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ABSTRACT 

This paper is motivated by an assumption that many 

problems dealing with arbitrarily related data can be expedited 

on a digital computer by a storage structure which allows rapid 

execution of operations within and between sets of datum names. 

In order for such a structure to be feasible, two problems must 

be considered: 

1. the structure should be general enough that the 

sets involved may be unrestricted, thus allowing sets of sets of 

sets...; sets of ordered pairs, ordered triples...; sets of 

variable length n-tuples, n-tuples of arbitrary sets; etc.; 

2. the set-operations should be general in nature, 

allowing any of the usual set theory operations between sets 

as described above, with the assurance that these operations 

will be executed rapidly. 

A sufficient condition for the latter is the existence of a 

well-ordering relation on the union of the participating sets. 

These problems are resolved in this paper with the introduction 

of the concept of a 'complex,' which has an additional feature 

of allowing a natural extension of properties of binary rela- 

tions to properties of general relations. 
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I. INTRODUCTION 

The overall goal, of which this paper is a part, is 

the development of a machine-independent data structure allow- 

ing rapid processing of data related by arbitrary assignment 

such as: the contents of a telephone book, library files, 

census reports, family lineage, networks, etc.  Data which are 

non-intrinisica 1 ly related have to be expressed (stored) in 

such a way as to define the way in which they are related be- 

fore any data structure is applicable.  Since any relation can 

be expressed in set theory as a set of ordered pairs and since 

set theory provides a wealth of operations for dealing with re- 

lations, a set-theoretic data structure appears worth investi- 

gation. 

Let a Set-Theoretic Data Structure (STDS) consist of 

a set of data and a corresponding set  ß  of datum names or 

pointers.  A datum can be a single item or block of storage. 

Either way, one datum name (pointer) locates one datum.  Many 

concepts, or groupings of data, can be represented by a set 

"defined over  6 ."  A formal definition of "defined over" will 

be presented later.  Intuitively,  A  "defined over"  B  is de- 

fined recursively by: any element of  A , containing no^ element, 

is an element of  ß ; and any element of  A , containing a_n 

element, is itself "defined over"  ß .  Let the rest of an STDS 

cons ist of: 

a.  independent sets defined over  ß  (groups of con- 

tiguous virtual storage locations wi thout interconnecting 

-1- 



-2- 

pointers between groups) having just one pointer for each set 

designating the head of that set; and 

b.  set -theoret i c operations (data structure opera- 

tions) which can extract any subset of a given set defined over 

ß , or give any possible set resulting from a finite number of 

set -theoretic operations, nested to any depth, on sets defined 

over  ß . 

In order to realize such a structure there are two 

main problems: 

1. The first problem concerns the scope of what is 

to be included as allowable independent sets: sets of sets, 

sets of n-tuples of sets of n-tuples, etc. 

2. The second problem is to assure, for any two 

allowable sets, an abundance of set operations which can be 

executed rapidly 

If any two sets can be well-ordered such that their union pre- 

serves this we 11 - ordering, then subroutines needed for set 

operations just involve a form of merge or, at worst, a binary 

search of just one of the sets.  Some running times are presented 

at the end of this paper for some set operations using a merge 

technique.  To emphasize that a we 11 - ordering on two sets does 

not necessitate a we 11-ordering on their union let  A = {1,2,3} 

with  <  defined in the usual way, and let  B = {a,b,c}  with 

a'b, br-c,  and  a^c .  Then these two sets are well-ordered, 

since every subset has a first element; but their union is not 



well-ordered since not every subset has a first element.  Since 

this paper is to show that an STDS is feasible, in the sense 

that there exists at least one instance, we will consider only 

one problem by incorporating in the genre of allowable sets 

that: allowable sets must be such that their union is well- 

ordered.  A further consideration, however, is that all sets 

should be represented using the individual elements of  ß  in- 

stead of relying on hierarchical names assigned to particular 

sets.  The latter wculd prevent the complications involved in 

keeping track of arbitrary names and the associated sets during 

nested operations on sets.  A final consideration is the "burden- 

some" definitions of "ordered pairs" used in set theory — burden- 

some in the sense that they are difficult to express since most 

of the definitions rely on a redundancy of the elements for 

expressing order.  For example,  <a,b> = {{a},{a,b}} .  Further, 

these definitions do not allow a natural extension to ordered 

triples, ordered quadruples, or general n-tuples, except by 

establishing a canonical form of nested ordered pairs.  For 

example,  <a,b,c,d>  could be any of the following:  <<a,b>, 

<c,d>>, <a,<b,<c,d>>>, ^a<<b,c>,d>> , <<<a,b>,c>,d> , 

<<a,<b,c>>,d> .  For any of these, a storage representation using 

redundancy to express order would waste storage.  Another failing 

with these definitions is, though an ordered pair is defined to 

be a set, no utilization of set operations between n-tuples is 

feasible.  Another alternative is to define an n-tuple in terms 

of a function from  N(n) = {!,... ,n}  to a set  A  by: 
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<a1,a ,...,a > ■ {<i,a.>: ieN(n) & a.eA} . 1  2 '   ' n i i 

A problem here is justifying the ambiguity of ordered pairs 

and 2-tuples under set operations; for ordered pairs <a,b> 

& <x,b> , <a,b>n<x,o>  = 0 , but for 2-tuples  <a,b>, & 
000 '2 

<x,b>2, <a,b>2^<x,b>2 n {<2,b>o} . 

The purpose of this paper then is to establish a 

broad scope of allowable sets for an STDS, such that: 

1. sets of n-tuples are included, 

2. set  operations between n-tuples are meaningful, 

3. all allowable sets can be represented in terms 

of elements of  ß , and 

4. to insure rapid execution of the set operations 

on a collection of sets, the union of these sets must preserve 

we 13-orderi ng. 

The presentation is based on the definition of a "complex." 

The development of set theory up to, but not including the 

introduction of, ordered pairs is assumed (see [2]).  Let  N 

represent the natural numbers, and let  N(n)  represent the 

natural numbers up to and including  n .  The natural numbers 

are not being assumed for they can be developed* in a set-theo- 

retic framework without the use of ordered pairs.  The first 

definition is that of a complex. 

*  In order to avoid ambiguities when the empty set is an 
element of a complex, the natural numbers could be  re- 
defined as:  (M0}, 1 = {M0}}, 2 = {M0},{0,{0}}} . etc. 
(see Suppes, p. 134). 



