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FOREWORD

This is one in a continuing series of papers concerned with the theory and
application of admissible probability measurement techniques and one of a
sub-series of papers concerned with the cffects of guessing on the inter-
pretation and use of objective test results. This paper constitutes the
Second Semiannual Technical Report of work performed in support of the
United States Air Force Office of 3cientific Research contract number AF
49(638)-1744 sponsored by The Acvanced Research Projects Agency of the
Department of Defense (ARPA order number 833).

ABSTRACT

Logie and matnematice are emploued to yteld very conservative eetimates
of the gatns resulting from changing over from choice methods to adnissible
probability measurement in the acnminiatration of existing tests.

Equations and graphs give test rcliabilivy and measurement vclidaity as a
function of the distribution of avility levels in the population to be test-
ed and as a function of the amourt and type of guessing engaged in by this
population. Since guessing degradee the performance of choice tests and
since the use of admigsible probak'lity measurement eliminates gueening, the
extent of degradation corresponds to a conservative estimate of the gain re-
sulting From convirsion to admigeible probability measurement.

In some applications it may be wise to trade off the increase in measure-
ment validity against the advanteges of shortening the length of the test.
Equations and graphs show how muci ghorter the new guessing-free test can be
and 3till retain the original meceunrcment validity.

Additional equations and curves show that choice tests with zero measure-
nent validitvies can have apprecichle reliabilitiee due to differences in
guessing strateqy in the population.

All the analyses indicate thatl conversion to admigstible probability
measurement wili yield quite significant tmprovements in measurericnt validity
clovg with congiderable reductiors in test length.
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INTRODUCTION

The recent development of the theory of admissible probability measurement
(Shuford, Albert & Massengill, 1965) and its successful aoplication in lab-
oratory settings (cf. Toda, 1963; Shuford, 1965) promises to have a profound
impact on the thebry and practice of objéctive and semi-objective testing.
This new capability to measure an individual's degree of confidence in the
correctness of his answers to a test item mecans that a great deal more infor-
mation can be obtained about the individual's state of knowledge. The ad-
ditional information yielded by this new method of testing may be utilized
in many different ways. Some of these ways, thcugh promising great benefits
and improvements over existing procedures, imply the development of new test
items and structures and in other cases creation of new instructional strat-
egies and materials (Shuford, 1965; Shuford & Massengill, 1966). There are
however, other more immediatcly applicable ways of using this new capability
to improve the performance of existirg testing programs. Since admissible
probability measurement can be used with any true-false, multiple-choice or
fill-in-the-blank test and since as in the case of conventional choice test-
ing the item scores can be summed to obtain a total test score, It is en-
tirely feasible to change from the conventional choice method over to ad-
missible probability measurement in the administration of an existing test.
Such a changeover does rot require the writing of any new test items nor
does it require the dev.lopment of new ways of analyzing and utilizing test
scores. Can such a simpie and minimal change result in any benefits to a
testing operation?

Section B of the First Semi~Annual Technical Report (Shuford & Massengill,
1966) considered just this question and arrived at an affirmitive answer.

The report took a very conservative approach to estimating the benefits to
be derived from substituting admissible probability measurement for choice °
testing. The approach was conservative in two serses. First, it was as-
sumed that data analycsis and personnel decisicns would be taken only on the
basis of total test score. The use of total test scorc dominates current
personnel measurcment and testihg practice because of the unreliability of
the individual item scores. Adding together these scores from the unreli-
able items, in effect, builds up the sample size and thus increases the re-
liability of the total test scorc. With admissible probability measurement,
however, each itcm score is In a sense completely relfiabie so that there is
no longer the same compulsion to sum item scores to buiid test reliability,
One is tempted rather to iook at the pattern of individual item scores to
arrive at personnel decisions. But, as stated above this temptation has been
temporarily resisted. The pctential information inherent in the pattern of
item scores will be sacrificed to ceal only with total test scores-as Is the
current practice. This is one respect in which the analysis reported in
Section B of the First Semi-Annual Technical Report is conservative in esti-
mating the benefits from changing over to admissibie probability measure-
ment . ' i
The other respect in which the analysis is conservative is that it Is assum=
ed that persons taking the test ecither know the answer to an item with some
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assurance or are relatively uncertain about the answer to an item and that
admissible probabllity measurement will be used only to discriminate
whether a person knows or Is guessing at the answer to an item. The item
score - obtained with admissible probabl11ty measurement typically ranges over
the . continuum from minus one up to plus one and thus can be used to make
fine discriminations In the person's state of knowledge concerning the item
in question. This potentially useful Information Ts, however, sacrificed by
mapping all the possible scores into two categories: one indicating that
the person knows the answer to the ltem; the other indicating that the per-
son does not know the answer to the I1tem. This is the second respect in
which the item analysis reported in Section B of the First Semi-Annual
Technical Report Is conservative in estimating the beneflts of changing from
cholce testing to admissible probabllity measurement.
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Though these two restrictions assumed by the analysis underestimate the bene-
fits to be obtained they do resuit in a very important advantage. One can
use logic and mathematics in a very straightforward manner for o quontitative
study of the effects of guessing on the quality of personnel and counseling
declsions. It can be determined just how much guessing degrades the per-
formance of any test by comparing the performance of the guessing-contami-
nated test with the performance of the test freed of the effect of guessing.
The amount of degradation can then be used as an estimate of the galns that
will result from eliminating guessing from the test and changing it into &
guessing-free test. Since changing over to admissible probability measure-
ment will e'iminate the effects of guessing from the test (Massenglll €
Shuford, 1967) the amount of degradation in the performance of the test due
to guessing now becomes the conservative estimate of the gains resulting

from substituting admissible probability measurement for choice testing.

