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0. Introduction

An interval linear program is any problem of the form

(IP) : maximize ctx
subject to

b SAxSpt

where the matrix A, vectors b, vt » ¢ are given. A finite iterative
algorithm for solving (IP) is given here which is based on the Dantzig-Wolfe
decomposition principle (6] . An alternative iterative method for solving (IP)
is given in [8] and [9].

(IP) can always be solved by the standard linear programming tech-
niques (e.g. [4], [5] ) by treating each two-sided constraint as two constraints
and expressing each unrestricted variable as the difference of two nonnegative
variables. Since this procedure increases considerably the effective problem
size and since problems of form (IP) are common in many applications (e. g.
in structural analysis, production planning, approximation problems, etc. ;
see [2], [3]), and [8] ), it is desirable to have special techniques for solving
(IP). Furthermore, (IP) is a sufficiently general model to cover all bounded
linear programs so that any method for solving (IP) may be viewed as an
alternative method for linear programming. In particular, a problem in the

standard form

maximize ctx
subject to
Ax f b

x20 b
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if bounded. is equivalent to the (IP)
maximize ctx
8. t.
-MeSAxS3b

oS x SMe

where e is a vector of ones and M is a sufficiently large positive scalar,
Notations and preliminaries are given in section l. In section 2 it is

demonstrated that any (IP) can be converted to decomposable form so that the |

decomposition method, developed in section 3, can be applied. A numerical

example is given at the end of section 3.

1. Notations and Preliminaries

The following notations are used:
iff if and only if;
s. t. subject to;

{x:£(x)} the set of x satisfying f(x);

] the empty set ;
r" the n-dimensional real vector space;
R™*®  the space of mxn real matrices;
R;nxn the set {X ¢ R™®; rank X =r} ;
In the nxn identity matrix;
e, the it-b columnof I ;
n
e the vector of ones;
(the dimension of e and e will be clear from context)
For any x,y ¢ R? ; |
xfy denotes xizyi for i=1,...,n;

b vprom gl



x+L

R(A)

N(A)
-1

(%)

(2)

(3)

(4)

-3-

denotes x is perpendicularto y (i.e. Bxi g =0k
For any subspace L of R™;

denotes the manifold {x+4: L eL};

Forany A ¢ R™® denote by:

the transpose of A ;

|
i
the range space of A (i.e. %
{yeR™®:y=Ax for some x ¢ R®}); 1

the null space of A (Le {xeR®:Ax=0);

the inverse of A , if nonsingular,

An interval linear program or interval linear programming problem

is any problem of the form

(IP) : maximize ctx
s.t.
b SAaxSpt

where ¢ x (c,) , b =(5) vt -(bj") vand A=fay) (=h..o,n:

j=1,...,m) are given, with

b St
Let S be the set of points satisfying (2)

s={xeR®;b" SAxSb"},

A point x ¢S is called a feasible solution of (IP). Problem (IP) is

feasible if S/ﬂ » otherwise infeasible., If A ¢ R':;xn (IP) is feasible

m

forany b” Sb' since R(A) =R™. (IP) is bounded if 5 4§ and




{5}

(6)

(M

-4
and maxc'x € ® , otherwise unbounded. Clearly (IP) is bounded if S

x¢S s
ig a bounded set: the converrce is false. sundedness is characterized

in:

Lemma 1 ([17): Let S#f . Then (IP) is bounded iff

c 1 N(A) . D
We conclude that all bounded (IP) problems have ¢ 1 N(A) and
consequently any (IP) with c/ N(A) is uninteresting .
Coendition (5) may be verified if a basis for N{A) is available. The

following recipe may be used to compute such a basis:

Lemma 2 ([1])

oe
[« ]
[, 4

AeR™™ and Ee¢ R::xm satisfy

EA =| cedvcdeaccca-a] P

form a basis of N(A). C

The follewing example will demonstrate the use of lemma 2:

