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0.   totrodttctton 

An interval linear program ti any problem of the form 

- 

■ 

(IP) : maximise c x 

subject to 

b-SAx*b+ 

where the matrix A , vector«  b" , b   , c  are given.   A finite iterative 

algorithm for solving (IP) it given here which is bated on the Dantzig-Wolfe 

decompoeition principle [6] .   An alternative iterative method for solving (IP) 

it given in [8] and [9] . 

(IP) can alwayt be tolved by the standard linear programming tech- 

niqaet (e.g.  [43 $ [5] ) by treating each two-tided constraint at two constraints 

and expretting each unrettricted variable at the difference of two nonnegative 

variables.   Since this procedure increaset considerably the effective problem 

else and since problems of form (IP) are common in many applicationt (e. g. 

in ttructural analytit, production planning, approximation problems, etc.; 

see [23 » [33 * *nd [8] ) , it is desirable to have special techniques for solving 

(IP).   Furthermore, (IP) is a sufficiently general model to cover all bounded 

linear programs so that any method for solving (IP) may be viewed as an 

alternative method for linear programming.   In particular, a problem in the 

standard form 

maximiae  c x 

subject to 

Ax!b 

x?0  , 

\ 
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if bounded, is equivalent to the (IP) 

maximize   c x 

s.t. 

-Me $Ax!b 

Oz    x I Me 

where   e   is a vector of ones and  M  is a sufficiently large positive scalar. 

Notations and preliminaries are given in section I.   In section 2 it is 

demonstrated that any (IP) can be converted to decomposable form so that the 

decomposition method, developed in section 3, can be applied.   A numerical 

example is given at the end of section 3. 

I.    Notations and Preliminaries 

The following notations are used: 

iff if and only if; 

s.t. subject to; 

{x:f(x)}   the set of  x   satisfying   f(x); 

fi the empty set  ; 

Pn the n-dimensional real vector space; 

the space of   mxn   real matrices; 

the set   { X C R1™"1 : rank X = r) ; 

the   nxn   identity matrix; 

,mxn 

.mxn 

the   i— column of   I   ; n 

the vector of ones; 
(the dimension of   e  and   e.   will be clear from context) 

For any  x, y C R    : 

denotes   x. ^ y.   for   i s I,... . n ; 

"• 
.L: 
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xx y       denotes  x  is perpendicular to  y  (i.e.   Ex. y. = 0). 

For any eubspace   L  of Rn: 

x + L      denotes the manifold {x + -t :  I t L] ; 

Tor any A C R™*11  denote by: 

A the transpose of A ; 

R(A)        the range space of A   (i.e. 

{ytR     :y«Ax   for some  x c Rn} ) ; 

N(A)        the null space of A ( i.e.  (x c Rn : Ax » 0) ; 

the inverse of A , if nomingular. -I 

An interval linear program or interval linear programming problem 

is any problem of the form 

(1) (IP) : maximize c'x 

s.t. 

(2) b" S A x S b+ 

where  c » (Cj) , b" « (b.") , b+ « (b*) , and A s (a^)    (i » I,..., n : 

j ■ I,... * m)  are given« with 

(3) b-*b+   . 

Let S  be the set of points satisfying (2) 

(4) S» {^eRn:b'$Ax$b+). 

A point x c S  is called a feasible solution of  (IP).   Problem  (IP) is 

feasible if  S/tf , otherwise infeastble.   If A c RniXn   (IP) is feasible 

for any b* f b+  since  R(A) « Rm .   (IP)   is bounded if S/l and 
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and  max ckx < • , otherwiae unbounded.   Clearly (IP) is "bounded if S 
xeS 

is a bounded net: the converf * Is false.    Boundedncss is characterized 

in: 

Lemma 1  ( [11) :   Let, S / ff .   Then (IP) is bounded iff 

(5) c x NfA) . rt 

We conclude that all bounded (IP) problems have  c x N(A)  and 

consequently any (IP) with  c/ N(A)   is uninteresting . 

Condition (5) may be verified if a basis for  N(A)   is avaiUble.   The 

following recipe may be used to compute such a basis: 

Lemma 2 ( Cl] ) :  Let A c R130331 and  E c R1"*111    satisfy 
'     '''      ' ■ ~"""" m 

m EA =i -i^-J. 

