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DECISION-THEORETIC PSYCHOMETRICS: AN INTERiH REPORT, NOVEMBER 1966

Emir H, Shuford, Jr. and H. Edward Massengil)

ABSTRACT

In Section A, A Logical Analysis of Guessing, appropriate test-taking
strategies are derived for six major test-scoring procedures. Three
commonly used definitions of guessing are interpreted as corresponding
degree-of-confidence distributions. The ability of the testing pro-
cedures to separate these distributions from those representing higher
degrees of knowledge is considered with the major result that only
admissible probability measurement performs satisfactorily.

In Section B, The Effect of Guessing on the Quality of Personnel and
Counseling Decisions, the fundamental probability distributions for
total test scores are darived by assuming that each person knows the
answers to some items and guesses on the remaining items., Analysis of
a 10~item test shows that guessing levels encountered in practice

(a) seriously degrade the value of selection, placement, and counseling
decisions, (b) significantly impair test reliability and validity, and .
(c) magnify the influence of testwiseness.

In Section C, The Worth of Individualizing Instruction, equations are
developed for expressing the cost and gain for applying an instructional
sequence. The expected return from assigning instruction on the basis

of (1) admissible probability measurement, (2) admissible choice testing,
(3) conventional choice testing, (4) prior inform>tion only, and

(5) matching the average student is computed for each of seven distri-
butions of state of knowledge. The performance of (1) is outstanding;
that of (2), (3), and (4) is disappointing, while (5) does surprisingly
well.



B. The Effect of Guessing on the Quality of Personnel and Counseling Decisions

A major potential domain of application of admissible procedures is to obtain
test information to guide personnel decisions such as selection and classification.
Another major domain is to obtain test data to inform counseling decisions and
recommendations. it should be recognized that the decisions involved in these
two domains have some important differences, for example, selection and
classification decisions are clearly institutional decisions and the utility to
the institution can often be approximated by a linear function of the true ability
of a selected individual. in counseling, on the other hand, the emphasis is on
giving advice and recommendations to the individual and part of this advice concerns
an estimate of his true ability level. Ilere, good advice is accurate advice and
the consequences of an error can be taken as proportional to the square of the
difference between the individual's estimated ability level and his true ability
level. While the decision problems in these two domalns of application typically
involve different utility functions, they have a very important similarity. These
decisions are based upon an individual's total score which is taken to be an
indicant of his ability level. The zfore, an analysis of factors affecting total
test score can serve as the basis for estimating the effectiveness of both
personnel and counseling decisions.

The effect of guessing and of test-wiseness are two interesting problems in
the theory and practice of testing. Though these problems have never been
resolved, they are typically ignored especially in practice. How, it should be
intuitively evident from Section A above that conventional choice testing and its
modifications cannot detect guessing. Furthermore, under the conditions of
testing specified below, it is mathematicaiiy proven that no analysis of information
internal to the conventional choice test can detect the extent of guessing. These
observations lead to the conjecture that the problem of guessing is ignored in
practice because conventional choice testing is incapable both of preventing
guessing and of detecting the presence of guessing. However, there’is-:nutl.cr
conjecture possible, certainly one that should be considered. This conjecture is
that guessing has no singificant effect on personnel or counseling decisions and,
thus, can and should be ignored in practice. How, the coming into being of the
new admissible procedurcs certainly makes it possible to decide these issues.
First, and most importantly, admissible procedures make it poscible to eliminate
the effect of guessing in an objective or semi-objective examination as should be
clear from Section A above. Thus, empirical comparisons of the performance of
admissible tests with that of conventionai choice tests should be able to settle

the issue. Additionally, however, the mere fact that guessing has now been clearly



defined and can be empiricaiiy measured makes it possibie to use new operational
definitions in a formai expiication of test-.aking behavior. This ailows us to
mathematicaily anaiyze different testing situations and to predict the effect of
guésslng in a wide variety of situations. This anaiysis and the resuiting
prediction shouid be quite usefui in guiding decisions concerning the substitution
of admissibie procedures which eliminate guessing for conventionai testing
procedures. The remainder of this section begins such an anaiysis.

To return to the issue of test-wiseness and to anticipate some of the iater
resuits, whether or not an individual chooses to guess at those items which he
does not know can make a considerable difference in his test score. Thus, we can
expect that individuals with a great deai of experience taking conventional choice
tests wiii learn to guess and, if possibie, never skip an item. This individual
test-taking strategy, of guessing at aii the items which one does not know rather
than refusing to guess at these items and just skipping them, we identify as
test-wiseness. The mathematicali formulation makes it possibie to compare the
performance of test-wise individuals with those who are not test-wise and to
predict the effect of this individual difference under a wide variety of conditions.

THE FORMAL MODEL

Ascume that there exists, at ieast conceptuaiiy, a rather iarge pooi of test
items and a popuiation of persons who wiii eventualiy take the test. In principal,
it is possibie to conceive of having ail the persons take ali of the test items,
and that instead of being given a conventionai choice or constructed-response test,
the persons take this super~test by using an admissibie probabiiity measurement
or an admissibie choice procedure. Data obtalned through the use of these
procedures would indicate whether a person was (a) weii-informed, (b) relativeiy
uncertain and possibly guessing, or (c) misinformed with respect to the answer to
each test item. Assume for the sake of simpiicity, and not too tinreaiisticaily in
the case of certain types of tests, that the persons either pretty welil know the
answer to the test item or they are uncertain as to the answer, SO we can now
characterize each person as knowing a proportion, p, of the test items and being
uncertain about the rest of the items. Suppose further that this uncertainty were
such that if any person were given a conventionai choice test, he wouid guess the
correct answer to the item with a certain constant probabiiity, 6, of being correct.
This is the essence of the basic model. There is a popuiation of test items; there
is a popuiation of persons. Each person knows the answer to a certain proportion
of the test items. This proportion corresponds to abiiity, achievement, or true

score, in the sense that 'i. is the one-dimensionai quantity which determines the




effectiveness of decisions based upon testing information. The renuinder of the
items the person guesses with constant probability, 6, of getting a correct
answer.

Thus far, discussion has been in terms of a super-test based on all items in
the pooi. Any test actually administered can be viewed as a random selection of
the sampies of items from this pool. Let n represent the number of items in this
actual test. Now take 6 to be zero. HNo person guesses at any of the items. A
person's score, x, on this test is equal to the number of items that he answered
correctly. It depends both upon the number of items, n, in the test and upon the
proportion, p, of items in the population of test items that the person knows.
Since the items in the actual test have been randomly sampled from the items in
the pool, the person's test score, x, is a random variable with a binomial

distribution and can be written as
(1) fb(xlp,n) = (:)px(l-p)n-x.

This is the distribution of the pupii's score given that p is known. However, if
p were known, there would be no point in giving the test since the purpose of
obtaining the test score is to obtain information about p. The decision maker
and user of the test information must have some information about p prior to
observing the test score for a person. Prior information about p can most
convenientiy be represented by a Beta distribution over the interval, [0,1].

(2) fB(pla.b) - 5-(;;-,-5-)- pa"(l-p)b". a,b >0,

liow, in the case of no guessing, 0 = . choice testing can be represented by
the weil-known Bernoulli process and the many results of applied statistical
decision theory (liaiffa and Schiaifer, i961) can be applied with ease. For example,
the marginal or unconditional distribution of the test score, x, is a

Beta~binomial distribution,

(3) fBb(xlapbpn) = flo'fb:Xh),n)fB(pIa’b)dp

o (xta=1)! (n-x+b=1)! n! (atb-1)!
x! (a=1)! (n=x)! (b=1)! (n+a+b-i)!

the posterlor, or conditional distribution of p, givern x, is, like the prior, a
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Beta dlistrlbution, but with parameters, x+a and n-x+b,

(4) falplxta,n-xtb) = ' pX*aml(.p)nxtbl

i (x+a,n~x+b)

and with mean, (x+a)/(n+a+b), and variance, (x+a)(n-x+b)/(n+a+h)2(n+a+tb+1).

Characterlstics of thls Bernoulil process have beer extensively analyzed
for many declsion problems and the results are relatlvely tractable. Thus, If
there were no guessing occurring In testing, there would be available an
extenslve llterature contalnlng many resuits which could be Immedlately transiated
Into the termlnology of test theory and used as the basls for a decision-theoretic
psychometrlcs deailng with Institutional declslons. Guessins - ~es occur, however,
In conventlonal testlng and we must take thls Into account. ! dolng so, the
mathematlcs becomes much less tractable and we must leave behind most of the neat,
analytlc equatlons of the Bernoulll process. Allowlng for the posslbility of
guessing during the test-taklng process ylelds equatlons whlch are not readlly
Integrated. Therefore, there Is no sacriflice In getting rld of the one
contlnuous distributlon by using a dlscrete denslty functlon to approximate the
distributlon in (2) expressing the distrlbutlon of abllity levels In the
population of persons. Though, In later work we wlll conslder dlfferent
distributlons of abillty level, In thls report we use the distrlbutlon shown
graphlcally In Flgure 1 and glven numerlcally at the bottom of Table 2. It Is a
symmetric distrlbutlon with mean equal to one-half and represer.ts tests of
average dlfflculty.

