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DECISiON-THEORETIC PSYCHOMETRICS: AN INTERii REPORT, NOVEMBER 1966

Emir ti., Shuford, Jr. and H. Edward Massengil!

ABSTRACT

in Section A, A Logical Analysis of Guessing, appropriate test-taking
strategies are derived for six major test-scoring proceduras. Three
commonly used definitions of guessing are Interpreted as corresponding
degree-of-confidence distributions. The ability of the testing pro-
cedures to separate these distributions from those representing higher
degrees of knowledge is considered with the major result that only
admissible probability measurement performs satisfactorily.

In Section B, The Effect of Guessing on the Quality of Personnel and
Counseling Decisions, the fundamental probability distributions for
total test scores are derived by assuming that each person knows the
answers to some items and guesses on the remaining items. Analysis of
a 10-item test shows that guessing leveis encountered in practice

(a) seriously degrade the vaiue of selection, placement, and counseling
decisions, (b) significant!y impair test recliability and validity, and
(c) magnify the influence of testwiseness.

in Section £, The Worth of individualizing instruction, equations are
developed for expressing the cost and gain for applying an instructional
sequence. The expected return from assigning instruction on the basis
of (1) admissible probability measurement, (2) admissible choice testing,
(3) conventional choice testing. (4) prior information only, and

(5) matching the average student is computed for each of seven distri=-
butions of state of knowledge. The performance of (1) is outstanding;
that of (2), (3), and (4) is disappointing, while (5) does surprisingly

well,



The Worth of indlvidualizing !hstruction

It would be surprising If the development of a decision-theoretic psychometrics
were not able to provide some useful insights into the process of Instruction.
Instruction, whether guided externally or internally is basically a cybernetic
process and an essential feature of this process is information concerning the
current state of a person's knowledge (Shuford & Massenglll, 1965). How, a decision-
theoretic psychometrics should be concerned, generally, with techniques for obtaining
and utilizing information about the current state of a person's knowledge. A suf-
ficiently developed decision-theoretic psychometrics could be viewed as a theory of
instruction, However, in our judgement, though decision theory would provide an
excellent framework within which to develop a theory of Instruction, too much is
buried in the utility functions of decision theory. It s quite feasible to develop
a theory of utility functions for a certain area of application {Toda & Shuford, 1965)
Such a theory serves to provide a rational basis for deriving utility functions from
rather simple premises and greatly reduces the measurement problems involved. A
theory of utility functions to b= used in the area of instruction clearly must incor-
porate a theory of learning, Theories of learning logically consistent and coherent
with decision-theoretic psychometrics have been developed to a considerable extent
(Shuford, 196k; Watanabe, 1960; 1966). The real potential of a decision-theoretic
theory of instructluen will be realized when it has been developed to the extent that
it can deal efficiently with complex structures with the hierarchical organization
of knowledge (Toda & Shuford, 1965; Watanabe, 1966). Unfortunately, we are some
distance away from achieving such a full-fledged declsion-theoretic theory of instruc-
tion,

So, now let us return to a more mundane level of where we are now. In previous
work (Massengill & Shuford, 1965), we considered a very simpie instructional situation
where the teacher had to decide whether a person was uninformed or well-informed.

The formal explication just allowed two states of knowledge for the person and the
two instructional sequences were speciflically tailored for these two states of
knowledje. Comparison of admissible with conventlonal choice procedures indicated a
superiority for the former which was of considerable significance under a wide
variety of conditions.

The results In Section B of this report concerned with placement decisions can
also be viewed as relevant to instruction, since the two grouns separated by the
placement process can be given different instructional sequences. In contrast to
our ear!ier paper, the placement problem allows a greater number of degrees of



knowledge and forr more general utility functions. Still, the utility functions
are rather arbitrary and empirical and we propose that in this section of the
report to use more rationally derived utility functions, but with essentially a
one-item test. Though these results are still some distance away from the full-
fledged decision-theoretic theory of instruction, they should provide some insight
into many instructional situations and they should provide the basis for a more

thorcughly developed theory of instruction,

PRECISELY TAILORED INSTRUCTiON

Suppose that instruction can be precisely adjusted to a person's state of
knowledge as represented by p. For example, if a nerson Is thoroughly misinformed,
l.e. p=0, then the appropriate instructional sequence devotes considerable effort
attempting to get the person to unlearn false notions and to building up the
person's confidence in the correct concept. If, on the other hand, the person is
uninformed, i.e., p is approximately equal to .50, then no unlearning is necessary
and the instruction concentrates on building up the person's confidence in correct
concepts. And finally, at the other extreme, If a person is completely confident
or certain of the correct answer, I.e., p=l, no instruction is required. Now,
the cost of these instructional procedures decreases as the perscn's degree of
confidence increases. The cost of instruction decreases down to the point of no
cost if the person is completely confident in the correct answer, Now, cost may
be composed of many components, such as the student's and the teacher's time which,
at least, Iimplies that time Is used that might be devoted to learning additional
topics. There is also the cost of instructional materials. This latter cost may
be considered as sunk cost and, therefore, would not enter into the calculations.
Thus, student and/or teacher time is the primary component of this cost function
and might be approximated by assuming that it is proportional to 1l ~ p. If c is
the maximum cost incurred when the student is thoroughly misinformed (p = 0),
then the cost function may be expressed as =c(1 - p) and graphically represented
as shown in Graph A of Figure 1.