II. COMPLEXES 

DEFINITION 1.  Any two sets  A  and  B  form a complex 

(A;B)  iff 

(IX) (IY) (XeU.B}) (Y€(A,B})[ (VxeX) (lieN) ({{x},i}eY) & (Vy«Y) 

(3jeN)(Ix6X)({{x}.j}=y)] . 

This definition is stated in such a way as not to presuppose 

any ordering in  (A;B)  of  A  before  B , insuring that a 

complex be an unordered coupling of two sets, each bearing a 

mutual dependence on the other.  The definition states that 

for every element  x  of one of the two sets  X  the other set 

Y  contains an element containing a natural number and a set 

whose only element is  x ; and that  Y  is such that every 

element of  Y  contains only a  natural number and a singleton 

set containing an element of  X  (either  X=A  and  Y=B , or 

X-B  and  Y = A , but not both).  Let  A = {a.b.c}, B = {({a},l}, 

{(b},3},f{c},963},nb}.6}}  and let  C = { a , b , H b }. 3} , { { a } . 1} . 

{{d},6}}  then  (A;B),(B;A)  and  (AnCjBnC) ara   complexes, 

while  (A;A), (A;C), (A;BnC)  and  (AftC;B)  are not complexes. 

From the definition it is clear that if  (A;B)  is a complex 

then  (B;AJ  is the same complex and  A ^ B .  Since for any 

complex  Q = (A;B) , it can be determined whether  (VxeA)CIi) 

({{x},i}€B)  or  (VxeB) (Ii)({{x},i}eA)  is true, and since one of 

these  has to be true, we can define sets  Q  and Q   . 
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DEFINITION 2.  If  A  and  B  form a complex  Q  then 

there exist sets  Q  and  Q  such that 

({Q,Q} = {A,B}) (VaeQ) (3ieN) (UahUeQ) . 

For any set  A , there is one set of particular interest. 

DEFINITION 3.  For any set  A, I. = {{y,l}:(JxeA ♦ y=0) 

[{3xeA){y={x})] . 

This gives rise to the following theorem. 

THEOREM 1.  For any set  A, (A;I )  is a complex. 

The proof follows directly from Definitions 1 and 3.  It will 

be shown that any such complex formed is also a set, and any 

set must be a complex of this form.  In order to establish the 

relationship between complexes and sets, and to extend set opera 

tions to complexes, we must first define the conditions for con- 

tainment in a complex. 

DEFINITION 4.  Conditions for containment in a complex  Q : 

i.  xeQ  ^ (xeQ)(Q=I(.) 

li.  xe.Q -* ({{x},i}eQ)(VaeQ) Clj)({{a},j}eQ) 

iii .  x^.Q —  Mxe^) . 

For a given complex  (A;B)  part (i)  of the above states that 

for  x  to be an element of  (A;B)  then either  x  has to be 

an element of  A  and  B=I. , or  x  has to be an element of 
A 



B  and  A=ID •  For an example of  (ii)  and  (iii):  let 

A = {a.b.c}  and  B = {{{a},1},{{a},2}.{{b},3},{{c},7}}  and 

let  Q=(A;B)  then  Q  is a complex and  ae2Q. bGjQ , and 

b^?Q  are true statements. 

THEOREM 2.  For any set  A,  A=(A;1 ) . 

PROOF.  1.  Show  xeA ♦ xe(A;I ) 

xeA -   {{x],i}el  * xe(A;I ) 

2.  Show  xe(A;IA) ■♦ xeA 

X€(A;1A) ♦ (xeA)({{x},l}eIA) • xeA 

(1)&(2) ♦ A=(A;IA3 .   Q.E.D. 

Since for any set  A , by Theorem 2,  (A;!.)  is a set equal to 

A , it follows that  (((A;1A);IA);IA) = A . 

THEOREM 3 For any complex  Q ,  xeQ ->■ xe Q 

PROOF.  xeQ - (xeQ) ({{ x} , 1} eQ) -•- xe Q ,    Q.E.D. 

Notice that the converse of Theorem 3,  xe Q -► xeQ , is not 

generally true.  As a counter example let  Q = ({a ,b } ; {{{a},1}, 

{{b},2}})  then  ae, Q  but  a^Q  since  Q^I-  since  {{b},2}eQ 

DEFINITION 5.  For any two complexes  A  and  B 

A=B «-» (A=B^ - X = *B) 

From this definition of equality between complexes, we can prove 

the following theorem which is analogous to the theorem for 

equality between sets. 
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THEOREM 4.  For any two complexes  A  and  B 

A = B *-- (Vi) (Vx) (xe.A «-* xe.B) . 

PROOF.  1.  First show  A=B ♦ (Vi)(Vx)(xe A +■*  xe.B) 

From Definition 5  A=B ♦ Ä=B  & A=B  for 

A&B t   $ 

then  W.A * ({{ x}, i } eA) (VaeA) (I j ) ({{a} , j } eA) 

by Definition 4(ii), and by substitution, 

xe.A ♦ ({{x},i}eB)(VaeB)(3j)({{aJ.jleB) 

which gives from Definition 4(ii) 

xe . A -+  xe . B 
i     i 

similarly  xe.B -► xe.A 
7    i      i 

.•.A=B ♦ (Vi) (Vx) (xe. A *-»■ xe.B) . 

2.  Secondly show  (Vi ) (Vx) (xe . A •-» xe.B) -> A=B 

By Definition 4  (Vi)(Vx) (xe.A **   xe.B) 
1       1 

* (Vi) (Vx) [({{x},i}eÄ) (VaeA) (Jj) 

({{al.jleX) ♦• (i{x} ,i}eB) (VbeB) (3k) 

({(b) .k}eB)] 

with  f(A) = (VaeA)(3j)({{a},j}eA)  this 

gives  (Vi) (Vx) [ ({{x} ,i}eX)4'(A) *-► 

(Hx) ,i}€B^(B)] . 

and since  ^(A) & ^(B)  are both independent of  x & i , if 

either  xe.A  or  xe.B  is ever true, then  ^(A)  and  ^(B) 
i i 

are always true.  (If neither  xe.A  nor  xe.B  is ever true 
' ii 

ArB=0) .  Then for  A & B ^ 0 

f 
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(ViHVxl [ (HxiileX) ^   ({{x},i}eB)] 

which makes  A = B  by set equivalence.  Then since  'i'(A) ***   ^(B), 

(VacA) (Ij) (({ft}, j}cA] «-• (VatBJ (3 j) ({ {a} , j }eÄ)  by substitution 

of  A  for  B ,  which reduces to  (Va)(aeA ♦-•• aeB)  and gives 

A=B  by set equivalence.  Since  A=B & A=B implies A=B we have 

(Vi) (Vx) (XC.A ■" xe.B) -»-AaB .  From (1) and (2)  A = B->-^ (Vi) 

(Vx) (xc.A •-♦ xe.B)  Q.E.D. 

