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ABSntACT 

Fluid turbulence is of crucial significance In many problems of 

scientific and technical Importance.    Current developments In computer 

technology offer the possibilities of solving the fundamental equations 

of turbulent flow In a way never before possible.    In order to accomplish 

this aim, however. It Is first necessary to formulate the essential 

theoretical concepts In a suitable manner.    This report summarises the 

progress achieved to date In this connection.    Various essential basic 

equations are derived, but the emphasis is as much on fundamental con- 

cepts as on mathematical details.    More specifically, a method is 

established for the computer simulation of the detailed stationary tur- 

bulence In a uniform shear flow.    The results obtainable in this way 

are far more comprehensive than any which could reasonably be ootained 

by physical experiment.    The data generated represents fundamental 

information which may be subsequently analyzed to establish overall 

phenonenological characteristics of the turbulence.    The concepts in 

this report should provide a sound basis for a systematic, sustained 

and productive research plan.    They have already been successfully 

applied to a computer program which is now going into operation.    Results 

of a typical cooiputer run are included and illustrate qualitative agree- 

ment with theoretical predictions; it is hoped to present far more compre- 

henilve and definitive numerical results in future reports. 



SUMMARY 

The  Problenr 

For solution of the flow In complex tydrcdynamlc systems at high 

Reynolds number (for example, upward flow following underwater nuclear 

explosions), a basic understanding of the mechanism of fluid turbulence 

Is required. The Reynolds stresses applied to the mean flow, various 

"eddy diffusion coefficients /'as well as the rate of energy dissipation 

from turbulence to heat, all depend on the state of the turbulence Itself. 

Various experimental Information Is available concerning these phenomena 

for certain particular configurations of the mean flow, and various 

theories of turbulence exist which are applicable to a few special cases. 

The basic partial differential equations which govern all Incompressible 

fluid flows (including turbulent ones) have been known for many years. 

To date, however. It has been impossible to derive from these equations 

the relevant overall statistical parameters describing turbulence which 

are required for technical applications. 

Findings 

In the current Investigation, the approach to the problem of obtain- 

ing this information is Indirect rather than direct.    That is, by the 

use of high-speed digital computers which have been available only 

recently, the exact, detailed nature of particular realizations of tur- 

bulence may be obtained numerically, by brute-force integration of the 

governing partial differential equations.    This extremely large amount 

of detailed information concerning the flow may then be treated 
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statistically to extract the essential Information required. This 

report describes techniques developed to obtain the desired detailed 

Information, and presents a few results from a computer program which 

embodies these concepts. Methods are then discussed by which this data 

(which Is analogous to a very large amount of physical experimental dato) 

will be processed. 
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1.  INTRODUCTION 

The present investigation of turbulence originated in connection 

with a project involving the numerical simulation of the mean flow in 

underwater nuclear explosions.» It was realized quite early in the 

course of the explosion study that a significant fraction of the energy 

released In the explosion goes into the creation of intense turbulence, 

and that the turbulence and the mean flow have a profound mutual influ- 

ence upon each other. Of course, it is possible to simulate the mean 

flow phenomena to a first order of approximation, which is sufficient 

for sane engineering purposes, by Ignoring the complexities of turbu- 

lence and simulating them rather crudely in the form of a flctltiors 

Increase in apparent viscosity. In fact, some such procedure is required 

in any case to ensure that the numerical calculation procedure shall 

Itself be stable. 

It is apparent, however, that further progress in the underwater 

explosion problem requires a deeper understanding of the associated 

turbulence. Furthermore, the phenomenon of turbulence has an enormous 

technical and scientific importance in its own right, quite apart from 

the specific application to underwater explosions. Most fluid flows of 

technical Importance are turbulent, so that progress in understanding 

the fundamentals of turbulence has potentially an enormous range of 

application. 

♦Pritchett, J. W., '^tACni - A Two Dimensional Cylindrical Coordinate 
Incompressible Code", U. S. Naval Radiological Defense Laboratory, 
USNRDL-LR-67-97, 20 Oct. 1967. 

  



It le an Interesting fact that the basic partial differential equa- 

tions which govern tne detailed motion involved in fluid turbulence 

have been known for a very long tine. However, no one has yet succeeded 

in deriving from thes.* detailed equations the resulting overall statis- 

tical and phenomenological characteristics of the turbulence which are 

important for technical applications, atypical statistical features of 

these kinds are mean kinetic energy, mean turbulent stresses, scale of 

turbulence, various correlation coefficients, etc. The ultimate mutual 

interrelationships among these statistical characteristics of the tur- 

bulence and the relevant features of the mean flow field remain shrouded 

in mystery. 

