataless Prograraning, and as a general 

string manipulator. 



•vii- 

CONTENTS 

PREFACE  

SUMMARY   

Section 
I.  INTRODUCTION   

II.  APAREL--A PARSE-REQUEST LANOU\GE   
Description of Parse-Requests   
Parse-Request Sequencing Rules   

Ill.  PARSE RESULTS  

IV.  PARSE-TIME ROUTINES   

V. ADDITIONAL FEATURES   

VI.  EXAMPLES  

VII.  TRANSLATION RESULTS   

VIII.  IMPLEMENTATION   

IX.  BASIC DATA STRUCTURE   
A. Symbol Table  
B. Syntax  

Appendix 

BNF DEFINITION OF APAREL'S SYNTAX LANGUAGE 

REFERENCES     

iii 

v 

3 
4 
8 

11 

13 

14 

18 

26 

28 

30 
30 
31 

33 

35 



I.  INTRODUCTION 

Higher-level descriptions of the problem of compiling 

have attracted much interest in the past few years. Along 

with the desire to develop higher-level specialized lan- 

guages tailored to particular users, the need has arisen 

to develop similar spicialized languages for the writing 

of these compilers.  In general, these so-called compiler- 

compiler languages are characterized by their facility to 

define in a BNF-like manner the syntax of the target lan- 

guage. In addition, they possess a programming language 

designed to operate on and to direct the results of the 

parsing. 

With most compiler-compilers a problem arises both 

in controlling the parse sequencing and in operating on the 

results of the parsing.  In particular, flexibility is 

usually lacking in 1) the specification of sequences of 

parse attempts, 2) the determination of the success or 

failure of a parse attempt on other than purely syntactic 

grounds, and 3) the specification of when semantic routines 

should be invoked.  Furthermore, the semantic language is 

usually a small special—purpose language with facilities 

for the production of machine code. These systems ignore 

such other, non-compilation applications for parsers as 

on-line conmand parsers (which produce actions instead of 

machine code), interpretive parsers (which produce pseudo- 

code) , "natural-language" parsers (which produce semantic 

trees), macro parsers (which produce source code), refor- 

matting programs (which produce formatted listings), and 

so on. In short, the non-machine-code generation applica- 

tiois of parsers have not been well handled by the trans- 

late- writing systems. 



-2- 

APAREL attempts to provide a single system for all 

these applications by providing the user with a powerful 

general-purpose programming language (PL/I) for performir- 

the wide range of semantics required, and a flexible high- 

level syntax language for specifying parse attempts, to- 

gether with facilities for controlling the sequences of 

these parse attempts, determining success and/or failure 

on both syntactic and semantic grounds, invoking semantics 

when desired, and for manipulating the parts of a success- 

ful parse. Also, the familiarity of programmers with PL/I 

and the simplicity of the APAREL extensions and additions 

make it feasible for potential users to design, implement 

and modify special-purpose languages without extensive 

learning. 



-3- 

II.  APAREL--A PARSE-REQUEST LANGUAGE 

Our view of translation is composed of three parts: 

1) A request to find sequences of syntactic con- 

structs in the source string to be parsed; 

2) Context-sensitive validity checks to be made 

after successful syntactic parses (e.g., has 

the label been defined before? Is the type of 

a variable arithmetic? etc.); 

3) Semantic routines to be executed only if both 

the syntactic parse and the context-sensitive 

validity checks are successful. 

This view of translation, while vei-y general, is easy 

for non-professional translator writers (but experienced 

progranmers) to use in constructing easily modifiable 

translators. 

Requests for parses are specified in a language very 

similar to BNF rather than a production-type language, 

because non-professional translator writers tend to con- 

ceptualize the syntax of their language top-down (for which 

purposed BNF-type languages are well suited). Professional 

translator writers, on the other hand, have learned that 

the bottom-up approach (for which production-tjrpe languages 

are appropriate) is usually more efficient. Furthermore, 

they tend to think of both the syntax and semantics at the 

statement level. 

To keep the syntax language simple, while still allow- 

ing generality in describing conditions falling in the hazy 

area between syntax and semantics (which one would like to 

verify before accepting a parse made on syntactic grounds 



-4- 

alone), we allow the specification of "parse-time" routines 

that return truth values.  If they return a value of TRUE, 

the parse will continue. However, if a value of FALSE is 

returned, the parse will be unsuccessful, jusc as if the 

syntactic parse failed.  (The total parse may still be 

successful if alternatives are available to the unsuccess- 

ful subparse.) In addition to returning truth values, these 

"paise-time" routines may do any semantic processing de- 

sired. They are written in the semantic language described 
below. 

The semantic routines are activated upon successful 

completion of the total parse and successful returns from 

all the relevant parse-time validity checks, if any, speci- 

fied within the parse. The code for the semantic routine 

immediately follows the request for the parse in the syntax 

language. The semantic language, rather than being a re- 

stricted special-purpose language, is full PL/I. The wide 

range of desirable "semantic" actions resulting from various 

syntactic parses necessitates a general-purpose programming 

language; and a major shortcoming of most compiler-compilers 

has been their restrictions on the semantic language. 

To facilitate the semantics, the various pieces of the 

successful parse are put into normal PL/I strings as speci- 

fied in the syntax language; and the options chosen, where 

alternatives were specified in the syntax language, are 

made available in normal PL/I variables. 

DESCRIPTION OF PARSE-REQUESTS 

The syntax of the parse-request language, specified in 

BNF, appears in Appendix I. However, the following examples 

are used to describe the language informally. 