Now, let us anaiyze a ten-item test. Later work wlil conslder both shorter
and longer tests, but a ten-Item test is sufficlently long to bring out the
effects of guessing and test-wlseness, but not so long as to make the presentation
of the computatlonal technlques unbearable. The initlal distrlbutlon, (See
Flgure 1) allows for nine different ablllty ieveis with p ranging from .1 to .9
In steps of .1. Thus, with no guessing, the condltionai dlstributlons of test
scores are binomlal according to (1) and are given In Tabie i.

Accordling to the deflnltlon of conditional probabllity, P(AB) = P(A|B)P(8),
the jolnt probablllitles of x and p are obtalned by multlplylng each condltlonal
probabl 11ty of x by the approprlate marglnal probabllity of p and are shown In
Tabie 2. Summing over the rows of Tabie 2 yields the marglnal dlstrlbution of x
also shown in Tabie 2. The joint probabllltles glven In thls table contaln all
the information about the testlng process itself.

Now suppose that a person guesses at the answer to each ltem that he doesn't
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Figure 2, Marginal distributions of test score for a 10-item test
affected by different degrees of guessing,
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Table 1.

Conditional distributions of x given p. No guessing (6 = 0).

Entries to be scaled times 10-5.

Score Ability Level (p)
(x) L 2 .3 b .5 .6 .7 .8 .9
10 1 10 98 605 2825 10737 34868
9 13 158 976 Lo3 12106 26844 38742
8 8 145 1061 4395 12093 23347 30199 19371
7 1 78 900 b247 11719 21499 26683 20133 5739
6 14 551 3676 11148 20507 25082 20012 8808 1117
5 148 2642 10292 20066 24610 20066 10292 2642 148
L 17 8808 20C12 25082 20507 11148 3676 551 14
3 5739 20933 26683 21499 11719 4247 900 78 1
2 19371 30199 23347 12093 4395 1061 145 8
1 38742 26844 12106 Loz 976 158 13
0 34868 10737 2825 605 98 10 1
Table 2.
Joint and margital distributions of x and p. ilo guessing (6 = 0),
Entries to be scaled times 10'5.
Score Total
2 3 4 5 6 g 8 .9 W
10 2 21 117 366 616 356 1478
9 2 31 214 780 1569 1539 395 4530
8 19 205 961 2340 3026 1731 198 8480
7 b 117 822 2563 4160 3459 1154 59 12338
6 32 477 2157 L485  LB53 2594 505 1 15114
5 1 152 1334 3882 5382 3882 1334 152 1 16120
4 1 505 2594 4853 4485 2157 477 32 15114
3 59 1154 3459 L4160 2563 822 117 b 12338
2 198 1731 3026 2340 961 205 19 8480
] 395 1539 1569 780 214 31 2 4530
0 356 616 366 117 2l 2 1478
Total 1920 5733 12963 19349 21670 19349 12963 5733 1020 100000

P(p)




know and that his probability of getting the correct answer is 6, for each of these
items. The person knows the answer to r of the items; he guesses the answer to
each of the remaining n-r items. Given the number of items, r, that the person
knows, the distribution of the number of items, t, that the person guesses

correctiy is binomial with parameters, 6 and n-r,
(5) P(t|r,n,0) = £ (t|o,n-r) = (";r)et(l-e)""'t.

These distributions are shown in Table 3 for 6 = i/5 and in Tabie 4 for 6 = /2.
Note that these are probabiy the extreme values that 6 can assume in conventional
choice testing. With 6 = i/5 representing the iowest possibie guessing

probabi ity for a five-aiternative multiple choice test and with 6= /2
representing the largest possible guessing probabiiity which may be encountered in
any multipie~-choice or constructed-response test.

These tables (Tabies 3 and L4) are arranged as they are in order to make it
clear that guessing adds to the score due to the person's abiiity ievei and that
a particuiar test score, x, may arise in a number of ways corresponding to
different combinations of r and t which sum to x. For exampie, a person may
obtain a test score of 2, by knowing none of the items but successfuliy guessing
two of them, knowing one of the items and successfuily guessing one of them, or
by knowing two items. These guessing distributions are conditionai upon r. The
distribution of x conditional upon p may be found by muitiplying the conditional
probability of r times the probability of t and summing over those vaiues that
yield the same x as shown in Equation 6 beiow.

(6) f(x|p,n,0) = Q(S)p'(s-p)""("j')e""’u-e)""‘
= X=r

This equation couid be used to obtain the conditionai distributions of x given
p. These rather extensive computations may be avoided, however, by making use of

the theorem given beiow:

THEOREM §. if x = r + t where the distribution of r is binomial with parameters,
p and n, and the distribution of t is binomial with parameters, 6 and n-r,

f(x|p,n,0) = fb(x]p+0(l-p),n).

e . gt S




Table 3,

Guessing distributions conditional upon the number of test items known.

Guessing probabllity equal to 1/5., Entries to be scaled times 10-5.
Mo. of Test Score (x)

Items

Known O | 2 3 Y 5 6 7 8 9 10
(r)

10 100000
9 80000 20000
8 64000 32000 4000
7 51200 38400 9600 800
6 40960 40960 15360 2560 160
5 32768 40960 20480 5120 640 32
4 26214 39322 24576 8192 1536 154 6
3 20972 36700 27525 11469 2867 430 36 ]
2 16777 33555 29360 14600 4587 918 115 8
] 13422 30199 30199 17616 6606 1651 276 29
0 10737 26044 30199 20133 8808 2642 551 78 8

Table 4,

Guessing distributions conditional upon the number of test items known.

Guessing probability equal to 1/2, Entries to be scaled times IO'S.

N?;e:: Test Score (x)
Known O 1 2 3 4 5 6 7 8 9 10
(r)
10 100000
9 50000 50000

8 25000 50000 25000
7 12500 37500 37500 12500
6 6250 25000 37500 25000 6250
5 3125 15625 31250 31250 15625 3125
4 1563 9375 23437 31250 23437 9375 1563
3 781 5469 16406 27344 27344 16406 5469 781
2 391 3125 10937 21875 27344 21875 10937 3125 391
1 195 1758 7031 16407 24609 24609 16407 7031 1758 195
0 98 976 4395 11719 20507 24610 20507 11719 4395 976 98
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Proof:

(7a)

(7b)

(7¢c)

(7d)

(7e)

(8)

By rewrlting the binomial coefficients and rearranging terms in Equation 6
we obtaln

X ] ] -
f(x|p,n,6) = & n! (n-r)! o (i-p)" % T (1-9)"
r=0 r!{n-r)! (% r)!(n-x)!

Now, isoiate the terms not dependent upon the varlabie of summation, r.

X r n-r_ x-r

f(xlp,n,e) - _ (1-9)" X 5P (1-p) 0
{n-x)! =0 r!(x-r)!

By decomposing (1-p)" " Into (1-p)" *(i-p)*"" and muitipiying by x!/x!,

we obtain

F(x]p,n,8) = —Pi (1-0)"X(1=p) "Xyt 1 BLLO(I-p) 7T
xt(n-x)? re0 r!(x-r)!

-—n [(1-8) (1-p)}" 7% ; -—-5i-—'Pr[9(i'P)]x-r-
x!(n-x)! r=Or! (x-r)!

Since the summatlon term on the rlght is the binomial expanslon of
[p+(i-p) 1%, we have

F(x|p,n,6) = —Di [p+o(1-p)]1%[(1-0) (1-p) ]""*
x!(n-x)!

whlch lIs, of course, an individuai term of the binomial distribution with
parameters, n and p*8(1-p), i.e.,

f(xlp,n,0) = f_(x|p+o(i-p), n).
Slnce
p+ 6(l-p) = (1-0)p + 9;

it should be clear that the existence of guessing (8 greater than 0) effects

linear transformation on the probabiiity parameters of the non-guesslng
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binomiai distributions of r, given p.

As mentioned before, this result grcatiy simplifies the computations invoived
in obtaining the numerical results given later in this report. But, in addition,
it has a more Iimportant implication. The existence of guessing under the
conditions assumed in this basic modei for testing does not change the form of any
of the distributions of test statistics, since the basic conditional score
distributions remain binomial. Therefore, without separate knowledge conceriiing
either p or 6, it is impossible to detect or to isoiate the effects of guessing
using only the data available from the particular test administration.