o B L

Section B of the First Semi-Annual Technlcal Report used probability theory
and declislon theory to estimate the effect of guessing on the quallty of
personnel and counseling declsions in most of the major applications of
testing. In attempting to keep the mathematlics as realistlc as possible,
however, a price was pald in that laborlous numerical computations were re-
quired to obtaln any quantitative result. Therefore, the study was re-
stricted to a ten-item test used with a population of just one distribution
of ability levels. In this respect the generality of these results is quite
restricted. The results are important, however, in that they serve the same
purpose as exlstence proofs In showing something is possible. Specifically
they show that guessing at the levels commonly encountered In practice seri-
ously degrades the quailty of selectlon, classification and placement deci-
sions based on total test score. Further, they show that guessing can so
seriously degrade the performance of a test used for educational and voca-
tional counsaling purposes that It is best to abandon testing for this pur-
pose and just act as though every person had the same average ability level.
Additionally and less suprlisingly the results show that moderate levels of
guessing can seriously dagrade the reliabi'ity and valldity of o test. And
finally 1t is shown that a person's test-wlseness, i.e., whether or not he
guesses on a test, largely determlines his chances of being successful on the
test.
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In summary, Section B of the First Semi-Annual Technlcal Report outllnes the
methodology for obtalning conservatlve estimates of the gains from admis-
sible probabiilty measurement and shows that these gains could be of great
magnitude In a varlety of arcas of appllcation. The numerical results were
limlted however, to a ten-item test used with one population having a ce~-
tain distribution of abltity levels. in some cases It would be useful to
extend these results and to Increase their generallty so that ‘they may bec
used more effectively to guide decislons on whether or not to change from
choice testing. to admissible probabllity measurement. Thls Second Seml-
Annual Technical Report accompllshes just this for the area of test reli-
ability and validity. '

RAT IONALE

It has been shown both theoretlcally (Shuford & Massengill, 1966) and empiri-
cally (Shuford, 1965) that changlng from choice testing to admisslble prob-
abllity measurement can increase the rcllabillty and validlity of & test.
Thls increased rellability and valldity can be Important In two respects.
First, the higher the validity of the test the better It Is in the sense
that it yields better Informatlon which in turn Implles that better decl-
sions can be made on the basis of the test information. There exlst some
situations, however, where It |Is better to accept a shorter but less valid
test. The longer the test the grcater the ''price' that must be pald for the
test information. Since the rellability and valldlty of most tests can be
Increased by adding on additlonal items, It |Is apparent. that a decision has
been made at least Impllicitly that the additlonal validity gained by length-
ening the test s not worth the cost of 2 longer test. Now, when we thlnk
of using admissible probabillty mcasurcment with an existing test we should
think also of the possiblllty of tradlng off the Increased test reiiablllty
and validity against the posslbllity of having a nuch shorter test with lts
reiiabllity and validlty equal to or grcater than that of the originail test.

‘rThc shorter test may, of course, be obtained by using oniy a sub-set of the
items In the orlginal test and thus does not require the writing of new test

Items but just an elimlnation of ltems In the originai test. This is an
easy change to make In d test and one that should be consldered in those
cases in which the potential reductlons In cost in testlng more than offset
the potentlal galns from Increasing the valldity of the test.

There is another reason for shortenir.y the test over and above just the re-
duced cost of a shorter test. In some instances, a certain amount of test-
Ing time may be available at a constant cost. - Here, the leftover testing
time may be put to good use by introducing new tests which. measure other

‘characterlstics of the individual. Thls new battery of tests may be of much

greater ''band width' (Cronbach & Gleser, ! .(5) and may greatiy improve the
performance of the testing program.

From”the above, It should be apparent that there must exlst some test whlch
can be made at the same time shorter and more valid by the changeover from
choice testing to admissible probabillty mecasurement. What characterlzes
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these tests? Are all tests of this sort? How large are the gains that can
be expected from changing over from cholce testing to admicssible probablllty
measurement?

These are the types of questlons that willl be answered here. As before,
loglc and mathematics wlll be employed to yield very ronservative estimates
of the gains resulting from the use of admlsslible probability measurement.
Equatlons wlll be derived which glve test reliability a~7 measurement valid-
ity as a functlon of the distribution of the abllity levels in the popula-
tlon to be tested and of the amount and type of guessling engaged in by this
population. Then addltional equatlons will be derived to show what happens
when guessing is elIlmlnated by changlng over to admlsslible probabillty mea-
surement. These equatlons wlll be solved and the results plotted over the
complete range of parameter values for the most Important cases to be en-
countered In practice. All of the equations hold for tests of any length.

The formal statement of the testling process ls similar to that given in Sec-
tlon B of the First Semi-Annual Technlcal Report and may be found in Mathe-
matlical Appendix A. Briefly, the testing process is based on the Indepen-
dent sampling of test items from a large pool and on the independent sam-
plina of persons from a populatlon which is characterized by a specified
distributlon of ablllty levels where abllity level Is deflned as the propor-
tion of items in the pool that the indlvidual knows.

EVERYONE GUESSES

Assume now that each person to be tested knows a certain proportion of the
test items in the pool. Let this proportion be represented by p which can,
of course, range from zcro to one. DIfferent people wlll know a different
proportion of the items and thus differ in ability level with respect to

the test under consideration. This distribution of abllity levels is rep-
resented by a beta dlstribution defincd over the Interval from zero to one.
The beta distribution has two paramcters, a and b, whlch completely determine
Its shape and location. The paramcters a and b can take on any values
greater than zero. The meaen of the beta distribution can be obtained from
the two parameters, thus p = a/(a+b). Also the varlance of the beta distri-
butlon can be written In terms of these paramcters, thus

oé = ab/(a+b)(a+b+1).

The beta distribution Is very flexible and can assume many shapes depending
of course upon the particular values of a and b selected.

