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FOREWORÜ 

This is one in a continuing series of papers concerned with the theory and 
application of admissible probability measurement techniques and one of a 
sub-series of papers concerned with the effects of guessing on the inter- 
pretation and use of objective test results.  This paper constitutes the 
Second Semiannual Technical Report of work performed in support of the 
United States Air Force Office of Scientific Research contract number AF 
i<9(638)-l7l«'4 sponsored by The Aovanced Research Projects Agency of the 
Department of Defense (ARPA order number 833)- 

ABSTRACT 

Logic and mathenatioe ar« emi)loyed to yield very aonsevvativc estimates 
of t'ne gains insulting from changing over from choice methc^x to acinissible 
probability mcaaurement in the acmtnistration of existing tests. 

Equations and graphs give test reliability and measurement vc.lidity as a 
function of the distribution of ability levels in the population to be test- 
ed and as a function of the amourt and type of guessing engaged in by this 
populatic»:,.    Since guessing degrades the performance of choice teats and 
since the use of admissible probability measurement eliminates gucsning,  the 
extent of degradation corresponds to a conservative estimate of the gain re- 
sulting from conversion to admissible probability measurement. 

In some applications it may be vise to trade off the increase in measure- 
ment i>alidity against the advantages of shortening the length of the test. 
I'quatior.s and gixiphs shew hene mucn shorter the new guessing-free test can be 
and still retain the original meceitruncnt validity. 

Additional equations and curves shen} that choice tests with zero measure- 
ment validizies can have appreciable reliabilities due to differences in 
guessing strategy in the population. 

All the analyses indicate that conversion to admissible probability 
measurement will yield quite sigtdficaiit improvements in measurement validity 
along -jith considerable reduatiohs in test length. 



INTRODUCTION 

The recent development of the theory of admissible probability measurement 
(Shuford, Albert fc Massengill, 1965) and its successful aoplication in lab- 
oratory settings (cf. Toda, 1963; Shuford, 1965) promises to have a profound 
impact on the theory and practice of objective and semi-objective testing. 
This new capability to measure an individual's degree of confidence in the 
correctness of his answers to a test item means that a great deal more infor- 
mation can be obtained about the individual's state of knowledge.  The ad- 
ditional information yielded by this new method of testing may be utilized 
in many different ways.  Some of these ways, though promising great benefits 
and improvements over existing procedures, imply the development of new test 
items and structures and in other cases creation of new instructional strat- 
egies and materials (Shuford, 1965; Shuford 6 Massengill, 1966) .  There are 
however, other more immediately applicable ways of using this new capability 
to improve the performance of existing testing programs.  Since admissible 
probability measurement can be used with any true-false, multiple-choice or 
fill-in-the-blank test and since as in the case of conventional choice test- 
ing the item scores can be summed to obtain a total test score. It is en- 
tirely feasible to change from the conventional choice method over to ad- 
missible probability measurement In the administration of an existing test. 
Such a changeover does rot require the writing of any new test items nor 
does it require the development of new ways of analyzing and utilizing test 
scores.  Can such a simple and minimal change resul*- in any benefits to a 
testing operation? 

Section B of the First Semi-Annual Technical Report (Shuford & Massengill, 
1966) considered just this question and arrived at an affirmitive answer. 
The report took a very conservative approach to estimating the benefits to 
be derived from substituting admissible probobility measurement for choice 
testing.  The approach was conservative in two scrses.  First, it was as- 
sumed that data analysis and personnel decisions would be taken only on the 
basis of total test score.  The use of total test score dominates current 
personnel measurement and testhig practice because of the unreliability of 
the individual item scores.  Adding together these scores from the unreli- 
able items, in effect, builds up the sample size and thus increases the re- 
liability of the total test score.  With admissible probability measurement, 
however, each item score is In a sense completely reliable so that there is 
no longer the same compulsion to sum item scores to build test reliability. 
One is tempted rather to look at the pattern of individual item scores to 
arrive at personnel decisions.  But, as stated above this temptation has been 
temporarily resisted.  The potential information inherent in the pattern of 
item scores will be sacrificed to real only with total test scores as is the 
current practice.  This is one respect in which the analysis reported in 
Section B of the First Semi-Annual Technical Report is conservative in esti- 
mating the benefits from changing over to admissible probability measure- 
ment. 

The other respect in which the analysis is conservative is that it is assum- 
ed that persons taking the test either know the answer to an item with some 



assurance or are relatively uncertain about the answer to an item and that 
admissible probability measurement will be used only  to discriminate 
whether a person knows or is guessing at the answer to an item.  The item 
score obtained with admissible probability measurement typically ranges over 
the continuum from minus one up to plus one and thus can be used to make 
fine discriminations in the person's state of knowledge concerning the item 
In question.  This potentially useful information fs, however, sacrificed by 
mapping all the possible scores into two categories:  one Indicoting that 
the person knows the answer to the Item; the other indicating that the per- 
son does not know the answer to the item. This is the second respect in 
which the Item analysis reported in Section B of the First Semi-Annual 
Technical Report Is conservative in estimating the benefits of changing from 
choice testing to admissible probability measurement. 

Though these two restrictions assumed by the analysis underestimate the bene- 
fits to be obtained they do result in a very important advantage.  One can 
use logic and mathematics in a very straightforward minncr for a quantitative 
study of the effects of guessing on the quality of personnel and counseling 
decisions.  It can be determined just how much guessing degrades the per- 
formance of any test by comparing the performance of the guessing-contami- 
nated test with the performance of the test freed of the effect of guessing. 
The amount of degradation can then be used as an estimate of the gains that 
will result from eliminating guessing from the test and changing it into a 
guessing-free test. Since changing over to admissible probability measure- 
ment will e!iminate the effects of guessing from the test (Massengill £ 
Shuford, 1967) the amount of degradation in the performance of the test due 
to guessing now becomes the conservative estimate of the gains resulting 
from substituting admissible probability measurement for choice testing. 