The conditionai distributions of x, given p, for 6 = 1/5, for 6 = 1/2 are
given in Tables 5 and 6. The joint probability distributions of x and p are

obtained as before and are given in Table 7 and 8. Though these joint distributions

contain ail of the information in the formal testing model, they fail to express

a very important piece of information. What do we know about a person's ability
level after we have observed his test score? This information is expressed by the
conditional distributions of p, given x, which can be readily computed from the
joint and marginal distributions given in Tabies 2, 7, and 3. According to the
basic definition of conditional probability, P(BJA) = P(AB)/P(A). Thus, the
conditional distribution of p for each x is obiained by dividing each joint
probability by the appropriate marginal probability of x. These conditionai
distributions are given in Tables 9, i0, and 11. The marginal distributions of x
for 2ach of the three degrees of guessing, (6=, !/5,1/Z, are shown in Figure 2
whiie the conditional distributions of p, given x are shown in Figure 3. HNotice
that increasing the degree of quessing makes the originally symmetric score
distribution become negatively skewed. Observe also that increased guessing moves
the conditional distributions of x, given p, away from the extremes of 0 and 1 and
increases the spread of these distributions. This means that less information is
being obtained concerning the actual ability level of the pupil. This is one way
of expressing the degrading effects of guessing upron test information. Now we
turn to a quantitative analysis of the effect of guessing upon decisions based upon

this test information.

SELECTION, CLASSIFICATION AND PLACEMENT DECISIONS

The selection problem typically encountered in testing appiications uses a
test score, ¢, often cailed a cutting score to divide tested individuals into two
groups. Those individuals yith a test score of c or above are of further concern
to the institution, since these individuais are chosen to have further interaction

with the institution. For example, they are admitted into coilege, they are given

il
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Table S,

Conditional distributions of x given p,

Entries to be scaled times 10 .

Minimal guessing (8 = 1/5).

5

Score Abillty Level (p)

SO 2 3 y 5 .6 7 8 .9
10 4 27 145 605 2114 6"29 17490 43439
9 8 65 346 1334 Lo31 9948 20302 33315 37773
8 88 520 1983 5543 12093 21066 20050 28555 14780
7 604 2465 6728 13643 21499 26436 24294 14504 3428
6 2720 7669 14986 22040 25082 21770 13426 4835 521
5 8392 16361 22888 24413 20066 12295 5068 1105 55
4 17982 24239 24275 18779 11148 4821 1339 175 4
3 26423 24623 17655 9906 k247 1296 24) 20

2 25479 16416 8426 3429 1061 229 29 ]

] 14560 6485 2383 703 158 24 2

0 3744 1153 303 65 10 ]

Table 6.
Conditional distributions of x given p. Maximal guessing (8 = 1/2),
Entries to be scaled times IO-S.
Score Ability Level (p)

(x) . .2 .3 " .5 .6 .7 .8 .9
10 253 605 1347 2824 5632 10738 19688 34868 59874
9 2072 4029 7249 12106 18771 26843 34742 38742 31512
8 7630 12093 17565 23347  2B157 30199 27590 19371 7463
7 16648 21500 25222 26683 25028 20133 12983 5739 1048
6 23838 25082 23767 20012 14599 8803 4010 1116 97
5 23403 20066 15357 10292 5840 2642 849 149 6
4 15957 11148 6891 3676 1622 551 125 14

3 7460 4247 2120 900 309 70 12 ]

2 2289 1062 428 145 39 7 ]

] L6 157 51 14 3

0 34 1 3 ]
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Table 7.

Joint and marginal distributions of x on p.

Entries to Le scaled times 10 5

Minimal quessing (8 = 1/5).

5

Score Ability Level (p) Total
(x) g .2 .3 4% .5 6 .7 .8 .9 |P

10 3 28 132 Lo9 833 1003 Ly3 2851

9 b 45 258 882 1925 2632 1910 385 8041

8 1 30 257 1072 2645 4076 3740 1637 151 13609

7 6 141 872 2640 4702 5115 3149 832 35 17492

6 28 L4o 1943 4264 5485 4212 1740 277 5 18394

5 86 938 2967 4724 4388 2379 660 63 1 16206

b 183 1389 3147 3634 2438 933 174 10 11908

3 270 1412 2289 1917 929 251 31 1 7100

2 260 941 1092 663 232 Ly b 3236

1 148 372 309 136 35 5 1005

! 0 38 66 39 13 158

Tgf:; 1020 5733 12963 19349 21870 19349 12963 5733 1020 }100000

Table 8.

Joint and marginal distributions of x and p.

Maximal guessing (8 = 1/2),

Entries to be scaled times 10-5.
Score Ability Level (p) Total
(x) . .2 .3 A .5 .6 .7 .8 9 | PO
10 3 35 175 547 1232 2078 2552 1999 611 | 9232
9 21 231 940 2342 4105 5194 4504 2221 321 | 198
8 78 693 2277 4518 6158 5843 3576 1110 76 | 24329
7 170 1233 3269 5163 5474 3896 1683 329 11 | 21228
6 243 1438 3081 3872 3193 1704 520 64 1 |16
5 239 1150 1991 1991 1277 Sl 110 9 7278
Y 163 638 833 711 355 107 16 1 2884
3 76 244 275 174 67 15 2 853
2 23 61 55 28 8 1 176
1 Y 9 7 3 1 [ 24
0 1 1
Tg:;; 1020 5733 12963 19349 21870 19349 12963 5733 1020 |100000




Table 9,

Conditional distributions of p given x. MNo guessing (¢ = 0).

Entries to be scaled times 1072,

Score Ability Level (p)
(x) o .2 3 A .5 .6 .7 .8 .9

10 ] 15 79 248 416 241
9 7 47 172 347 340 87
8 2 24 14 276 357 204 23
7 9 67 208 337 280 94 5
6 31 143 297 321 172 33 ]
5 9 83 241 354 241 83

4 1 33 172 321 297 143 31 2

3 5 94 280 337 208 67 9

2 23 204 357 276 14 24 2

] 87 340 347 172 47 7

0 241 416 248 79 14

Table 10.

Conditional distributions of p tiven x. Minimal guessing (8 = 1/5).

Entries to be scaled times 10-3.

Score Ability Level (p)
(x) | .2 .3 N .5 .6 .7 .8 .9
10 1 10 L6 14% 292 352 155
9 1 6 32 110 239 327 237 L8
8 2 19 79 194 300 275 120 1
7 8 50 151 269 292 180 48 2
6 1 24 106 232 298 229 95 15
5 5 58 183 291 271 147 4 4
b 15 117 264 305 205 78 15 1
3 38 199 322 270 131 36 4
2 80 291 337 205 72 14 1
] 148 370 307 135 35 5
0

240 ng 247 82 13
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Table 11,

Conditional distributions of p given x. Maximal guessing (8 = 1/2).

Entries to be scaled times 10-3.

= = M -

Y eEy ey e e e

Score Ability Level (p)
(x) . .2 .3 b .5 .6 .7 .8 .9
10 4 19 59 133 225 277 217 66
9 1 12 47 118 206 261 227 112 16
8 3 ~8 94 186 253 240 147 L6 3
7 8 58 154 243 258 184 79 16
6 17 102 218 274 226 121 37 5
5 33 158 274 274 175 79 1. 1
A 56 221 310 247 123 37 6 :
3 89 286 322 204 79 18 2 '
2 131 342 312 158 48 3 1
1 183 387 285 117 28
0 224 Loy 250 122
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Figure 3a. Conditional distributions of o given x for a 10-item test

affected by differant degrees of quessing.




Figure 3b,

8= 1/5
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Conditional distributions of o giver x for a 10-item test

affected by different degrecs of guessing.




x =10

Figure 3c.

6= 1/5

8 =1/2

affected by different degrees of gquessing,

Conditional distributions of p given x for a 10-item test




1

—

r

g |

. fiying training, or they may be empioyed by a company. The vaiue or utiiity to

the institution of one of these chosen individuals is often approximated by a
ljnegr function of abiiity ievel, p, which may be written as

(9) U(p) = kp + K, k >0, K< 0

where k must be greater than zero in order to keep the probiem from becoming
trivial and to impiy that the institution desires peopie with high abiiity ieveis.
Those individuais (scoring x < c) not chosen by the institution are of no further
concern to the organization; thus the vaiue or utiiity to the institution of not
seiecting an individual is usuaiiy taken to be zero.

As emphasized repeatedly by Cronbach and Gleser (i965) the performance of any
testing process shouid not be compared with some chance ievei, but should be
compared with how weil the process couid be effected by taking into account aii the
information available from sources other than testing. Within our formai modei aii .
information of this type is expressed by the marginai probabiiity distribution of
p, P(p). Thus, we began by computing the expected return from a seiection process
based not upon testing but upon ail other avallable information. But first, it is
convenient to rewrite the parameters of the utiiity function. Let Po be that
ability levei that yieids a return of zero to the institution. This aiiows us to
express K in terms of k and Po’ that is

A\ = -
(1) K kpo
and the utility function can now be written as
(i) U(p) = k(p-p,).
The vaiue to the iInstitution of seiecting an individuai must take account of the

uncertainty cbout the individuai's true abiiity ievei. Thus, the expected vaiue of

sefection using no testing information is
(12) E'U(p) = [ k(p-p,)P(p)
P
- p!-
k(p'-p,)

where p' is the mean of the prior or initiai distribution, of p. Notice that if




this average ability level is less than Py’ Equation 12 becomes negative implying
that on the average the institution loses by selecting individuals. In this case,
no individuai should be selected, yielding a zero return to the institution, which
is not good, but it is clearly better than a negative return. In order to compare
the gain due to selection testing, the largest of these two values, either zero
or the expected value of selection, must be subtracted from the expected utility
achieved by selection testing.