(7) 

rcazn    „j   ^ - „mxm     _ ^ * 

l 

0/ (m-r)xn 

where  P  is a permutation matrix.   Then  rank (A) » r  mad the columas 

of 

-A -TU 
form a basis of  N(A) . n 

The following example will demonstrate the use of lemma 2: 

Example 1^  Find  N for the matrix 

(\ 

^1     2 
\   r. 

We drajjonalize   A   an show a in ihe follorHng table (pivot elements are 

circ'.ad): 

4 2 
2 0 

2 
I •I 
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» 

(I) 

(2) 

(3) 

(*) 

2 
0 

4       2 
2       0 
2       2 
I     -I 

0 
-2 

2 
I 

I 
0 
0 
0 

±     2 
®     2 

I    -I 

0 
-2 

2 
I 

I 
0 
0 
0 

0 2/3 
1 0 -0 

0 
4/3 

I 
0 
0 
0 

0 0 
1 0 
0      0 
0      I 

2 
0 
0 

-I 

I 
0 
0 
0 

0 0 
1 0 
0     I 
0     0 

2 
0 

-I 
0 

(interchanging row«). 

From M) 
o. 14 

we see that 

rank (A) ■ 3 &» m and     N > 

D 
Computationally» lemma 2 it a very naive statement, but we will ignore 

the computational difficulties of ill-conditioning for which the reader is 

referred to [10] . 

It will now be shown that any (IP) with    c x N(A)  can be converted to 

an equivalent (IP) having full column rank (i. e. with A C IT mxr 
). 

Lemma 5:   Let  A C R mxn and    O • R rxn such that 

(3) RCDS a R(At) . 
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Then 

(9) AD* e R^' 

Proof:   Obvious . D 

Lemma 4;   Suppowe that (EP) is given with  A C R^301 ,   c x N(A)  and let 

D  be given as in lemma 3.   Then the optimal solutions of (IP) are 

(10) D* y* + N(A) 

where   y*   is any optimal solution of 

(11) maximize   c   O  y 

s.t. 

(12) b' S A D* y $ b+   . 

Proof;   Uslag the facts that   c x N(A)  and  R(At) = N(A)1   (e.g.  [7])   It 

follows that the optimal solutions of (IP) are 

(13) x* + N(A) 

where  x*   is any optimal solution of 

(I) maximize   c x 

s.t. 

(2) b-!Ax*b+ 

(14) x C R(At)   . 

From (8) it follows that any  x c R^1 

(15) x = D y 

for some   y C Rr .   Substituting (15) in (13) and In problem (I), (2), (14) 

gives the desired result. r-t 

In what follows, it is assumed that lemma 4 has been applied, If 

necessary, so that the problem to be solved has a coefficient matrix of 

full column rank.   This assumption is not essential, but it simplifies 

notations, permits the use of ordinary (rather than generalized) inverses. 

■w 
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«nd should reduce computational effort If the original problem did not 

have full column rank. 

The following elementary result Is a special case of the result given 

in [1] and will be used to develop the algorithm below: 

Lemma 5:   Let (IP) be given with  A c R**0     and (3).    Then the optimal 

solutions of (1), (2) are all the vectors of the form 

(16) x*-A'1»* 

where the components of  «* C R     are dofined by 

(17) «• - j    Bj aj     •«-  (I - e^bj       if (cVSj 

for j «!,....» .and  0 S $. ss 1 for those j  with  (c^"1). «0    , 

Proof;   Substituting 

(18) B»AX 

in (I), (2) we obtain the equivalent problem 

(19) maximise  C'A'SB 

s.t. 

(20) b" $ a $ b+ 

whose optimal solutions are the vectors    z* given by (17).   The reverse 

substitution gives (16). n 

Conditions for the explicit solution of the general    IP    were given in [U]. 

2.  Converting (IP) to Decomposable Form 

A decomposable interval program is any problem having the form 

(I) (DIP): maximise   c x 

s.t. 