Cons ider now the gain resulting from instruction. Assume first that all
precisely tailored instructional sequences are completely effective. As a conse-
quence of experiencing a precisely tailored instructional sequence, a student with
an initial state of knowledge represented by p will terminate the sequence with a
state of knowledge represented by p = |1, i.e, he will be certain of the correct

concept.
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A misinformed person Is less effectlve than an uninformed person, since a
misinformed person will go ahead and confidently take action on the basis of his
misinformatlon, while an uninformed person wlll be motlvated by his uncertainty
to seek more information before taking action or, If thls is not possible, he
prefers to take less extreme action. Ard rore clearly, perhaps, a well-informed
person Is more effective than an uninformed person (msre effcctlve In takling
actions which better serve his own ends). Taking all this into account, it Is
evident that the galn from using a preclsely tailored instructional sequence is
greatest for misinformed ctudents .nd declinas down to zero for completely inforred
students., For the sake of simplicity, assume that the gain from the use of a
precisely tailored instructional sequence is proportional to | - p. In other
words, thls gain function can be represented by a straight line,with the gain
assoclated with changlng a thoroughly misinformed student, (p = 0),into a thoroughly
Informed student,(p = 1)," twice that of changing an uninformed student,(p = %),
into a thoroughly informed student. [Mote: This assumption is not aluays approp-
riate, since there are probably Instances in which being misinformed is many
times worse than belng uninformed.] This gain function can be represented graphi-
cally as in Graph B of Flgure | with g equal to the maximum possible gain,

Now, by adding the cost and gain functions in order to subtract the cost
from the gain, a linear total return or net gain function is obtained, which is
proportional to 1 = p with a maximum of g - ¢ at p = 0 and with a minimum of 0
at p = 1. This is represented graphically in Graph C of Figure 1.

If a student's state of knowledge, p, is deternined with some preclsion, as
for example, by using an admissible probability measurement procedure, then it is
possible to think of precisely tailoring instruction to his state ofuknowledge.
Instruction can be matched precisely to the needs of the student. Such @ procedure
has often been considered a desirable goal, In the remainder of this section,
the hypothetical desirabillty of this goal will be computed and shown to be a
function of the student's states of knowledge. The actual quantities obtained
are not important In themselves and do not represent the real value of precisely
tailored instruction, since utility values will be assigned arbitrarily without
empirical determination or without derivation from a theory of learning. What is
important, however, is that in later sections the performance of other procedures
will be computed and compared tu thls best possible, ideal performance of an

tnstructlonal system. The relative values of these nerfcr—ance indices are




meaningful and remain valid once the actual utilities are empirically determined.

The return from the use of precisely tailored instructional sequences is a
function of a student's state of knowledge as represented by p. Therefore, the
total return realizable by processing a number of students depends upon the dis-
tribution of p for this group of students.

If there are N students in this group and if the state of knowledge of the
i-th student is representcd by Py then the total return, R, from precisely
tailored instruction is

N M
(I) R = izl (Q'C)(I'Pi) - (g-c)(K-iZ' pi)o

For dealing with large numbers of students and for theoretical purposes, it
is convenient to represent the distribution of the student's states of knowledge
by a continuous probability distribution defined over the interval [0,1]. A
reasonably flexible distribution is the 8eta functlon which depends upon two para-

meters, a and b, which must be greater than zero.

(2) P(p) = ’B(P) - ETE%FY Di”-I(I'P)b.I

(a+b-1)! a1 () pyb-]
T Th-n1 P pr

The mean of this distribution is

(3) p=~El(p) = 3¢

and the vaflance is
ab
(a+b)2(a+b+1)

Some representative Beta functions are graphed in Figqure 2,
The expected return per individual, r, from precisely tailored instruction with &

(4) v(p) =

group of students whose states of knowledce are represented by the Beta.function is
1
(5) r= jo(g-c)(l-p) fB(p|a,b)dp

(a+b=1)! 1 a-) b
= (g=c) (1-p) "d
9 (a=1) ! (b=1)! Io d B/EP
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(a+b-1) ! (a=1) 1(b)!
" (g-c)(a-i)l(b-i)! * T {a+b)!

= (g=c) (1-p).

The expected return per individual, r, depends only on the mean of the distribution
of the students' states of knowledge and is a decreasing function of this mean,

It does not depend upon the variance of the Beta function, However, if the return
function were non-linear then the expected return per individuai would depend

upon the variance and, possibly, upon other moments of the distribution of the:
students' states of knowledge. This is true regardless of the exact mathematical
form of the distiibotdon.

