
AF0SR   fi8-2155 

CO o 

Q 

DOC 

MWISOB 

'!•   This fltuu-mrt y^' v^p'" wip*<yy<i for pubila^v 
release and s^le ; Us äiütribuli nn is unlimitedJ« 

THE    SHUFORD-MASSEIMGILL    CORPORATION 

Reproduced by the 
CLEARINGHOUSE 

(or Federal Scientific & Technical 
Information Springfield Va   22151 

SW 



R-5 

I 
I 

I 

I 

I 

I 

I 

I 

! 

I 

THE   EFFECT   OF   GUESSINr   ON 

THE   QUALITY   OF   PERSONNEL 

AND COUNSELING   DECISIONS 

EMIR   H. SHUFORD, Jr.   and   H.EDWARD    MASSENGILL 

THE FIRST SEMIANNUAL TECHNICAL REPORT (WHICH COVERS THE PERIOD 
MAY 1966 THROUGH OCTOBER 1966) OF WORK PERFORMED UNDER CONTRACT 
NUMBER AF 49 (636)-1744, ARPA ORDER NUMBER 833, BY THE SHUFORD- 
MASSENGILL   CORPORATION, P.O. BOX 26,   LEXINGTON,   MASSACHUSETTS,    02173 



DECISION-THEORETIC PSYCHOMETRICS:    AN   INTERIM REPORT, NOVEMBER  1966 

Emir H. Shuford, Jr. and H.  Edward Massenglll 

ABSTRACT 

In Section A,  A Logical  Analysis of Guessing,  appropriate test-taking 
strategies are derived for six major test-scoring procedures.    Three 
commonly used definitions of guessing are  interpreted as corresponding 
degree-of-confidence distributions.    The ability of the testing pro- 
cedures  to separate  these distributions  from those representing higher 
degrees of knowledge  is considered with the major result that only 
admissible probability measurement performs satisfactorily. 

In Section B,  The Effect of Guessing on  the Quality of Personnel   and 
Counseling Decisions,  the fundamental  probability distributions  for 
total   test scores  are derived by assuming  that each person knows  the 
answers to some   items and guesses on  the  remaining  items.    Analysis of 
a  10-ltem test  shows  that guessing  levels encountered  In practice 
(a)  seriously degrade the value of selection,  placement, and counseling 
decisions,   (b)  significantly Impair  test   reliability and validity,  and  . 
(c) magnify the  influence of testwiseness. 

■ 

In Section C,  The Worth of  Individualizing  Instruction, equations are 
developed for expressing the cost and gain for applying an  instructional 
sequence.    The expected  return from assigning  instruction on the basis 
of  (1)  admissible probability measurement,   (2)  admissible choice  testing, 
(3)  conventional  choice testing,   (U)   prior  information only,  and 
(5) matching the average student   Is computed  for each of seven distri- 
butions of state of knowledge.    The performance of (1)   is outstanding; 
that of  (2),   (3).  and  (^)   is disappointing, while  (5)  does  surprisingly 
wel I. 



B. The Effect of Guessing on the Quality of Personnel and Counseling Decisions 

A major potential domain of application of admissible procedures Is to obtain 

test Information to guide personnel decisions such as selection and classification. 

Another major domain Is to obtain test data to inform counseling decisions and 

recommendations.  It should be recognized that the decisions involved In these 

two domains have some important differences, for example, selection and 

classification decisions are clearly institutional decisions and the utility to 

the Institution can often be approximated by a linear function of the true ability 

of a selected Individual.  In counseling, on the other hand, the emphasis Is on 

giving advice and recommendations to the individual and part of this advice concerns 

an estimate of his true ability level. Here, good advice is accurate advice and 

the consequences of an error can be taken as proportional to the square of the 

difference between the individual's estimated ability level and his true ability 

level. While the decision problems in these two domains of application typically 

involve different utility functions, they have a very important similarity.  These 

decisions are based upon an individual's total score which is taken to be an 

indicant of his ability level. Tht -»fore, an analysis of factors affecting total 

test score can serve as the basis for estimating the effectiveness of both 

personnel and counseling decisions. 

The effect of guessing and of test wlseness are two interesting problems in 

the theory and practice of testing. Though these problems have never been 

resolved, they are typically ignored especially in practice. Mow, it should be 

intuitively evident from Section A above that conventional choice testing and its 

modifications cannot detect guessing.  Furthermore, under the conditions of 

testing specified below, It is mathematically proven that no analysis of information 

internal to the conventional choice test can detect the extent of guessing. These 

observations lead to the conjecture that the problem of guessing is Ignored in 

practice because conventional choice testing Is Incapable both of preventing 

guessing and of detecting the presence of guessing. However, there* Is"..mtltr 

conjecture possible, certainly one that should be considered.  This conjecture is 

that guessing has no singifleant effect on personnel or counseling decisions and, 

thus, can and should be ignored In practice, How, the coming into being of the 

new admissible procedures certainly makes it possible to decide these issues. 

First, and most Importantly, admissible procedures make It possible to eliminate 

the effect of guessing in an objective or semi-objective examination as should be 

clear from Section A above.  Thus, empirical comparisons of the performance of 

admissible tests with that of conventional choice tests should be able to settle 

the issue. Additionally, however, the mere fact that guessing has now been clearly 



defined and can be empirically measured makes  it possible to use new operational 

definitions  in a formal explication of test-making behavior.    This allows us to 

mathematically analyze different testing situations and to predict the effect of 

guessing  in a wide variety of situations.    This analysis and the  resulting 

prediction should be quite useful   in guiding decisions concerning the substitution 

of admissible procedures which eliminate guessing for conventional  testing 

procedures.    The  remainder of this section begins such an analysis. 

To return  to the  issue of test-wiseness and to anticipate some of the later 

results, whether or not an  individual  chooses  to guess at  those  items which he 

does not know can make a considerable difference in his test score.    Thus, we can 

expect that  individuals with a great deal  of experience  taking conventional  choice 

tests will   learn  to guess and,   if possible, never skip an  item.     This   individual 

test-taking strategy, of guessing at all   the  items which one does not know rather 

than  refusing  to guess at  these  items and Just skipping them, we  identify as 

test-wiseness.     The mathematical   formulation makes  it possible  to compare the 

performance of test-wise  individuals with those who are not test-wise and to 

predict the effect of this  individual  difference under a wide variety of conditions. 

THE FORMAL MODEL 

Assume that there exists, at  least conceptually, a rather large pool of test 

items and a population of persons who will  eventually  take  the test,     in principal, 

it  is possible  to conceive of having all   the persons  take all  of the test  items, 

and that  instead of being given a conventional  choice or constructed-response test, 

the persons  take  this super-test by using an admissible probability measurement 

or an admissible choice procedure.     Data obtained through  the use of these 

procedures would  Indicate whether a person was (a) well-informed,   (b)  relatively 

uncertain and possibly guessing, or (c)  misinformed with  respect  to the answer to 

each test  Item.    Assume for the sake of simplicity,  and not  too unrealistically  in 

the case of certain  types of tests,   that  the persons either pretty well  know the 

answer to the test  item or they are uncertain as to the answer,  so we can now 

characterize each person as knowing a proportion, p, of the test  items and being 

uncertain about  the  rest of the  items.     Suppose further that  this uncertainty were 

such that  if any person were given a conventional  choice test,  he would guess the 

correct answer to the  item with a certain constant probability,  6,  of being correct. 

This  is  the essence of the basic model.     There  is a population of  test  items;  there 

is a population of persons.    Each person knows  the answer  to a certain proportion 

of the test  items.    This proportion corresponds  to ability,  achievement, or true 

score,   in  the sense  that   'I is  the one-dimensional  quantity which determines  the 



effectiveness of decisions based upon testing  Information.    The reriülnder of the 

itens  the person guesses with constant probability,  6, of getting a correct 

answer. 

Thus far,  discussion has been  In terms of a super-test based on all   Items   in 

the pool.    Any test actually administered can be viewed as a random selection of 

the samples of  Items from this pool.    Let n  represent the number of  Items   In  this 

actual   test.    Now take 6  to be zero      No person guesses at any of the  items.     A 

person's score,  x,  on this  test  Is equal   to the number of  Items  that he answered 

correctly.    It depends both upon the number of  items,  n,   in the test and upon the 

proportion,  p, of  items   in  the population of test   I terns  that the person knows. 

Since the  Items  In  the actual   test have been  randomly sampled from the  items   in 

the pool,  the person's  test score, x,   is a  random variable with a binomial 

distribution and can be written as 

(i) fh(x|p.n) - rvo-p) n-x 

This   is  the distribution of the pupil's score given  that p Is known.    However,   if 

p were known,  there would be no point  In giving  the  test since the purpose of 

obtaining the test score  Is  to obtain  Information about p.    The decision maker 

and user of the test  Information must have some  Information about p prior to 

observing the test score for a person.    Prior  Information about p can most 

conveniently be represented by a Beta distribution over the Interval,   [0,1]. 

(2) fß(p|a,b)  - jjlfj. pa']{\-p)b'],      a,b > 0. 

l»ow,   in the case of no guessing, 0," .,   choice testing can be  represented by 

the well-known Bernoulli  process and the many  results of applied statistical 

decision theory  (ICalffa and Schleifer,   1961)  can be applied with ease.     For example, 

the marginal or unconditional  distribution of the test score, x,   Is a 

Beta-binomial  distribution, 

(3) feb(x|a,b,n) - /^fb!x|p.n)fß(p|a,b)dp 

. (x+a-1)!   (n-x-<-b-l)!  n!   (a+b-1)! 

xl   (a-1)1   (n-x)'   (b-1):   (n+a+b-l)! 

iho pos«-») lor.  or rood i r ionnl   distribution of p,   given x.   Is,   like  the prior,  a 



Beta distribution, but with parameters, x+a and n-x+b, 

CO ffl(p|x+a,n-x+b) - 
1 

U(x+a,n-x+b) 

px+a-l(1.p)n-x+b-l 

and with mean,   (x+a)/(n+a+b),  and variance,  (x+a)(n-x+b)/(n+aJ,)2(n+a+b+l). 

