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PREFACE 

A difficult and recurrent problem in many applications of fluid 

mechanics is the description of the convection of a passive scalar 

quantity in a turbulent flow field. Examples of the diverse areas in 

which this problem arises are in reentry physics, when electron con

centration is effected by wake turbulence, or in pollution studies, 

when the passive scalar, pollutant concentration, is transported by 

the turbulent flow field of the surrounding medium. 

A theoretical investigation of this problem is presented in this 

Memorandum, using a systematic approximation based on an expansion in 

Weiner-Hermite functionals. This approximation leads to analytic so

lutions to two crucial problems in the theory of turbulent diffusion: 

the diffusion of a passive scalar from a point source, and the spec

trum of a statistically homogeneous scalar -- both in a homogeneous 

turbulent flow. 

The research described here is part of RAND's work on reentry 

aerodynamics for the Advanced Research Projects Agency. 

The author, P. G. Saffman, is a Professor of Fluid Mechanics 

at the California Institute of Technology, and a consultant to The 

RAND Corporation. 
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SUMMARY 

The velocity and concentration fields in a homogeneous turbulent 

flow convecting a passive scalar are expanded in series of Wiener

Hermite functionals. The equations of motion lead to integra-differ

ential equations for the coefficients of the expansion. The expansion 

and the equations are truncated at the first stage that gives nontriv

ial results, and analytical solutions are obtained for the concentra

tion field with the velocity field given and with zero molecular con

ductivity. 

The diffusion from a point source is considered first. It is 

shown that the mean concentration satisfies an integra-differential 

equation with diffusive and wave-like properties, which reduces for 

large time-values to the diffusion equation in accordance with the 

classical theory of G. I. Taylor. The effective diffusivity is deter

mined in terms of Eulerian velocity correlations. 

The spectrum of a statistically homogeneous distribution of the 

scalar is considered second. It is shown that if the spectrum is ini

tially concentrated around the wave number of the energy-containing 

eddies, an equilibrium is set up for larger wave numbers, with 

f(k) 
2 
~ E(k) 
Ju 

where f(k) and E(k) are the concentration and energy spectra, respec-
-2 2 tively, and 8 and u are the mean-square concentration and the mean-

square velocity component. Combined with a modification, to take ac

count of small-scale intermittency, of Batchelor's theory of the spec

trum for very large wave numbers, this equation is used to predict the 

decay rate of the concentration intensity. 
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I. INTRODUCTION 

The diffusion and mixing of convected quantities in a turbulent 

flow is a subject of great importance and has attracted much attention. 

For a passive scalar in an incompressible fluid with uniform proper

ties, the concentration 8(~, t) satisfies the equation 

~ + . "e at ~ v 
( 1) 

where ~(x, t) is the velocity field and K is the molecular diffusivity. 

Given the velocity field ~, Eq. (1) is linear, unlike the nonlinear 

Navier-Stokes equations for the velocity~ itself. But this advantage 

is apparent rather than real, and a linear equation with random coef

ficients seems to present as hard a problem as a nonlinear one. 

The problem has two distinct aspects. First, there is the ques

tion of how an inhomogeneous distribution is. mixed and transported by 

the fluid motion. This can be subdivided further into diffusion from 

a point source (sometimes called one-particle analysis), first studied 

by Taylor, (l) and the spreading of a cloud (two-particle analysis), 

first investigated by Richardson. (Z) A survey of this work is to be 

found in an article by Batchelor and Townsend. ( 3 ) There is also the 

difficult matter of deciding to what extent the mixing due to turbu

lence can be described by an eddy diffusivity, and how the eddy diffu

sivity (if it is a reasonable approximation) is related to the statis

tics of the velocity field. The second aspect concerns the intensity 

decay and spectrum of a homogeneous distribution in an approximately 

homogeneous flow. The pioneering work on this subject was done by 

Obukhov and Corrsin, and a unified treatment has been given by 

Batchelor. (4 ) 

Although intensive effort on these problems has uncovered many 

details of the processes and provided not too unsatisfactory empirical 

laws for practical applications in certain cases, a basic understanding 

of the fundamental questions is still seriously incomplete. Part of 

the difficulty, but by no means all, lies in ignorance about the veloc

ity field itself. 

/) 
/ 
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F d . ff . f . . . . fl T 1 (1) or ~ us~on rom a po~nt source ~n an ~sotrop~c ow, ay or 

showed in effect that for large values of time the mean concentration 

is described by the heat diffusion equation 

~+ u at - (2) 

where U is the constant mean velocity and ~ is an effective diffusiv-
- e 

ity, related to the Lagrangian auto-correlation of the velocity follo~ 

ing a fluid particle. The definition and relation are 

(u(t)u(t + T)), ~ 
e 

(3) 

where u(t) is the component of ,velocity fluctuation of a fluid particle 

and u is the root mean square. One of the unsolved problems of turbu

lence is the relation between the Lagrangian auto-correlation and the 

more readily measured Eulerian correlations, although crude theoreti

cal estimates have been made in profusion. (S, 6) 

All previous work on the spectrum and decay of a homogeneous dis

tribution has been based on the hypothesis of a cascade and the in

dependence of large and small wave numbers, and has been closely re

lated to the Kolmogorov universal-equilibrium theory. However, the 

Kolmogorov theory itself has been both modified(l) and questioned(S) 

in recent years, and it seems that the evidence in its favor is by no 

means as strong or as convincing as was once supposed. Thus it is by 

no means certain that the applications and extensions of the Kolmogorov 

hypothesis to turbulent diffusion are firmly based. 

The main purpose of the present Memorandum is to examine the re

sults of applying to these two problems -- the diffusion from a point 

source and the spectrum and decay of homogeneous fluctuations a trun-

cated Wiener-Hermite expansion of the velocity and concentration fields. 