Now consider the expected value of selection testing where individuals are
selected or rejected on the basis of their test score, x. If an individual earns

a test score, x, the expected value of selection is

(13) ELU(p) = E k(p=p )P (p|x)

- k(b;'po)

where 5; is the mean of the conditional distribution of p, given x or, analogously,
the average ability level of those individuals making a test score of x. Observe
that selection is of value to the Institution whenevar the selected individual's
test score implies an average ability level greater then Po- Now, consider setting
a cutting score, ¢, so that all individuals with scores of c or above are selected
and all others rejected. The expected value to the institution of such a decision
rule must be computed by taking account of the frequency with which individuals will
obtairn the different test scores and can be expressed as

n
04 ELU(p) = xzc k(5)-p )P(x)

n n
=k{ ] BP(x)-p, I P(x)}
X=c x=c

The expected value of selection testing with a cutting score, c, can vary over a
wide range depending upon the choice of the cutting score. The optimal decision
rule is obtained by selecting that cutting score, c*, which yields the largest
expected value for selection testing. MNotice that the selection ratio is not
explicitly taken into account here, though the last term on the right in (14)
incorporates the selection ratio. Therefore, selecting the best cutting score, c*%,
also fixes the corresponding selection ratio.

To obtain the expected value to the institution, of selection testing, we must

subtract the expected value of the selection process, not using testing information,



from the expected value of selection testing. Thus,

n

(15) k{ 1 (Bi=p )P(x)-(p'-p )} If E'U(p)>0
EVST = { e

k) (p)-p )P(x) if E'U(p)s0
X=C

Notice that the advantage of rewriting the utiiity function now becomes apparent.
All terms are now multiplied by the slope constant, k, which means that computations
can be performed leaving k as an unspecified parameter. Therefore, in considering
any practical decision problem, all we need to do is to specify k and Po in order
to obtain absolute utility values appropriate to the problem. Table 12 gives the
expected vaiue of selection testing for different cutting scores, three levels of
Po and for the three levels of guessing. The entries enclosed by rectangles
correspond to the maximum return possible and identify the optimal cutting score,
c*.

Figure 3 graphs these values to iliustrate the effects of guessing. Notice
that the effect of guessing is both to increase the optimal cutting score and to
decrease the expected value of selection testing with this cutting score. HNotice
also that the choice of cutting score can be quite critical particularly when Po
Is not equal to 1/2, in this case, the average ability level for the population.
Especially notice that the expected value of selection testing can become quite
negative which may represent a considerable loss to the institution. Ciearly, the
specification of a program for selection testing is not to be undertaken lightly
and the higher-level institutional decision to adopt selection testing should be
based on firm assurances that optimal cutting scores have been adopted which do
not represent a loss to the institution. Finally, observe that the cost of testing
is independent of the cutting score. Thus, the cost of testing divided by k can
be plotted on these graphs as a horizontal line with some positive height above
zero. In effect, this serves to move the zero point of the scale along the ordinate
to some higher point corresponding to the cost of testing divided by k. It should
be clear that this could serve to reduce the number of situations in which testing
has any positive value. MNotice, in particuiar, the graph for maximum guessing,

8 = 1/2. |If the cost of the testing program were at all significant, it could
easily exceed the rather small returns of selection testing when Po is equal to .b
or to .6. Another comparison of scme significance can be made. So far, we have

considered the added value of testing relative to not testing in a selection process.




Expected value of selecticn testing

Table 12,

Gucssing | Cuttingl o _ n rutting &, Value of Selection Testing
Pro‘a- Score | } p}:P(x) J P(x) Score
bil'ty (C) '?_C x:c (C) po = 4 po = po = .6
1 0 0 1 -10000 0 0
10 1151 1478 10 - olLo Li2 204
9 4423 6008 9 - 7980 1419 818
8 10077 14488 8 - 5718 2833 1384
7 17616 26826 7 - 3114 4203 | 1520
6 26013 41940 6 - 763 5043 849
8 =0 5 34074 58060 5 850 | GOBL| - 762
4 40791 73174 b | 1521 L2084 - 3113
3 45589 85512 3 138% 2833 - 5718
2 48416 93952 2 819 1420 - 7979
1 49673 98522 1 264 412 - 9440
0 50000 100000 0 0 0  -10000
1 0 0 1 -10000 0 0
10 2108 2851 10 - 9032 682 397
9 7538 10892 9 - 6829 2092 1003
8 15882 24501 8 - 3918 3632 |7 T18T|
1 7 25550 41993 7 - 1247 | 4554 | 354
8 = = 6 34645 60387 6 490 4452 - 1587
5 5 §1756 76593 5 |TT12| 3460 - 4200
4 46357 88501 b 957 2106 - 6744
3 48758 95601 3 518 958 - 8603
2 L9710 98837 2 175 292 - 9592
1 49967 99842 | 30 k6 - 9938
0 50000 100000 0 0 0  -10000
1 0 0 1 -10000 0 0
10 6076 9232 10 - 7617 1460 |~ _537|
9 17731 29112 9 - 3914 3175 265
8 30413 53441 ) - 963 |73692] - 1652
| 7 40248 74669 7 380 2914 - 4553
B=3 6 46068 88785 6 | 555 1676 - 7203
5 4874k 96063 5 319 712 - 8894
4 49694 98947 4 115 220 - 9674
3 49947 99800 3 27 47 - 9933
2 49995 99976 2 5 7 - 9991
! 50000 100000 1 0 0  -10000
0 50000 100000 0 0 0  -10000




*burssanb j0 s|dA3| Juaua431p 104

tLote ¢ L 95 % € 2 L O

t
|

= == ol-
!
y . g-

—itN

1ot

SRR ——— -

(/0 x ‘buyisal uo132313s 40 an|eA paidadxad jo JOIAeUDY

iHoL6 ¢ £ 9 6 4 € 2 1 o
T T R
PR P
i N Vi i
1 ~\ m
_ \ \\ !
] \ 7 ,
| \ /
l \
\ /
! / ! o
. [e] / ‘\ w.u d
:.H d \ !
\ y
\ ,
J 7
\ /
. \
S N/
= / T T
i /H 4 \A ” \\\.\ -
~ l// B h \\\\
\ .\A
A, 7
\ 7 ged
N
| N s
|
m =20
|
m

(2) 3¥02S 94111N)

z-

*¢ sanby 4
lLetL6 ¢ L 95 4 ¢ 2 o
< =
LA 8-
A /7 !
\ |
\ / |92
\ :
qV.M-
\ 3 . % KA
.04\ ; = 3
= \ ; -
v / 2]
... - °
- <
| \ / | >
/\ =
/ o L3
W‘I. N — =
SN 7 ,//4\\~\\w\\\ m
AN . A
"\ v -
N (o]
\ . -
// - mo"oa # m
/l -
— —
m
4
E—
z
S .
t '8
i SU ¢ |

e —



What would be the added value of knowing exactly each indlvidual's true ability
level? This could be known, in princlple, if we used an admissible test, which
ellminated guessing and used all the ltems in the pool. Let us define the expected
value of perfect information as the galn in expected value to the institution
resulting from having perfect knowledge of each indlvidual's ablllty level relative
to that of having Imperfect non-testing Information as to an individual's abillty

level. Thus, we have

) kU] (pp)P(R)-(p'-p )} if B'> p,
EVP -{ P2p, -
k1 (p-p,)P(p) if p's pg

P2P_

Equation 16 can be used both to find the optimal cutting point along ability level
and the corresponding expected value to the institution. Table 13 shows these
optimal cuttling points and expected values for various critical ability levels, Po
Table 13 also shows optimal cuttlng scores and expected values for our 10-item

test affected by the three different degrees of guessing. Notice that for extreme
critical ablllty levels, even perfect Information does not help. The expected
values are zero and one can do as well by accepting all individuals in the case of
very high critlcal ability levels or rejecting all individuals in the case of very
low critical abillty levels. |1f ocne considers the 10-1tem test, the range of
critical ability level for which testing yields a gain is narrowed even more. it
is, of course, narrowed further by the existence of higher degrees of guessing.
These and other relations are grasped more easily by examining Figure 4. Notlce
first that these functions are symmetric and P equal to 1/2, which, remember,
corresponds to the average abillty level of the population of indlviduals. |If the
average ablllty level were some other value, then these functlons would be shifted
to either the right or the left. Information concerning an indlvidual's ability
level 1s of most value when the critical ability level, Po of the utility function
is near the average abillty level, p'. The value of this Information falls off quite
rapidly to elther side of average ability level and declines down to a value of
zero corresponding to the value of the selectlon process without the use of
additional information. This is a reflectlon of the generalization that additional
Information cannot hurt. it is true, however, only because these are optimal
selectlon processes based upon the best cutting score. Use of any but this one
best cutting score could easily represent a signiflcant loss to the institution.