Section B of the First Semi-Annual Technical Report used probability theory 
and decision theory to estimate the effect of guessing on the quality of 
personnel and counseling decisions in most of the major applications of 
testing.  In attempting to keep the mathematics as realistic as possible, 
however, a price was paid in that laborious numerical computations were re- 
quired to obtain any quantitative result. Therefore, the study was re- 
stricted to a ten-item test used with a population of just one distribution 
of ability levels.  In this respect the generality of these results is quite 
restricted.  The results arc important, however, in that they serve the same 
purpose as existence proofs in showing something is possible.  Specifically 
they show that guessing at the levels commonly encountered in practice seri- 
ously degrades the quality of selection, classification and placement deci- 
sions based on total test score.  Further, they show that guessing can so 
seriously degrade the performance of a test used for educational and voca- 
tional counseling purposes that it is best to abandon testing for this pur- 
pose and just ict as though every person had the same average ability level. 
Additionally and less suprisingly the results show that moderate levels of 
guessing can seriously degrade the reliability and validity of a test.  And 
finally it is shown that a person's test-wiseness, i.e., whether or not he 
guesses on a test, largely determines his chances of being successful on the 
test. 
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RATIONALE 

It has been shown both theoretically (Shuford 6 Massengill, 1966) and empiri- 
cally (Shuford, 1965) that changing from choice testing to admissible prob- 
ability measurement can increase the (.liability and validity of r test. 
This increased reliability and validity can be important In two respects. 
First, the higher the validity of the test the better It 1$ In the sense 
that It yields better information which in turn implies that better deci- 
sions can be made on the basis of the test information.  There exist some 
situations, however, where it Is better to accept a shorter but less valid 
test.  The longer the test the greater the "price" that must be paid for the 
test Information.  Since the reliability and validity of most tests can be 
increased by adding on additional items, it Is apparent that a decision has 
been made at least implicitly that the additional validity gained by length- 
ening the test Is not worth the cost of a longer test.  Now, when we think 
of using admissible probability measurement with an existing test we should 
think also of the possibility of trading off the Increased test reliability 
and validity against the possibility of having a nuch shorter test with its 
reliability and validity equal to or greater than that of the original test. 
The shorter test may, of course, be obtiined by using only a sub-set of the 
items in the original test and thus does not require the writing of new test 
items but just an elimination of I terns in the original test.  This is an 
easy change to make in a test and one that should be considered in those 
cases in which the potential reductions in cost in testing more than offset 
the potential gains from increasing the validity of the test. 
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shorter test.  In some instances, a certain amount of test- 
available at a constant cost.  Here, the leftover testing 
to good use by introducing new tests which measure other 
of the individual.  This new battery of tests may be of much 
idth" (Cronbach 6 Gleser, !.L5) and may greatly improve the 
the testing program. 

t 

It  should be apparent   that  there must exist  some   test which 
the  same  time shorter and more  valid by   the  changeover  from 
to admissible  probability measurement.     What  characterizes 
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these tests? Are all tests 01' this sort? How large are the gains that can 
be expected from changing over f'om choice testing to admisiible probability 
measurement? 

EVERYONE GUESSES 

For all the computations carried out below we will use one of the six differ- 
ent beta distributions shown in Figure I.  Distribution A represents an 
equol distribution of ability levels over the population to be tested.  This 
rectangular distribution is not likely to be found in practice but is of 
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These are the types of questions that will be answered here. As before, 
logic and mathematics will be employed to yield very conservative estimates 
of the gains resulting from the use of admissible probability measurement. 
Equations will be derived which give test reliability c 1 measurement valid- 
ity as a function of the distribution of the ability levels in the populo- 
tlon to be tested and of the amount and type of guessing engaged in by this 
population.  Then additional equations will be derived to show what happens 
when guessing is eliminated by changing over to admissible probability mea- 
surement.  These equations will be solved and the results plotted over the 
complete range of parameter values for the most important cases to be en- 
countered in practice.  All of the equations hold for tests of any length. 

The formal statement of the testing process is similar to that given in Sec- 
tion B of the First Semi-Annual Technical Report ^nd may be found in Mathe- 
matical Appendix A.  Briefly, the testing process is based on the indepen-        p. 
dent sampling of test items from a large pool and on the independent sam- 
pling of persons from a population which Is characterized by a specified 
distribution of ability levels where ability level is defined as the propor- 
tion of items In the pool that the individual knows. 

: 

D 
Assume now that each person to be tested knows a certain proportion of the 
test items in the pool.  Let this proportion be represented by p which can, 
of course, range from zero to one.  Different people will know a different 
proportion of the items and thus differ in ability level with respect to 
the test under consideration.  This distribution of ability levels is rep- 
resented by a beta distribution defined over the intervil from zero to one. 
The beta distribution has two pornneters, a anu  b, which complutely determine 
its shape and location.  The paroincters a and b can take on any values 
greater than zero.  The mean of the bete  distribution can be obtained from 
the two parameters, thus p ■ a/(a+b).  Also the variance of the beta distri- 
bution can be written in terms of these parameters, thus 

a2 - ab/(o+b) (a+b+l). 
P 

The beta distribution is very flexible and can assume many shapes depending 
of course upon the particular values of a and b selected. 
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some interest because it represents an extreme.  Distribution B represents 
the distribution of ability levels for a test of some considerable diffi- _ 
culty; while Distribution C represents a distribution of ability levels for 
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a test which is mther easy.  Distribution 0 is of considerable interest be- 
cause It is an approximation of conditions that are often found in practice. 
There is a symmetric distribution of ability levels with considerable vari- 
ation over the range. Distributions E and F represent respectively sym- 
metric distributions with less variability In ability level, with Distrib- 
ution F probably representing the other practical extreme to Distribution A 
in the sense that In A the ability levels ire quite spread out while in F 
the ability levels are clustered around the average ability level of 1/2. 

Though there may be other distributions of ability level of interest these 
six represent quite a few types and probably place reasonable practical 
bounds on those that will be encountered in practice.  The equations given 
below can, however, be used to derive the results for any of the Infinite 
number of beta distributions of ability levels, but we will solve them only 
for these six distributions. 