This method has recently been applied by Meecham and Jeng(9 ) to the de

cay of isotropic turbulence with results that are not too bad. However, 

there are doubts about the convergence and completeness of the Wiener

Hermite expansion, and it has recently been pointed out(lO) that in 
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homogeneous turbulence the truncation prevents energy transfer to high 

wave numbers if the energy spectrum has a cutoff at the initial in

stant. However, the present writer believes that the objections to 

the method arise because the critics take literally the assertion by 

the method's developers that turbulence can be regarded as a small 

perturbation about a normally distributed velocity field. This inter

pretation is clearly untenable, both on general theoretical grounds 

and because numerical work shows that terms initially small do not re

main small, and is rightly criticized. On the other hand, the method 

can be interpreted in the spirit of the integral methods used in ki

netic theory, boundary-layer theory, etc. That is, a finite trunca

tion of the Wiener-Hermite expansion can be regarded as an approxima

tion to the velocity field, the approximation being determined by the 

requirement that it satisfy certain integrals of the Navier-Stokes 

equations, in a manner similar, for example, to the Matt-Smith or Kar-

* man-Pohlhausen approximations. It goes without saying that the re-

sults of such an analysis must be inconclusive, since in the complete 

absence of any reliable theory there is nothing \vith which they can 

be convincingly compared. But it is precisely because the prospects 

of a completely sound theory are so distant (and the experimental 

situation is far from satisfactory) that the method is worth pursuing. 

In principle, at least, the accuracy can be improved by taking more 

terms; a virtue that some of the other crude approximations do not 

possess. Furthermore, the method is "honest" in the sense that pre

conceived physical ideas are not built into or hidden in the mathemat

ical approximations. 

* A general name for such approximations, which we henceforth adopt, 
is "Galerkin methods." 
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II. THE WIENER-HERMITE EXPANSION 

The basic idea of the method is due to Wiener, (ll) and was ap

plied to turbulence-type problems by Meecham and Siegel(l2) and others. 

The technique is founded on the white noise or ideal random function 

a(x), which is the derivative of a continuous random walk and has the 

property that a(x) is a normally distributed random function with zero 

mean and 

(a(x)a(x')) 6(x- x 1
) (4) 

One then considers the stationary random function defined by 

I 
- X ' 

II ) H ( 2) ( I II) d l d // + x-x x,x x x ... (5) 

where the Wiener-Hermite functions are statistically orthonormal com

binations of a(x) with 

1, a(x), a(x)a(x') - 6(x- x'), etc. 

(6) 

The kernel functions K are nonrandom ordinary functions. It has been 

shown(lJ) that the expansion Eq. (5) is complete, but the question of 

how one determines in practice the kernel functions, given the proba

bility distribution of f, seems unanswered, except when f is itself 

normally distributed and the problem is trivial. If f satisfies an 

equation of motion, substitution of Eq. (5) and equating coefficients 

of the H(n) gives equations for the nonrandom K(m). Since in general 

there is an infinite number of coupled equations, the usual difficulty 

of turbulence theory is not avoided, but the hope is that approximate 

solutions will give useful results. 

For the problem of turbulent diffusion, we shall take the ideal 

random function to be a random vector function of both position vector 
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x and time t. We then consider the normally distributed vector func

tion a.(x, t) with the property 
~-

<a. (x, t)a. (x, t) ) 
~ - J -

6 .. F. (x - _x ') o ( t - t 1
) 

~J -
(7) 

We now expand the random concentration 8(~, t) as a series of statis

tically orthonormal Wiener-Hermite functions obtained by generalizing 

Eq· (6): 

8 (~, t) 

tak(~, T)a~(S 1 , T 1
) - Ok~6(1- ~ 1)0(T- T 1 )}d~d~ 1dTdT 1 

+ 

(8) 

The scalar, vector, and tensor kernels 8, Ck' Dk~' etc., are or

dinary nonrandom functions of their arguments. So far no assumptions 

have been made about statistical stationarity. Mean values should be 

interpreted as ensemble averages. Clearly 

8(~, t) (9) 

However, there are no analogous relations for mean values of products 

of 8; for instance, (e2) involves integrals of kernels of all orders. 

In this respect the Wiener-Hermite expansion is clumsy. Apparently 

it has not been proved for random functions of more than one variable 
. . . (13) that the expans~on Eq. (8) ex~sts and ~s complete, but the proof 

for functions of one variable should be readily generalizable. 
(9 12) The main applications of the method so far reported ' have 

not used the expansion Eq. (8), but an alternative form in which the 

ideal random function is independent of t and a function of ~ only. 

Now for the problem of decaying turbulence, in which the statistical 

// 
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properties are given at t = 0 and one tries to calculate how mean val

ues change with time, it would appear that an expansion in the r~

stricted Wiener-Hermite functionals based on a. (x) is equally appro·-
~-

priate and mathematically complete, and that the time dependence is 

adequately described by the variation of the kernels with t. The 

method thus suffers in this case from a lack of uniqueness. Indeed, 

for decaying turbulence where the time dependence is imposed by the 

equations of motion and not by the statistics of the ensemble, it 

would appear that we are free to choose ideal random functions of ~ 

with an arbitrary dependence on t. Thus an infinite number of differ

ent expansions may be possible, for each of which the kernels would 

have a different t dependence. The relationship between different ex

pansions has not been examined analytically. It is reasonable to sup

pose that all expansions will give the same final answers if the in

finite number of equations is solved exactly. However, truncations 

of the expansions will give different results. (Similar remarks can 

be made for the application of the method to inhomogeneous turbulent 

flows which are statistically stationary in time.) Clearly, we would 

like to choose an expansion for which the Wiener-Hermite expansion 

converges as rapidly as possible, in order that the error in the 

Galerkin method is small. It is not knmm how such a choice should 

be made, but it appears that choosing a.(x, t) to be a stationary ran-
~ -

dom function of t is less restrictive and probably "safer" than taking 

it to be independent of t; since the latter choice ignores the fact 

that any realization will drift away from its initial state, thus re

quiring more and more higher-order kernels to describe it in terms of 

the initial statistics as t increases. In the present Memorandum we 

shall use the expansion Eq. (8) with ideal random functions that sat

isfy Eq. (7), and leave for further study the question of whether the 

results are better or worse than those that might be obtained with a 

different time dependence of the ideal random function. 
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III. DIFFUSION FROM A POINT SOURCE 

We apply the method first to the one-particle diffusion problem. 