•5- 

All parse-requests begin and end with a parse-delimir- 

ator (a double colon). After the beginning delimi iator} 

the name of the request (the parse-name) is set off by a 

colon. The remainder of the parse-request is a list of the 

alternative parses (parse_alternati.ve_list) desired, sep- 

arated by OR (j) symbols.  The parse-request is successful 

if any one of the alternatives is successfully parsed. 

These alternatives may be either parse-elements or lists 

of parse-elements. Letting PE. represent a set of parse- 

elements, we can describe the following parse requests: 

:: A: PE..PE- :: (the parse-request named 

"A" will succeed if and 

only if the parse-string 

contains ?El  following PE2) 

:: B: PE.jPE« :: (the parse-request named 

''B" will succeed if and 

only if ".he parse-string 

contains either PE, or PE2) 

:: C: PE,|PE2PE„PF, ::    (the parse-request named 

"C" will succeed if and 

only if the parse-string 

contains either PE. or 

the sequence PE2PE-PE,) 

The parse-elements can either be a parse-group or a 

parse-atom. A parse-group is simply a named or un-named 

parse-alternative list enclosed in brackets ("<" and ">"), 

allowing naming of parts of a parse and alternatives with- 

in a sequence of parse-elements. The parse-atoms--the 



-6- 

basic, indivisible components of a parse-request--consist 

of .iteral strings, parse-request names, and primitive 

functions; e.g., ARBNO (arbitrary number of), and BAL 

(balanced strings). These atoms are the components that 

determine whether a parse is successful or not.  The literal 

strings require that  an exact match be found between the 

literal and the corresponding piece of the parse-string; 

the parse-request names require that the named parse- 

request be successful on the corresponding piece of the 

parse-string; and primitive functions require that the 

corresponding piece of the parse-string satisfy the condi- 

tions of that particular function. There is no syntactic 

distinction made between these atoms. The category de- 

termination is male in the following way. First, the list 

of primitive functions is checked. If the atom is not a 

primitive function, then the list of parse-names is checked. 

Finally, if it is not one of these, it is considered to be 

a literal. This mechanism alleviates the need to quote 

most literals wichin the par^e-request language. 

Consider the following set of parse-requests to parse 

PL/I DO statements: 

:; do_statement: do iterative_specification 

while_clause 8;,:: 

:: iterative_specification:  (variable = expression 

(to_clause by_clause jby_clause to__clause> > |:: 

: to_clause: to expression!:: 

: by_clause: by expression!:: 

: while__clause: while '('expression')' |:: 

The do_statement request requires the sequence of 

atoms 



do  iterative_specification  while_clause   ; 

in the parse-string to be successful.  Of these, the middle 

two are parse-names and invoke parse-requests as they are 

encountered in a left to right scan. The first and last 

atoms are literals (because they are not defined as parse- 

names or primitive functions), and require exact matches 

with a piece of the parse-string. The final atom is quoted 

because semicolons are part of the parse-request language 

(explained below), and the semicolon here is used as a 

literal. 

The iterative_specification request requires the 

sequence: 

1) Variable_expression 

2) either 2a. to_clause 
2b. by_clause 

or 2a. by_clause 
2b.  to_clause 

Variable and expression are primitives, and are defined as 

specified in the PL/I language specification [1]. Sim- 

ilarly, a to_clause is the literal "to" followed by an 

expression, or is null, and a while_clause is the literal 

"while" followed by an expression enclosed in parentheses 

(quoted because they are part of the syntax language and 

are used here as literals), or is null. 

Thus, the do_stateinent parse-request invokes parse- 

requests for iterative_specification and while_clause, and 

iterative_specificatio-> invokes parse_requests for to_clause 

and by_clause and functions calls for variable and expression. 

Unless otherwise specified, the parses allow an arbi- 

trary number of blanks (including none) between atoms, and 



-8- 

require the parse start at the beginning of the parse- 

string although Iv may be satisfied before the end of the 

parse-string.  Thus, with the above set of parse-requests, 

successful parses will occur on the following parse-strings: 

do I - 1; 

do I = 1 by 5 to (n-3/2); 

do; 

do while (A<B); 

and will fail ^n the following parse-strings: 

I - 1 to 10: 

Now do I ■ 1; 

do I - 1 to 5 

do I = 1 to 5 to 6; 

(no initial do) 

(no initial do) 

(no semicolon) 

(to__clause followed by to_clause) 

The portion of the parse-request language described so 

far allows fairly sophisticated parse-requests to be speci- 

fied easily and naturally in a language similar to the 

normally used syntax description languages (BNF or IBM's 

syntax notation). However, thij is not yet a useful 

facility, because neither the sequencing rules for initiating 

parse-requests and for making sequencing decisions based 

upon the success or failure of a parse-request, nor the method 

of accessing the various parts of a successful parse have been 
defined. 

PARSE-REQUEST SEQUENCING RULES 

A parse-request-sequence is composed of all parse- 

requests occurring in a conrnon do-group or block. This does 

not include any parse-requests contained in blocks or do» 

groups within the  conrnon do-group or block foriring parse- 

request-sequences of their own. The order of parse-requests 



-9- 

within a parse-request-sequence is the same as their lexi- 

cographical ordering in the block or do-group.  The semantic 

portion of a parse-request is the code between the end of 

the syntax portion of the parse-request and the beginning 

of the next parse-request in the parse-request-sequence, or 

the end of the do-group or block if there are no more parse- 

requests in the sequence. 