Notice the vertical distance between the function showing the expected gain



o — -——_— -——_— [~ ] -——_— . P = — —_— — — i

Table 13.

Optimal selectlon with perfect information and with a 10-item test

affected by different degrees of guessing.

_Lritlcal Perfect No Guessing |Minimum Guesslng|Maximum Guessing
Ability | Information 6=0 8 =1/5 8 =1/2

Level

(b)) e el & Qe |t lewr et

i

1.00 1.0 N 0 N 0 n 0 |
.95 1.0 11 0 11 0 11 0

.90 .9 0 N 0 1 0 N 0

.85 .9 51 R 0 A 0 11 0

.80 .8 102 N 0 B 0 11 0

.75 .8 439 10 43 R 0 1 0

.70 o7 777 9 217 10 112 11 0

.65 ¥ 1763 8 660 9 L58 10 75

.60 .6 2749 7 1520 8 1181 10 537

.55 .6 4702 6 2946 7 2454 9 1719 :
.50 .5 6656 5 5044 7 4554 8 3692 ¢
.45 .5 4702 5 2947 6 2471 7 1647

.bo A 2749 4 1521 5 1112 6 554 4
.35 A 1763 3 660 4 382 5 122 |
.30 .3 777 2 218 3 78 4 10 !
.25 .3 439 | 42 | 6 2 ] e
.20 .2 102 0 0 0 0 0 0

.15 .2 51 0 0 0 0 0 0

.10 .1 0 0 0 0 0 0 0

.05 .l 0 0 0 0 0 0

.0C 0 0 0 0 0 0 0
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for perfect information and that showing the expected gain for a 10-item test with

J ——

no guessing. This distance represents, in a sense, the loss due to sampiing of
test items or, conversely, the maximum gain possible by lengthening the test
without bringing In any guessing behavior. Now notice the vertical distance

between the function for a ten-item test with no guessing and the function for a

P

ten-item test with maximum guessing (6 = 1/2). This distance represents the

maximum possible loss due to guessing or, conversely, the maximum possible gain

due to the elimination of guessing, but keeping the same test length. Observe
that these two sets of distances are approximately the same size which implies that

the elimlnation of guessing on a ten-item test could yield benefits comparable to

those obtainable by changing from a ten-item test frec of guessing to & test of
nearly infinite length " which is also free of guessing. |In this sense, the
deterioration in performance of selection testing which may be attributed to the
effect of guessing is enormous.

As in the case of Figure 3, the cffect of adding in the cost of a testing

program can be represented by a horizontal line placed at that value of the ordinate
corresponding to the cost of the testing program. This, in effect, raises the zero
point along the scale of the ordinate and implies, that adoption of a selection
testing program by an institution when the critical ability level is extreme
represents a gross loss to the institution. The added cost of modifying testing
procedures so as to eliminate guessing should be a smal' fraction of the present
cost of operating a testing program which is composed largely of admtnistration
costs. Therefore, over the range of situations for which a selection testing
program Is of benefit to the institution, the net gain of eliminating guessing wii!
be of a quite appreciable magnituce.

Consider now a placement process, where individuals are assigjped to one of
two programs. These programs may represent different instructional methods or
classes grouped according to ability level, two different schools, two different
jobs, or two different psychiatric treatments. (See Cronbach and Gleser, 1965).
The utility to the institution of assigning an individuai to either of the two
programs is assumed to be a linear function of the individual's ability level and

may be written as

1 - =
(9') Up(p) = kiptKy,  Uy(p) = kyptKy, kyk,, K< K,

Since we are Interested in the relative performance of various placement processes

it is convenient to rewrite the utility functions as gain functions. Thus,




(5'a) 6, (p) = (ky=ky)p+K Ky, Gy (p) = (kpk )ptK, K,

The orlginal utility functions and the revised gain functions are shown in Figure
5. The break-even point, Pp» where the functions intersect may be obtained by

setting G = 0, thus

o T T
b " KK, KK,

and the gain functions may be rewritten as
i = = - = - -

Given only the non-testing infermation expressed in the marginal distribution
of p the expected gains from placing an indivldual in Program | or Program 2 may

be computed as
(12*) E'G (p) = g (k =k, ) {p=p )P(p), E'G,(p) = E'(k,-kz)(pb-p)P(p)
= (ky=k,) (' -p,) = (k;"k,) (p,~")

Notice that the factor kl-k2

be positive or negatlve depending upon whether the second factor is positive or

must be positive. Therefore, the expected gain will

negative. It will be positive if average ability level, p', is greater than the
break-even point, Pp- in this case, the individual should be assigned to Program 1.
However, If the average ability level is smaller than the break-even point, the
expected gain for Program 2 will be larger and the individual should be assigned to

Program 2.
In placement testing, the expected gain depends upon an individual's test score,

x, and may be written as
(13°) ENGy(p) = [ (k=) (p=pp)Pplx) = (k)-ky) (b)-py)
P

ELG,(p) = g (kl-kz)(pb-p)P(piX) = (k;=k,) (p,-P})

The overall expected gain from placement testing is a weighted sum of the
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Figqure 5. Utility and 'gain functions for a placement decislions.




.conditional gains, thus

n c-1
(14 EVG(p) = (k =k, { ) (p)-py, )P (x)+ ) (p, -, )P(x)}
XxmC x=0

n c-1 n
= (k,-k,){ ) s;P(x)- ) PP (x)+p, [ ] P(x)-] P(x)]}
X=C x=0 x=0 X=C

The expected gain from a placement process using only non-testing information must
be subtracted from this value to obtain the expected value of placement testing.
Thus,
(15') ENG(p)-(k,=k,) (pp,) if p' > p

EVPT_{ c 17527 PPy b

ELG(p)-(ky=k,) (p =) 1f p' < p

The expected value of perfect information is

(16') (ky=k)) { ] pP(p)-] pP(p)+p, [ I P(p)- ] P(p)]-(P'-p,)} 1T B' > py
EVP| = {’ pzpc PP, P<P¢ P2P,
(ky=k,) U J pP(p)- | pP(p)#p, [ I P(p)- ] P(p)I-(p,-p')} if D' <p
prc P<P, P<P. P2P,

The expected value of placement testing has been computed and is shown in
Table 14 for three levels of guessing and for three break-even points. Notice
that the optimal cutting scores are the same as those shown in Table 12. HWotice
further that the expected values are twice those shown in Table 12. This suggests

a theorem.
THEOREM 2, |If pO = pb,

(17) EVPT EVST

=2
kI k2 k

Proof: We will prove this theorem by deriving the basic equations in a somewhat
different manner from that above. In addition to enabling us to prove
the theorem, this may have added heuristic value in understanding the

basic relations. The theorem must be proved seperately for two cases.



Table

14,

Expected value of placement testing (x[kl-kzl-l).

Guessing | Cutting | n c-1 ] g
Probs= Scors 2 5"P(x) - Z PIER o -r—m_ . Expected Value of Testing
bility x=c X x=0

Tomeo | ] e 6
G (¢) p''P(x M (x p, = .4 p. = .5 p, = .
x=0 X x=0 b b b
1 =50000 100000 -20000 0 0
10 -47698 97044 -19880 824 528
9 ~L41154 87984 -11960 2838 1636
8 -29846 71024 -11436 5666 2768
7 -14768 46348 - 6229 8406 | 3001
8 =0 6 2026 16120 - 1526 10086 1698
5 18148 -16120 1700 |T00B6| - 1524
4 31582 -L46348 | _3043] 8408 - 6227
3 41178 =71024 2768 5666 -11436
2 46832 -87984 1638 2840 -15958
] L9346 -97044 528 824 -18880
0 50000  -100000 0 0 -20000
" -50000 100000 -20000 0 0
10 -45786 94298 -18067 1363 793
9 -34925 78216 -13639 4183 2005
8 -18237 50998 - 7838 7262 | ~2362]
i 7 1098 16014 - 2496 |~9705| — 706
8 = g 6 19289 -20774 973 8502 - 3175
5 33510 -53186 | ~2235] 6917 - 8402
4 42712 -77002 BRELLE 4211 -13489
3 47514 -91202 1033 1913 -17207
2 L5418 -97679 346 578 -19189
! 49932 -99684 58 90 -19878
0 50000  -100000 0 0 -20000
1 -50000 100000 -20000 0 0
10 -37848 81536 -15234 2920 | 7075 |
9 =14539 41776 - 7829 6349 527
8 10825 - (882 - 1928 | ~7385| - 3304
| 7 30495 -49338 760 5826 - 9108
0 =3 6 42135 -77570 | _T1707| 3350 - 14407
5 L7488 -92126 638 1425 -17783
4 49388 -97894 230 L -19348
3 49893 -99600 53 93 -19867
2 49989 =99952 8 13 -19982
1 50000  -100000 0 0 =20000
0 50000  -100000 0 0 -20000




Cagse I. Suppose that the average ability levei is greater than the
break-even point, i.e.,