One reason for the difficulty is that the detailed structure of the 

turbulence is extremely ccmplex in relation to that of the mean flow 

and requires an enormously greater number of degrees of freedom for its 

full description. This fact is crucial for analysis by purely numerical 

methods. It should be borne in mind that in the underwater explosion 

problem, for example, the mean flow itself is quite complex and requires 

a very large number of degrees of freedom for its adequate numerical 

description. This is true even after advantage has been taken of the 

polar symmetry which reduce i the mean-flow problem from three to two 

dimensions. The mean-flow requirements still tax the memory capacity 

of the best modern Computers. If we now were to attempt to add turbu- 

lence effects by a direct numerical assault, this would require a much 

finer mesh and an extension from two to three dimensions. The demands 

on computer memory capacity and computing time would be Increased by a 

fantastic amount! Clearly, such an attack by sheer force would be 

wholly Impractical. 

In view of the foregoing difficulties with a direct numerical attack, 

and in the absence of any demonstrably valid analytical solutions, most 

attempts to Incorporate the effects of turbulence into various problena 

of fluid mechanics have been based on a more or less empirical approach. 

Thus the unknown relation between the mean effective turbulence stresses 



and the mean flow may be assmned to follow some more or less plausible 

mathematical fonn, perhaps one derived by a rough analogy with the known 

mechanism which governs the viscous stresses.    Various assumptions of 

this kind can and have been postulated, but none so far suggested have 

been convincingly demonstrated to follow from the fundamental equations 

of continuity and motion*    Corsequently, heuristic models of this type 

generally contain one or more empirical coefficients whose values can be 

determined only by physical experiment.    Nevertheless^ results can b* 

obtained In this way which do have a certain usefulness for particular 

purposes.    However, such results tend to be rather limited In scope, are 

subject to occasionally serious Inconsistencies and errors, and do not 

provide sufficient Insight into the real underlying mechanism Involved. 

There is, however, another possible alternative.    We may subdivide 

the overall problem into several successive phases, each one of which 

does lie within the capabilities of modern computers.    In the first place, 

we can turn attention to the study of situations in which the character 

of the mean flow has been substantially simplified.    All nonessential 

complications of the mean flow are at first eliminated.    In this way the 

inherent and essential mechanism of turbulence is all the better isolated 

and displayed for detailed study and analysis.    Secondly, we can sub- 

divide the turbulence Itself into two parts, namely, small-scale and 

large-scale turbulence.    The small-scale turbulence can be studied first, 

utilizing the full capabilities of the computer to this end.   While the 

numerical data obtained in this way is enormously detailed and complex, 

the significant overall statistical and phenonenologlcal features of 

this data presumably lend themselves to summary and generalization in 

sane much simpler way.    Thus the mean effective turbulence stresses 

associated with the small-scale turbulence can b3 consolidated into an 

appropriate formula.    In fact the analysis given in a later section of 

this report sheds some light on the essential nature of such a relation. 

The resulting formula can then be treated as vart of the known input in 

the treatment of the large-scale turbulence.    Again the full power of 



the compiter is utilized in dealing with the large-scale turbulence. 

The detailed numerical data obtained in this second stage can again be 

generalized so as to sumnarize the mean effective turbulence stresses 

and other phenomenological characteristics of the overall turbulence. 

These results, in turn, can be treated as known inputs in the treatment 

of the mean flow field, and can be applied to progressively more complex 
mean fluwa. 

Of course, the relationships obtained for a simplified meen flow do 

not necessarily apply to mean flows of more general types.    Nevertheless, 

if fundamental insight is our goal, the natural progression of study must 

be from the simpler to the more complex cases.    Sventually, it should be 

possible to re-introduce some of tiv complicating factors which are ex- 

cluded fron the initial studies.    The resulting mathematical models 

should gradually become more pertinent and general.    Meanwhile, however, 

even the earlier models can be used to advantage as first-order approxi- 

mations and introduced provisionally into rather general types of flow 

fields, such as the unetoady mean flows involved in underwater explosions, 

for example.    This, at least,  is the philosophy upon which the present 

line of investigation is based. 