Characteristics of this Bernoulli  process have beer extensively analyzed 

for many decision problems and  the  results are relatively tractable.    Thus,   if 

there were no guessing occurring  in testing,  there would be available an 

extensive  literature containing many  results which could be  immediately translated 

Into the terminology of test  theory and used as  the basis  for a decision-theoretic 

psychometrics dealing with  institutional  decisions.    Guessing    oes occur, however, 

in conventional  testing and we must  take this  into account.      '   doing so,  the 

mathematics becomes much  less  tractable and we must  leave behind most of the neat, 

analytic equations of the Bernoulli  process.    Allowing  for the possibility of 

guessing during the test-taking process yields equations which are not  readily 

integrated.    Therefore,  there  Is no sacrifice  in getting  rid of the one 

continuous distribution by using a discrete density function  to approximate the 

distribution  in  (2) expressing  the distribution of ability  levels  in the 

population of persons.    Though,   In  later work we will  consider different 

distributions of ability level,   in this report w" use the distribution shown 

graphically  in Figure  I and given numerically at the bottom of Table 2.     It  is a 

symmetric distribution with mean equal   to one-half and  represerts  tests of 

average difficulty. 

Now,   let us analyze a ten-item test.    Later work will  consider both shorter 

and  longer tests, but a ten-Item test  is sufficiently  long to bring out the 

effects of guessing and test-wiseness,  but not so long as  to make the presentation 

of  the computational  techniques  unbearable.    The  initial  distribution,  (See 

Figure   1)   allows  for nine different ability  levels with p  ranging from .1  to .9 

in steps of  . 1.    Thus, with no guessing,   the conditional  distributions of test 

scores  are binomial  according  to  (1)  and are given  in Table  1. 

According to the definition of conditional  probability,  P(AB) - P(A|B)P(B), 

the joint probabilities of x and p are obtained by multiplying each conditional 

probability of x by the appropriate marginal probability of p and are shown  In 

Table 2.     Summing over the  rows of Table 2 yields  the marginal  distribution of x 

also shown   in Table 2.    The joint probabilities given   in  this  table contain all 

the   information about  the  testing process   itself. 

Now suppose that a person guesses  at  the answer to each  item that he doesn't 

■ 
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Figure 2. Marginal distributions of test score for a 10-item test 
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Table 1. 

Conditional  distributions of x given p.    No guessing (8 ■ 0). 
-5 Entries to be scaled times   10    . 

Score Abil ty Level (P) 
(x) 

.1 .2 .3 .4 .5 .6 .7 .8 .9 

10 1 10 98 605 2825 10737 34868 

13 158 976 4031 12106 26844 38742 

0 145 1061 4395 12093 23347 30199 19371 

1 78 900 42^7 11719 21499 26683 20133 5739 

14 551 3676 IHM 20507 25082 20012 8808 1117 

m 26^2 10292 20066 24610 20066 10292 2642 148 

1117 8808 20012 25082 20507 11148 3676 >51 14 

5739 20133 26683 21499 11719 4247 900 78 I 

19371 30199 23347 12093 4395 1061 145 8 

1 387^2 26844 12106 4031 976 158 13 

0 3^868 10737 2825 605 98 10 1 

Table ?. 

Joint and marginal  distributions of x and p.    No guessing  (9 ■ 0). 
.5 

Entries  to be scaled times   10    . 

Score 
(x) .1 .2 .3 .4 .5 .6 .7 .8 .9 

Total 
P(x) 

10 2 21 117 366 616 356 1478 

2 31 214 780 1569 1539 395 4530 

19 205 961 2340 3026 1731 198 8480 

4 117 822 2563 4160 3459 1154 59 12338 

32 477 2157 ^485 4853 2594 505 11 15114 

1 152 1334 3882 5382 3882 1334 152 I 16120 

11 505 2594 4853 4485 2157 477 32 15114 

59 1154 3459 4160 2563 822 117 4 12338 

198 1731 3026 2340 961 205 19 8480 

395 1539 1569 780 214 31 2 4530 

356 616 366 117 21 2 1478 

Total 

P(p) 
1020 5733 12963 19349 21870 19349 12963 5733 1020 100000 
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know and that his probability of getting the correct answer Is e, for each of these 

items. The person knows the answer to r of the Items; he guesses the answer to 

each of the remaining n-r Items. Given the number of Items, r, that the person 

knows, the distribution of the number of Items, t, that the person guesses 

correctly Is binomial with parameters, 6 and n-r. 

(5) P(t|r,n,e) - fb(t|e,n-r) - (n"t
r}ec(i-e) .n-r-t 

These distributions are shown  in Table 3 for 6 ■ 1/5 and  In Table ^ for 6 - 1/2. 

Note that these are probably the extreme values that 6 can assume  in conventional 

choice testing.    With 9 ■ 1/5 representing the lowest possible guessing 

probabülty for a five-alternative multiple choice test and with 9-« 1/2 

representing the  largest possible guessing probability which may be encountered  In 

any multiple-choice or constructed-response test. 

These tables  (Tables 3 and k)  are arranged as they are  In order to make  tt 

clear that guessing adds to the score due to the person's ability level and that 

a particular test score, x, may arise  In a number of ways corresponding to 

different combinations of r and t which sum to x.    For example,  a person may 

obtain a test score of 2, by knowing none of the  items but successfully guessing 

two of them,  knowing one of the  Items and successfully guessing one of them, or 

by knowing two Items.    These guessing distributions are conditional  upon r.    The 

distribution of x conditional  upon p may be found by multiplying the conditional 

probability of r times the probability of t and summing over those values that 

yield the same x as shown  In Equation 6 below. 

(6) fUlp.M) -E(n
r)p

r(i-p)n"rQen"r(i-e) 
r-0 

n-;t 

This equation could be used to obtain the conditional distributions of x given 

p. These rather extensive computations may be avoided, however, by making use uf 

the theorem given below: 

THEOREM 1.  If x ■ r + t where the distribution of r is binomial with parameters, 

p and n, and the distribution of t is binomial with parameters, 6 and n-r. 

f(x|p,n,e) - Mx]p+0(l-p),n) 
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Table 3. 

Guessing distributions conditional upon the number of test items known. 

Guessing probability equal to 1/5. Entries to be scaled times 10 . 

No. of 
Items 
Known 
(r) 

0 1 2 3 

Test Score 

k          5 

(x) 

6 7 8 9 10 

10 100000 

9 80000 20000 

8 64000 32000 4000 

7 51200 38400 9600 800 

6 40960 40960 15360 2560 160 

5 32768 40960 20480 5120 640 32 

k 26214 39322 24576 8192 1536 154 6 

3 20972 36700 27525 11469 2867 430 36 1 

2 16777 33555 29360 146C0 4587 918 115 8 

1 istu 30199 30199 17616 6606 1651 276 29 2 

0 10737 26rjM 30199 20133 8808 2642 551 78 8 

Table 4. 

Guessing distributions conditional upon the number of test items known. 

Guessing probability equal to 1/2. Entries to be scaled times 10 . 

No. of 
Items 
Known  0 
(r) 

1 2 3 

Test Score 

4    5 

(x) 

6 7 8 9 10 

10 100000 

50000 50000 

25000 50000 25000 

12500 37500 37500 12G00 

6250 250CO 37500 25000 6250 

3125 15625 31250 31250 15625 3125 

1563 9375 23437 31250 23437 9375 1563 

781 5469 16406 27344 27344 16406 5469 781 

391 3125 10937 21875 27344 21875 10937 3125 391 

1 195 1758 7031 16407 24609 24609 16407 7031 1758 195 

0   98 976 4395 11719 20507 24610 20507 11719 4395 976 98 
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Pm?/:    By rewriting the binomJal  coefficients and rearranging terms  In Equation 6 

we obtain 

{7a)     f(x|p>n>e) - I (n-r)' 

r-0 r!(n-r)l  (x r)! (n-x) 1 
p (l-p)  e  (i-e) 

(7b) 

Now, isolate the terms not dependent upon the variable of summation, r. 

x    r.,     »n-r„x-r 
f(x|p,n,e) - -Si— (l-e)n-x   z £LJil£) 1 

(n-x) I r-0    rKx-r) • 

.n-r .n-X/.     vX-r 
By decomposing  (l-p) Into (l-p)       (l-p)        and multiplying by xl/x!, 

we obtain 

x    rr-/,     \iX-r 
(7c)        f(x|p.n,e) - —^ (l-e)n-x(l-p)n-xxl   E P tiii^l 

x:(n-x): r-0    r:(x-r)l 

[(i-e)(i-p)]n'x    E —^—pr[e(i-p)]x'r. 
x:(n-x): r-Orl(x-r): 

Since the summation term on the right is the binomial expansion of 

[p+e(l-p)] , we have 

(7d)      f(x|p,n,e) 
xl(n-x) 

[p+e(i-p)]x[(i-e)(i-p)] 
n-x 

which Is, of course, an individual term of the binomial distribution with 

parameters, n and p*e(l-p). I.e., 

(7e) f(x|p,n,e) - f. (x(p+8(l-p), n) 

Since 

(8) P + ed-p) - (i-e)p + e. 