(21) b"SAx-b + 
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(22) 

(1) 

(2) 

(I) 

(23) 

(24) 

(25) 

b    =Axlb 

(26) 

where A and  A are nonsingular (say  A,AeRp"),   b"-b      ,   and pXp).   b-.$b + 

P 

b    « b    .   The method developed in section 3 below is applicable to any 

(DIP) hence to any bounded (IP), since any bounded (IP) can be converted 

to an equivalent (DIP), as we now demonstrate: 

Consider the (IP): 

maximize  c x 

s.t. 

b"$AxSb+ 

where (3) is satisfied and  A C R. 

is bounded since   N(A) ={o}. 

mxr (e. g.  lemma 4).   This problem 

Rearrange the constraints as necessary to put (1), (2) in the form 

maximize   c x 

subject to 

bl   S A1X ^ bl^ 

b-^A2x!b+ 

b^A3X?b+ 

where  Al e Rjxr   .   A2 C R^'   ,   and  A3 C R*"1"'"^    .   That is, 

A.   is a nonsingular submatrix of A,   A-   is any submatrix having full 

row rank whose rows are not in A. , and A.   is made up of the rows of 

A   not in A.   or  A_ .   Note that  q  is not uniquely defined, but an we 

shall see later it is desirable to make   q  as large as possible   (q = 0   is 

always possible). 

Clearly we can always choose 

b" ? Bx ^ b^    , 4 4 

a subset of the constraints (23) 



i 
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(-.■; • •uch that   i o" /  *  R •   Problem (IP) is not changed by including 

•ome constraints more than once, so (I),  (2) may be written 

(I) maximize  c x 

subject to 

(23) bJSVSb+ 
(24) b'SAjxSbJ 

(26) bj S Bx 5 bj 

(25) b^xjbj 

Finally, observe that  x*   is an optimal solution to (IP)   iff   (x* , y* ) 

is an optimal solution to the following bounded problem which clearly has 

form (DIP): 

(I) maximize c x 

subject to 

b:\     /A 

^ 

I 

bz 
(28) b 4 

*i 

A procedure for identifying appropriate  A. , A- , A- , and   B 

is demonstrated in the following trivial example: 

Example 2;   Transform the following (IP) problem to form  (DIP): 

"   ■ 
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maximize xl+x2 

subject to 

M 2 ji l\ 
2 

3 s 0 I 

4 -I -I u \   2 0 

ll\ 3 

4 

5 

W 
Applying Gauss-Jordan eliminations to   A   we obtain (pivots circled): 

0 
2 

0 

I 

2 

\ / 

W 

I 

0 

0 

0 

0 

® 

■'I 
Since rows   I  and   3   contained pivots we conclude that 

I 1 

0 I 
Al = 

is a suitable nonsingular submatrix of   A. 

Rearranging   A   with matrix  A.   at the bottom, we repeat the above 

proceedure: 

I® 
I 

2 

I 

0 

\ 

:/ 

0 

© 
\ 

0 

0 

0 

I 

0 

0 / 

VJe conclude that row   4   of  A   is linearly dependent on row   2   (since 

all its elements vanished after step 1)   so that row   4   must fall in  A. . 

Furthermore since   r = 2   pivots were found before reaching the bottom 

r   rows we conclude that   B = 0 , and 

i ■ ■.*#***?* 
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2 

0 

since pivot« were contained in rows   I and  3   (i.e.   rows 2 and 5 of 

the original matrix). 

The equivalent (DIP) is therefore: 

maximise  x. + x. 

3.   The Decomposition Algorithm 

Problem (DIP) : (I),  (21), (22) may be equivalently written 

maximize  c   x 

(29) 

(30) 

subject to 

X s x 

b"^ Jx Sb+ 

b    §  Ax  5b + 

In this section we develop an algorithm, for solving problem (29) which 

is related to the Dantsig-Wolfe decomposition principle [6] . 

Let 

S« {xcRp:b"5Ax$b+ ) 

and let  G be the finite matrix whose columns are the extreme points of 
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(32) 

(31) 

(32) 
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S .   Since  A  is nonslngular,   S  is a bounded polyhedron so that 

x c S    iff 

x = G v , e'v = 1    ,    v ^ 0 

(i. e.   x   is a convex combination of the extreme points of  S ) .   An 

analagous result holds for 

S = {x c Rp : b   : Ax5 b1^ } 

and the corresponding  matrix  G whose columns are the extreme 

points of  S  . 