Now, if a person knows the answer to a particular item he will answer it and 
get it correct.  If, on the other hand, he does not know the answer, we as- 
sume for the purposes of this section that the person will guess at the an- 
swer and that he has a probability, 6, of getting the item correct by chance. 
The guessing level, 6, can range from zero to 1/2.  If 6 ■ 0, then no one is 
guessing on the test, i.e., if a person doesn't know the answer to an Item, 
he leaves it blank.  If 6 ■ 1/2, then the maximum amount of guessing pos- 
sible is occurring.  In a true-false test r * 1/2 also equals the minimum 
possible amount of guessing because if there are only two possible answers, 
the probability of chance success must be 1/2. However, this value of 
0 ■ 1/2 also represents a maximum amount of guessing for any other test. 
For example, in a five alternative multiple-choice test the guessing level 
may be equal to 1/2 because people may have enough information to exclude 
three of the five alternatives and just have to guess between the remaining 
two.  Likewise, in a constructed response and fi11-in-the-b lank test the 
guessing level may be 1/2 if people tend to think of only two possible an- 
swers and have to guess which of the two is right. A guessing level of 
6 ■ 1/5 is probably a practical minimum in the sense that for a five alter- 
native multiple-choice test It is the smallest value that 0 can assume. 
That is, if a person has no Information with which to discriminate between 
.he five alternatives but must just pick one at random, then his probability 
of chance success is 1/5. Note that if he does have any information, then 
his probability of chance success would be much greater than 1/5. Even In 
constructed-response tests it is unlikely that people are able to think of 
mere than five possible answers and thus achieve a guessing level of less 
than 1/5.  So we will take E ■ 1/5 to be a minimum practical guessing level 
and 0 ■ 1/2 to be a maximum possible guessing level, though we will inves- 
tigate test reliability and validity over the complete range from 0*0 
(representing what can be achieved by admissible probability measurement) up 
to 6 - 1/2. 

ONE ITEM TEST RELIABILITY 

Suppose that two lest items were selected at random from the pool of test 
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N-ITEM TEST  RELIABILITY 

I: 
items and that each of the test Items are given to persons selected from a 
population with distribution of ability levels characterized by the beta 
'distribution with parameters a and b.  If a person answers an item correctly, 
he receives a score of one and If he answers incorrectly, he receives a 
score of zero. Each of the two items can be considered a separate one-Item 
test and the correlation between these test scores would represent the one- 
item test reliability. Suppose further, that If a person does not know the 
answer to an item, hw guesses with probability, 6,  of  success.  Now from 
Mathematical Appendix C we have the equation for a one-item test reliability 
under the condition that everyone guesses at level 6: 

I 
I 

(i-e)2a2 

r
«/8l,,b) ■ ..,' ' r> I I - W I   • •• 

:: 

D 

where p - (l-e)p + 9. Notice that this one-item test reliability depends 
upon three parameters, 0, a and b.  Examination of this equation reveals un- 
equivocally that the test reliability becomes smaller as the variance, a2 of      rt 
the distribution of ability levels becomes smaller.  In effect, this vari- 
ance sets an upper limit on test ret lability. 

• 

It Is not so clear how guessing level 6 affects test reliability since 9 
appears in both the numerator and denominator of the equation.  The impact 
of the guessing level can best be seen by fixing the distribution of ability 
levels, by specifying a and b, and then solving the equation for different 
values of 8.  The results of such computations are shown In Figure 2-for the 
six distributions of ability level plotted In Figure 1.  The curves in Figure 
2 indicate clearly that increasing the guessing level decreases test rcli-        r-i 
ability.  Examination of the curves for different distributions of ability 
level shows that test reliability is related to the size of the variance of 
the distribution of ability levels. And further, that an asymmetrical 
distribution (Distribution B and C) Interacts with guessing level to effect 
test reliability. The easy test corresponding to Distribution C is rather 
slightly affected by guessing level whereas the difficult test represented 
by Distribution 8 Is greatly affected by Increasing the guessing level. All 
Ip all, the existence of testing significantly reduces the reliability of a 
test especially when one considers that .20 is the minimal achievable guess- 
ing level In existing choice tests and that .50 is a very commonly encounter-      * 
ed guessing level. 

: 

Assume now that a longer test containing n items is formed by randomly 
selecting additional items from the pool of test items so that two equiv- 
alent n-ltem tests are obtained and given to persons from the population to 
be tested.  In this case, it is shown In Mathematical Appendix C that the 
Spenrm.in-Brown prophecy formula type of process can be applied M yield the 
correlation between these two tests of length n. This is the test reliability 
for an n-item test and it is dependent upon four parameters, n, 6, a and b. 
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Thus, 

(2) r    (n,e|a,b) 
A7 

nrxy(e|a,b) 

♦ (n-l)r    (0|a,b) 

• 

Notice  that  then-item test  reliability  is a  function of the  length of  the 
test,  n,  and of  the one-item test reliability.     This nieans,  of course,   thnt 
by knowing  the  reliability  for a one-item test we can  determine  the  reli- 
ability  for a  test of any   length.     Equation   (2)   implies  that   if  the  test   is 
made   longer and  longer   (n   tends   toward  infinity),   the   reliability of   the 
lengthened test will  approach one.    The  test can be made perfectly  reliable. 
This   Is a  traditional   result  from test theory.     If  this equation were  solved 
and plotted as a function of n,   It would generate a curve which  increoses by 
smaller and smaller steps  as  n   increases and asymptotically approaches  a 
reliability of one as  shown by  two of  the curves   in  Figure k.    This ability 
to solve for  the  reliability of  tests of any  length  Is  very  important  since 
It allows us  to  infer  the effect of shortening o  test and to compare savings 
from eliminating guessing. 

ONE-ITEM MEASUREMENT VALIDITY 

Suppose that just one I tern Is selected from the pool of available items and 
given to a sample of persona from the population to be tested. Each person 
will moke a score of either zero or one point depending upon whether or not 
they answered the  item correctly.    Each person   is  also characterized by «< 
having a certain ability   level,  p,  corresponding  to the proportion of   items 
In  the complete pool   to which he knows  the answer.     Now, what  is  the corre- 
lation between  the test score and this ability   level?    This correlation would 
represent  the ability of  the  test to measure  the person's ability  level  and 
in  this sense  the measurement validity of  the  test  con be dt.rived as   is 
shown   in Mathematical   Appendix D.     The one-item measurement validity of  a  test 
in which everyone  is  guessing at  level   9  is 

(3) r    (Ola.b) xp     ' 

(i-e)< 

^TH5T 

As   in  the case of  test  reliability,   this correlation   is a function of  6,   a and 
b,   i.e..   It   is  affected both by  the guessing   level   and by  the parameters  of 
the  distribution of ability   levels.     In  fact,   by  comparing   (3)  with   (1)   it 
may be seen  that  (3)   is  nothing more than  the square  root of  (l).     Figure  3 
shows  how this one-item test measurement validity   Is  affected by different 
levels of guessing for situations based on   the  different distributions  of 
ability  levels.     The effect   Is quite similar  to  that obtained for  test   reli- 
ability and  it must be  so due  to the direct   relation between  the  two corre- 
lations.    Test measurement  validity  is degraded by  the existence of guessing 
nnd   the degradation will   be significant  for   levels  usually encountered   in 
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practice. 