(i7a) P' > py

This defines Case i.
Since the average abiiity level is greater than the break-even point, the

optimal strategy for selection is to admit al!i individuals, thus

(17b) _E_EP_(P_)_ = g (p-p,) P(x,p)

Notice that instead of taking the expectation by using the marginal probability of
p, we are using the joint probability of x and p and summing over all possible
combinations of x and p. This is the basic change in approach that we wiil use to
prove this theorem.

in a similar fashion, the expected gain from selection testing may be written

as

(17¢) U (p)
"'k_—" - ‘z\ (P'Pb)P(X,p)

Here the summation over the set A includes all those pairs, (x,p), for which x is
greater than or equal to c. Now, we can take the difference between the two

previous equations to obtain the expected value of seiection testing. Thus,

(i7d) —E-:—Sl = g (p'pb)P(X,p)' g (P"Pb)P(XoP)

= -g (P'Pb) P(x’p)

“ I (oy-pIPlxip)

Here, the summation over the set B includes aii those pairs, (x,p), for which x is
less than c.
For the placement decision, the expected value of placement using only

non-testing information may be written as



1 ‘U
(17¢) £ulp) g (p-p, ) P(x,p)
The expected gain for placement testing is

(17¢) EZG(p)
'EE?EE_ =1 (p=p,)P(x,p) +1(p -P)P(x,p)
12 A B

while the expected value of placement testlng is

(179) EVPT L 5 (p-p )P(x,p) +J(p.-p)P(x,p) -J(p-p.)P(x,p)
e, % p=p, )P (x,p g P,-P)P(x,p g p-p, )P (x,p

= T (p,-p)P(x,p) -g(p'pb)P(x.p)
B

= 2] (p,-p)P(x,p)
B

Now compare the last line in Equation 17g with the last line in Equation 17d. The

ratlo between placement and selection testing s 2:1 as was to be proved.
Case II.
P' < py
In thls case the average abllity level is less than the break-even point.

Therefore the optimal selection strategy under no test information is to reject

every Individual. Thus
] ]
(17'b) £U6)

By reasoning analogous to that used for Case 1, we find that the expected value

of selection testing may be written as

(7a) el - % (p=p, )P (x,p)

As for placement testing, since the average abillty level is less than the
break-even point, the optimal strategy with no test information is to place all

Individuals in Program 2. Thus,




(17'e) L£06) . 7 (p-p)P(x,p)

kl-k2 S

Again, reasoning as in Case |, we may write the expected value of placement testing

as
(17'9) uf¥55- =] (p-p,)P(x,p) + ] (p,-p)P(x,p) - g (p,=P) P(x,p)

)
B
!

)
A
= % (p-pb)P(X,P) (Pb'P)P(X,P)

A
= 2] (p-p,)P(x,p)
A
As in Case |, compare the last line of Equation 17'g with Equation 17'd. The ratio
between placement testing and selection testing is 2:1 as was to be proved. Q.E.D.

This theorem has a useful corollary.

Corollary: (kl-kz)-I times the expected value of perfect information for a
placement decision is twice (k)-l times the expected value of perfect information
for the corresponding selection decision.

Theorem 2 and its corollary imply that with a simple multiplicative
adjustment all our results for selection testing hold also for placement testing,
so the comparisons and comments made above apply with equal, if not greater, force

to the placement decisions.

EDUCATIONAL AND VOCATIONAL COUNSZLING DECISIONS

information obtained froin testing is frequently used to guide educational
and vocational counseling decisions. Generally, a person's test score is used to
estimate his ability level. This estimate is made part of his record and is then
used over a period of time to guide both institutional and individual decisions.
The essential characteristic of this class of applications is that an all-purpose
estimate is obtained to be incorporated into many decision problems. in this sense,
the use of testing information ir. counseling decisions is similar to the general
problem of estimation of parameters in science. No attempt is made to tailor the
estimate to one particular application, but the estimate is meant to serve many
different applications.

The obtaining of such a general purpose estimate can itself be considered a

decision problem with the different alternatives being the various possible



-estimated ability levels and the utility (here the distinction between Individual
and institutional decisions becomes blurred) being some function of the diffcrcnce
between estimated ability level and true ability level. The utllity function most

frequently used in this type of application is proportional to the complement of
squared error., Thus

(18) u(@,p) = k[1-(p-p)2}, k > 0.

The use of the squared-error criterion means that the value of an estimation
process will depend upon the variances of the distributions involved. For example,
without the use of testing information, a person's ability level may Le cstimated

by the mean of the marginal distrlbution of p. Thus

(19) EU(p',p) = § kli-(p'-p)21P(p)
p
= k-k } (p-p')2P(p)
p
= k[1-V'(p)]

The second term on the right is the variance of the marginal distributlon of p
since the squared deviations are taken with respect to the mean of this dlstribution.
It is, of course, well-known that the weighted sum of the squared deviations about
the mean of a distribution is a minimum and that thls mean is, thus, the best
posslble estimate for the squared error criterion.

Given the availabillty of testing information a mean still remains the best
estimate, but the mean is conditional upon the test score, x, and the expectation

is taken with respect to the conditional distribution of p given x. Thus,

(20) E UG = k[1-L(p-5})2P(p|x)]
P

= k[1-V,(p)]

where the second term in the brackets on the rlght is, of course, the variance of
the conditional distributlon of p.

The overall performance of the estimatlon process is obtained by taking the
weighted sum of these conditional expected utilities, the weights being the

marginal probabilities of x. Thus




n
(21) FEV(pP) = L K-V (p)1P(x)
xX=

= k[1= ) W(p)P(0]

x=0

= k[1-v''(p)]

where the second term in brackets on the right is the expected value cf the
conditional variance.

Now, in terms of conventional test theory, V'p is the variance of the true
scores while V''p is the variance remaining after testing. Thus, the difference
between these two variances, V'p-V''p, is the variance accounted for by testing
and the ratio of this difference to the initial variance, [V'p-V''p]l/V'p, is an
important measure of test performance. Applying these operations to our expected

utility equations, we obtain

(22) EU(R',p)~EE U(p},p) k[1-v' (p)1-k[1-v"(p)]
EU(B',p) k[{1-v'(p)]
- V' (p)-v'(p)
V' (p)

the basic eguation of conventional test theory. Motice, however, that the scaling
constant, k, has been eliminated and the gain from testing is relative to the
initial variance. This goes too far. We want to be able to compare the value of
testing with the cost of testing and to be able to do this for many different

situations. For these purposes, the expected value of counseling testing is

(23) EVCT = EU(p',p) -EE _U(BY:,P)

= k{v'(p)-v"(p)].

it should be understood that this equation for the expected gains resulting from

testing for counseling assumes the use of an optimal estimation procedure. As

will be shown below, not all estimation procedures used in counseling are optimal.
It is interesting to compute these values for the 10-item test described above.

The first column in Table 15 gives the means for the conditional distribution of

p for the various levels of guessing. These are, of course, the best .

possible estimatés of an individual's ability level taking account both of the



Table 15.

Expected values for a 10-item test used for counseling decisions,

“n TR 2 =X =l x-n-x =l -

X p V(p) E(po p) B - P ”( v } 3 n(Zx n)
10 773 92 582 582 582
9 723 107 421 339 166
8 667 117 295 186 161
7 611 125 204 127 570
6 556 130 150 161 1394
86 =0 5 500 132 132 288 2632
4 L 130 150 508 2105
3 389 125 204 821 1638
2 333 117 295 1228 1228
1 277 107 421 876 876
0 221 91 581 581 581
Expectation 500 124 227 457 408
10 739 126 1LY 806 806 806
9 675 144 166 648 542 299
8 613 156 184 505 343 157
7 553 162 196 379 215 4oo
| 6 4oy 164 201 275 164 1030
8 = < 5 439 160 198 198 201 2085
> 4| 38 152 185 153 338 164k
3 338 139 165 154 593 1282
2 294 124 140 213 990 990
| 255 108 113 350 760 760
0 221 89 89 577 577 577
Expcctation 500 154 186 333 336 993
10 658 201 345 1368 1368 1368
9 586 212 398 1196 1045 668
8 521 211 422 988 734 273
7 463 202 421 762 Loy 242
| 6 412 188 393 540 265 639
8 = > 5 363 171 346 346 171 16524
4 329 153 286 203 216 1237
3 296 135 222 136 428 1012
2 267 119 163 165 834 834
1 242 101 114 303 687 687
0 227 89 89 604 604 604
Expectation 500 200 394 875 672 624




distribution of abiiity levels in the population and of the guessing probabiiity
for the test. These estimates are graphed in Figure 6. Motice that 2 regression
effect is apparent in these estimation procedures. For example, the highest
possibie test score does not imply that the person has the highest possible
ability ievei while the lowest possible test score does not impiy the iowest possible
ability levei. The effect is primarily due to the influence of the distribution
of ability level in the population which, in this example, is symmetric about

an average abiiity level. Therefore, if a person has an extreme test score, it

is much more likely that his ability level is less extreme. This can be seen most
clearly by examining the tables showing the conditionai distributions of p given x
contained in an eariier sub-section of this report.