It should be clear that  the existence of guessing (6 greater than 0)  effects 

linear transformation on  the probability parameters of the non-guessing 
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binomial distributions of r, given p. 

As mentioned before, this result greatly simplifies the computations Involved 

In obtaining the numerical results given later In this report. But, in addition, 

it has a more important Implication. The existence of guessing under the 

conditions assumed In this basic model for testing does not change? the form of any 

of the distributions of test statistics, since the basic conditional score 

distributions remain binomial.  Therefore, without separate knowledge concerning 

either p or 6, it Is Impossible to detect or to Isolate the effects of guessing 

using only the data available from the particular test administration. 

The conditional distributions of x, given p, for 6 • 1/5, for 9 ■ 1/2 are 

given In Tables 5 and 6. The Joint probability distributions of x and p are 

obtained as before and are given in Table 7 and 8. Though these joint distributions 

contain all of the information in the formal testing model, they fail to express 

a very important piece of information. What do we know about a person's ability 

level after we have observed his test score? This information is expressed by the 

conditional distributions of p, given x, which can be readily computed from the 

joint and marginal distributions given In Tables 2, 7, and 0. According to the 

basic definition of conditional probability, P(BJA) - P(AB)/P(A).  Thus, the 

conditional distribution of p for each x is obtained by dividing each joint 

probability by the appropriate marginal probability of x. These conditional 

distributions are given in Tables 9, 10, and 11. The marginal distributions of x 

for each of the three degrees of guessing, (6"f, !/5,'/2) are shown in Figure 2 

while the conditional distributions of p, given x are shown in Figure 3»  Notice 

that increasing the degree of guessing makes the originally symmetric score 

distribution become negatively skewed. Observe also that increased guessing moves 

the conditional distributions of x, given p, away from the extremes of 0 and 1 and 

Increases the spread of these distributions.  This means that less Information is 

being obtained concerning the actual ability level of the pupil. This is one way 

of expressing the degrading effects of guessing upon test Information. Now we 

turn to a quantitative analysis of the effect of guessing upon decisions based upon 

this test Information. 

SELECTION, CLASSIFICATION AND PLACEMENT DECISIONS 

The selection problem typically encountered in testing applications uses a 

tf§t score, c, often called a cutting score to divide tested Individuals into two 

groups.  Those Individuals with a test score of c or above are of further concern 

to the institution, since these individuals are chosen to have further interaction 

with the institution.  For example, they are admitted into college, they are given 



Table 5. 

Conditional dlitrIbutIons of x given p. Minimal guessing (6 - 1/5). 

Entries to be scaled times 10 . 

Score 
(x) 

.1 .2 .3 

Ability Level (p) 

.k            .5    .6 .7 .8 .9 

10 k 27 1*5 605 2114 6'29 17490 43439 

9 3 65 3^6 133i» i»031 9948 20j02 33315 37773 

3 88 520 1983 55^3 12093 21066 20Ü5U 28555 14780 

7 60^ 2^65 6728 136^3 21499 26436 24294 14504 3428 

6 2720 7669 li.906 220A0 25082 21770 13426 4835 521 

5 8392 16361 22888 2'«'tl3 20066 12295 5088 1105 55 

i4 17982 2'«239 2k275 18779 11148 4821 1339 175 4 

3 26i»23 2'»623 17655 9906 4247 1296 241 20 

2 25^79 16^416 8^26 3'«29 1061 229 29 1 

1 1^560 6i»85 2383 703 158 24 2 

0 37M» 1153 303 65 10 1 

Tab le 6. 

Conditional distributions of x given p. Maximal guessing (e ■ 1/2). 

Entries to be scaled times 10 . 

Score Ability Level (p) 
(x)    .1     .2    .3     .4    .5    .6    .7 .8 .9 

10    253   605   1347   2824   5632  10738 19688 34868  59874 

9   2072   4029   7249  12106  18771  26843 34742 38742  31512 

8   7630  12093  17565  23347  28157  30199 27590 19371   7463 

7 16648 21500 25222 26683 25028 20133 12983 5739 1048 

6 23838 25082 23767 20012 14599 8808 4010 1116 97 

5 23403 20066 15357 10292 5840 2642 849 149 6 

4 15957 11148 6891 3676 1622 551 125 14 

3 7460 4247 2120 900 309 7° 12 1 

2 2289 1062 428 145 39 7 1 

1 416 157 51 14 3 

0 34 11 3 1 

1 
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Table 7. 

Joint and marginal distributions of x on p. Minimal guessing (6 
-5 

Fntries to Le scaled tlmas 10 . 

1/5). 

Score 
(x) 

.1 .2 .3 

Abil 

.'4 

ity Level (p) 

.5    .6 .7 .8 .9 

Total 
P(x) 

10 3 28 132 409 833 1003 443 2851 

9 4 ^5 258 882 1925 2632 1910 385 8041 

8 1 30 257 1072 2645 4076 3740 1637 151 13609 

7 6 IM 072 2640 4702 5115 3149 832 35 17492 

6 28 kko 1943 4264 5485 4212 1740 277 5 18394 

5 86 938 2967 4724 4388 2379 660 63 1 16206 

k 183 1389 3147 3634 2438 933 174 10 11908 

3 270 1412 2289 1917 929 251 31 1 7100 

2 260 941 1092 663 232 44 4 3236 

1 148 372 309 136 35 5 1005 

0 38 66 39 13 2 158 

[ Total 
!  P(p) 

1020 5733 12963 19349 21870 19349 12963 5733 1020 100000 

Table 8. 

Joint and marginal distributions of x and p. Maximal guessing (6 

Entries to be scaled times 10 . 

1/2), 

Score 
(x) .1 .2 .3 

Abil 

.4 

ity Lev 

.5 

el (p) 

.6 .7 .8 .9 

Total 
P(x) 

10 3 35 175 547 1232 2078 2552 1999 611 9232 

9 21 231 940 2342 4105 5194 4504 2221 321 198 

8 78 693 2277 4518 6158 5843 3576 1110 76 24329 

7 170 1233 3269 5163 5474 3896 1683 329 11 21228 

6 243 1438 3081 3872 3193 1704 520 6^ 1 14116 

5 239 1150 1991 1991 1277 511 110 9 7278 

4 163 638 893 711 355 107 16 1 2884 

3 76 2^4 275 174 67 15 2 853 

2 23 61 55 28 8 1 176 

1 4 9 7 3 1 24 

0 1 1 

Total 

P(p) 
1020 5733 12963 19349 21870 19349 12963 5733 1020 100000 



TabJe 9. 

Conditional distributions of p given x. No guessing (e ■ 0). 

Entries to be scaled times 10 ■3 

Score Abili ty Level (p) 

M .1 .2 .3 .k .5 .6 .7 .8 .9 

10 1 15 79 248 416 241 

9 7 ^7 172 347 340 87 

8 2 2^ 111« 276 357 204 23 

9 67 208 337 280 94 5 

2 31 \k3 297 321 172 33 1 

9 83 2k] 35^ 241 83 9 

1 33 172 321 297 U3 31 2 

5 9^ 280 337 208 67 9 

23 20k 357 276 114 2k 2 

1 87 3^*0 3^7 172 «»7 7 
0 2k] M 2kQ 79 ]k 1 

Tabl e 10. 

Conditional distributions of p 'jiven x. Mininal guessing (9 - 1/5) 

Entries to be scaled times 10 ■3 

Score Abi lity Level (p) 

U) .1 .2 .3 .4 .5 .6 .7 .8 .9 

10 1 10 46 \kk 292 352 155 

9 1 6 32 110 239 327 237 48 

8 2 19 79 194 300 275 120 11 

8 50 151 269 252 180 '»8 2 

1 2k 106 232 298 229 95 15 

5 58 183 291 271 147 41 i| 

15 117 264 305 205 78 15 1 

38 199 322 270 131 36 4 

80 291 337 205 72 \k 1 

1 148 370 307 135 35 5 

0 240 418 247 82 13 
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Table 11. 

Conditional distributions of p given x. Maximal guessing (e ■ 1/2) 

Entries to be scaled times 10 . 

Score Ability Level (p) 
(x) .1 .2 .3 .*   .5 .6 .7 .8 .9 

10 k 19 59   133 225 277 217 66 

9 1 12 ^7 118   206 261 227 112 16 

8 3 •8 9^ 186   253 240 147 ^6 3 

7 8 58 ISA 243   258 184 79 16 

6 17 102 218 27'»   226 121 37 5 

5 33 158 27k :7'»  175 70 !.- 1 

k 56 221 310 247   123 37 6 

3 89 286 322 204   79 18 2 

2 131 3^2 312 150   48 3 1 

1 183 387 285 117   28 

0 22i. MM 250 122 
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[ 
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Figure 3a. Conditional distributions of o given x for a 10-item test 

affected by differant decrees of guessing. 
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Figure 3b. Conditional distributions of p giver x for a 10-item test 

affected by different degrees of guessing. 
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Figure 3c. Conditional distributions of ? given x for a 10-item test 

affected by different deqrees of quessing. 
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flying training, or they may be employed by a company. The value or utility to 

the institution of one of these chosen individuals is often approximated by a 

linear function of ability level, p, which may be written as 

(9) U(p) - kp + K, k > 0, K < 0 

where k must be greater than zero In order to keep the problem from becoming 

trivial and to imply that the Institution desires people with high ability levels. 

Those individuals (scoring x < c) not chosen by the institution are of no further 

concern to the organization; thus the value or utility to the institution of not 

selecting an individual Is usually taken to be zero. 