Example 1: Find N for the mat>ix

£
A=

\

We diagonalize A4 ans showa in the ¢5llowing table (pivot elements are

Lt 0 -8
~NOM
'
—~NNVO

DN vo .

circlad):
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(P 4 2 0
(o) -1 2 0 -2
AT 2 2 2 2
0 1 -l 1
1 2 0
AN 0 é 2 -2
0 -6 =2 2
0 1 -1 |
1 0 2/3 4/3
Al o 1 1/3 -1/3
0o o 0
0 0 4/3
1 0 O 2
e o 1 o0 0
0 0 O 0
0 0 1 -l
1 0 o 2
Ald 0o 1 0 0
o 0 1 -1 (interchanging rows).
0o 0 O 0
1
4
From A“): -5--‘ -- | P we see that

Oie

2 N -
rank (A) =3 , A:(o\ and N = (-11) = l
-1 ‘ 0 |

Computationally, lemma 2 is a very naive lta.tementl. but we will ignore {

L)

the computational difficulties of ill-conditioning for which the reader is
referred to [10].

It will now be shown that any (IP) with cu .N(A) can be converted to ,
an equivalent (IP) having full column rank (i.e. with A €RT " ).

Y Lemma 3: Let A ¢ RT™® and De¢RI™™ suchthat ;
t t
(8) R(D%) = R(AY).
mW S - o e - - amm%ﬂ



Then
(9) AD' ¢ RTF .
Proof: Obvious . D

Lemma 4: Suppose that (IP) is given with A ¢ R:mm ,» ¢4 N(A) and let

D be given as in lemma 3. Then the optimal solutions of (IP) are :

(10) D' y* + N(A)
where y"' is any optimal solution of
(1) maximize <:t Dt Yy
s. t.
(12) b §aDtySpt,

Proof: Usizg the facts that ¢ + N(A) and R(A%) = N(A)* (e.g. [7]) it

follows that the optimal solutions of (IP) are

(13) x* + N(A)
where x* is any optimal solution of
(1) maximize c'x
s.t.
@) b SAxSbT
(14) xeR(AY) .

From (8) it follows that any x ¢ R(At) can be written
(15) x=D'y
for some y ¢ RY ., Substituting (15) in (13) and in problem (1), (2), (14)

gives the desired result. g

In what follows, it is assumed that lemma 4 has been applied, if
necessary, so that the problem to be solved has a coefficient matrix of
full column rank. This assumption is not essential, but it simplifies

notations, permits the use of ordinary (rather than generalized) inverses,



(16)

17)

(18)

(19)

(20)

7=

and should reduce computational effort if the original problem did not
have full column rank.
The following elementary result is a special case of the result given

in (1] and will be used to develop the algoritim below:

Lemma 5: Let (IP) be given with A ¢ R\*" and (3). Then the optimal

solutions of (1), (2) are all the vectors of the form

x* = A-l z*

where the components of z* ¢ R® are dofined by

b, >0
t, -1
f={ 0a +(1-0)b (A7) :r.:;

*
for §=1...,n and 0S8 51 for those j with (c‘A"‘)j =0 .

Proof: Substituting
c=Ax
in (1), (2) we obtain the equivalent problem
maximize ctA~lz
s. t.
b"SzSpt
whose optimal solutions are the vectors z* given by (17). The reverse

substitution gives (16). 0

Conditions for the explicit solution of the general IP were given in [11].

2. Converting (IP) to Decomposable Form

(1)

(1)

A decomposable interval program is any problem having the form

(DIP): maximize ctx

s, t.
P

S R



(22)

(1)

()

(1)

(23)

(24)
(25)

(<6)

.-

b §Ax§ﬁ+

where A and A are nonsingular (say A > ﬁc R:xP) ’ E'.é';"' » and

b~ $bt. The method developed in section 3 below is applicable to any
(DIP) hence to any bounded (IP), since any bounded (IP) can be converted
to an equivalent (DIP), as we now demonstrate:

Consider the (IP):

maximize ctx
s. t.