For all the computations carried out below we will use one of the six dlffer-
ent beta distrlbutions shown in Flgure |. Distributlon A represents an

equal dlstribution of ability levels over the population to be tested. This
rectangular distributlon is not llkely to be found In practice but is of

some Interest because it represents an cxtreme. Dlstribution B represents
the dlstributlon of abillty levels for a test of some considerable diffl-
culty; whlle Distrlbutlon C represents a distrlbution of abillty levels for
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a test which is rather easy. Distribution D is of considerable interest be-
cause It is an approximation of conditions that are often fcund in practice.
There is a symmetric distribution of ability levels with conslderable varl-
atlon over the range. Distributions E and F represent respectlvely sym-
metric distributlons with less variabillity in abllity level, with Distrib-
ution F probably representing the other practical extreme to Distribution A
In the sense that in A the abllity levels isre quite spread out while in F
the abllity levels are clustered around the average ablllty level of 1/2.

Though there may be other distributlons of abillty level of intecrest these
six represent quite a few types and probably place reasonable practical
bounds on those that will be encountered in practice. The equations given
beiow can, however, be uscd to derive the results for any of the infinlte
number of beta distributions of abllity levels, but we will solve them only
for these six distributions.

Now, if a person knows the answer to a particular item he will answer it and
get it correct. {f, on the other hand, hec doecs not know the answer, we as-
sume for the purposes of this section that the person will guess at the an-
swer and that he has a probabllity, 6, of getting the item correct by chance.
The guessing level, 6, can range from zero to 1/2. If 6 = 0, then no one is
guessing on the test, i.e., if a person doesn't know the answer to an Item,
he leaves it blank. If 6 = 1/2, then the maxImum amount of guessing pos-
sible is occurring. In a true-false test 6 = 1/2 also equals the minlimum
possible amount of quessing because if there are only two possible answers,
the probabllity of chance success must be 1/2. However, this value of

6 = 1/2 also represents a maximum amount of guessing for any other test.
For ' example, in a five alternative multiple-choicc test the guessing level
may be equal to 1/2 because people may have enough information to exclude
three of the five alternatives and just have to gucss betwecen the remaining
two. Likewise, in a constructed response and fill-in-the-blank test the
guessing level may be 1/2 If people tend to think of only two possible an-
swers and have to guess which of the two is right. A gucssing level of

8 = 1/5 is probably a practical minimum in the scnsc that for a five alter-
native multiple-choice test it is the smallest value that 0 can assumec.

That Is, if a person has no Information with which to discriminatc between
.he flve alternatives but must just pick one ot random, then hls probabillty
of chance success is 1/5. Note that if he does have any information, then
his probability of chance success would be much greater than 1/5. Even in
constructed-response tests it Is unlikely that people are able to think of
mere than flve possible answers and thus achieve a guessing level of less
than 1/5. So we will take ¢ = 1/5 to be @ minimum practical guessing level
and 0 = 1/2 to be a maximum possible guessing level, though we will inves-
tigate test reliability and validity over the complete range from 6 = 0
(representing what can be achieved by admisslble probabiiity measurement) up
to 6 = 1/2,

ONE 1TEM TEST RELIABILITY

Suppose that two test items were selected at random from the pool of test
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Items and that each of the test items are given to persons selected from a
‘population with distribution of ability levels characterized by the beta
jilstrlbutlon'h[th parameters a and b. if a person answers an item correctly,
he receives a score of one and if he answers Incorrectly, he receives a
score of zero. Each of the two items can be consldered a separate -one-item
test and the correlation bétween these test scores would represent: the one-
N em test reliability. Suppose further, that if a person does not know the
answer to an item, hc guesses with probability, 6, of success. Now from .
Mathematical Appendix C we have the equation for a one-item test reliability
under the condition that everyone guesses at level 6:

(1-0) 202
(. r (6]a,b) = B
| "Y Po(1-By)

where p, = (1-8)5 + 6. Notice that this one-item test reliability depends
upon thpee parameters, 0, a and b. Examination of this equation reveals un-
_equivocally that the test reliability becomes smaller as the variance, o2, of
the distribution of abllity levels becomes smaller. in effect, this var?
ance séts an upper limit on test reliability.

it Is not so clear how gquessing level 6 affects test reliability since 6
appears in both the numcrator and denominator of the equation. The impact

of the guessing level can best be seen by fixing the distribution of abiiity
ievels by speclfylng a and b, and then solving the equation for different
values of 6. 'The results of such computations are shown in Figure 2: for-the
six dlstrlbut-ons of ability level plotted In Figure 1. The curves in Figure
2 ‘indicate clearly that increasing the guessing level decreases test reli-
ability. Examination of the curves for different distributions of.ability
level shows that test rellability is related to the size of the variance of
the distribution of ability levels. And further, that an asymmetrical
distribution (Distribution B and C) interacts with guessing level to effect
test reliability, The easy test corresponding to Distribution C Is rather
slightly affected by guessing level whereas the difficult test represanted

by Distrlbutlon B is greatly affected by increasing the guessing level. All
ip all, the existence of testing significantly reduces the reliability of a
test especially when one considers that .20 is the mininal achievable guess-
Ing level in c¢xlsting cholce tests and that .50 is a very commonly encounter-
ed guessing level.

N-iTEM TEST RELIABILITY '

Assume now that a longer test containing n items is formed by randomiy
selecting additional items from the pool of test items so that two equiv-
"alent n-item tests are obtained and given to persons from the population to
bc tested. in this case, it is shown in Mathematical Appendix C that the
Spearman-Brown prophecy formula type of process can be applied to yield the
corrclation hetween thesc two tests of Jength n. " This ‘Is the test reliability
for an n-item test and it is depepdent upon four parameters, n, 6, a and b.
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Thus,

nrxy(e|a,b)

(2) (n,8]a,b) =
. rxy n,0|a N & (n-l)rxy(OIa,b)

Notice that the n-item test reliabliity is a function of the length of the
test, r, and of the one-ltem test reliability. Thls means, of course, that
by knowing the rellability for a one-item test we can determine the rell~
abillty for a test of any length. Equatlon (2) implles that If the test is
made longer and longer (n tends toward infinlty), the reliablilty of the
lengthened test wlll approach one. The test can be made perfectly rellable.
This Is a traditional result from test theory. If thls equation were solved
and plotted as a functlon of n, It would generate a curve which increases by
smaller and smaller steps as n increases and asymptotlcally approaches a
reliability of one as shown by two of the curves in Figure 4, This ablllty
to solve for the reliability of tests of any length ts very important slince
it allows us to Infer the effect of shortening o test and to compare savlings
from ellminating guessing.