A parse-request sequence begins with the first parse- 

request.  If the initial parse-request fails, its semantic 

code portion is skipped, and the next parse-request in that 

sequence is tried, and so on, until either a succ^sful 

parse-request is found or all parse-requests fail. If a 

successful parse-request is found, the associated semantic 

code portion is executed; then, normally, the parse-request- 

sequence is terminated with a successful indication (see 

Sec. V, Additional Features). Otherwise, the parse-request- 

sequence is terminated with an unsuccessful indication. 

TJ-ere are three ways in which a parse-request-sequence 

can be initiated. The first is as a parse-atom in a parse- 

request. Upon termination, its success-failure indicator 

is used in determining which alternatives, if any, are 

successfully parsed. The second is through use of an ex- 

plicit command, INITIATE PARSE, which specifies which parse- 

request-sequence to initiate and can be issued in any code 

portion. Upon termination of the parse-request-sequence, 

its success» or failure is available (see Sec. Ill, Parse 

Results), and control continues with the statement following 

the INITIATE PAPSE cotnnand. The third method is by program 

control flowing into the first parse-request in a parse- 

request-sequence.  TJpon completion of the parse-requast- 

sequence, its success or failure is available, and control 



-10- 

passes to the end statement at the end of the do-gioup or 

block in which the parse-request-sequence occurs. Thus, 

if it is contained in an iterative do-group, control will 

continue around in the loop until iteration is complete. 

Otherwise, in blocks or non-iterative do-groups, control 

will flow out the bottom of the block or do-group upon 

termination of the parse-request-sequence. 

In the first two cases, where a parse-request-sequence 

is explicitly named, it is specified by referring to the 

label of the do-group or block in which the parse-reque^t- 

sequence occurs. If the name of a parse-request is speci- 

fied instead, only that parse-request will be initiated, 

and no others in its parse-request-sequence.. 

These sequencing rules allow the creation of sequences 

of parse-requests to be attempted, and the control of the 

execution order of these requests based on the results of 

the parses and/or explicit program control. 



■11- 

III.  PARSE RESULTS 

APAREL also contains capabilities to make the results 

of a successful (or unsuccessful) parse available to the 

code portions of the language.  This information is of two 

kinds:  pieces of the string parsed and information about 

which alternatives were successful in the parse. 

Various parse-elements, such as parse-request-sequences, 

parse-requests, parse-ulternatives, and parse-groups, can 

have names specified in APAREL.  These names are the means 

by which the semantic code portions can utilize information 

about a parse. If "NAME" is the name of one of these parse- 

elements, then after a parse, a PL/I varying length string 

variable with the same name will contain that portion of 

the parse-string corresponding to the named parse-element, 

and a PL/I variable, whose name is "NAME_OPTION" (i.e., 

"_OPTION" is appended to the end of the name of the parse- 

element) , will contain the index of the alternative selected 

within the parse-element.  Thus the semantic portions can 

manipulate desired portions of the parse-string through 

PL/I's normal string-handling capabilities, and can inter- 

rogate any portion of the parse-tree to determine which 

alternatives were selected. 

In applications with large syntax specifications, 

changing the syntax--either by addition or deletion of an 

alternative from the syntax--can affect the semantics, be- 

cause altarnative determination is made on an indexed basis; 

and altering the syntax alternative alters the indexing. 

To alleviate the problem, APAREL allows the user to label 

any or all of the alternatives.  If a labeled alternative 

is selected, then the OPTION variable for that group will 



-12- 

contain the name of the alternative selected rather than 

its index. This naming correspondence is invariant under 

additions or deletions to the set of alternatives. 



-13- 

IV.  PARSE-TIME ROUTINES 

Sometimes success or failure of a parse cannot be made 

on purely syntactic grounds alone; or, it is desired to per- 

form some semantic operations during a parse. For these 

reasons, the parse-tire facility has been included in APAREL. 

Parse-time routines are indicated in a parse-element by 

placing the parse-time routine name followed by its argu- 

ments, if any, enclosed in parentheses after a semicolon 

at tha end of the parse-element. The parse-time routine 

/ill be initiated if and only if the parse-element in which 

it occurs was successfully parsed. The initiation results 

in a function call of the parse-time routine passing its 

arguments, if any. The parse-time routine, like the semantic 

portions of APAREL, is coded in full PL/I and can make use 

of all the facilities of APAREL, such as initiating parse- 

requests, manipulating parse-strings, and interrogating the 

parse-trees. In addition, the parse-time routine can per- 

form any semantics desired and return a true or false value 

indicating whether the parse-element it is attached to should 

be considered successfully parsed or not. 

Note that since parse-request-sequences initiated in the 

syntactic portion of a parse can be a block or a do-group 

that may begin with a code section or may not contain any 

parse-requests at all, these parse-request-sequences can be 

considered parse-time routines that return a success or 

failure Indication (and are formally the same as the parse- 

time routines discussed above). Both ways of specifying 

these parse-time routines have been allowed in APAREL, en- 

abling users to choose the one corresponding to their way 

of conceptualizing its function in their particular 

application. 



14. 

V. ADDITIONAL FEATURES 

In the semantic portions of APAREL, very often one 

would like to output a modified or "translated" version of 

the parse-string.  To make this operation simpler, a special 

variable, TRANSLATION, has been defined; and whenever an 

assignment is made to this variable, the value assigned is 

output to the SYSPRJ.NT data set.  For more flexibility, the 

user may define additional variables as being output vari- 

able of specified size and associated with a specified file. 