A more detailed discussion of the problem of modelling the mean 

effective turbulence stresses is presented in a later section of this 

report. 
The principal purpose of the present investigation is, therefore, to 

begin a fundamental study of the basic mechanism of turbulence by means 

of a numerical solution of the equations of continuity and motion on a 

modern high-epeed digital computer. 

So far as the present report itself is concerned. Its main objective 

is to document the progress that has thus far been achieved, and to 

summarize the key concepts that have evolved.    A certain amount of explora- 

tory theoretical work and preliminaiy computer calculations were carried 

out in the early stages before the essential ideas were adequately 



developed.    It is not the purpose of this report to dwell on these 

early attempts which have played a useful role but which are now 

largely superseded. 

It is perhaps appropriate to mention in passing,  however, that some 

efforts were made to formulate the problem in wave space,  using concepts 

of spectral and Fourier analysis.    While these methods have certain 

attractive theoretical features,  it was finally concluded, nevertheless, 

that numerical analysis can be carried out more efficiently by a more 

straightforward approach expressed in terns of ordinary physical space. 

However, the results computed in this more direct way can subsequently 

be re-analyzed from the spectral point of view.    In fact,  it is expected 

that such supplementary calculations of the spectral type will definitely 

be made and will prove useful.   (See Appendix D.) 

While severs.1  preliminary computer programs have so far been produced, 

the first program which embodies present guiding concepts to a sufficient 

degree is that one designated as  "1URB0C0DE, MARK V."    As of the date of 

this writing (January I968), this program has Just been developed to the 

point where serious calculations  can now begin on a moderate scale. 

Results of a typical computer run are given later in this report.    How- 

ever, extended discussion of actual numerical results must await a 

future repciw.    The present report is aimed primarily at documenting the 

theoretical concepts which are largely embodied in TURBOCODE, MARK V. 

In fact, the present theory goeb somewhat beyond that on which the above 

code is based.    It is anticipated that a more up to date version will 

ultimately replace M/ÜÜC V.    At this time, however,  it is  considered 

advisable to obtain a certain amount of numerical data from MARK V 

before proceeding with any major program revision. 

The anticipated progress of the present research program can be 

classified into several successive,  but somewhat overlapping stages, as 

follows: 

(x) Development of basic ooncepts, equations and  computer program 

for simulation of turbulence. 



(2) Generation and analysis of turbulence data, and development of 
phenomenological models. 

(3) Application and extension of results to various mean flow fields 

of technical importance. 

The present report, however,  is largely limited to the first item 

in this list.    The second stage will also require a strong analytical 

effort.    Only then can the technological pay-off represented by the 

third stage be folly achieved. 



2.  THE BASIC FLOW FIE ID 

The simplest possible mean flow field relating to the problem at 

hand Is one which Is both steady and Incompressible. 

The simplest possible state of turbulence Is one which Is both 

stationary and homogeneous. Stationary turbulence Is characterized by 

time in variance of all statistical properties at all points. Homogeneous 

turbulence Is characterized by spatial Invarlance of all statistical 

properties at all times. These statements also Imply constant viscosity 

over space and time. 

The turbulence can be stationary and homogeneous only If the mean 

flow Itself Is steady and homogeneous, "or homogeneity> the mean flow 

must have a uniform and constant vortlclty vector, and a uniform and 

constant strain rate tensoi,  If, In addition, we require that the 

streamlines of the mean flow field je straight and parallel, say parallel 

to the x axis, the mean flow reduces to the definite and unique case of 

a simple uniform shear flow. We can, without loss of generality, orient 

the y axis In the direction of the shearing gradient, '''herefore the 

mean velocity becomes simply 

U - 1 [U0 + CV] {2-1) 

where 1 Is a unit vector in the posltire x direction, and fl is the con- 
stant shear rate. U is a constant which depends only on the arbitrary 
location of coordinates. 

A further slmpllflcation of Eq.  (2-1) would be to Impose the restric- 
tion of zero shear rate, that is 

g . 1 0 - 0 (2-2) 



whereupon 

U - 1 U conatant (2-3) 

This represents a uniform mean flow.    It Is In fact equivalent to 

no flow at all, since a set of axes can now be defined which move along 

with the mean flow, with respect to which axes the mean velocity Is 

evexywhere zero. 

The case of uniform mean flow has attracted much attention because 

It Is Isotropie.    Naturally, the condition of isotropy represents a very 

considerable simplification of the turbulence problem, and has been ex- 

tensively studied. 

