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ABSTRACT

Fluid turbulence is of cruciel significance in many problems of
scientific and technical importance. Current developments in computer
technolo@ offer the possibilities of solving the fundamental equations
of turbulent flow in a way never before possible. In order to accomplish
this aim, however, it is first necessary to formulate the essential
theoretical concepts in a suitable manner. This report summarizes the
progress achieved to date in this connection. Various essential basic
eq&ations are derived, but the emphasis is as much on fundemental con-
cepts as on mathematical details. More specifically, a method is
established for the computer simulation of the detailed stationary tur-
bulence in a uniform shear flow. The results obtainable in this way
are far more comprehensive than any which could reasonably be obtained
by physical experiment. The data generated represents fundamental
information which may be subsequently analyzed to establish overall
phenomenological characteristics of the turbulence. The concepts in
this report should provide a sound basis for a systematic, sustained
and productive research plan. They have already been successfully
applied to a camputer program which is now going into operation. Results
of a typical cg.nputer ‘run are included and illustrate qualitative agree-
ment with theoretical predictions; it is hoped to present far more compre-
hengive and definitive numerical results in future reports.
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The Problem

For solution of the flow in complex hydrcdynamic systems at high
Reynolds number (for example, upward flow following underwater nuclear
explosions), a basic understanding of the mechanism of fluid turbulence
is required. The Reynolds stresses applied to the mean flow, various
"eddy diffusion coefficients ," as well as the rate of energy dissipation
from turbulence to heat, all depend on the state of the turbulence itself.
Various experimental information is available concerning these phenomena
for certain particular configurations of the mean flow, and verious
theories of turbulence exist which are applicable to a few special cases.
The basic partial differential equations which govern all incompressible
fluid flows (including turbulent ones) have been known for many years.
To date, however, it has been impossible to derive from these equations
the relevant overall statistical parameters describing turbulence which
are required for technical applications.

Findings

In the current investigation, the approach to the problem of obtain-
ing this information is indirect rather than direct. That is, by the
use of high-speed digital computers which have been available only
recently, the exact, detailed nature of particular realizations of tur-
bulence may be obtained numerically, by brute-force integration of the
governing partial differential equations. This extremely large amount
of detailed information concerning the flow may then be treated
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statistically to extract the essential information required. This
report describes techniques developed to obtain the desired detailed
information, and presents a few results from a computer program which
embodies these concepts. Methods are then discussed by which this date

(which is analogous to a very large amount of physical experimental date)
will be processed.
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l. INTRODUCTION

The present investigation of turbulence originated in connection
with a project involving the numerical simulation of the mean fluw in
underwater nuclear explosions.®* It was realized quite early in the
course of the explosion study that a significant fraction of the energy
released in the explosion goes into the creation of intense turbulence,
and that the turbulence and the mean flow have a profound mutual influ-
ence upon each other. Of course, it is possible to simulate the mean
flow phenomena to a first order of approximation, which is sufficient
for some engineering purposes, by ignoring the complexities of turbu-
lence and simulating them rather crudely in the form of a fictitious
increase in apparent viscosity. 1In fact, some such procedure is required
in any case to ensure that the numerical calculation procedure shall
itself be stable.

It is apparent, however, that further progress in the underwater
explosion problem requires a deeper understanding of the associated
turbulence. Furthermore, the phenomenon of turbulence has an ernormous
technical and scientific importance in its own right, quite apart from
the specific application to underwater explosions. Most fluid flows of
technical importence are turbulent, so that progress in understanding
the fundamentals of turbulence has potentially an enormous range of
application.

¥Pritchett, J. W., "MACYL - A Two Dimensional Cylindrical Coordinate
Incompressible Code", U. S. Naval Radiological Defense Laboratory,
USNRDL-LR-67'97, 20 Oct. 1967.



It 1s an interesting fact that the basic pertial differential equa-
tions which govern the detailed motion involved in fluid turbulence
have been known for a very long time. However, no one has yet succeeded
in deriving from thes: detailed equations the resulting overall statis-
tical and phenomenological characteristics of the turbulence which are
important for technical applications. Typical statistical features of
these kinds are mean kinetic energy, mean turbulent stresses, scale of
turbulence, various correlation coefficients, etc. The ultimate mutual
interrelationships among these statistical characteristics of the tur-
bulence and the relevant features of the mean flow field remain shrouded
in mystery.

One reason for the difficulty is that the deta.led structure of the
turbulence is extremely complex in relation to that of the mean flow
and requires an enormously greater number of degrees of freedom for its
full description. This fact is crucial for analysis by purely numerical
methods. It should be borne in mind that in the underwater explosion
problem, for example, the mean flow itself 1s quite complex and requires
& very large number of degrees of freedom for its adequate numerical
description. This is true even after advantage has been taken of the
polar symmetry which reduce:s the mean-flow problem fram three to two
dimensions. The mean-flow requirements still tax the memory capacity
of the best modern computers. If we now were to attempt to add turbu-
lence effects by a direct numerical assault, this would require a much
finer mesh and an extension from two to three dimensions. The demands
on computer memory capacity and computing time would be increased by a
fantastic amount! Clearly, such an attack by sheer force would be
vholly impractical.

In view of the foregoing difficulties with a direct numerical attack,
and in the absence of any demonstrably valid analytical solutions, most
attempts to incorporate the effects of turbulence into verious problems
of fluid mechanics have been based on a more or less empirical approach.
Thus the unknown relation between the mean effective turbulence stresses



and the mean flow may be assumed to follow some more or less plausible
mathematical form, perhaps one derived by a rough analogy with the known
mechanism vhich governs the viscous stresses. Various assumptions of
this kind can and have been postulated, but none so far suggested have
been convincingly demonstrated to follow fram the fundamental equations
of continuity and motion. Corsequently, heuristic models of this type
generally contain one or more empirical coefficients whose values can be
determined only by physical experiment. Nevertheless, results can be
obtained in this way which do have a certain usefulness for particular
purposes. However, such results tend to be rather limited in scope, are
subject to occasionally serious inconsistencies and errors, and do not
provide sufficient insight into the real underlying mechanism involved.
There is, however, another possible alternative. We may subdivide
the overall problem into several successive phases, eack one of which
does lie within the capabilities of modern computers. In the first place,
we can turn attention to the study of situations in which the charscter
of the mean flow has been substantially simplified. All nonessential
complications of the mean flow are at first eliminated. In this way the
inherent and essential mechanism of turbulence is all the better isoleted
and displayed for detailed study and analysis. Secondly, we can sub-
divide the turbulence itself into two parts, namely, small-scale and
large-scale turbulence. The small-scale turbulence can be studied first,
utilizing the full capebilities of the computer to this end. While the
numerical data obtained in this way is enormously detailed and complex,
the significant overall statistical and phenomenological features of
this data presumably lend themselves to summary and generalization in
same much simpler way. Thus the mean effective turbulence stresses
associated with the small-scale turbulence can bz consolidated into an
appropriate formula. In fact the analysis given in a later section of
this report sheds some light on the essential nature of such a relation.
The resulting formula can then be treated as part of the known input in
the treatment of the large-scale turbulence. Again the full power of
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the computer is utilized in dealing with the large-scale turbulence.
The detuiled numerical data obtained in this second stage can again be
generalized so as to summarize the mean effective turbulence atresses
and other phenomenological characteristics of the overall turbulence.
These results, in turn, can be treated as known inputs ia the treatment
of the mean flow field, and can be applied to progressively more complex
meean flovs.

Of course, the relationships obtained for a simplified meen flow do
not necessarily apply to mean flows of more general types. Nevertheless,
if fundemental insight is our goal, the natural progression of study must
be from the simpler to the more camplex cases. Sventually, it shovld be
possible to re-introduce some of thw camplicating factors which are ex-
cluded fram the initial studies. The resulting mathematical models
should gradually become more pertinent and general. Meanwhile, however,
even the earlier models can be used to advantage as first-order approxi-
mations and introduced provisionally into rather general types of flow
fields, such as the unetzady mean flows involved in underwater explosions,
for example. This, at least, is the philosophy upon which the present
line of investigation is based.

A more detailed discussion of the problem of modelling the mean
effective turbulence stresses is presented in a later section of this
report.

The principel purpose of the present investigation is, therefore, to
begin a fundamental study of the basic mechanism of turbulence by means
of a numerical solution of the equations of continuity and motion on a
modern high-speed digital computer.

So far as the present report itself is concerned, its main objective
is to document the progress that hae thus far been achieved, and to
summarize the key concepts that have evolved. A certain amount of explora-
tory theoretical work and preliminary computer calculetions were carried
out in the early stages before the essertial ideas were adequately




developed. It is not the purpose of this report to dwell on these
early attempte which have played a useful role but which are now
largely superseded.

It is perhaps appropriate to mention in passing, however, that some
efforts were made to formulate the problem in wave space, using concepts
of spectral and Fourier analysis. While these methods have certain
attractive theoretical features, it was finally concluded, nevertheless,
that numerical analysis can be carried out more efficiently by a more
straightforwerd approach expressed in termms of ordinary physical space.
However, the results computed in this more direct way can subsequently
be re-analyzed from the spectral point of view. In fact, it is expected
that such supplementary calculations of the spectral type will definitely
be made and will prove useful. (See Appendix D.)

While severa) preliminary computer programs have so far been produced,
the first program which emboiies present guiding concepts to a sufficient
degree is that one designated as "TURBOCODE, MARK V." As of the date of
this writing (January 1968), this program has just been developed to tre
point where serious calculations can now begin on a n.oderate scale.
Results of a typical computer run are given later in this report. How-
ever, extended discussion of actual numerical results must await a
future repci.. The present report is aimed primarily at documenting the
theoretical concepts which are largely embodied in TURBOCODE, MARK V.

In fact, the present theory goes somewhat beyond that on which the above
code is based. It is anticipated that a more up to date version will
ultimately replace MARK V. At this time, however, it is considered
advisable to obtain a certain amount of numerical data from MARK V
before proceeding with any major program revision.

The anticipated progress of the present research program can be
classified into seversl successive, but somewhat overlapping stages, as
follovs:

(;) Development of basic ooncepts, equations and computer program

for simulation of turbulence.




(2) Generation and analysis of turoulence data, and development of
phenomenological models.

(3) Application and extension of results to various mean flow fields
of technical importance.
The present report, however, is largely limited to the first item
in this liet. The second stage will also require a strong analytical
effort. Only then cen the technological pay-off represented by the
third stage be fully achieved.




2, THE BASIC FIOW FIELD

The simplest possible mean flow field relating to the problem at
hand is one vhich is both steady and incompressible.

The simplest possible state of turbulence is one which is both
stationary and homogeneous. Stationary turbulence is characterized by
time invariance of all statistical properties at all points. Homogeneous
turbulence is characterized by spatial invariance of all statistical
properties at all times. These statements also imply constant viscosity
over space and time.

The turbulence can be stationary and homogeneous only if the mean
flow itself 1s steady and homogeneous. [or homogeneity, the mean flow
must have a uniform and constant vorticity vector, and a uniform and
constant strain rate tensor. If, in addition, we require that the
streamlines of the mean flow field Le straight and perallel, say parallel
to the x axis, the mean flow reduces to the definite and unique case of
a simple uniform shear flow. We can, without loss of generality, orient
the y axis in the direction of the shearing gradient. Therefore the
mean velocity becames simply

U=1 (v, + o) (2-1)
where 1 is a unit vector in the positive x direction, and ( is the con-
stant shear rate. U, 1s & constent which depends only on the arbitrary
location of coordinates.

A further simplificaticn of Eq. (2-1) would be to impose the restric-
tion of zero shear rate, that is

.10 A
a'i'in‘o (2-2)



vhereupon

~ A

Us=1U = constant (2-3)

This represents a uniform mean flow. It is in fact equivalent to
no flow at all, since a set of axes can now be defined which move along
wvith the mean flow, with respect to which axes the mean velocity is
everywhere zero.

The case of uniform mean flow has attracted much attention because
it 1s isotropic. Naturally, the condition of isotropv represents a very
considerable simplification of the turbulence problem, and has been ex-
tensively studied.

Unfortunately, however, tais degree ot implification is excessive
in the present context, for with isotropic turbulence and zero shear
rate of the mean flow the average turbulent shear stresses are zero, and
there can be no transfer of energy from the mean flow to the turbulence.
Hence the turbulent energy dissipated into heat by viscous action is not
replenished, and the turbulent energy decays with time. The turbulence
therefore is not stationary with respect to time, as originally required.
(It becomes steady only in the limit as zero amplitude is approached.
But this limit is triviel, in that it really amounts to the absence of
turbulence.)

For non-zero shear rate. however, the mean turbulent shear stress is
also non-zero, and the sense {s such that net energy is transferred from
the mean flov into the turbulence. Hence an equilibrium is eventually
reached between the mean rate of energy input and the mean rate of viscous
dissipation. Consequently, a stationary non-zero amplitude of turbulent
energy is ultimately established, a&s required.

In short, the required flow field involves

(a) A steady, incompressible, parallel mean shear flow with constant
non-zero shear rate, and constant viscosity.



(b) Stationary and homogeneous turbulence which is, however, aniso-
tropic.

Now consider the flow between two varallel walls of infinite ~xtent,
as shown in Fig. 2.1. The walls move in opposite directions with con-
stant velocities + Uw as indicated. Spacing between the walls is 2h.
The fluid has constant uensity ¢ and constant kinematic viscosity v.

A Reynolds number may be defined for this flow in the form

- (3 e

\Y)

It is a well known principle of fluid mechanics that for any given
geometrical configuration, there exists a corresponding critical Reynolds
number wvhich marks the boundary between laminar and turbulent flow. For
the present case, the critical Reynolds number is about 750 (Ref. 1).
Below tris critical velue the above flow is laminar and the velocity
varies according to the simple linear law.

U=Qy (2-5)

where

o
[

0= = constant shear rate (2-6)

(o %]
«

At Reynolde numbers above the critical, however, the flow becomes
unstable with respect to small velocity perturbations, and a stationary
turbulent condition is soon established. In this case the velocity
distribution becomes strongly non-linear, somewhat as shown in the
diagram.

Next, consider a sequence of turbulent flows of the above type at
successively higher Reynolds numbers. Suppose this sequence is gener-
ated by increasing both Uw and h in such a way that the slope %g re-
mains finite in the mid-region near y = 0, far from both walls. In the
limit as Re - o, ye once again recover a linear distribution of the mean
velocity far from the walls, but now the flow is turbulent. This is the
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Fig. 2.1 Laminar and Turbulent Flows Between Oppositely Moving Parallel
Walls.
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situation we wish to analyze (see Fig. 2.2). 1t represents perhaps

the simplest conceptual example of stationary, homogeneous non-isotropic
turbulence. Analysis of this flow should reveal important basic informa-
tion concerning the irreducible essence of stationary turbulence.

11
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(a) Absolute Form
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dy
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(b) Dimensionless Form

Fg. 2.2

The Basic Mean Flow Field.
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3. DIMENSIONAL ANALYSIS OF THE BASIC FLOW

The basic flow field described in the previous section, and illustra-
ted n Fig. 2.2, is fully defined by three characteristic parameters,
namely’,

l= % = the constant shear rate, 1l/sec
p = the constant fluid density, alugs/ft3

Vv = the constant kinematic viscosity, ft2/sec

The present problem lies in the realm of dynamics. This amounts to
saying that all significant quantities which occur in it are reducible
dimensionally to certain combinations of not more than three fundamental
dimensions. These can be force F, length L and time T. However, the
requisite reference force, length and time can be expressed, in tumn,
by combinations of three parameters appropriate to the specific problem
under study. For the present problem, the necessary and sufficient
parameters are clearly (1, p and V. These three quantities suffice to
establish a system of natural reference units in terms of which all
other physical quantities can be expressed in an appropriate dimension-
less foru. Thus, for example, if X is any relevant quantity having
arbitrary physical dimensions, a dimensionless form X* may always be
defined cfuch that

RS o n: °
The appropriate exponents &, b, c can always be found s0 as to render X#*
dimensionless.
This principle is illustrated by the examples listed in Table 3.l.
The last{ three entries in the table show that the basic dimensional
reference quantities, namely p, Vv and (1, when themselves expressed in

dimensionless terms, turn out, of course, to have unit amplitude.

13



TABLE 3.1

Summary of Dimensionless Variables

Quantity Symbol Dimensions Dimensionless
Form
Principal Variables: a
Length x L x*=x [
“ime t T ty=Q¢
u* = _u_-
Velocity u L/T vva
Velocity Time u L /'1‘2 qu* _ 1 2u
Derivative ot ot* m ot
b
Force per ¢ F_L f* = —===
Unit Mass M" 2 Ve
P 2
Pressure per ¢'p FL _ L° g% » B
Unit Density W e i
Kinetic Energy E FL _ _I_E E* = -2
per Unit Mass M '1‘2 vQ
Reference Parameters:
M FT° 3
Density o] —_= o =« L a ]
B3 e
Kinematic \V _If V¢ = Ve 1
Viscosity T Y
Mean Shear i Q_
Rate 5 T (Fapy=1

1k



This fact is important. It shows that all cases of unbounded parallel
flow with constant shear rate are reducible, when expressed dimension-

lessly, to a single case! This represents a substantial simplification
and generalization of the problem. Using dimensionless nomenclature, we
may say that all cases are equivalent in a certain sense to the case of
a fluid of unit mass and unit viscosity undergoing unit shear rate.

It can be shown rigorously that any equation that is valid when ex-
pressed in absolute dimensional form is als¢ valid when expressed in
corresponding dimensionless form. Hence we may replace absolute quanti-
ties x, t, u, «.e0s etc. by the equivalent dimensionless forms denoted
by x*, t¥, u* .....etc. In this process the quantities p, v, () are re-
placed by p¥ = 1, vk = 1, O% = 1 anl hence cease to appear explicitly in
the equations.

The above non-dimensionalizing procedure is followed in some of the
mathematical developments of this report. Whenever the context is such
that there is no ambiguity involved, it becomes permissible to drop the
symbol* which was introduced above to distinguish dimensionless forms
from their dimensional counterparts. On the other hand, in some discus-
sions it is clearer to retain the fully dimensionasl form. This variation
of usage should cause no difficulty, as the context makes the intended

meaning clear.
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L. BLOCK SIZE, CELL SIZE, AND MEMORY SIZE

In analysis of the flow by finite difference methods, it is obviously
necesgsary to confine the numerical operations to a finite region. Exten-
sion of the boundaries to infinity, such as is frequently convenient
when one is using analytical techniques, is not feasible when numerical
methods are employed.

Fuortunately, an adequate approximation can he made on the basis of
a finite region, provided thet the chosen region is sufficiently large
to constitute a representative sample of the field. The term "large" is,
of course, relative. We must ask, "Large relative to what?"

The answer is that the region should be large relative to the "scale

' There are various possible definit.ons of scale of

of turbulence.'
turbulence. Perhaps the most useful definition in the present context
is based on the concept of statistical correlation. Let us therefore
summarize the essential features of this concept.

For this purpose, let *P and ﬁq denote the position vectors of two
arbitrary but known fixed points in the flow field. The relative dis-

placemert vector between the two points is then
r.=X.-X (4-1)

Let ﬁP(t) and ﬁq(t) be the respective turbulent velocity vectors at the
two points as functions of time. Assuming that the turbulence is ste
tionary, we uway define the following three time-asverasge scalar produci ,

namely,
T
u"P-u"Q = % fﬁ?(t)-ﬁq(t) at (4-2)
¥ .
Gpip = up = % Gp(t)+dg(t) at (4-3)
0

16



- T
= “2 = % ﬁq(t)'ﬁq(t) dat (b-k)

vhere the total time T is large.
Now the correlation coefficient R is defined as

-~ ~
u .u
B

) = =8
13°] VK?? 3
o )
Since the field is also homogeneous, this expression simplifies
further because in this case

R(r

(4-5)

w2 = o2 e o? (4-6)
Therefore
Rifpg) = = (b-7)
u

Furthermore, in a homogeneous field R has the same value for every
possible choice of the point X, provided f 1s held fixed.

Now it is easy to show that if point Q is chosen to coincide with
point P, we obtain perfect correlation, that is,

R(O) = 1 (4-8)

On the other hand, we know from experiment that if point Q is remote
from P, the velocities are completely uncorrelated. Hence

R(») =0 (4-9)

There is much experimental information available which shows that
the correlation coefficient R diminishes rapidly with increasing magni-
tude of the relative displacement vector, r = | fPQI' In principle,
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therefore, there existssome finite value TMAX beyond which the magnitude
of the correlation coefficientl R |1s everyvhere less than scme very

small preassigned quantity €. Thus
| R(zy,,) | s€<<<1 (4-10)

The actual value of rMAX depends on the permissible error €., Of
course, in any practical case there is always some limitation in the
accuracy with which R itself can be measured or computed. If we choose
€ equal to the uncertainty in R itself, then there exists some corres-
ponding finite TyAX
tion R is8 truly negligible. Hence the smallest region +hich is suffici-
ently large with respect to the scale of turbulence to be acceptable as

a representative sample of the field may be conceived, for example, as a

We can say that beyond this distance the correla-

sphere of radius TyAX®

Another way to judge the size of the region is in relation to the
wavelangths of the turbulent velocity spectral components. It is known
that the wavelengths which play a significant role in entraining energy
from the mean flow, in sustaining the kinetic energy of the turbulence,
and in dissipating turbulent energy into heat, are largely confined
within a certain limited range. The flow region selected for study must
be large enough to include this range, of course, but any further in-
crease in size can be expected to have negligible effects on the results.

Provided the region selected is sufficiently large along its smallest
dimension, its exact shape should make no noticeable difference in the
final results. Hence shape may be chosen on the basis of convenience.
Now the shape which is by far most convenient for numerical anelysis is
a simple cubical block, say of length L along each edge.

The cubical control block must in turn be subdivided into small
volume elements for purposes of numerical analysis by differencing tech-
niques. Onc' again, the shape of the volume elements is relatively unim-
portant, provided they are reasonably compact and sufficiently small.
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Clearly, it is by far most conveniont to choose these as cubical cells
of length (L/N) elong each edge. It is essential, however, that the
length (I/N) be sufficiently small relative to the scale of turbulence.
In particular, it must be smaller than the shortest wavelength in the
significant wavelength :ange as described above.