III. EXTENSION OF SET ÜPÜRATIONS TO COMPLEXES 

With Theorem 4 it is now possible to extend the usual 

set operations to include complexes.  It should be noted that 

the following are defined for all complexes, and when the com- 

plexes are sets the usual interpretation is preserved.  For 

any complexes  A  and  I , define  A  is a subset of  B  as: 

DEFINITION b.  ArB ♦• (Vi) (Vx)(XC.A ♦ xt.B) 

and for  A  a proper subset Di  I; 

DEFINITION 7.  A ^ H • • A ^ U 4. \/H . 

Me now introduce ■ Definition S'.hema to make subsequent defini 

t i o n s less cumbersome. 

DEFINITION SCHEMA 1. 

(x :t(x,i)) ■ A -^ [(Vx) (VieN'Hxt. A *-■> fCx.i)) & A 

is a complex] or 

[A = 0 & 'V'CIB)(Vx)(VieN) (xe.B <- *(x,i))J. 
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The symbol  x   has no meaning apart from being enclosed by 

brackets.  A = {a6,b8}  means that  'e,A  and  be .  not 
b 8 

a6eA .  Instead of having to write  A r\ B ■ C ♦* (VI) (Vx] 

(xe.C •-• xe . A & xe . B) & C  is a complex, this schema allows us 
i       i      i r   * 

to define the intersection of  A  and  B  as: 

DEFINITION 8   AoB = (K :Xf A & xe . B} 
i i 

The   union   of     A     and      B     is   defined   as: 

DEFINITION   9.      AuB   =   {x^xe   A   v   xe . B}    . 
i i 

The symmet ri c difference of  A  and  B: 

DEFINITION 10. A-B = { x1 : (xe . A u B) ^ (x«: . A A B)} 

The relat ive complement of  A  and  B: 

DEFINITION 11. A^B = {x1:xe.A ~ xg! . B} 
i      i 

The next two definitions are unary union and unary intersection 

defined on any complex  A .  However, the result is non-empty 

only if  A  contains a non-empty complex. 

DEFINITION 12  UA = { x1 : (2 j ) (3 B) ( Be . A & xe.B)} . 

DEFINITION 13. (U = {x1:(Vj)(VB)(Be.A - xe.B)} . 

This completes the extension of principal set operations to 

comp1 exes. 



IV. ORDERED PAIR DEFINED BY A COMPLEX 

The next two definitions have no previous equivalent 

in set theory.  For a complex  A  they are respectively the 

maximum dimension of  A  and the minimum dimension of  A . 

DEFINITION 14.  8+(A) =  i ^> (ieN) [(Ix) (xe.A) (Vj) (Vy) 

(ye^A ♦ j«i)] . 

DEFINITION 15.  3'(A) =  i ^- (ieN) [(2x3 (XE.A)(Vj)(Vy) 

(ye^A + j.i)] . 

The maximum (minimum) dimension of a complex  A , if defined, 

is the largest (smallest) integer contained in any element of 

X .  The maximum (minimum) dimension is not defined for  A  if 

S (A)=0  (8 (A)=0)  which occurs when  A = f}  or when there are 

infinitely many different integers in elements of  A ^ as when 

A=N  and  A-{x :(xeN)(i=x)} .  Notice that a non-empty complex 

A  is a set iff  9 (A)=l .  We are now in a position to define 

ordered pair. 

DEFINITION 16.  <x.y> - ({x,y};{{{x}, 1 } , {{y).2}}) . 

An ordered pair  <a,b>  is a complex defined by the sets  {a,b} 

and  {{{a},I}, {{b},2}} .  Using the Definition Schema I, the 

complex  <a,b>  can be written as  {a'.b2} .  Certain dif- 

ferences result between this definition of ordered pair and 

ordered pair due to Kuratowski (see [2], p. 32) which is 

defined: <a,b>  = {{a},{a>b}} .  The intersection of  <a,b>. 

-11- 
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& <x,y^.  is non-empty iff  a=x , while  <a,b>n<x,y>  is non- 

empty iff  a = x  or  b = y .  U<ix,y>, = {x,y}  while  U<a,b> = 0 

if  a  and  b  are not complexes,  ''<x,y>. = {x}  while 

fVa,b> = 0  if  a  and  b  are not complexes.  The most inter 

esting difference between the two definitions is demonstrated 

by the following: 

wh i le 

(^a ,b>U <x,y>)O <x,b> = <x,b> 

(<a,b>kU ^x,y>k)n <x,b>k ■ 0 

For any definition of ordered pair the following theorem must 

be true 

THEOREM 5.  <x,y> = <a,b> ♦ x=a & y=b 

PROOF.  This follows immediately from Theorem 4 and 

the fact that  <xvy> & <a,b>  are the complexes 

((x,y};{({x}.l}f{<y},2}})  and  ({a,b};{{{a},1}, 

{{b),2}})  respectively 

The following definition is the usual definition of a b inary 

re lation as a set of ordered pairs. 

DEFINITION 17.  A  is a binary relation --► (Vx)[x6A ♦ (Jy) 

(3z)(x = <y,z>-)] 

For notational convenience let  xAy  be equivalent to  <x,y>eA , 

then the usual definitions of domain, range, and converse of 

a binary relation are: 
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DEF1NITI0N 18.  P(A) = {x: (3y) (xAy)} 

DEFINITION 19.  R(A) = {y : (3x) (xAy) } 

DEFINITION 20. A = {<y,x>:xAy } . 