Aiso graphed in Figure 6 are several other wideily used estimates of a person's
abiiity level. These estimates are either explicitiy recommended or implied by
many textbooks and test manuals. One estimate of an individual's abiiity level
sometimes recommended and much more frequently used, is the proportion of test
items passed, x/n. This is a straight line with slope of one graphed in Figure 6.
The more sophisticated developers and users of tests have some appreciation of the
effect of guessing and, thus, correct the test score, for chance before estimating
an individuai's ability levei. They attempt to eliminate the effect of guessing

by correcting the test score according to

W
m~i

CORRECTED TEST SCORE = R -

where R is equai to the number of correct responses (equivalent to our x), W is
the number of incorrect responses (equivaient to our n-x) and m is the number of
possibie answers iisted in a muitiple-choice item. Dividing this corrected test
score by n, the total number of items in the test, yieids an estimate of the
person's abiiity level. Two such estimation schemes are graphed in Figure 6.

One is for a five-aiternative test which would have a minimum & of 1/5; the other
is for a two-alternative test with a miximum (and minimum) 6 of i/2.

Now let us consider the expected vaiue of these various estimation procedures
for the 10-item test affected by various levels of guessing as described previousiy.
Figure 7 shows the expected value of counseiing testing for a number of different
estimates of a person's abiiity ievel. All of these estimates are derived from
the person's test score, x, obtained by taking our 10-item test. Graph A shows

the conditionai expected values as a function of test score for each of the three
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optimal estimation procedures based upon the mean of the conditional distribution

of p given x. The highest curve is obtained when there 1s no guessing in the test,
the intermediate curve when ther is a minimal level of guessing and the bottom
curve when guesslng is maximum. WNotice that the expected values are depressed by
the exlstence of guessing and that this depression is greater for the higher test
scores. The dashed horizontal line corresponds to the expected value of counseling
wlthout testing and is set equal to zero on the scale of the ordinate. At the top
of the graph, set enual to +1 is the value of perfect information which is obtained
when the conditional varlances are all equal to zero. Thus, as the length of the
test is increased from the ten items to include all ltems in the very large pool of
items, three curves would move toward the top of the graph approaching a horizontal
line at +1. Also plotted in Graph A as pointers along the ordinate at the left are
the overall expected values of counseling testing. The top marker, representing,
of course,® = 0, the middle one, 6 % 1/5, and the bottom one, 6 = 1/2.

Graph B shows again the conditional expected values for the ten-item test with
no guessing where the optlmal estimate, ﬁ;, is used to estimate a person's ability
level. The top curve In Graph C is the same function, but for 6 = 1/5. If one
ignored the existence of guessing and used &s the estimate of an Individual's
ability level the mean of the conditional dlstribution of p given x based on the
tables for 6 = 0, then the bottom curve shown In Graph C would be obtained. The
use of this non-optimal estimation procedure would, of course, result in an
additlonal loss in the expected value of counseling testing, but it is not too
large in this case. Graph D, however, tells a different story. Here the top
curve Is for the optimal estimate, based upon the mean of the conditional
distribution of p glven x, when guessing is maximal, that is 6 = 1/2. The bottom
curve shows the expected values of counsejing testing using the non-optimal strategy
which ignores the existence of guessing. Here the loss is great, so great, in
fact, that 1t would be better to do no testing whatsoever and to estimate each
person's ability level as being equal to the average ability level, p', of the
population under conslderation. In other words, the overall expected value of
counseling testing by ignoring guessing in thls case is negative implying that. .
it is a poorer strategy than not testing at all.

Figure 8 shows the expected values of counseling testling for some other
estimation procedures, for each of the three dlfferent levels of guessing. The
top dashed curve in each case shows the Conditional expected value of the optimal
estimates as shown in Graph A of Figure 6. Notice that these have been plotted

to a quite compressed scale. The dashed horizontal line at zero represents as
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before the expected value of counseling without testing. In Figure 8 the three
non-optimal strategies considered are (1) using the proportion of items passed

as an estimate of a person's ability level, (2) correcting the test score for
chance assuming a five-alternative test, and (3) correcting the test score for
chance assuming a two-alternative test. The indices to the left near the ordinate
represent the overall expected value of counseling testing with these non-optimal
estimation procedures. With but one exception, they are all negative, implying
that both the individual and the institution are much better served by not using
testing information in counseling if this use is according to some of the frequently
recommended procedures for estimating a person's ability level. The performance of
these estimation procedures is really quite bad. And the way to see this
independent of the absolute value of the utility scaling constant, k, is to realize
that even giving a test of near infinite length which yields conditional

variances of zero would just have the effect of moving the curves up nearer to

the top of the graph. This is so because the plotted values are made up of two

i e "W

components, one being the conditional variance corresponding to uncertainty about

the true mean, the other being the bias or the square of the difference between

the conditional mean and the estimated ability level. Increasing the length of

the test would reduce the size of the first component, but would not eliminate

the second component. This can be seen by reexamining Figure 6. Increasing the |
length of the tcst makes the conditional mean, 5;, move closer to the diagonal

corresponding to x/n, essentially eliminating the bias component between the

conditional mean and the proportion of items passed. The two lines showing the f
correction for guessing, however, would not be affected and considerable bias
would remain, even for a test of infinite length.

Again we find that the existence of guessing can have a serious effect upon

the quality of personnel decisions. Ignoring the existence of guessing can lead
to even further degradation in the value of counseling testing, sometimes of
such magnituge that it is better not to use testing information in counseling.
lgnoring the existence of information abput the distribution of ability levels in
the population leads to even greater degradation as does using the recommended
formulas for correction for gueszing. In most instances, the degradation is of
such magnitude that that it is far better not to use testing information in
counseling and to estimate each individual's ability level as being equal to the

average ability level in the population.




RELIABILITY AND VALIDITY

Though correlational measures of test reliability and test validity are not
very directly relevant to classification and counseling decisions, th.' are
important to educational research and to behavioral science especially in those
areas utilizing multivariate and factor-analytic techniques.

First we will define the maximum possible valldity of the test as the
correlation between test score and true ability level. In a sense this is the
correlation between test score and true score in conventional test theory. It
does not represent a test validity which is obtainable in practice, since it
corresponds to the correlation between the test s~ore and a perfectly measured
criterion. It is, however, interesting to see what effect guessing has upon this
maximum possible test validity. The computations are rather straightforward and

are given in Table 16. The correlation is given in the column headed p

Table 16

Computatlons of correlation between test score and true abllity level.

l Cov(xp)= p=
V(p)=-£(p2)] V(x)=E(x?) E(xp) |_Cov(xp)
E(p) [E(x) | E(p?) [E(x2)| E(xp) | -[E(p)]? | -[E(x)]? |-E(x)E(p) [ATx)V(p]| o2

ol .5,]5.0 [.277¢2(30.00]2.77807] 027624 5.0 .27807 .745 |.555
1751 .5 [6.0 |.27782]40.00]3.22255| .027324 4.0 .22242 667 |.445
1/2| .5 |7.5 |.27782/58.75/3.85239| .027824 2.5 . 14239 540 |.292

and is degraded by guessing from an initial value of about .7 down to a value
maximally affected by guessing of about .5. p2? s used in conventional test
theory to measure the percentage of variance accounted for by the test. These
values of p? agree closely with the percentage reduction in variance computed
from the expected variances of Table 15.and range from about .5 down to about .3.
Second, we define test rellability as the correlation between the scores
obtained from two tests, each test being made up of a set of items randomly
sampled  from the pool of test items. This measure corresponds to the correlation
between equivalent test forms in conventional test theory. |t is instructlve to

compute the test reliability for our ten-item test described above. Realize that



Table 17.

Joint distrlbutions ¢f x and vy.

No guessing
(6 = 0)

Minimum guessing

(p = 1/5)

I“2xi ~um guessing

(8 = 1/5)

Entries to be scaled times 10

3

Ist 2nd Score, Yy
Oflo 1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 4 2
S ] 2 4 7 9 10 8 4
8 1 3 6 11 16 18 16 10 4
7 1 3 7 b 20 25 24 128 9 3
6 2 6 14 22 28 30 25 16 7 2
5 14 11 20 28 32 28 20 11 4 1
4L j2 7 16 25 30 28 22 14 6 2

3 3 9 18 24 25 20 W& 7 3

2 {410 1€ 13 16 11 6 3 1

] 4 8 10 9 7 4 2

0 |2 & & 3 2
10 11 3 5 7 7 4
9 1 3 6 12 17 19 15 7
8 1 3 8 16 24 30 28 19 7
7 1 3 7 16 26 35 37 30 17 5§
6 1 5 12 22 33 38 35 24 12 3
5 2 6 15 25 32 33 26 16 6 1
4 2 7 14 21 25 22 16 8 3 1
3 2 6 11 14 15 12 7 3

2 1 3 6 7 6 5 3 1

] | ) 2 1

9
10 1 2 6 14 23 27 19
9 13 9 20 37 52 51 27
8 1 6 15 32 52 63 52 23
7 2 7 18 34 49 52 37 14
6 2 6 14 26 34 32 20 6
5 1 4 9 14 18 15 9 2
4 1 2 4 6 7 6 3 1
3 11 2 2 1

2

]

0




because of the independent random sampling of the two sets of ten items, the test
items themsclves are independent. This independence holds, however, only at each
flxed ability level. To see thls, consider computing the joint distribution of
tost scores, x, from the first test and test scores, y, from the second test. For,

given p, the joint probability of x and y is given by
(24) P(x,y|p) = P(x|p)P(y|p).