It follows that, ideally, we should like to use a block length L
which lies above some upper critical limit, say Lhax’ and simultaneously
to use a ceil length (L/N) which lies below some lower critical limit,
Lbin' In principal, this can be achieved by choice of a sufficiently
lerge value of N, that is, I 2 Ibax/Lbin'

The difficulty to be faced is that computer memory limitations will
make 1t impossible to use a value of N large enough to satisfy the fore-
going requirement. This 1s because camputer storage requirements increasge
roughly in proportion to N3. Moreover, computing times increase even
more sharply, perhaps in proportion to Nh. Consequently, some type of
partial simplification of the problem becomes mandatory.

One answer to this difficulty is to split the overall turbulence
* into several ranges of wavelength, and solve them in succession. The

general idea has already been explained briefly. It is believed that
existing third-generation computers have now reached a state of develop-
ment such that the problem can probably be solved in Jjust two stages,
namely, by division of the turbulence into small-scale and large-scale
effects. We can do this by choosing a length L.8 which represents the
block size for the small-scale turbulence, and which is at the same time
equal to the cell size of the large-ecale turbulence.

Thus we may write -

For the small-scale turbulence:

s
oc € s ) min
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For the large-scale turbulence:

Cell Size L ) L
8 max

Block Size L ) Ls
max

<N (b-12)

It follows that for a two-stage analysis of this kind, the required
value of N is reduced to
L
max

Lbin

N2

Another problem is that the appropriate spectral wavelengths Ihax

and Ibin are initia .y unknown, although existing experimental data
might possibly provide this information. However, we now consider a
method of numerichl experimentation on the computer itself which can
serve to establigh a reasonable estimate for the lower limit Ihin'

Recall that energy input to the turbulence is mostly concentrated at
the longer wavelengths while energy dissipation is mainly in the shorter
wavelength range. Hence a reduction of the small-scale block size L8
amounts to cutting down energy input in relation to dissipation. It
should result in a reduction in the mean steady kinetic energy of the
turbulence. In fact, it should presumably be possible to find a critical
limit Lbr below which the initially imposed turbulence cannot sustain
itself and eventually dies out. This condition can be associated with
a critical Reynolds number marking the borcer between laminar and turbu-
lent flow. Thus

e
a0 5

cYr
Re = —v— = L*cr (4-13)

It may be argued that cver distances smaller than Lbr’ significent
turbulence effects cannot be sustained. This therefore provides a
reasonable measure for the minimum necessary cell size. That is, for
the small-scale turbulence we mey place




g2l (4-14)

Presumably it is possible to find Lcr by successive trials, using only
the basic turbulence computer program itself. Let a series of runs be
made varying only the block size L. For trial values of L smaller than
Lcr’ the initial turbulence may be expected always to die out. For
values greater than Lcr’ the turbulence kinetic energy may be expected
eventually to reach a non-zero mean stationary state. Hence a systema-
tic series of trials should theoretically suffice to establish Lcr to
within any prescribed margin of uncertainty. When Lcr has been found in
this wvay, we may then fix the required block size for the small-scale

turbulence as equal to

L =NL_ (4-15)

Then the required block size for the large-scale turbulence becomes

) LL = NL = N2L (h'l\.«/
8 cr

) If the large-scale block size LL obtained in this way satisfies the
I condition

L2L (L-17)

then all requirements relating to block and cell size will have been met.
Naturally, the higher the available value of N, the more accurate

are the results obtained in this way. Theoretically, the exact result
corresponds to the unattainable hypothetical 1imit of infinite N. It is
believed, however, that by use of the two-stage approach outlined above,
reasonably accurate results can be obtained with modest values of N,
well within the memory capacity of modern computers. With computer
technology itself still advancing at a brisk rate, there is every reason
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to suppose that the accuracy and adequacy of the results attainable will
improve steadily.

Of course, the use of two (or more) successive ranges of wavelengths,
although it should enable us to cc imensate in part for limitations of
computer capacity, is not without its drawbacks. For one thing, the
basic equations become more complex as the quadratic terms in the momen-
tum equation introduce interaction effects among the several wavelength
regimes. A detailed treatment of the interaction problem lies outside
the scope of the present report. It is believed, however, that this

aspect can be successfully treated.




5. BQUIVALENT REFERENCE FRAMES

The present analysis is concerned with homogeneous turbulence. This
means that all statistical features of the turbulence, such as the mean
kinetic energy, for example, are uniform over the entire flow field.
Consequently, it is immaterial just where the control block is located
in the flow field. 1In fact, we may subdivide the entire unbounded flow

region into a cubical array of blocks, somewhat as shown in Fig. 5.1,

and select one of these at random as the system to be analyzed.

However, if the various blocks are to be considered equivalent to
one another, they must all be related to the mean flow in a corresponding
manner. Consider, for example, the array of blocks in Fig. 5.1. Block
outlines are indicated by heavy lines, cell outlines within each block by
lighter lines. Three rows of blocks are shown in the figure. Each of
these rows has a mid-plane, which is the horizontal plane midway between

the top and bottom boundaries of that row. The vertical spacing between
the successive mid-planes is equal to the block size L. Let the middle
row of blocks be regarded as fixed in the diagram. Suppose the mean
velocity of the fluid is

ﬁ=fﬂy (5'1)

wvhere y is measured vertically from the mid-plane of the middle row.

Suppose that the upper row of blocks is moving to the right with a
speed 1L, and the lower row is moving to the left with speed QIL.
Clearly there is now zero relative velocity between fluid and block at
the mid-planes of all three rows. An observer in any one row of blocks,
moving with that row, sees within his own row a distribution of the
relative mean velocity which i1s identical with that seen by any other
observer in the latter's own row. The velocity diagrams illustrate this
fact. This is what is meant by the statement that all blocks must be
related to the mean flow in a corresponding way.
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(b) Blocks and cells at other times

Fig. 5.1 Relative Positions and Velocities of Equivalent Reference Blocks.
(a) Blocks and cells at times t = O, %, %, %, ......

(b) Blocks and cells at other times.
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Now any one of these blocks may be chosen at random as the system
to be analyzed. From the point of view of a hypothetical observer within
that block and moving along with it, the block and its associated grid of
cells constitutes a stationary or Eulierian frame of reference. All the
subsequent analytical equations are to be understood as being expressed
with respect to such an Eulerian reference frame. It is an impcrtant
point, however, that the different rows of blocks are to be considered
as lying in different, though equivalent, reference frames. Since all
of these reference frames are moving in straight lines parallel to one
another and at constant relative velocities, they are all inertial
systems.

It is convenient to assume that at scme initial time t = O, all of
the blocks in the field are arranged in a simple cubical array, with
their front and rear surfaces lying in common vertical planes through
all rows, in the manner shown in Fig. 5.1(a). As time passes, the
separate rows become gradually more staggered relative to one another,
owing to their relative motion, as shown in Fig. 5.1(b). However, after
each time interval of length (1/0), the relative movement between any
two successive rows equals exactly one additional block length, so that
& simple cubical alignment is once again established. It is seen,
therefore, that the steady and progressive relative sliding of the
various blocks gives to the structure of the reference framework a
periodically recurring character, with period T = l/Q. Expressed in
appropriate dimensionless time units, the period becomes simply T* =
1/ = 1,

There is, however, a time span which is a true characteristic of
the turbulence, and which should be mentioned at this poiat. It is
associated with the concept of correlation over time, and is entirely
analogous to the previously discussed concept of correlation over
distance.

Let ﬁp(t) and ﬁrxt+T) be the velocity vectors at a fixed point ip
at times t and (t+T) respectively. If the turbulence is stationary we
can define the time averages
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by
()6 (ee) = % 6[ (96 (t+m)a (5-2)
W = 8 (6) 85(8) = G (t+T) -G (¢4T) (5-3)
T T Gy
2 [ ) By(t)at = 3 [ Gp(em) -y (temat
0 0
Now the correlation coefficient R is defined as
@,(t) «d,(t+T)
R(T) =P P (5-5)
u

If the turbulence is homogeneous, then for a fixed T, the value of
R is the same for every possible choice of the point iP'
It is seen that if we place t = O, we obtain perfect correlation,
that is,
R(0) = 1 (5-6)

On the other hand, we know from experiment that at times suffici-
ently far apart, the velocities are completely uncorrelated, that is

R(») = O (5-7)

Now it follows that there exists some time span t=T beyond which
the value of R differs from zero by an amount less than the small inher-
ent uncertainty in R itself.

It follows that if we wish to calculate any time-average property
of the turbulence, an integration over & time interval of say 2T will be
ample to provide a Just average. Also, if we wish to approximate the
turbulence by Fourier methods, it is permissible, for example, to treat
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the phenomenon ag periodic in time, provided that we choose the basic
reference period as at least equal to 2T. Actually, our present method
of solution does not assume this kind of periodicity in time; it will
be seen, however, that the assumption of periodicity in space proves
to be most useful.
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6. BOUNDARY AND INITIAL CONDITIONS

Solution of the fluid turbulence problem involves the application
of the principles of mass and momentum conservation to all the indivi-
dual small cubical cells which comprise the large fluid block under
study. The resulting difference equations which embody these physical
principles may be termed field equations because they apply to all the
small volume elements throughout the field. They play a role in the
numerical difference method analogous to that of partial differential
equations.

However, such a set of field equations is capable of esteblishing
an indefinitely large number of distinct solutions, depend - ng on the
boundary and initial conditions which are involved. For the present
case, the boundary conditions are simply the velocity end pressure dis-
tributions occurring as functions of time over the six square bounding
surfaces of the block. The initial conditions are the distributions
existing over the entire control volume at the initial time t = O.

From a purely mathematical point of view, the boundary and initial
conditions may be arbitrarily prescribed; the field equations then
establish the corresponding complete time-dependent distributions over
the volume of the block. Tbus the field equations do not in themselves
fully determine the phenomena, but merely propagate the effects of the
boundary and initial conditions in the proper manner.

But for the purpose of simulating turbulence, what are the appropri-
ate boundary and initial conditions to apply? The field equations them-
selves do not enlighten us directly on this crucial point. Nevertheless,
there are other considerations which do lead to fairly satisfactory

answers. In this connection, it is convenient to consider the initial
conditions and the boundary conditions separately.

In regard to the initial conditions, it is shown elsewhere in this
report that for & simple cubical grid of N3 points, there are 2N3 initial
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degrees of freedom. This means that 2N3 initial velocity components may
be prescribed arbitrarily. Hence the number and variety of conceivable
initial combinations is extremely large. So how shall a specific suit-
able initial combination be selected or prescribed?

The key to the answer lies in the fact that fluid turbulence is an
instability phenomenon. It 1s characteristic of instability processes
that initial perturbations serve mainly as a triggering mechanism; the
state ultimately attained i1s essentially independent of the exact nature
of the triggering disturbance. The reason is that certain components of
the turbulence tend <to grow and others to decay until an inner dynamic
equilibrium is attained. This ultimate equilibrium depends on the intrin-
sic mechanism of turbulence rather than upon the exact form of the
triggering perturbation.

It is known, however, that the initial response of a particular
flow field to an imposed disturbance may be relatively sensitive to
certain ranges of frequencies or wavelength and camparatively immune to
others, although the ultimate state 1s independent of these details.
Hence it is probably advantageous, though not essential, to assume an
initial velocity perturbation which conteins a wide range of wavelengths
and frequencies. Apart fram this rather mild requirement, however, the
exact form of the initial perturbation should be immasterial in the long
run.

Fram this it appears that any random set of initial velocity pertur-
bations is adequate for starting the calculation procedure. In any case,
the precise influence traceable to the specific initial input used may
be expected to fade out with time in a roughly exponential manner,
quickly leading to a state of the sys‘pem which may for all practical
purposes be regarded as stationary and representative. At least, this
is the assumption made in the present analysis.

Turning now to the conditions along the bounding surfaces, we find
a more difficult problem. The reason is that the influence of the
boundaries, unlike that of the initial state, does not diminish with

30




time. Hence there 1s no possibility of obtaining a valid solution
unless the boundary conditions are defined in an appropriate way.

In this connection, one important clue is that the flow field is
homogeneous. Therefore, the exact placement of the reference grid is
arbitrary and immaterial. Thus the overall statistical results obtained
from a certain system of blocks should be the same as those from another
system of blocks displaced with respect to the first by arbitrary amounts
along all three axes. Of course, if there is a vertical displacement
between these two reference systems, there must also be a corresponding
horizontal relative velocity between them. As has already been shown,
this 1s necessary in order that both systems of reference blocks shall
have corresponding velocity relationships with respect to the mean flow
passing through them.

Another way to view the matter is that the translation of any plane
by any amount in any direction should not change any overall statistical
characteristics pertaining to that plane, provided only that it remains
parallel to its original orientation and that it retains a corresponding
velocity relative to the mean flow.

Another clue concerning the character of the boundary conditions is
that each bounding surfece is the common interface between two edjacent
blocks. It serves as a medium of transmission of the influence of each
of the blocks upon the other. Furthermore, there is a kind of symmetry
in this two-way transmission. The reason is that both blocks are suffici-
ently large that all statistical characteristics of the turbulence are
sensibly equal in the two volumes. It 1s seen therefore that each bound-
ing surface is the common interface between two large volumes whose fluid
contents exhibit statistically equivalent behavior.

Another csignificant attribute of turbulence that should be borne in
mind in formulation of appropriate boundary conditions is the element of
randomness in the phenomena. The statistical concept of correlation, as
explained in an earlier section, is helpful in this connection. 1In
particular, we require that the velocity correlation coefficient R(fPQ)
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shall be negligible 1f the distance EPQ between the two points involved
is sufficiently large, say ecqual to block size L.

Consider specifically two points P and Q, point P being somewhere
on the left bounding surface and point Q being somewhere on the right
bounding surface of the block. The distance between P and Q is never
less than the block size L regardless of the precise locations of P and
Q on the respective faces. Hence the velocity correlation between P
and Q must be negligible for all possible pairs of locations. Similar
conclusions can be drawn for another pair of points P' and Q' on the
front and rear bounding faces of the block, respectively. Similarly
for points P" and Q" on the upper and lower faces.

At first glance, the above restriction seems to rule out the idea
of treating the spacewise velocity components as periodic functions of
wvavelength L, equal to block size. For if such periodicity were assumed,
then pairs of points could always be found on opposite faces for which
the correlation coefficient, instead of vanishing, would equal unity!

What seems to be demanded, instead, is a certain statistical ran-
domness in the boundary conditions. It is well understood, of course,
that turbulence is a partly stochastic process. Since the field equa-
tions themselves are strictly deterministic, the stochastic aspects can
only enter via the initial and boundary conditions.

It is undoubtedly possible to devise some calculation procedure of
the Monte Carlo type to simulate the stochastic element in the boundary
conditions, while still preserving the various types of statistical equi-
valence previously discussed. The advantage of such a procedure would
be that all the foregoing requirements could be met, including the re-
quirement for high correlation at small distances and zero correlation
at large distances. Hence this possibility is worth more detailed
study.

It has been concluded, however, that a very slight relaxation of
the above requirements leads to a great simplification of the problem,
wvithout any serious disadvantages. Also, it effectively minimizes the
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stochastic aspects, and puts the calculations on an essentially determin-
istic basis.

The simplification consists of selecting for the initial perturbation
a pattern which, although it may be somewhat random in other respects,
1s "blockwise periodic."” By this term we mean that at the initial
instant of time, the dist—ibutions of the turbulent velocity and pressure
perturbations are identical in all blocks.

Now it follows rigorously from the equations of motion that if the
turbulence is blockwise periodic at the initial instant, it remains
blockwise periodic thereafter.

To define this concept mathematically, let us take the typical
scalar velocity component u(x,y,z,t), for example. The function u will
be said to be blockwise periodic if, and only if, for all values of

X,y,z and t we have

u(x') vy, z', t) = u(x)y)z}t) (6'1)
. where x' = x + pL + qL{%t )
y'=y +aql ) (6-2)
z' = z + rL )
and where p )
Q)=0,+1,+2, +3, cees t ® (6-3)
r

The term of qL{t in the above expression accounts for the difference
in mean flow velocity in two horizontal planes separated by the vertical
distance qlL.

This assumption of periodicity among the blocks, is, of course,
stronger than the requirement for merely statistical equivalence. The
distributions in the various blocks could be statistically equivalent
without necessarily being identical at every corresponding point of
space and time. On the other hand, if they are treated as stiictly
periodic in this special way, then they satisfy statistical equivalence
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identically. That is to say all volumetric integrals, averages, vari-
ances etc. will be exactly equal for all blocks.

It turns out that fhis assumption of blockwise periodicity supplies
exactly the information needed to estabiish the unknown boundary condi-
tions in a completely determinate manner, without recourse to auxiliary
statistical hypotheses or ad hoc arguments. In other words, the hypo-
thesis is very attractive because it succeeds so well!

The method is also efficient numerically in the sense that the
stored numerical information now is representative not Jjust of one block
but of all blocks, and hence of the entire infinite field.

One requirement that the assumption of blockwise periodicity does
not fully meet is that velocity correlations should vanish at large dis-
tances. Instead, it is found that the correlation coefficient itself
becomes periodic in character. However, there is no great harm in this,
provided that the basic wavelength is sufficiently large that the recurring
correlation peaks are well separated. In fact if the correlation is
negligible at the midpoints between successive peaks, each peak may be
regarded as essentially isolated, and the spurious correlation at the
full wavelength may be safely disregarded. Figure 6.1 may help to
clarify these ideas.
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Fig. 6.1 True and Spurious Correlations Resulting From Blockwise Periodicity.



T NUMERICAL REPRESENTATION OF AN ARBITRARY
SCALAR FUNCTION OF POSITION

In this analysis we deal with scalar functions such as the velocity
components u, v, w, and the pressure function @. Typically these quanti-
ties are continuous functions of the spatial coordinates x, y, z and of
time t. Symbolically we may write, for example,

u = u(x,y,z,t) (7-1)

Furthermore, the various partial derivatives of all orders exist and
are continuous functions of space and time.

At any specified instant of time, however, the quantities of inter-
est are functions o the space coordinates only. Thus

us= u(x,y,Z) (7-2)

Unfortunately, the functions of interest possess very intricate
spatial distributions which fluctuate erratically with the passage of
time. In principle, these functions may theoretically be approximated
by Fourier series (or Fourier integrals). In practice,however, the
number of terms required in the series is of the same urder as the
number of grid points in the block. It is easy to see that round-off
errors, even if negligible on individual terms of the series, will
accumulate when summed over the very large number of terms required in
the whole series. This leads to excessive errors which vitiate the
calculation. The plain fact 1s, therefore, that we do not have available
any suitable analytical expressions for describing such intricate dis-
tributions in a way that is adequate for purposes of numericael analysis.

The problem, therefore, is to devise a numerical scheme for approxi-
mating the required functions to the requisite degree of accuracy. The
scheme must also be flexible and efficient.
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For this purpose we define a suitable gridwork of reference points
uniformly distributed throughout the space in question. The values of
the function are then specified for all points of the grid. In addi-
tion, a suitable three-dimensional interpolation rule is needed for
estimating the value of the function at an arbitrary point lying any-
vhere in the space between the specified grid points. Since the func-
tion being approximated is single-valued everywhere, it is desirable
that the interpolation rule adopted be definite and unambiguous. In
other words, once the values of the function are specified at the
reference grid points, the function should be uniquely determined over
the entire space.

In the course of this research, several different schemes of
differencing and interpolation have been conceived. Three of these
methods are described in the succeeding sections of this report. They
are discussed in order of increasing complication. However, the third
(Method ) was actuaslly developed first and used in the work to be dis-
cussed. It vas only later that it was realized that the simple Method
A could be made to yield precise results.

37




8. DIFFERENCING AND INTERFOLATION: METHOD A

Consider a cubical region of length L on a side. Let each side be
subdivided into N equal intervals, thus defining a set of N3 cubical
cells, each cell of length (L/N), as illustrated in Fig. 8.1. Let
these cells represent the control volumes for the finite-element
analysis.

Each of the above control volumes has a definite centroidal point.
The centroids of the control volumes constitute a cubical array of
grid points. There are, of course, N3 grid points in all.

For purposes of the present discussion, let us choose an origin of
coordinates as shown in Fig. 8.1. Then the coordinates of the centroi-
dal points may be expressed in the form

xi = (i - %) % 1= 1,2,3,0000N (8'1)
yy=(3- i-) F-L 521,230 (8-2)
z = (k - 2) : K = 1,2,3,000.N (8-3)

We wish to dz2scribe, to within a suitable degree of approximation,
the distribution, over the volume of the block, of an arbitrary scalar
function of position, say u(x,y,z).

The first part of the description. consists of specifying the values
of u=u(i,j,k) at each of the foregoing N3 grid points. So far as
the immediate discussion is concerned, these N3 values may be regarded
as arbitrary.

The second part of the description consists of a suitable interpola-
tion rule for determining the value of the function at any point other
than a centroidal grid point. For this purpose we define a second set
of cubical cells which we may designate as interpolation spaces or cells.
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An interpolation space is also a small cubical cell of length L/N on a
side. However, it i1s displaced with respect to the control volumes.
The previously defined grid points which are at the centroids of the
control volumes lie at the corners of the interpolation spaces. It
follows that the control volumes and the interpolation cells are mutu-
ally staggered relative to one another. Thus ecach octant of a control
volume 1s in a different interpolation space. Conversely, each octant
of an interpolation space lies in a different control volume.

Next, we adopt the rule that within each interpolation space, the
variation of the function u shall be linear along every line parallel
to one of the coordinate axes. This rule can be expressed in algebraic
form.

For this purpose, it is convenient to introduce the following
auxiliary notation. Let

g = % (x-xi) 0<f£<1 (8-4)
n= % (y-yj) 0osngl (8-5)
¢ = % (z-zk) 0<(=<1 (8-6)

Thus the dimensionless coordinates §, N, { may each vary over the range
from zero to unity within any interpolation space.
Now the variation of u witkin any particular interpolation space

may be expressed by the polynomial

W= Ayt A B+ AN AL+ AT+ ALE + ALEN + AL (8-7)
The A's are initially unknown constants whose values must be determined
from the known values of u at the eight corners of the particular inter-

polation space in question. At these eight corners, each of the coordi-
nates, &, n, {, is either zero or unity. Hence the foregoing equation
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can be written eight times, with the appropriate values of §, n, (, and
u substituted each time. The resulting set of eight simultaneous equa-
tions just suffices to determine the eight initially unknown constants.
Because of the symmetry and the many zeros, the solution turns out to
be quite simple.