When an assignment is made to one of these variables, if the 

value can be added to the end present string vflue without 

exceeding the maximum size of the variable, then the new 

value is concatenated onto the existing value. If not, 

then the existing value is output on the file specified and 

the new value becomes the value of the variable.  If the 

size is not specified, then outputting occurs with every 

assignment. If neither a file nor a size is specified, then 

a user-defined procedure of the same name as the output 

variable is called with the new value as the argianent. This 

allows the user to define arbitrarily complex procedures for 

outputting, and corresponds to the updating routine (left- 

hand size function) definitional capability of Dataless 

Progranwing [2] and CPL [3]. 

Similarly, for input, a variable, PARSE_STRING, will 

be automatically defined to hold the input to be parsed. 

When the amount of input in this variable falls below a 

system-defined limit, new input will be concatenated to 

the variable to fill it out to its maximum size. The user 

may define additional input variables together with their 

minimum sizes, maximum sizes, and file from which input is 



15- 

to come.  If the minimum and maximum sizes are not specified, 

references to the input variable will invoke a user-defined 

accessing function of arbitrary complexity, a la Dataless 

Prograitming. 

The user also can control which of several input sources 

is used via the CONSIDER command.  He may later re-establish 

an input source via the RECONSIDER command. 

In parsing there are normally three requirements for 

blank separation between elements in the parse-string.  The 

first is that no blank may occur between the elements.  This 

is indicated in a parse-request by placing a minus sign be- 

tween the elements. The other two normal blank-separation 

requirements are that either any number of blanks (perhaps 

none) , or at least one blank (perhaps more), separate the 

elements. Since the need for each of these requirements 

is highly application dependent, APAREL allows the user to 

define the normal mode (indicated in the parse-request by 

separating the elements by at least one blank) and to re- 

quest the other requirement by placing a period between the 

elements. The normal mode is set by either NORMAL SEPARATION 

IS 0 or NORMAL SEPARATION IS 1 commands.  The default setting 

is NORMAL SEPARATION IS 1. 

Similarly, the two normal ways to view the semantic code 

portion are either as open or closed subroutines. In an 

open subroutine, flowing out of the bottom of a semantic code 

portion into a parse-request initiates that parse-request. 

Whereas in a closed subroutine, flowing out the bottom of a 

semantic code portion into a parse-request effects a return 

to the caller of the parse-request whose semantics have just 

completed. APAREL allows a user to define which of these 

two modes he is using via the SEMANTICS OPEN and SEMANTICS 

CLOSED. The default setM ; is SEMANTICS CLOSED. 



•16- 

Both the SEPARATION and SEMANTICS commands are com- 

pile-time commands and affect the interpretation of all 

lexicographically following parse-requests in the current 

or contained blocks or do-groups, until either the end of 

the block or do-group, or another mode conmand, overrides 

the present normal mode. 

Within a semantic code portion, the user may desire 

to initiate a remote parse-request, or to terminate the 

semantics for the present parse. These capabilities are 

available, respectively, through the INITIATE PARSE and 

TERMINATE PARSE commands. 

The TERMINATE PARSE command is also used to specify 

the success or failure of a parse-request. TERMINATE PARSE 

SUCCESSFULLY indicates a successful termination, while 

TERMINATE PARSE UNSUCCESSFULLY indicates an unsuccessful 

parse. TERMINATE PARSE with neither operand specified de- 

faults to TERMINATE PARSE SUCCESSFULLY. Thus, a parse- 

request can be declared unsuccessful in three ways: 1) in 

the syntactic specification of the parse-request when a 

syntactic parse is unsuccessful; 2) in a parse-time routine; 

or 3) in the semantics of a parse-request. The parse is 

successful only if none of these indicate an unsuccessful 

parse. 

When initiating a remote parse-request-sequence within 

a semantic code portion, a user often wishes to be able to 

inspect and manipulate the results of the parse-requests 

before accepting any translation produced. Since these 

parse-requests should not (and need not) know that they 

have been initiated from above, they must be able to create 

translations just like any other parse-request. Therefore, 

the user needs a way of telling APAREL to redirect the 



-17- 

translation (or output variables) of any parse-request. 

This redirection causes the translation produced for the 

specified output variables to be collected into the speci- 

fied strings for review and/or manipulation by the initiating 

routine. This redirection is specified as additional oper- 

ands to the initiate parse-command as follows: 

INITIATE PARSE k COLLECTING translation IN s AND 

output IN def; 

The parse-request-sequence named k will be initiated. All 

translation it, or any parse-request it initiates^ produces 

in the output variable named "translation" will be collected 

in the string named "s", anu all translation produced in the 

output variable named "output" will be collected in the 

string named "def". 

Finally, by placing a dollar sign ($) in front of 

parse-names, parse-time routine names, or parse-atoms, the 

user can indicate indirection; i.e., the parse-name, parse- 

routine name, or parse-atom specified is the contents of 

the named string. This facility provides considerable 

flexibility for users desiring to alter the parse-requests 

dynamically. It also facilitates context-sensitive parses 

requiring repetition of a parse-olement within the input 

string. 



-18- 

VI.  EXAMPLES 

One use of APAREL is as a macro processor, handling 

macros of the type commonly referred to as SYNTAX and/or 

FUNCTION macros [4j.  In such an application, a user passes 

the macros over the sc rrce text, translating those portions 

that satisfy the macro syntax while leaving the rest of the 

text undisturbed.  APAREL is easily restricted to this mode 

by defining a parse-request that picks off source-language 

statements, one at a time, from the input stream.  The 

result of this parse, a single source-language statement, 

is then passed through the various macros that produce the 

desired translation when d parse request for a macro is 

satisfied. If the source statement: passes all the way 

through the macros without matching, it is output unmodified. 