We examine the solutions of Eq. (1) with ~(~, t) a given stationary 

random function of x and t, and the initial condition that at t = O, 

e = &(~); i.e., a blob is released at the origin at time zero. In or

der to restrict the algebra, we shall retain in the Galerkin method 

the smallest number of terms that gives nontrivial results. Thus we 

shall assume that the velocity field has a Gaussian distribution with 

zero mean; i.e., 

u. (x, t) 
1. -

r K . . (X - _t; , t - T ) a . ( S , T ) d_t; d T .I l.J - J -
(10) 

where K .. is a given function. For the concentration, we take as the 
l.J 

approximation to its distribution the first two terms, 

e c~, t) 8(~, t) + (11) 

where 8 and Ck are to be found. The kernel K .. in Eq. ( 10) is a func-
l.J 

tion of x - ~ and t - T because the velocity field is statistically 

stationary in both ~ and t; the concentration does not have this prop

erty. 

Following the spirit of the Galerkin method, we substitute Eqs. 

(10) and (11) into the equation of motion, Eq. (1), and obtain equa

tions for 8 and Ck by imposing the condition that the result of the 

substitution should have zero mean and should be statistically orthog

onal to a.(x, t). After some algebra, we obtain 
J -

d~ dT 
oZe 

(~, = rt 
2 ox. 

t) 

1. 

(12) 

and 
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-S, t - T) _£_ @(x t) OX _, 
i 

02 
~ ---

2 
C.(x, S, t, T) 

ox. J - ._ 
~ 

(13) 

The initial conditions for these equations are, at t 0, 

C. 0 (14) 
J 

For the sake of simplicity we now put ~ = 0, and thus neglect the 

effect of molecular diffusivity. For diffusion from a point source, 

the molecular transport is generally negligible. Integrating Eq. (13) 

with respect to t and differentiating with respect to ~' we obtain 

ac. 
;--1 (~, ~ t, T) 
oX. 

~ 

Further, 

aK .. 

rt ::; . 
I, ::. ~ -<K (x 

vx. \_ kj -
'o 1 

~ (~ ~' t - T) 
vX. 

l 

~' t 1 
- T) --

0
- @(x t 1 )~ dt I ax _, ) 
k 

(15) 

0 (16) 

because div u 0. Substitution of Eq. (15) into Eq. (12) now gives 

(with ~ = 0) 

.Le(x t) at -' 

a l,t dt' o@ (~, t') _I, K .. (x- ~' t- T)K .(x- ~' t'- T) dS dT 
oxi 0 oxk lJ - kJ -

(17) 

Now From Eq. (10), we have 
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I Kij(~- ~' t- ~)Kkj(~- ~. t'- ~) d~ d~ 
(18) 

where Rik is the Eulerian one-point, two-time velocity covariance 

tensor (the velocities are measured in a frame with zero mean velocity). 

Substituting Eq. (18) into Eq. (17), we obtain 

(19) 

as an integra-differential equation for the mean concentration@. 

When@ is found from Eq. (19), C. follows from Eq. (15) and the 
J 

structure of the concentration field 8 is given. Thus the Galerkin 

method applied to the Wiener-Hermite expansion yields relatively sim

ple equations without too much labor, at least if molecular transport 

is neglected. The question remains whether the results are reasonable. 

Let TE be the time scale of the Eulerian covariance. It could be 

defined, for instance, by 

,co 

R .. ( t) d t /R .. ( 0) 
].]. ].]. 

0 

Then for t >> TE it is almost obvious that Eq. (19) reduces to 

>vhere 

f' Rik(t) dt 
0 

(20) 

( 21) 

(22) 
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Thus for large time-values the diffusion of mean concentration is given 

by a heat-diffusion equation whose effective diffusivity is given by 

Eq. (22). This result is consistent with that obtained by Taylor(l) 

[see Eq. (3)] as generalized to three-dimensional diffusion, and says 

that the integrated Lagrangian correlation coefficient is given by the 

integrated Eulerian correlation at a fixed point (i.e., at a point mov

ing with the mean velocity). This conclusion is plausible and rein

forces the belief that the Wiener-Hermite expansion can give reasonable 

results. 

On the other hand, for small t we can replace Rik(t- t') by 

Rik(O) = (uiuk), and on differentiating Eq. (19) we obtain 

(23) 

i.e., for small time-values e satisfies a wave equation. For the sake 

of illustration, it is useful to consider isotropic turbulence for 

which 

Then Eq. (23) becomes 

which has the solution 

2 2 
u \! 8 

-1 I o (r - ut) 
4nr 

(24) 

(25) 

(26) 

where r = ~~~ and 6 1 is the derivative of the (one-dimensional) Dirac 

6-function. However, the solution [Eq. (26)] is physically unreasonable, 

because it predicts that the mean concentration lies only on a spheri

cal surface of radius ut, and also gives both positive and negative 
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values. Thus for small time-values the Wiener-Hermite truncation is 

* apparently unreliable. 