ONE-ITEM MEASUREMENT VALIDITY

Suppose that just one item Is selected from the pool of available ltems and
given to a sample of persons from the population to be tested. Each person
will make a score of elther zero or one point depending upon whether or not’
they answered the item correctly. Each person is also characterized by \
having a certaln ablllity level, p, corresponding to the proportlon of items
in the complete pool to which he knows the answer. Now, what is the corre-
lation between the test score and this ability level? Thls correlation would
represent the abllity of the test to measure the person's abillty level and
In this sense the measurement validlty of the test can be derived as s

shown in Mathematical Appendix D. The one-item measurement validity of a test
In which everyone is guessing at level 8 is

(I-e)cp

(3) o (012:0) =

A
Poll-Py

As in the case of test reliabillty, this correlation is a functlon of 8, a and
b, i.e., it is affected both by the guessing level and by the parameters of
the distribution of ability levels. In fact, by comparlng (3) with (1) it

may be seen that (3) ls nothing more than the square root of (1). Figure 3
shows how this one-item test measurement validity |s affected by different
levels of guessing for sltuaticens based on the different dlstributions of
ablllity levels. The¢ effect Is qulte similar to that obtained for test reli-
ability and it must be so due to the direct relation between the two corre-
lations. Test measurement validlty is degraded by the existence of guessing
and the degradation will be significant for levels usually encountered in
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practice.

N-ITEM TEST MEASUREMENT VALIDITY Ii

Now suppose that we randomly take a sample of n Items from the pool of Items

and give It to
lation between
in the case of
process can be
length and the

(4)

Thus, from knowing the one-item test measurement validity we can obtain the
measurement validity for a test of any length. This equation is really just
the square root of (2) and thus has quite similar properties. For example,
as the sample size increases without bound the measurement validity of the
lengthened test approaches one. See Figure 4.

MAXTMUM REDUCTION iN TEST LENGTH POSSIBLE WITHOUT REDUCING EITHER TEST

RELIABILITY OR

Since the foregoing equations Iimply that the existence of guessing reduces
both test reliability and measurement validity and that both of these quanti-
ties are a function of the length of the test, several interesting results
may be deduced.
surement were used to eliminate guessing in an existing test then the re-
sulting total test score would be both more retiable and valid. Second,
though the elimination of items from this new test would decrease both test
reliability and measurement validity, there is generally a range of reduced
test lengths over which the guessing-free test will be both more reliable

and valid than

also be a range of reduced test lengths over which the guessing-free test
will be less reliable and valid than the much longer guessing-contaminaled
tests. And there will be one unique reduced test length at which the guess-
ing-free test will have essentlally the same reliability and validity as the
much longer guessing-contaminated test. It Is shown In Mathematical Appen-
dix E that this reduced test length, ng, at which the reliability and valid-
Ity of the guessing-free test exactly matches that of the original guesslng-
contaminated test can be obtained by solving

(5)

where ng is the length of the original guessing-contaminated test with one-
Item test reliability i (6|.,b) while the one-item test reliability of the

people from the population to be tested. Consider the corre-
the total test score and the ability level for this test. As
test reliability, the Spearman-Brown prophecy formula type of
uscd to project the measurement validity of a test of any
resulting equation as derived in Mathematical Appendix D is

rxp(ela,b)/ﬁ
T (-1, (6]a,5)

e

rxp(n,ela,b) -

MEASUREMENT VALIDITY,

-~

~

Y H'. | H H H

First, and most obviously, if admissible probability mea-

py

the longer guessing-contaminated test. There will, of course,

Vi

rxy(ela,b)[l-rxy(ola,b)]
rxy€p|a'b)[l-rxy(e|a’b)]
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guessing-free test is rxy(OIa,b).

The value ng - ng is typicaiiy a maximum possibie reduction in test length
in the sense that very seidom would one want to reduce the test reliability
and measurement vaiidity beiow that yieided by the original guessing-con-
taminated test. Any test iength smaller than n, would yield a test reii-
abiiity and measurement validity smaller than tRat of the original test
while a test iength greater than ng wouid yieid a test reiiability and mea-
surement validity larger than that of the original test.

The examination of (5) ciearly indicates that maximum reductian in test iength
possibie is a function of the iength of the original test ng. The depen-
dence of ny on the guessing ievel, 6, occurring in the originai test and up-
on the distribution of abiiity levels as represented by a and b is not clear
from examination of (5). Therefore, we have set ng = 100, a fairly typical
iength for a test used for personnel decisions, and have solved (5) for dir-
ferent vaiues of 6 for each of the six distribution of ability ievels con-
sidered in this report. The results are plotted in Figure 5. Remember that

D represents a rather ciassicai distribution of ability levels. In this case,
if the guessing levei in the original 100-item test were at the minimal vaiue
of i/5 then changing to admissibie probabiiity measurement could result in
reduction of the iength of the test to about a 63-item test, whiie if guess-
ing were occurring at the maximum ievei of i/2, then the admissible probabiiity
test could be made as short as 30 items. Somewhat greater savings resuit

in the case of a more difficuit test as indicated by Curve 3 while siightiy
smailer savings result In the case of easier tests as indicated by Curve C.

The reduction in test iength indicated by these curves is not insignificant.
The savings are of such magnitude that using admissibie probabiiity measure-
ment to eiiminate guessing means that now two or threc tests can be given to
increase a '‘bandwidth' of the testing program without any increase in total
testing time. The increased 'bandwidth' couid yield a very great improve-
ment in the overali testing process as argued by Cronbach & Gleser (i965).

It shouid be understood that the use of admissibie probability measurement
does not require reduction in the length of the test to exactly the amount
indicated in these figures. if the reduced test is shorter than that in-
dicated on the curves then it wiil be iess reliabie and valid than the orig-
inai tests, while if it is ionger it wiii be more reiiable and vaiid than
the originai guessing-contaminated test. The optimai length of the new test
should be determined by carefui comparisions of the value of increased va-
iidity with the vaiue of reduced test iength, possibiy to increase ''band-
width'' of the testing program.