Assuming the parse-request, PL__statement, has been pre- 

defined and will pick off one PL/I statement at a time, the 

following is an APAREL program that acts as a SYNTAX and 

FUNCTION macro processor for any parse-requests defined in 

its body. 

next_PLl_statement: 

INITIATE PLl_stateraent; /* get next PL/I statement*/ 

IF PLl_statemenL_option = 0 /* was the parse successful*/ 

THEN DO; /* no, end of input must have been reached*/ 

IF CONSIDERED_STRING (CONSIDERJJlVEL^'rescan' 

THEN DO; /*reconsider the original 

input string*/ 

RECONSIDER; 

GO TO next_PLl_stateTnent; 

END; 



19- 

ELSE /* we have exhausted the original input 

string*/ 

IERMINATE PARSE; /* terminate the parse 

in this manner in case we were 

initiated by someone, and are not 

the top level routine*/ 

END; 

ELSE DO; /* parse was successful, we now have a single 

PL/I statement*/ 

CONSIDER PLl_statement; /* use result of PL/I statement 

as parse-string*/ 

INITIATE user_macros COLLECTING translation IN partial_ 

translation; /* initiate users 

syntax and function macro parse- 

request-sequence contained in the 

block or do_group labeled "user- 

macros".  The translation output 

of these macros is collected in 

the PL/I string "partial_trans- 

lation"*/ 

If user_raacrGS_option-i ■ 0 THEN DO; /* one of the parse- 

requests in the userjnacros parse- 

request-sequence was successful*/ 

RECONSIDER; /* stop considering PLl_statement and 

reconsider the parse-string in 

effect before it*/ 

rescan = partial_translation||rescan; /* add 

partial translations to front of 

rescan string so that it will be 

retranslated first.  Notice that 

this defines a depth first 

translation*/ 



•20- 

IF CONSIDERED_STRING (CONSIDER_LEVEL)^ = 'rescan' 

/* is rescan the currently considered 

parse-string*/ 

THEN /* no it is not the currently considered 

string*/ 

CONSIDER rescan; /* make it the current 

parse-string*/ 

GO TO next_PLl_statement; 

END; 

ELSE DO; /* none of the parse-requerts in the user_macros 

parse-request-sequence were successful*/ 

TRANSLATION - PLl_stateinent; /* output the 

PLl_statenient that did not match*/ 

GO TO next_PLl_statement; 

END; 

Continuing the above example, two parse-requests are 

shown below, both of which provide translations into Pl/I. 

They are placed in the do_group labeled ' user__macros" to 

conform to the preceding exarple/s initiation ccnmand. The 

first is a syntax macro that translates increment or decrement 

commands, and the second is a functional macro that trans- 

lates various notations for asking if a value is equal to one 

of a number of items. Notice that the only difference be- 

tween syntax and function macros is that syntax macros re- 

quire successful parses to be anchored to the beginning of 

the parse-string, whi^e functional macros allow successful 

parses anywhere within the parse-string. 

The annotated parse-requests are given below, followed 

by a se". of example input parse-strings with their trans- 

lations: 



•21- 

user_macros:  DO; /* begin labeled do group that defines a 

parse sequence*/ 

NORMAL SEPARATION IS1; /* unless otherwise specified, 

parse-elements must be separated 

by one or more blanks*/ 

SEMANTICS CLOSED; /* upon reaching the end of the 

semantics of a parse-request, 

automatically generate a terminate- 

parse command*/ 

:: Increment_coinmand:  command_type <updated_yariable: 

subscripted_variable) by <increment_ 

amount: ARB).1;1 :: /* an increment 

command is a command type followed 

by a possibly subscripted variable, 

called "updated_variable", followed 

by the literal "BY" (literal since 

it is not defined), followed by an 

arbitrary string called "increment_ 

amount", followed by a semicolon 

(the semicolon has to be quoted 

since it is part of the parse- 

request language).  The period 

indicates that a space is not re- 

quired in front of the semicolon.*/ 

IF command_type_option ■ "increment_command" /* was the 

option in command_type labeled 

"increment_command" chosen*/ 

THEN /* yes this is an increment coitmand*/ 

translation ■ updated_variableij'='||updated_ 

variable j1' + '|I increment-amount 

j 1' ;' ; /*output PL1 assignment for 

incrementing variable*/ 



-22- 

ELSE /* no, must be decrement command*/ 

translation ■ updated_variable | i ,5LI I |updated_ 

variable]|'-('||increment_amount 

11');1; /*output PL/I assignment 

for decrementing variable enclosing 

increment_amount in parenthesis*/ 

/* the next statement is a parse-request in the same 

block or do group as the present 

parse-request; therefore, it 

indicates the end of this semantic 

code; and since semantics have to 

be set closed, it automatically 

generates a terminate-parse 

command.*/ 

/* this parse-request will be activated if the preceding 

parse-request failed*/ 

one_of:<front:ARB)<x:  subscripted_yariable>(is[is among|.=.) 

a].ternative_list(back:ARB):: 

/* a one_of function macro is an 

arbitrary string named "front" 

followed by a subscripted variable 

named "x" followed by either "is", 

"is" followed by "among", or by "=". 

This is followed by an alternative_ 

list followed by an arbitrary string 

named "back". The separation between 

these elements is one or more blanks-- 

except for the equal sign, which may 

have zero or more blanks on either 

side of it as indicated by the normal 

separation override notation (the 

periods),*/ 



-23- 

translation = front!|PLl_alternatives||back; /*the 

string "PLl^alternatives" replaces 

the function macro in the parse- 

string, and the result is output as 

the translation of the parse-string. 