A PRIORI CHOICE BETWEEN INSTRUCTIONAL SEQUENCES

Now, consider the use of choice methods to indicate a student's state of
knowledge. In abandoning precise measurementcf a student's state of knowledge,
we must give up all hope of using precisely taiiored instructional sequences, since
there is no basis for matching them to the student's state of knowledge. ‘e must
choose from among several instructional sequences and there is no point in
choosing more than the number of discriminations we can make in a student's state
of knowledge. Remember from Section A above that choice methods are generally
capable of discriminating at most three states of knowiedge; informed, uninformed,
and misinformed. Thus, conventional choice testing can only make the discrimination

not misinformed vs. not well-informed. However, we will be considering admissible

choice procedures in the next section and since admissible choice can distinguish
three states of knowledge, we will use three instructionai sequences for both the
conventional choice and the admissible choice procedures.

As for the instructional sequences, we wiii select

£ the precisely tailored instructional sequence for p=l (No instruction).

z the preciseiy tailored instructional sequence for p=1/2 (A moderate

amount of instruction, no uniearning).

£ The precisely tailored instructional sequence for p=0 (Extensive uniearn-

ing of material, moderate instruction in the correct concepts).

Now, we must make some assumptions about what happens when an instructional
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sequence is misapplied (There was no reason to do this beforz when we could be
certain of precisely matching instructional sequences with the student's state of
knowledge).

The case of no instruction, | is relatively straightforward. it should

]
result in no cost and no gain and lan be graphed as shown in Flgure 3. It is,
of course, a horizontal line, r = 0,

For the case of moderate instruction, 11/2, the cost will be constant at a
value of %c, while the gain will decline from a maTImum of %g at p = % as p
increases toward 1. As to what happens for p < 20 1t seems reasonable to assume
that instruction would become less effective as a student becomes more convinced
of an incorrect concept, If a student were thoroughiy convinced in the correctness
of a wrong notlon, it appears likely that such training would have no effect at
all on the student's state of knowiedge, since any demonstration of the wrongness
of his idea would be lacking. Thus, the gain from applying il/2 decreases as p
goes from 1/2 down to 0 and the gain at p = 0 is nil, For simnlicity, assume
that this decrease is linear. Then, the resulting function can be graphed as
shown {n Flgure 3. it is a triangular-shaped function with one maximum at p = 1/2
and with two minima at p = 0 and p = 1, The minimum value is = %c.

Finally, consider the effect of applying the instructional sequence, '0’
tailored for the thoroughly misinformed student. The cost is constant at ¢ (This
is obviously an approximation since, in some cases, a better-informed student
can complete a sequence more rapidly, leading to a lower cost, but there probably
exlsts some additional cost in lost motivation or boredom as a result of suffer-
ing through inappropriate instruction). Mow, as p increases, the result of
applying lo is over-instruction, in the sense that the instruction is more than
sufficient to carry the student's state of knowledne from p up to p = 1. Since
complete certalnty, represented by p = 1, Is the limit on a student's knowledge
with respect to a particular concept or topic, the gain from applying lo mus t
decrease as the student's initial state of knowledge, p, moves toward p = 1|,

Again, we &zsume for the sazke of simplicity that this decrease is linear in | =~ p,
Adding these cost and gain functions we obtain the return function for I0 shown
in Figure 3. Notice that it is a linear function with a negative slope and with
a maximum of g = ¢ at p = 0 and a minimum of =-c at p = 1,
The dashed line in Figure 3 is the return function, Ip. for precisely

tailored instruction as shown previously in Figure 1. in applying one of these
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three rigid sequences, there is no loss relatlve to precisely tailored Instruction
at the three values of p = 0, p = 1/2, or p = 1, At other values of p there is
some loss and the use of these three rigid instructional sequences treat both
moderately misinformed and moderately well-informed students rather badly, although
we can do no better without having more precise information {such as that obtained
through admisslble probability measurement) about each student's state of knowledge.
Sometimes it may happen that we have preclse information about a student's
state of knowledge, but because of economic or other reasons we may be able to apply
Just one of the instructional sequences, for example, we may have avallable three
grogrammed texts at different difficulty levels or three textbooks, elementary,
Intermediate and advanced. In this instance, examination of Tigure 3 clearly
indlcates that, for students who are more than moderately misinformed, the best
asslgnment 1s the instructional sequence '0’ whereas for students who are more
than moderately well=Informed, the best instructional sequence Is 'l' which usually
represents no instruction, while, for all other students, the return would be
maximized by assigning them instructional sequence II/Z' Consider now that we have
no test information on each student, but we have the overall distributlon of
ability levels as expressed by the "eta function. ‘hich is the best of the three
instructlonal sequences to apply? This same sequence will, of course, be applied
to all of the students. This analysis wlll serve to illustrate the logic of the
institutional decision invoclved and can also provide a baseline against which we
can compare the performance of the choice testing procedures which will be con-
sidered later. ‘le need to compute the expected return from applying each of the
three instructional sequences. Considar nov applying I], that is, no instruction,
the action most appropriate if a student is thoroughly informed. Since the return
for all values of p of applying Il is 0, the expected return will also be zero,

regardless of the shape of the distribution of states of knowledce,

(ha) E I] = 0,

The expected return from applying I, 1s obtained by weighting the return at

0
each level of p by the corresponding ~robability density and integrating this

function over the interval [0,1]. Thus,

1 -
(6b E 1, = fo[g(l'p)'C]fB(pla.b)dP = q(1-p) - c.