N-ITEM TEST MEASUREMENT VALIDITY 

Now suppose that we randomly take a sample of n Items from the pool of I terns 
and give It to people from the population to be tested. Consider the corre- 
lation between the total test score and the ability level for this test. As 
in the case of test reliability, the Spearman-Brown prophecy formula type of 
process can be used to project the measurement validity of a test of any 
length and  the  resulting equation as  derived  in Mathematical  Appendix  0  is 

r    (ela.b)^" 
ik) r    (n,e|a.b) XP 

XP /I ♦ (n-l)r    (Gla.b) 
*y 

Thus,   from knowing  the one-item test measurement validity we can obtain  the 
measurement validity  for a  test of any  length.     This equation  is   really just 
the square  root of  (2)   and thus has quite similar properties.     For example, 
as   the sample size   increases without bound  the measurement validity of  the 
lengthened test approaches one.    See  Figure  k. 

MAXIMUM REDUCTION   IN  TEST  LENGTH  POSSIBLE WITHOUT  REDUCING  EITHER TEST 
RELIABILITY  OR MEASUREMENT VALIDITY. 

Since  the foregoing equations   imply  that   the existence of guessing  reduces 
both  test reliability and measurement validity and  that both of  these quanti- 
ties are a function of  the   length of  the  test,   several   interesting  results 
may be deduced.     First,  and most obviously,   if admissible probability mea- 
surement were used  to eliminate guessing  in an existing test  then  the  re- 
sulting total   test score would be both more  re-Hable and valid.     Second, 
though the elimination of  items from this new test would decrease both  test 
reliability and measurement validity,  there   is  generally a  range of  reduced 
test  lengths over which  the guessIng-free  test will  be both more  reliable 
and valid than  the   longer guessing-contaminated  test.    There will,  of course, 
also be a  range of   reduced  test   lengths over which  the guessing-free  test 
will  be  less   reliable and valid  than   the much   longer guessing-contamlna.ed 
tests.    And  there will  be one unique  reduced  test   length at which  the guess- 
ing-frec  test will  have essentially  the same  reliability and validity as  the 
much   longer guessing-contaminated  test.     It   is  shown   in Mathematical   Appen- 
dix E that this  reduced test  length,  ng,  at which  the reliability and valid- 
ity of the guessing-free  test exactly matches   that of  the original  guessing- 
contaminated  test can be obtained by solving ■   '-'' 

n  r    (e|a,b)[l-r    (0|a,b)] 
(5) nn -  2_** ÜL 

i 

'0 

where ne   is   the   length of  the original  guessing-contaminated  test with one- 

8 

item test  reliability  rv   (QJ^.b) while  the one-item test  reliability of  the 
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guessing-free test is rxy(0|a,b). 

The value ne - HQ  is typically a maximun. possible reduction in test length 
In the sense that very seldom would one want to reduce the test reliability 
and measurement validity below that yielded by the original guessing-con- 
taminated test.  Any test length smaller than n« would yield a test reli- 
ability and measurement validity smaller than tnat of the original test 
while a test length greater than no would yield a test reliability and mea- 
surement validity larger than that of the original test. 

The examination of (5) clearly indicates that maximum reduction in test length 
possible is a function of the length of the original test ng.  The depen- 
dence of ng on the guessing level, 6, occurring in the original test and up- 
on the distribution of ability level«; as represented by a and b is not clear 
from examination of (5).  Therefore, we have set ne ■ 100, a fairly typical 
length for a test used for personnel decisions, and have solved (5) for dir- 
ferent values of 6 for each of the six distribution of ability levels con- 
sidered in this report.  The results are plotted in Figure 5.  Remember that 
D represents a rather classical distribution of ability levels.  In this case, 
if the guessing level in the original 100-ltem test were at the minimal value 
of 1/5 then changing to admissible probability measurement could result in 
reduction of the length of the test to about a 63-item test, while if guess- 
ing were occurring at the maximum level of 1/2, then the admissible probability 
test could be made as short as 30 items.  Somewhat greater savings result 
in the case of a more difficult test as indicated by Curve 3 while slightly 
smaller savings result In the case of easier tests as indicated by Curve C. 

The reduction in test length Indicated by these curves is not insignificant. 
The savings are of such magnitude that using admissible probability measure- 
ment to eliminate guessing means that now two or three tests can be given to 
increase a "bandwidth" of the testing program without any increase in total 
testing time.  The increased "bandwidth" could yield a very great improve- 
ment in the overall testing process as argued by Cronbach & Gleser (1965). 

It should be understood that the use of admissible probability measurement 
does not require reduction in the length of the test to exactly the amount 
indicated In these figures. If the reduced test is shorter than that In- 
dicated on the curves then it will be less reliable and valid than the orig- 
inal tests, while if It Is longer it will be more reliable and valid than 
the original guessing-contaminated test. The optimal length of the new test 
should be determined by careful comparisions of the value of increased va- 
lidity with the value of reduced test length, possibly to increase "band- 
width" of the testing program. 

SOME PERSONS GUESS, OTHERS DON'T 

TEST RLLIABILITY 

The situation analyzed above is realistic for many applications of testing 
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but not for all.  To be more explicit, suppose that some of the testing poou 
lation were test-wise and wault* guess whenever they dl<< not know the answer 
to a test item while others in the population to be tested were not test- 
wise and invariably would choose to skip an item rather than to guess at its 
answers.  This situation is sometimes encountered in testing programs.  It 
is not covered by the analysis given above since there it was assumed that 
everyone guesses.  Here we will assume that a certain prooortion, q, of the 
population to be tested will guess at level 6 and that tlie rest of the test- 
ing population, represented by the proportion l-q, will never guess on the 
test.  This is such a basic change in the description of the testing process 
that it is quite possible that It will make significant changes in our con- 
clusions.  As shown in Mathematical Appendix C the one-Item test reliability      T 
when a proportion q of the population to be tested guesses at level 0 is: 

(6) r (q,9|a,b) - -^ 9-e xy 
Pqe(,-Pqe) 

:: 

D 

where Pq6 - q[(l-e)p + e] + (l-q)p, 

p22 - q[(l-e)V ♦ 2e(i-e)p ♦ e2] ♦ (i-q)^2 

. 2    a(a+l) and JJ* ■  * '■  . 
(a+b)(a+b+l) 

The n-item test reliability as derived In Mathematical Appendix C ?s: 

nr  (q,0|a,b) n 
(7) r (n.q^la,^ -  Ä  • 

y I + (n-l)r (q,e|a,b) 
xy 

Equation 6  is   too complicated to tell  by  Inspection how the different pa- 
rameters q,   9,  a and b affect  test  reliability.    However,  by soivlng  the - 
equation  for  the  six distributions of ability   levels considered here,  we 
can gain some   idea as  to how aoility  level,  guessing  level  and the propor- 
tion guessing affects   test  reliability. 