Given any binary relation  A ,  A  is a subset of  {<x,y>:xe 

V(A)   & ye R(A)} .  In other words, a binary relation is, by 

definition, a relation between sets.  This presents a problem, 

if a function  f  is defined in the usual way as a binary rela- 

tion such that  (Vx,y,z)( xfy & xfz -► y = z) , then this defini- 

tion only allows functions between sets, and not functions 

between complexes.  A more general definition for function will 

be given to allow functions between complexes. 

V. FUNCTIONS 

DEFINITION 21.  f  is a function «-♦ (3 A) (3 BJ (f c{ {x1 .y^ } : 

xc.A & yc.^BI)  and  (Vx , y , z) (Vi , j , k) [({ x1, yj } et J 

({x1,zk}ef) (i<j)(i<k) - (k = j)(y = z)]. 

This definition incorporates the usual definition of function, 

since when  A  and  B  are sets  f  is a binary relation; but 

unlike the usual definition of a function, a function will not 

always be a reation.  This will be clearer after a general 

definition of relation has been given (see Definition 33).  An 

example of a function defined between two complexes is given 

by:  A = {a6,b3,c7}  and  B = {x3,y\z6}  with  f = {{a6,x9}. 
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(b3,y7},{c7,x ' 0 }} .  An important type of function is a function 

that is one-to-one. 

DEFINITION 22.  f  is one-to-one ♦--»■ f  is a function and 

(Vx.y.z) (Vi.^k.h)! ((x'.yMef) ({xh.zk}ef)(j<i) (k<h) 

(i-j - h-k) - (i=h)Cy=z)] . 

Notice that in the last example f is not one-to-one since f 

maps xe3B to ae6A and to ce7A . In the following, if f 

is one-to-one it will be written as  f1"1 . 

VI. DEVELOPMENT OF AN N-TUPLE 

Though a general definition of domain and range will 

be given later for an arbitrary complex, temporary definitions 

are needed now which will be equivalent to the general defini- 

tions when the complex is a function: 

and 

P(f) = (x1: (Ij)(Iy)(i<j)({x1,y:,}ef)} 

1(f) -- {x1: (lj1(3y) (Ih) (i-h-j) (j<h)({xh,yJ}ef)} 

Using these temporary definitions we can define a finite complex 

A  and its cardinality  #A , (let  Z=NufO}) . 

DEFINITION 23.  A complex  A  is finite and 

#A = n -- [(n--0 & A = 0)v(3f' '') (P(f)=A) (R(f)=N(n))] . 

————— 
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The cardinality of a finite complex is just the number of 

elements contained in the complex.  If a non-empty complex  A 

cannot be put in a one-to-one correspondence witn a finite sub 

set of  N  then  #A^Z .  Therefore, for any  A , #AeZ  asserts 

that  A  is a finite complex and there exists an  n  such that 

#A = n    The degree of a^ comp lex  A  is the number of different 

integers that appear in the elements of  A . 

DEFINITION 24.  6(A) = "(uAON) . 

For any set  A  the degree of  A  is 1, as is stated in the 

following theorem. 

THEOREM 6.  If  A  is a set then  6(A)=1 . 

PROOF.  A 

then 

is a set ■+ A= { { {x}, 1} : xeA}  by Theorem 2, 

6(A)«i(uXoN)-«(0  . ((x},l}nN)=#{l} = l .  Q.E.D. 

This holds even if  A  is the empty set since  0=(0;{{0 , 1} } ) 

then  5 (0) =# (uH0, 1) ION) = " {1} = 1 .  Four components associated 

with all complexes, compact , uni form, s imple, and norma 1 ,are so 

closely related that they will be defined en ma<6-6e. 

DEFINITION 25.  For any complex  A 

1. A  is compact <-«. 6(A)=9 (A) + 1-3"(A) . 

2. A  is uni form 

3 

(Vx) (Vy) (Vi)(XE.A & ye.A - x = y) 

A  is s imp 1 e  ■•--►6 (A) = 1 

4.  A  is normal  *-♦ 6(A)=3 (A) . 
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The following theorems, thougi. important, are trivially proved. 

THEORLM 7.   A is simple ♦ A  is compact. 

THEOREM 8    A is simple and normal ♦--►A  is a set. 

THEOREM 9.   A is normal ♦ Ä  is compact. 

THEOREM 10.  A is uniform --- i(A)«<(A). 

With these definitions it is possible to embark on part 1 and 2 

of our objective, namely to define the concept of n-tupl e and 

to establish that with this definition set operations becween 

n-tuples are meaningful   A preview of this was presented 

while comparing definitions of an ordered pair, for an ordered 

pair will turn out to be an n-tuple of degree 2. 

DEFINITION 26.  A  is an n-tuple ■>-■*  X     is a uniform, 

normal complex with finite degree  n . 

The following theorem is •? direct consequence of the previous 

definition. 

THEOREM 11.  A  is an n-tuple *--   9+(A) =6 (A) =#A . 

PROOF.  A  is normal --»• 6(A)=9 (A)  by Definition 
25-4 

A  is uniform *--*■   #A = 6(A)  by Theorem 10 

#A=6(A) •••• 6(A)eN  by Definition 23; then 
by Definition 26. 

A  is an n-tuple *-+   3 (A)=(5(A)=#A . 
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Let  X={x ,...,x }  represent an in i      n     r 

x. , where  ieN(n) , then: 

dexed set of  n  elements 

DEFINITION 27.      <*l,...tX   >  = (X;{{{x.} , i } : (Vi) (x.eX) 

(ieN(n)}) . 

This gives a definition for the usual form of an n-tuple.  It 

remains to be shown, however, that this does in fact represent 

an n-tuple as defined by Definition 26. 

THEOREM 12.  <x ,x ,...,x >  is an n-tuple. i  2      n r 

PROOF Let  A = <x, , x„,.. .,x >  then by Definition i ' 2 •   ' n ' 

A = (X;{{{x.},!}:(*i)(x.eX)(ieN(n))}) 

where  X = {x.:ieN(n)} 

then  9 (A)=n  by Definition 14 

and    6(A)=n  by Definition 24 

and      #A=n  by Definition 23 

therefore  9 (A) = 6(A) = #A  and by Theorem 

11, A  is an n-tuple.  Q.E.D. 

27 

An analogous theorem to Theorem 4 can now be proved for any 

two n-tup les, 

THEOREM 13.  <a,,...,a > = <b ,...,b > - (VieN(n)) I      n      i      n \   J J 

(ai=b.) 