As emphasized repeatedly by Cronbach and Gleser (1965) the performance of any 

testing process should not be compared with some chance level, but should be 

compared with how well the process could be effected by taking Into account all the 

information available from sources other than testing. Within our formal model all 

Information of this type is expressed by the marginal probability distribution of 

p, P(p). Thus, we began by computing the expected return from a selection process 

based not upon testing but upon all other aval lable information. But first, It Is 

convenient to rewrite the parameters of the utility function. Let p be that 

ability level that yields a return of zero to the institution. This allows us to 

express K In terms of k and p , that Is 

(IC) K - -kpo 

and the utility function can now be written as 

(11) U(p) - k(p-po). 

The value to the institution of selecting an individual must take account of the 

uncertainty ibout the individual's true ability level. Thus, the expected value of 

selection using no testing information is 

(12) E,U(p) - I  k(p-po)P(p) 
P 

- k(p'-po) 

where p1 is the mean of the prior or Initial distribution, of p.  Notice that if 
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this average ability level is less than p , Equation 12 becomes negative implying 

that on the average the institution loses by selecting individuals.  In this case, 

no individual should be selected, yielding a zero return to the institution, which 

is not good, but it is clearly better than a negative return.  In order to compare 

the gain due to selection testing, the largest of these two values, either zero 

or the expected value of selection, must be subtracted from the expected utility 

achieved by selection testing. 

Now consider the expected value of selection testing where individuals are 

selected or rejected on the basis of their test score, x.  If an individual earns 

a test score, x, the expected value of selection is 

where p"  is the mean of the conditional distribution of p, given x or, analogously, 

the average ability level of those individuals making a test score of x.  Observe 

that selection is of value to the institution whenever the selected individual's 

test score implies an average ability level greater then p .  Now,, consider setting 

a cutting score, c, so that all individuals with scores of c or above are selected 

and alt others rejected. The expected value to the institution of such a decision 

rule must be computed by taking account of the frequency with which individuals will 

obtain the different test scores and can be expressed as 

n 
(1:) VV{p)  - I    k(5^-po)P(x) 

x-c 

- k{ J PjfW-p J P(x)} 
X"C        x-c 

The expected value of selection testing with a cutting score, c, can vary over a 

wide range depending upon the choice of the cutting score.  The optimal decision 

rule is obtained by selecting that cutting score, c*, which yields the largest 

expected value for selection testing. Notice that the selection ratio is not 

explicitly taken into account here, though the last term on the right in (1A) 

Incorporates the selection ratio.  Therefore, selecting the best cutting score, c*, 

also fixes the corresponding selection ratio. 

To obtain the expected value to the Institution, of selection testing, we must 

subtract the expected value of the selection process, not using testing information. 

(13) E"U(p) - [ k(p-po)P(p|x) 

P 
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from the expected value of  selection  testing.     Thus, 

(15) ,   k{l  (Pj-p )P(x)-(p'-p ))    If E'U(p)>0 

EVST -   {  r 
»(x) If E,U(p)sO rX   "O 

X"C 

Notice  that  the advantage of  rewriting the utility  function now becomes apparent. 

All   terms are now multiplied by the slope constant,  k, which means  that computations 

can be performed leaving k as an unspecified parameter.    Therefore,   in considering 

any practical  decision problem,  all we need to do  Is  to specify k and p    in order 

to obtain absolute utility values appropriate to the problem.    Table  12 gives  the 

expected vaiue of selection  testing for different cutting scores,  three  levels of 

p    and for the three  levels of guessing.    The entries enclosed by rectangles 

correspond to the maximum return possible and  identify  the optimal  cutting score, 

c*. 

Figure 3 graphs  these values  to Illustrate  the effects of guessing.     Notice 

that  the effect of guessing   Is both  to Increase  the optimal  cutting score and  to 

decrease  the expected value of selection testing with  this cutting score.     Notice 

also that  the choice of cutting score can be quite critical  particularly when p 

!s not equal   to 1/2,   in  this  case,  the average ability  level  for the population. 

Especially notice that  the expected value of selection  testing can become quite 

negative which may  represent a considerable  loss  to the  Institution.    Clearly,   the 

specification of a program for selection testing  is not  to be undertaken  lightly 

and  the higher-level   Institutional  decision to adopt selection  testing should be 

based on  firm assurances  that optimal  cutting scores  have been adopted which do 

not  represent a  loss  to the   institution.    Finally,  observe that the cost of  testing 

Is   independent of the cutting score.    Thus,  the cost of  testing divided by k can 

be plotted on these graphs as a horizontal   line with some positive height above 

zero.     In effect,  this serves   to move the zero point of the scale along  the ordlnate 

to some higher point corresponding  to the cost of  testing divided by k.     It should 

be clear  that this could serve to reduce the number of situations  In whUh  testing 

has any positive value.    Notice,   In particular,   the graph  for maximum guessing, 

6 ■  1/2-     If the cost of  the  testing program were at all  significant.   It could 

easily exceed the rather small   returns of selection  testing when p    is equal   to  .4 

or  to   .6.     Another comparison of si ne significance can be made.    So far, we have 

considered  the added value of  testing relative  to not  testing  in a selection process. 
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Tab le 12. 

Expected ve lue of se ection testinrj 

Guess inr, Cutting n n rutting J. Value of Selectior i Test ng 
Pro'a- 
bility 

Score 

(c) •>c 

I  P(x) 
x>c 

Score 

(c) Po..4 "o--5 po- 6 

11 0 0 11 -10000 0 0 
10 1151 1478 10 - 9440 412 264 
9 '4'423 6008 - 7980 1419 818 
8 10077 14488 3 - 5718 2833 1384 

7 17616 26826 7 - 3114 4203 1520 
6 26013 41940 6 - 763 5043 849 

6 - 0 5 ^Q7k 58060 5 850 | 5044! • 762 
k 40791 73174 4 1 15211 4204 • 3113 
3 45589 85512 3 i  1384 2833 • 5718 
2 48416 93952 2 819 1420 • 7979 
1 49673 9Ö522 1 264 412 ■ 9440 
0 50000 100000 0 0 0 •10000 

11 0 0 11 -10000 0 0 
10 2103 2851 10 1  - 9032 682 397 

i 

9 
8 

7 

7538 
15882 
25550 

10392 
24501 

41993 

9 
8 

- 6829 
- 3918 
- 1247 

2092 
3632 

i ^1 

1003 
1 81 
354 

e-i 6 

5 
li 

34645 
41756 
46357 

60387 
76593 
88501 

490 4452  - 
3460 
2106 

• 1587 
• 4200 
• 6744 

I 11121 
957 

3 48758 95601 518 958 8603 
2 49710 98837 175 292 9592 
1 49967 99842 30 46 9938 
0 50000 100000 0 

-10000 

0 10000 

11 0 0 11 0 0 
10 6076 9232 10 - 7617 1460 537 

e-i 

9 
8 

7 
6 
5  | 

17731 
30413 
40248 
46068 
48744 

29112 
53441 

74G69 
88785 
96063 

- 3914 

- 963 
380 

3175 264 
1652 

4553 
7203 
8894 

1 3^92 1  - 
2914 
1676 
712 

1 554| 
319 

4  i 49694 98947 115 220 9674 
3 49947 99800 27 47 9933 
2 49995 99976 5 7 9991 
1 50000 100000 1 0 0 10000 
0    ! 50000 100000 0 0 0 10000 
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What would be the added value of knowing exactly each individual's true ability 

level? This could be known, in principle, if we used an admissible test, which 

eliminated guessing and used all the items in the pool.  Let us define the expected 

value of perfect information as the gain in expected value to the institution 

resulting from having perfect knowledge of each individual's ability level relative 

to that of having imperfect non-testing information as to an individual's ability 

level. Thus, we have 

(16) 

EVPI 

,  K I     (P-P0)P(P)-(P
,-P0)>  if ?'> P0 

i k I (p-P0)P(p) if P'* P, 

Equation 16 can be used both to find the optimal cutting point along ability level 

and the corresponding expected value to the institution. Table 13 shows these 

optimal cutting points and expected values for various critical ability levels, p . 

Table 13 also shows optimal cutting scores and expected values for our 10-item 

test affected by the three different degrees of guessing.  Notice that for extreme 

critical ability levels, even perfect information does not help.  The expected 

values are zero and one can do as well by accepting all individuals in the case of 

very high critical ability levels or rejecting ail individuals in the case of very 

low critical ability levels.  If one considers the 10-item test, the range of 

critical ability level for which testing yields a gain is narrowed even more.  It 

is, of course, narrowed further by the existence of higher degrees of guessing. 

These and other relations are grasped more easily by examining Figure U,    Notice 

first that these functions are symmetric and p equal to 1/2, which, remember, 

corresponds to the average ability level of the population of individuals.  If the 

average ability level were some other value, then these functions would be shifted 

to either the right or the left.  Information concerning an individual's ability 

level is of most value when the critical ability level, p , of the utility function 

is near the average ability level, p'.  The value of this information falls off quite 

rapidly to either side of average ability level and declines down to a value of 

zero corresponding to the value of the selection process without the use of 

additional information. This is a reflection of the generalization that additional 

information cannot hurt.  It Is true, however, only because these are optimal 

selection processes based upon the best cutting score.  Use of any but this one 

best cutting score could easily represent a significant loss to the institution. 

Notice the vertical distance between the function showing the expected gain 

• 



Table 13. 

Optimal selection with perfect information and with a 10-item test 

affected by different degrees of guessing. 