If  1/2 of  the population  to be  tested guesses  at  level  9 while others   in  the 
population  do not guess  then test  reliability varies as a runction of 
guessing   level  as  shown   in Figure 6.     These  results are quite different  from 
those obtained and graphed   in Figure 2.     In Figure 2,   increased guessing 
always   lowers   test   reliability.     In contrast  to that consistant and neat 
result, we now find  that   increased guessing can serve to  increase  test  re- 
liability  rather  than  to reduce  it. 

Does  this  strange  result of guessing  increasing test reliability hold only 
when   1/2  of   the  tested population  guesses  or does   it hold for other situ- 
ations   too?    Figure  7 examines  test  reliability for the minimal  guessing 
level  of  9 -   1/5  for all  possible proportions q,  all   the way from the ex- 
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treme case of no one in the tested population guesses to the case In which 
everyone in the tested population guesses.  Figure 3 shows the same anal- 
ysis for the case in which all guessing is done at the maximal level, 6 » 1/2. 
Examination of these two figures shows that the phenomenon is not unique 
for q ■ 1/2. 

These results certainly cast doubt upon the gains to be expected from 
changing over to admissible probability measurement.  To be more specific, 
If the testing situation is one in which some of the people guess while 
others don't then changing to admissible probability measurement to elim- 
inate guessing may result in a test of lesser reliability than that of the 
original test.  In such cases, a lengthening of the test may be required to 
yield the same reliability as that of the original test.  Whether a gain or 
a loss is realized from the changeover to admissible probability measure- 
ment depends very critically upon the combination of parameter values appro- 
Mate to the test situation.  Taken together the results of this new analysis 
suggest  that changing over to admissible probability measurement may yield 
only slight benefits and in many cases will actually impair the reliability 
of the test. 

Before concluding, however, that changing over to admissible probability 
measurement holds little promise for improving testing it might be worth- 
while to take a look at the measurement validity of a test used with a 
population where some persons guess while others don't. 

TEST MEASUREMENT VALIDITY 

As shown in Mathematical Appendix D, the one-item measurement validity for 
such a test is 

xp 

The n-item measurement  validity   is 

r     (q,e|a,b)/?7 
(9) r    (n.q.ela.b) ^ 

XP 1   ♦  (n-l)r     (q30|a.b) xy 

Figure 9 shows the one-item measurement validity for each of the six dis- 
tributions of ability level when half the persons guess.  Notice that In this 
case, increasing the guessing level results in decreased test validity. 
Figure 10 shows one-item measurement validity when a proportion q of the 
tested population are guessing at a minimal guessing level 0 ■ 1/5.  Here 
notice that increasing the proportion of people guessing decreases test va- 
lidity.  Figure 11 shows the corresponding results when those persons gucss- 
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ing are guessing at a maximum guessing   level  6 ■   1/2.     Again   increasing  the 
proportion of persons guessing decreases  test validity.    These results are 
more  in accord with what was  found before.    The  results  shown  in  these 
figures and  the  results of other computations  indicate that guessing in any 
amount done by any proportion of  the  tested population can never increase 
test measurement validity.     This   result agrees with   intuition much better 
than  the  result concerning  test  reliability. 

Look at   (8)  and notice  that  the test measurement validity  Is no longer equal 
to the square  root of  the  test  reliability.    This breakdown of the  relation 
between   test  reliability and validity has a very   important   implication which 
can be  seen by examining  (9).    Now,   the measurement validity of the test 
when   tests of   length greater  than one are considered depends both upon  the 
one-Item test measurement validity and upon the one-Item test  reliability 
which  can no  longer be expressed   In  terms of one another.     In testing situ- 
ations where everyone guesses we found that  lengthening the  test  Indefinitely 
made both  test  reliability and measurement validity approach  the maximum 
possible value of one,  that   is,   resulted  in a completely reliable and com- 
pletely valid  test.     In  this new situation where some guess while others 
don't,   Increasing the  length of  the  test without bounds  results   In the test 
reliability approaching maximum possible value of one,  but  the  test measure- 
ment validity may approach some other value  less  than one.     See  Figure A 
for an   Illustration of this.    That   Is,  depending upon  the circumstances,   It 
may be  Impossible  to obtain a completely valid test.    But  the  fact  that some 
persons  guess while others  don't  sets an absolute upper   limit on  the measure- 
ment validity  that can be yielded by  the  test no matter how  long  It  is.    This 
upper  limit on  test measurement validity  Is 

(10) rxp(*,q,e|a,b) 
r    (q,e|a,b) 

.    XP   
/r    {q,e|a,b) 

While the maximum percent of true variance which can be accounted for by the 
test of Infinite length Is given by the square of (10).  This percent of true 
variance accounted for is considered a better measure of test performance 
than test measurement validity. 

Figure 12 shows the upper limit In the percent of true variance accounted 
for even if the test Is of Infinite length for the case In which 1/2 of the 
persons guess at level 0 for each of our six distributions of ability level. 
These curves indicate that any amount of guessing degrades the performance 
of the test.  This degradation becomes of some significance for even a minimal 
guessing level of 6 ■ 1/5 and Increases much more by the time the guessing 
le>el reaches a maximum of 6 ■ 1/2.  Thus, If some persons In the tested 
population guess while others don't, the use of a conventional choice method 
which allows for guessing means that there will be a barrier to the maxi- 
mum performance that can be realized by the test. This barrier can not be 
breached as long as we continue to use conventional choice methods for test 
admlnlstratIon. 
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Figures 13 and \k  show the upper limit of test performance when those per- 
sons guessing guess at the minimum level and at the maximum level.  These 
figures make it quite clear that test performance is degraded whenever one 
encounters a mixed population where some persons guess and others don't. 
It is much better either to have everyone guessing or no one guessing and 
these are the only two situations that eliminate the barrier en maximum test 
performance. 