PROOF Let  A 

B 

then  A 

I 

= <a ,a >  and n 

<b, , . . .,b > n 

(a 

b 

, a .. . .,a }  and 2 '   ' n 

.»! ""> 
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by definition of  A , (VieN (n) ) (xe. A ■<-->■ x = a.) 

by definition of  B , (VieN(n))(xe.B ■*--*■  x = b.) 

and since  A = B ♦ (VieN(n))(xe.A *■*  xeB) 

then  A = B - (Vi eN f n)) (xe . A *~» xe.B)fxe.A ■>--*  x = a.) 

(xe . B ••-»• x = b . ) 
i       i 

which reduces to  A = B ♦ (Vi eN (n) ) (x = a. ■*--»■  x = b.) 
i       i 

which gives  A = B - (Vi eN (n) ) (a . =b . .> .   Q.E.D, 

At this point we can demonstrate that union, intersection, and 

symmetric difference are meaningful between n-tuples.  The 

following can be easily verified by the reader. 

1 <a,b,c> 0 <x,b,y> = {b2} 

2. <a,b,c>0 <x,y>   = {a' ,x' ,b2 , y2,c3} 

3. (a ,b , c) 0 <a , x,y> = <a> = {a1} = {a} 

4. U{a:.b2,{x,,cJ],,fy2,du}M = { x ' , c 3 }\J{y2 . d1*} = 

<x,y,c,d> 

5. < a , b , z >» < a , y , c ^ä«; x , b , c > -   <x,y,z> 

b       <a,b,c,d> ^ <x,y,c,d-   = <a,b> 

VII. RECONSTITUTED DEFINITION OF RELATION 

Two familiar concepts of set theory have yet to be 

established under the definition of a complex.  These are the 

Cartesian produc t and relation   To develop these definitions 

we need to introduce the expansion of a complex  A 

DEFINITION 2 8 UxM : xe A} 
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For any complex A, A is a set and tA ■ iX . Notice that 

0A = A. The f llowing definition of concatenat ion between any 

two CümpicAes will be most useful. 

DEFINITION 29.  A*B =   Au{ x-" : (3 13 (j = i ♦ 3* (A) ) (x^ . B) } . 

This amounts to the union of  A  with  B , after every element 

in  B  has been "shifted right" by  3 (A) .  For example, 

(a3 ,b6 }*{c2,d3 } ■ {a3 ,b6 ,c8,d9} .  When all th« elements of two 

complexes are mutually concatenated it is called the product 

of  A  and  B . 

DEFINITION 30.  A-B = (x1 : (3 ac . A) (3be . B) (a><0^b) (x = a*b) } . 

The previous definitions now allow the definition of Cartesian 

product between two complexes  A  and  B . 

DEFINITION 31.  A x B * . * . 

Notice that for three non-empty sets  A,B,C  we can define any 

of three canonical forms of sets of triples: 

(AxB)xC = {<<a>b>,c^: (aeA)(beB) (ceC) } 

Ax(BxC) = {<a,<b,c>> : (aeA) (beB) (ceC) } 

A-B^.  = {<a,b.c>: (aeA)(beB)(ceC) } 

Notice, Cartesian product is not associative while product is 

associative.  There is a strong similarity between product 

and relative product, which will be defined subsequently.  The 

next step on the way to defining relation is the definition of 

the product space of a complex  A . 
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DEFINITION 32.  Let  C, (A) = "X 

C2(A) 

(VneN) C  .(A) 
n ♦ 1 

then   n(A) 

C, (A) -A 

Cn(A)-A 

■^i.NCl^ 

n(A)  is the product space of  A  and contains all n-tuples 

that can be constructed from  A    Using the concept of product 

space we can now define any relation  R . 

DEFINITION 33.  R  is a relation *~*   (5A) (3neN) (RcIUA) ) 

(Vx) (xeR ♦ 6(X)« 11) • 

w 
Since, for any complex  A, A  is a set and since an infinite 

union of sets is a set, then for any complex  A, n(A)  is a 

set; and since any subset of a set is a set we have that any 

relation is just a set of finite degree n-tuples.  If the n- 

tuples all have the same degree then the relation is called 

homogeneous . 

DEFINITION 34.  If  R  is a relation, then  R  is homo- 

geneous in degree  n ♦•"• {Vx)(xeR ♦ 6(x)=n) . 

THEOREM 14,  R  is a binary relation *-> R  is a 

homogeneous relation in degree 2. 

PROOF.  This is a direct consequence of Definitions 

17 and 34, since for all  a  and  b 

6 (■ a , b > ) ■ 2 . 
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With a general concept of relation defined we can expand some 

definitions, that were previously restricted to binary rela- 

tions, to apply for general relations.  For a relation  A  the 

i ■• th domain of  A, D.  (A) , and the i - t_h range of  A, R. (A) , 

will be respectively: 

DEFINITION 35.  A  is a relation - 

P. (A] = {x: (3aeA) (xe. a) }  and 

R.(A) = {x: (3aeA)(j=6(a)*l-i) (xe .a)} . 

A convention that will be used in this paper is that  P(A)  and 

R(A)  will be used in plrce of V^k)      and  R (A) .  It should 

be noted that when  A  is a binary relation. Definition 35 is 

compatible with Definitions 18 and 19.  Further exploration 

into expanded binary-relation properties to general - relation 

properties will be given at the end of this paper. 

VIII. TAU-ORDERING 

In order to complete our goal and establish the 

al lowable-sets* , in an STDS, as those complexes which can be 

defined over  ß  and whose union is well-ordered, we must in- 

troduce some concepts peculiar to the new definition of n-tuple 

Repeated unary union on a complex  A  will be represented by 

UnA  where  UPA=A  and  ln+1A=U(ÜnA)  for  neN .  The rank of 

a complex can then be defined by: 

*  It will turn out that more than just sets are allowable, 
namely all totally finite complexes defined over  ß . 
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i 

DEFINITION 36.  ^(A)=n ^ (neN)(U   A^0)(UnA=0) 

The rank of a complex  A  is the greatest depth of nesting in- 

volved in the complex, if the complex has finite depth.  For 

example, let  A = { a6 , {b 2 , { a ' } 5} 7 }  then  MA) = 3 ; and for any 

A  let  B =A, B -E , B  , ■ ■   then for  C=U  ..B , ^(C)  is un- 
i'in+In neNn 

defined since 1{C)äN   . 