Unfortunately,  however, this degree of   }amplification Is excessive 

In the present context, for with Isotropie turbulence and zero shear 

rate of the mean flow the average turbulent shear stresses are zero, and 

there can be no transfer of energy from the mean flow to the turbulence. 

Hence the turbulent energy dissipated into heat by viscous action is not 

replenished, and the turbulent energy decays with time.    The turbulence 

therefore is not stationary with respect to time, as originally required, 

(it becomes steady only in the limit as zero amplitude is approached. 

But this limit Is trivial, in that It really amounts to the absence of 

turbulence.) 

For non-zero shear rate, however, the mean turbulent shear stress is 

also non-zero, and the sense is such that net energy is transferred from 

the mean flow Into the turbulence.    Hence an equilibrium is eventually 

reached between the mean rate of energy input and the mean rate of viscous 

dissipation.    Consequently, a stationary non-zero amplitude of turbulent 

energy Is ultimately established,  as required. 

In short,  the required flow field Involves 

(a) A steady,  incompressible, parallel mean shear flow with constant 

non-zero shear rate,  and constant viscosity. 
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(b) Stationary and homogeneous turbulence which is, however, aniso- 

tropic. 

Now consider the flow between two parallel walls of infinite extent, 

as shown in Pig.   2.1.    The walls move in opposite directions with con- 

stant velocities + U    as indicated.    Spacing between the walls is 2h. 

The fluid has constant uensity P and constant kinematic viscosity v. 

A Reynolds number may be defined for this flow in the form 

U h 

«.-O) (2-4) 

It is a well known principle of fluid mechanics that for any given 

geometrical configuration, there exists a corresponding critical Reynolds 

number which marks the boundary between laminar and turbulent flow. For 

the present case, the critical Reynolds number is about 750 (fief, l). 

Below tbls critical value the above flow is laminar and the velocity 

varies according to the simple linear law. 

U « Qy 

where 

0 a o 
a y 

constant shear rate 

(2-5) 

(2-6) 

At Reynolds    numbers above the critical, however, the flow becomes 

unstable with respect to small velocity perturbations, and a stationary 

turbulent condition is soon established.    In this case the velocity 

distribution becomes strongly non-linear, vomewhat as shown in the 

diagram. 

Next, consider a sequence of turbulent flows of the above type at 
successively higher Reynolds    numbers.    Suppose this sequence is gener- 

ated by increasing both U   and h in such a way that the slope    -r—   re- w ay 
mains finite in the mid-region near y ■ 0, far from both walls. In the 

limit as R -• <», we once again recover a linear distribution of the mean 

velocity far from the walls, but now the flow is turbulent. This is the 
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Fig.  2.1    Laminar and Turbulent Flows Between Oppositely Moving Parallel 
Walls. 
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situation we wish to analyze (see Pig.  2.2).    It represents perhaps 

the simplest conceptual example of stationary, homogeneous non-lsotroplc 

turbulence.    Analysis of this flow should reveal Important basic Informa- 

tion concerning the Irreducible essence of stationary turbulence. 

11 
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(b)  Dimensionless Form 

Pig. 2.2 The Basic Mean Flov Field. 
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3.    DB1BBI0NAL ANALYSIS OF THE BASIC FLOW 

The basic flow field described In the previous section, and Illustra- 

ted   In iPlg. 2,2, Is fully defined by three characteristic parameters, 

naael}, 

n ■    ?■£ ■ the constant shear rate, l/sec 

p ■ the constant fluid density, slugs/ft*1 

o 
v > the constant kinematic viscosity, ft /sec 

The present problem lies In the realm of dynamics.    This amounts to 

saying that all significant quantities which occur In It are reducible 

dlmenslonally to certain combinations of not more than three fundamental 

dimensions.    These can be force F, length L and time T.    However, the 

requisite reference force,  length and time can be expressed.   In turn, 

by combinations of three parameters appropriate to the specific problem 

under study.    For the present problem, the necessary and sufficient 

parameters are clearly 0, p and v.    These three quantities suffice to 

establish a system of natural reference units in terms of which all 

other physical quantities can be expressed in an appropriate dimension- 

less form»    Thus, for example,  if X Is any relevant quantity having 

arbitrary physical dimensions, a dlnensionless form X* may always be 

defined euch that 

X« 
p n v 

The appropriate exponents a, b, c can always be found so as to render X* 

dimenslonless. 
This principle is illustrated by the examples listed in Table  3«1« 

The last three entries in the table show that the basic dimensional 

reference quantities, namely p, v and 0, when themselves expressed in 

dimenslonless terms, turn out, of course, to have unit amplitude. 