MAXIMUM REDUCTION IN TEST LENGTH POSSIBLE WITHOUT REDUCING MEASUREMENT VALIDITY 

So far the results apply only to tests of infinite length. What happens when 
we consider the more realistic case of using a test of finite length?  In 
particular, we can consider the möximum reduction in test length possible by 
changing over to admissible probability meosurement to eliminate guessing. 
In this new situation, we will of course get different results depending upon 
whether we equalize reliabilities or mensuroment validities.  Since measure- 
ment validity, not reliability, is the real measure of test performance, we 
need concern outselves only with measurement validity.  If the guessing-free 
test has the same or greater validity, we don't really care that it has less 
reliability than the original guessing-contaminated test.  This may seem 
counter-intuitive but the next major section below may provide some under- 
standing of why we shouldn't pay too much attention to test reliability 
when the test is affected by guessing.  As before, wo can solve for the re- 
duced test length, nQ, at which the validity of the guessing-free test exactly 
matches that of the original guessing-contaminated test as shown in Mathe- 
matical Appendix E: 

(11)  n0 

n Qr
2  (q,e|a,b) [1 - r  (0|a,b)] 

qO xp   ' xy  ' 

rxy(0|a,b){l - rxy(q,9|a,b) + nqe[rxy(q,e|a,b) - r2xp(q.G|a,b) ]} 

where,   r    (0|a,b)   is   the one-item reliability of   the gucssing-free version 
of  the  te^t. 

This   reduced  test   length,   n«,   is shown  for a   100-item test given   to a pop- 
ulation with  Distribution  D of ability   levels  some of whom guess  at  the 
minimum  level   in  Figure   15  and at  the maximum   level   in  Figure   16.     Test   re- 
liabilities and measurement  validities are also shown on  these graphs.     The 
measurement validities   for  the new guessing-free  test and for the old guess- 
ing contaminated   test will   of course be  the  same.     The  test  reliabilities, 
however,  are different with  the new guessing  free  test having somewhat   less 
reliability  than  the old guessing-contaminated <est of greater  length. 

As  to the reduced  test   length possible,   the effect of different guessing 
strategies   Is quite dramatic.     In  the  case of minimal   guessing,   if everyone 
guesses,   the new  test  can bo reduced to about 63   items.     If,  however,   about 
half of  the people guess while  the others  don't,   then  the new test can be 
reduced  to about  3'»   items.     In  the case of maximal   guessing,   if everyone 
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guesses, the new test can be reduced to about 30 items while if about 1/2 
the people guess while the others don't, the new test can be reduced to 
about 5 or 6 items. The existence of differences in guessing strategy in 
the tested population can greatly degrade test performance and, conversely, 
can mean that even greater benefits will be yielded by changing over to 
admissible probability measurement.  Reducing the length of a test to l/20th 
of its original length or increasing its validity from the high SO's into 
the high SO's  merely by changing the method of test administration is not a 
trivial benefit. 

The same computations have been performed for the other five of the six dis- 
tributions of ability level.  The results are not too different, with greater 
gains in some cases and somewhat smaller gains in others. 

TEST RELIABILITY WHEN MEASUREMENT VALIDITY IS ZERO. 

It may be instructive to investigate what happens to test reliability when 
there is no validity whatsoever to the test. By zero measurement validity 
we mean that the probability of a person from the tested population knowing 
an item varies independently from item to item. His ability level is an 
independent random variable distributed according to the distribution of 
ability levels.  Thus, learning whether a person knows a given item tells 
you nothing about whether or not he knows the answer to another item. There 
Is no validity whatsoever in such o test. 

Now if none of the persons in the tested population were guessing, the test 
would have no reliability whatsoever.  If, however, a proportion q of people 
consistently guess when they do not know the answer while the rest of the 
persons refuse to guess, would the reliability still be zero for such a 
situation? As shown in Mathematical Appendix Z the reliability for such a 
test with zero validity but where a proportion q of persons with a dis- 
tribution of ability levels of mean p are guessing at level 6 is 

(12) r' (q,e|p) 
q(l-q)e2(l-ß)2 

P2(l-P2) 

where p - qp + (l-q)p, '2  HKe 

This equation   is not always equal   to zero.     In  fact,   it   is generally other- 
wise   if   there   is any guessing whatsoever.     Figure   17 shows   test  reliabilities 
for a   100-item  test as a  function  of  the various   levels  of  guessing.     The 
reliabilities  can become quite   large even   if  there   is  a minimal  amount of 
guessing.     Figures   18 and   19  show  the same  thing  for minimal   and maximal 
levels of guessing as  the proportion of people adopting a guessing strategy 
varies.     Maximum reliability   is  observed when about   1/2   the  persons guess 
and   1/2  do not. 

Differences   in guessing strntegies  among people can contribute  to the re- 
liability uf a choice  test.     In one sense this  reliability  Is completely 
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5puricus   in   that   the   test has no mcasurencnt  validity.     In  another  sense 
though,   the   reliability   is  not spurious.     What   is   causing  this   reliability 
arc  the differences   in  guessing strategy of  the   tested population.     This   is 
also what  the   test   is  measuring,   if   it   is measuring anything.     More  spe- 
cifically  the   test   is  measuring  the  test-wiseness  of  the  tested population. 
This   test-wiseness would also enter   into  the  behavior of  the   tested pop- 
ulation on any other choice  test  thnt   they might   take.     Therefore   the  cor- 
relation between any   two choice tests would be positive and  there would be 
at   least epparent  validity between any  two choice  tJSts.     In  some  cases, 
this  can be a  real   validity  though   it   is  usually not   realized by   the  user of 
the  test   information.     These  tests are measuring how  test-wise  pcrple  ore. 
This   test-wiseness  can   in   turn  reflect how much experience persons  have  had 
taking  tests which   in   turn  can   reflect   their   level  of educational   attain- 
ment,   socio-economic background,   race and  various  other factors.     So,   in 
this  sense,   these   tests  have some validity.     However,   it would |«em  to be 
much rrore efficient   to just have a person  fill   cut a questionnaire  directly, 
stating his   level   of educational   attainment,   socio-economic background,   race, 
etc.,   rather  than having   this be   indicated   indirectly   through  spurious  and 
misleading   test   results. 

It  should be   realized  that   if admissible  probability measurement were  used   to 
administer such a   test,   guessing v/ould be completely eliminated and  zero 
test   reliabilities  and measurement validities would be obtained.     The   test 
would be shown   to be worthless  as a  test.   One wonders how much of  the   re- 
liability and validity of  certain widely  used   tests   is of just  this  sort. 
Now,  for the  first  time,  wc can hope  to find out. 