Two closely related concepts are the n-th projection 

of a complex  A, P (A) , and the n-th component of an n-tuple 

B , Pn(B) . 

DEFINITION 37.  P (A) ■ {x:xe A} 
n v y        n 

DEFINITION 38.  p (B) - x ^- P (B) =  {x} . 
n  y n 

For example: p , ,< a ,b , c , d> ) ■ c and P6 ({ a
6 ,b 3 , { a ' } "^ , c6 }) = 

{a,c} . The concept of defined over has been alluded to but 

has not yet been formally defined.  For any complex  A  let: 

X^fi.)   -   {x:(Ii)(xeiA)(Vy)(VJ)(y^.x)) 

and 

then: 

AnM(A) z A
nf
A)UA (Ün"1A) 

DEFINITION 39.  A complex  A  is defined over the set 

ß -- (3n€N) (^(A)=n) (A (A)cß) . 

This says that every element of  A  that is not a complex is 

an element of  ß , and that every element of  A  that is a 
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complex is itself defined over  ß .  Sometimes the word 

"generated by" may be used instead of "defined over."  What 

we want to show is that for a given set  ß , any complex de- 

fined over  ß  will be an "allowable-set."  This means that 

for any two complexes defined over  ß  the union of these two 

complexes must be well-ordered.  This in turn necessitates a 

relation to establish the we 11-order i ng by.  To do this we 

introduce the definition of (<) ,   where  <  is the usual less 

than relation, and we refer to (<) being i nduced on a   set  A 

by  < . 

DEFINITION 40.  For any set  A  and function  f  such that 

t1'1 ,Vif)*h     and  R(f)cN  then  f  induces © on 

A *•- (Va,beA)(a©b -+ f(a) < f(b)) . 

Then © well-orders  A  since  <  well-orders any subset of 

N  and since  f  is one-to-one and  R(fl  is a subset of  N 

Let us now define  <  for n-tuples  o & co  defined "directly" 

over  Z (i.e , (VieNf6(o))) (p. (a)eZ ) ) . 

DEFINITION 41   For any two n-tuples  a & a)  such that 

oen(Z) & coelUZ) , then  a < w ■•-■ (3 i eN) [ (p. (a) < 

p. (a)))v(P. (o)=0^Pi(uj))] (VjeN) (j < i ♦ p. (a) •(>.{<*))    . 

For example:  <I,3,2,4> < <1,4J0,3> < <2,1,6> < <3> .  Notice 

that  <  is defined on  Z  and on  n(Z)  but not on  ZUn(Z) 

We can extend  <  further to subsets of  n(Z) . 



-24- 

DEFINITION 42.  If  B , C c n( Z)  then  B < C ^- C3beB%C) 

(VaeBuC) (a < b -<■ aeC) . 

This establishes a we 11-ordering on the set of all subsets 

fthe power set) of II (Z) , P (IT (Z) ) . Now if a one-to-one mapping 

can be found from the set of all complexes defined over ß to 

P(n(Z)) , then the set of all complexes defined over ß would 

be well-ordered, which would assure the feasibility of an STDS 

under the conditions previously stated. In order to establish 

this mapping let us define the reduction of a complex by  i . 

DEFINITION 43.  A ■ {x : (j-k ♦ i) (xe . A)} . 

For example, if  A = {a3 , {a2,b2}6,x8}  then  A = {{a2,b2}3,x5} 

We can now define the collected cardinality of a complex  A, 

^(A) , recursively by: 

DEFINITION 44. %    (A) ■ #{x 1 : (xe.A) (Vj) (7yc . x)} 

UK)   ■ 0 «-» (Vj) (Jyc.A) 

e(A) - e0(A) +I jlae.A^a) 

A complex  A  is totally finite if  ^(A)eZ , which means that 

for any complex  AfA  has no infinite constituents.  As a 

notational convenience, for any complex  A  let  N. = NCn)-*-^ 

n=#A    Then  N.  is defined only if  #AeN    We will now de- 

fine, for any totally finite complex  Q  defined over  ß , 

the tau-ordenng of  Q  by  ß . 
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DEFINITION 45.  For any totally finite complex  Q  defined 

over  8 , and  f  such that  f1'1,P(f)=ß , and 

R(f)=N0  then  Q  is tau-ordered by  ß  if  there 
p 

exists a set  v(Q)={T0 (x1):xe.Q} , such that: 

a.  (Vl«N)(V*ciQ)(3k«NQ)(VwrfiQ) 

1. aeß -> T (a1) = { < I , k , i , 0 , f (a) > } 

2. a^ß ^ Tfa1) = {x : (2b ) (I j ) (be . a) (3yeT f b J )) 

(x ■  <p. (y) + l.k,i>*y)} 

3.  TQ(cü
1) = 0 

(Va) (Vb)(Vx)(Vy)[xeTQ(a
1) & yeTQ(b■,) - (P2(x) 

= P2(y) ~   {{a},i} = {{b}.j}) 

For any totally finite complex  Q  defined on  ß , each element 

of  T (Q)  is a set of n-tuples defined over  Z .  For each n- 

tuple  <x. ,...,x > x  ,  is always zero,  x   is an integer r     i'nn-1      #   J '        n 6 

corresponding to an element in  ß , and  x   is the depth of 

nesting of this element with  n = 2x^3 .  For all even  i  such 

that  2^ i ^n - 3  x.  is the relative order extablished by the 
i ' 

remainder of the n-tuple.  For  i  odd and  3^i«n - 2  x. 
r i 

is the position in the complex of the element represented by 

the remainder of the n-tuple.  T  is a one-to-one mapping of 

Q  into  P(n(Z)] , defined by  T(Q)={T (x1):xe.Q} , and the 

unary union of tau  U~  maps the constituents of  Q  onto  K , 

where  K  is a subset of  n(Z)  such that  #K=4(Q) , and 

(VxeK) (6 (X)ä21(Q3+3) .  What we would like to show is that 

T  well-orders a complex, and for any two complexes  T 
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preserves the wel 1-ordering on their union.  T  does not quite 

do this under  < , for we have included in the first two com- 

ponents of every element of  K , the depth of nesting and the 

relative order of the  ß  constituent in  Q .  For example: 

let 

Q = {a3.b?.{a6.b2.cl}3.{{a.bfe
7}}2} 

where  a.b.c.e  are in  ß , then  ^(Q)=8  and  ^(Q)=3 .  For 

this example leave  a,b,c , and  e  in place of  f(a),f(b)> 

f(c) , and  f(c)  for ease of tracing the example: then 

T(Q)={TQ(x
1):xe.Q}  and 

ÜT(Q) = { <l,l,2.0.b>, 

<3,2,2.1,l.l,l,0.a>, 

-3)2,2,l>l,2,1.0,b>. 