SOME PERSONS GUESS, OTHERS DON'T

TEST RELIABILITY

The situation anaiyzed above is realistic for many applications of testing
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but not for ail. To be more expiicit, suppose that some of the testing poou-
lation were test-wise and wouic¢ guess whenecver they did not know the answer
to a test Item whlie others in the popuiation to be tested were not test-
wise and Invariably wouid choose to skip an item rather than to guess at its
answers. This situation is sometimes encountered in testing programs. It
is not tovered by the anaiysis given above since there it was assumed that
everyone guesses. ' Here we wiil assume that a certain prooortion, q, of the
population to be tested will guess at ievei 6 and that the rest of the test-
ing popuiation, represented by the proportlon 1-q, wili never guess on the
test. This is such a basic change in the description of the testling process
that it is quite possibie that It will make significant changes in our con-
ciusions. As shown In Mathematical Appendix C the one-item test reiiability
when a proportion q of the population to be tested guesses at level 0 is:

Py, ~ P2
22 8
(6) r..(q,8|a,b) = 3

Y P o(1-5. )
q6 Q8

“where pqe = q[(i-8)p + 8) + (i-q)p,
Py, = al(i-8)2u2 + 26(1-0)p + 6%] + (i-q)u?
and no '_ a(a+})

(a+b) (a+b+1i)
The n-item test reilability as derlved in Mathematical Appendix C is:

nrxy(q,ola,b)

(7) (n,q,0]a,b) =
rxy n,q |a . (n-l)rxy(Q!ela’b)

Equation 6 is too compiicated to tell by inspection how the different pa-
rameters q, 6, a and b affect test reiiabliliity. However, by soiving the
equation for the six distributions of ability ievels considered here, we
can gain some idea as to how abiiity ievel, guessing ievel and the propor-
tion guessing affects test reliabiiity.

if 1/2 of the popuiatlon to be tested guesses at level 6 whlie others in the
popuiation do not guess then test reiiabllity varies as a runctlon of
guessing fevel as shown in Flgure 6. These resuits are quite different from
-those obtained and graphed in Figure 2. in Figure 2, increased guessing
always lowers test reilabliity. In contrast to that consistant and neat
resuit, we now find that increased guessing can serve to increase test re-
fiabiiity rather than to reduce it.

Does this strange result of guessing increaslng test reilabiiity hoid oniy
when 1/2 of the tested population guesses or does it hoid for other situ-
atlons too? Figure 7 examines test rellability for the minimai guessing

level of & = 1/5 for ail possibie proportions q, aii the way from the ex-

-0 -

it Ty =

ey o ey ) D




treme case of no one in the tested population guesses to the case In which
everyone in the tested population guesses. Figure 8 shows the same anal-
ysis for the case in which all guessing is done at the maximal level, 6 = 1/2.
Examination of these two figures shows that the phenomenon is not unique

for q = 1/2.

These results certainly cast doubt upon the gains to be expected from
changing over to admissible probabllity mezsurement. To be more speciflc,
if the testing sltuation ls one in which some of the people guess whlle
others don't then changing to admissible probability measurement to elim-
inate guessing may result in a test of lesser reliability than that of the
orlginal test. In such cases, a lengthening of the test may be required to
yield the same reliability as that of the original test. Whether a gain or
a loss is realized from the changeover to admissible probability measure-
ment depends very criticolly upon the combination of parameter values appro-
rlate to the test situation. Taken together the results of this new analysis
suggest that changing over to admissible probability measurement may yield
only slight benefits and in many cases will actually impair the reliability
of the test.

Before concluding, however, that changing over to admissible probability
measurement holds little promise for improving testing it might be worth-
whlle to take a look at the measurement validity of a test used with a
population where some persons guess while others don't.

TEST MEASUREMENT VALIDITY

As shown in Mathematical Appendix D, the one-item measurement validity for
such a test is

(1-q8)0o
(8) PRCRUIER) = P

Pq0 l'pqO

The n-item measurement validity is

rxp(q,ela,b)ﬂ;

(9) r. (n,q,0]/a,b) =
xp 1 + (n'l)rxy(Q>9|a'b)

Figure 9 shows the one-item measurement validity for each of the six dis-
tributions of ability level when half the persons guess. Notice that in this
case, increasing the guessing level results in decreased test validity.
Figure 10 shows one-item measurement valldity when a proportion q of the
tested population are guessing at a minimal guessing level 8 = 1/5. Here
notice that increaslng the proportion of people guessing decreases test va-
lidity. Figure 11 shows the corresponding results when those persons guess-



ing are guessing at a maximum guessing ievel 8 = 1/2. Again increasing the
proportion of persons quessing decreases test vaiidity. These resuits are
more in accord with what was found before. The resuits shown Iin these
figures and the resuits of other computations indicate that guessing in any
amount donc by any proportion of the tested popuiation can never Iincrease
test measurement vaiidity. This resuit agrees with intuition much better
than the resuit concerning test reliabiiity.

Look at (8) and notice that the test measurement vaiidity is no longer equai
to the square root cf the test reliabiiity. This breakdown of the reiation
between test reiiabiiity and vaiidity has a very important impiication which
can be seen by examining (9). Now, the measurement validity of the test

when tests of length greater than one are considered depends both upon the
one-item test measurement validity and upon the one-item test reiiabiiity
which can no longer be expressed in terms of one another. In testing situ-
ations where everyone guesses we found that iengthening the test indefinitely
made both test reiiabiiity and measurement validity approach the maximum
possibie vaiue of one, that is, resuited in a compieteiy reiiabie and com-
pieteiy vaiid test. |In this new situation where some guess whiie others
don't, increasing the length of the test without bounds resuits in the test
reiiabiiity approaching maximum possibie vaiue of one, but the test measure-
ment vaiidity may approach some other vaiue iess than one. Sece Figure &

for an illustration of this. That is, depending upon the circumstances, it
may be impossibie to obtain a compieteiy vaiid test. But the fact that some
persons guess while others don't sets an absoiute upper iimit on the measure-
ment vaiidity that can be yielded by the test no matter how iong it is. This
upper iimit on test measurement vaiidity is

rxp(q’ela’b)

(10) ©,q,6]/a,b) = :
Faplmrartlen®) G CICIERY)

Whiie the maximum percent of true variance which can be accounted for by the
test of infinite iength is given by the square of (i0). This percent of true
variance accounted for is considered a better measure of test performance
than test measurement vaiidity.