b SAaxspt

where (3) is satisfied and A ¢ Rmxr

= (e. g. lemma 4). This problem

is bounded since N(A) ={0}.
Rearrange the constraints as necessary to put (1), (2) in the form
maximize ctx
subject to

- < +
b1 Alxsbl

=

b, SA,xSbY

2 2 2
- s <t
b3 2 }\..sx_b3

rer
where Al ¢ Rr q AZ

Al is a nonsingular submatrixof A, Az is any submatrix having €ull

row rank whose rows are not in Al » and A3 is made up of the rows of

¢ R¥T | and A ¢ riM-r-qixr o0,
4

A notin A1 or Az.

sha'l see later it is desirable to make q as large as possible (q =0 is

Note that q is rot uniquely defined, but as we

always possible).

Clearly we can always choose

- < §+
b4-Bx b4 -

a subset of the constraints (23)

iw el S Kl I SR ARG RA  a
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A

such that ( 2) ¢ R:xr . Problem (IP) is not changed by including

B
some constraints more than once, so (1), (2) may be written
(1) maximize ctx
subject to

s s.t
(23) bl i Alx s bl

- s st
(24) bz 2 Azx- bz
(26) b, 3 Bx Sb;

-3 syt
(25) b3 s Asx. b3 .

Finally, observe that x* is an optimal solution to (IP) iff (x*, y*)

is an optimal solution to the following bounded problem which clearly has

form (DIP):

(1) maximize ctx
subject to
ok A, 0 b’
0 o - d\ Y 0
- +
b A 2 0 x hz
(28) b, | S| B o0 v| $ b:
- +
b; Ay e r-q o *

A procedure for identifying appropriate Al ' Az ’ A3 » and B

is demonstrated in the following trivial example:

Example 2: Transform the following (IP) problem to form (DIP):




F—
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maximize x, + x

1 2
subject to
1 1 1 2
2 2 2 X, 3
3 s 0 1 X, s 4
4 -1 -1 5
5 2 0 6

Applying Gauss-Jordan eliminations t» A we obtain (pivots circled):

® ! ! 1 10
2 2 0 0 o o0
0 1 {~1]0 @ -1 0o 1
-1 -1 0 0 0 0
2 0 \o -2 0 0

Since rows 1 and 3 contained pivots we conclude that

1 1
A, =
1 0o 1

is a suitable nonsingular submatrix of A,

Rearranging A with matrix A, at the bottom, we repeat the above

1
proceedure:
© 2 1 1 10
-1 -1 0 0 0 0
2 o] ~1]o 2| ~|o 1
1 1 0 0 0 0
0 1 0 1 o o/ .

We conclude that row 4 of A is linearly dependent on row 2 (since
all its elements vanished after step 1) so that row 4 must fall in A3 .
Furthermore since r = 2 pivots were found before reaching the bottom

r rows we conclude that B =0, and



-11-

v ()

since pivots were contained in rows 1 and 3 (i.e. rows 2 and 5 of
the original matrix).
i The equivalent (DIP) is therefore:

maximize xl + xz

subject to
1 1 1 0 x) 2
3/%lo 1 of| x, |F (4
0 0o 0 1 Y 0
2 e 2 0 x, 3
s s
51 2 0 x| = 6
0 -1 -1 1 Y 5

3. The Decomposition Algorithm

Problem (DIP) : (1), (21), (22) may be equivalently written

maximize ct x

subject to
(29) x =%
5-§ ax 55t
b5 A% Sbt
In this section we develop an algorithm, for solving problem (29) which
. is related to the Dantzig-Wolfe decomposition principle [6] .
Let

' (30) S={xe¢RP:B " FAx 55"

A
and let G be the finite matrix whose columns are the extreme points of



(31)

(32)

(31)

(

2)

-12-

S. Since A is nonsingular, S is a bounded polyhedron so that

€S iff

t] |

J— t—

x=Gv,ev=1l , vZO0
(i.e. x is a convex combination of the extreme points of S). An

analagous result holds for

S={xeRP:b SAxSbpt)

and the corresponding matrix G whose columns are the extreme
points of S .
Consequently, (29) may be written
maximize ct Gv

subject to

<
n
o

Gv-G

-
<]
n
p—

hel

o
<>
n

nwy

o .