Here again the expected return depends only upon the mean and not upon any other
moment of the distribution of the students' states of knowledge.

Consider now applying instructional sequence il/2' As before, we wish to
integrate the product of the return function of the probability density over the
whole range. Since this is a triangular function with one discontinuity at p = 1/2,
we can break the integral into two parts and perform the corresponding integration

by parts
(6) €1y, = [ (op = F,(plab)ep + [y [ol1-p) = §1F,(pla,b)ep

- g{SGb(a+l|%,a+b) + (1-5)[Gb(b+l|%,a+b)]} - g
The second line of this equation s given for convenience in obtaining actual
numerical values for these integrals, Gb stands for the right-hand cumulative
of the binomial distribution, The incomplete integral of the Beta distribution
can now be solved explicitly in terms of a and b, Thus, tables have been computed
and published for the cumulative of the Beta distribution, however, it is more
convenient and more accurate in most cases to make use of the fact that the cumu-
lative of a Beta distribution corresponds to a cumulative of a binomial distri-
bution, Thus, for example, the intearal from 0 to 1/2 of the Beta distribution,
with parameters a and b, corresponds to the sum of the individual terms of the
binomial distribution, .ith naramcters 1/2 and a + b, and the sum is over all
terms greater than or equal to a + 1. The binomial distribution has been extens~
ively tabled in a number of places. The one we find most convenient is Tables of

the Cumulative Binomial Probability Distribution,” T e "nnals of tie Com-utation

Laboratory, Harvard University, Vol. XXXV, Cambridqge, Mass.: Harvard University
Press, 1955.

Thus, the expected return from applying the instructional sequence optimally
suited to uninformed students is determined by first finding the two parameters
of the Beta distribution,which represent the states of knowledge of the population
of students, and determining the gain, g, and the cost, ¢, and then performing
some computations to find the mean, 5 = a/(a+b), of the distribution of the states

of knowledge and looking up two values of the cumulative of the binomial distri-

bution.
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CONVENTiONAL CHOICE TESTING

Consider now the posslbility of asking each student a question before we
assign him one of the three instructional sequences, Suppose further that this
question were administered by one of the conventional choice methods whlch allow
the student only two responses, where his cholce of a response is determined by
whether hls state of knowledge, p, 1s greater than or less than 1/2, Thus, his
response to the question is a two-valued random variable, X, where X = 0 indicates t
that the student's p is less than 1/2 and X = | indicates that the student's p is
greater than 1/2,

Mow, we can compute the expected return given that the student responds and
that one of the instructional sequences is appiied. Knowing the student's response
tells us whether to apply the left half or the right half of the Beta distribution
of abillty jevels in computlng the expected return., |f we consider applying '0’
the return Is always O. Therefore, the expected return from 'l is always O whether
or not the student responds X = 0 or X = 1, Thus, we have

(7a) Exll =0,

For applying '0’ if a student responds X = 0, the expected return is the Integral
from O to 1/2 of the product of the return functlon times the distrlbutlon of
abllity levels, while if the student responds X = 1, It is the inteqgral from 1/2
to |1 of the product of the return function tlmes the distributlon of ability
levels, Thus,

’f% [9(1=p) = c]f (p|a,b)dp If X=0
(7b) EX'O "( 0

Iy 180+p) = clfg(plasbdep 16 x =)

- - ] 1
(g(l-p)Gb(a|§, atb) - ch(aIE,a+b-l) if X=0

= - ] 1
\_g(l-p)cb(b+||§,a+b) - ch(bli,a+b-l) 1f X =1

By a simllar process, we obtiln condltlonal, expected return for applying 11/2

in (gp-g)f (p|a,b)dp if X=0
8
(7e) Eylyyp= ¢ ]

\f; [g(1=p) - g]fB(Pla,b)dp 1f X = |




o C 1 c | : -
i .!ngb(a+l]2,a+b) ZGb(ali,a+b-l) if X=0

: = | c | :
\g(l-p)Gb(b+l|§,a+b) - iG(b|§,a+b-|) if X =1
And finally, the probability of a student responding, X, is

{ |
(7d) p(x) - i[%. fB(Pla.b)dP for X =0 = Gb(ali’a+b-')

1 |
[} fB(pla,b)dp for X = | = Gb(bli,a+b-l)