<3,2,2,l,1.3,7,0.e>, 

<1,3,3,0,a>, 

<2,4,3,1,1,0,0, 

<2,4,3,2,2,0,b>, 

■-2,4,3.3,6,0,a>     } . 

For all  xeUr(Q),p!(x)  is the depth of nesting of the element 

of  ß  and for  i=(2pi(x)*3)  then  T(p (x))eß  (in the case 

of this example  p.(x)6ß) .  In all cases  p. ](x)=0 , this is 

so that the order on  ß  will not influence the tau-ordering, 

unless all the previous components are the same. 

It remains to shov, that the tau-ordering for all 

totally finite complexes defined on  ß  does, in fact, establish 

the appropriate well-ordering conditions under some relation. 
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Since  0 is defined only for  ß  we can extend © to apply 

to subsets of  n(Z) , as  <  was extended. 

DEFINITION 46.  For  a & co «11(2)  such that  6(a)^5 & 

6(a))^5 , then: 
2     2 

a 0 oj <-»• a < CD . 

Notice in the previous example the elements of  Ux(Q)  are 

well-ordered by (<) ,  The following definition is analogous to 

Definition 42. 

DEFINITION 47.  For  A,BcII(Z)  such that  (Vx e A,B) 

(6(x)fc5)  then: 

A © B ^-> (JbeA^B) (VaeAuB] (a © b - aeB^ . 

For any totally finite complexes  A  and  B  defined over  3 

the elements of  T(A)  and  T(B)  satisfy conditions of Defini- 

tion 47, since  t  is a one-tu-one mapping and since  AuB  is 

defined over  ß , our conditions of we 11-ordering are estab- 

lished by the following theorem. 

THEOREM 15.  For all totally finite complexes defined 

over  ß  and for 0 defined on  ß  then, 

(Vi,j)(Vx,>HxeiA) (yejB)TA(x
1) ©TB(y

j) -+ TAüB
(X1)

 
Ö 

TAuB(^ • 

PROOF.  This follows from the fact that © is in- 

dependent of  p (CIJ)   and  P,(Cü)  for all 

a) eTD(z
k) . for any ze^D:    ^(x1) ©TBCy

j) 
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(OJ: {IaeTA(x
1)) (10=3)} < U: (laeTg (yJ ) (uj = a) } 

by Definition 47, 46, and 42.  Then for all 
2  2 

weT   (x   )    ,  3peT     R(x   )      such   that     u)=p   ;   and 

for   all     coeT.    _ (x1) , (IpeT . (x1)      such   that 
2  2 Au D A 

M-p .  Therefore  (VX)(TA(x
1) 0X — TAUB

(X1)
© 

X ) .  Sitni lar ly , 

(VX)(X 0TB(yJ) — X ©TAwB(y
J)) . 

Therefore, 

T.Cx1) OTR(yJ) - T^.CX
1) 0T.ijR(yJ) .Q.E.D. AuB 

The relation  Q defined on  0  permits all totally finite com- 

plexes defined over  ß  as allowable sets in an STDS.  This 

allows any finite nesting of imaginable combinations of finite 

complexes in an STDS, as long as the storage capacity is not 

violated.  In particular, sets of variable length n-tuples are 

allowed where the components may be: complexes, elements of  ß , 

or themselves n-tuples. 

IX.  LXTENUIiD OPERATIONS FOR RELATIONS 

Sets of n-tuples are a natural means for expressing 

arbitrarily related data.  Full utilization of this feature can 

not be realized by relying on properties defined solely for 

sets of order-pairs as: domain, range, image, relative product, 

restriction, etc.  Therefore, these properties need to be ex- 

tended to sets of n-tuples in such a way as: 

(i)  to preserve their original meaning for binary 

relations, and 
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(ii)  when applied to sets of n-tuples to give direct- 

ly the same result usually achieved through chain applications 

of binary-oriented operations to nested ordered pairs. 

Two such definitions have already been given, for i-th domain 

and i-th range (see Definition 35). 

First we can define weakly restricted and s t rong ly 

restricted respectively: 

DEFINITION 48.  For any relation  R  and any complex  B 

R|ß = {x: (xeR) (1ä<S (xOB) ä 6(B)) } , 

and 

R||B = {x: (xeR) (6(X*B) = 6(B))} , 

For example, let  R = {<a , b,c>,<a,x>,<b,y,x>}  and let  B = 

{a'.c3} , then  R|B = {<a,b,c>,<a,x>}  and  R||B = {<a,b,c>} . 

Notice that for a binary relation  R  and a set  B: R|B = R||B = 

RO(B*R(R)) , given the usual definition of restriction for 

binary relation.  For any relation  R  define the converse of 

R.  R: 

DEFINITION 49.  R  is a relation •+ R = {x: (lyeR) (Vi eN (6 (y))) 

(j=6(y) + l-i) (pi(x)=p.(y))} . 

Then for the i mage of  B  and the converse image of  B  under 

the relation  R , respectively: 
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DEFINITION   50.      R[B]    =    { x : ( I j , y , w) (weR ) (ye . wr\B) (xe        wj} 

and 

[B]R   =    ix: (Jj.y,w)(weR)(ye.wnB) (xe.^w)}    . 

If  R = {<a,b,c,d>,<x,y,z>} , B = (b2,C2,ya) , then  R[B] - {c.z}, 

R[B] ={b,x} , [B]R = {a.x},  [B]R = (d,z} .  Again these properties 

are consistent with the usual definitions when  R  is a binary 

relation and  B  is a set.  The next extended definition will 

be that of the i-th relative product of two relations  A  and 

B . 