<|
<

Problem (31) has the ''standard" linear programming form except that
the columns of G and é are not immediately known. Indeed, we shall
solve (31) using the simplex algorithm (e.g. [4], [5]) with a special
technique for generating the columns of G and G one at a time as
needed,

Suppose that a basic feasible solution to (31) is in hand with
"gimplex multipliers' (e.g. [5]).

("l...”"p ' olt 02) =('“o Ulo oz)

Let the columns of G and G be denoted by Ei (i=1,¢0.,N) and

éi (i=1eee .I:") respectively, A vector

&4 84
1 or}| O
0 1



-13-

can enter the basis if

t— t
(33) (v, 0,4 0,) 1 e g =(z-c)g +0,<0

or

-gi
(34) ""’1' az) 0= -wgl+02<0
|

respectively (i. e, it has a negative relative cost).

Following *.ie standard simplex proceedure we bring into the

basis the vector with the smallest relative cost

(35) A =min (min ((r - <) F +0) , min (v g +0,))

& &
unless \ 20 which indicates the present solution is optimal. Thus
we must determine the extreme points g* and g* such that

(36) (r-chg* amin (v - ") F))

g
and 1

(37) -xg® =mjn (-vg,) .
8

But min ((v - ct) Ei.) = min ((r - ct}x) so that (by lemina 5)
8 xeS

(38) *=L Bt + T B

-

—-l - . -
(39) where A ==(t1....,1:p )

(40) and 'l"+'_={i:(1r-ct)t-i 2, <0)

(i.e. g* is an extreme point solution of the subproblem

min (- cfx. )
xS




(41)

(42)

(43)

(44)

(45)

-14-

Likewise

i By i
iel, iel_
where .a-l=(t‘ Sate uith)
l! OP
and f+'_=[i:-w€iz.<0}.

gt g*
If \ <0 either (l or 0
0 1

enters the basis depending on which has the lowest relative cost. The
simplex iteratinrn is then completed to obtain a ""better' basic feasible
solution and the entire procedure is repeated. The theoury of the
simplex method assures finiteness provided proper steps are taken to
treat degeneracy.

If \20 the present solution, callit (v*, v*) to (31) is
optimal, An optimal solution to (DIP) : (1), (21), (22) is then

. _ = =% _ A A
x = X 8 vy = z g; vy

ie Ql icﬂz

where Q = {1: ?i >0 }

QZ={1:vi>°} .

An initial bas!c feasible solution can be found using artiticial

variables. One appinach is to begin with the enlarged problem

maximize ctc‘:; - Metz

subject to
G -G v 0
t . pxl
e Dt Ip+3 v ={ 1
0 e z 1

<]
<>
N
"
o



—— e

(46)

(47)

(48)

<15«

where M is a sufficiently large scalar, using [el' A 'l'ep+2} as the
starting basis, If A\ 2 0 while some of the artificial variables
(i. e. {zi. i=1,...,pt2]) are still in the basis at a non-zero level,
problem (DIP) has no feasible solutions.

A slightly different approach for obtaining an initial basic feasible
solution to (31) is to find any extreme points of S and § « Ifwecall

these points g, and g, re'pectively-l-/. then

- e
§) & i p
1 0/ £/ 0 | * 0
of.,\ 1/, \o/) , \o

is a suitable starting basis to the equivalent problem

maximize cta; - Metz

subject to
G -G 1 v 0
t P . pxl
e 0 0 v |=|1
0 e o0 s/ \1
v , V, 2 2 o
e s N
The sign in front of | 0 ) in (46) will depend on the sign of (g, - gli)
0

and has purposely been left ambiguous to simplify notation. An example
should clarify the use of (47).