Note that Eq. (8-7) does, in fact, satisfy the requirement that u
shall vary linearly along any lirne parallel to any one of the coordinate
axes. This is because the coordinates §, n, { occur individually only
to the zeroth or first powers. Furthermore, this equation contains all
eight of the possible combinations of these factors, and is therefore
the most general possiblie expression capable of satisfying this three-
dimensional linearity rule.

Note that the interpolation spaces along the six surfaces of the
block extend into the adjacent blocks. However, the variation within
these spaces can be handled in much the same way as for the interior
spaces. In this connection, it is convenient to take advantage of the
ascumed spacewise periodicity of the function u in the x and z direc-
tions. Thus

u(i + N,3,k) = u(1,3,k) (8-8)
u(1,3,k + N) = u(1,3,k) (8-9)

There 1is also a periodicity in the y direction, but it is of a
slightly more complicated kind. This matter is discussed elsewhere in
this report. It suffices here to say that an appropriate periodicity
rule is available for the y direction which makes the variation of u
perfectly determinate also for the interpolation spaces along the top
snd bhottom surfaces of the block.
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The foregoing diecussion ehows that once the values of u(i,j,k) are
arbitrarily specified at the N3 grid points, the above interpolation
rule defines the function u(x,y,z) uniquely over the entire volume of
the block.

This means, of course, that the distribution of u(x,y,z) is also
uniquely determined over each of the six square surfaces which enclose
each control volume. This fact is important, because the application
of the fundamental mass and moamentum conservation laws involves the
evaluation of certain integrals over these bounding surfaces. i

In addition, the determination of certain overall flow characteris-
ti2s, such as the mean kinetic energy of turbulence, for example, in-
volves the evaluation of corresponding volume integrals. Consequently,

a unique rule for the variation c¢f any function over the entire volume
is necessary.

The six quadratic velocity products u2, v2, w2, vw, wu, uv play an
important role in the analysis. In dealings with these products, the
usual quasi-linear i~terpolation rule is teken to apply to the indivi-
dual factors, rather than simply to the product itself. Hence the
variation of the product between grid points 1s quadratic along lines
parallel to the coordinace axes, rather than linear. While this compli- )
cates the calculations somewhat, it yields a higher level of consistency
and accuracy than could otherwise be attained. In view of the basic
importance of these products, which are associated with the Reynoids

stresses, the added accuracy appears to be well worth the extra complica-
tions.

Since th entire spacewise distribution of eny function is deter-
3 grid points, it follows that
all pertinent surface and volume integrals must be ultimately expres-
ajble directly in terms of these grid values. When these relationships

mined when the values are known at the N

are expressed in explicit form, they constitute the "differencing
formulas" appropriate to the task at hand.
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9. DIFFERENCING AND INTERPOLATION: METHOD B

In this scheme, two distinct families of grid points are used, as
shown in Fig. 9.1l. It 1s convenient to designate these families by
means Of superscripts I and II, respectively.

Points of family I are defined by the coordinates

xi . (1 - %) % 1 =1,2,3,0000000eN (9-1)
L

y§ = (3 - %) % - 3 3= 1,2,3,0000000N (9-2)

zi = (k - %) % K = 1,2,3,000000euN (9-3)

Points of tamily II are defined by the coordinates

xfI =1 (%) 12 0,1,2,000000seN (9-4)
y;I = J (%) - 'g— J = 0,1,2,....-...N (9'5)
ziI =k (%) kK =0,1,2,0000000sN (9-6)

Note that the two grids are mutually staggered relative to each
other by the distance of half a cell width, L/2N, with respect to each
of the coordinate planes.

Corresponding to the two families df interlaced grid points, there
are two families of interlaced control volumes. All control volumes are
cubical cells of length (L/N) on a side. The grid points of family I
are the centroids of the control volumes of the first family. Likewise,
the grid points of family II are the centroids of the control volumes
of the second family. Furthermore, the grid points of family II lie at
the corners of the control volumes of family I. Similarly, the grid
points of family I lie at the corn ~s of the control volumes of family II.
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These various relatinns sre inherently three-dimensional and are
not easy to portray adequately in two-dimensional diagrams. Neverthe-
less, Figs. 9.1 and 9.2 may be of some help in visualizing the essential
facts.

Note that the overall volume of the cubical block under study is
represented twice in this schem®! once by the control volumes of family
I, and once by the control volumes of family II. There is a mutual
overlapping of the individual control volumes. Thus the individual
octants of a single cell of family I lie within eight separate cells of
femily II. Conversely, the individual octants of a cell of family II
lie within eight separate cells of family I.

Consider any one such octant as shown, for example, in Fig. 9.2.

It is itself a cube of length (L/2N) on a side. One corner of this cube
is always a grid point of family I. The diagonally opposite corner is
always a grid point of family II. We define each distinct octant as a
distinct interpolatior. space. There are therefore 8N3 distinct inter-
polation spaces within the block.

We note for comparison that Method A invelves only N3 distinct inter-
polation spaces. This does not imply, however, that Method B involves
an eightfold improvement in resolution. The reason is that the inter-
polation spaces of Method A are "complete" in the sense that all eight
of their corners are principal grid points. The interpolation spaces of
Method B are initially "incamplete” in the sense that only two of the
eight corners are principal grid points. To "complete" these spaces,
wve must define the values of the unknown function at the other six cor-
ners of eacii space.

Fortunately, each of these six corners is itself a midpoint between
two principal grid points. Hence using linear interpolation consistently
throughout, we may assign a value at each of these six points. The
assigned value is always the simple arithmetlic mean of the known values
at the two corresponding principal grid points involved. Thus, for
example, in Fig. 9.2 the value at point QII is the mean of the values at
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Fig. 9.2 Grid Point Relationships for Differencing Method B.
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points PII and AII. Similarly, the value at point Q'I is the mean of
the values at points P'I and A'I. Note that three of the interpolated
values are derived from values at grid points of family I, the otler
three from grid points of family II. Thus both families are represented
exactly equally and symmetrically within each interpolation space.

With the eight oorner values defined, we can once more write the
variation over the volume and/or surfaces of the irterpolation space in
the form

U = AHA BHALTHASCHA) O +A SCE+AEMHAETC (9-7)

where, for example,

g = (x-x,) & 0<gx1 (9-8)
n= (y-yy) B o<n<1 (9-9)
¢ = (z-2,) %I‘. 0o<C<1 (9-10)

and where the point at the "inner" cormer Xgs ¥yr 2y maYy be of either
family, depending on the particular interpolation space being considered.
It 1s apparent that the foregoing definitione suffice to determine
uniquely the complete spacewlse distribution of any scalar function
u(x,y,z) in terms of the assigned values at the 2N3 principal grid
points. Consequently all surface and volume integrals over the control
cells can be uniquely expressed in terms of the appropriate grid point
values. Hence the method leads to specific "differencing formulas' for

such quantities as partial derivatives, gradients, divergences, etc.
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10. DIFFERENCING AND INTERPOLATION: METHOD C

The differencing scheme described under this heading is merely an
earlier and somewhat less fully developed version of the staggered
scheme described as Metiod B. It ie important however, because the
currently available computer program, TURBOCODE MARK V, is based on
this system.

Method C uses the two families of grid roints and control volumes
described previously. The interpolation spaces and interpolation rules
are defined differently, however. In fact the interpolation spaces in
this scheme are taken as identical with the respective control volumes
themselves; there are therefore two distinct and overlapping sets of
interpolation spaces.

Thus within the volume and along the surfaces of any cell of
family I, the variation of any scalar function u(x,y,z) is assumed to
follow the rule

ul = AL+ AT8 4+ AZN + ATC + AITC + AZCE + AN
¢ AENC + AG(1-87) (1-n) (1-€%) (10-1)
where
£ - (x_xf) i_N 1 SE <4l (10-2)
n= (y'yi) i_N lsn< 4l (10-3)
¢ - (z,z}{) .i_N 1sC <+ (10-4)

Similarly for any cell of family II, the corresponding rule is
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e e A3TC + ATC ¥ ASTCE + AgTEn
2
+ 28N + AgT(1-27) (1-1) (1% (10-5)
where
g = (x-in) %ﬂ -1 <€ <+l (10-6)
n= (y-y?) %—I\i -1 €<+l (10-7)
€= (zgh) & ‘1sC <4l (10-8)

There are a number of critical observations to be made about this
scheme.

Note first that any given arbitrary point in the field is simul-
taneously in two different interpolation spaces. Two distinct inter-
polation formulas apply which do not, in general, agree exactly. Such
an ambiguity is not desirable, although it may be argued that the dis-
crepancies involved are small quantities of higher order, and hence
relatively unimportant. However, the existence of two distinct rules
makes it necessary to compute certain volume integrals twice, thus in-
creasing the corresponding computation times in an undesirable way.

Note secondly that the interpolation polynomial contains not eight
but nine constants. These are determined by matching the known values
at the eight coraners of the cell and the ninth known value at the
centroid.

It may be seen that the last term of the interpolation expression,
unlike the others, is quadratic rather than linear in the coordinates.
The presence of this term markedly complicates the computation of volume
integrals ror the cell. This is especially true in connection with the
volume integration of quadratic terms like u2, uv, etc. The linear
terms among themselves have certain properties of symmetry and ortho-
gonality which tend to simplify the resulting expressions. The
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characteristics of the quadratic term are more complex, and introduce
various additional terms into the final results.

Fortunately, the quadratic term has been so devised that it vanishes
at all six of the bounding surfaces of the cells. Consequently it does
not enter intc the evaluation of any of the surface integrals.

As campared with Method B, it would seem that Method C does not
intermesh the data of the two families as closely and completely as
might be desirable. Thus in Mzthod B, four of the data points in each
interpolation space are of cae family and four are of the other family.
In Method C, on the other hand, eight of the data points are always
of one family, and only one is of the opposite family; furthermore, the
influence of even this one point of the opposite family vanishes along
the bounding surfaces of the cell.

Fortunately, Method C does possess some compensating computational
advantages. For one thing, the distribution of any function u(x,y,z)
over any bounding surfuce is expressed solely in terms of the grid
values at the four corners of that surface. While this assumption does
not fully utilize all of the information actually available, it does,
of course, shorten and simplify the evaluation of all surface integrals.




1l. COMPARISON OF DIFFERENCING METHODS

In the course of the present research there has been a steady
improvement in the conceptual basis for the numerical differencing
techniques enployed. At first the equations to be solved were regarded
simply as partial differential equations. The numerical techniques at
this stage consisted mainly of replacement of infinitesimals by small but
finite differences, with a largely intuitive approach.

It was soon realized, however, that much better accuracy and
computational stability could be achieved for a given mesh size by
adoption of a finite-element approach. An esgential point is that the
small but finite control volumes are not treated as mere infinitesimals.
Accuracy is greatly improved by estimation of mass and momentum fluxes
not merely from approximate local point values but as true surface
integrals, in accordance with the previous carefully established inter-
polation rules.

It was at about this stage that the interpolation method C was
formulated and successfully applied in the program TURBOCODE MARK V.
When first formuluted, it represented a considerable advance in numerical
technique.

RFurther theoretical progress since that time makes it clear that
certain revisions of that scheme are desirable. These are described
under Method B.

However, the same concepts that lead to the akove revision, when
followed to their logical conclusions, lead even further and so to
Method A.

The main advantage of Method A lies in its relative simplicity.

It avolds the complexities of dealing with two distinct families of
points. It avoids the duplication of covering the same overall volume
with two distinct families of control cells. The application of the
proper boundary conditions should be correspondingly simplified. It
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seems that the programming can be simplified and computation times
reduced by adoption of this scheme.

It is intended that Method A will ultimately be programmed for the
camputer. Meenwhile, however, the present program based on Method C
represents investment of a considerable res~arch effort. It is believed
that this program, which has only recently baen developed into a prac-
ticeble form, is capable of generating much useful basic information.
Hence the immediate effort will be to obtain this information with the
existing program, and to study and evaluate it, before proceeding with
any major revision of the zomputer program.
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12. INITIAL NUMBER OF DEGREES OF FREEDOM

In this discussion, let G represent the number of grid pcints in

3; for differencing

one block. For differencing metiod A, G equals N
methods B and C, G equals 2N3.

At the initial instant of time, the velocity vector distribution
over the cubical block i{s fixed when the distributions of the three
individual scalar components, u, v, w, are fixed. But if we are to
establish the initial distribution of u, values must be specified at
all G grid points. Similarly for v and w. Hence 3G values are re-
quired to describe the initial velocity field.

However, if the fluid is incompressible, not all of these 3G
values may be specified independently. In fact, we must satisfy a mass
conservation condition or continuity law for each one of the G c¢untrol
volumes centered at each grid point. Hence there are G constraint
conditions to be satisfied among the 3G velocity components. Conse-
quently, only 2G of these quantities may be independently prescribed.

We say that there are 2G initial degrees of freedom.

o For example, if the u and v components are arbitrarily specified
at all grid points, the w components are then fixed by the foregoing
continuity conditions. If the distributions were not blockwise periodic,
continuity constraints would determine w only to within an arbitrary
additive function of x and y alore. However, the assumption of period-
icity eliminates this arbitrary element and renders the solution for w
unique.

The initial values of the pressures do not count as initial degrees
of freedom. The reason is that once the velocities are specified, the
pressures are also determined thereby. The pressures cannot be assigned
independently.

It follows that for differencing method A, there are 2N3 initial
degrees of freedom; for differencing methods B and C, there are hN3

initial degrees of freedom.
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However, the apparent arbitrariness of the 2G initial degrees of
freedom requires qualification, as it can be somewhat misleading. This
enormous degree of latitude is permissible only because, at the initial
instant, the turbulence has not yet attained its ultimate stationary
and homogeneous statistical stiucture. Once this state is reached, it
vwill impose certain corresponding relations of statistical correlation,
and thereby reduce the number of arbitrary or random degrees of freedom
remaining. Nevertheless, turbulence necessarily involves some irre-
ducible core of randomness, and hence there will always be some large
residual number of arbitrary or random degrees of freedom. If we knew
vhat the essential constraints were, it might be useful to impose them
at the outset, much as we have done with regard to the continuity con-
dition. But we do not know them, at least not initially, so the matter
is academic. It is rather lucky that the calculation can proceed from
such arbitrary initial conditions. The reason this is allowable is
that the turbulent structure has an inherent self-correcting character
vhich drives it asymptotically toward a limit which is essentially
independent of the initial conditions.

The persistence through space and time of the net overall influence
of the deterministic equations of motion, in addition to that of the
continuity equation, is what imparts to the turbulent field its under-
lying orderly structure, upon which are superimpos:d phenomena of a more
rariom character. One method of expressing the orderly structure is
in terms of the correlation coefficient R defined in an earlier section.
Let us here apply this concept to a simple grid of type A, with N3 grid
points. In the present context, the appropriate definition of corre-
lation coefficient is in the form of the matrix:

R(p,q,r,T)
; v vy 1
""'N§ Z Z z%I“(1:J>k:t)'“(1+P:J+Q:k+r:t+'r)dt (12-1)
1=1 §=1 k=1 O




where p)
. q) Ly 0,1,2,3,.0000.0..(“'1) (12'2)
r

Since each of the indices ©p,q,r varies over N distinct values, the
expression (12-1) defines N3 separate equations. These equations fix
the values of the NO elements of the correlation matrix R(p,q,r,1).

Each element is a function of the time parameter . This matrix of
functions provides a reasonably adequate description oI the orderly
structure of the turbulent field. Ultimately, the matrix functions can
be calculated from the computer simulation results.

Now consider the special case T = O which establishes all spscewise
correlations at any fixed time. The N3 elements of the matrix R are
now fixed constants. Suppose these N3 values are known or assumed, and
are imposed as essential initial conditions. This additional constraint
reduces the initial number of degrees of freedom from 2N3 to N3. Pre-
sumably, the remaining N3 degrees of freedom may now be selected at
random from some suitable probability distribution without appreciably
affecting the structure of the turbulence.
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13. PARTIAL DERIVATIVES IN TERMS OF SURFACE INTEGRALS

In dealing with functions of position, we usually need to estimate
not only the values of the function its21f, but also values of its
various partial derivatives. Now a direct analytical differentistion
of the approximate quasi-linear distribution as defined by any of the
foregoing methods, A, B or C, is not adequate for this purpose. The
reason is that such an approximate distribution is only plecewise con-
tinuous. Estimates of first-order derivatives obtained by direct
differentiation of this approximation would be discontinuous; estimates
of higher order derivatives would be indeterminate. This accords with
the well known fact that the derivatives of an approximating function
tend to be less accurate end well behaved than the approximating func-
tion itself. On the other hand, integrals of an approximating function
tend to be more accurate and well behaved than the approximating func-
tion itself. Fortunately, it turns out tc be possible to express the
derivatives of a function in terms of certain surface integrals, as 0
explained below. Estimation of derivatives by this method of integra-
tion avoids the rapid deterioration of accuracy associated with direct o
analytical differentiation; consequently, the integration method is
always used in our work.

With the integral method explained below, derivatives are calcu-
lated at all principel grid points; derivative values between grid
points are then estimated, as usual, by quesi-linear interpolation.
This process may be repeated as often as necessary to obtain estimates
of the higher order derivatives.

In the calculus of vectors, the gradient of a scalar function at a

point is defined as the resultant of a certain limiting process. First,
a small volume element 8V i1s defined whose surface 6S encloses a point
in question. See Fig. 13.1. Secondly, an average value of the gradient
within tle small enclosed volume is defined. This definition involves
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the evaluation of a certain integral over the bounding surface of the
element, Finally, the volume of the elementv is allowed to shrink to
zero. The resulting limit of the average gradient is defined as the
local gradient at the point.

This rather ccmplicated definition may be written symbolically in
the form

1 " o
W= lim f neds (13-1)
& 0 65
where dS is an infinitesimal surface element on the bounding surface

8S, while n is an outward unit vector normal to area ds.
Inasmuch es the gradient is expressible in terms of partial deri-
vatives in the form

w1 (@333 (13-2)

it follows that the partial derivatives of @ are also definable in
terms of surface integrals, that is,

X; L o B 3> 2 1
(Sf) =l W0l J . nmds} (13-3)
8s

~ lim -l A‘A
(%");-J°Vco=6\,_.o{g;£sd mas } (13-h)

; lim I
(%)-k Wab\’_’o{g\-’{sk’nﬂﬂS} (13'5)
Likewise, the divergence of a vector function u may be written
Veu = lim {i—v'n-ﬁds} (13-6)

bv - O ' BS
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However, in work with numerical approximations of the present type
in which the functions involved are specified only at discrete grid
points, and the variation between these points is merely estimated by a
kind of three-dimensional quasi-linear interpolation, the above process
of going to the limit of zero volume cannot be accomplished with suf-
ficient accuracy. As mentioned above, the previously desaribed inter-
polation schemes do not in themselves provide sufficient ~ontinuity in
the representation of the function to define accurate local values of
derivatives at a specified point by direct differentiation.

Suppose, however, that we omit the above limiting process. Instead
we choose small but finite cubical elements as established by the
finite spacing of the basic grid points. Now the quasi-linear inter-
polation scheme permits us to evaluate the various surface integrals
required in the above definitioi: with excellent precision. Hence we
may calculate very acc .rate average values of gradient, partial deri-
vative, velocity diverg=nce, etc., over the volume element as a whole.

In some instances, average values over the element are all that we
require. Thus in dealings with incompressible flows, an exact solation
would theoretically require that the velocity divergence vanish at all
points of the field, not Jjust at the basic grid points. This 1deal is,
of course, neither attainable nor really necessary. For a practical
numerical solution it is quite sufficient to require that the average
divergence vanish for each of the small cubical cells into which the
field is divided. Thus in Method A, for example, for an overall cubical
region or block of length L along each edge, with a basic grid spacing
of dimension (L/N), there are N3 individual volume elements involved,
each a cube of length (L/N) on a side. ‘Hence the non-divergence require-
ment for the field boils down to requiring that the average divergence
vanish for each of these N3

In some cases, however, the concept of an average value over the

distinct volume elements.

volume does not suffice. What is required is a method of establishing
local point values at the basic grid points, so that a complete spatial
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distribution of the quantity may be estimated by means of the quasi-
linear interpolation method previously mentioned. For exemple, in
applying the momentum integral equations to volume elements, we
establish accurate average time rates of change of the velocities over
these volumes. This is not really sufficient. What is needed, of
course, are local values at the basic grid points themselves.

To meet this requirement, we introduce one additional postulate,

namely, that the averege value of a quantity over a given volume
element constitutes the best available estimate of its local value at
the centroid of that element. Because of this postulete, it is of
course necessary to establish the pattern of control volumes and grid
points in such a way that the grid points are in fact located at the
centroids of the control volumes. When this is done, th2 formulas of
this section may readily be applied to calculate the values of diver-
gence, gradiqnt and partial derivatives at all the grid points.

The results obtained in this way will depend on the particular
differencing and interpolation scheme :dopted, such as the methods A,

B or C described elsewhere in this report. Detailed results for differ-
encing method C are presented in Appendix A.

The following results are presented as typical examples of specific
differencing formulas which are obtainable by use of the foregoing
methods. Ve show the typical partial derivative (32) as defined by
each of the differencing techniques A, B and C explained earlier. Other
partial derivatives can also be found merely by systematic permutation
of indices in the following formulas.