The PLl_alternatives string was 

built up in the semantic portion of 

the alternative_list parse-request 

shown below*/ 

END user_macros; /* this is the end of the do-group. 

It indicates the end of the semantic 

portion of the one_of parse-request; 

and, since semantics are closed, 

automatically generates a terminate 

parse-command for that parse-request. 

If this parse-request had failed, 

then, since it was the last parse- 

request in the parse-request-sequence, 

the sequence would have failed.*/ 

/* the following are parse-requests referred to above. 

Since they are defined in another 

do-group or block than the preceding 

parse-requests, they do not form 

part of its parse-request-sequence.*/ 

: subscripted__variable: variable <. ' (' .BAL.') '. I)::  /*a 

subscripted variable is a variable 

followed by a left parenthesis 

followed by an arbitrary string 

balanced with parentheses followed 

by a right parenthesis or a variable 

followed by a null.  The parentheses 



-24- 

and the balanced string do not have 

to be separated by blanks.  There 

are no semantics specified for this 

parse-request.*/ 

:: coinraand_type:  <increment_coniniand: increment | i j inc) | 

<decrement_command: decrement|d|dec>:: 

/* a command type is either an 

increment_coinmand or a decrement_ 

command. These two types can each 

be indicated in one of three ways: 

"increment", "i"; or "inc" and 

"decrement", "d"; or "dec". There 

are no semantics specified for this 

parse-request */ 

:: alternative_list: Initial_semantics B0UND(1.alternative, 

C,'] or >) ::  /* an alternative_ 

list is an initial_semantics followed 

by an arbitrary number (with a 

minimum of one) of alternatives 

separated by either commas or the 

literal "or". The parse-request, 

initial_semantics, does not perform 

any parsing, but is used co initial- 

ize the string, PLl_alternative, 

used in the semantics of "alterna- 

tive". There are no semantics 

specified for this parse-request.*/ 

:: alternative: expression:  /* an alternative is an ex- 

pression.  Its semantics follow. 

The same effect could have been 

achieved by replacing alternative 



-25- 

in the parse-request alternative_list 

by 

expression; altemative_seinantics 

where alternative_semantics would be 

the name of the following semantic 

routine.  The choice is left to the 

user depending on his particular 

basis.*/ 

if -i first_alternative then PLl_alternatives=PLl_ 

alternatives]|'|'!Ixl!'^!I expression; 

/* the alternative is added to the end 

of the alternatives already found. 

It is separated from the preceding 

alternatives by "j", and consists of 

the subscripted variable (the value 

of x from the parse-request, "one_ofn) 

followed by an equal sign followed 

by an expression just parsed above.*/ 

ELSE DO; /* this is the first alternative*/ first_ 

alternative = 'O'B; /* indicate no 

longer first alternative*/ 

PLl_alternatives = xl|,",|i expression; 

/* PLl_alternatives is set to the 

first alternative found*/ 

END; 

TERMINATE PARSE; /* indicate end of semantics*/ 

initial_semantics:  DO; /* initial_semantics is a parse-request- 

sequence containing no parse-request*/ 

first_alternative * 'I'B; /* indicate parse-request was 

successful*/ 

END; 



•26- 

VII.  TRANSLATION RESULTS 

Using the APAREL program defined in Sec. VI, we indi- 

cate below the translations that would result for various 

input examples.  If the input passes through unchanged, the 

translation entry is left blank to facilitate recognition. 

input 

increment x by 5; 

d abc by x-4; 

i def by7; 

decrement by 3; 

if abc is x-3 or 

0 then do; 

R = (def is among 

l,2,Z-4 or 9); 

translation 

x = x+5 

abc = abc - (x-4); 

if abc = x-3 

abc " 0 then do; 

R = (def - 1 | def 

| def - Z-4 ] 

def - 9); 

comments 

the decrement 

translation 

supplies paren- 

theses around the 

decrement amount, 

no separating 

blank after 'by' 

'by' is picked 

up as the sub- 

scripted variable, 

but the parse then 

fails because 'by' 

cannot be found. 



-27- 

input 

when h = 5, or 7 

then do; 

if x is 3,>5, or 0 

if x = 1 or 4 

then i x by x-1; 

translation 

when h = 5 | h = or 

7 then do; 

if x = 1 I x - A 

then x = x+x-1; 

comments 

comma after 5 

causes parser 

to pick up "or" 

as an expression 

rather than as the 

separator between 

expressions.  The 

syntax of the 

functional macro 

should be cor- 

rected to prevent 

this error.  Notice 

how the error is 

reflected in the 

translation; 

">5" is not an 

expression. 



-28^ 

VIII.  IMPLEMENTATTON 

Implementation of APAREL was of course affected by the 

desirability of using PL/I as the basic language for expres- 

sing the semantic operations. PL/I was chosen because of 

its power and familiarity.  At the same time, it was decided 

that the actual parsing be implemented as an interpreter. 

This necessitated that the parse-request language of APAREL 

be translated into an interpretable structure. The benefits 

gained from the simplicity and extendability of this approach 

aie considered worth the price of translation. 

APAREL is a two-pass processor that first translates the 

APAREL program into an interpretive program for driving the 

parser and then crosscouples the results of the parse with 

the semantic section of the user's program. Two passes are 

necessary because of certain limitations of PL/I, in which 

APAREL is programmed.  The main limitation is the inability 

to dynamically define equivalences, at least in the PL/I 

DEFINED context. 

The heart of APAREL is an interpretive representation of 

the parse-request. The structure of the interpretive list 

and other internal details are described below. 