Critical 
"Ability 

Level 

Perfect 
Information 

pc     km 

No Gi 
e 

* 
c 

iessing 
- 0 

1EVT 

Minimum 
e » 

* 
c 

Guessing 

1/5 

/EVT 
k 

Maximum 
8 - 

c 

Guessing 
1/2 

JEVT 
k 

1.00 1.0      0 0 0 0 

.95 1.0      0 0 0 0 

.90 .9     0 0 0 0 

.85 .9     51 0 0 0 

.80 .8     102 0 0 0 

.75 .8    439 10 43 0 0 

.70 .7    777 9 217 10 112 0 

.65 .7   1763 8 660 9 458 10 75 

.60 .6   2749 7 1520 8 1181 10 537 

.55 .6   4702 6 2946 7 2454 9 1719 

.50 .5   6656 5 5044 7 4554 8 3692 

.45 .5   4702 5 2947 6 2471 7 1647 

.40 .4   2749 4 1521 5 1112 6 554 

.35 .4   1763 3 660 4 382 5 122 

.30 .3    777 2 218 3 78 4 10 

.25 .3    439 1 42 1 6 2 1 

.20 .2    102 0 0 0 0 0 0 

.15 .2     51 0 0 0 0 0 0 

.10 .1      0 0 0 0 0 0 0 

.05 .1      0 0 0 0 0 0 0 

.00 0      0 0 0 0 0 0 0 
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for perfect   information and that showing  the expected gain for a  10-item test with 

no guessing.     This  distance represents,   in a sense,  the  loss due  to sampling of 

test  items or,  conversely,  the maximum gain possible by  lengthening the test 

without bringing  in any guessing behavior.    Now notice the vertical  distance 

between the function for a ten-item test with no guessing and  the function for a 

ten-item test with maximum guessing  (6 ■  1/2).    This distance  represents  the 

maximum possible  loss due to guessing or,  conversely,  the maximum possible gain 

due to the elimination of guessing,  but keeping the same test   length.    Observe 

that  these  two sets of distances are approximately the same size which  implies  that 

the elimination of guessing on a  ten-item test could yle'd benefits comparable to 

those obtainable by changing from a  ten-item test  'ree of guessing  to a test of 

nearly  infinite  length  "    which   Is also free of guessing.     In  this  sense,  the 

deterioration   In performance of selection  testing which may be attributed to the 

effect of guessing  Is enormous. 

As   In  the case of Figure 3.   the effect of adding   In  the cost of a testing 

program can be  represented by a horizontal   line placed at  that value of the ordinate 

corresponding  to the cost of the testing program.    This,   in effect,   raises  the -ero 

point along  the sciile of the ordinate and  Implies,  that adoption of .i selection 

testing program by an  institution when  the critical  ability  level   is extreme 

represents a gross   loss  to the  Institution.    The added cost of modifying testing 

procedures  so as  to eliminate guessing should be a smal1   fraction of  the present 

cost of operating a testing program which  Is composed  largely of a'lmtnlstratlon 

costs.    Therefore, over the  range of situations  for which a selection  testing 

program  is of benefit  to the  institution,   the net gain of eliminating guessing wi I ! 

be of a quite appreciable magnitude. 

Consider now a placement process,  where  Individuals are assigned to one of 

two programs.     These programs may  represent different  instructional  methods or 

classes grouped according to ability  level,   two different schools,   two different 

jobs,  or two different psychiatric  treatments.     (See Cronbach and Gleser,   1965)- 

The utility  to the  Institution of assigning an  Individual   to either of the two 

programs   Is assumed  to be a  linear function of the  individual's ability  level  and 

may be written as 

(9') U^p)  - kjP+K,,     U2(p)   - k2p+K2,     k^kj,   !<,< K2 

Since we are  Interested  in the  relative performance of various  placement processes 

It  is convenient  to rewrite the utility functions as gain functions.    Thus, 



. 

(S'a) GjCp)  -  (kI-k2)p+KI-K2,    G2(p)  -  (^-kjlp+K^K, 

The original  utility functions and the revised gain  functions are shown  in  Figure 

5.     The break-even | 

setting G ■ 0,  thus 

5.     The break-even point»  p. , where the functions   Intersect may be obtained by 

and the gain functions may be  rewritten as 

Öl') G^p)  -  (k|-k2)(p-pb)f    G2(p)  -  (kj-k^Cpjj-p) 

Given only  the non-testing   information expressed   in  the marginal   distribution 

of p the expected gains  from placing an  Individual   in Program 1 or Program 2 may 

be computed as 

(12') E'G^p)   - I  (k)-k2)(p-pb)P(p).     E'G2(p)   = nki-k
2HPb-p)p(p) 

P " P 

-  (k)-k2)(p'-pb) -  (k1-k2)(pb-p') 

Notice that the factor k.-k« must be positive. Therefore, the expected gain will 

be positive or negative depending upon whether the second factor Is positive or 

negative.  It will be positive if average ability level, p1, is greater than the 

break-even point, p. .  In this case, the individual should be assigned to Program 1. 

However, if the average ability level is smaller than the break-even point, the 

expected gain for Program 2 will be larger and the individual should be assigned to 

Program 2. 

In placement testing, the expected gain depends upon an individual's test score, 

x, and may be written as 

(13') E^G.Cp) - I  (k)-k2)(p-pb)P(p|x) - (k1-k2)(p^pb) 
P 

E^2(P) " I  (k,-k2)(pb-p)P(p|x) - (k,-k2)(pb-py 
P 

The overall expected gain from placement testing is a weighted sum of the 
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conditional  gains,   thus 

(IV) E^G(p) - (k -k ){ X    (p^Pb)P(x)+Ci    (pb-^)P(x)} 
x-0 X"C 

(k,-^)^ I    p'JPCx)- I    p''P(x)+ph[ I    P(x)- I    P(x)]} 1    2' " -    rx 
x-c x-0 x«0 x=c 

The expected gain  from a placement process  using only non-testing  information must 

be subtracted from this value to obtain  the expected value of placement  testing. 

Thus, 

(15') 
EVPT 

/    E" 

C 
>        CM 

E^G{p)-(k1-k2)(p,-pb)     if p'   >  pb 

E^G(p)-(k1-k2)(pb-p')   if p1   < pb 

The expected value of perfect  information   is 

(16') 

EVPI 

( 

(k.-k2){ I PP(PH pP(p)+Ph[ I P(P)- I P(p)l-(p,-Pb)>     lT P' > Pb 
pipc    P<PC P<PC     Pipc 

,  (k,-k,){ x pp(p)-J pp(p)+Phi X p(p)-1 p(p)i-(ph-p'))  if?'<Pt "1     2 
P2P, P^, P<PC P>PC 

The expected value of placement testing has been computed and is shown in 

Table l'» for three levels of guessing and for three break-even points.  Notice 

that the optimal cutting scores are the same as those shown in Table 12.  Notice 

further that the expected values are twice those shown in Table 12.  This suggests 

a theorem. 

THEOREM 2.  If p - p. , Ko  Kb' 

(17) EVPT m  2 EVST 
k.-k 

Proof:    We will prove this theorem by deriving the basic equations In a somewhat 

different manner from that above.  In addition to enabling us to prove 

the theorem, this may have added heuristic value In understanding the 

basic relations. The theorem must be proved seperately for two cases. 



Table  I*. 

Expected value of placement   testing  (xfkj-l^]"  ). 

I 

Guessing 
Proba- 

Cutting 
Score I p"P<x) - 

c-l 
I V{x) - 

, 
;cted Value of Testing 

Ui-M z*pt 

bility X 
v = () 

c-l n 
e (c) I P"r(x) 

x-0 * 
I r(x) 

x=0 Pb--* >b--5 Pb..6 

11 -50000 100000 -20000 0 0 
10 -47698 97044 -19880 824 528 
9 -41154 87584 -11960 2838 I636 
8 -29846 71024 -11436 5666 2768 
7 -14768 46348 -  6229 8406 3041 

e - o 6 2026 16120 -   1526 10086 16^8 
5 18148 -16120 1700 I0086 -  1524 
k 31582 -46348 3043 Ö4o8 - 6227 
3 41178 -71024 275B" 5666 -11436 
2 46832 -87984 1638 2840 -15958 
1 49346 -97044 528 824 -18880 
0 50000 -100000 0 0 -20000 

11 -50000 100000 -20000 0 0 
10 -45786 94298 -I8067 1363 793 
9 -34925 78216 -13639 4183 2005 
8 -18237 50998 - 7838 7262 2362 

■ 7 1098 16014 - 2496 9105 706 

•"S 6 19289 -20774 979 8902 - 3175 
5 33510 -53136 223b| 6917 - 8402 
k 42712 -77002 1911" 4211 -13489 
3 47514 -91202 1033 1913 -17207 
2 45418 -97679 346 578 -19189 
1 49332 -99684 58 90 -19878 
0 50000 -100000 0 n -20000 

11 
10 
9 

-50000 
-37848 
-14539 

100000 
81536 
41776 

-20000 
-I5234 
-  7829 

0 
2920 
6349 

0 
1074 
527 

8 10825 - 6882 -   1928 738A - 3304 
1 7 30495 -^♦9338 760 5826 - 9108 

'■j 6 42135 -77570 It 07 3350 -14407 
5 47488 -92126 638 l'»25 -177^3 
ii 49388 -97894 230 441 -19348 
3 49893 -99600 53 93 -19867 
2 49989 -99952 8 13 -19982 
l 50000 -100000 0 0 -20000 
0 50000 -100000 0 0 -20000 



1 

Case I.     Suppose that the average ability  level   is greater than the 

break-even point,   i.e., 

(17a) p'  > pb 

This defines Case  I. 

Since the average ability level   is greater than the break-even point,  the 

optimal  strategy for selection  Is  to admit all   individuals,  thus 

(17b) -^--1  (p-ph)P(x,P) 

Notice that instead of taking the expectation by using the marginal probability of 

p, we are using the joint probability of x and p and summing over all possible 

combinations of x and p. This is the basic change in approach that we will use to 

prove this theorem. 