It is worth examining this difficulty a little further to show 

that it is not a consequence of the approximation that led to the wave 

equation [Eq. (23)]. We take Laplace transforms (denoted by a tilde) 

Jro -pt 
e ®(~, t) dt 

0 

etc. Then Eq. (19) becomes (for isotropic turbulence) 

with the solution 

® (~, p) 
1 -kr 

e --r-, k 

(27) 

(28) 

(29) 

~ -1 
As p ~ ro, RE(p) ~ p and it follows from the properties of La-

place transforms that 3 is discontinuous at r = ut. Thus the wave 

property of Eq. (19) persists for all time, but if t
112 

>> T~/ 2 
the 

concentration is spread out over a distance u(tTE)
112 , which is small 

compared with the cutoff radius, and the nonphysical cutoff is not 

significant. (But strangely enough, casual observation shows that 

the edge of a cloud of diffusing material is sharp.) 

If we take, for the sake of illustration, 

* 

-t/T 
E 

e 
1 

(30) 

This difficulty is not due to the use of an ideal random func-
tion that fluctuates in time. The wave equation is also obtained if 
one uses a time-independent, ideal random function of position. 

/ / 
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we find after some analysis that 

e c~, t) 

r + H (t - -) 
u 

r 
--2 

(31) 

where H is the Heaviside function and I is the modified Bessel funcv 
tion of order v. This expression agrees in the limits t- ro and t- 0 

with the values obtained by approximating the equation, and confirms 

the conclusions reached above. 

However, the inadequacy of the solution for small t may not re

sult from a general failure of the method, but rather from the fact 

that the method is unsuitable for an initial concentration in which 

all the material is concentrated at one point, since two terms of the 

expansion are insufficient to describe the distribution when it is 

highly concentrated. The Galerkin method may work better when the 

material is initially more diffuse or is closer to a concentration of 

a type that exists some time after the initial conditions. In other 

words, although the solution of Eq. (19) with initial condition Eq. 

(14) may not describe adequately for small t the real diffusion of a 

point source, the error may cancel out when this solution is used as 

the Green's function to calculate the spread of an initially diffuse 

cloud. 

To demonstrate this argument, consider the exact solution for 

small t: 

e c~, t) 
(0) 

u t 
JCl~ (0) 

L ot 

4uTE 

I, 

/ 
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where ~(O) = ~(~, 0) and 9(~, 0) = e(O) is the initial concentration. 

Suppose also that the initial concentration is statistically uncorre

lated with the velocity field. Expanding Eq. (32) and taking mean val

ues, we obtain 

(33) 

for isotropic turbulence. Now we solve the problem using the Wiener

Hermite truncation; i.e., we solve Eqs. (12) and (13) with the initial 

condition 9 = 8(0). For small time-values, Eq. (26) gives the funda

mental solution (since the equations for e are linear), and 

.l 4~r 6 '(r - ut)8(~, 0) d~ (34) 

where r = X - ~· Expanding 3(~, 0) as a power series about X and in-

tegrating, \ve find that 

8(~, t) 
-1 l 6 '(r - ut) .- (0) 08(0) 

+l:. 
028 (O) 

+ .. ·] dr ·8 + r. ~ r.r. ox.0x. 4n r 1. 2 1. J 
1. 1. J 

(35) 

Thus for small time-values, the Wiener-Hermite expansion and the exact 
2 

solution agree to order t when the initial distribution is continuous 

rather than concentrated at a point. 

There is therefore reason to believe that the method is useful 

when applied with care and in appropriate circumstances. Since it is 

only an approximation, it is unreasonable to expect more, or that it 

should always give good results even if misused. 
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We can use the results of our analysis to find expressions for 

the Lagrangian auto-correlation coefficient. It has been shown(
6

) 

that 

J ( u1 (~, t)u1 (0, 0)9(~, t).) d~ (36) 

where e is the solution of the diffusion equation withe = o(~) at 

t = 0; for simplicity we suppose the turbulence is isotropic. Substi

tuting the expansion Eqs. (10) and (11) into Eq. (36), we obtain 

2 
u RL(t) (37) 

where 8 is the solution of Eq. (19) with initial condition Eq. (14). 

Thus, given the two-point, two-time Eulerian correlation, Eq. (37) 

yields the Lagrangian auto-correlation. For consistency, it should 

be possible to show directly from Eq. (37) that 

(38) 

but this problem has so far defied attack. 

The formula [Eq. (37) J has the same structure as a hypothesis some

times called "Corrsin's conjecture."( 6) There is an important differ

ence, however, since in Corrsin's conjecture the exact mean value 

should be substituted, whereas in the present analysis we should sub

stitute the approximate value of e given by the analysis. 

For the problem of diffusion from a point source, it is easy to 

interpret the Wiener-Hermite truncation in terms of approximations 

made directly to the convection equation. Thus, if we write 

e c~, t) 8(x, t) + ¢(~, t) (39) 

Eqs. (12) and (13) are obtained on substituting the complete, nontrun

cated, Wiener-Hermite expansion of 9 together with the velocity given 

by Eq. (10) in the pair of equations 

/j)' 
,_,./ 
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-+ u --. oe (· a¢> at i oxi 

and 

2 
rt:\l 8 

2 
rt\1 ¢ 

(40) 

(41) 

Now Eq. (40) is exact, and is obtained by taking the mean of Eq. (1). 

Then subtracting Eq. (40) from Eq. (1) gives 

(42) 

which demonstrates the error in Eq. (41). In other words, use of the 

Wiener-Hermite truncation is equivalent to neglecting the fluctuations 

in the convection of the random part of the field, and essentially re-

places u. 
1. 

?J¢/ox. 
1. 

by its mean value. For rt = 0, Eq. (41) can be inte-

grated with respect to t' and substitution into Eq. (40) gives Eq. (19) 

* directly. It is curious that Eq. (41)' which seems a natural approx-

imation, does not appear to have been used before in the present con-

text. 