Consequently,  (29) may be written 

maximize t c G V 

subject to 

G v - Gv a 0 

e^. 1 

e^. 1 
—         A     > 
v,v = 0 • 

Problem (31) has the "standard" linear programming form except that 

the columns of  G and  G are not immediately known.   Indeed, we shall 

solve (31) using the simplex algorithm (e.g.  [4] ,  [5]) with a special 

technique for generating the columns of  G  and  G  one at a time as 

needed. 

Suppose that a basic feasible solution to (31) is in hand with 

"simplex multipliers"   (e.g.  [5]). 

(ir^,... iWi o^ , a,,) = (TT, a^ , o^) 

Let the columns of   G   and G   be denoted by   g. (i = 1,... ,N)   and 
A A 

g. (i = l,...,N)   respectively.   A vector 

*i 

1 

0 

or 

{-k\ 
0 

W / 

■ 
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or 
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l 
0 

- c t_ gj« (» -c )fi + a^O 

(34) (v» ^ ( a2)   ^    0 | s   -w^ + o2 < 0 

(35) 

respectively (i. e, it has a negative relative cost). 

Following the standard simplex proceedure we bring into the 

basis the vector with the smallest relative cost 

K a min (min ((w - c ) J. + o.)    ,     rt^n (-IT g,^^)) 
- * g1 

(36) 

(37) 

unless   X 2 0 which indicates the present solution is optimal.   Thus 

we must determine the extreme points  f*  and  g*   such that 

and 

(« - c )g ♦ ■ min ((w - c ) gj ) 

«i 

-» g* ■ mjn (-ir g. )  . 

(38) 

But    min ((v - c ) g.) ■  min ((tr - c }x)   so that   (by lemma 5) 
ii x«s 

r + r I*- E_ b^t^   E.    h' tj 
id. id 

(39) where A"1 a (^.....F    ) 

t. - (40) and       I+ . « {1 : (ff - C6) tj   2 , < 0 ) 

(L e. g *  is an extreme point solution of the subproblem 

min (ir - c )x . ) 
xcS 

--«•..,. 
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(41) 

Likewise 

g*=    ZA   b^    EA    ß^tj 
id iel 

(42) where  A"   = (t. V 

(43) and        I.       = { i : - ir t. a , < 0 } . 
T»   - 1 

If  \ <0   either 

(44) 

(45) 

or 
g 
0 
I 

enters the basis depending on which has the lowest relative cost.    The 

simplex iteration is then completed to obtain a "better" basic feasible 

solution and the entire procedure is repeated.   The theory of the 

simplex method assures finiteness provided proper steps are taken to 

treat degeneracy. 

If  \ 2 0    the present solution, call it   (v* , v* )   to   (31)   is 

optimal.   An optimal solution to   (DIP) : (I), (21), (22)   is then 

ieO, 
gj v* «    S     g^v 

lCn2 
"iVi 

whe re        ni = {i : ^ >0 } 

02» (itv^O 1   . 

An initial basic feasible solution can be found using artificial 

variables.   One appioach is tu begin with the enlarged problem 

maximize   c   G v Me z 

subject to 

G 
t e 

0 

pxl 

v ,  z  & 
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where   M   i« a sufficiently large «calar, using   (e.»..*i»e    ~)   as the 

starting basis.    If  X £ 0  while some of the artificial variables 

(i.e.    {s.« i « If ••• ip+2})   are still in the basis at a non-zero level, 

problem (DIP) has no feasible solutions. 

A slightly different approach for obtaining an initial basic feasible 

solution to (31) is to find any extreme points of S and S . If we call 

these points   g , and  g, respectively-' , then 

(46) 

is a suitable starting basis to the equivalent problem 

(47) maximise   c   G v  -   Me z 

subject to 

v 

e 
0 

v , v,   z     ?     0 

The sign in front of I 0 ) in  (46) will depend on the sign of  {g^ - g^) 

and has purposely been left ambiguous to simplify notation.   An example 

should clarify the use of (47). 