DEFINITION 51,  If  A  and  B  are relations then, 

A/^B = {x: (laeA) (IbeB) (k = 6(a)-i) (0<k) (0<6 (b)-i) 

(h = 6(a)*6(b)-2i)(VjeN(i))[(pk+. (a)=p. (bj) 

* (VmeN(h}) (m- k * pm(x) - pm(a))(k<m * pm(x) 

m- k (b))] 

As an example of the last definition let  A = {<a,b,c>,<üj,x,y,z>, 

<a,d,b,c>}  and let  B = {<b,c,f>,<b,c,p,q>,^y,z,m,n>}  then 

A/2B = i<a,f>,<a,p,q>,<cü>x,m>n>,<a,d,f>,<aJd,p,q>} .  When  A 

and  B  are binary relations and  i=l  then  A/B  gives the 

usual interpxstation of relative product.  For any complex  A 

the i - th non- empty position of  A  is  y.(A) , for  I-i6(A) . 

DEFINITION 52.  For any complex  A , 

U.(A) • n ♦-» (i=l & n = 9'(A))  or  (1< i) ( i eN (6 (A)) ) 

I 
(j-ji  (A)) (X = A - n-j^a (x)) . 

I 
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With this definition we can define the i-th domain and the 

i-th range and the converse of any arbitrary complex. 

DEFINITION 53.  The i-th domain of  A  is 

P.CA) = {xh: (3.y)(3j) (ye.A)(i^ 6(y))(k = Mi(y))(xeky) 

Ch-k-ui_1(y))) . 

DEFINITION 54.  The converse of  A  is 

Ä = {y1:(3x)(/e.A)(9+(x)eN)(j=9+(x3+9'(x))(VkeN) 

(3+(x})) (Pk(y) ■ Pk_j(x))} . 

Where P,{y)      is given by Definition 37.  The i-th range of 

A  is just the  i-th domain of the converse of A:R. (A)=D. (A) . 

These are just a few of the definitions possible 

for complexes; more imaginative constructions can be developed 

as the need arises. 

X. EXAMPLES 

Since this paper is a claim for the feasibility 

an STDS, an implemented example is in order.  Two ex 

were run on an IBM 7090.  The times may or may not be charac- 

teristic of the potential speeds in an STDS.  With just two 

examples no claim? are made other than that two examples were 

run with the following results: 

PROBLEM 1   Given a population of 24,000 people and a file 

F  containing a ten-tuple for each person such that 

each ten-tuple is of the form  <age, sex, marital 
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status, race, political affiliation, mother tongue, 

employment status, family size, highest school grade 

completed, type of dwelling>, the following four 

questions were asked: 

a. Find the number of married females: 

*(F||{f2.mM) . 

Answer: 6,015 

Time:   0.50 seconds 

b. Find the number of people of Spanish race whose 

mother tongue is not Spanish. 

Answer: 1,352 

Time:   0.48 seconds 

c. Find the number of people aged 93 or 94. 

Answer: 46 

Time:   0.73 seconds 

d. Find the number of males and unmarried females. 

Answer: 17,985 

Time:   0.55 seconds 

e   Find the number of males between the ages of 

20 and 40. 

Answer: 588 

Time:   0.62 seconds 

PROBLEM 2.   Given a population of 1000 people and given 

two collections, A  and  B , of subsets from this 

I 
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population such that:  A  contains 20 sets of 500 

people, and  B  contains 500 sets of 20 people. 

Find the set of people belonging to some set in  A , 

to al 1 sets in  A , and to an odd number of sets in 

A ; and similarly for  B 

Results 

a. people in some set 

b. people in all sets 

c. people in odd number of sets 

A - T i m e s 

a.  0.73 sec 

b .  0.48 sec 

c.  0.76 sec 

B-Times 

0 . 76 sec 

0.05 sec 

0. 78 sec 

A point to notice is that where every element has to 

be accessed, as in (a) and (c), the times are dependent 

on the total number of elements included (C(A) = ^(B) = 

10,000) and not the number of sets involved (20 for 

A and 500 for B) . 

XI. CONCLUSION 

In conclusion, the existence of a we 11 - ordering rela- 

tion satisfying previously stated criteria establishes that an 

STDS can be implemented having reasonably fast times for a 

given collection of subroutines.  However, this does not mean 
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that the we 1 1 - orden ng relation developed here is the only one 

that can be used in every case, but other orderings may be 

more suitable for a particular given problem 

1 



N 

(A;BJ 

• • 
q 

E . 
1 

A-B 

AJB 

{xl : »(x.i)) 

AoB 

AuB 

A*B 

A^B 

U A 

OA 

a+(A) 

r (A) 

<x)y> 

fi-i 

#A 

: 

6(A) 

<x i , .    . (x 
t J 

A 

A*B 

A-B 

A*B 

n(A) 

1(A) 

Pn(A) 

Pn(A) 

11 

ÜEFINtÜ SYMBOLS 

Page 4 

Page 5 

Page 5 

Page 5 

Page (> 

Page 6 

Page 9 

Page 9 

Page 9 

Page i 0 

Page 10 

Page 1(1 

Page 1(1 

Page 1(1 

Page 1(1 

Page 11 

Page 11 

Page 11 

Page 1 1 

Page 1 1 

Page 11 

P a g e is 
Page 17 

Page 18 

Page 19 

Page 19 

Page 19 

P a g e 20 

Page 22 

Page 22 

Page 22 

Natural   Numbers 

Clomp 1 ex 

First Set of a Complex 

Second Set of a Complex 

Identity Set 

Complex Containment 

Subcomp1 ex 

Proper Subcomplex 

Schema for a Complex 

Complex Intersection 

Complex Union 

Complex Symmetric Difference 

Relative Complement 

Unary Union 

Unary Intersection 

Maximum Dimension 

Minimum Dimension 

Ordered Pair 

One-to-One Function 

Cardinali t y 

Non-Negative Integers 

Degree of a Complex 

N - T u p 1 e 

Fixpansion   of  a   Complex 

Concatenation 

Product 

Cartesian Product 

Product Space 

Rank 

N-th Projection 

."> - th Component 
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DEFINED SYMBOLS (cont'd) 

I 
A 

5(A) 

R| B 

R||| 

R 

RIB] 

A/ . B 

U^A) 

P^A) 

R. (A) 

Page 24 

Page 24 

Page 29 

Page 29 

Page 29 

Page 30 

Page 30 

Page 30 

Page 31 

Page 31 

Reduction by  i 

Collected Cardinality 

Weak Restriction 

Strong Restriction 

Converse 

Image 

i-th Relative Product 

i-th Non-Empty Position 

i-th Domain 

i-th Range 
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