Method A

& [o(1,000 | = B { & [w(142,0,0 -0(1-1,5,00 |
+ & [w(iﬂ,J,k-l)+m(i+l,d-l,k)+to(i+l,J+l,k)+0(i+l,d,k+l) (13-7)

-ep(1-1, J,k-1)-ow(1-1, 3-1,k) -o(1-1, J+1,k) -o(1i-1, ,g,k+1)]
* I%E [“(1+1'J'1:k'1)*0(1+1:J+1,k-1)+w(1+1,J-i,k+1)+m(1+1,3+1,k+1)

'm(i-liJ'llk-l) -G_)(i-l,J*'l,k'l)-Q'J(i-l,J-l,k"'l) —CD(i-l,J'Fl,k"’l)-' }
Method B
2ot wam0 | = @ { § (o, 011,00 |

+ 2 [071(1,9,K) 40 T (1,3-1,1)+0 (1, 3, k-1) 40" (1, 5-1,k-1)

o (1-1, 3,0 " (1-1,0-1,0 =67 5(1-1, 3, k1) (11, 5-1,%-1) ) }

(13-8)
3 (01,0, | = B F (07142, ,10 -0TH1-1,3,) |
+ 32 Tl (141, 591 e )w (141, 9, ke )40t (191, 341,10 4907 (142, 3,K)
- mI(1,3+1,k+1)-ch(i,J,k+1)-mI(i,J+1,k) -mI(i,J,k)] 1 (13-9)
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Method C

% ['1,50] -
({0 (1,3, 40 (1,01, 0) 40" (1, 3,k-1) 497 (1,4-1,k-1)

o (1-1, 3,%) 0" (11,81, K) 9" (11, §,k-1) 0" (-1, 4-1,k-1)}

(13-10)
?rx [cPII(i:J)k):, =
({0t (141, 341,100 )47 (141, 3,100 40T (192, 391, ) ool (141, 5,K)
'01(1).""1)1""1) 'mI(i:J:k"'l) @I(i »3+1,k) ‘mI(iy J:k)} (13-11)

It is also of interest to consider a simple differencing formula
such as might have been used in the absence of the finite-element
Irinciples expounded in this report. Thus, for a simple grid of the
same type as used in Method A, we might have simply written, by
inspection,

To1,0,0) | = B0 {00141, 5,0)-0(1-1,,1)) (13-12)

;
—

Qllal
»

The relative crudeness of this approximation becomes quite apparent
when this expression is compared with the previous differencing
formulas.




14, CONTINUITY EQUATION

Let 6 represent the mean-flow velocity vector, and U the turbulent
perturbation. We apply the law of conservation of mass to a small but
“inite control cell of volume &v and surface 8§S. Let N be the outward
normal unit vector at surface element dS. For the combined mean flow

plus turbulence, this gives

A A A A A

v (U= 1o [ (u+u)onas = o (14-1)

8s

For reasons explained earlier, we have omitted the process of going to
the limit of zero volume,

By averaging this equation over time (or over & statistical
ensemble of macroscopically similar cases), we find that the mean flow
itself must satisfy the following mass-conservation requirement, namely,
[ Uends = O (24-2)
%S

VeU =

2~

Subtracting (14-2) from (14-1) gives the net mass-conservation
relation for the turbulence itself, that is,
e B s f 1:°r:dS =0 (1u-3)
(VIR
&S

The integral in (14-3) is evaluated over the surface of the ele-
ment. But for the cubical control volumes here considered, the surface
consists of six squares, each of area 8§S. Let the individual surfaces
be represented by the index k=1,2,3,4,5,6. Note that area 85 = (%—)2
and volume 8v = (%)3. Therefore Eq. (14-3) may be reduced to the form
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6
D= (%) y{ %—g J ;-;ds} =0 (1k-1)
kel g K

The quantity enclosed within braces represents the average mass flow
per unit area through the kth bounding surface.




15, MOMENTUM EQUATION

We apply the momentum theorem of fluid flow to the same small but
finite Eulerien control cell used in the previous section. The follow-
ing nomenclature is used to denote the various forces per unit area
(and per unit mees) acting on the differential surface element dS,

namely,
~
Fn = mean viscous force
f'n = turbulent viscous force
5% = mean pressure

¢ = turbulent pressure
For the combined mean flow plus turbulence, we cbtein the equation
1 a A~ ~ - . 1_- I -~ ~ ~ ) .
5 f R (U+u)dv 30 ) (U+u) (U+u) - ndS
& S
v (15-1)

l -~ ~ 1 ~
= 2 o &
* 5 J (rn+fn)dS & J (%+e0)nds
8s 85

For the particular case of the simple uniform sheer flow mainly
considered in this report, the following simplit'ications apply to
Eq. (15-1), namely,

(39 = © (15-2)
[ s = 0 (15-3)
RS
jﬁnds c 0 (15-4)
kS
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U= iy (15-5)

[ UU+ndS = O (15-6)

o

8s

A
Furthermore, the turbulent viscous forces f may be expressed
specifically as fx’ fy, fz, namely, the forces on faces normal to the

X,Y¥,z axes respectively. These, in turn may be written in the form

~ Y T "~ T Y 1
/oxx xz\ -
BHETHE TS 5D
TP E T ES (15-8)
y Q. p P . P/
~ " T Y T -~ T
- 12X\ 7 2y 22\ .
z'i\o /+J\ o)+k(\0/ (15-9)

The viscous stresses themselves can be expressed in terms of

velocity derivatives. For an incompressible fluid of constant viscosity

( Day=va/ Ty, Tary oy 2w, 20
N (\a (15-10) { p/'(\ 0/ Vit (15-13)
T T T
XN . vy ((2X\_( xz\_  (u -
( p)"'e(  (15-11) N 0/ ( D,/_V~\Bz+ax> (15-14)
(IE_Z.\-\,Q/QEZ) (Tﬂ\.fzﬁ\_\,(.al+3“\. (15-15)
P ) (15-12) NP NP 3x oy’

Of course, the various partial derivatives shown here must be ex-
rressed in terms of appropriate surface integrails, as explained ecarlier.
With the various conditions listed from (15-2) through (15-15)
incorporated or implied, the basic momentum eguation (15-1) is reduc-

ible to the fomm
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) A 1 CH Qo A AA A
:é_\) .,‘ (';:')d\) H 5 R .)' Y(iu+ui)'ndS - t_\) .,( uuends
v AS 85
1 N T
TR I £ - 55 | onds (15-16)

&s AS

This is the basic result required, although it is still in a some-
vwhat unwieldy form. It is convenient to introduce some auxiliary nota-

tion as follows. let

~

1 1 Puy, 3y -

Y (SE)QV = (at) = uy (15-17)
&v

Where ﬁt is the mean time -ate of change of i over the volume 5v, and is

taken as the best available cstimate of the local point value at the

centroid of the element.
Let the remaining integrals be evaluated first over the six indi-

vidual square boundinz surfaces, k=1,2,3,4,5,6. Thus, let

s, = -0 ks [ y(1utui) *nast (15-18)
AS k

T - - ! z_s [ vuenas! (15-19)
85 k

B - [ g—s 'f fnds} (15-20)

8s k

B = - J ég _l ends! (15-21)

8s K
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Furthermore, let us introduce the abbrevietion

-~

Ro= S, + T +B (15-22)

With this notation, the basic momentum equation (15-16) reduces to
the relatively simple statement

u, = ) ) (R+R) (15-23)
k=l

By way of interpretation, it might be remarked that all quantities
(15-18) through (15-21) inclusive have the dimensions and character of
mean stress over the kth face, that is, total force on the face divided
by area. Furthermore, ék is the stress associated with the shear rate
() of the mean flow. The turbulent apparent stresses or momentum trans-
port terms are represented by ii. These latter terms are quadratic in
the velocities and are the only non-%inear effects present. Purely )
viscous stresses are represented by Hk' It has been shown that the Hk,
although linear, involve the partial derivatives of the turbulent
velocity perturbations, rather than the velocities themselves.

It is convenient in the subsequent analysis to lump the terms
(Sk+Tk+Hk) together under the separate symbol Rk The reason is that
these particular components can be calculated directly from the turbu-
lent-velocity distribution, without any reference to pressure distribu-
tion. Determination of the pressure requires a separate and lengthy
calculation, and the resulting average stress asaociatgd with the pres-
sures is therefore represented by the separate symbol Pk.

Turning to Eq. (15-23) it is seen that the terms have the character
of net force per unit mass, that is to say, of acceleration. It turns
out to be advantageous to employ the additional terminology below,
namely, . .

Fe() )R (15-24)
k=1




6
w--MY p (15-25)
k=]

Hence the basic mamentum equation becomes finally

~ A

u = F - % (15-26)
The term ; represents that part of the net accelerating force which can
be calculated directly fram the velocity distribution existing at a
particular instant of time. The term (-Vo) 1s the net pressure force;
it can be calculated only after the pressure distribution ¢ has been
found. The unknown pressure function © is itself fixed by the velocity
distribution, but the relation is rather complex. However, it can be
solved by the method outlined in the next section.



16. TURBULENT PRESSURE DISTRIBUTION

The momentum equation (15-26) has so far been used only to show
how the local velocity-=-time derivative Gt can be calculated when the
direct velocity-induced forces F and the pressure forces (-Vp) are
known. It has been indicated that the forces F cen be calculated in a
relatively straightforward manner when the instantaneous velocity dis-
tribution is known. The pressure forces, however, depend on the detailed
distribution of the turbulent pressure ¢®, and this quantity is so far
still an unknown. The purpose of this section is to show how o itself
is determined from the turbulent velocities.

To show this, we need only to epply the divergence operator term-
by-term to the momentum equation (15-26). Thus

a

Ve, = v-g' - e (0) (16-1)

The three terms in this eqQuation can be expressed in expanded form

as follows:

9 (W) = Po = 2 [(9p) enas

GS
= (g D) ? { (). nds} (16-2)
6S
vor e [ Fas = () 2 { ; fF.mslk (16-3)
8s

- & (16-4)
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Consequently, with these definitions, the basic equation (16-1)
may be rewritten in the concise form

~ A

7w = VeF - (g—%) (16-5)

This is the partial differential equation which fixes the pressure
distribution ¢. The quantity V'ﬁ on the right side is a known function
of the turbulent velocity perturbations. The quantity (%%) calls for
some comment, however.

Strictly speaking, for an incompressible flow, the divergence D
should vanish identically, in which case its time derivative will also
vanish. In actual computations, however, because of round-off or other
errors of approximation, the calculated divergence will usually differ
from zero by scome very small quantity 85D. In order to prevent such
small errors from accumulating and growing, it is desirable to assign
the value of (%%) in such a way as to tend to liquidate the error
already present. Thus, we wish to eliminate the current divergence
error &D within some small time interval At’. But how shall this time
interval be chosen? 1If the rate of error correction is too small, the
divergence errors will tend to accumulate and grow, perhaps excessively.
If the rate of error correction is too large, the associated pressure
perturbations may become excessive; furthermore, the divergence error,
instead of being eliminated, may be reversed in sign and possibly even
increased in magnitude, thus leading to computational instability.
Therefore, it is advisable to normalize 8t." with respect to appropriate
reference parameters of the turbulence. Cell size % and mean turbu-

lent energy E represent the natural reference parameters for this case.

Hence we assign
aD 6D N /=
(S't) = - (—ét') = - Cy 1 /?E 6D (16-6)

where CD is a dimersionless coefficient whose optimum value can be

established by numerical experimentation on the computer.
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Consequently, the basic equation for the pressure distribution now

becomes .
vch = V°F + Cp %/2—E 8D (16-7)
vhere the right side is a known function of the space coordinates.

Therefore pressure ¢ is the only unknown in Eq. (16-7). For accur-
ate vork, it is essential that the last term in this equation be of
vory small magnitude.

This relation lends itself to solution for the unknown pressure of
® by a numerical relaxation technique. The essential principle of the
method may be summarized as follows. The calculation starts with an
arbitrary initial estimate or approximation for the unknown function .
Tbhe local values of ©® in the vicinity of the first grid point are then
adjusted so that Eq. (16-7) becomes exactly satisfied for the first
control cell. Then the values in the vicinity of the second cell are
ed justed in a corresponding fashion. This process is continued syste-
matically to cover the entire mesh. However, each time a local cell is
adjusted, this process slightly upsets any previously made adjustments
in adjacent cells. Nevertheless, each step of the corputation produces
a net reduction in the overall mean square error. Hence a complete
sveep of the mesh in the above manner substantially improves the
original approximation. Therefore the above procedure may be repeated
as often as necessary, until the absolute residual error in Eq. (16-7)
is everywhere less than same very small pre-assigned l’mit.

Calculation of the turbulent pressure distribution ©® by the above
iteration method is quite straightforward in principle. The boundary
conditions on the vertical faces of the block are simple because of
the blockwise periodicity of the solution. The boundary conditions
on the horizontal faces are somewhat tricky, however, owing to the
relative sliding between successive rows of blocks, as explained in
another section of this report. Owing to the number of iterations re-

quired to attain convergence, the pressure calculation is, of course,

T2




quite lengthy.
computing time.

It consumes by far the greatest proportion of the total

13




17. BASIC SURFACE INTEGRALS FOR A FINITE ELEMENT:
METHOD C

This discussion applies to any scalar function of position, =say,
for definiteness, the velocity component u. We choose diffe.cencing
method C for this discussion because, as explained elsewhere, this was
the method used in the program TURBOCODE, MARK V. We consider an
arbitrary cubical element, of either family, and of length 2a = L/N.
The origin of coordinates 1s originally at the volume centroid, and
the dimensionless coordinates £, n, ( take on values of + 1 along the
bounding surfaces.

The basic interpolation formula for this case is

W = AgHA B+ TeA L CHA, TOHACEAETA S +Ag(1-8%) (1) (1-%)  (17-1)

Consider the application of this equation to the bounding surfaces
of the element. The surfaces in question may be those normal to either
the x, y or z axes, respectively; superscripts are used to distinguish
these three orientations. Consequently, Eq. (17-1) may be reduced to
one of the three forms below, namely,

u* = Ag + A’l‘n + A’Q‘c + A’3‘nc (17-2)
o & Ag + A{C + Agg + Aggg (17-3)
u? = Ag + A;g + AZn + A;Qn (17-k)

The four constants in each equation depend only on the surface in
question. They are uniquely determined by the values of the function
at the four corners of the surface (this feature is one of the advan-

tages of Method C.)
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Consider the specific example indica“ed in Fig. 17.1. We drop the
superscript notation for this portion of the discussion since there is
no ambiguity in this case.

Upon substituting the coordinates of the points A, B, C, D into
(17-4), and solving the resulting four equations fcr the four initially

unknown constants, we obtain

Ao 1 [+ Up U T U T “Dj (27-5)
By = % [' Ya TUg " Yt “D] (17-6)
Ay = l-uy - ug v ug + ] (27-7)
A3, I} [+ Uy "YU "YU ? “D] (17-8)

An analogous treatment may be applied to the velocity components
v and w. It is con'enient to denote the corresponding constants by
B's and C's, respectively.

Now a review of the basic continuity and mamentum equations reveals
that the surface integrals involved therein are of three main types.
An example of each type is precented below for the case of a surface
normal to the z axis. The extension of these results to other velocity

components and other surfaces 1s easily made.

+1 +1 +1 +1
17 (F
—1—(28)2 I J u(adg)(edn) = { Jll\_Ao+Al§+A2n+A3§njhgdn - A, (17-9)
-1 -1 -1 -
+] +1 +]: +.1-
z; 2 J u(an)(adt) (adn) = ¢ J J l_AO+A1§+A2mA3§n]mgdn = %(%)Ae (17-10)
8 A -1 -1
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Fig. 17.1 Surface Element in Z Plane.
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+1 +1 +l +1

(2 L j juv(adg)(adn) = & [ (a8 mengen ][5, +8, 88 nm 80 tan
A -1

= AB* 3(A B +AB,) + % AyB (17-11)

Note that the form (17-9) represents a simple linear average value
of the function u over tle surface. All constants except AO vanish
tram the result. In turn AO is merely the arithmetic average of the
four corner values. This result is consistent with elementary intuitive
expectations.

In result (17-10) all terms vanish except the coefficient of 7.

The method of subscripting here used is such that for a z surface the
non-vanishing component is Az; for an x surface, it would be constant
Al.
In this connection y surfaces are exceptional, for mn is a constant
in this case and may be moved outside the integral, thereby reducing
the integral from the form (17-10) to the form (17-9). As a matter of
fact, it is advantageous in dealing with surface integrals to shift the
origin of coordinates {rom the centroid of the volume to the centroid
of the surface directly involved. In this way we obtgin .Or any y sur-
face the result n = O, whereupon the integral (17-10) simply vanishes.

Perhaps the most striking result is the integral (17-11). This
goes well beyond what could be achieved by mere intuition, or by treat-
ment of the surface as if it were an infinitesimal quantity. Note that
all cross product terms drop out of the final result but that neverthe-
less, all eight original constants are significart and are reteined.
This undoubtedly represents a significant contribution to the accuracy
of the method, especially for relatively coarse meshes. Recall that
the integral (17-11) occurs in connection with the turbulent momentum
stresses, and that the accurate evaluation of these stresses is one of

the important goals of this study.
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The results (17-9), (17-10) and (17-11) may be generalized by
simple permutation of variables and subscripts so as to produce all the
surface integrals required in this analysis, without further recourse
to detailed integration. In this way the fundamental continuity, momen-
tum and pressure relations may be reduced to algebraic difference
equations which may then be directly programmed for the computer. The
egssential features of this algebraic development, and of ‘the results,
are summarized in Appendix A.
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18. SCALE OF TURBULENCE

One of the fundamental aspects of turbulence is the linear scale
which characterizes the phenomenon. It has already been pointed out
that our method of analysis implies that, in some sense, cell size must
be small, whereas block size must be large in relation to the scale of
turbulence.,

But how shall scale of turbulence be measured? Several approaches
have already been indicated. One is based on the concept of correla-
tion distance, another on the wavelength sgspectrum of the turbulence.

A third method previously mentioned is associated with the idea of a

critical cell size below which turbulence cannot be self-sustaining.

All of these methods, however, involve lengthy and intricate calcula-
tions.

There is clearly a requirement for a much simpler measure of scale,
which can be routinely calculated. To answer this need, a concept based
on vorticity has been adopted.

From the point of view of the finite-element method, the vorticity
vector at a grid point may be defined by the relation

w = %3 | nxudS soc L (18-1)

8s

Considering the separate scalar components of vorticity, we have

we = w® +ul o+ w® sec ” (18-2)
x oy z

Similarly, for the velocity components at any point
V=uZ+ v+ = 2E fte/sece (18-3)

where E represents kinetic energy per unit mass.
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Both these quantities may be averaged by integration over the
entire volume of the block, thus ylelding root-mean-square values

J;ﬁ and ﬁ respectively.
Now a definition of scale A may be written in the form

A= (18-4)

ool |85

Note that the radical has the required physical dimension of length. A
dimensionless normalizing constant C is introduced to permit adjustment
of the units of scale. The value of C is assigned in such a way that
the magnitude of A acquires a clear raysical significance for a certain
simple limiting case.

The case in question may be repr2sented by a hypothetical velocity
distribution of the form illustrated (for v)in Fig. i8.1. The equations

are
u = P sin g’iﬁ sin ?? (18-5)
v = Q sin 3?5 sin g’iﬁ (18-6)
v = R sin ?-Ex sin 2—2"- (18-7)

This is seen to represent a simple reference sine wave of wavelength {.
The constant C is now chosen in such a way that the scale parsmeter A
for this simple case turns out to be exactly equal to the wavelength 4.
This same value of C is then retained es a fixed constant for all other
cases as well. Consequently A may be interpreted as a kind of general-
ized mean wavelength of the turbulence. (See Appendix C, Section 4.)
It is now proper to say concerning cell size %, normalized scale
of turbulence A, and block size L that we should ideally like to have

%‘ << A << L (18-8)




Fig. 18.1 Velocity Component v in Reference Wave.
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However, if N be sharply limited by computer memory capacity, we are
willing to accept the more modest statement

I% < A<L (18-9)
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19. MEAN EFFECTIVE TURBULENCE STRESSES

One of the important objectives of the present research is to
improve our understanding of the so-called Reynolds stresses, that is,
the mean effective values of apparent stress associated with the turbu-
lent momentum transport. It is well known that turbulent fluctuations
can be admitted into the Navier-Stokes equations of motion, and that the
resulting expressions can then be averaged over time (or over an ensemble
of macroscopically similar cases). When this process is carried out,
the equations which are recovered are exactly similar to the ordinary
Navier-Stokes equations for laminar flow, except for the presence of
the additional Reynolds stresses. In effect, this result tells us how
the mean motion is affected by the mean effective turbulence stresses.
However, this is only part of the story. What is required to complete
the solution is a knowledge of how the effective stresses, in turn,
are affected by the mean motion.

Sometimes an attempt is made to express this latter relation by
means of an analogy with the viscous stresses. The distortional com-
ponents of the viscous stress tensor are known to be proportional to
the corresponding components of the strain rate tensor based on the
mean motion. The constant of proportionality is, of course, the
ordinary molecular viscosity. It is sometimes assumed, therefore,
that distortional components of the Reynolds stress may likewise be
found by multiplication of corresponding camponents of the mean strain
rate tensor by a suitable scalar factor of proportionality, the so-
called eddy viscosity. If this analogy were strictly valid, it would
il represent a great simplification of the problem. Unfortunately, it is

at best only a rough kind of approximation. The melancholy fact seems
to be that there does not necessarily exist any single common scalar

factor of proportionality between the various Reynolds stress compon-
ents and the corresponding mean strain rate components. Consequently,

a more fundamental approach to the problem i1s needed.
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Since stress and strain rate are tensor concepts, 't 1s advantageous
for the present discussion to adopt Cartesian tensor notation and con-
ventions. In particular, the coordinates x, y, z are replaced by X1,

X1 x3 respectively. Hence the general component of the Reynolds stress
may be written in the symbolic form.

(8-

uu, (19-1)

vhere 1)
J)

Contracting indices (and applying the usual summation convention), then
dividing by 3 gives

= 1,2,3

1
3
_B..2% )
-- 5 5 E (19-2)

where p represents the equivalent "hydrostatic" pressure associated
with the turbulence, while E is the corresponding mean kinetic energy
of turbulence.

The distortional Reynolds stresses ere therefore expressible in

the form
ST -
1) . \. . T 2 -
<_p'1> 51.1(9) uuy + 8, 3E (19-3)
vhere 8§, , = +1 if 1=
1 (19-k)

=0 1t 14

We now tackle the problem of identifying the specific parameters
upon vhich the values of the stress tensor might depend. For this
purpose it is useful to distinguish four types of turbulent flows as
indicated in Teble 19.1.