* I am grateful to Dr. s. c. Crow for pointing out this alterna-
tive, and indeed more general, method of obtaining Eq. (19). 
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IV. DECAY OF HOMOGENEOUS FLUCTUATIONS 

We now apply the method to the decay of statistically homogeneous 

fluctuations of concentration in a statistically homogeneous and sta

tionary velocity field. Again we retain only the minimum number of 

terms necessary to give nontrivial results. The velocity field is 

given by Eq. (10). For the concentration field, we now use 

e (~, t) 

(43) 

where 

H<2> c~ '> k1 ..?.> :D_, T, T (44) 

Since we wish mean properties to be independent of position, we suppose 

that the mean concentration is zero and that the kernels are functions 

of x - S and ~ - :D.· 
We substitute Eqs. (10) and (43) into the diffusion equation and 

require that the resulting expression be statistically orthogonal to 

the \viener-Hermite functionals of the first and second order. After 

some reduction, and use of the relationship 

we find that 
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- JK .. (x- ]., t- ,.') ~ 0 Dk.(x 1, x- ]., t, ,., ,.') d].d'r 1 

l.J - oXi J -

- \ K .. (x - ]., t - ,. 1
) -:jL D.k(x - ]., x - 1, t, 'r ', ,.) d]. d,. 1 

.; l.J - oXi J -

(46) 

(47) 

[There is some arbitrariness in the tensor Dkj' since, as is clear 

from Eq. (43), an arbitrary antisymmetrical tensor may be added to Dkj 

without changing 8. It appears to be more convenient not to impose 

the requirement of symmetry and to define Dkj by Eq. (47).] 

These equations for the unknown kernel functions Ck and Dk~ are 

not simple. To evaluate the present approach, we shall assume for sim

plicity that ~ = 0 and that the variables are statistically isotropic. 

Now, by change of variable and use of the equation of continuity, we 

can rewrite Eqs. (46) and (47) as 

0 
~C.(x, t, 'r) ut 1. -

J Kk . ( s , t - ,. ') { n . . ( x , _s , t , ,. , ,. ') + n . . ( s , _x , t , 
J - ' l.J - J 1. -

I 

'r ' 

(48) 
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and 

0 ;-D .. (x, _s, t, ,., ,. ') 
ut l.J -

0 
-K~.(s, t- ,.') --::.-c.(x, t, ,-) (49) 

NJ - uX£ 1. -

respectively. 

Let us consider now the distribution at time t, given that at the 

initial instant t = 0 the non-Gaussian part of the concentration was 

zero. Then Eq. (49) can be integrated with respect to t and the result 

substituted in Eq. (48). After some reduction we obtain 

where 

5 . . RE(t - t ') 
l.J 

RE ( t - t /) c . (X , t ! , T ) d t I 
]_ -

( u.(x, t)u.(x, t')) 
]_ - J -

(50) 

(51) 

is the Eulerian one-point, two-time covariance, and we have used Eq. 

(16) and the principle of isotropy, which implies that 

s Kk/~• t- T
1

) O~ C/~• t
1

, T
1

) d~ dT
1 

£ 

Notice that the second time-variable ,-, which relates the concentration 

to the representations of the ideal random functions at different times, 

only enters parametrically into the equation. After Eq. (SO) has been 

solved for C., Eq. (49) determines the D ... It is not surprising that 
]_ l.J 

the Gaussian part of the concentration field satisfies the same equa-

tion as the mean concentration in the diffusion from a point-source 

problem. The remarks made in Section III about the equation still ap

ply, and we expect the results of the present analysis to have some 

physical significance. 

We now turn to the correlation and spectrum functions of 9(~, t). 

After reduction, it is found from Eq. (43) that 

l.r 
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f C.(S, t, ,-)C.(S + r, t, T) d_S dT 
. J - J - -

I 

T ' 

(52) 

It can be verified from Eqs. (48) and (49) that 

0 
~ S(O, t) 

0 
ot 0 (53) 

Thus the truncated equations preserve mean-square concentrations as 

they should, since e has been chosen to be statistically orthogonal 

to D9/Dt. 

Expressing the right-hand side of Eq. (52) in terms of the Fourier 

transforms, we find that 

S(E_, t) 

+ (2n) 6 

+ (2n) 6 

where 

( 2-,-,) 
3 s c. ( k' t' 

J -

I D./k, k' t' T, 
] ' - -' 

l n · 1 C!:, k r t, T, _, 
. J . 

,-)c.(-k, 
J -

ik·r 
t, T)e - dk dT 

,-')n.~(-k, -k' 
J. -

_, t' T, T ')ei(~+~ ') "...I.d~d~ 'd,-d,- 1 

,-')n_e.C-k', 
J -

-!:, t' T I 
' 

T) e i (~+!: 
1

) "_Ed!:d!: f d TdT 1 

(54) 

c.(k, t,,. 
J -

1 r· -ik·x 
--

3 
1 C . (~, t, ,-) e - - d~ 

(2n) · J 
(55) 

t' ,. ' 
') -ik·x-ik'·s d d"' 

,. e --- - ~..:2 

(56) 
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The equations for the Fourier transforms are 

-ik (2n) 3 r K (-k I t - 'T 
1

) 
p J p,R, - ' 

' 'T ' 

(57) 

0 D~ (k k I ') ~ j £, _, - ' t' 'T' 'T -ik K ,(k 1
, t- T

1)C.(k, t, T) (58) 
p px, - J -

from which we deduce that 

-kz ,r,t I R (t- t')C.(k, t
1

, T) dt' 
E J 

0 

(59) 

If we define a spectrum function for the concentration distribution by 

6(~, t) 
1 

3 
( 2TT) 