ADMISSIBLE CHOICE TESTING

Remember from Section A above that the use of an admissible choice procedure
yields, at least, three different responses, Y = 0,1,2, |If a student answers Y = 0,
he is misinformed about the topic under consideration. |If the student answers
Y =1, he is neither very misinformed nor vary well-informed about the topic under
consideration, If the student answers Y = 2, he is fairly well-informed about
the topic under consideration. By varying the size of the penalty for a wrong
response, we can vary the critical values of p, where the student will make one or
another response. To be explicit, we will consider the case in which the student
will respond Y =0, if p is less than 1/4; he will resnond Y = |, if n is between
1/4 and 3/4; and he will respond Y = 2, if p is greater than 3/4. Pemember that
the middle catengory can be broadened or 1arrowed and would have some effect on the
performance of admissible choice as a guide to instruction, depending upon the
exact values of ¢ and c. However, /4 and 3/b are not too unreasonable to use in
general with admissible choice testing and, in reality, we are probably not free
to chanqge the penalty (and, thus, the middle range) from time to time and expect
the students to adjust immediately to the change.

Consider now the expected return from first asking a question atout the tonic
under consideration by using an admissible choice procedure and then apolyinc one
of the three instructional sequences depending upon the answer that the student

gives. As before, the expected return from applying I' is 0

(8a) Ev|| =0



‘le obtain the expected return by applying |, in a similar fashion to that aiven

0
for conventional choice testing, but for three different responses

Iﬁ [9(1-p) - clf,(pla,b)dp iIfYao
(8b) Ey'o = fi (g(1-p) - C]fs(pla,b)dr ifFY =1
j; (a(1-p) - C]fB(PIa,b)dp iIfY=2

{’g(l-B)Gb(alé.a+b) - ch(aI%,a+b-l) ifY=o0
=4 9(1-p) = ¢ = Eyolo = Eveylo FY =1
lg(l'E)Gb(b+l|£,a+b) - ch(bI&,a+b-l) ifYy=2
and the expected return from applying 11/2
.ft [ap - g]fs(pla,b)dp ify=0

(8c) E

e " Ii [op - g]fB(pla.b)dp + fi [a(1=p) - glfB(Dla.b)dP ify=1

fé [g(1-p) - g]fs(pla,b)dp [fY =2

S 1 c ] -
ngb(a+l|n,a+b) 2Gb(aln,a-rb 1) ifY=0

- ] c |
= G - - - - - -
n b(a+l|2,a+b) 2Gb(alz,a-rb 1) FY-O'I/Z

5 g(l-S)Gb(b+l|%,a+b) - gnb(bl%,a+b-l) -f EY =

ym2'1/2
= 1 c 1
g(l-p)Gb(b+l|5,a+b) - iGb(bIE a+b~1) If Yy = 2

Likewise, the probabllity of students responding ¥ = 0,1,2 is




/ - ] -
fﬁ fB(p|a,b)dp for Y = 0 Gb(a|5,a+b 1)

(8d) P(Y) =¢ fi fo(pla,p)dp  for ¥ = 1 Gb(a|%,a+b-l) + Gb(bI%,a+b-l)
i
L I% folpla,b)dp  for v = 2 Gb(b|£,a+h-l)

MATCHING INSTRUCTIOM TO THE AVERAGE STUDENT

Consider now the last instructional strategy, that of matching instruction to
the average student. To he more explicit, the idea Is to determine the average
state of knowledge of the students and then to select and apply that instructional
sequence precisely tailored to this mean value. Though there is some logic to this
procedure, It has been widely criticized, probabiy, most often because people
object to the idea of using one instructional sequence for pupils of varyina states
of knowledge. It has been criticized somewhat iess often because pzople object to
matching instruction to the mean rather than to some other value. In this report,
we will just consider matching instruction to the mean and in a later renort we
may consider matching instruction to other aspects of the distribution of states
of knowledge.

To consider this case, we have to specify our cost, aain, and return functions
more renerally, since any nrecisely tallored instructicnal se-uence, 'n' may be
chosen and misapplied to students with various states of knowledae.

it is only logical to use the same cost function that we used before for a
precisely tallored instructional sequence, since it depends uoon the instructional

sequence and not upon the state of knowledge of the student. Thus,

(9) Cost = c(1-p)

‘e must, however, more completely specify the return function. To see this, suppose
we apply '3/h For students whose states of knouledce, p, are creater than 3/&

the return function wil! be similar to those specified hefore and, due to the llmut
on the maximum state of knowiedoe, the return will decline as p approaches 1. Ffor
students whose states of knowledge, p, are less than 3/4, the return will decline

as p Increases. Assuming that instruction is proaressively iess effective in

increasing the students' states of knowiedge as the instruction is tallored for
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students who are at progressively higher levels of knowledge, then we can approxi=
mate this behavior by a l1lnear function which declines at a certain rate., The

decline progresses down to where the aain is zero and then remains at zero for all
smaller values of p, Thus, we can derive a set of return functlons which includes

those used earlier
-c(l-a) for p < 2p - |
(10) 1=(p) = gp = g(2p-1) - c(1-p) for 2p - 1 <p<p
a(1-p) = c(1-p) for p > p