13 
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TABLE 3.1 

Summary of Dlmenslonless Variables 

Quantity- Symbol Dimensions        Dlmenslonless 
Form 

Principal Variables 

Length 

> » 

X L -./? 
lUae t T t» - ot 

U#r         U 

Velocity u L/T V v n 

Velocity Time 
Derivative 1 L/T2 öu»         i          du 

»  JK st 
Force per 
Unit Mass 

f F      L 

Pressure per 
Unit Density 

0 P 
PL      L2 

^•pfe 

Kinetic Energy 
per Unit Mass 

E PL      L2 

a ? ■••dh 
Reference Parameters: 

Density P 
M     n? f.t.i 

Kinematic 
Viscosity 

V 

^ v».i.l 

Mean Shear 
Rate 

n 1 
T o..g.i 

iU 



This fact is important.    It shows that all cases of unbounded parallel 
flow with constant shear rate are reducible, when expressed dimension- 

lessly, to a single case.'    This represents a substantial simplification 

and generalization of the problem.    Using dimensionless nomenclature, we 

may say that all cases are equivalent in a certain sense to the case of 

a fluid of unit mass and unit viscosity undergoing unit shear rate. 

It can be shown rigorously that any equation that is valid when ex- 

pressed in absolute dimensional form is also valid when expressed in 

corresponding dimensionless form.    Hence we may replace absolute quanti- 

ties x, t, u,   etc. by the equivalent dimensionless forms denoted 

by x*, t*, u* etc.    In this process the quantities p, v, 0 are re- 

placed by p» = 1, v* = 1,  0» = 1 and hence cease to appear explicitly in 

the equations. 

The above non-dimensionalizing procedure is followed in some of the 

mathematical developments of this report.    Whenever the context is such 

that there is no ambiguity involved,  it becomes permissible to drop the 

symbol» which was introduced above to distinguish dimensionless forms 

from their dimensional counterparts.    On the other hand. In some discus- 

sions it is clearer to retain the fully dimensional form.    This variation 

of usage should cause no difficulty, as the context makes the intended 

meaning clear. 

15 



h.     BLOCK SIZE, CELL SIZE, AND MIMORY SIZE 

In analysis of the flow by finite difference methods, it is obviously 

necessary to confine the numerical operations to a finite region. Exten- 

sion of the boundaries to infinity, such as is frequently convenient 

when one is using analytical techniques, is not feasible when numerical 

methods are employed. 

F> rtunately, an adequate approximation can be made on the basis of 

a finite region, provided that the chosen region is sufficiently large 

to constitute a representative sample of the field. The term "large" is, 

of course, relative. We must ask, "Large relative to what?" 

The answer is that the region should be large relative to the "scale 

of turbulence." There are various possible definitions of scale of 

turbulence. Perhaps the most useful definition in the present context 

is based on the concept of statistical correlation. Let us therefore 

summarize the essential features of this concept. 

For this purpose, let JL and StQ denote the position vectors of two 

arbitrary but known fixed points in the flow field. The relative dis- 

placement vector between the two points is then 

Let üp(t) and üQ(t) be the respective turbulent velocity vectors at the 

two points as functions of time. Assuming that the turbulence is ste 

tionary, we may define the following three time-average scalar product , 

namely, 
T 

ST^- | JupCtW^t) dt (U-2) 
0 

   _    T 

W U
P 

=
 iJv^'M^ dt ('*-3) 
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VUQ " UQ Ijü (t)-u (t)dt ih-k) 

where the total time T Is large. 

Now the correlation coefficient R Is defined as 

«V 
A A 
u  »u 

F.   Q (^-5) 

Since the field Is also homogeneous, this expression simplifies 

further because In this case 

2   2   2 
Up - uQ = u 

Therefore 
M      A 

U 

(^-6) 

(U-7) 

Furthermore, In a homogeneous field R has the same value for every 

possible choice of the point x , provided f Is held fixed. 