) 
-ik·r 

S(~, t e ~- dr 

it follows from Eq. (54) that 

2>(~, t) 3 [' (2n) C.(k, t, 
" J -

T)C.(-k, t, T) dT 
J -

(60) 

+ ( 2n) 
6 J D j;, (~ 1 , k - ~ 1 , t, 'T, 'T ') D £ j (-~ + ~ 1 , - ~ 1 , t, 'T 

1
, 'T) dk 

1 
d Td 'T 

1 

(61) 

For an isotropic distribution in which S and 6 are functions of the 

magnitudes r and k alone, the spectrum function with respect to wave

number magnitude is 
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f(k, t) 2nk Jro S(r, t)r sin kr dr (62) 
0 

By using Laplace transforms, we can now write the solution of 

Eq. (59) in closed form. It is easily shown that C. is proportional 
J 

to ept, where p is the root of 

0 (63) 

and RE(p) is the Laplace transform of RE(t). If TE is the Eulerian 

time scale, then it is clear that 

2 2 
(uT )-l c. (k, t' T) c. (k, 0, ) - k u TE t for k << (64) 

J - J -
T e , 

E 

and 

c. (k, T) c. (k, T) 
-1 

(65) t' 0, cos kut, for k >> (uTE) J - J -

The wave number (uTE)-l = ke' say, is characteristic of the ener

gy-containing eddies of the velocity field. This wave number separates 

the Gaussian contribution to the concentration spectrum into two parts. 

For wave numbers less than k , the interaction causes an exponential 
e 

decay with time; for k >> k , the interaction gives a rapidly oscillat-
e 

ing fine-scale structure to the spectrum. The oscillatory behavior is 

associated with the wave-like features of Eq. (50), and may be a spur

ious effect due to the truncation. However, the quantity C. always 
J 

appears squared in relevant physical quantities, and for large kut it 

seems appropriate to neglect the fine-scale oscillatory structure and 
2 

replace cos kut by its mean value of one-half. Then if fG(k, t) is 

the contribution to the spectrum function from the Gaussian part of 

the concentration field, 
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for 

for 

k << k 
e 

k >> k , kut 
e 

(66a) 

>> 1 (66b) 

The exact forms depend on the unspecified Eulerian correlation, but for 

the sake of discussion we can take these expressions as holding respec

tively for k < k and k > k . 
e e 

We consider now the contributions from the non-Gaussian part of 

the concentration field. Quite generally, we can write 

C.(k, t, T) 
J -

Then from Eq. (58), 

C.(k, 0, T)C(k, t) 
J -

(67) 

D.~(k, k', t, T, T
1

) 
jx, -

-ik C. (k, 0, T) 
p J - .r

t 

K 
0 
(k 1

, t 1 
- T 

1 )C (k, t 1
) dt 1 

o px 

(68) 

On substituting into the second and third terms of Eq. (54), we find 

after some reduction (using the isotropy and incompressibility of the 

velocity field) a contribution SNG(£, t), say; 

SNG (£, t) 

(69) 

where 

R (r t 1 
- t'') pq _, < u (x, t ')u (x + r, t") ) 

p- q- -
(70) 

is now the two-point, two-time Eulerian velocity covariance. 

The expression Eq. (69) can be given a simple interpretation if 

we use the approximation 
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R (r, t' - t")C(k, t ')C(k, t") dt 1dt" 
pq-

1 ---zz R (r, 0) 
2k u pq-

(71) 

The approximation Eq. (71) is in fact asymptotically correct for large 
2 k if we use Eq. (65) and replace cos kut by one-half. It is also cor-

rect for small k and large t if the characteristic time scale of 

R (r, t) is the same as that of RE(t), which is reasonable for small pq-
r. Then Eq. (69) can be written approximately as 

where 

fu (x, \p- t) u (x + r, 
q- -

S(.E_, 0) 

t~ or or p q 
(72) 

(73) 

In other words, the non-Gaussian contribution to the concentration co

variance is one-half the Eulerian two-point, one-time velocity correla

tion, weighted by a function that depends on the initial concentration 

covariance. Note that the Gaussian contribution is given by 

(74) 

and it follows immediately from Eqs. (69), (74) and (59) that S (0, t) 

is constant. 

Let us now suppose that at the initial instant the concentration 

spectrum was peaked around k and was negligibly small at large wave 
e 

numbers. Then for small r we have approximately 

S(r, 0) 
2 

e2[1 - r J 
n2 

0 

where A k ~ 1. It now follows that for r << k-l and ut >> r, 
o e e 

(75) 

~-

/'\ !,~1 
/·"""./' 
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S(r, t) 

2 
r 6 , 

~) 
0 

(76) 

We can rewrite this result as 

-2[ r 1 J 8 1 - f(r) - 3 f (r) (77) 

where f(r) is the longitudinal velocity correlation function of iso

tropic turbulence. In terms of the concentration spectrum function 

f(k), we can say that iff is initially Gaussian and peaked on the 

scale of the energy-containing eddies, then the interactions predicted 

by a Wiener-Hermite truncation produce at larger wave numbers a spec

trum due entirely to the non-Gaussian contributions 

f(k) 
-2 

--; E(k) 
3u 

for k >> k 
e 

where E(k) is the energy spectrum function 

3 2 
2 u (' E(k) dk 

•. 0 

-2 
According to the analysis, the transfer of spectral density of 8 

(78) 

(7.9) 

ceases when f attains the value given by Eq. (78). This can be veri

fied directly by calculating the transfer function ( 8(~)8(~ + .E,)ui (~)) 
and showing that it has an average value of zero as kut becomes large. 

The probability distribution does not attain an equilibrium because 

the Gaussian contribution continues to decay with a slower time scale. 