The problem of relating APAREL names with PL/I variables 

has been solved by twice examining the parse-request.  The 

first is done in a pass over the APAREL program.  The main 

purpose of this pass is to form a symbol table identical with 

that used during execution.  This symbol table will be used 

at run time to hold (among other things) the current values 

of named items. The result of the first pass is to output, 

for compilation by PL/I, a modified APAREL program where 

the parse-requests are replaced by a call on a COMPILE 



•29- 

subroutine, which is given both the name of the parse-request 

and the request body and us^s thes^ at run time to construct 

the interpretive table. There is then generated a call on 

the parser to initiate the parse-request-sequence. PL/I 

code is generated, which when executed at run time, after a 

successful parse, will transfer the values of names from the 

APAREL symbol table into the appropriate PL/I strings.  Code 

is also produced that handles the conditional flow, within 

a parse-request and between parse-requests, which depends on 

the successful-unsuccessful indicator returned by the parse- 

request.  In addition, the semantic body is scanned for use 

of the TRANSLATION string, output strings, parse-request 

blocks, etc.; and the appropriate modifications and additions 

to the APAREL program are made.  At the conclusion of this 

first pass, the output is compiled as a normal ?L/I program 

and executed.  During the "second pass" the COMPILE statements 

are threaded through, resulting in the construction of a run- 

time SYMBOLJIABLE.  Then control is passed to the modified 

APAREL program. 

* 

i 

- 



•30- 

IX.  BASIC DATA STRUCTURE 

APAREL is basicall" a parser driven from an interpre- 

tive form of the syntax de' :ription given below. Thus, the 

system data base is molded for such an interpretive environ- 

ment. The three basic data structures in APAREL are de- 

fined and discussed in turn.  The PL/I declare statement 

will be used i. define the structures. 

A.  SYMBOL TABLE 

DECLARE 1 symbol_table ( ), 

2 literal CHARACTER ( ) VARIABLE, 

2 value CHARACTER ( ) VARIABLE, 

2 rule BINARY FIXED, 

2 option CHARACTER ( ) VARIABLE; 

In the interpretive structure all references to a 

symbol are through its index in the SYMBOLJTABLE.  The 

literal character string contains the name of the symbol 

represented by this symbol-table entry.  If the symbol is 

acting as an APAREL name, then its /alue can be referenced 

by the value subfield, which contains a character string 

ac the value of the symbol.  When in the course of a parse, 

a successful match is done to a named alternative structure, 

the name of the alternative, or its index number if no name 

has been given to the alternative, is assigned to the OPTION 

subfield of the entry i" the SYMBOLJIABLE corresponding to 

the name of the alternative structure.  The rule that is 

named by this litr:al is pointed to in the sense that 

SYMBOLJTABLE.RULE points to the location in the SYNTAX table 

at which this rule begins. 



-31- 

B.  SYNTAX 

DECLARE 1 SYNTAX ( ), 

2 TYPE BINARY FIXED, 

2 SYMBOL_INDEX BINARY FIXED; 

This array contains the interpretive coae that drives the 

parser.  Basically, it contains the parse-atom type as an 

integer in the TYPE field, and (in most cases) a pointer, 

SYMBOL_INDEX (an index), to the symbol-table entry for this 

parse atom. 

As an example, consider the APAREL rule: 

:: SAM : JOE ( ABE : MAY ; IKE > < ABE I DEF ) :: 

During the second pass, after this parse-request has 

been "compile^/' the SYMBOLJIABLE will have seven entries. 

For example, the first entry will be SYMB0L_TABLE(1).LITERAL 

containing the character string "SAM", SYMB0L_TABLE(1).RULE 

containing the location (1) in SYNTAX of this rule.  Since, 

at this time, the value of SAM is null, the value field is 

set to the null string and the option field to zero. 

Similarly JOE, ABE, MAY, IKE, ABC, and DEF are assigned 

SIOLS 2, 3, 4, 5, 6, and 7 in the SYMEOL_TABLE.  At this 

point, only the literal field is set. The other fields 

may be filled in further as additional information is 

gathered from the "compilation" of later parse-requests. 

Figure 1 illustrates the SYNTAX entry for this rule. 



-32- 

TYPE SYMBOL INDEX 

SYNTAX (1) 

(2) 

LITERAL 2 (JOE) 

Beginning 
of Group 

3 (ABE) 

NAME 4 (MAY) 

End of 
Group 

5 (IKE) 

Beginning 
of Group 

NAME 3 (ABE) 

or 

NAME 7 (DEF) 

End of 
Group 

End of 
Rule 

1 (SAM) 

Note 

Note: 

Note; 

namely the string is in 
SYMBOLJCABLE (2) . literal. 

symbol_index has the 
name of the group. 

if MAY is a rule name 
at the time of execution 
it will activate the 
parse-request or else 
it will use the literal 
string MAY. 

.n the end of group is 
the name of the pro- 
cedure (a pointer to 
the symbol_table) which 
will be used if the 
group succeeds. 

Note: no group name. 

Note: 

Note: marks an alternative. 

Note: the end of rule contains 
the rule named for assign- 
ment of the substring 
matched if the parse- 
request is successful. 