Now It Is easy to show that If point Q Is chosen to coincide with 

point P, we obtain perfect correlation, that Is, 

R(0) - 1 (U-8) 

On the other hand, we know from experiment that If point Q Is remote 

from P, the velocities are completely uncorrelated. Hence 

R (•) (U.9) 

There Is mucn experimental Information available which shows that 

the correlation coefficient R diminishes rapidly with Increasing magni- 

tude of the relative displacement vector, r rPQ|- 
In principle. 
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therefore, there exists some finite value r^Y  ^yond which the magnitude 

of the correlation coefficient | R | Is everywhere less than seme very 

small preasslgned quantity €. Thus , 

iR<Wsc<<<1 (u-io) 

The actual value of r^« depends on the permissible error e. Of 

course, In any practical case there Is always some limitation in the 

accuracy with which R Itself can be measured or computed.  If we choose 

€ equal to the uncertainty in R itself, then there exists some corres- 

ponding finite rMAy. We can say that beyond this distance the correla- 

tion R is truly negligible. Hence the smallest region vhich is suffici- 

ently large with respect to the scale of turbulence to be acceptable as 

a representative sample of the field may be conceived, for example, as a 

sphere of radius rM.y« 

Another way to Judge the size of the region is in relation to the 

wavelongths of the turbulent velocity spectral components. It is known 

that the wavelength« which play a significant role in entraining energy 

fron the mean flow, in sustaining the kinetic energy of the turbulence, 

and in dissipating turbulent energy into heat, are largely confined 

within a certain limited range. The flow region selected for study must 

be large enough to Include this range, of course, but any further in- 

crease in size can be expected to have negligible effects on the results. 

Provided the region selected is sufficiently large along its smallest 

dimension, its exact shape should make no noticeable difference in the 

final results. Hence shape may be chosen on the basis of convenience. 

Now the shape which is by far most convenient for numerical analysis is 

a simple cubical block, say of length L along each edge. 

The cubical control block must in turn be subdivided into small 

volume elements for purposes of numerical analysis by differencing tech- 

niques. One again, the shape of the volume elements is relatively unim- 

portant, provided they are reasonably compact and sufficiently small. 
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Clearly, It is by far most convenient to choose these as cubical cells 

of length (L/N) along each edge. It Is essential, however, that the 

length (L/N) be sufficiently small relative to the scale of turbulence. 

In particular, It must be smaller than the shortest wavelength in the 

significant wavelength ^ange as described above. 

It follows that. Ideally, we should like to use a block length L 

which lies above some upper critical limit, say L  , and simultaneously 

to use a cell length (L/N) which lies below some lower critical limit, 

L . . In principal, this can be achieved by choice of a sufficiently 

large value of N, that Is, 21 i L  /L . . 0 '      '    max   min 
The difficulty to be faced Is that computer memory limitations will 

make It Impossible to use a value of N large enough to satisfy the fore- 

going requirement. This is because Computer storage requirements Increase 
3 

roughly In proportion to N . Moreover, computing tinea Increase even 
k 

more sharply, perhaps In proportion to N . Consequently, some type of 

partial simplification of the problem becomes mandatory. 

One answer to this difficulty Is to split the overall turbulence 

into several ranges of wavelength, and solve them In succession. The 

general Idea has already been explained briefly. It is believed that 

existing third-generation computers have now reached a state of develop- 

ment such that the problem can probably be solved in Just two stages, 

namely, by division of the turbulence into small-scale and large-scale 

effects. We can do this by choosing a length L which represents the 
6 

block size for the smaJl-scale turbulence, and which Is at the same time 

equal to the cell size of the large-scale turbulence. 

Thus we may write - 

For the small-scale turbulence: 

Cell Size   L . )  L 
nin)      _£ < N 0+-11) 

Block Size   L6 j  Lmin
N ^ ^ 
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For  the large-ecale turbulence: 

Cell Size 

BlocK Size 

) max 
< N 

L  ) 
max' 

(^-12) 

It follows that for a two-stage analysis of this kind, the required 

value of N is reduced to 

mln 

Another problem Is that the appropriate spectral wavelengths    L 
max 

and L . are inltia .y unknown, although existing experimental data 
nun 

might possibly provide this information. However, we no« consider a 

method of numerical experimentation on the computer Itself which can 

serve to establish a reasonable estimate for the lower limit L . . 
min 

Recall that energy input to the turbulence is mostly concentrated at 

the longer wavelengths while energy dissipation is mainly in the shorter 

wavelength range. Hence a reduction of the small-scale block size L 

amounts to cutting down energy input in relation to dissipation. It 

should result in a reduction in the mean steady kinetic energy of the 

turbulence. In fact, it should presumably be possible to find a critical 

limit L  below which the initially Imposed turbulence cannot sustain 
cr 

Itself and eventually dies out. This condition can be associated with 

a critical Reynolds number marking the bore er between laminar and turbu- 

lent flow. Thus 

Re 
L2 0 
or 

cr L» cr (U-13) 