Three different return functlons are 1llustrated In Flgure 4 along with the return
function for preclsely tailored Instruction,

Using this general Equation 10 for the return functlon, we can compute the
expected return from using an lnstructional sequence preclsely tailored to the
mean state of knowledge of the students. Thus,

1
(M) E l;(p) - ]o la(p)fB(pIa.b)dp
= PP (-c1-3) 6, (pl 2,5 dp

+ Ip- [99'9(2;“) - C(I-B)]fs(pla,b)dp
2p=]

Ii [g(1=p) - C(I'E)]fB(p|a,b)dp
p

gB{FB(E|a+|,b) - F8(25-||a+|.b)}

+

9(2p-1){Fg(p|a,b) - Fg(2p-1]a,b))

+

g(l-a)ca(sla.b+l) - c(1-p)
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SOME COMPUTED VALUES BASED ON SELECTED PARAMETERS

in order to get some numbers from these equations, we have to glve numerical
values to four parameters., Two of them, a and b, specify the distrlbution of
states of knowledge of the students under instruction. The other two, g and c,
represent gain and cost, respectively, of the instructlon. ‘le will fix g = &
and ¢ = 2 for all of the following computatlons. The resuits are a little more
general than they seem, since they also apply proportionaiiy to all cases where
g = 2c,

Yle use seven different distributions of states of knowledge. Three of them
are symmetric about p = 1/2, but with different degrees of spread about this value,
Two are skewed with many of the students being misinformed, while the other two
distributions are skewed in the other direction, with many of the students being
well-informed. The following pages aive the parameters and the computed vaiues

along with comments on the results,
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Parameters: a=b=1,g=4, c =2, p=1/2.

Case |: E lp = |
Case !l E lo = 0
Ehy
El, =
Case 111: (X = 0) (x = 1) E 0™ = .5
E g =5 -.5
Eyhyyp= O g
EJ, =0 o
P(X) =.5 .5
Case IV: (' =n) (Y = 1) {y = 2) Eyl* = ,625
Ev'o = .2_7_5_ 0 -0375
E\,II/2 =-,125 .25 -.125
Evl, =0 0 0
P(Y) = .25 .50 .25
Case V: E - = (
o]

Comments: Here the distribution of states of knowledge corresponds to the rectan-
gular distribution shown in Figure 2, Effectively, the teacher has no information
whatsoever concerning the student's state of knowledge. Motice that precisely
tailored instruction yields a geturn of some size, while talloring instruction
with no testing either by choosing one of the three sequences or by matchlng
instruction to the average student yields a return of 0, The use of choice
testing to guide instruction yields a return of half of that possible by the
use of admissible probabllity measurement procedures while the use of admissihie
choice procedures yields a return somewhat higher than that of conventional
choice testing., In summary, in thls case thc teacher has no information whatso-

ever about the students, so not surprisingiy, testing nays off,




Parameters: a=b =3, g=s b4, c=2,p=1/2,

Case 1: E = |
)

Case 11: E I0 a 0
E 'I/Z = ,375
E II = 0
*
Case I11: X=20 X =1 Exl = 5
EX'O = .3125 -.3125
Ex'l/Z = 1875 .1875
ExlI = 0 0
P(X) a .5 .5
Case IV: ve Y= | Y =2 EYI* = 656346
EY'O w L13182 0 -, 13182
EY'I/Z = -,02832 L43164 -, 02832
EY'I = 0 0 0
P(Y) = ,10352 .79296 . 10352
Case V: E I5 = ,375

Comments: The distribution of the students' states of knowledge, in this case,
may be seen in Figure 2. It is symmetric about p = 1/2 with a maximum at this
value. The students' states of knowledge fal!l over a broad range, but relatively
few are very well-informed or very misinformed. Notice that, in this case,
precisely tailored instruction again yields a return of some size. |In tailoring

instruction without testing, is the best of the three and yields an expected

Y2,
return equal to the expected return of matching instruction to the average student.
As before, the use of choice testing to guide instruction yields hal® the expected
return from using admissible probability measurement. The use of an admissible

choice procedure is somewhat better, but the gain is less than was found before.
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Parameters: a = b =20, g= 4, c=2, p = 1/2,

Lase |: E I = |
P
Case |1I: E I0 = 0
Ely2 = L7u924
E I, = 0
Case I11; X =0 X = | Exl* = 74924
ESIN = ,12538 -.12538
EXI”2 = ,37462 .37462
Ey!, = 0 0
P(X) = .5 .5
eadd g Y =0 Y= Y =2 EYI* = 74970
Eylo = ,00040 0 -.00040
EMPyS -.00003 .74930 ~.00003
Eyl, = 0 0 0
P(Y) = ,00037 .99926 .00037
= 74924