In a similar fashion, the expected gain from selection testing may be written 

as 

(17c) r'ü(p) 
—k  I  (p-Pb)P(x,p) 

A 

Here the summation over the set A includes all   those pairs,   (x,p), for which x  is 

greater than or equal   to c.    Now, we can  take the difference between  the two 

previous equations  to obtain  the expected value of selection  testing.    Thus, 

07d) -x1-^ Wp(x'pM (P-Pb)p(x'P) 
K
 A D S 

- -I  (p-pb)P(x.p) 
B D 

■ I  (Pb-p)P(*,p) 

Here, the summation over the set B includes all those pairs, (x.p), for which x is 

less than c. 

For the placement decision, the expected value of placement using only 

non-testing Information may be written as 



I 
kj-kj " \  (P Pb)P(x'p) 

The expected gain for placement testing is 

r   MV ErG(p)  . 
-TTHT"" ^ (P-Pb)

p(x'p) ^(Ph-P^^'P) i Kl K2   A    D       B D 

I 

[ 

I 

while the expected value of placement  testing  is 

(17g) jrSr-l    (p-Pb)P(x.p)  *I(pb-p)P(x,p)   -I(p-pb)P(x.p) 
Kl  K2      A D B    D S        D 

I  (ph-p)P(x,p)   -I(p-ph)P(x,p) 
B B        D 

il (P.-P)P(X.P) 
B       D 

Now compare the last line in Equation 17g with the last line in Equation 17d. The 

ratio between placement and selection testing s 2:1 as was to be proved. 

Case II. 

P" < P 

I 

I 

I 

I. 
(17'd) EVST  r ,    \Df       \ 

In  this case the average ability  level   is  less  than  the break-even point. 

Therefore the optimal  selection strategy under no test  information  is  to reject 

every  individual.    Thus 

k 

By reasoning analogous to that used for Case I, we find that the expected value 

of selection testing may be written as 

As for placement testing, since the average ability level is less than the 

break-even point, the optimal strategy with no test information Is to place all 

Individuals in Program 2.  Thus, 
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I 

I 

I 

I 

(^'e) E'U(p)   r ,    xD/   x 
 ^ - L   (PK'P)P(X.P) 

krk2    s   b 

Again, reasoning as in Case I, we may write the expected value of placement testing 

as 

(ly'g)        EVPT 
krk2 

I  (p-p. )P(x,p) + I   (p.-p)P(x,p) - I   (ph-p)P(x.p) 

I  (p-pb)P(x,p) - I  {pb-p)P(x,p) 
A A 

- 2l  (p-p )P(x,p) 
A 

As in Case I, compare the last line of Equation IT'g with Equation ly'd. The ratio 

between placement testing and selection testing is 2:1 as was to be proved. Q.E.D. 

This theorem has a useful corollary. 

Corollary:     (k.-k,)  times the expected value of perfect information for a 
\ -1 placement decision is twice (k)  times the expected value of perfect information 

for the corresponding selection decision. 

Theorem 2 and its corollary imply that with a simple multiplicative 

adjustment all our results for selection testing hold also for placement testing, 

so the comparisons and comments made above apply with equal, if not greater, force 

to the placement decisions. 

EDUCATIONAL AND VOCATIONAL COUNbtLING DECISIONS 

Information obtained from testing is frequently used to guide educational 

and vocational counseling decisions.  Generally, a person's test score is used to 

estimate his ability level. This estimate is made part of his record and is then 

used over a period of time to guide both Institutional and individual decisions. 

The essential characteristic of this class of applications is that an all-purpose 

estimate is obtained to be Incorporated into many decision problems.  In this sense, 

the use of testing information in counseling decisions is similar to the general 

problem of estimation of parameters In science. No attempt is made to tailor the 

estimate to one particular application, but the estimate Is meant to serve many 

different applications. 

The obtaining of such a general purpose estimate can itself be considered a 

decision problem with the different alternatives being the various possible 



I 

«4"       >       <>r» ^».« v! 

estimated ability levels and the utility (here the distinction between individual 

and Institutional decisions becomes blurred) being some function of the difference 

between estimated ability level and true ability level. The utility function most 

frequently used In this type of application is proportional to the complement of 

squared error. Thus 

(18) U(p,p) - k[l-((J-p)2], k > 0. 

The use of the squared-error criterion means that the value of an estimation 

process will depend upon the variances of the distributions involved. For example, 

without the use of testing information, a person's ability level may be csLimated 

by the mean of the marginal distribution of p. Thus 

(19) EU(p'tp) - I  k[l-(p'-p)2]P(p) 
P 

- k-k I  (p-p')2P(p) 
P 

- kn-vfp)] 

The second term on the right Is the variance of the marginal distribution of p 

since the squared deviations are taken with respect to the mean of this distribution. 

It is, of course, well-known that the weighted sum of the squared deviations about 

the mean of a distribution is a minimum and that this mean is, thus, the best 

possible estimate for the squared error criterion. 

Given the availability of testing information a mean still remains the best 

estimate, but the mean is conditional upon the test score, x, and the expectation 

Is taken with respect to the conditional distribution of p given x. Thus, 

(20) ExU(p^p) k[I-I(p-^)2P(p|x)] 
P 

k[I-V^(p)l 

where the second term in the brackets on the right is, of course, the variance of 

the conditional distribution of p. 

The overall performance of the estimation process is obtained by taking the 

weighted sum of these conditional expected utilities, the weights being the 

marginal probabilities of x. Thus 
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(20 EExU(Px'p) " ^ kn-V-(p)]P(X) 
x=0 

■ k[l- I  V'l(p)P(x)] 
x»0 

- k[l-V"(p)] 

where the second term in brackets on the right is the expected value of the 

conditional variance. 

Now, in terms of conventional test theory, V'p is the variance of the true 

scores while V'p is the variance remaining after testing.  Thus, the difference 

between these two variances, V'p-V'p, is the variance accounted for by testing 

and the ratio of this difference to the initial variance, [V'p-V'pl/V'p, is an 

important measure of test performance. Applying these operations to our expected 

utility equations, we obtain 

(22) EU(p',p)-EExU(p^p)    k[l-V'(p)]-k[l-V"(p)] 

EU(ß',p) k[l-V'(p)] 

m    V(p)-V"(p) 

V'(p) 

the basic equation of conventional test theory.  Notice, however, that the scaling 

constant, k, has been eliminated and the gain from testing is relative to the 

initial variance. This goes too far. We want to be able to compare the value of 

testing with the cost of testing and to be able to do this for many different 

situations.  For these purposes, the expected value of counseling testing is 

(23) EVCT = EU(p,,p)-EExU(p^,p) 

- k[V,(p)-V"(p)]. 

It should be understood that this equation for the expected gains resulting from 

testing for counseling assumes the use of an optimal estimation procedure. As 

will be shown below, not all estimation procedures used in counseling are optimal. 

It Is interesting to compute these values for the 10-ltem test described above. 

The first column In Table 15 gives the means for the conditional distribution of 

p for the various levels of guessing. These are, of course, the best 

possible estlmatfes of an Individual's ability level taking account both of the 



Table 15. 

Expected values for a 10-item test used for counseling decisions. 

I 

I 

r 

i 

i 

i 

i 

i 

X P" V(p) E{p" - p)2 

'■■; nv  y  ' 
P-i(2x-n) 

10 779 92 582 582 582 
9 723 107 421 339 166 
8 667 117 295 186 161 
7 611 125 204 127 570 
6 556 130 150 161 1394 

9 = 0  5 500 132 132 288 2632 
4 kW 130 150 508 2105 
3 389 125 204 821 1638 
2 333 117 295 1228 1228 
1 277 107 421 876 876 
0 221 91 581 581 581 

Expectation 500 124 227 457 408 

10 739 126 141 806 806 806 
9 675 144 166 648 542 299 
8 613 156 184 505 3^3 157 
7 553 162 196 379 215 400 

,  6 i^ 164 201 275 164 1030 

9 - i  5 
5  i. 

'♦39 160 198 198 201 2085 
386 152 185 153 338 1644 

3 338 139 165 154 593 1282 
2 23k 124 140 213 990 990 
1 255 108 113 350 760 760 
0 221 89 89 577 577 577 

Expectat ion 500 154 186 333 336 993 

10 658 201 345 1368 1368 1368 

9 586 212 398 1196 1045 668 
8 521 211 422 988 73^ 273 
7 i.63 202 421 762 464 242 

l  6 i.12 188 393 540 265 639 
e = ^  5 363 171 346 346 171 1524 

2  4 329 153 286 203 216 1237 
3 296 135 222 136 428 1012 

2 267 119 163 165 834 834 
1 242 101 114 303 687 687 
0 227 89 89 604 604 604 

Expectation 500 200 394 875 672 624 

I 



distribution of ability levels in the population and of the guessing probability 

for the test. These estimates are graphed In Figure 6. Notice that e regression 

effect Is apparent In these estimation procedures. For example, the highest 

possible test score does not Imply that the person has the highest possible 

ability level while the lowest possible test score does not Imply the lowest possible 

ability level. The effect Is primarily due to the Influence of the distribution 

of ability level In the population which, In this example. Is symmetric about 

an average ability level. Therefore, If a person has an extreme test score. It 

is much more likely that his abllitv level Is less extreme. This can be seen most 

clearly by examining the tables showing the conditional distributions of p given x 

contained in an earlier sub-section of this report. 