TABLE 19.1

Types of Turbulent Flows

Type I II III Iv
Definition
Stationary? No Yes Yes No
Isotropic? Yes No No No
Homogeneous? Yes Yes No No

Stress and Force Characteristics of Mean Flow

Distortional
Stresses? None Present Present Present
Net Reynolds
Forces? None None Present Present

Discussion elsewhere in this report shows that for Type-I flows,
the distortional Reynolds stress tensor vanishes identically. Or to
put the matter more simply, there can be no mean effective shear
stresses in an isotropic flow field. Hence the Reynolds stress is of
the purely "hydrostatic" type for this case. It follows that Type-I
turbulence is too specialized in nature to provide information regard-
ing a general state of stresa.

Flows of Type II, on the other hand, are much more interesting in
that non-vanishing shear stresses are now definitely involved. In
fact this category represents the simplest possible case compatible
vith the existence of a general state of stress at a point. Therefore,
it would seem to be the most profitable case to study initially for
the purpose of establishing the parameters which determine the stresses
at a point. The simple shear flow which is the subject of most of this

report is a particular example of a Type-II flow.
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Of same interest, besides the Reynolds stresses themselves, are the
net resultant forcees per unit volume exerted by the Reynolds stresses
upon a small volume element enclosing an arbitrary point. These
resultant forces are propcrtional to the gradients of the Reynolds
atresses. However, in any homogeneous flow field, the stress gradients
are everywhere zero, nof course, and the net Reynolds forces vanish.

(In fact the net viscous forces associated with the mean flow also
vanish in this case.) Consequently, in any homogeneous flow, the
Reynolds stresses are determined by the mean flow, but the mean flow
is not influenced by the Reynolds stresses. This fact represents an
important simplification of the overall problem.

Once the stress laws applicable to Type-II flows have been worked
out, the study may be extended to the more complex flows of Type III
and IV. There appear to be some grounds for the hope that the laws
ultimately established for Type-II flows will need only minor elabora-
tion to serve adequately for the more complex cases. In fact it might
well be that under certain circumstar.ces, the laws derived for Type-1I
flows may be applied unchanged to the other cases; however, much more
work needs to be done before such a conclusion can be asserted with any
degree ot confidence.

Another important application of the foregoing stress laws arises
in the following connection. In principle, the method of analyzing
turbulence described in this report depends for its success on the
creation of a mathematical model having a very large number of mesh
points. Since not all possible difficulties can be faced and conquered
similtaneously, it is tacitly assumed in much of the discussion in
this report that the number of mesh points required for sai .sfactory
results lies within the capabilities of the best modern computers, or
at least within the capabilities of machines that will become available
within a few years. In truth, however, this is probably an over-
optimistic view. Hence there exists a need for simplifying the method
to the extent that it does truly fall within the capabilities of nnw
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existing equipment. Naturally, any such simplification entails a cer-
tain loss of information. However, if the simplification is carried
out Jjudiciously, the loss of information need not be too serious.

The basis of simplification is obviously to 1se a coarser mesh
than that demanded by the "exact" theory. This means that camponents
of the turbulence of wavelength smsller than the minimum attainable
cell size cannot be explicitly resolved in the analysis. However, if
the mean effective Reynolds stresses associated with this range of
wavelengths can be correctly simulated, the resulting error in the
overall motion should be quite negligible.

As has been discussed earlier, it is beli=ved that the above
objective can be accomplished by means of an analysis in two stages.
The first deals with the small-scale turbulence, the second with the
large-scale turbulence. The cell size of the large-scale motion is
taken as the block size of the small-scale motion. In the initial
small-scale analyses, the full memory capacity of the computer is de-
voted entirely to resolving the small-wavelength turbulence. From
these results, it should be possible to infer simplified rules for
establishing the corresponding small-scale mean effective Reynolds
stresses. Such stresses can subsequently be incorporated into the
large-scale analysis to produce the required overall result.

For the remainder of this section, we revert now specifically to
flows of Type II. Since the Reynolds stresses are uniquely determined
whenever the mean motion is specified, we may hypothesize that these
stresses are, in general, some unknown functions of the mean velocity
components and of their various partial derivatives of all orders.
Also, we observe that the Navier-Stokes equations of motion are valid
with respect to any inertial frame. Furthermore, any coordinate frame
moving at any constant velocity with respect to an initial frame is
also an inertial frame. It follows, therefore, that the Reynolds
stresses cannot depend on the velocity components themselves since

these are different in different inertial frames, but must be functions
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of the velocity derivatives alone. The velocity derivatives are in-
variant with respect to a shift of inertial frames. However, for any

homogeneous flow field, all velocity derivatives vanish except those

of first order. We conclude, therefore, that the six Reygolds stresses
"~ aU

at any point are each functions of the nine quantities ! _ 3 > where

1) ~ 3%y

= 1,2,3.
J) / U \
The nine components of the unsymmetrical tensor 5?1 ) may be

reorganized into six components of the symmetrical strain rate tensor

;13 and three components of the rotation vector w , as follows. Let
; =lr.a_lill+.a_li]
1972103 " (19-5)
i
3-1)2)3
‘ |
.,.l_l'fﬁ-ai'l,le "a_U.xlA (19-6)
% =7 & Ax.J 2 "1jk \ ax, ./
i J i
where e1Jk =+1 1if 1, j, k are in cyclic order
= -1 1f 1, j, k are in anti-cyclic order (19-7)
= 0 1f any two indices are equal

For any given state of the mean motion as defined by the mean
velocity vectors

Uy = Uy (x5 %y, x3) (19-8)

the actual values of the six strain rate components ;13 and the three
rotation components wy will depend, of course, on the arbitrarily
chosen orientation of the axes; consequently only three of the six com-
ponents ;13 characterize the actual nature of the mean strain rate.
This can be readily seen if the principel axes are chosen as coordinate
axes, for in this case the strain rate tensor reduces merely to the

three principal strain rates 711, ;22, ;33, which now fully define the

88



character of the field. For the present discussion, however, it is more
ceavenient to choose the axes in a somewhat different way; clearly, the
choice of a perticular axis orientation entails no logs of generality in
the phenomenon itself - this still represents a general state of strain
rate at a point.

We choose the axes X )y Xp, x3 in such a way that X3 and X5 lie in
that principal plane which contains both the algebraically largest and
algebraically smallest principal strain rates. However, axes X, and X,
are chosen to be at hbo with respect to the principal strain rate axes.
Of course, x3 is the third principel axis, the one associated with an
intermediate value of strain rate. The situation is shown in Fig. 19.1.
Also shown are the familiar Mohr's circle representations for this strain
rate ccndition, and for the associated Reynolds stresses.

In this ?articular frame of reference, since x3 is a principal
?xis, we.have 723 = 731 = 0. The no?-vanifhing components are 711, 722,
733 and 7100 However, in this case 711 = Ypp» 8O that again there are
Just three independent degrees of freedom in the strain rates. Further-
more, we choose the axes such that ;12 is positive. Since axes X3 and
are at 45° to the principal axes, it follows that the magnitude of

X2

7
12
19.1, the Mohr's circle diagram, should help make this clear.

In discussing either the stress or the strain rate tensors, it is

represents the maximum possible shearing rate. Reference to Fig.

frequently useful to distinguish between the isotropic and distortional
components. The distortional components of strain rate are defined by

Vig = Tqy " Byg? (19-9;

where 7 = 37y = 5 (1) * 7pp + 753) (19-10)

However, for the case of an incompressible fluid, vhich is the specific

case to which this entire report is restricted, we have zero divergence,

that is
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Fig. 19.1 Reference Axes and Mohr's Circles of Strain Rate and Stress.
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Mean Strain Rate Tensor.
§b) Mohr's Circles for Mean Flow Strain Rates.
c) Mohr's Circles for Reynolds Stresses.
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Ty =37 = (1) Vg +733) = 0 (19-12)

whereupon the distortional component becomes identical with the strain
rate itself, that is,
[ ] 7 [ ]
Tig =Ty (19-12)
By rea."n of the zero divergence, which establishes another rela-
tion of constraint among the strain rate components, the number of inde-
pendent degrees of freedom in the strain rate tensor is reduced from
three to two. We may therefor: at this point rewrite the strain rate

components in the owtional alternative form

rp=¢ (1913 5, = 0 (19-16)
Tp=€  (9-W)  y, = O (19-17)
. . . @]

133 =2 (1915 v, = 3 (19-18)

vhere é and O now represent the two independent degrees of freedom in an
explicit way. If we set € = 0 in this result, we obtain the strain rate
tensor associated with simple two-dimensional shear flow, with shearing
rate 0; in fact the simple parallel shear flow which is the subject of
most of this report is a particular flow of this type. The foregoing
strain rate pattemwith € # O is thereforc a generalization to three
dimensions of the simple two-dimensional shear flow: the meaning of
has been appropriately generalized in a corresponding manner.

We may summarize the argument to this point by stating that for
homogeneous flows, the Reynolds stress components must be functions of

the form

T .
(.ll) =i, = 1, (e, 0, w), w,, w3) (19-19)
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This relation may be simplified even further by dimensional analy-
sis. Using reference parameters p, Vv and (1, we set up the dimensionless
forms of the various variables as follows:

T .
1 €
- p_vg (19-20) e*# =2 (19-23)
P 0
p* = S =1 (19-221) *=g=1 (19-24)
u, w
uf = (19-22)  w* hi (19-25)
Consequently we obtain at last
Ty - - W - ery (%, ut, wg, un) (19-26)

Each of the six dimensionless stresses is therefore a function of Jjust
four variables, as shown. This is the general form of the relation
which we initially desired to ascertain.

In the case of a mean flow which is purely two-dimensional, this
relation simplifies drastically, for in this case

€* = 0, and wh = wk =0 (19-27)

Consequently

T = - u¥ uF = P (g 19-28
where, from considerations of symmetry, two of the six stresses vanish,
namely,

T33 = Tgl = o (19-29)

Hence for turbulence in a two-dimensional homogeneous mean flow, the
four dimensionless non-venishing Reynolds stresses are functions of only
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a single perameter, wg, the dimensionless rotation vector. This analy-
s8ils makes evident the desirability of an early investigation of the
two-dimensional homogeneous flow in which wg varies over a range of
values.

Furthermore, for the special case of the simple parallel shear

flow considered in this report

= - . (19-30)
Consequently for this particular case, the dimensionless Reynolds stres-
ses reduce to four specific constants.

Note that the foregoing method is free of any arbitrary or specu-
lative assumptions regarding eddy viscosity, mixing lengths or the like,
although it is, of course, restricted to flows of Type II.

An interesting question arises in connection with the principal
axes of stress and strain rate. The principal axes of the strain rate
tensor are, by definition, axes of zero strain rate. Similarly, the
principal axes of the Reynolds stress tensor are axes of zero shear
stress. According to our usual rheological notions of stress and strain,
we would expect that along axes of zero shear strain rate the shear
stress would also be zero. In other words, the principal axes of mean
flow strain rate and Reynolds stress would be expected to coincide. But
do these particular rheological relations necessarily apply to the case
of fluid turbulence? There appears to be no definite proof that they
do apply in general. This is an item on which it should be possible to
obtain useful information by the methods of numerical simulation con-
sidered in this report.

Elementary theory can also shed some light on this question. Feor
this purpose, let indices i, j, k now refer specifically to the princi-
pal axes of strain rate. Now if any principal plane xixJ is also a plan:
of symmetry of the mean flow, then it follows from this symmetry that

Tii = 0 and @ = 0. However, in any such plane of gmmetry,itsgein follo-s
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that w? = 0 and
That is,
where the three

true.

ir wi

ir w;

t
e ug

It follows also

axes of stress and strain rate are then coincident.

that for highly rotational mean flows, the principal

wj = 0, It would appear that the converse must also be
* = = _*— = T* =

if wi O snd wj 0, then also T O and Tﬁk o,
indices i, J, k are all distinct. Thus,
= = T - - = -

0 and w% = O, then ™ 0 nnd 742*3 0 (19-31)
= = ™" = T = =

0 and wg 0, then T#, = O and ™ 0 (19-32)
= = " = ™ = -

O and wk = O, then ™3 O and 7%, = 0 (19-33)

that if the mean flow be

etrain may cease to coincide.

irrotational, the principal

The implication is

axes of stress and




20. COMPUTATIONAL VERSUS HYDRODYNAMIC INSTABILITY

The discussion in earlier sections should make it abundently clear
that considerable ingenuity and care are required to devise grid patterns
and calculation procedures which will yield maximum accuracy and resolu-
tion for a given computational effort and cost. A special difficulty
that presents itself in various guises concerns the stability and con-
vergence of the calculation procedure. This is one of the fundamental
problems generally associated with numerical methods. The particular
difficulty in the present application is that turbulenc: itself is an
instability phenomenon. There is always the lurking danger of introduc-
ing inadvertently same suu.i¢ cause of instability in the calculation
procedure, and confounding the results with the true physical instability
which is turbulence.

One common if indirect method of coping with questions of computa-
tional accuracy and stability is to compare results obtained by numeri-
cal methods with some known exact theoretical results. Unfortunately,
in the turbulence problem, there are no known theoretical results to
serve as standards of comparison.

An alternative is to compare with experimental data. There is an
enormous amount of experimental data available on various aspects of
turbulence. Nevertheless adequate experimental data specifically appli-
cable to the present boundary conditions might not be available or
readily found. It may eventually prove necessary to undertake an inde-
pendent experimental program for this express purpose,

A more direct approach is to attempt to analyze theoretically the
stability characteristics of the numerical method being used. Some
tentative guide lines are available in this connection, although there
does not seem to be available any standard and definitive technique.

The present problem is especially difficult owing to the great length
and complexity of the basic difference equations involved, and owing to
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their non-linearity. Hence the theoretical approach to stability is a
full-fledged research problem in its own right.

It is, however, a very important problem, and efforts will be made
to pursue it as circumstances may permit. A successful theoretical
analysis would provide definite and rational criteria of stability and
should thereby improve the efficiency of the calculation procedure and
the reliability of the results obtained.

Meaawhile, the difficulty is being faced in a pragmatic way. Various
common sense safeguards and criteria of a heuristic kind have already
been provided in the program TURBOCODE, MARK V. Thus, for example, the
degree of convergence demanded in the iteration procedure which fixes
the pressure distribution is readily adjustable. A parameter is also
provided to 1limit the maximum displacement of any fluid particle in any
time step to any desired small fraction of a single cell length. Pre-
liminary numericol experiments are producing useful guide lines concern-
ing the optimum settings for these parameters, and concerning the corres-
ponding level of residual error or noise produced in the calculation
sequence. Furthermore, it is well known that the sovereign remedy for
most instability problems is & reduction in the size of space and time
increments. Hence it is believed that stability problems are not likely
to defeat the goals of the investigation, although they might very well
increase the effort and cost required to attain these goals.

Incidentally, it is believed that the comparatively sophisticated
finite-element techniques being used in this problem are far less suscep-
tible to instability problems than the looser methods based merely on
replacing differentials by finite differences. It must be conceded,
however, that no method of differencing, however refined, is altugether
exempt from the hazard of possible computational instability.
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2l. GENERATION VERSUS ANALYSIS OF TURBULENCE DATA

The numerical description of a flow field involves the use of a
suitable grid of coordinate points in that field. For the ordinary case
of a cubical region of length L on a side, subdivided into cubical cells
of length L/N on a side according to Method A, there are N cells.
Since a grid point is placed at the centroid of each cell, there are N
grid points. In the program TURBOCODE, MARK V, a staggered scheme of
cells is employed, Method C, which involves 2N3
Since MARK V may use values up to N = 8, the number of grid points may
reach 1024 in all.

The state of the turbulent flow at any instant of time may be ade-

3

independent grid points.

guately described by specification of the values of the three velocity
components and of the pressure perturbation at each point. Hence we
have, in MARK V, at least 8N3 items of data involved for each time step,
that is, up to LO96 items per step. (Actually, certain additional items
of information are also needed near the top and bottom surfaces, but
this is immaterial for the present discussion.)

Now the basic purpose of TURBOCODE, MARK V is to follow the evolution
of the turbulence resulting from an arbitrary initial perturbation.
Since the number of time steps involved in any adequate overall time
period is large, it is clear that we are confronted with an enormous
volume of data - a veritable torrent. It becomes a major problem as to
what to do with this data, how to store it, how to process it, and so
on.

The basic tenet has been adopted that the generation of the basic

data and its subsequent processing for various analytical purposes
should not be confounded within the same progream. Accordingly, TURBOCODE,

MARK V is intended solely to generate the data. The processing involved
therein is minimal and is confined to those few statistical features
which are clearly indispensable for providing a general indication of

97




the state of turbulence. These include (for each time step) space mean
values of kinetic energy, turbulent shear stress and scale of turbulence.
Consequently the generation of the data is accomplished with maximum
efficiency and in minimum time.

The results thereby generated are recorded and stored on magnetic
tape for subsequent analysis and processing by a separate program or
series of programs, according to the type of information desired. Hnw-
ever, for conservation of tape and recording time, provision is made tec
sample the generated data and to retain only such selected portions as
are required for the subsequent anslysis. This avolds the indiscyiminate
taping of huge amcunts of data far in excess of any realistic need.

In a sense, the generation and sampling of data in the present
study plays a rcle comparable to that of physical experimentation in
conventional research. The subsequent analysis and manipulatio. of the

data so obtained is a more or less distinct and separate step.
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22. PARTIAL SWMMARY OF PRINCIPAL CONCEPTS

The mean flow field is a steady, incampressible, parallel and uni-
form shear flow in which the mean velocity U is of the form

U=1Qy (22-1)

where (I represents the constant shear rate, and 1 is a unit vector in
the x direction. Physical boundaries of the flow are at y = + @,

The turbulence is homogeneous, that is, all statistical properties
of the turbulence are uniform over the flow field. Huwever, the field
is anisotropic, that is, properties in one direction are in general
different from those in another direction.

All physical quantities are non-~dimensionalized in terms of the
reference parameters: density P, kinematic viscosity v, and shear rate
1. All possible uniform shear flows of the above type, when non-dimen-
sionalized in this way, reduce to & single definite and unique case.

The energy spectrum of the turbulence is largely confined within a
limited renge of wavelengths. If we neglect some arbitrary but very
small fraction of the total turbulent energy at each end of the spectrum,
two corresponding limits of wavelength are thereby defined, say me
and Lmax’ between which nearly all of the turbulent energy lies.

The flow field is subdivided into large cubical blocks of length L
on a side. Each block is in turn subdivided into many small cubical
control volumes or cells of length (L/N) on a side. The integer N fixes
the fineness of the cubical mesh. In the ideal case, it is desirable
that L 2 L _ end (L/N) < L 4n+ This implies that N 2 me/Lmin.

Since the computer memory requirements are roughly proportional to
N3, it will probably be impossible to meet the above criterion. In that
case, the turbulence must be gubdivided into small-scale and large-scale
2omponents, and analyzed in two sucressive stages. The method lies
beyond the scope of this summary, but 1s detailed in the main text of the
report.
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The large cubical blocks into which the flow field is subdivided
are arranged in horizontal rows. The horizontal mid-plane of each row
has zero velocity with respect to the mean flow. Because of the shear
rate () of the mean flow, there is a relative velocity of magnitude QL
between any two successive rows. At times t = 0, 1/Q, 2/0, 3/Qc...
all rows are aligned in an unstaggered cubical array, such that all
vertical faces of all blocks coincide and form continuous vertical plenes. l
At all other times the blocks in successive rows are staggered with
respect to one another. See Fig. 5.1.

At time t = 0, a set of non-divergent velocity perturbations is |
assigned at the centroids of all the control cells. The perturbation is |
arbitrary except that all possible wavelengths in the range of interest
are present. The initial distribution of the perturbation velocities is
taken as identical for all blocks, that is all cells in corresponding
positions in all blocks are assigned identical perturbations. Conse-
quently, the subsequent motion throughout all blocks remains identical
thereafter. This spatial periodicity of the solution mskes the subse-
quent boundary conditions along the block surfaces perfectly definite
and unique.

The flow field passes through an initial transient in which the
spectral distribution gradually changes from its arbitrary initial form.
Ultimately, some definite equilibrium form and amplitude are attained,
and thereafter, the turbulence remains in an essentially stationary

state. The resulting velocity compo..cnts and pressures over the entire
block may be sampled for any desired number of successive time steps.
With methods suggested in the main body of this report, this data may
be analyzed to establish any desired statistical properties of the turbu-
lence, such as th: mean kinetic energy, Reynolds stresses, scale of
turbulence, energy spectrum, various correlation coefficients, etc.

The initial state of the system is defined by the distributions of
the three velocity components and the pressure. However, 1t may be
shown that the equations of motion and continuity, along with the
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boundary conditions, suffice to determine the pressure distribution
uniquely whenever the velocities are fully specified. Hence the pres-
sure distribution is e derived function which cannot be specified inde-
pendently. Furthermore, not all of the velocity components are independ-
ent, for it may be shown from the condition of continuity and from the
specified spacewise periodicity of the turbulence that if any two of
the velocity components are specified throughout the grid, the third
component 1s thereby uniquely determined. Hence there are Just two
arbitrary initial degrees of freedom for each distinct grid point of
the block. Strictly speaking, these arbitrary degrees of freedom exist
only at the initial time t = O, for the entire subsequent motion 1is
vholly determined thereafter.

Determination of the pressure distribution which must co-exist with
any specified distribution of the velocity components 1involves & lengthy
vrocess of computation by successive approximations until the results
converge to within the required degree of accuracy. This entire itera-
tion process must be repeated every time the velocities change, which is
to say, for every time step. Hence the pressure computation takes by
far the biggest part of the total computation time.

The small but finite cells are used as fixed control volumes in an
Eulerian sense. The continuity and momentum equations are applied to
these control volumes. This involves evaluation of the forces and of
the mass and momentum fluxes pertaining to the six square bounding sur-
faces which enclose each cell. The evaluat. - is accomplished by means
of complete and detalled surface integrals. Similarly, average values
of momentum and energy enclosed within the cell are evaluated by means
of detailed volume integrals. This painstaking integration technique
constitutes the heart of the so-called finite-element method. It con-
trasts strongly with most ordinary differ:ncing methods which use much
cruder estimates of the required forces and fluxes. The difference in
accuracy is perticularly important for relatively coarse meshes, such s

those which are necessarily involved in the present study.
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For evaluation of the above surface and volume integrals with good
accuracy, it is essential to have a suitable interpolation rule which
specifies how the various quantities vary in the space between the
principal grid points. For this purpose a linear interpolation rule is
employed. It is postulated that values vary linearly along any straight
line parallel to any one of the three coordinate axes. It turns out that
this rule determines the distribution uniquely throughout the entire
space when values are specified at the principel grid points.