Case V: E I~
P

Comments: This distribution of the students' states of knowledge can also be
found in Figure 2, It is the very narrow distribution symmetric about p = 1/2,
the great majority of students being in the region of being uninformed, but
essentially no one is well-informed or misinformed. It represents a very
homogeneous class which may have arisen either through a previously applied
placement process or because of the nature of the subject matter under study,

such as Greek, where relatively few students would possess prior knowledge of the
subject. Here, the expected return from precisely tailored instruction is of some
size which, again, is best of any of the procedures. MNotice, however, that all
the remaining procedures do about equally well, One can do as well without
testing as by using a conventional chcice test and the gain from admissible choice
testing is really trivial. This is a refiection of the vast amount of information
already known about the students' states of knowledge. In summary, as the class
becomes more homogeneous, with relatively fewer well-informed and misinformed
students, the value of precisely tailored instruction remains best and constant
with the return from the other procedures increasing until, finally, the gain from
choice testing is wiped out, but with considerable advantage still remaining to
the use of admissible probability measurement,
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Parameters: a=1,b=3,g=4, c=2,p=1/4,

l: = o
Case E Ip 1.5
Case 11: E I0 = l
Elyp = =25
E T, = 0
*
Case 111: X=0 X = 1 Eyl = 1.125
Bl = 1.0625 -.0625
E
X 1/72 = «,1875 .0625
Ex'y - 0 0
P(X) = ,875 .125
Case IV: Y =0 Y =1 Yy =2 Evl* = 1.08982
B = 89451 .12502 -.03126
EYII/Z = -,31641 .19531 -.00390
E 1, = 0 0 0
P(Y) = ,57813 L0624 .01563

Case V: E |5 .86721

Comments: This distribution of students' states of knowledge is also shown in
Figure 2. It is the moderately positively skewed distribution with relatively
few of the students being well-informed. Here, tire return from precisely tailored
instruction is even greater than before. This is primarily a reflection of the
characteristic of the return functions that the yield is greater from training

a misinformed student. In the case of selecting one of the three instructional
sequences without testing, it is best to treat all of the students as being
misinformed and the return is 2/3 of that obtainable from precisely tailored
instruction, HNotice that matching instruction to the average student, i.e.,
applying | /L yields almost as great a return as does using |.. The use of
choice tesllng is slightly better than applying 1.. The use o? admissible choice
testing, while very slightly better than applying I,, is not quite as good as
using conventional choice testing, This is undoubtedly due to the choice of the
penalty score for the admissible choice testing procedure used. Admissible choice
testing applies |, whenever a student picks the wrong answer, which is about 58%
of the time and agplies II 2 whenever the student skips the question, which is
about 41% of the time, whe{eas conventional choice testing applies 1. whenever the
student gets the wrong answer, which is about 88% of the time and applying 'I/Z
whenever the student gets the right answer, which is about 12% of the time.

In summary, when many of the students are not well-informed, choice testing is of
little value. The use cf admissible probability measurement with precisely
tailored instructional sequences still retains a considerable superiority.




Parameters: a=1,b =19, g=4, ¢ =2, p =1/20.

Case |t | - 1.
ase E . 1.8
case Il: E |0 = _I_§
£ 'I/2 = -5
El, =0
Case I11: X =0 X = | sxl*al.a
Bl = 1.8 0
Elyjp = -8 0
Egy = O 0
P(X) = | 0
Case IV: Y =0 Y= Y =2 Eyu* = 1.79998
Evlo = 1.79641 .00357 0
Eyli/2 = -.80063 -.00360 0
B = o 0 0
P(Y) = ,99577 .00423 0

Case V: E |B 1.75663

Comments: This distribution of students’ states of knowledge is also shown in
Figure 2, It is the highly positively skewed distribution with almost all the
students being more or less misinformed. Such a situation might be faced by

a teacher given the task of political indoctrination or of teaching a group of
students selected by a previously applied placement process. Here the return

from precisely tailored instruction is somewhat greater than previously,

primarily refTecting the areater number of students who are misinformed. Motice,
however, that all the other instructional strategies yield almost the same return.
This is so because they recommend essentially the same instructional sequence.
They all recommend the application of I0 except in the case of matching instruction
to the average student. In this case, the recommendation, |.05, is not too
different from |0. So, in this case, testing doesn't help, whether it is a choice
procedure or admissible probability measurement. This is primarily because the

amount of information already available to the teacher is just too great and

additional information will not help.
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Parameters: a=3, b= |, g= 4, c =2, p= 3/4,

Case |: E I -
p 5

Case I1: E l0 = -]
E 1y, =125
El, = 0

Case I11: X =0 X = E 1" = L0625
Elo = 0625 -1.0625
Ely, = -0625 - .1875
Edy = O 0
P(X) = .125 .875

Case IV: Y =0 Y o= Y =2 E 1" = .21483
Elg = -01952 -.12498 - 89454
Elysp = =-00390 .19531 -.3164]
Edy = O 0 0
P(Y) = ,01563 40624 .57813