Example 3; maximize  x  + Zx. 

subject to 
(48) 0 S xl S 6 

OS x2    S8 

2 S x. +     x2    5 6 

-9 s-Sx^ x?    S9 

1/ Hcuristically, a good choice for  g   *   g > would seem to be optimal 

extreme point solutions to   max c x and  max  c x   respectively. 
xeS xcS 

, 
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This problem has the form of (DIP ) : (I), (21),  (22) with 

0 

0 

l4      4/ 

S     = {xcR2 : 0 Sxl S 6 , 0 Sx2 s 8) 

S     = [ xc R2 : 2 S xl + x2 5 6 ,  -9 5 -3xl + x2 s 9 )    , 

We work with the following problem (see (47) which is equivalent 

to (43): 

maximize 

subject to 

*1--'8N 

N 
(^ g;  V. )  -  M (2,   +  Z7) 
i=l '1   1 

I... I 

0... 0     1       I ...    I 

A     '    -I        0    \/v\ 

o    o] 0 ...   0 

\ I \I2l 

1° ' 0 

v , v ,  zl ,  z2 a 0 

Iteration 0: 

6\ 

h* 

optimal ertreme point solutions to the subproblems 

max    x. + 2x0 
xcS        l        2 

and 

mg.x  x, + 2x 
xeS I ■ —2 

respectively.   Then the columns of 

, 
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B * 

6 3 
-i o\ 

8 •T 0 -I 

I 0 0 0 
0 i 0 o / 

form a basis which gives the following initial basic feasible solution 
27 to problem (49):   Vj ■ I,   Vj = 1,   ». = (6 + J) = ■^L and 

.    . /a     27.5 

Since 

B -1 

0 0 I 0 
0 0 0 1 

1 0 6 3 
4 

0 -1 8 -27 

the corresponding simplex multipliers are 

(IT, OJ , a2) s (22. 0, -M , -M)B"1 s (M , M , 22 - 14M , 6M). 

Iteration 1; 

Since   ir - c1 = (M - 1, M - 2) ,  (38) and (41) give 

•<>(i]-(r)- 

g + 9 

1 
4 
1 
4 

The corresponding relative costs ((33) and (34)) are 

(IT - c*) g * + ^ = -14M + 22 

• 



•18- 

c >lumns of B = 

3 
4 

27 
4 
C 

1 

0 

0 

0 

\ 

\ 

and the new basic feasible solution is 

-27-5 *       , 13 
Vl = 32' V2=3l   '    Vl = l' Z1 = 16        * 

The new simplex multipliers are 

/M     i2      3^     n     501      93 M. 

Iteration 2;    In a similar manner, the reader can check that 

.     |  =   I i   )    enters the basis and       .    I  = I i   I   leaves. 

The new basic feasible solution is 

-        5        -       27 -      . 3 
V2 :: 32   '    V3 = 32   '    vl = l •  zl = 4 * 

B = 

0 
3, 
4 -I 

0\ 

8 . 27 
4 

0 0 

I 0 0 I / 
0 I 0 0 

The basis matrix is 

and the simplex multipliers are 

(16, 0,  -M ,  0)B"1 = (-M t 2,  0,  -| M + ~) . 

Iteration 3; 

M2\ 

and 

I'i 
enters the  basis 

leaves so that the new basic feasible solution 

• 
■ 
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-1-3*5-       I 
v2S4'V384'VlS6' V2S6 

The «implex multipliers are 

(2, 2, 0. 12)  . 

Iteration 4t 

ir-ct
S(2,2)- (1,2) a (1,0) 

■o that from (18) and (21).   g* =     o ) and   ^*   " 

15 
4 
1 
4 

From 

(35),   X a 0   so that the optimal basic feasible solution is (from (44)) 

x*. I(JW(OH')- 
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IJ . AD~TRACT 

..... An interval linear program is 

( . \ 
I n a imize 1ctx, subject to b- ~Ax~ b+ 

wh e r e the n'la tri.x A , vectors - + b , b , and c are given. If A has full row 

r a ni-, the optima l solutions of (IP) can b e written explicit ly (A. Ben-Israel and 

A. Cha rne s : "An ex plicit s olution of a specia l cla ss of linea r progran1ming, 11 

Op r a tion s Re s e a r c h, forth c on1ing). This result is used in conjunction with th e 

Da nt z -.£- Volfe d ecompos itio n principle to d evelop a finite ite rative technique 

specia lly suited !or solving thP g en e ral (IP). Since any bounded linear program 

may be cast in form (IP) th e t e chnique m a y also be considered as an alt e rna te 

method !or linea r progra tn ming. 
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