Fig. 1--Syntax of a Rule 



-33- 

Appendlx 

BNF DEFINITION OF APAREL'S  SYNTAX LANGUAGE 

<rÄ^SE_KEQbt Sl>    :=    <PARSt_D^L{?'ilNfiTU10<l'A.<SF._NiA(-'F>: 
<pAHc

Jb_ALTF-.<NATI VE_LISr><PA;<Sc_ÜfcLlMINArUR> 
<PA^Sf_AL rERNATIVe_Llr>T>   :=   <PA^S,.:_t: LK VH M r_L I ST >   1 

<f'ARSc._KLF'vEriT_LIS1>   «l1   <?AKSb_ÄL FERrjAF I VE_L I S r> 
<PA^SE_fcL£V.tNr_LlST>    :=   <PA > ST^ELc «E ,T>    | 

<?Ä«St.ELE vt NT > ; <l> AH Sd_T I NE_ <*HJ f I NE_rj AME >   I 
<PAKSE_ELfc.v[:NT><PAn'.St_ELt.v>;*T_LIt;T>    I 
<pAKSe_LLfcKfNr>.<r,ARSE..ELt.v,E:NT_LlST> 

<>'AR5.E_i l.EMtNT>   :=   <PAKSE_ATIIM>   |    <PA!>Sc_:JRUUP> 
<l'AKSr_t.,,.i)Uf>>    :=    ,<,    <PARSE_AL TcRNAT I VE_t. I ST>    •>'    1 

'<•    <PARSt,NAMr.>:<PAKSfc_ALrEmAriVE_LISr>   '>' 
<tMRSt_Arrm>    :=   <PARS!;_NA^l:>    I    <TEXr_LI ri;RAL> 
0»A«SE_rjA^E>   :=   <PL/l   TuENTIFltR> 
<l»ARS£_i)FLlMlNArUK>    X-    :: 
<p^RSE_TI^!E-R^urI^•t_^■Af'E>  := <iNiAME OF A PL/I BIT VALUED FUNCTin 



•35- 

REFERENCES 

1. PL/I Language Specification. IBM Corporation, form 
C28-6571-4. 

2. Balzer, R. M. , Dataless Prograimning, The RAND Corpora- 
tion, RM-5290-ARPA, July 1967. 

3. Strachey, C. (ed.), CPL Working Papers, London Insti- 
tute of Computer Science and the University Mathe- 
matical Laboratory, Cambridge, 1966. 

4. Leavenworth, B. M., "Syntax Macros and Extended Trans- 
lation," Communications of ACM, Vol. 9, No. 11, 
November 1966, pp. 790-793. 

5. Backus, J. W., "The Syntax and Semantics of the Proposed 
International Algebraic Language of the Zurich ACM- 
GAMM Conference," Proceedings of the International 
Conference on Information Processing. UNESCO (1959) , 
pp. 125-132. 

6. Cheatham, T. E., "The Introduction of Definitional 
Facilities into Higher Level Programming Languages," 
Proceedings of the AFIPS FJCC (1966), pp. 623-637. 

7. Färber, D. J., R. E. Griswold, and I. P. Polonsky, 
"SN0B0L3," Bell System Technical Journal. August 1966. 

8. Feldman, J. A., and D. Cries, "Translator Writing 
Systems," Technical Report #CS69t Stanford, June 9, 
1967. 

9. Gauer, B., and A. J. Perils, "A Proposal for Definitions 
in ALGOL," Communications of the ACM. Vol. 10, April 
1967, pp. 204-219. 

10. Irons, E. T,, "A Syntax Directed Compiler for ALGOL 60," 
Communications of the ACM, Vol. 4, January 1961, pp. 
51-55. 

11. McClure,  R.  M.,   "TM6--A Syntax-Directed Compiler," Pro- 
ceedings of the 20th National ACM Conference, 1965, 
pp. 262-274. 

12. Mondschein, L., VITAL Compiler-Compiler Reference Manual. 
TN 1967-1, Lincoln Laboratory, January 1967. 



DOCUMENT CONTROL DATA 
I ORIGINATING ACTlVlTr 

THE RAND CORPORATION 

20. REPORT SECURITY CLASSIFICATION 
UNCLASSIFIED 

2b. GROUf 

5. REPORT  TITLE 

APAREL--A PARSE-REQUEST LANGUAGE 

4. AUTHOR(S) (Lost name , first natnt.lniliol) 

Balier,   R.  M.   and D.   J.   Färber 

5. REPORT DATE 
October  1968 

7. CONTRACT  OR GRANT No. 

DAHC15-67-C-0141 

6o TOTAL No OF PAGES 
42 

6b. No. OF REFS. 
12 

S. ORIGINATOR S   REPORT  No. 

RM-5oll-ARPA 

9o AVAILABILITY/ LIMITATION  NOTICES 

DDC-1 

10. ABSTRACT 

A description, without listing, of APAREL, 
a flexible high-level parsing-knguage ex- 
tension to PL/I that provides the pettern- 
matching capability normally found only in 
special-purpose languages such as SNOBOLA 
and TMG. This capability is provided 
through parse requests stated in a BNF- 
like format, which form their own program- 
ming language with special sequencing 
rules. Upon successful completion of a 
par: > request, an associated piece of PL/1 
code is executed, which has as normal PL/I 
strings the various elements of the parse 
(at all levels).  It has as normal PL/I 
variables the information concerning which 
of the various alternative parsings were 
successful. Convenient facilities for 
multiple input-output streams, the initia- 
tion of sequences of parse requests as a 
subroutine, and parse-time semantic checks 
are included. APAREL has proved convenient 
in building a powerful SYNHC and FUNCTION 
macro system, an algebraic language pre- 
processor debu; ;ing system, an on-ine com- 
mand parser which produces actions rather 
than machine code, and a translator for 
Dataless Programming (RM-5290-ARPA), and as 
a general string manipulator. 

9b. SPONSORING AGENCY 
Advanced Research Projects Agency 

II. KEY WORDS 

Language and linguistics 
Computer programming language 

KSsH 