If the spectrum of concentration for all wave numbers were exactly 

proportional to the spectrum of energy, we would have 
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f(k) 
-2 
~ E(k) 
3u

2 

Thus the analysis has predicted that for k >> k the spectrum of con
e 

centration is proportional to the energy spectrum, but is only half 

as large as if proportionality existed for all wave numbers. 

In the next section we shall discuss the results of our analysis 

and compare them with those of other theories. 

~/ 
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V. THE SPECTRUM OF A CONVECTED SCALAR 

We now use the analytical results of the previous section to build 

up a heuristic theory for the spectrum of a convected scalar when the 

Prandtl number is not small compared to unity. First, it is necessary 

to determine the reliability of the Wiener-Hermite truncation. Al

though we do not expect the results to be uniformly valid over all 

length scales, it is reasonable to believe that they may describe to 

a good approximation some of the properties of the distribution. We 

shall therefore make the hypothesis (which must ultimately be tested 

by experiment) that the interaction between the velocity field and the 

concentration field is well described by the analysis for scales which 
3 1/4 are larger than the Kolmogorov length t = (v /e) , but not for smal-

ler scales. This hypothesis is equivalent to saying that the error 

introduced by the truncation is not important for wave numbers for 

which the energy spectrum is not exponentially small, and therefore 

avoids the criticism of Crow and Canavan. (lO) The neglect of the mo

lecular diffusivity ~ is also justified if the Prandtl number u/~ is 

not small compared with unity. 

PRANDTL NUMBER OF ORDER UNITY 

First we consider the case where the Prandtl number is of order 

unity. The velocity fluctuations are damped out on a scale that is 

smaller than t by the viscous stresses, and we expect similarly that 

the concentration fluctuations on the same scale are likewise damped 

by the conductivity. Thus, f(k) should decay exponentially for 
-1 -2 

k > t . The rate at which 8 decays is given by 

X (80) 

Then using Eq. (78), we have a decay rate 
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2x.8 2 f' -2 
k

2
E(k) dk 

x.e e (81) X --2 --2 
3u 0 3vu 

since 

E: 2v ~ro k
2
E(k) dk (82) 

u 
0 

The idea here is that when the Prandtl number is of order unity, 

concentration fluctuations are destroyed by molecular conduction on 

the scale £. These fluctuations are produced by the nonlinear inter

action of the velocity and concentration fields by which fluctuations 

with a scale L (that of the energy-containing eddies) are transformed 

into a smaller scale. We assume that this process (which can be called 

a cascade, although we do not imply or in fact believe that fluctua

tions with different length scales are statistically independent) is 

described by the Wiener-Hermite truncation analysis with molecular 

conduction neglected, according to which the spectrum at large wave 

numbers assumes in time i/u (which is small) the form (78); and that 

the molecular conduction then acts to reduce the values of this spec

trum. As conduction destroys or lowers the spectral density, the 

nonlinear interactions replace the spectral density to retain the form 

(78) for the spectrum, where 82 is now a function of time and has a 

time scale large compared with £/u. In other words, Eq. (78) gives 

the spectrum, assuming the existence of a quasi-equilibrium. 

Using Eq. (81), we can write Eq. (78) as 

f(k) .X~ E(k) 
e: X. 

(83) 

-1 
for k >> L and u/x. of order unity. 

In the inertial subrange L-l << k << £- 1
, the unmodified Kolmogorov 

theory predicts that 

E(k) (84) 

0~ 
>'";;i_./..,_/ 
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where K is a universal constant. Then Eq. (83) gives 

f(k) £.A K -1/3 k-5/3 
1{ € (85) 

The Obukhov-Corrsin application of the Kolmogorov theory (Ref. 4) gives 

f(k) (86) 

The result of Eq. (85) implies that 

K (87) 

since v/rt is supposed to be of order unity. Thus we have in this case 

confirmed the predictions of the universal equilibrium theory. 

The experiments reported in the literature(l4 ,l5 ) were carried 

out for Prandtl numbers large compared with one, and cannot be used to 

check Eq. (87). 

PRANDTL NUMBER LARGE COMPARED WITH UNITY 

(4) When v/rt >> 1, we can apply the theory of Batchelor to derive 
-1 the spectrum for k >> Po or the correlation function for r << 2. 

Batchelor showed on the basis of a physical model (which makes the re

sult far more convincing than if the argument relied solely on assump

tions about interactions in wave-number space) that for r <<Po, the 

correlation function S(r, t) satisfies the equation 

X (88) 

where v (< 0) is an effective value of the least principal rate of 

strain [see also Saffman(l6)]. Batchelor assumed that the straining 

field responsible for the fine-scale structure was uniformly distributed 

in space and had an order of magnitude given by the root-mean-square 
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vorticity (e/v) 112 ; a plausible value of y is then -l/2(e/v) 1/ 2 . How-

ever, there are strong reasons for believing that the vorticity is con

centrated into small regions in which its order of magnitude is larger 

than (e /v) 
112

. The small-scale fluctuations of concentration >vill then 

also be concentrated into these small regions, so that y should be re

placed by a quantity somewhat larger than in Batchelor's exposition. 

If cr is the intermittency factor, i.e., the fraction of volume in which 

the vorticity fluctuations are large, then 

2 
cry ~ e /v (89) 

since the major contributions to mean-square vorticity come from the 

regions of intense shear. Thus it is appropriate to write in Eq. (88) 

y (90) 

The value of cr is open to question. Saffman( 8 ) has argued that 

("J /uL) 1/2 (91) 

and in the following discussion we shall use this value; but it should 

be kept in mind that further work on the structure of turbulence may 

suggest a different value. Equation (88) can be integrated(4 ) and gives, 

for r << f, 

S(r, t) 

The corresponding spectrum function for k >> ~-l is(4) 

f(k, t) 
2 

J, rtk /y 
e 

yk 

(92) 

(93) 
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Thus the intermittency which increases the value of y decreases the · 

amplitude of the spectrum function in the "viscous-convective" subrange 

and also decreases the size of the conduction cutoff 

1/4 
cr (94) 

Batchelor pointed out that Eq. (93) and the Obukhov-Corrsin re

sult (86) are continuous at k = £-l if a and K
9 

are both of order 

unity; i.e., if there is no intermittency. If there is intermittency, 

there would seem to be a serious conflict with the Kolmogorov hypothe

ses as applied to the convection problem. 