Case V: E |5 .07033

Comments: This distribution of students' states of knowledge is not shown in
Figure 2, but it is essentially the reverse of the distributlon for a = 1, b = 3,
In other words, it is negatively skewed with relatively few of the students being
misinformed. Here, the return from precisely tailored instruction is less than
before, essentlally reflecting the fact that the students need less instruction
than before. In the case of choice between the three instructional sequences
wlithout testing, the best choice Is no instruction, but the yield is zero. MNotice
also that considerable loss results from applying either ||/2 and, particularly, Io.
Matchling instruction to the average student does almost as badly with a very small
yield. Choice testing is even worse than matching to the average student, while
admissible choice testing does pretty well by recommending '0' whenever the student
chooses the wrong answer; l|/2, whenever the student skips the question; and 'I'

whenever the student answers correctly,




Parameters: a= 19, b=1,g=4, ¢ =2, p =19/20.
Case I: El = ol
p

Case 11: E I =-1,8

0
E '|/2 = - .8
E II = 0
Case 111: X=0 X=1 Exl* = 0
Exlo= 2 -1.8
EX'I/Z = 0 - .8
ExlI = 0 0
P(X) = 0 1
Case IV: Y=0 Y = | Y =2 EYI* = ,00063
Eylg = O -.00357 - 79640
EY'I/Z = 0 ,00063 -.80063
EJdy= 0 0 [}
p(Y) 0 ,00423 .99577

Case V: E |5 - 01905

Comments: This distribution is not shown in Figure 2, but it is the reverse of the
distributlon for a =1, b = 19, In other words, It is highly negatlvely skewed
with almost all of the students be;ng fairly well-informed. Here, the return from
precisely tailored instruction is not very large compared to the values previously
obtained. Application of one of the three instructional sequences without testing
yields a return of zero from applying II’ that is, no instruction., The misappli-
cation of I0 or I”2 yields very large losses, however, Choice testing is of no
help with a truly trivial advantage for admissible cholce testing over conventional
choice testing. Matching instruction to the average student actually ylields a
negative return, but of very small value. In summary, none of the returns here are
very large compared to those obtained previously. However, there are undoubtedly
situations in which It is very important to have all the students very well-trained
(e. g. malntaining proficiency for critical jobs) so that the return would become
quite important. In such a case, it is evident that this type of training cannot
be achleved efficiently without the use of the precisely tallored instruction based
on admissible probability measurement, at least not by the use of any of the

procedures considered here.



CONCLUSiONS

Precisely tailored instruction has evidenced a marked superiority to the
other methods in all instances considered so far, MNow, precisely tailored instruc-
tion is not characteristic of most formal, institutional nrocedures for instruction.
it has certainly never been used in conjunction with admissible nrobability
measurement. Precisely tailored instruction, in the spirit in which it is used
here, is probably best approximated by very good tutorial instruction in the case
of external instruction and by a graduate student or by a self-taught exnert in the
case of internally quided instruction. Most talk about individualized instruction
is in the context of institutionalized instructional programs and, in this context,
individualized instruction has teen in the past, at most, somethina approximating
the use of choice testing to guide the application of special instructional
sequences. This kind of instruction has been approximated in some schools and by
prograwned.textbooks and computer-hased materials which branch on the basis of
the students' choices. Most programmed instruction and computer-assisted instruc-
tion approximates the matching of instruction to the average student, since
presumably, the instructional material is evolved through successive tryouts to
do a fairly good job with most students. This also applies to some extent to the
development of textbooks and other instructional material, However, the choice
between textbooks and other instructional material, as faced in most schools, is
approximated by a priori choice, where no testing is done and previousiy available
information about the students is used to select one of three instructional
sequences.,

In qeneral, we find that individualized instruction is at least as qood as
these other procedures already in use. In many cases, however, it is no better
and, in other cases, it is probably not enough better to offset the additional
cost of testing. Matching instruction to the averace student is, frankly, better
than we thought it would be., it is as good as individualized instruction in every
case, but two, The most dramatic instance is where the teacher has essentially
no information about the students' states of kio.ledn2. Th: other, less dramatic,
instance is where relatively few of the students are well-informed, but there is
still a moderate snread in the students' states of knowledge with the majority of
students tending to be somewhat misinformed. This latter instance seems somewhat

less likely to occur in actual practice than the first instance, which might be




approximated by those situations in which the teacher is teachina a very large
class of students or in which the teacher is beginning a course of instruction with
new students about which he has no prior information. Thus, it would appear that
individualized instruction, as conceived by most educators, would be of qreatest
benefit in these situations. in these and many other situations, however, the
benefit from precisely tailored instruction would be mich areater, One of the
hurdles to achieving precisely tailored instruction in a formal, instructional
context has been surmounted by the develonment of admissible probahility measure-
ment procedures, Another major hurdle probably lies in malinc the application of
the precisely tailored instructionai sequences economically and organizationally
feasible, Computer based-instruction, tutorial testina, and independent self=-study
probably hold some promise here. ‘!¢ rlan to investigate their potential in a

future report.
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