Exambole 3: maximize xl + sz

subject to
Ole <6
0s X, <8
stl+ X, <6
-95-3x1+ x, £9

1/ Hcuristically, a good choice for 'g- » g, would seem to be optimal

extreme point solutions to max c'x and max c'x respectively,
xeS x¢S




(49)

16~

This prablem has the form of (DIP) : (1), (21), (22) with

ol
]
"
/—\
o O
S’
>
1]
N
o [ d
Lamai (<)
v
1]
>
]
—
ol
+
"
P e
oo o
S—
-

NN LN L)
oY
+
1]
/N
O O~
S

S ={x¢eR“:0%x,<6, 0sSx, s

§ ={xcR2:2$x +x, <6, -9 S -3x

L% +x259} .

l

We work with the following problem (see (47) which is equivalent

to (48): -
\* ¥ \
maximize ( g V.)-M(z, +2
(2) i=1 i 1 2
subject to
A R S A RV R 5
--.1----E“.,:---_L-_-_N-:_-_Q--:.l-- v 0
1 XX l : 0 co e ] ; 0 0 Zl = 1
| ]
Oiee O { || Fro 1 : 0 0 Il‘zz, \1

optimal extreme point solutions to the subproblems

max x1 + sz

x€S

and

max x +2x
xX€eS 1 e

resnectively. Then the columns of



6 3 .1 o
23
B = 8 = 0 -1
1 0 0 0
0 1 0 0

form a basis which gives the following initial basic feasible solution

to problem (49): ';1 =1, \?l =1, z,=(6+ %) 3 341 and

27, _5
2,=08-F)=% -

Since 0 0 1 0
1 0 0 0 1
B-
3
-1 0 6 Y
.21
0 e l 8 4 ! »

the corresponding simplex multipliers are

(w, 0, 0,) = (22, 0, -M, -M)B™" = (M, M, 22 - UM, 6M).

Iteration 1:

Since w~ct=(M-1, M-2), (38) and (41) give
o ()0 (7)) (),

§* =6

+9

E [T L

oY)

The corresponding relative costs ((33) and (34)) are

(r-c)T* +0, = -14M + 22

-w§*+oz=-%"}4 [

2
1
0

0

Thus = 0 enters the basis, and the reader can
1
0

check that - leaves. The new basis vectors are the

== Rl =]

RS SRR E T SL AR AR TERES R R R T S ) FERIT Y 7Y



6 2 1 o0
columns of B=| 8 --2-41 0

1 C i

0 1 0 0

and the new basic feasible solution is

;-31;-2 G-lz-l}‘
132" "2 32 ° 1" "1716 *

The new simplex multipliers are

22 3 501 93
(M, g -3M. 0. 5 -jgM).
Iteration 2: In a similar manner, the reader can check that
ANNE &) (s
12 = ? enters the basis and 11 = ? leaves,
0 0 0 0

= .5 T .21 . o ; ek
Vo =43 v3;3 3 vl-l,zl-4. The basis matrix is
0 2 -1 0
] .21
B = 8 I 0 0
1 0 0 1
\0 1 0 0

and the simplex multipliers are

(16, 0, -M, 0)B~! = (-M, 2, 0, -%M +277) .
Iteration 3;:

£, -

0 enters the basis

[ ]
~ o who &|H

and leaves s0 that the new basic feasible solution

L= = Bl =}



is

o~ -
.

v, =L, V. =3,¢:2, ¢ -

2 °4"73 4''176" 72
The simplex multipliers are

(2, 2, 0, 12)

Iteration 4:

w-ct=(2,2)-(1,2) = (1,0)

15
so that from (18) and (21), E* = ( g > and g* = g « From
4

(35), A = 0 so that the optimal basic feasible solution is (from (44))

() 5 (0) - () -

e ot L R O O R W il S s NS % ST 7w Y S NPT 3 B 3
L A R e R sl S B A S R R i o TR Ve

-
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(3]

(4]

(5]
(6]

7]

(e}

f10]

[
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2a. REPORT SECURITY CLASSIFICATION: Enter the over-
ell sceurity classification of the report. Indicate whether
‘“‘Re=tricted Data is included. Marking is to be in accord-
ence with appropriate security regulations,

2b. GROUP: Automntic downgrading is specified in DoD Di-
rective 5200, 10 end Armed Forces Industrial Manuel, Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 ‘as suthor-
ized.