Figure 12 shows the upper iimit in the percent of true variance accounted
for even if the test is of infinite iength for thc case in which 1/2 of the
persons guess at levei 0 for each of our six distributions of ability level.
These curves indicate that any amount of guessing degrades the performance
of the test. This degradation becomes of some significance for even a minimal
guessing ievei of 6 = 1/5 and increases much more by the time the guessing
ievel reaches a maximum of & = /2. Thus, if some persons in the tested
popuiation guess whiie others don't, the use of a conventional choice method
which ailows for guessing means that there will be a barrier to the maxi-
mum performance that can be roalized by the test. This barrier can not be
breached as iong as we continue to use conventional choice methods for test

“administration.




Figures 13'and 14 show the upper limit of test performance when those per-
sons guessing guess at the minimum level and at the maximum level. -These
figures make it quite clear that test performance is degraded whenever one
encounters d mixed population where some persons guess and others don't.

it is much better either to have everyone guessing or no one guessing and
these are the only two situations that eliminate the barrler cn maximum test
performance.

MAXIMUM REDUCTION IN TEST LENGTH POSSIBLE WITHOUT REDUCING MEASUREMENT VALIDITY

So far the results apply only to tests of infinite length. What happens when
we consider the more realistic case of using a test of finite length? In
particular, we can consider the maximum reduction in test length possible by
changing over to admissible probability measurement to eliminate guessing.

In this new situation, we will of course gct different results depending upon
whether we equalize reliabilities or mcasurement validities. Since measure-
ment validity, not reliabllity, Is the real measure of test performance, we
need concern outselves only with measurement validity. If the guessing-free
test has the same or greater validity, we don't really care that it has less
reliability than the original guessing-contaminated test. This may seem
counter-intuitive but the next major section below may provide some under-
standing of why we shouldn't pay too much attention to test reliability

when the test Is affected by guessing. As before, we can solve for the re-
duced test length, ng, at which the validity of the guessing-free test exactly
matches that of the original guessing-contaminated test as shown in Mathe-
matical Appendix E:

nqerzxp(q,ela.b)[l S rxy(OIa.b)]

(1) "o =

rxy(OIa.b){l - rxy(q.ela.b) + nqe[rxy(q.ola.b) - rzxé(q.ela.b)]}

where, r (0|a,b) is the onc-item reliability of the guessing-free versi-n
of the test.

This reduced test length, ng, is shown for a 100-item test given to a pop-
ulation with Distribution D of ability ievels some of whom guess at the
minimum level in Figure 15 and at the maximum level in Figure 16. Test re-
liabilitics and measurement validities are also shown on these graphs. The
measurement validities for the new guessing-free test and for the old guess-
ing contaminated test will of course be the same. The test reliabilities,
however, are different with the new guessing free test having somewhat less
réliability than the old guessing-contaminated test of greater length.

As to the reduced test length possible, the effect of different guessing
strategles Is quite dramatic. In the case of minimal guessing, if everyone
guesses, ‘the new test can be reduced to about 63 items. If, however, about
half of the people guess while the others don't, then the new test can be
reduced to about 34 items. In the case of maximal guessing, if everyone
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guesses, the new test can be reduced to about 30 items while if about 1/2
the people guess whlle the others don't, the new test can be reduced to
about 5 or 6 items. The existence of differcnces in guessing strategy In
the tested population can greatly degrade test performance and, conversely,
can mean that even greater beneflts will be yielded by changing over to '
admlssible probability measurement. Reducing the length of a test to 1/20th’
of its original length or increasing its validity from the high 60's Into
the high 90's merely by changing the method of test administration is not a
trivial benefit.

The same computations have been performed for the other five of the six dis-
tributions of ability level. The results are not too different, with greater
gains in some cases and somewhat smaller gains in others.

TEST RELIABILITY WHEN MEASUREMENT VALIDITY IS ZERO.

It may be instructive to Investigate what happens to test reliability when
there is no validity whatsoever to the test. By zero measurement validity
we mean that the probabllity of a person from the tested population knowlng
an item varies independently from item to item. His ability level is an
independent random variable distributed according to the distributlon of
ability levels. Thus, learning whether a person knows a given item tells
you nothing about whether or not he knows the answer to another item. There
is no validity whatsoever in such a test.

Now if none of the persons in the tested population were guessing, the test

would have no reliability whatsoever. |f, however, a proportion q of people
consistently guess when they do not know the answer whlle the rest of the
persons refuse to guess, would the rellability still be zero for such a

situation? As shown in Mathematical Appendix Z the reliability for such a
test with zero validity but where a proportlon q of persons wlth a dis-
tributlon of ability levels of mean p are guessing at level 6 s

q(1-q)62(1-p)?

' D =
(12) ey (96 1P) T
2 2
where p, = qﬁe + (1-q)p.
This equation is not always equal to zero. |In fact, it is generally other-

wise if there is any guessing whatsoever. Figure 17 shows test reliabllities
for a 100-item test as a function of the various levels of guessing. The
reliabllitles can become quite large even if there is a mlnimal amount of
guessing. Flgures 18 and 19 show the same thing for minimal and maximal
levels of guessing as the proportlon of people adopting a guesslng strategy
varies. Moxlmum reliability is observed when about 1/2 the persons guess

and 1/2 do not.