It may be argued that over distances smaller than L ,  significant 

turbulence effects cannot be sustained. This therefore provides a 

reasonable measure for the minimum necessary cell size. That is, for 

the small-scale turbulence we may place 
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N - L er ik-lk) 

Preaumably it is possible to find L      by successive trials, usin« only 
cr 

the basic turbulence computer program itself. Let a series of runa be 

made varying only the block size L. For trial values of L smaller than 

L . the initial turbulence may be expected always to die out. For 

values greater than L , the turbulence kinetic energy may be expected 

eventually to reach a non-zero mean stationary state. Hence a systema- 

tic series of trials should theoretically suffice to establish L  to 
cr 

within any prescribed margin of uncertainty. When L  has been found in 

this way, we may then fix the required block size for the small-scale 

turbulence as equal to 

N L cr (U-15) 

Then the required block size for the large-scale turbulence becones 

.2. 
L.  « NL    » N L Ti s cr (4.1c 

If the large-scale block size L. obtained in this way satisfies the 

condition 

h S L max (4-17) 

then all requirements relating to block and cell size will have been met. 

Naturally, the higher the available value of N, the more accurate 

are the results obtained in this way. TCieoretically, the exact result 

corresponds to the unattainable hypothetical limit of infinite N.  It is 

believed> however, that by use of the two-stage approach outlined above, 

reasonably accurate results can be obtained with modest values of N, 

well within the memory capacity of modern computers. With computer 

technology itself still advancing at a brisk rate, there is every reason 
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to ßuppose that the accuracy and adequacy of the results attainable vlll 

Improve steadily. 

Of course, the use of two (or more) successive ranges of wavelengths, 

although It should enable us to cc vnensate In pert for limitations of 

computer capacity, Is not without Its drawbacks. For one thing, the 

basic equations become more complex as the quadratic terms In the momen- 

tum equation Introduce Interaction effects among the several wavelength 

regimes. A detailed treatment of the Interaction problem lies outside 

the scope of the present report. It Is believed, however, that this 

aspect can be successfully treated. 

22 



5.  BQUIVAIiNT REFERENCE FRAMES 

The present analysis is concerned with homogeneous turbulence. This 

means that all statistical features of the turbulence, such as the mean 

kinetic energy, for example, are uniform over the entire flow field. 

Consequently, it is immaterial Just where the control block is located 

in the flow field. In fact, we may subdivide the entire unbounded flow 

region into a cubical array of blocks, somewhat as shown in Fig. 5.1, 

and select one of these at random as the system to be analyzed. 

However, if the various blocks are to be considered equivalent to 

one another, they must all be related to the mean flow in a corresponding 

manner. Consider, for example, the array of blocks in Fig. 5«1» Block 

outlines are indicated by heavy lines, cell outlines within each block by 

lighter lines.  Three rows of blocks are shown in the figure.  Each of 

these rows has a mid-plane, which is the horizontal plane midway between 

the top and bottom ooundaries of that row. The vertical spacing between 

the successive mid-planes is equal to the block size L. Let the middle 

row of blocks be regarded as fixed in the diagram. Suppose the mean 

velocity of the fluid is 

U - 1 n y (5-1) 

where y is measured vertically from the mid-plane of the middle row. 

Suppose that the upper row of blocks is moving to the right with a 

speed flL , and the lower row is moving to the left with speed QL . 