3. REPORT TITLE: Enter the complete report title in all

capital letters. Titles in all cases should be unclass!l ied.
If a weaning{ul title cannot be selected without classifica-

tion, show title classification in all capitals in parenthesis
immwedirtely following the title.

4. DESCRIPTIVE ROTES: If eppropriate, enter the type of
report, e.g., interim, progress, summery, annual, or finnl,
Give the inclusive dates when a specific reporting period is
covered,

S. AUTHOR(S): Enter the name(s) of suthor(s) es sliown on

or in the report.  Enter lact nome, first neme, middle inltial,

If military, siow rank and branch of service. The name of

the principal author is en absolute minimum requirement,

6. REPORT DATX: Enter the date of the report ee dny,

month, year; or month, year. If more then one date sppears

on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count

shou'd follow normeal pegination procedures, i.e., enter the

umber of pages containing information.

7b. NUMBER OF REFERENCES:

references cited in the report.

8a. COMIRACT & CRANT NUMBER: If eppropricic, nantee

the gpplicable number of the contract or grent under wiach

the report was written,

8d, &, & 8d. PROJECT NULBER: Enter the apprupri:::e

militery depestment identification, sech as project number,

subproject number, system numbers, task number, etc.

9a ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
inl report number by which the document will be identified

t.nd coatrolled by the originating activity. This number must

be unique to this report.

95, OTHER REPORT NUMBER(S): If the report has been

sssigned any other report numbers (either by the originetor

or by the sponsor), also enter this number(s).

10, AVAILABILITY/LIMITATION NOTICES: Enter gay lim-

Enter the total number of

itations on further dissemination of the report, other than those

imposed by security classification, using stendard statements
such as:

(1) ‘“‘Qualified requesters may obtain copies of this
report frem DD
(2) “Foreign ennouncement and dis ﬁc.nln ition of this
report by DDC is not euvthorized AGT
(3) *U. S. Government agencies may obtein copies of
this report dircctly from DC, Other quelified DDC
users shall request through
”
(4) "*U. S. military sgencies may obtoin copies of this b
report directly from DD, Other qualified wsers
shell request through
."
(5) “ Al distribution of this report is controlled. Qual-

ified DDC users shall request throvgl

".

If the report has been furnished to tiie Office of Technicrl
Services, Department of Commerce, for sole to the public, lndx-
cate this foct and enter the price, lf knowi
11, SUPPLEMENTARY NOTES: U:ze for additionsl explens. §
tory noten. ¢
12, SPONEORING MILITARY ACTIVITY: Enter the name of
the departmental project office or leboratory eponsoring (pay-
ing for) the research end development, Include address.

13. ABSTRACT: Enter an ebotract glving 2 brief end factual
summary of the document indicative of the report, even though [
it may also eppear elsewhere in the body of {Lie technical re-
port. If additione! space is required, a continuation sheet shatl’
be attached. g
It is highly desirehle that the abstract of classified reports L
be unclassified. Each paragraph of the abetract shnll end with "
an indication of the nlhl"y seocurity classificetion of the in-
foermation in the paragraph, reprecented a3 (7'53), (8), (C), or (U). g
or short phitases that charecterize a r tl ead may be used as |
index eatries for cataleging the report. Eey words must be
ralected so thet no "LCL.X{) c).»s, ificetion is xcq.u.cd Tdenti- §

fiers, such an equipniz ‘-;Li.,... tiade name, military

There is no Limitation oa the Jength of How-

ever, the suggested length is
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14. KEY VORDS: Key wonic ere technionlly meaningful terms

the abstract.
from 150 o 2235 words.
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