In connection with the evaluation of various volume integrals, it
is further postulated that the volume average of any quantity within any
cell also constitutes the best avallable estimate of the local value of
that quantity at the centroid of that cell.

The finite-element technique 1s a metnod of approximation which
employs a minimum number of definite basic postulates, and proceeds
thereafter in a completely determinate and unambiguous manner consistent
with these postulates. The necessity for any subsequent ad hoc assump-
tions is eliminated. The numerical accuracy and stability thereby
attained is probably the maximum attainable in relation to the coarse-
ness of the grid employed.

The basic idea of the present calculation method is that if the
velocity distribution is campletely known at some instant of time, the
new velocity distribution a short time later can consequently be found.
First of all, the pressure distribution corresponding to the initial
velocity must be calculated by the iteration method mentioned earlier.
Next, the equations of motion are applied to the control cells to estab-
1lish the time rates of change of the velocity components at the centroids
of the cells. Finally, the new velocities are computed.

The above cycle of calculations 15 repeated for every time step.
Hence the motion of the system may be followed indefinitely, or as long
as necessary to obtain the desired information.

A particular feature of the above calculation procedure relates to

the maintenance of a continuously non-divergent velocity distribution.
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Because of round-off and other errors, tbe velocity distribution at the
peginning of any time step may deviate very slightly from the required
condition of non-divergence. This is corrected in the following way.

A very small correction term is included in the pressure distribution.
This term influences the motion during the subsequent time step very
slightly and in such a way as to tend to restore zero divergence. Hence
there is built into the calculation sequence a divergence correction
which continuously compensates for accumulating round-off and other
errors.

An important question in connection with any numerical method, in-
cluding this one, pertains to the stability of the calculation procedure.
Owing to the great complexity of the final difference equations in the
present protlem, this aspect has not yet received adequate study. How-
ever, a number of common-sense precautions have been taken to minimize
the danger of computationzl instability. The main precaution involves
limiting the time intervals to very small values such that the maximum
displacement of any fluid particle is restricted to some small fraction
of the cell size. It is known that reducing the time increment cures
most problems of computational instability. Furthermore, the improved
accuracy associated with the finite-element method itself provides an
enhanced resistance to instability difficulties.

The basic assumptions and concepts here summarized suffice to
establish a method for the computer simulation of the detailed station-
ary turbulence in a uniform shear flow. The data generated in this way
ies in some respects comparable to that which might in principle be
obtained by direct experimental measurement. The computed data, how-
ever, pertains to a very fundamental cese but one which would be rather
difficult to set up experimentally. Furthermore, the computed results
are incomparably more comprehensive than any that could reasonably be
obtained by experiment. The detailed data so generated represents
fundamental information which may subsequently be analyzed from various
points of view to establish corresponding overall statistical and
phenomenological characteristics of the turbulence.
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23. TYPICAL COMPUTER RESULT

Table 23.1 and Fig. 23.1 show some results of a typical computer
run. For internal consistency this data is included merely as au
example; no detalled conclusions are offered at this time. More compre-
hensive data and analysis are planned for the near future. Nevertheless,
tlv: particular result shown supports the idea, advanced on theoretical
grounds in an earlier section of this report, that for block size L
below same critical value, Lcr’ the initial turbulence dies away and
laminar flov is restored. The data also shows that the normalized
divergence errors (column DBIG) and the inherent noise level in the
computer solution are extremely small.

The data listed in Table 23.1 represents only the gross overall
features of the turbulence. (Most of the columns are self-explanatory:
ENERGY = energy of turbulence per unit mass; UVBAR = Reynolds shear
stress; SCALE = scale of turbulence as discussed elsevhere in this report;
NITER = number of pressure iterations for convergence.) WNot shown, but
available from this same computer run, is An enormous mass of detail
showing the individual velocity components and pressures at every point
in the grid for every time step.
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Teble 23.1 Typical Computer Output

TUKBOCODE MARK V
PROBLeM NUMBER 32

MESH S1ZE 5 BY 5 BY 5 BY 2

INITIAL STATE
KINET1C ENERGY
SPECTHAL PARAMETEFR
S12E OF BLOCX

INTERNAL CONTROL
MAX, ITERATIONS
CONVERGEMCE PARAMETER
MAX, TIME INCREMENT
DIVERGENCE COEFF
TIME STABILITY PARAMETER

OUTPUT CONTROL
OUTPUT TAPE UNIT NUMBLR
LENGTH OF QUTPUT BURSTS (CYCLES!
SPACE BETWEEN BURSTS (CYCLES)

1CYCLE TIME ENERGY
0 «00000 «100-01
1 «26419=02 +990~02
2 «T6419=02 +972-02
3 0 12642=-01 +954=02
4 «17642=01 +936=-02
5 12264201 +919~02
) «2T042=01 «9V2=02
7 0 32642=01 «885=02
8 e 37642-01 +869-02
9 J42642-01 +853-02
10 47642-01 +837-02
11 5264201 +822=02
12 «57642-01 +807-02
13 62642-01 «792-02
14 «6T642=01 +778-02
1% e 72642=01 «763-02
1o e 77042=01 «750=02
17 «82642=01 « 736=02
18 «87642=-01 «723~02
19 «926042~-01 «710-02
20 «97642=01 «697-02
21 10264400 +685-02
22 10764400 672-02
23 111264400 +660=02
24 011764400 «649=02
25 «12264400 «637=02
26 «12764=00 «626=02
27 +13264=00 +615=02

«100-01
1,000
+500401

999
+100-02
«100¢00
«100+07

«0250

28
70

UVRAR
-.116-11
«248-07
«314=06
+965-06
«195=05
«325=05
«483-05
«666=05
+873-05
0110=04%
«134=04%
«160-04
- 187=04
0216=04%
244=04
«274=04
«303-04%
¢333~04%
e 362=04%
«391-04%
«419-04
UUb=04
473=04
«498=04
e521=04%
Shu=04
«564=04
«583-04

105

SCALE
486401
486401
486401
J4B6401
486401
«486¢01
J4R6401
1486401
486401
486401
J486¢01
486401
486401
J486401
486401
486401
486401
486401
486401
1486401
486401
486401
1486401
486401
486401
J486+C1
486471
486401

® S 8 8 08 8 VB S BN N B E NS e g e e e e e

NITER
0

24

12

12

12

12
17

oB16
«000
+000
-,188~-07
1205-07
«245=07
024907
«218~-07
«187-07
«200-07
-.181-07
=.210-07
-.218-07
-¢238-07
=¢290-07
=.324~-07
=,377=-07
= 406-07
W461-07
«310-07
436=-07
486~-07
e 371-07
402-07
449=-07
WT4-07
+502~-07
312-07
«251=07
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Fig. 23.1 Dissipation of Turbulent Energy for Sub-Critical Block Size.
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2k, POSTSCRIPT

The purpose of this postscript is to record two important concepts
whose value and significance were not fully appreciated at the time the
main body of this report was written.

The first idea pertains to a simplified analysis of turbulence by
treatment on & purely two-dimensional basis. One could set w = O, %E
(any function) = 0, and treat u, v and © as functions of x, y and t only.
Actually this approach was considered earlier, but was initially rejected
on the ground that true turbulence is inherently three dimensional and
should be treated as such. Nevertheless, it appears that an analysis of
‘two-dimensional "pseudo turbulence" would be of considerable value and
interest as an interim step toward the final goal. It would undoubtedly
resemble true three-dimensional turbulence in many significant respects.
As a two-dimensional problem in the space coordinates, it falls well
within the range of existing camputer capabilities. It would enable us
to Increase the important mesh resolution parameter N without involving
prohibitively large computer storage requirements. It would also facili-
tate all subsequent steps such as spectral analysis and the like. While
obviously not a complete substitute for the full three-dimensional
treatment, it would certainly be & valuable complement to the latter.

It would be particularly useful and most relevant in the earlier stages
of investigation as a tool for esteblishing basic concepts and methods.
The idea of using simplifications of this type is nothing new; somewhat
similar simplifications have been made by Emmons (Ref. 2), Kraichman
(Ref. 3) and others.

The second concept is a further generalization of the idea of
equivalent reference frames, as outlined in Section 5 of the report.

In Section 5 the basic unit of fluid to which the concept of equivalence
has been applied has been the cubical block of length L on a side. But
it is both possible and advantageous to go further. We can apply the
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concept of equivalence to the individual cubical cell, of length % on a
side. In this case, the condition of eqi:ivulence can be reduced to the
statement that the centroid of each cell shall have zero velocity with
respect to the mean flow. This amounts to adoption of a kind of
Lagrangian System, in the sense explained in Appendix D. The scheme

has obvious merit in that all control volumes are truly equivalent. The
equations of motion are identical in form for all control cells; there
are no terms needed to reflect differences in mean flow velocity at the
centroids. Consequently, the complexities and pecularities of the slid-
ing boundary condition, which is associated with the Eulerian system of
rigid reference blocks, simply vanish from the analysis.

If the control cells are rigid cubes of length (I%) on a side, and
if the centroids of these cells move with the main flow, the effect is
as shown in Fig. 26.1. At the initiel (dimensionless) time t* = O, and
at nubsequent integral velues of t* = 1, 2, 3, «.s.ss, the cells form a
simple cubical array as shown. At other times the individual layers
become staggered as shown. The basic unit of analysis is now not a
rigid block, but a stack of slabs measuring L by L horizontelly, by
(%") vertically.

The differencing formulas to be used in this case will contain the
time variable t, since they must account for the continuously changing
geometry of the system. However, the basic method of deriving these
formulas in terms of surface integrals still applies in the usual way.
There seem to be no basic difficulties involved. Nevertheless, some
care is needed in defining the interpolation spaces which now also vary
with time.

Consider the set of parallelopipeds formed by connecting principal
grid points by straight lines. In horizontal planes these grid lines
form squares of size %, in the usual way. In vertical planes z = constant;
however, owing to the continuous shearing motion, the "vertical" lines
of the grid lie at an angle O with respect to the y direction, as shown.
This angle changes continuously with time. We irpose the restriction,
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Fig. 26.1 Differencing Method for Grid Points Which Move with Mean Flow.
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however, that at all times the angle & must lie between the limits

-1/2 <tan a s+ 1/2 (26-1)

These limits are reached at dimensionless times t* = 1/2, 3/2, 5/2, .uuus
Each time the upper limit tan @ = + 1/2 is reached, the lines are all
instantaneously flipped back to tan @ = - 1/2 in order to satisfy (26-1).
The angle then smoothly increases again to the upper limit, whereupon
the above instantaneous flip-flop action is repeated. The corresponding
grid lines define a system of time-varying interpolation spaces. The
moving lines form the edges of these spaces. It is quite natural to
adopt the rule that within each interpolation space, the variation of
all quantities shall be linear along any line parallel to any grid line.

The use of interpolation spaces whose shape varies with time in a
linear/cyclic pattern suggests that the control volumes might be allowed
to change in shape in an exactly analogous manner. This is indeed en-
tirely feasible, and probably advantegeous from a computational stand-
point. At asny rate, the choice between rigid or time-dependent control
cell cshapes can be made on the basis of convenience, since either choice
is correct. However, time-dependent shape of control cells seems
slightly more consistent with the time-dependent shape of the interpola-
tion spaces. If this ‘dea is adopted consistently, we will have at
times t* = 0, 1, 2, «ce.s 811 control cells and interpolation speces
.nstantaneously cubical. Similarly, at times t* = 1/2, 3/2, 5/2, ....,
all control cells and interpolation spaces flip-flop instantaneously
from tan & = + 1/2 to tan & = - 1/2, However, the principal grid points
themselves continue to move on with a majestic Lagrangian dignity,
utterly unperturbed by the periodic flip-flop of the reference grid
lines.

The gist of this postscript is that there is an early requirement
for a simplified two-dimensional treatment of turbulence, and that
future work should employ coordinates which move with the mean flow.
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APPENDIX A

DEVELOPMENT OF BASIC DIFFERELCE FEQUATIONS
(METHOD C)

A.l LOCATION OF GRID POINTS

In each of the horizontal directions x and z, and for both families
of points, the number of grid rows needed is N. In the vertical or y
direction, however, two extra rows are needed at the bottom and two at
the top, to meet the special boundary conditions at these locations.
Hence the number of stations needed in the vertical direction is (N+i).
Consequently the indices i, J, k in the two femilies vary over the
following ranges

1I=1II=1, 2, 3,"'0"0' N
JI = JII = 1’ 2’ 3"""0'0 (NH“) (Al-l)
kI=kII=l, 2, 3,000""0 N

Spacing between any two successive rows in the same family is (L/N).
ay point (1,4,k)T of family IT is staggered by the amount (L/2N) in
each of the positive x,y,z directions with respect to the corresponding
point (i,3,k)T of family I. In the vertical direction, the lowest row
is at JI = 1, the highest at JII = (N+h);.the reference plane y = O is
chosen to lie exactly midway between the lowest and highest grid rows,
for the sake of symmetry in the S forces. In the x and z directions,
the origin of coordinates is immaterial, and is arbitrarily placed at
iII - kII = o.

The following grid point locations satisfy the above requirements:
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I L 1 II L
xp =5 (- 3) X, =N
I L 1 II L
% = (- 3) % =§ K

The constants CI =%% and CII = E in the above results are found
from the conditions

I1 I L
Yoty oy (c™ -c) =+ 5 (A1-3)

y{ + y;fh =+2(5-ct-cth=o
Locations, other than those at the principal grid points themselves,
are denoted by dimensionless coordinates £, mn, C. Thus within a volume
cell of family I, with centroid at (i, J, k)I, or anywhere along the
bounding surfaces of this cell, which are gurfaces passing through points
of family II, we have

-1<8 = gi (x - xi) < +1

Asn=fE(y-y) 9 (A1-4)

N I
-ISC:—e—L(z-zk)S-ﬂ.
Similerly, within a volume cell of family II, with centroid at

(1, 3, k)n, or anywhere along the bounding surfaces of this cell, which
are surfaces passing through points of family I, we have
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N II

1€ = ST (x1 -x) £+ (A1-5)
N

-l‘nxé—L(in-y) < +]1

-1sg.g—L(z}fI-z)s+1
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A.2 SURFACE CONSTANTS

Surfaces passing through points of family I, and perpendicular to
the x, y or z axes, are denoted by superscripts Ix, Iy or Iz, respect-
ively. For surfaces passing through pcints of family II, we use super-
scripts IIX, IIy or IIz in like manner.

The three ‘relocity components u, v, w are assumed to vary linearly
along any line parsllel to the X, y or z axes. Hence along a typical
surface - let us say a surface Ix - we have

Ix Ix Ix Ix
u = Ao + Al n+ A2 ¢ + A3 nr

Ix Ix Ix
o *B N+5 3

Ix Ix Ix Ix
W= Co + Cl n + C2 € + C3 o

v=38 ¢ + pI¥ " (A2-1)

where the A's, B's and C's are constants whose values are to be deter-
mined from che known values of the u's, v's and w's at the four grid
points which constitute the corners of the surface. (This approach,
Method C, ignores the additional data available from the two other nearby
grid points, lying off the surface on either side of its centroid.)

Equations similar to (A2-1) may also be written for th.: other five
surfaces denoted by superscripts ly, Iz, IIx, IIy, IIz.

Taking for illustration only the expression for u in (A2-1), we

have at the four corners

u=ul (1,3,k) neo0 (=0
us= uI (1,341,k) N=+1 (=0
ue=ul (4,5,k41) ne0 C=4 (a2-2)
u = uI (1,341,k+1l) n=+1 (= 41

115




On the other hand, for the correspording surface of fumily II, we
have at the corners

utt (1,3,k) ne+l

u= C = +]
II
w=u" (1,3-1,k) ne= C=+1 (A2-3)
ueuw? (1,5,k-1) M= c=0
w=ul(4,5-1,k-1) n=0 =0

Now from (A2-1) and (A2-2) the solution for the A's becomes

a1, = E (ol 0,00l (4, 000,071, k1) (1, 541, k0) |

S COP R IR G P G I B L' s G B CS T
A;x(i,‘j,k) = é ['QI( n )'UI( 1] )"’UI( " )"'UI( " )]
(000 =[R2 IC mtC  wtc )]

Simflarly for the other family

A1, 5,00 = [wul(t, 9.1, k-1 (1,8, k1) T8, -1, 100 (L, 5,00 |
A{Ix(i,‘j,k) — IJ';' :-.uI( " )""\J.I( ] )_uI( " )+uI ( " ):l

_ ) (A2-4B)
S TR R S R . R R R L
a1, = B[ 7 )adC v )l mT ()]

The above results may be extended to the other surfaces by cyclic
permutations as symbolized by the diaegrams
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i

z/e—Sy C/:}n / \ (42-5)

k €«—j

In other words, starting with any valid equation, and changing each vari-
able or index thereof by a single step forward in the above diagrams,
produces another valid equation.

On the other hand, the subscripts as in Ag» Al’ A2’ A
change during the above permutations.

Furthermore, the results can also be extended to the other velocity
camponents by the permutations symbolized below, namely

do not

3

u A
VANVAN

In sum we can say that EqQs. (A2-4A) and A2-UB), along with the
permutation rules (A2-5) and (A2-6), fix all the A's, B's, and C's on
the x, y and z surfaces of both families. The final expressions obtained
are in terms of the u's, v's, or w's; that is, in terms of the velocities
at the corner grid pointu.

In the sections which follow, various quantities needed for the
continuity and momentur equations are derived and expressed in terms of
the above surface constants - the A's, B's and C's. If desired, these
constants can then be eliminatel from the resulting expressions by
substitution of the equations of this section. Hence the results re-
quired can be expressed directly in terms of the velocity camponents
themselves. Such expanded formulas were actually used in TURBOCODE,

MARK V in order to avoid the large computer storage which would be re-
quired for storing the many surface constants. (It can be shown that t
number of storage places required for this purpose is approximately
72N2(N+h).) The expanded formulas are very long, however, and it is
considered impractical to give them in this appendix.
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A.3 DIVERGENCE

In terms of the surface constants, the expressions for divergence
in the two families become

DI(injyk) = % { [AoIn(iyjyk) = Ang(i-l,J,k)]
+ (¥ (5,00 - BY (1,010 ] (43-1)

+ [CgIz(i;J;k) = CgIz(i.vJ;k'l)] }

o™ (1,3, = 3 { [A2X(141,5,0) - AX(2,9,0) ]
+ (B (1,0,%) - BY(1,0,9) ] (a3-2)

+ [ca%(1,4,%41) - (1,3, ) }
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AL MEAN STRESSES FROM IMPOSED SHEAR RATE

The shear stress components assoclated with the interaction of
the turbulent eddies with the mean shear vate (¥ = 1, and defined by
Eq. (15-18), are as follows. For family .

Sk = = () {0 - 2 - Deag® (1,3, + 4% (1,400}

P10 = = 3) {0 - £ - DR800 + § B, 0,0) (As-1)
2 .
L

s(1,00) = = B {(3 - 2 - BeT¥, 9,0 + § X1, 9,0}

S)]éy(i,,j,k) = (I%) ( J - 1{% - g‘)Bgy(iyJ;k)
5,7 (1,3,k) = 0 (Rb-2)

s (1,4,k) = 0

SEe(,0) = - () {05 - £ - DegP(e,5,0) + F cii(1,9,0)}

S;z(i,,j,k) =0 (AL -3)

I
5, °(1,3,%) = 0

19



Similarly, for family II
sST%(1,3,0 = - & {0 -F - D 2nI™(1,5,0 4 41,0}
ST, = - {0 -3 - D a0 + F e, a0}
(8,00 = - B {6 -B- D a0 + 20}
stV(1,50) = - () (3 -2 - D B¥(L,4%)
S;I‘Y(i,,j,k) =0
S?‘Y(i,.j,k) =0
sT2(1,000) = - &) {0 -8 - D 1,80 + 7 3,000}
5, 2(4,3,k) = 0

II
s, (1,3,k) = 0
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A.5 MOMENTUM FLUX

The camponents of the quadratic momentum flux stresses defined by
Eq. (15-19) are given below

T)I(x(i,,j,k) = - [Agx(i,d,k)]i % [Aix(i,d,k):le
e [ 00] L (00] )

Ix Ix Ix 1l Ix
T30 = - {800 AN, ,6) + 3 B, 50871, 5.0

lIx

+ 3 BX(1,0,0) A35(1,,0) + 3 BT, 3,0855(1, 4,0}

T(1,3,K) = - {c (1,3,00A55(1,4,k) + 3 3 0N (1,3,K0A%(1, 4,K)

+ 3 XL LA (L, 3,0) + 3 02X(4,0,08(1,3,00}  (a5-1)

These results suffice to fix the pattern. The remaining equations
may be found by application of the permutation rules (A2-5) and (A2-6).
Exactly similar expressions apply to the surfeces of family II; 1t is
necessary only to change superscript I to II. There are nine separate
equations in each family, or eighteen equations in all for the T com-
yonents.
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A.6 IOCAL VISCOUS STRESSES

The local viscous stresses at a point follow the pattern below.
For family I, the local normal and shear stresses are, respectively,
of the form

(1,3, = B [T, 5,00 - 571,30 | - 5 071,500

7,100 = T{ ¥ w00 - g¥,00,0 ]

(A6-1)
+ [25%2(1,0.0) - BE%(1,0,k-1) ] }
For femily II, the corresponding forms are
TEX(1,9,0 = B [A0%(192,8,0) - 551,80 - £ 0T (1,9,%)
(1,0, = @] [0 - o¥(4,80]
(a6-2)

+ [B5%(1,0,640) - 801,000 }

The other four stresses of each family are .ound by the ususl per-
mutations of (A6-1) and (A6-2).
The divergences DI and Dn which occur in these equations are of

the order of the round-off error only and may be neglected if desired.
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A.7T MEAN VISCOUS STRESSES

The mean effective viscous stresues over the surface as defined by
Eq. (15-20) are computed from the local viscous stresses according to
the following format

For family 1

H,ch(irjyk) = %[Tfm(inj)k) + 'r::cx(i;J"'l;k)

I I
+ 7L (1,,k41) + 75 (1,34,k41) |

X 1 I I
}g (1,3,k) = In [Tw(inj;k) + Txy(irjﬂ-;k)

I I
+ 1 (4,8,600) + T (4,341,40) |

H(1,3,k) = 3 [12 (4,350 + 75, (1,540,%)
+ 1 (1,,0000) + 1L (1,34,k41) | (aT-1)

The components on the other two surfaces are now found by the
usual permutation.