In the present work, we suggest that the intermittent fine-scale 

structure should be retained, but that we drop the Obukhov-Gorrsin re-
-1 

sult when k << £ , replacing it by the results of the truncated Wiener-

Hermite expansion. The justification is similar to that employed above 

when v/K was of order unity; namely, that the truncation does not de

scribe the fine-scale structure, but for r >> i the error is small and 

we can regard the analysis as giving a quasi-steady structure for 

L >> r >> £, the slow decrease in 92 being due to the generation of 

fine structure. Further, the small-scale fluctuations which are even

tually dissipated by molecular conduction could in principle be analyzed 

by retaining many terms in the Wiener-Hermite expansion, but as an ap

proximation are given by Batchelor's theory (modified because of inter-
-1 mittency). Thus we use Eq. (92) or Eq. (93) for r << £ or k >> £ , 

respectively, in the so-called viscous-convective range; and Eq. (77) 
-1 or (78) for r >> £ or k << £ , respectively, in the so-called inertial-

convective range. 

The value of X (which is not assumed here a priori to be indepen-

dent of the Reynolds number, as it is in the Obukhov-Corrsin theory) 

can be found by matching the expressions for the viscous-convective 

and inertial-convective ranges at r = £ or k -1 
However, do = f. • we 

run into a troublesome difficulty which has not been resolved: match

ing in physical space and wave-number space gives different results. 

In wave-number space, we use the form (84) for E(k), since 

there is strong experimental support for this expression. For Eqs. 
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(93) and (78) to be comparable when k 
-1 

1 , we must have 

(95) 

It follows that in the inertial convective range, 

V<(Jl/2 ~-l/3 k-5/3 f(k) ~ 1\ "' (96) 

i.e., 

0:: (Re)-1/4 (97) 

if we use E-:J.. (91). 

These results are now different from those of the Obukhov-Corrsin 

theory. Firstly, x, the rate of decay of scalar concentration, is de

pendent on the Reynolds number, behaving like (Re)
114 

if K and e are 

independent of the Reynolds number. Secondly, the coefficient of 
-5/3 

xk decreases with increasing Re, and is not constant as predicted 

by the arguments based on the hypotheses of the universal equilibrium 

theory. Insofar as the present results are based on a clear mathemati

cal analysis rather than on vague assertions about the statistical in

dependence of Fourier components, they deserve to be taken seriously. 

The relatively slow dependence of K on Re makes it hard to check Eq. 

(97) against the available data, (l4~ especially since there is consider

able uncertainty about the evaluation of x· 

If we match in physical space, we use the form of Eq. (92) for 

r >> ( I ) 1/2 h" h . (4) -~ y , W LC LS 

S(r, t) 
2 

82 + ~ log (- y~ ) (98) 

The expression for r >> 1 is in physical space 
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S (r, t) -2 e2 K~2/3 2/3 e - 1.2 2 ~ r 
3u 

(99) 

Equating Eqs. (98) and (99) when r .i gives 

-2 -1 
2.4 8 Ke [ 1/2 J log (v /Ka ) 

3 2 1/2 
u a 

(100) 

This does not agree with Eq. (95), the difference being due to the 

logarithmic term. If we use Eq. (100), we would have in the inertial 

convective range 

f(k) :X 

-1 
and the spectrum function does not match at k = .i • 

(101) 

The difficulty is present in Batchelor's original analysis, and 

is not just a feature of the current approach. Until it is resolved, 

a question mark hangs over the assumption that we can determine x by 

matching the two expressions for the inertial-convective and viscous

convective ranges in either physical or wave-number space. In any real 

situation the difference is not significant, since the logarithmic term 

is not large. 

A crude physical justification of Eq. (95) can be given to demon

strate that it is consistent with intuitive ideas about the fine-scale 

structure.(S) We believe that the dissipation is due to fluctuations 
-2 1/2 

of order (8 ) having length scale t
8 

in the region of large vortic-

ity. Then 

which becomes, with the use of Eq. (94), 
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and on using the hypothesis that s 
2 2 

vu a/t , we arrive at 

(102) 

Thus the Wiener-Hermite truncation combined with Batchelor's 

analysis has given results different from those previously obtained 

for the spectrum of a convected scalar with large Prandtl number. It 

is hoped that experimental results may eventually be available to test 

the theory. In any event, it is clear that progress will remain dif

ficult without a better knowledge of the fine-scale structure of the 

velocity field in turbulent motion. 

In this last connection, it is perhaps appropriate to mention 

here that the modification of Batchelor's theory to take account of 

intermittency does not affect the application of the theory to the 

vorticity field of turbulence by Saffman, (l 6 ) who assumed that vorti

city correlations satisfied an equation like Eq. (88), withY of 

order (e/\J)l/
2 

and with an extra term to take account of vortex line 

stretching. If there is intermittency, y should be replaced by a 

value characteristic of the straining field distorting the vorticity. 

For reasons explained in Saffman, ( 8 ) it is believed that this straining 

field is not that of the vorticity itself, which is O(u/~), but rather 

that of the straining motion whose length scale is the Taylor energy

dissipation parameter A~ (15~ u
2J0 112 

and in which the character

istic rate of strain is u/A ~ (e/v) 112 • Thus, changing the funda

mental assumptions does not in this case change the formal result. 
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