SUMMARY AND  CONCLUSIONS 

Logic and mathematics has been used  to deduce  the effect of guessing upon 
test  reliability and measurement validity.     Analysis  shows choice  testing 
to be highly sensitive   to the degrading effects  of  guessing.     In  fact,   the 
extent of degradation   is  so unexpectedly   large  as   to be almost unbeliev- 
able when viewed   in   light of  the current  consensus   that  the existence of 
guessing has  near   trivial  effects on   the Performance of objective and semi- 
objective  tests.     It  does  appear,   however,   that   the   logic   is   inescapable 
and   is   in accord with  current and meaningful   usage   in  test  theory. 

Fortunately we are now   in a position   to  resolve   this  paradox.     The   logic 
of decision-theoretic psychometrics promises   that we can eliminate  the 
effects of guessing from any  test simply by changing over from a choice 
method  to admissible  probability rreasurement   in   the administration  of   the 
test.     Then,   by carrying out  the standard  psychometric analyses  one can 
empirically determine  the extent  to which   the original   choice   test was 
affected by  testing and  the benefits   resulting  from the changeover   to 
admissible probability measurement. 

What   is   the   likely  result of  such empirical   studies?    Will  admissible  probab- 
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I 1ity measurement yield the rather overwhelming benefits indicated by the 
foregoing analysis? The major hazard to confirmation may be that the mathe- 
matics is not complex enough to adequately represent the testing situation. 
More specifically, the mathematics are based upon the assumption that every- 
body guesses at the same level.  This is in general not true since items 
may vary in the potency of their misleads and individuals may vary in the 
extent to which they have partial knowledge of the subject.  At considerable 
cost the mathematics may be generalized to allow for a variable guessing 
level.  It appears that such a generalization would yield rather well- 
behaved equations which are affected by an average  guessing level. Thus, 
the results would fall somewhere between the minimal and maximal guessing 
levels encountered.  While this means that a maximal benefit, soy reducing 
the length of the test to l/20th of the original size, will not be obtain- 
ed in practice, neither wi 1 1 a minimal benefit of reducing the length of 
the test by 1/3 be obtained, but rather something in between, say, re- 
ducing the length of the test by a factor of four or five.  Such gains 
still remain of considerable practical importance for many testing appli- 
cat ions. 

Another respect in which the mathematics may be questioned is that they arc 
based en a single ability level which is constant from item to item.  How- 
ever, whether this is a constant ability level or an average ability level, 
makes no difference to the analysis as long as one is concerned with total 
test score.  On the other hand, if one is concerned with item analysis, 
this assumption does make a difference and should be considered. 

If it is considered, it can work In favor of changing over to admissible 
probability measurement.  It does it in this way: Some of the analysis 
given above was concerned with reducing the length of the test to trade off in- 
creased reliability and validity against reduced testing time and greater 
"bandwidth" of the testing battery.  These parts of the analysis did not 
discriminate between test items in the sense that they assumed either that 
all the items have the same characteristics or that a random sample of items 
would be selected from the original test.  In practice, this restriction 
does net have to be maintained.  To be explicit, une can look at the item 
characteristics in terms of the data obtained from admissible probability 
measurement and select the best possible sub-set of items, say the sub-set 
of Items that yield maximum test validity.  Such an approach based on an 
analysis of the structure of the test items will, In general, mean even 
greater reductions in the length of the test resulting from the conversion 
to admissible probability measurement.  For example, in a test in which the 
items are completely redundant, such an analysis would indicace that the 
test can new be reduced down to a one-item test and have the same validity as 
the original test of any length.  This is admittedly an extreme case, but it 
shows what is possible by analyzing the structure of test items and se- 
lectively choosing the items to be included in the revised guessing-free test. 

So, all in all, it appears that the existence of guessing has seriously de- 
graded the performance of objective and semi-objective test programs, 
new method of test administration, admissible probability measurement, 
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promises   to eliminate  the effect of  guessing.     This  holds out   the hope 
that   testing  programs may be greatly   improved and  that new and exciting 
uses may be found which will   greatly enlarge  the scope of  application of 
objective and  semi-objective   tests. 
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Figure    7 

TEST  RELIABILITY (ONE-ITEM) 
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Figur«   9 
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Figure   II 

TEST  MEASUREMENT   VALIDITY  (ONE-ITEM) WHEN  PROPORTION    q 
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Figure   13 

MAXIMUM   PERCENT OF   TRUE   VARIANCE 
ACCOUNTED   FOR  (TEST OF   INFINITE   LENGTH) 

WHEN   PROPORTION  q   OF PERSONS   GUESS   AT LEVEL   0 = -^ 
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Figure   15 

REDUCED   TEST LENGTH   POSSIBLE   FOR  DISTRIBUTION   D 

WHEN   PROPORTION q OF   PERSONS  GUESS  AT  LEVEL   e=j 
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100-ITEM TEST RELIABILITY  WHEN  PROPORTION 
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TEST WITH  ZERO MEASUREMENT VALIDITY 
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100-ITEM TEST  RELIABILITY   WHEN   PROPORTION 

q OF PERSONS GUESS AT LEVEL  ^=1 FOR   A 
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MATHEMATICAL  APPENDICES 

A. FORMAL  STATEMENT  OF THE TESTING  PROCESS 

Define: 

q = proportion of persons who guess 

0 = probability of success if person does guess 

p = proportion of items in pool that person knows 

X = a random variable yielding "1" if person answers item correctly, 
"0" otherwise. 

Y = a random variable yielding "1" if same person answers another 
item correctly, "0" otherwise. 

Z = a random variable, independent of p, yielding "1" if person 
guesses, "0" otherwise. 

Test items are randomly and independently selected from large pool of 
i tems. 

Persons  are   randomly selected  from  relevant population  for administra- 
tion of  tests. 

B. BETA DISTRIBUTIONS  OF ABILITY  LEVEL 

Since p  is   the proportion of  items   in   the  test pool   that a given   indi- 
vidual  knows,   it  can  serve as a comprehensive measure of his   level  of  ability 
or achievement.      It   is,   at   least,   superior   to the notion  of   true  score  or 
ability   level   of  classical   test  theory based upon  the number of   items  an- 
swered correctly.     This,  of course,  would be  contaminated by  the effects of 
guessing. 

Since  p has  a   finite  range  from zero  to one,   it   is  not natural   to use a 
normal   distribution   to  represent   the  frequency of occurrence of p   in  a pop- 
ulation.     The most  commonly used and  flexible distribution  for a  variable 
defined over  the   interval   [0,1]   is   the beta distribution: 

Vp|a•b, ■ir(i^r''a"l"-'''b" 
where a,b  > 0. 