For family II only the indices differ. The first equation suffices
to establish the sequence

I1.

o\Lsdk-1)

H,I‘Ix(i,d,k) = i]f[‘rg(i,.j-l,k-l) + T
+ Tg(ilj-llk) + Tg(i,.j,k)] (A7'2)

etc.
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The local stresaes may be eliminated from (A7-1) and (A7-2) by
use of (A6-1) and (A6-2). The process is lengthy but not difficult.
A single typical result is the equation

HL'(1,3,%) @ 37 1ATX(4,3,k) + ATTX(1,041,%) + ATTX(1,3,k41)
+ Aom(ioJ"’l)k"’l) - Agn(i'l)J)k) . Agn(i'ld*’l,k)

- A (1-1,3,k41) - AGTN(1-1,392,500)}

- 3 {0M(0,0,0) + D¥(1,300,0) + DX(1,3,002)

+ DI(i,J+l,k+1)} (A7-3)

The extension of these results to all eighteen components follows
in the usual way.




A.8 RESULTANT PRIMARY STRESSES

The sum of the S, T and H stresses as given by Eq. (15-22) is

termed the resultant primary stress . These R stresses are of the
form

RN(1,3,%) = SEX(1,3,k) + TEX(4,4,k) + HX(1, 3,k) (48-1)

Eq. (AB8-1) represents the x component on the Ix face. Components in
the y and z directions are indicated by corresponding subscripts, and
the other surfaces are indicated by corresponding superscripts. There
are eighteen R stresses in all. Note, however, that eight of the
eighteen S components in Fq. (A8-1) are zeros.
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A.9 NET PRIMARY FORCES

According to Eq. (15-24) the net primary forces are found by sum-
mation of the primary stresees overthe six bounding surfaces of the
volume element. The results are of the following form.

For volume elements with centroids of family I, bounded by sur-
faces of family II -

a0 = (B { [0 - 88 (1-1,8,10]

+ [RIV (1,50 - B (1,5-0,0) ]

+ (R, 50 - REP(1,3,%-0) ] } (A9-1)

Similarly, for volume elements with centroids of family II,
bounded by surfaces of family I

F;*‘I(i,a,k) P (%) {[R,ch(i"l:-bk) - R,Itx(i,.bk)]
o [piy(i,y»l,k) - R,I‘y(i,a,k)]

+ [RE%(1, 0,04 - BE%(1,0,0) | } (49-2)

Of course the corresponding y and z components are found by chang-
ing all subscripts accordingly in Egs. (A9-1) and (A9-2). There are
three force components in each family, or six in all.
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A.10 MEAN PRIMARY FORCES

Note from BEq. (16-3) that in order to determine the divergence of
the net primary forces, it is necessary to evaluate quantities of the
form

¢ =i | Fonag (A10-1)
L5}
3s

We call these quantities the mean primary forces. By the usual inter-
polation rules of Method C, the mean value over the surface 8S 1s
simply taken as the mean of the four corner values.

Thus for surfaces of family I, we obtain the form

o2 « & [FR(,0,0) + FE(1, 00,00 + FH(8,0,k01) + FE(1, 3+1,ks1) | (A20-2)

and similarly for the y and z components.
Thus for surfaces of family II

G:Ix = I}' [F,Itl(i,J,k) + F::EI(i,J-l,k) + F;[tI(L,J,k-l)

+ FI(1,3-1,k-1) | P

and similarly for the y and z components.
The total number of cumponents is six, namely, (},I‘x ’ (};Iry ’ ng,

G’{Ix, G;EIy, G:Z[Iz. Note that the subscript and superscript letters
are always in agreement.
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A.11 PRESSURE COMPATIBILITY EQUATION

It is convenient for this section to adopt a simple letter symbol
for the divergence quantity V. F. We arbitrarily choose the letter Q

for this purpose.
From Eq. (16-3) we obtain

QT(1,5,0) = (B {{ef™(1,0,%) - eF¥(1-1,5,0) |
+ [o¥0,0,0) - oI (1, 50,0 ]

+ (651,00 - a1, 5,00 ] } (A11-1)

Q1,00 = B { [Pe92,8,0) - (1,30 ]
+ [0, 3,0 - o¥(1,5,0]
+ [of2(e,8000) - aT%(1,3,00] } (a12-2)

Substituting these results into Eq. (16-7) then fixes the pressure-
compatibility equation, namely

Vor(1,3,%) = QN(1,3,8) + ¢, ¥ [ 2F p¥(1,4,%) (A11-3)
Vo (1,4,%) = @(1,3,8) + ¢p T 201,500 (AL1)
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These results fix the required values of V2cp throughout most of
the grid. Near tne top and bottom of the block, however, special con-
siderations apply because of the sliding boundary conditions. In the
first place the pressure-compatibility equations (All-3) and (All-4)
are not even needed for the four rows J= 1, J= 2, J = N+3, J = N+i,
The reason is that these are extra rows outside the block. The velo-
cities in these rows are not computed by the usual method, but are
found indirectly by taking advantage of the sliding blockwise periodi-
city of the phenomena. Hence values of V2cp are needed only over the
range 3 € J < (N+2). It turns out that Eq. (Al1-3) is valid over this
range except for the single vilue JI = 3. Similarly, Eq. (All-4) ig
valil over the required range, except for the single value JII = N+2,
Modified equations are required for these two particular rows. The
necessary special equations are derived in Appendix B.

Tracing back the Q terms in Eqs. (A11-3) and (All-4) shows that
they are definite and known functions of the turbulent-velocity dis-
tributions. Hence they represent a constraint on v2cp such as to make
the resulting distribution of the pressure function @ compatible with
the already existing velocity perturbations. The last term on the
right of (Al1-3) and (All-4) represents a correction for error diverg-
ence. The positive dimensionless constant CD should be large enough
to provide good divergence correction, but not so high as to cause
computational instability; its optimum value is best found by numerical
experimentation cn the camputer itself.




A.12 SOLUTION FOR PRESSURE BY ITERATION

By application of the differencing formula (13-10) we can express
dp/3x = @, at eny grid point in terms of the values of o at adjacent
grid points.

A repetition of this procedure gives bec;)/bx2 = amx/ax =@ at
any point in terms of edjacent grid point values of . By cyclic‘ per-
mutation of subscripts, corresponding results can be found for
3%p/3y° = 3 /3y = @ am for /2" = 30 /o = 9, - Mding these
three results finally gives an expression for Vch = (c;:xx + cpyy - cpzz)
at any grid point in terms of the values of @ st nearby grid points.
The procedure, while lengthy, is not difficult.

It is convenient to multiply through by the factor % (L/N)2 in
order to simplify the expression. In this way we obtain the result

2
3 (B P (1,0,0 = 651,50 + § [011-1,80 +o¥(1,5-1,%)

+ @I(iidik'l) + @I(i"'lnj:k) + CPI(i:J"'l:k)

4
+ 0(1,3,000) | - § {07(1-2,5-1,k1) + oF(1-1,3-1,k42)

-+

of(1-1,441,k-1) + @ (1-1,3+1,k+1) + QL (1+1,3-1,k-1)

+

(141, 51, k41, + @1(141,041,k-1) + o (141, 541, k41) |

1 I I I
L [ofe1,0-0,0 + of(1-1, 0,50 + 0%(2-1,5,100)

-

O (1-1,4+1,k) + oF(1,-1,k-1) + @(1,]-1,k+1)

+

P4, 341,k-1) + oF(1,341,k+1) + @H(1+1,3-1,k)

+ @141, ,k1) + @1 (141, 3,k41) + @L(141,3+41,K) | (A12-1)
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Exactly analogous results apply to the other family; it is neces-
sary only to change all superscripts from I to II. Hence a single
explanation will serve to cover both cases.

Suppose we have availeble a set of trial vulues of the function o
at all grid points. If this is in fact the correct function, then it
will satisty Eq. (Al2-1) at all grid points; the left side of this
equation is known, of course, from the calculations of the previous
section. However, if the trial solution is not correct, the terms orn
the right side of (Al2-1) will not in general equal the known values
required on the left.

We must therefore devise a method for adjusting the ®'s on the
right so that the required value on the left can always be obtained
at any specified point (i,J,k). This procedure is then applied in
succeseion to each point in the field, for both families of points.
The entire field is swept in this way agein and again until, at length,
the values of the required corrections become everywhere less than
gome very small pre-assigned error. This then fixes the required pres-
sure distribution.

An essential constraint upon the solution is that the average
pressure for each family of points is zero. This follows from the
very definition of the turbulent pressure perturbation as the net
deviation from the prevailing mean pressure. Consequently either the
procedure for ad justing the @'s should leave the mean value unchanged,
or it must be followed eventually by another correction which restores
the zero mean. This restoration is easily accomplished by addition of
the appropriate constant to the values of ¢ at all points in the field.
An additive constant leaves all differences unaffected.

The simplest method of adjustment 1s to correct the value of
cpI(i,J,k), which is the first term on the right side of Eq. (Al2-1),
80 as to bring this equation into balance. This is the method that
has been adopted in TURBOCODE, MARK V. This procedure pulls the solu-
tion away from zero mean, but this is easily corrected later in the
menner indicated above.
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it is not difficult to modify the adjustment procedure so that
it does not disturb the mean value in the first place. For this
purpose it is necessary only to adjust not only c}(l,J,k), but also
the next group of six points as well. These six points are all

adjusted by equal amounts. This additional degree of freedom may be
used to keep the mean value unchanged while Eq. (Al2-1) is brought
into balance.

More elaborate relaxation procedures are also possible. Note
that the 27 terms on the right side consist of the term qF(i,J,k)
itself, plus three other groups of six, eight and twelve members,
respectively. If a separate correction quantity is assigned to each
of these four categuries, this provides four degrees of freedom. One
of these is used to satisfy Eq. (Al2-1), another to meintain zero mean.
The remaining two may be utilized to minimize the square of the error.
This leads to perfectly definite relaxation formulas. It is somewhat
dubious, however, whether these more elaborate procedures have any real
computational advantages. Hence they have not been utilized up to now.
However, the matter may be worthy of further study.

Each time the solution is advanced by one time increment, the
above relaxation procedure must be repeated. The previously existing
pressure distribution is taken as the first approximation for thre new
pressure. If time increments are small, the pressure distribution does
not change much during any one time step, and the pressure solution
converges in comparatively few iterutions.

Attention is invited to the fact that the pressures qF and qFI
appear to be virtually independent of each other. This arisesz from the
manner of differencing in method C. Such apparent seperation cannot
occur in differencing methods B or A. This circumstance might also
make the pressure iteration procedure in method C somewhat more suscep-
tible to instability difficulties than would be the case with either of
the other methods.
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A.13 NET PRESSURE FORCES

Once the pressure distribution ¢ has been found, the net pressure
forces are easlily determined. The relevant difference equations for 1
the two families follow the patterns below, namely
I N II II II
guum)-+ﬁﬁb(hLM+¢ (1,3-1,k) + @ ~(1,J,k-1)

+ o (1,3-1,k-1) - @ 5(1-1,3,k) - o' T(1-1,3-1,k)

- ot 5(1-1,3,k-1) - cFI(i-l,a-l,k-l)} (A13-1)

T, ,k) = P {101,390, k00) + oF(141,3,k01) + ol (141, 941,0)
I I I I
+ 0 (1+1,3,k) - @ (1,341,%k+1) - o (1,3,k+1) - @7 (1, §+1,k)

- ¢F(1,J,k)} (A13-2)

The other two components in each family are found by the usuasl
cyclic permutations of these equations. -
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A.14 VELOCITY TIME DERIVATIVES

The local velocity time derivatives are now of the form
I
ut(i’J’k) - \-'i(in”k) - wi(i’J’k) (Al!"'l)

Cyclic permutation gives the corresponding results for v§ and vi.
The expressions for family II are exactly similar.
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A.l5 NEW VELOCITIES

The new velocities at the end of a time increment T are of the
form

ug(1,,) = u'(1,3,k) + mal(1,4,k) (A15-1)

The extension to the other components and to the other family is the
same as in the previous section.

This step completes the calculation of the new velocity distribu-
tions at the end of the time interval. The whole process is then
repeated for the next time interval.
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APPENDIX B

DIVERGENCE CORRFCTION AT SLIDING BOUNDARIES
B.l SLIDING INTERPOLATION

It has already been pointed out in Appendix A that in the y direc-
tion calculation of velocities, forces, pressures, and so on proceeds
in the normal manner only over the range j = 3, 4, 5, ..... N+2. Values
outside this range are obtained by an interpolation process which takes
into account the sliding boundary conditions. Thus values at J = 1 and
J = 2 are obtained by this sliding interpolation method from the known
values at J = N+l and J = N+2, respectively. Similarly, the values at
J = N+3 and J = N+4 are obtained by sliding interpolation from the
known values at J = 3 and j = 4, respectively. It will be shown that
this circumstance affects the divergences and the required divergence
corrections in rows JI = 3 and JII = N+2.

The interpolation procedure is based on the fact that the entire
solution is blockwise periodic. This means, for example, that at any
time t

uI(1,2,k) - ul (14Nt ,N+2,k)
(B1-1)

uL(1,N43,%) = ulT(1-Nt,3,k)

The complication arises, howevcr, that the quantities (1+Nt) and (1-Nt)
are usually not integers, and therefore usually represent positions
which lie somevwhere between grid points. Nevertheless, values at such
intermediate locations can be estimated by linear interpolation
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between the known values at the two adjacent grid points on either side
of the desired location.

Any real numbers can always be divided into two parts, one of
which is an integer, the cther a fraction of magnitude smaller than
unity. It is convenient to introduce the notation ,

I(s) = integral part of s (B1-2) |
F(s) = fractional part of s ;
’
from which it is obvious that for any s
N
s = I(s). + F(s) (B1-3) :
1
It follows from this that the required intermediate point falls
between two adJac.i.t grid points according to the relations *
I(1 +Nt) < (4 +Nt) < 1(4 +Nt) +1
(B1-b4)
or I(1 -Nt) (4 -Nt) < I(4 - Nt) +1
The various integers in (Bl-4) may or may not fall within the

range from 1 thru N, inclusive. However, because of the periodicity |
of the solution we may shift each integer by any exact integral multiple
of N such that the shifted value does lie within the above range. To
express this idea we introduce a shift operator S ( ) such that

1<5(s) =8 +KN<N (B1-5)

e e T it o,

where K is an integer whose value is uniquely fixed by the above

inequalities.
With this notation we may now define the following quantities:

— i
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t' = P(t)

1, =8 [x(1+nt )] t! = truncated time

1,p=8 Cx(i+mt’) + 1) Shifted indices (integers)
for interpolation at

1, =8 (z(1-Nt")] upper and lower (BL-6)
boundaries

1yp = S [I(1-N¢") + 1) /

W =

v ™ Vip = F(Ne)

Weighting factors
=1 - F(Nt')

YL = Yup
Consequently, the relations implied by (Bl-l) can now be written
explicitly in the form

1 1 I

u (1,2,k) = w;u (1L,N+2,k) + W gu (1LP,N+2,k)

II 1I 1

uw T (1,N43 ,k) = Wi (iu:3:k) + "UP“I (iUP’3’k) (B12-7)

Note that these interpolation formulas are based on the values of
the 1's and w's as evaluated at the beginning of the time interval. The
subsequent discussion will show the usefulness also of interpolation
forirulas based on 1's and w's evaluated at the end of the time step.

Using subscript N to denote new values at the end of the time
step T, we write

tN =t +7 New time

| t'N = F(tN) Truncated new time

14" S [1( 1+Nt§)]

1 s [1(1+nty)+1]
LPN N New shifted indices (51'8)

Ly = S [1(1-Nt,;)]

1. =8 [I(i-NtI;) + 1)

UPN
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A/ = W

'
N = YLy = F(Ne)

New weighting
’ factors
1-F(Nt N)

Yin = Yuen ©

Of course, for the functions being interpolated, like velccities,
pressures, forces, and so on, only the initial values are known at the
particular stage of calculation here involved. Hence,for these quanti-
ties, only the initial values are involved, in any case. To distinguish
the following interpolated values from those of (Bl-7) we add the sub-
script s. Then

I I I
us(l,2,k) = W (1LN,N+2,k) + W (1LPN,N+2,k)

II(:I.

T (1,03,0) = v (103,K) + vy Hip3,k)  (BL-9)

In certain calculations it will be useful to evaluate the small
differences between the values given by the two different interpolation
formulas (B1-7 and Bl-9). Hence we introduce the further definitions..

I
A = ’C, =]

u1§1 ,»2,k) ug (1 k) -u (1 2 k) (B1-10)
Ou (1,N+3,k) = (1 N+3,k) - o (1 N+3,k)

A similar notation is applied to interpolated forces and pressure
gradients.
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B.2 DIVERGENCE CORRECTICNS

The divergence at the lower boundary JI = 3 may be written out in
full as follows:

DI(1:3:k) bl

G0 {03k + uT(1,3,%-0) - (14,3, - wTE(1-1,3,k-2)
R e D R L o QLD I e G
R R I L R G I )
+ (,’f—L) {un(i,a,k) +ul¥(1,2,x-1) - ull(1-1,2,x) - wIT(1-1,2,k-1)
e e T R A S IR e G
e G I G e G IR e QR ¢ Y

To facilitate subsequent operations, we adopt the following ebbrevi-
ated notation to represent the above result, namely,

p%(1,3,0) = () {TH1,3,0 + =} + @) (1,20 + -~ (B2-2)
This equation represents the situation at same arbitrary time t,

regarded as the initial time of the current time step. Using subscript
N to denote new velues at the end of the time step, we may write

D53, = () {7(1,3,00 + - + (D) {1,200 + -} (B2-3)
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We subtract these two equations and impose the condition thet the
new divergence shall be zero. Then upon rearrangement -

D§(1,3,k) =0 = DI(1,3,k) |

+ G { [T @300 - T1,3,00 ] + womeees }
(B2-4)
* (RN_L') { [“1?(1»2:*) - un(i,a,k)] R——. }

The velocity changes on the right side of (B2-4) are computed from
the equation of motion. The situation is regular at j = 3, therefore

[#;I(i;3)k) - uII(i;3;k)} =7 [FiI(1;3)k) - ¢§I(1;3;k)] (B2-5)

However, at j = 2, the interpolation rule applies. In particular,
the nevw velocities here are of the form

u;I(i,Q,k) =

I I I
vy {u I(im,N+2,k) + T[F’Ic (1750842, K) -t (im,N+2,k):l}
II ¢
YIEN {u (1ppysH42,k) + 7 [’Jxl(im’ma'k)
I
II
- O (12, | } (B2-6)

S

Upon regrouping of the “erms on the right side of this equation,
and employmznt of the definitions of (Bl-9), this result may be re-
written in the concise fom

wil(1,2,k) = uEi(1,2,%) + 1 [FLR(1,2,K) - ©LR(1,2,) ] (B2-7)

-l T

LS {




Next we subtract the original velocity to find the net velocity change.
Using the notation of (Bl-10), we obtain

Lu.tI‘I(l,a,);) - un(i,e,k)_]

ol + 1 [1o.en - e -sowen)] e

It 18 instructive to compare this result with (B2-5). This show..
the difference in the velocity change between & regular interior point
J=1, and a point J)=2 exterior to the block.

Upon substitution of the expressions of type (B2-5) and (B2-9)
into (B2-4) end rearrangement, the basic divergence equation may be
reduced to the following form. The various groups of terms are identi-
fied by number, to facilitate the subsequent discussion.

G { [ @30 + ---:I(P[?vf(i,a,k) + -1}

(2)
+ () Lofi2m + -
(3) (k)
= V2wI(i,3,k) = (}6‘_14) {[F;[(I(i,3,k) + ----]

(BB + e ]} 2o

(7)
+ 2 (@0 {u™l1,2,1) + --- ) (B2-9)

This result establishes both the required value of Vao, tern (3),
and the corresponding pressure solution. The reguired value of V2¢
is fixed by the terms on the right, which depend only on the existing
velocity distribution. Terms (4) and (5) together represent the main
effect. This 1s exactly of the same form as found in the interior
regions of the block, except that the term (5) involves the modified
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interpoletion formulas as signified by the s subscript. Term (6) 1is
the usual divergence-correction term. The new term is (7) which repre-
sents an additional correction associated purely with the sliding-
boundary condition.

On the left side, the term (1) is found to represent the usual
solution for V2cp which may be expressed directly in terms of the pres-
sures themselves. Term (2) 1s a small correction associated with the
sliding boundary condition. This correction must be included in the
iteration solution for the pressures, in order to obtain a divergence
free result.