Thus, fer each value of p, we have a table of joint probabilities with a zero
correlation between x and y. When we sum over p, however, to obtain an

uncondltional joint probability of x and vy,

(25) P(x,y) = LP(x|p)P(y|p)P(p)
P

we end up with a table of joint probabilities for x and y which are positively
correlated. These joint distrlbutions of x and y are given in Table 17 for
the different levels of guessing. Notice that the effect of increasing amounts
of guessing is to concentrate the distributlon in the positlve quadrant.

These joint probabilities (but to more decimal places) have been used to

compute the correlation between x and y and are shown in Table 18. Here the test

Table 16

Computations of correlation between test scores from equivalent forms.

T T - "[

Cov(xy)= p=
V(y)=E(y?) |V(x)=E(x?) E(xy) | Cov(xy)
6 |E(y) [E(x) [E(y?) [E(x2)| E(xy) [ =[E(¥)]2 | ~[E(x)]2 |-E(x)E(y) | ATXIVYT| o

0/5.0 | 5.0/30.00{30.00]27.78239 5.0 5.0 2.78245 .556 .309
1/5/6.0 | 6.0{40.00/40.00|37.78095 4.0 4.0 1.77999 LLys .198
1/217.5 | 7.5158.75]58./5{57.00397 2.5 2.5 .50689 .203 .041

reliability ranges from about .56 down to .20 for maximum guesslng while the

percentage of variance accounted for by the test ranges from about .31 down to



-

about .04. Thls seems to be a falrly significant degradation in test reiiabiiity
die to the effect of guessing.

These test reliabilities are a function both of the iength of the test and,
more subtly, the distribution of abiiity ievels In the popuiation, since the
variance of ability ievel moderates the correlation. A future report wiii glve
test rellabllities for dlfferent test lengths and distributions of abliity level.
Though the test reliabllities will undoubtedly increase with increases in test
length, the degradation due to the guessing shouid not be entirely discounted. As
Cronbach and Gieser mentlon, In thelr dlscussion of the band-width fideiity paradox,
increasirg the band-wldth of a test can greatiy improve the quality of personnei
decisions. Thus, personnel testing should move in the direction of using test
batteries made of many short tests, each one presumably measuring a different
dimenslon. Thus, it would seem that the gain in reiiabiiity, due to the
elimination of guessing would be of great importance to the success of these wide

band-width procedures.

TESTWISENESS

And finaily we come to a consideration of Individuai test-taking strategies.
Thus far we have been concerned with the effect of gquessing upon the quallty of
institutional decisions. It is also possible to analyze the effect of guessing
from the polnt of view of individual decislons. For example, in many sltuations
in which an individual takes a test, he would like very much to make a high score.
He wants this high score because he knows that it is necessary if he is to be
admitted to college by passing a college entrance exam, to be aliowed to begin a
career as a resuit of qualifying on a federal or state civil service examinatlon, or
to be enrolled in a special manpower development or Job Corps training program.
Now in these and many other instances of testing it is quite important to the
individuai to achieve a test score exceeding the cutting score. |If he does, he
will get a chance to achieve his goais; |If he does not he is denied any
opportunity to do so. In these types of sltuations, the utility to the individuai
of the varlous courses of action can be measured effectlvely by the probability
of hls test score exceeding a cut-off score. This is the probabllity of his
achieving a deslred goal and the expected utllity of a particular course of
actlon is proportlonal to this probablllty. Therefore, it is interesting to
compute this probabillty for our ten-item test described previously.

Given that an individual has an abllity levei, p, his probabillty of passing

a test with cutting score, c, is

!
f




n
(26) P(x2c|p,n) = ) (:)px(l"p)n-x
x=c

This is just the cumulative of the Linomial distribution derived above and is the
appropriate equation to be used when the test is unaffected by guessing. However,
when guessing can occur on the test, as, for example, when a conventional choice

test is used, the following equation is appropriate

n -
(27) P(x2s| (1-0)p+e,n) = 1 (%) [(1-0)p+e]*[1-{(1-0)p+e}]"
X=C

where 9 is the individual's probability of getting correct through guessing those
items Whicﬁ he does not know. Remember that according to Theorem | guessing just
has the effect of increasing the probability parameter in the binomial distribution.
Now, cne decision that must be made by an individual taking a test is whether
of not to guess at the answer to those items that he does not know or, more
generally, on which of the items should he guess. Llet us just consider the
extremes of these test-taking strategies, that is, the individual decides between
guessing at those items that he does not know or not guessing at any of these items.
Thus, if an individual of ability level, p, chooses to guess on the test and his
probability of guessing the correct answer is 6, then his chance of passing the
test is given by Equation 27. 1f, on the other hand, the individual chooses not
to guess at those items that he does not know, his chwnce of passing the test is
given by Equation 26. The value of Equation 26 will always be less than the value
of Equation, 27, since the prcbability parameter of the binomial distribution is
smaller in the first case. Thus, if we subtract Equation 26 from Equation 27 we
obtain the measure of how much an individual's chances of passing a test have been
reduced by his refusing to guess. Under the conditions described above, the
individual's expected utility is reduced proportionately. Figure 9 shows the
reduction in chance of passing the test as a result of not guessing for different
ability levels and for different cutting scores. For a cutting score of 9 and a
8 of 1/5, the reduction is moderate, achieving its maximum of .13 at an ability
level of .3. When the probability of getting an item correct by chance increases
to 1/2, however, the losses become more significant and acnieve a maximum of about
.40 at an ability level of .7. The loss is much less among the lower ability
levels. This is primarily due to the fact that these individuals have essentially
no chance of passing the test no matter what they do. Observe that a ten-item

test with a cutting score of 9 would be designed to select out only the most
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competent indivlduals In the tested population. Observe also that the effect of
guessing tends to be large among just these individuals.

A cutting score of 7 on a ten-item test is more or less comparable to
passing at the 70% level in some educational tests. Here the loss due to not
guessing becomes more significant with the maximum for 6 = 1/5 belng about .21
at an ablllity level of .6 while the maximum for 6 = 1/2 is about .60 at an ability
level of .5. Here again, the effect of guessing or not guessing appears to be
large for those individuals who are borderllinewith respect to the cut-off point
of the test.

A cutting score of .5 on a ten-ltem test may serve to illustrate the use of
an educatlonal test to dlvide indlviduals into two groups for further instruction
more closely tallored to their ability levels. Here the effect of guessing Is
becoming even larger with the maximum lcss for 6 = 1/5 being about .32 for an
ability level of .3 and in the case of 6 = 1/2, the maximum loss is about .80
for an ability level of .2. 1in thls case, certainly, whether or not an individual
guesses on the test can become the major factor determining in which of the two
Instructional programs he 1s placed.

Finally, we have a ten-item test with a cutting score of 3 which might
represent the use of a test to screen out only the lowest abillty individuals and
prevent them from enterlng some program. Here the effect of guessing or not
guessing is greater yct with a maximum for 6 = 1/5 being approximately .49 for
an ability level of .1 and in the case of 6 = 1/2 the maxImum loss is about .95
at an ability level of 0. in testing for thls type of purpose, it would seem that
if some of the Individuals were guessing and others were not guessing, then who
would be screened out of the program would be largely determined by whether or
not the Indivlidual chose to guess In taking the test.

In review, these differences are quite large. With such large differences,
it would not be surprising thzt Indlviduals would learn as a result of taking
conventlonal choice tests that their chances are much Improved by always guessing
at those items which they do not know. With sufficient experlence taking
conventlional choice tests, they mlght even learn to ignore instructlons to the
effect thay they should not guess and proceed to guess anyway. Remember that
even In the case of scoring systems designed to penallze guessing we have found
that they do not actually work and that the indlvidual suffers no loss from
guessing. Therefore, let us deflne testwiseness thls way. The testwlse
individual will always guess at the answers to those items whlch he does not know.

Other, less experienced Individuals may obey test instructions to the effect that
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they should not guess or for some other reason such as an aversion to gambling

or ''faking'', they will not guess at the answers to those items that they do not
know. It is interesting to conjecture that the proportion of non-testwise
individuals who refure to guess is much larger among the dropouts and the
educationally disadvantaged. This, taken together with the results in this
report makes one wonder whether the use of conventional chouice testing with these
individuals may not yield very biased information and unfair decisions with

respect to their futures.

T
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