Also graphed In Figure 6 are several other widely used estimates of a person's 

ability level. These estimates are either explicitly recommended or implied by 

many textbooks and test manuals. One estimate of an individual's ability level 

sometimes recommended and much more frequently used, is the proportion of test 

Items passed, x/n.  This Is a straight line with slope of one graphed In Figure 6. 

The more sophisticated developers and users of tests have some appreciation of the 

effect of guessing and, thus, correct the test score, for chance before estimating 

an Individual's ability level. They attempt to eliminate the effect of guessing 

by correcting the test score according to 

CORRECTED TEST SCORE ■ R - m- 

where R Is equal to the number of correct responses (equivalent to our x), W Is 

the number of Incorrect responses (equivalent to our n-x) and m is the number of 

possible answers listed In a multiple-choice Item.  Dividing this corrected test 

score by n, the total number of Items in the test, yields an estimate of the 

person's ability level.  Two such estimation schemes are graphed In Figure 6. 

One is for a five-alternative test which would have a minimum t of 1/5; the other 

is for a two-alternative test with a miximum (and minimum) 9 of 1/2. 

Now let us consider the expected value of these various estimation procedures 

for the 10-item test affected by various levels of guessing as described previously. 

Figure 7 shows the expected value of counseling testing for a number of different 

estimates of a person's ability level. All of these estimates are derived from 

the person's test score, x, obtained by taking our 10-item test. Graph A shows 

the conditional expected values as a function of test score for each of the three 

im 
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optimal estimation procedures based upon the mean of the conditional distribution 

of p given x. The highest curve is obtained when there is no guessing in the test, 

the intermediate curve when there is a minimal level of guessing and the bottom 

curve when guessing is maximum. Notice that the expected values are depressed by 

the existence of guessing and that this depression is greater for the higher test 

scores. The dashed horizontal line corresponds to the expected value of counseling 

without testing and is set equal to zero on the scale of the ordlnate. At the top 

of the graph, set equal to +1 is the value of perfect information which is obtained 

when the conditional variances are all equal to zero. Thus, as the length of the 

test is increased from the ten items to include all items in the very large pool of 

items, three curves would move toward the top of the graph approaching a horizontal 

line at +1. Also plotted in Graph A as pointers along the ordinate at the left are 

the overall expected values of counseling testing. The top marker, representing, 

of course,6 = 0, the middle one, 6 * 1/5, and the bottom one, 6 m  1/2. 

Graph B shows again the conditional expected values for the ten-item test with 

no guessing where the optimal est'mate, ß1, is used to estimate a person's ability 

level. The top curve in Graph C is the same function, but for 6 ■ 1/5.  If one 

ignored the existence of guessing and used as the estimate of an individual's 

ability level the mean of the conditional distribution of p given x based on the 

tables for 6=0, then the bottom curve shown in Graph C would be obtained.  The 

use of this non-optimal estimation procedure would, of course, result in an 

additional loss in the expected value of counseling testing, but it is not too 

large in this case.  Graph D, however,  tells a different story. Here the top 

curve is for the optimal estimate, based upon the mean of the conditional 

distribution of p given x, when guessing is maximal, that is 6 ■ 1/2. The bottom 

curve shows the expected values of counseling testing using the non-optimal strategy 

which ignores the existence of guessing. Here the loss is great, so great, in 

fact, that it would be better to do no testing whatsoever and to estimate each 

person's ability level as being equal to the average ability level, (5', of the 

population under consideration.  In other words, the overall expected value of 

counseling testing by ignoring guessing in this case is negative implying t;hi>t . 

it is a poorer strategy than not testing at all. 

Figure 8 shows the expected values of counseling testing for some other 

estimation procedures, for each of the three different levels of guessing.  The 

top dashed curve in each case shows the Conditional expected value of the optimal 

estimates as shown in Graph A of Figure 6. Notice that these have been plotted 

to a quite compressed scale.  The dashed horizontal line at zero represents as 
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before the expected value of counseling without testing.  In Figure 8 the three 

non-optimal strategies considered are (1) using the proportion of Items passed 

as an estimate of a person's ability level, (2) correctJng the test score for 

chance assuming a five-alternative test, and (3) correcting the test score for 

chance assuming a two-alternative test. The Indices to the left near the ordinate 

represent the overall expected value of counseling testing with these non-optimal 

estimation procedures. With but one exception, they are all negative, Implying 

that both the Individual and the Institution are much better served by not using 

testing information In counseling If this use is according to some of the frequently 

recommended procedures for estimating a person's ability level.  The performance of 

these estimation procedures Is really quite bad. And the way to see this 

independent of the absolute value of the utility scaling constant, k. Is to realize 

that even giving a test of near infinite length which yields conditional 

variances of zero would just have the effect of moving the curves up nearer to 

the top of the graph.  This Is so because the plotted values are made up of two 

components, one being the conditional variance corresponding to uncertainty about 

the true mean, the other being the bias or the square of the difference between 

the conditional mean and the estimated ability level.  Increasing the length of 

the test would reduce the size of the first component, but would not eliminate 

the second component.  This can be seen by reexamlning Figure 6.  Increasing the 

length of the test makes the conditional mean, p", move closer to the diagonal 

corresponding to x/n, essentially eliminating the bias component between the 

conditional mean and the proportion of Items passed. The two lines showing the 

correction for guessing, however, would not be affected and considerable bias 

would remain, even for a test of Infinite length. 

Again we find that the existence of guessing can have a serious effect upon 

the quality of personnel decisions.  Ignoring the existence of guessing can lead 

to even further degradation In the value of counseling testing, sometimes of 

such magnitude that it is better not to use testing information In counseling. 

Ignoring the existence of informal ion abpat the distribution of ability levels In 

the population leads to even greater degradation as does using the recommended 

formulas for correction for yuci^'nq.  In most Instances, the degradation is of 

such magnitude that that it is far better not to use testing information in 

counseling and to estimate each individual's ability level as being equal to the 

average ability level in the population. 



RELIABILITY AND VALIDITY 

Though correlational  measures of  test reliability and  test validity are not 

very directly relevant to classification and counseling decisions,  the     are 

important  to educational   research and to behavioral  science especially  in  those 

areas  utilizing multivariate and  factor-analytic techniques. 

First we will  define the maximum possible validity of  the test as  the 

correlation between test score and true ability  level.     In a sense this   is  the 

correlation between test score and  true score  in conventional   test theory.     It 

does not  represent a test validity which  is obtainable  in practice,  since  It 

corresponds  to the correlation between the test snore and a perfectly measured 

criterion.     It  is,  however,   interesting to see what effect guessing has upon  this 

maximum possible test validity.    The computations are  rather straightforward and 

are given   in Table  16.    The correlation  is given  in  the column headed p 

Table  16 

Computations of correlation between test score and true ability  level. 

e E(p) E<x) E(p2) E(x2) E(xp) 
V(p)-£(p2) 
-[E(p)]2 

V(x)-E(x2) 
-tE(x)]2 

■ ■    ' 

Cov(xp)" 
E(xp) 

-E(x)E(p) 

pa 
COV(XD) 

P2 ^(x)V{p)- 
:    0 
|l/5 
1/2 

.5. 

.5 

.5 

5.0 
6.0 
7.5 

.277C2 

.27782 

.27782 

30.00 
'♦O.OO 
58.75 

2.770O7 
3.22255 
3.8^239 

. 02782 i» 

.02782A 

.02702^ 

5.0 
i».o 
2.5 

.27007 

.22242 

.14239 

.745 

.667 

.540 

• 555 
.445 
.292 

and  is degraded by guessing  from an   initial  value of about   .7 down  to a value 

maximally affected by guessing of about   .5.     P2   is  used   in conventional   test 

theory  to measure the percentage of variance accounted for by  the  test.     These 

values of p2 agree closely with  the percentage  reduction   in variance computed 

from  the expected variances  of Table   15 and  range  from about   .5 down  to about   .3. 

Second, we define test  reliability as  the correlation between  the scores 

obtained  from two tests, each  test being made up of a set of  items  randomly 

sampluiH    from the pool  of test  items.    This measure corresponds to the correlation 

between equivalent  test  forms   in conventional   test  theory.     It   Is   instructive   to 

compute the test  reliability  for our ten-item test described above.    Realize  that 
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Table 17. 

Joint distributions cf x and y. Entries to be scaled times H 
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! 
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I 

i 

No guessing 

(6 - 0) 

Mi nimum guessing 

(9 - t/5) 

I'üxi -um guess ing 

(e • 1/5) 

1st 2 nd Score . y 
Score, 

X 
0  1 2 3 «I 5 6 7 8 9 10 

1C 1 2 3 4 4 2 

S 1 2 ^ 7 9 10 8 4 

8 1 3 6 II 16 18 16 10 4 

7 1 3 7 111 20 25 2^ 1? 9 3 

6 2 6 U 22 28 30 25 16 7 2 

5 1  t) 1! 20 28 32 28 20 11 4 1 

k 2  7 16 25 30 28 22 14 6 2 

3 3  9 13 2^4 25 20 14 7 3 1 

2 4 10 16 13 16 11 6 3 1 

1 k     8 10 9 7 k 2 I 

0 2  4 1» 3 2 I 
i 

10 1 1 3 5 7 7 4 

9 1 3 6 12 17 19 15 7 

8 1 3 8 16 2^ 30 28 19 7 

7 1 3 7 16 26 35 37 30 17 5 

6 1 5 12 22 33 38 35 2^ 12 3 

5 2 6 15 25 32 33 26 16 6 l 

k 2 7 14 21 25 22 16 8 3 I 

3 2 6 11 ]l< 15 12 7 3 1 

2 1 3 6 7 6 5 3 1 

1 1 1 2 2 2 1 I 

D 

10 1 2 6 14 23 27 19 

9 1 3 S 20 37 52 51 27 

8 1 6 15 32 52 63 52 23 

7 2 7 18 34 '49 52 37 14 

6 2 6 14 26 34 32 20 6 

5 1 <l 9 14 18 15 9 2 

k 1 2 1» 6 7 6 3 I 

3 1 I 2 2 1 I 

2 

1 



because of the  independent random sampling of the two sets of ten  items,  the test 

items  themselves are  independent.     This   independence holds,  however, only at each 

fixed ability  level.    To see this,  consider computing  the joint distribution of 

tost scores,  x,   from the first test and test scores,  y,  from the second test.     For, 

given p,   the joint probability of x and y  is given by 

(24) P(x,y|p)  - P(x|p)P(y|p) 

Thus,  for each value of p, we have a  table of joint probabilities with a zero 

correlation between x and y.    When we sum over p, however,   to obtain an 

unconditional  joint probability of x and y. 