In expanded form, the two corrections associated with the sliding
boundary condition are found to be as follows:

7)
G {Aun(ifa,k) + -ees}

» 1 (D) {ou (1,20 + auTT(1,2,k-1) - auTF(1-2,2,0) 2uT¥(1-1,2,%-1)

e el (LR I G BN G P sl GRS
"AVII ( " ) -AVII( " ) - AVII( " )ﬂHII( " )}(32-10)
(2)

(ﬁ,—) {&9,1‘1(1,2,1&) + ---} - % (%)2{ %Acpl(i,3,k) + mee-
= i—a [AwI(i'l)3)k)"AwI(1,3,1(-1)m1(1+1,3,k)¢6¢1(1,3,k+1)]
- 5 [60%(1-2,3,k-1)1007(1-1,3, k41 sl (141,3,k-1)

ot (141,3,k41 ] } (B2-11)

The corresponding results for the upper boundary may now be found
by a systematic permutation of superscripts and indices. Hence we
obtain
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(1)
- [wme0eens] + (el s, + -]}
(2) (3)
- () {oal(1,m43,1) + -} o PolI(,me2,0)
(k) (5)
- - Gp { [FLmep) + -on ]+ [Fhgla,m3,0) + --- 1}
(6) (7)

+ % D™ (1,N+2,k) - 9;— (G {AuI(i,N+3,k) +-nn } (B2-12)

where the required correction terms are

(7
- % (,r;'g) {AuI(i,N+3,k) + eee }

o o %(gf) {AuI(i,N+3,k)+AuI(1,N+3,k+1)-AuI(1+1,N+3,x)-Au1(1+1,N+3,k+1)

. AVI( " )AVI( " )-AVI( " )-AVI( " )
soul( " Yo " yoawi( " Jeawi( " )}(Be-ls)
and (2)

2
L N 1, 1I

-(r!:_L) {Acpx(i’N+3’k) + “'} = % (i) { + 500 (1,N42,k) + =---

+ i‘—e [AcoII(i+l,N+2,k)+ AmII(i,N+2,k+l) + MII(i-l,N+2,k)

+ 00T (1-1,802,5-1) | - 7 [a0tT(142,02,k0) + 80T (192,142, k-1)

+ B T(1-1,842,k+1) + b i(1-1,842,k-1) | } (R2-14)

This completes the required divergence corrections at the sliding
baundaries.
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APPENDIX C

EVAIUATION OF KINETIC ENERGY, REYNOLDS STRESSES, VORTICITY AND SCALE
OF TURBULENCE

C.1 REYNOLDS STRESSES AND ENERGY

In differencing method C, the distributions over the volume element
of typical velocity components, say u and v, are assumed to be of the

form below, for control volumes of either family.
u=A;+AE+ AN+ ASC + ATC ¢ A5C§ + AN + A7§T\C

+ A8(1-§2)(1-n2)(1-ce) (c1-1)
v = By + Bf + BN+ Byl + BnC + BCE + BEn + B.ENC

+ B (1-8%) (1) (1-¢%)

The typical mean quadratic product uv over the volume element is then
found by evaluation of the integral

+1 +1 +1

weog [ [ [ uvaotame (c1-2)
d-14

Since components u and v each have nine terms per Eg. (Cl-1), the
integral in (C1-2) has 81 terms in all. Fortunately, most of these
vanish in the integrafion. The following basic types of integrals are
encountered in the above calculation, namely
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+1
f e"d€ = 0 for n odd
-

2
= —— for n even

n+l

+1
[ e ag-2

3
Sl
+1
| (-27) #az = 0
)
+1
[-g8?as - 2 (c1-3)
Sl

and similarly for the variables 1 and €.
Consequently, the required mean product reduces finally to the

form

— 1 1
uv = { AOBO + 3 (AlBl + AyB+ A3B3) *3 (AhBh + ASBS + A6B6)

1 8 512 )
+ 57 (A1B)) + 55 (A)Bg + AgBy) + $35= AgBg (C1-k)

The first term on the right represents the prcduct of the mean
centroidal values. The remaining terms reflect the fact that the mean
product over the volume differs appreciably from the simple product of
the two centroidal mean values.

The overall mean product is then found by aveoraging of the above
quantity over all the volume elements that constitute the block. More-
over, the averaging must be carried out over the volume elements of
both families. Hence the total volume is covered twice. This is a

peculiarity of differencing method C.
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By means of the usual method of Permutation, the foregoing result
may be extended to include all six of the possible Quadratic mean pro-
ducts, namely, u—u', v_v', w—w, W, WU and uv. These represent tle six
Reynolds stresses. F‘urthermore, the sum of the first three of the
above quantities represents twice the mean kinetic energy 2E. In fact
this summation Yields the result

2 2

?.E=fA§+B + C

17,2, .2 o2 2.2 2
o o]+§[(A1+A2+A3)+(31+52+B3)

+(cf+c§+c§)]

1 2 2 2 2 2 2

+§[(AE+A§+A6)+(Bl¢+B5+B6)+(Ch+C5+Cz)]
2

l e 2 7 16
+5,7|A7+57+c7 |+§|A0A8+3038+c008]

8 (c1-5)
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C.2 VORTICITY

The three vorticity comronents at an arbitrary point within a

given control volume are expressed by the relations

MENER:
X L an

N Sy Ay ~
v (INF - F CER
A . ')
wz'<Lt(\\">m

These expressions would be exact if the derivetives appearing in
them were known exactly. Unfortunately, only the approximate informa-
tion represented by cquations of the torm (Cl1-1) is available. DNirect
analytical difterentiation ot (Cl-1) degrades the accuracy somewhat,
although the subsequent volume integration explained below tends to
offset this error. The results obtained are of the form

(Gp) w, = (Cy-B3) 4 (Cy-Bo)8 - Bn - Cf

8PN + C.%C - 2cq(1-2%)n(1-r7)
2By (1-£°) (1-rF)C (cz-2)

+

The components wy and w, follow from this by cyclic permutation.
The mean square vorticity finally required is defined by the

integral
+1 +1 +1

;;E = é f I I fwi + w§ + u§ 1 dramig (ce-3)
-1 -1 -1

148




Fortunately most of the integrals involved ir the evaluation of (Cz-3)

vanish identically. The integration, although quite lengthy, is not
difficult. The result finally obtailned is

L 2 2 2 . /n el 1y .2
(2—ﬁ) W = [:(A3-Cl) + (Bl'Ae) + (,2-83) ]+ z | ("u'“c)
e .2 2 2 2 2
+ (BS-Ah)C + (c6-35) + A? + Az + Bé + Bh + Ch + CS 1

22 2 2 512 C2 2 27
+9rA7+B7+C7-_I'+375.A8+B8+C8'

s

This result must, of course, be averaged over all the volume
elements of both families, in the same manner as for the kinetic
energy.
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C.3 SURFACE CONSTANTS

Consider a typical control volume with a centroidal point of

family I. The eight corners and the centroid may be designated as

follows:

ult(1,4,x)

[+
*d
L]

=
[ ]

ul¥(1-1,4,%)

ut(1,3-1,%)

of

ut(1,,%-1)

=
[ ]

u0=

ut(1,4-1,%-1)

-
n

uII(i'l: J,k-1)

of

=
n

ul (1,4,K)

= ull(1-1,3-1,k-1)

ull(1-1,3-1,%)

(c3-1)

Similarly, consider a typical control volume with a centroidal
point of family II. The nine corresponding points may be designated

as follows

Yp

u, = uI(i,J+l,k+l)

wy = ul(141, 4,k+1)

ug = uI(1+1,J+1,k)

%

= ul(1+1, 3+1,k+1)

I
ups = u(4,J,k)

I
uAI = | (i+1,J,k)
%I = uI(i,J+l,k)
o = uI(i,J,k+l)

= “II (1,3,%)

(c3-2)

Now in either of the above cases we may apply Eq. (Cl-1) to all nine

characteristic points of the control volume, thus obtaining nine simul-

taneous equations. These are easily solved for the nine surface
constants Ao through A8, with the following results.
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Ao=é{+“P+“A+“B+“c+“c’+“B’+“A'+“P'}
A1=%{+“P'“A+“B+“c'“c"“B’“‘A"“P'}
A2=%{+“P+“A'“B+“c'“c’+“s"“A"“P’}
A3‘213{+“P+“A+“B'“c+“c"“B"“A"“P'}
Ah'ElS{"“P*“A'“B'“c'“c"“B’*“A’*“P’}
A5=%{+“P'“A+“B'“c'“c’+“B"“A'+“P’}
A6—%{+up-uA-uB+uc+uc,-uB,-uA,+uP,}
A7=%{+“P'“A'“B'“C*“c’+“B'+“A"“P'}
A8=uo-A0

Similarly; the B's are computed from the v's and the C's from the w's.
Thereupon the mean energy is calculated from (Cl-5) and the mean square
vorticity from (C2-4).
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C.4 SCALE OF TURBULENCE

Consider a hypothetical velocity perturbation of the form
2n2
u = P sgin —? sin T
v = Q sin 27'“3 sin g%x_ (ck-1)

v-Rsin?{zain?Lﬂ

vhere P, Q, R and /1 are arbitrary constants.

2E =

The mean kinetic energy E is then given by

Ln

3 [u2+v +w2] dxdydz = E(P2+Q +R (ck-2)

&

OCc— &
O Gy O
O = d

The vorticity is defined by

w_ E - g-:) (c4-3)

and similarly for wy and wz by cyclic permutation.

Upon differentiating, squaring and integrating, we obtain for

the mean square vorticity

2

. L oL 1
_3[.,[ f|w+w2
0 0 0 y

+ we] axdydz = (3* %(p"\q"‘m"‘) (ch-4)

&

The scale of turbulence A is defined by the equation

2E
A=C Ch-
J-E (cu-5)
w

15




where C is a constant whose value we wish to establish. We choose
this constant in such a way that the hypothetical perturbation of
(Ck-1) shall be deemed to have a scale of turbulence A which is equal
to its wavelength 4. The logic of this choice .3 eviCent from inspec-
tion of (Ch-1). Hence we substitute fram (Ck-2) and (Chk-4) into (O4-5)
and set A = ¢,

The result obtained thereby is

=
x.e/z,‘va"’—_ (Ck-6)
v m2

Note that the arbitrary amplitude parameters P, Q, R cancel from this
result, so that the constant of proportionality given above is indepen-
dent of these quantities.

Equation (Ck-6) 1s now taken as the definition of the scale of
turbulence A, and is regarded as applicable to all types of perturba-
tions. It may be interpreted as a kind of root mean square wavelength.
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APPENDIX D

FOURIER ANALYSIS OF TURBULENCE IN A UNIFORM SHEAR FLOW
D.1 COORDINATE SYSTEMS

In this appendix, all quantities are non-dimensional in the sense
explained elsewhere in this report.

Consider an arbitrary point which moves along with the mean flow.
Let x, ¥y, z, t represent the ordinary tjue-coordinates of the point in
a rigid Cartesian axis system; we term these the Eulerian coordinates.
Iet §, N, C, T represent the corresponding Lagrangian coordinates of
the point. The Lagrangian coordinates are defined in terms of the
Eulerian coordinates as follows:

=% .0
T\"yt,o (Dl-l)

C=12 .9

T=t

Thus at time t = 0, both sets of coordinates coincide.

Note that for a point moving with the mean flow, the Lagrangian
space coordinates £, n, C are constants, whereas the Eulerian space
coordinates x, ¥y, z are, in general, functions of time. Conversely,
for a point fixed in space and not moving with the mean flow, coordin-
ates x, y, z are constants, whereas €, n, C are functions of time.
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In the present case of a uniform parallel shear flow whose
(dimensionless) shear rate () equals unity, we see that for a point
moving with the mean flow, the relations simplify to

=8 +m =& +yt (2 = constant)

N = constant

f = constant (p1-2)

¢ N < ¥
n

=T

Therefore it euffices for this case t¢ take x, y, z, t, as the Eulerian
coordinates, and €, vy, z, t as the Lagrangian coordinates.

Consider a se. of simple cubic grid points in the fixed or Eulerian
system of reference. Let space and time points be defined as follows:

X, = % (1 - %) 1=1,2,3,--=-N
¥y = P-I; (3 - %) - g j=1,2,3,--=-N
n =g (c - 3 k= 1,2,3,---N (p1-3)
t, = g— (m - %) m=1,2,3,--=-M

Let us establish a corresponding set of Lagrangian grid points,
which move with the mean flow. At time t = O, however, let the moving
Lagrangian grid coincide with the fixed Eulerian grid. Let indices Q,

J, k, m represent space time points in the moving system. In particular,
for such a moving grid point, we have

By (D1-k)

wvhere the indices @, J, k, m vary over the ranges previously indicated.
The y, 2z and t coordinates remain as given in (D1-3).
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D.2 FOURIER SERIES APPROXIMATION FOR VELOCITY
PERTURBATIONS

It has been shown elsewhere in this report that it is permissible
for purposes of approximation to treat turbulence as if it were

periodic in space, provided that the wavelength is made sufficiently
large and the cell size sufficiently small. Corresponding considera-
tions apply also to the time dimension. In principle, therefore, the
space time structure of turbulence is representable by a four-aimen-
sional Fourier series with a very large number of terms. The adequacy
of such a representation in practice depends on the number of terms
which it is feasible to retain, and also on the accuracy and precision
with which the Fourier coefficients can be computed and expressed.

We introduce the auxiliary variable

6 = —2’% (P8 + aqv +rz) + 2—; (st) (p2-1)
where p;
qQ) =1, 2, 3, ---- N
r)

8 =1, 2, 3, =---- M

Now the u velocity component is expressible in the form of the
Fourler series

N N N M
et 5757 35 bttt
¥ p=l a= r=] s=l (D2-2)

3 cos 8
+* D (pJQJr)S) (—1/_—/2)
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In this equation the velocity component u is mormalized with
respect to the root mean square turbulent velocity as represented by
\/rgii where E is the mean turbulent kinetic energy. The variables sin © and
cos 6 are also normalized by their respective root mean square values,
both of which equal 3//2. Such normalizing is optional, but does confer
upon the Fourier coefficients, the A's and D's, certain advantageous
properties, as will be seen. The matrices A(p,q,r,s) and D(p,q,r,s)
are four-dimensional arrays, each array consisting of N3M constants.
Specifically at the moving Lagrangian grid points themselves,
Eqgs. (D2-1) and (D2-2) reduce to the forms

- x%zfp(a -3+l - B+ (k- %)] *»%E[S(m ) %)—J

u(a, §,k,m) EE\( m Z Z Z Z{A(p,q,r,s) -(—//2)

g=1 r=1 s=1

' cos B
+ D(p,q, )8) > } (D2-3)
(1//2)
e Corresponding expressions for the other two velocity components

can be written by permuting the foregoing equations according to the
pattern

VAANAY

ve—1v ; E (D2-4)

Certain features of the above results are noteworthy. First of
all, it may be seen that once the Fourier coefficients (as well as the
normelizing mean energy E) are known, the turbulent velocities are
fully defined. The Fouriler coefficients are the six arrays of constants
namely, the A's, B's, C's, D's, E's and F's. The total number of Fourier
coefficients is therefore 6N3M, or just twice the total number of
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velocity components in the complete space time grid block. Theoretically,
these coefficients define the turbulent motion to just that degree of
resolution permitted by the constants N and M which fix the fineness of
the coordinate mesh. The adequacy and resolution of this mathematical
model theoretically improve as the constants N and M are increased.
However, as the number of Fourler coefficients increases, the rumber of
significant figures required for each constant also increases, in order
to prevent difficulties arising from round-off errors.

Of course, the velocity components defined by Egs. (D2-2) or (D2-3)
are referred to the moving lagrangian coordinate system. However, if a
transformation to fixed Fulerian coordinates is required, this is easily
found by use € Eqs. (D1-2). The reason for introducing lagrangian
coordinates in the first place is that the sliding boundary conditions
along the top and bottom of the rigid Eulerian block are thereby satis-
fied.

It should be stressed that the above Fourier representation is
complete in the sense that it duplicates the actual turbulence to
within the allotted degree of resolution. Hence any or all statistical
or phenomenological quantities that can be calculated from a finite-
difference approximation of the velocity history, can also be calcu-
lated directly from the Fourier coefficients themselves.

Inasmuch as the Fourier coefficients depend only on the wave
numbers E, %, % and %
turbulence is hamogeneous. Also, since the Fourier coefficients are
independent of the time variable t, the turbulence is stationary.

but not on the space variables, &, y, z,the

An important advantage of the Fourier representation, as compared
with the direct velocity components themselves, is that it more clearly
reveals the structure of the turbulence. The direct velocity components
in physical space seem so chaotic as almost to defy any efforts to
analyze or order them. On the other hand, the Fourier spectral coef-
ficieuts can be expected to vary in some smooth and orderly fashion

within the wave number domain. Hence there can be some hope of charting
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this spectral variation, and perhaps of expressing it graphically or
analytically in some greatly condensed and simplified form. If this can
be accomplished it will mean that the problem of turbulence in a uniform
shear flow is then essentially solved. However, since the wave number
domain is four-dimensional, to summarize conditions in this realm in a
way which 18 both simple and adequate may or may not be possible. De-
talled numerical data is required before this question can be settled.

Attention ie invited to the fact that the Fourier solution contains
equal numbers of sine and cosine terms. From this fact, it follows that
the overall turbulence is resolvable into components at each point of
wvave number space which are in cert/in sense out of phase or orthogonal
to each other. This is importan. for the adequate description of turbu-
lence. Conventional experimental methods of obtaining spectral informa-
tion about turbulence usually fall to disclose these phase relationships,
and are therefore incomplete in a very significant respect. (In fact for
a complete description, information on phase relationships is Jjust as
essential as information about amplitudes; in quantitative terms we may
assert that exactly half the needed information concerns amplitude, the
other half concerns phase.)

In principle, the equation of ccntinuity and the three equations of
motion could be written directly in terms of the Fourier coefficients
themselves rather than in the more usual way, in terms of velocity compon-
ents. These equations could then be solved for the unknown Fourier coef-
ficlients. This method, however, seems to involve extreme analytical com-
plexities and numerical difficulties, and has been discarded as being too
unpromising. On the other hand, a feasible method of solution has been
developed which establishes the velocities directly, without any reference
to Fourier coefficients. Thus far in this discussion we have considered
how unknown velocities may be expressed in terms of known Fourier coeffici-
ents. In the present circumstances, however, the velocities are the knowns
and the Fourier coefficients the unknowns. Hence we face the problem of
inverting the previous solution. Fortunately, it is characteristic of
Fourier methods that the fundamental equations can be readily inverted.
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D.3 SOLUTION FOR THE FOURIER COEFFICIENTS

For the purpose of inverting the basic equation (D2-2), we
introduce the following notation

6= (pf + ay + rz) + = (st)

8’ = i—“ (p'e + q'y +r'z) + %1 (s't)

T L L L
i} r r I sin O sin 6 df dy dz dt
S8 Y0 2 ye0 £:0 (1/2) (1/f2) 3¢
L (D3-1)

I '® I [ f f cos B cos 8’ 42 dz dz dt

v

° te0 20 y=0 £=0 (775’(7755

Y
Isc I I J‘ sine cose dg gx dz dt
t=0 =0 y=0 B§=0 00

It can be verified by direct integratinn that the following ortho-
gonality relations are valid, namely,

(a) p’ = p
I, = *1 provided Q' = q
I"=I‘
!
8 = §
= 0 otherwise
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" QO o
"

q
/ (D3-2)

-
n

+ 1 provided
(o]

[42]
n
o]

O otherwise

(¢) I

- 0 for all values of the indices.

sin 8 df dy dz dt
(1//2)  13r

We now multiply Eq. (D2-2) through by

and integrate over the limits indicated in (D3-1). Upon invoking the
orthogonality relations (D3-2), we obtain

T L L L
r u z,t sin 6 df dy dz dt

(1//2)  iq

+ = A(prcbrys) (D3‘3)
t=0 z=0 y=0 &0 <k

For purposes of approximate numerical evaluation, the integrals on the
left may be replaced by corresponding finite summations. These are

formed by multiplication of each principal grid value of u by the cell
volunc (%)3 and time interval (g), and then summation over the full extent
of the space time block. Upon rearranging, we obtain the result

N N N M
. _ ; 2 2 : 2 :u(a, k,m) sin 8 n
A(P)Q) )5) N3M < 42%_ (1/!2) (D3 )

k=l m=1

Proceeding in like fashion with the cceine term we obtain the corres-
ponding result

N N N M
1 u(x, j,k,m) cos 6
D(p,q,r,s) = —— J—;']ﬁ_-‘—l et (p3-5)
N%; e %; ; 28 (M)
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The remaining Fourier coefficients may be found in like manner by permu-
tation in accordance with (D2-L).

The velocity components on the right side of Eqs. (D3-#) and
(D3-5) are evaluated at the Lagrangian grid points. These m: - be
obtained by interpolation from the previously ccmputed and known values
at the Eulerian grid points.

A further important result is obtained from energy considerations. H
First, both sides of Eq. (D2-2) are squared and integrated over the
space time block. In this process, the right side is greatly simpli-
fied through the application of the orthogonality relations. The same
procedure is also applied to the other two components, and the three

equations are then added together. The following result is thereby
obtained, namely,

N N N M
z Z Z Z {[Az(p’q’r’s) v D2(p,q,r,s)]

=1 qg=1 r=1 s=1

+ [Bz(P)Q)r:S) + E2(P)Q:r:5) ] + [Cz(p,q,r,s) + I“z(p:Q:r:S)]} = 1 (D3-6) ’

The physical interpretation is simple. Each quadratic term represents .
the fraction of the total kinetic energy of turbulence stored at the
corresponding location in wave number space. The sum of all such
energy fractions must equal unity. This simple form of result is the
consequence of the normalizing procedures employed in the analysis.

It is perhaps worth mentioning that a shift in the origin of the
Lagrangian space time coordinates will affect all of the Fourier
coefficients, but in a simple way. The total energy stored at each
point in wave number space remains unchanged, but the separate sine
and cosine components each undergo a simple phase shift.

It might also be mentioned that all results obtained in this
appendix by use of Fourier series have an equivalent representation in

terms of truncated Fourier integrals. The difference is mainly one of
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form, the series form beinz somewhat more convenient for numerical
methods. In the integral method, the Fourier coefficients are treated
not as discrete constants but as continuous density functions in wave
number space. Conversely, the discrete Fourler constants may be
interpreted as pointwise approximations to functions which are, in
fact, distributed continuously in wave number space. The distinction
is largely academic. There 1s no difference in the final computational
formulas which are obtained!

This completes the essential features ¢f tne Fourier analysis. It
is now possible to derive furtner interesting and useful results con-
cerning quantities such as the Reynolds stresses, various correlation
coefficlents, and so on, but such additional topics lie beyond the
scope of the present discussion.

As a final cautionary note, we again observe that calculation of
the Fourier coefficients from Egs. (D3-4) and D3-5) is subject to
inaccuracy from round-off errors, especially for high values of N3M.
It will be necessary to retain a sufficiently large number of signifi-
cant figures in the calculations. It is a curious fact that if N3M
is small, round-off error in the individual coefficients 1s small,
but detailed resolution of the turbulence is poor. On the cther hand
if N3M is high, resolution is good, but round-off error is high. This
clrcumstance somewhat resembles the well known i:determinacy principle

of Heisenberg!
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