C.     TEST  RELIABILITY 

IIQII II I II 

"0"    P|l Pl2 p) • 

"1"    P21 P22 P2- 

tain 

P., P.2 ' 

Decomposing   the joint  probabilities: 

p..  -  Pr(X-i,   Y-J,   Z*I)   + Pr(X-i,   Y=j,   Z-0) 

-  Pr(X.i,   Y-j|2-I)q +  Pr(X=i,   Y-J 12-0)(I-9). 

By  further decomposition  and by   integrating  f   (p|a,b)  over p we ob- 

(Cl) p22  « q[(l-e)2u2 + 2e(l-e)p +  92]   +  (l-q)w2      ^ 

(C.2) p.  - q[(l-e)p +  6]   +   (l-q)p. 

Since 

(C.3) 
P22  - P2 

xy I 
P2  -  P2 

we obtain   (6)   by  substituting   (Cl)   and   (C.2)   into (C.3)   and   re- 
naming p»  as  p   „  and we obtain  (I)   by  setting q -   1  and simplifying. 

n-i tern test   re 1 iabi 1 i ty.     Let  X^     md Y represent  two n-item  tests 
obtained by  sampling   from  the   large  pool   of   items.     Then 

2 2 2 
a
x(n)+ Y(n)   '    0x(n)       0Y(n) r

x(n)Y(n)ax(n)aY(n) 

and 1 .  a
2 .  a2 

X(n)+Y(n) x(n) Y(n) 
(C.M r  1   \   1   \   m   * ,(n)v(n) 

x(n)   Y(n) 

i: 
One-item test   reliability.    We need  to know  the joint and marginal 
probabilities   for   the   random variables  X  and Y.     Thus, 

- 

:: 

:: 



(0.1) 

Upon expanding  the  right hand  side of   (C.M   down  to  the  level   of   in- 
dividual   items   realizing  that  all   Item variances are equal   due   to the nature 
of  the basic   testing process and  that  all   item inter-correlations  are equal 
to rXy,   (C.M   through  simplification  becomes either   (2)   or   (7)   depending up- 
on   the  definition  of  r    . 

■ Äy 

D.  MEASUREMENT VALIDITY 

One-item measurement validity.  By the definition of correlation, 

Cov Xp 

xp  /Var X /Var p 

Now, 

(D.2) Cov Xp - E(Xp) - E(X)E(p) 

After integration over p, we obtain: 

(D.3) E(Xp) - q[(l-e)y2 + ep] t (l-q)y2 

(D.4) E(X) - ql(l-e)p + 6] + (l-q)p 

(D.5) E(p) - p. 

Substituting (D.3), (D.M, and (D.5) in (D.2) and simplifying we obtain: 

(0.6) Cov(Xp) - (l-qe)op
2. 

By definition, 

(0.7) Var(X) - E(X2) - [E(X)]2 

and 

(0.8) (,  Var(p) - E(p
2) - [E(p)]2 . 

Now, 

(0.9) E(X) - E(X2) - q[(l-e)p + 6] + (l-q)p, 

(D.10) E(p) - p, 

. ...  .  ■ 

and 

(D.ll) E(p2) - u2. 

■ 



n-item measurement validity.     As before,   let  X        reprusent an n-item test 
obtained  by  sampling  from the   large  pool   of   ilerne and   let  p»   of  COUCSP, 

represent ability   level.     Then, 

(D.12) 

Upon expanding the right hand side of (D.12) down to the level of in- 
dividual items and realizing that all item variances, o^; item inter- 
correlations, rxy; and item validities, rXp, arc equal, (D.12) becomes 

2nr o a 
xp x p 

r     „  c c  
v(n) XV ;p  2^ o o /I + (n-l)r 

X p XX 

wh i ch s i mp1i f i es to 

Xvn;P  A   ♦ (n-l)r 

This final equation (D.13) then becomes either (*0 or (9) depending upon 
the identification of rXp and rxx. 

E.  TEST RELIABILITY WHEN VALIDITY IS ZERO 

Let p be independent from item to item and proceed as in Appendix C to 
obtain 

I 
I 
I 

Substituting  (D.9)   into (D.7)   and   (D.10)   and  (D.ll)   into (0.8)   and  U»e  re- 
sults  along with   (D.2)   into  (D.l)   and  simplifying,  we obtain 

(l-qe)o  ? 

r     (q.Ma.b)   - *-—-_ 

which simplifies to (8) and upon sotting q ■ 1, to (3). 

:: 

7 2 2 rr 

x(n)+ p   x(n)   p    x(n)p x(n) p 

and 2        2      2 

x(n) ♦ p  x(n)  p 

>)  

x(n) p 

r  ^ 
r»--7i^... 

II 

i 

[ 

i: 



p'n « q[(i-9)px + e][(i-o)py + e] + (l-q)pxpy 

= qp.   +   (l-q)p2 

and 

?2 " Wb +   ('"<»)? 

which,  when substituted   into   (C.3)   yields   (12) 

The  procedures of Appendix  D may be  followed  to obtain   the validity of such 
a   test.     Notice  that 

E(Xp)   -  p{q[(l-0)p +   9]   +   (l-q)p} 

-  E(p)E(X) 

so  that 

Cov  Xp  >  E{Xp)   -  E(X)E(p) 

>  E(X)E(p)   -  E(X)E(p) 

- 0. 
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Logic and mathematics  are errplcyed  to yield very conservative estimates of  the 
gains   resultinc  from changing  ovei- from choice  methods   to admissible  probability 
measurement  in  the administration of existing  tests. 

Equations c^nd graphs give  test  reliability and measurement validity as a function 
of  the distribution of ability  levels   in  the population  to be  tested and as a function 
of  the  amount  and  type  of guessing engaged   in by  this  population.     Since  guessing 
degrades  the performance of choice  tests and since  the use of admissible probability 
rneasurement eliminates   guessing,   the extent  of  degradation  corresponds   to a  con- 
servative estimate  of   the gains   resulting  from conversion  to admissible  probability 
measurement. 

In sonv applications   it may be wise  to trade off  the  increase  in measurement valid- 
ity against  the advantages of shortening  the   length of the test.     Equations and 
gruphs  show how much shorter the new guessing-free   test  can be and itMI   retain  the 
original   measurement  validity. 

Additional  equations  and curves  show that  choice  tests with zero neasurement 
validities  can have appreciable  reliabilities  due  to differenced   in guessing 
strategy   in  the population. 

All   the analyses   indicate  that conve-sion   to admissible probability measurement 
will  yield quite significant   improwements   in measurement  validity along with con- 
siderable  reductions   in  test   length. 
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