(25) PU.y)  - IP(x|p)P(y|p)P(p) 

we end up with a  table of joint probabilities  for x and y which are positively 

correlated.     These joint distributions of x and y are given  in Table  17 for 

the different   levels of guessing.     Notice that the effect of  increasing amounts 

of guessing   is  to concentrate  the distribution  in the positive quadrant. 

These joint probabilities   (but  to more decimal  places)  have been used to 

compute the correlation between x and y and are shown  in Table  18.    Here the test 

Table  18 

Computations of correlation between  test scores  from equivalent forms. 

1 

e E(y) E(x) E(y2) E(x2) E(xy) 

1 

V(y)-E(y2) 
-[E(y)]2 

V(x)-E(x2) 
■[E(x)]2 

Cov(xy)" 
E(xy) 

-E(x)E(y) 

p- 
Cov(xy) 

P2 /V(x)V(yr 

1 0 

1<5 
1/2 

5.0 
6.0 
7.5 

5.0 
6.0 
7-5 

30.00 
40.00 
58.75 

30.00 
ko.oo 
58.75 

27.78239 
37.78095 
57.00397 

5.0 
4.0 
2.5 

5.0 
4.0 
2.5 

2.78245 
1.77999 
.50689 

.556 

.445 

.203 

.309 

.198 

.041 

re liability ranges from about .56 down to .20 for maximum guessing while the 

percentage of variance accounted for by the test ranges from about .31 down to 



about  .Ok.    This seems  to be a fairly significant degradation  in test  reliability 

due to the effect of guessing. 

These test  reliabilities are a function both of the  length of the  test and, 

more subtly,  the distribution of ability  levels   In  the population,   since  the 

variance of ability  level  moderates  the correlation.   A future  report will  give 

test  reliabilities  for different  test  lengths and distributions of ability  level. 

Though the test  reliabilities will  undoubtedly  increase with  Increases   in  test 

length,  the degradation due  to the guessing should not be entirely discounted.    As 

Cronbach and Gleser mention,   In their discussion of the band-width  fidelity paradox, 

increasing the band-width of a test can greatly  improve the quality of personnel 

decisions.    Thus,  personnel   testing should move   in  the direction of using  test 

batteries made of many short  tests, each one presumably measuring a different 

dimension.    Thus,   it would seem that the gain   in  reliability,  due  to the 

elimination of guessing would be of great   importance  to the success of these wide 

band-width procedures. 

TESTVISENESS 

And finally we come  to a consideration of  individual   teit-taking strategies. 

Thus  far we have been concerned with the effect of guessing upon  the quality of 

Institutional  decisions.     It  is also possible  to analyze the effect of guessing 

from the point of view of   individual  decisions.     For example,   in many situations 

in which an  individual   takes a test, he would  like very much to make a high  score. 

He wants  this high score because he knows  that   it   is  necessary  if he  is  to be 

admitted to college by passing a college entrance exam,   to be allowed  to begin a 

career as a  result of qualifying on a federal  or state civil  service examination,  or 

to be enrolled  In a special  manpower development or Job Corps training program. 

Now  in these and many other  instances of testing   it   is quite  important  to the 

individual   to achieve a  test score exceeding  the cutting score.     If he does,  he 

will   get a chance  to achieve his  goals;     If he does  not he  is  denied any 

opportunity to do so.     In  these  types of situations,   the utility to the  individual 

of  the various courses of action can be measured effectively by the probability 

of his  test score exceeding a cut-off score.     This   is  the probability of his 

achieving a desired goal   and the expected utility of a particular course of 

action  is proportional   to this probability.     Therefore,   it  is  interesting  to 

compute  this probability  for our ten-item test described previously. 

Given that an   individual  has an ability  level,  p,  his probability of passing 

a  test with cutting score,  c,   is 



(26) P(x^c|p.n)  -    I  npX(l-p)n -x 

x=c 

This   is just   the cumulative of  the Linomial  distribution  derived above and   is   the 

appropriate equation  to be used when   the  test  is unaffected by guessing.    However, 

when guessing can occur on  the test,  as,  for example, when a conventional  choice 

test   is  used,   the following equation   is  appropriate 

(27) P(x*:|(i-e)p+e,n) - IT]  [(i-e)P+e]x[i-{(i-e)p+e}] 
n-x 

x=c 

where 9 is the Individual's probability of getting correct through guessing those 

items Which he does not know. Remember that according to Theorem I guessing just 

has the effect of increasing the probability parameter in the binomial distribution, 

Now, one decision that must be made by an individual taking a test is whether 

-•r not to guess at the answer to those items that he does not know or, more 

generally, on which of the items should he guess.  Let us just consider the 

extremes of these test-taking strategies, that is, the individual decides between 

guessing at those items that he does not know or not guessing at any of th^se items. 

Thus, if an individual of ability level, p, chooses to guess on the test and his 

probability of guessing the correct answer is 6, then his chance of passing the 

test is given by Equation 27.  If, on the other hand, the individual chooses not 

to guess at those items that he does not know, his cLi.nce of passing the test is 

given by Equation 26.  The value of Equation 26 will always be less than the value 

of Equation, 27,  since the probability parameter of the binomial distribution is 

smaller in the first case.  Thus, if we subtract Equation 26 from Equation 27 we 

obtain the measure of how much an individual's chances of passing a test have been 

reduced by his refusing to guess.  Under the conditions described above, the 

individual's expected utility is reduced proportionately.  Figure 9 shows the 

reduction in chance of passing the test as a result of not guessing for different 

ability levels and for different cutting scores. For a cutting score of 9 and a 

6 of 1/5, the reduction is moderate, achieving its maximum of .13 at an ability 

level of .0. When the probability of getting an item correct by chance increases 

to 1/2, however, the losses become more significant and acnieve a maximum of about 

.40 at an ability level of .7. The loss is much less among the lower ability 

levels.  This is primarily due to the fact that these individuals have essentially 

no chance of passing the test no matter what they do.  Observe that a ten-item 

test with a cutting score of 9 would be designed to select out only the most 
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competent individuals in the tested population. Observe also that the effect of 

guessing tends to be large among just these Individuals. 

A cutting score of 7 on a ten-Item test Is more or less comparable to 

passing at the 70%  level In some educational tests.  Here the loss due to not 

guessing becomes more significant with the maximum for 0 ■ 1/5 being about .21 

at an ability level of .6 while the maximum for 9 ■ 1/2 Is about .60 at an ability 

level of .5. Here again, the effect of guessing or not guessing appears to be 

large for those Individuals who are borderl Inewi th respect to the cut-off point 

of the test. 

A cutting score of .5 on a ten-item test may serve to Illustrate the use of 

an educational test to divide individuals into two groups for further instruction 

more closely tailored to their ability levels. Here the effect of guessing Is 

becoming even larger "with the maximum loss for 6 ■ 1/5 being about .32 for an 

ability level of .3 and in the case of 6 « 1/2, the maximum loss Is about .80 

for an ability level of .2.  In this case, certainly, whether or not an Individual 

guesses on the test can become the major factor determining in which of the two 

instructional programs he is placed. 

Finally, we have a ten-item test with a cutting score of 3 which might 

represent the use of a test to screen out only the lowest ability individuals and 

prevent them from entering some program. Here the effect of guessing or not 

guessing is greater y c with a maximum for 6 m  1/5 being approximately .49 for 

an ability level of .1 and In the case of 9 ■ 1/2 the maximum loss is about .95 

at an ability level of 0.  In testing for this type of purpose, it would seem that 

If some of the individuals were guessing and others were not guessing, then who 

would be screened out of the program would be largely determined by whether or 

not the Individual chose to guess in taking the test. 

In review, these differences are quite large. With such large differences, 

it would not be surprising thkt Individuals would learn as a result of taking 

conventional choice tests that their chances are much Improved by always guessing 

at those items which they do not know. With sufficient experience taking 

conventional choice tests, they might even learn to Ignore instructions to the 

effect thay they should not guess and proceed to guess anyway. Remember that 

even In the case of scoring systems designed to penalize guessing we have found 

that they do not actually work and that the individual suffers no loss from 

guessing. Therefore, let us define testwiseness this way. The testwise 

individual will always guess at the answers to those I terns which he does not know. 

Other, less experienced Individuals may obey test Instructions to the effect that 

■ 



they should not guess or for some other  reason such as an aversion  to gambling 

or "faking",   they will  not guess at  the answers  to those  items  that  they do not 

know.     It  is   interesting to conjecture  that  the proportion of non-testwise 

individuals who  refure to guess   is much   larger among  the dropouts  and  the 

educationally disadvantaged.     This,   taken  together with  the  results   in  this 

report makes  one wonder whether  the use of conventional   choice   testing with  these 

individuals  may not yield very biased   information and unfair decisions with 

respect  to their futures. 
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