Diffcrences in guessing strategies among people can contribute to the re-
liability of a choice test. |In one sense this reliabillty 1s completely
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spuricus in that the test has no measurement validity. In another sensc
though, the reliability is not spurious. What 1s causling this reliability
arc the differences in guessing strategy of the tested population. This Is
also what the test is measuring, if it Is measuring anything. More spe-
cifically the test is measurlng the test-wiscness of the tested populatlon.
This test-wiseness would also enter into the behavior of the tested pop-
ulatlon on any other choice test that they might take. Therefore the cor-
relaticn between any two choice tests would be positive and there would be
at least zpparent valldity between any two choice tz2sts. In some cascs,
this can be a real validity though it Is usually not reallzed by the user of
the test information. These tests are measuring how test-wise pecple are.
This test-wiseness can In turn reflect how much experience persons have had
taking tests which in turn can reflecct thelr level of cducational attain-
ment, socio-economic background, racc and various other factors. So, in
this sensc, these tests have some validlty. However, it would seem to be
much more efficient to just have a person fll11 out a questionnaire directly,
stating his level of educational attalnment, socio-cconomic background, race,
ctc., rather than having this be indicated indirectly through spurlous and
misleading test results.

It should be realized that if admissible probability measurement were used to
administer such a test, guessing would be completely eliminated and zero

test reliabilities and mecasurement validities would be obtained. The test
would be shown to be worthless as a test. One wonders how much of the re-
liability and validity of certain widely used tests is of just thls sort.
Now, for the first time, we can hope to find out.

SUMMARY AND CONCLUSIONS

Logic and mathematics has been used to deduce the effect of guessing upon
test reliability and measurcement validlity. Analysis shows choice testing
to be highly sensitive to the degrading effects of guessing. In fact, the
extent of degradation is so unexpectedly large as to be almost unbeliev-
able when viewed in light of the current consensus that the existence of
guessing has near trivial effects on the performance of cbjective and seml-
objective tests. It does appear, however, that the logic is inescapable
and is in accord with current and meaningful usage in test theory.

Fortunately we are now in a position to resolve this paradox. The logic
of decision-theoretic psychometrics promises that we can ellminate the
effects of guessing from any test simply by changing over from a choice
method to admissible probability measurement in the administration of the
test. Then, by carrying out the standard psychometric analyses one can
empirically determine the extent to which the original cholce test was
affected by testing and the bencfits resulting from the changeover to
admissible probability measurement.

What is the likely result of such empirical studies? Will admlssible probab-
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ility measurement yield the rather overwhelming benefits indicated by the
foregoing analysis? The major hazard to confirmation may be that the mathe-
matics is not complex enough to adequately represent the testing situation.
More specifically, the mathematics arc based upon the assumption that every-
body guesses at the same level. This is in general not true since items

may vary in the potency of their misleads and individuals may vary In the
extent to which they have partial knowledge of the subject. At considerable
cost the mathematics may be generallzed to allow for a variable guessing
level. 1t appears that such a generalization would yield rather well-
behaved equations which arc affected by an average guessing level. Thus,
the results would fall somewhere between the minimal and maximal guessing
levels encountered. While this means that a maximal benefit, say reducing
the length of the test to 1/20th of the original size, will not be cbtain-
ed in practice, neither will a minimal benefit of reducing the length of

the test by 1/3 be obtained, but rathcr something in between, say, re-
ducing the length of tne test by a factor of four cr five. Such gains

still remain of considerable practical importance for many testing appll-
cations.

Another respect in which the mathematics may be questioned is that they are
based on a single ability level which is constant from item to item. How-
ever, whether this is a constant ability level or an average abillty level,
makes no difference to the analysis as long as one is concerned with total
test score. On the other hand, if one is concerned with item analysis,
this assumption does make a difference and should be considered.

If it is considered, it can work In favor of changing over tu admissible
probabi lity mcasurement. 1t does it In this way: Some of the analysis

given above was concerned with reducing the length of the test tc trade off in-
crecased reliability and validity against reduced testing time and greater
"bandwidth'' of the testing battery. These parts of the analysls did not
discriminate between test items in the sense that they assumed ecither that

all the items have the samec characteristics or that a random sample of items
would be selected from the original test. In practice, this restriction

does not have to be maintained. To be explicit, one can look at the item
characteristics in terms of the data obtained from admissible probability
measurement and select the best possible sub-set of items, say the sub-sct

of items that yicld maximum test validity. Such an approach based on an
analysis of the structure of the test items will, in gencral, mecan even
greater reductions in the length of the test resulting from the conversion

to admlssible probability measurement. For cxample, in a test in whlch the
items are completely redundant, such an analysis would indicate that the

test can nw be reduced down to a one-item test and have the same validity as
the original test of any length. This is admittedly an extreme case, but it
shows what is possible by analyzing the structure of test items and se-
lectlvely choosing the items to be included in the reviscd guessing-frce test.

So, all in all, it appears that the existence of guessing has seriously de-
gracded the performance of objective and semi-objective test programs.
new method of test administration, admissible probability measurement,
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promises to eliminate the effect of guessing. This holds out the hope
that testing programs may be greatly improved and that new and exciting
uses may be found which will greatly enlarge the scope of application of
objective and semi-objective tests.
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MATHEMAT I CAL APPENDICES

A. FORMAL STATEMENT OF THE TESTING PRthSS

Define:

q = proportion of persons who guess

6 = probability of success |If person does guess
p £ proportlon of items in pool that person knows
X

= a random varlable yielding ''1'" if person answers item correctly,
"0'" otherwise.

Y = a random variable yielding '"1'" if same person answers another
item correctly, ''0" otherwise.

Z = a random varlable, independent of p, yielding "'1'" if person
guesses, ''0'" otherwise.

Test items are randonly and independently selected from large pool of
items.

Persons are randomly selected from relevant populatlon for admlnistra-
tion of tests.

B. BETA DISTRIBUTIONS OF ABILITY LEVEL

Since p is the proportion of items in the test pool that a given indl-
vidual knows, it can serve as a comprehenslve measure of his level of ability
or achlevement. It is, at least, superior to the notion of true score or
ability level of classlcal test theory based upon the number of items an-
swered correctly. This, of course, would be contaminated by the effects of
guessing.

Since p has a finite range from zero to one, it is not natural to use a
normal distribution to represent the frequency of occurrence of p in a pop-
ulation. The most commonly used and flexlble distrlbution for a variable
deflned over the Interval [0,1] is the beta dlstribution:

2=1(1-p)b"!

i |
falplab) = 5=

where a,b > 0.



C. TEST RELIABILITY

One-item test reliability. We need to know the joint and marginal
probabilities for the random variables X and Y. Thus,

X
llo" ll]ll {
nuane P 2] Py. 1
y 0 11 12 1
ll]ll pz] p22 p2.
P. P.y '
Decomposing the joint probabilities: .

25 Pr(X=i, Y=j, 2=i) + Pr(X=i, Y=j, Z=0)
= Pr(X=i, Y=j|I=1)q + Pr(X=i, Y=j|2=0)(1-q).

By further decomposition and by integrating fB(pIa,b) over p we ob-

tain
5.0 by = al1-0)22 + 2001-0)5 + 2] + (12 - i
) o - L X
(c.2) p, = al(1-6)p + 8] + (1-q)p. ' e
Since }
] P - P 2
L P22~ P2 |
(c.3) "y —— . L
Pz Pz d
we obtain (6) by substituting (C.1) and (C.2) into (C.3) and re- .
naming Py as qu and we obtain (1) by setting q = 1 and simplifying.
(n) (n)

n-item test reliability. Let X' “and Y represent two n-item tests
obtained by sampiing from the large pool of items. Then

2

2 2
T, () T ) T2 T AT () () ()7 (n)

and o2 - o2 - 2
x(n)+Y(n) x (n) Y(n)
(c.4) rx(n)Y(n) - 20
x(n)oY(n)
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Upon expanding the right hand side of (C.4) down to the level of in-
dividual items realizing that all item variances are equal due to the nature
of the basic testing process and that all item inter-correlations arc equal
to ryy, (C.4) through simplification becomes elther (2) or (7) depending up-
on the deflnitlon of Txy*

D. MEASUREMENT VALIDITY

One-item measurement valldity. By the definition of correlation,

ST . Cov Xp
(p:1) . o LN
P War X Nar p
Now,
(D.2) Cov Xp = E(Xp) - E(X)E(p)

After integration over p, we obtain:

(0.3) E(Xp) = q[(1-8)u? + 8p) + (1-q)u-
(D.4) E(X) = q[(1-8)p + 6) + (1-q)p
(D.5) E(p) = p.

““Subsgltuting (D.3), (D.4), and (D.5) in (D.2) and simplifying we obtain:

(D.6) Cov(Xp) = (I-qe)opz.

By definition,

(0.7) Var(x) = E(x2) - [E(x))?
and
(0.8) - var(p) = E(p?) - [E(P]? .
. .‘
(.9) E(X) = E(x2) = q[(1-8)p '+ 6] + (1-q),
(0.10) E(p) = b,
and '
(D.11) | E(p?) = y2.



(D.

(0.13) r

E.

Substituting (D.9) into (D.7) and (D.10) and (D.11) into (D.8) and the re-
sults along with (D.2) into (D.1) and simplifying, we obtain

oy ?
(1-qo6 o_

]

q Q6

S

rxp(QDelasb) =

which simplifies to (8) and upon zetting q = }, to (3).

h-item measuremcnt validity. As before, let X(") represent an n-item test
obtained by sampling from the large pool of iteme and let p, of course,
represent ability level. Then,

2 2 2
o =g + 0" + 2r o g

x(My o ) " e x(n), x(n)p

and 2 2 2
o -0 -0
x(n) +p x(n) p
12) r =
x(n)
p
20 (n)o
X p

Upon expanding the right hand side of (D.12) down to the level of in-
dividual items and reallizing that all item variances, o5; item inter-
correlations, xys and item validities, Fxp» are equal, (D.12) becomes

2nr o0 O
v - Xp X p

X(n)p 2/n oxop/1 + (n4T)rx

X

which simplifies to

r. /n

= xp
XM CRE

This final equation (D.13) then becomes cither (4) or (9) depending upon
the identification of ryp and ryy.
TEST RELIABILITY WHEN VALIDITY IS ZERO

Let p be indepcndent from item to item and proceed as in Appendix C to
obtalin

bt ey



pyy = al(1-8), + 01((1-0)p + 6] + (1-a)p,B,

= g52 + (1-q)p2
and
Py = apgy * (1-q)p

which, when substituted into (C.3) ylelds (12).

The procedures of Appendix D may be followed to obtain the validity of such
a test. Notice that

E(Xp) = plql(1-8)p + 8] + (1-q)p}
= E(p)E(X)

so that

Cov Xp = E(Xp) - E(X)E(p)

E(X)E(p) - E(X)E(p)

= 0.
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Logic and mathematics are emplcyed to yield very conservative estimates of the
gains resultinc from changing over from choice methods to admissible probability
measurement in the administration of existing tests.

Equations cend graphs give test reliability and measurement validity as a function
of the distribution of ability levels in the population to be tested and as a function
of the amount and type of gquessing engaged in by this population. Since guessing
degrades the performance of choice tests and since the use of admissible probability
measurement eliminates guessing, the extent of degradation corresponds to a con-
servative estimate. of the gains resulting from conversion to admissible probability
measurement. ’

In som: applications it may be wise to trade off the increase in measurement valid-
ity against the advantages of shortening the length of the test. Equations and
graphs show how much shorter the new guessing-free test can be and stil! retain the
original measurement validity.

Additional equations and curves show that choice tests with zero measurement
validities can have appreciable reliabilities due to differences in guessing
strategy in the population.

All the analyses indicate that conversion to admissible probability measurement
will yield quitz significant improvements in measurement validity along with con-
siderable reductions in test length.
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