Clearly there is now zero relative velocity between fluid and block at 

the mld^lanes of all three rows. An observer in any one row of blocks, 

moving with that row, sees within his own row a distribution of the 

relative mean velocity which is identical with that seen by any other 

observer in the letter's own row. The velocity diagrams illustrate this 

fact. This is what is meant by the statement that all blocks must be 

related to the mean flow in a corresponding way. 
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Fig.  5.1    Relative Positions and Velocities of Equivalent Reference Blocks. 
12    3 (a) Blocks and cells at times t ■ 0, x* *, ^,    

(b) Blocks and cells at other times. 
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(c)  Mean flow velocities relative to successive rows of blocks 

Fig.  $•! (cont'd)  (c) Mean flow Velocities Relative to Successive Rows 
of Blocks. 
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Now any one of these blocks may be chosen at random as the system 

to be analyzed.  Prom the point of view of a hypothetical observer within 

that block and moving along with it, the block and its associated grid of 

cells constitutes a stationary or Eulerian frame of reference. All the 

subsequent analytical equations are to be understood as being expressed 

with respect to such an Eulerian reference frame. It is an impcrtant 

point, however, that the different rows oi" blocks are to be considered 

as lying in different, though equivalent, reference frames. Since all 

of these reference frames are moving in straight lines parallel to one 

another and at constant relative velocities, they are all inertial 

systems. 

It is convenient to assume that at some initial time t = 0, all of 

the blocks in the field are arranged in a sim^Je cubical array, with 

their front and rear surfaces lying in common vertical planes through 

all rows, in the manner shown in Fig. 5.1(B). As time passes, the 

separate rows become gradually more staggered relative to one another, 

owing to their relative motion, as shown in Fig. 5»l(b). However, after 

each time interval of length (l/0), the relative movement between any 

two successive rows equals exactly one additional block length, so that 

e simple cubical alignment is once again established. It is seen, 

therefore, that the steady and progressive relative sliding of the 

various blocks gives to the structure of the reference framework a 

periodically recurring character, with period T ■ l/fJ. Expressed in 

appropriate dimensionless time units, the period becomes simply T* « 

1/0» - 1. 

There is, however, a time span which is a true characteristic of 

the turbulence, and which should be mentioned at this polit. It is 

associated with the concept of correlation over time, and  is entirely 

analogous to the previously discussed concept of correlation over 

distance. 

Let Up(t) and Up(t+T) be the velocity vectors at a fixed point Xx 

Lmes t and (t+T) respectj 

can define the time averages 

at times t and (t+T) respectively. If the turbulence is stationary we 
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Öp(t).<Sp(t+T) - ||Vt).up(t-Kr)dt 
0 

xxc o UpCtj-ÜpCt) - UpCt^-UpCt+T) 

T T T 

(5-2) 

(5-3) 

0 0 

Now the correlation coefficient R Is defined as 

R(T) 
ÖD(t).Ü-(t+T) 

u 
(5-5) 

If the turbulence Is homogeneous, then for a fixed T, the value of 

R Is the same for every possible choice of the point X_. 

It Is seen that If we place t ■ 0, we obtain perfect correlation, 

that Is, 

R(0) - 1 (5-6) 

On the other hand, we know from experiment that at times suffici- 

ently far apart, the velocities are completely uncorrelated, that is 

R(») (5-7) 

Now it follows that there exists some time span t«T beyond which 

the value of R differs from zero by an amount less than the amall inher- 

ent uncertainty in R itself. 

It follows that if we wish to calculate any time-average property 

of the turbulence, an integration over a tine interval of say 2T will be 

ample to provide a Just average.    Also, if we wish to approximate the 

turbulence by Fourier methods, it is permissible, for example, to treat 
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the phenomenou as periodic in time, provided that we choose the basic 
reference period as at least equal to 2T.    Actually,  our present method 

of solution does not assume this kind of periodicity in time; it will 

be seen, however, that the assumption of periodicity in space proves 

to be most useful. 



6.    BOUMDAHY AMD INITIAL CONDITIONS 

Solution of the fluid turbulence problem Involves the application 

of the principles of mass and momentuai conservation to all the Indivi- 

dual small cubical cells which comprise the large fluid block under 

study.    The resulting difference equations which embody these physical 

principles may be termed field equations because they apply to all the 

small volume elements throughout the field.    They play a role In the 

numerical difference method analogous to that of partial differential 

equations. 

However,  such a set of field equations Is capable of establishing 

an Indefinitely large number of distinct solutions, depend-ng on the 

boundary and initial conditions which are involved.    For the present 

case, the boundary conditions are simply the velocity end pressure dis- 

tributions occurring as functions of time over the six square bounding 

surfaces of the block.    The Initial conditions are the distributions 

existing over the entire control volume at the initial time t ■ 0. 

Prom a purely mathematical point of view, the boundary and Initial 

conditions may be arbitrarily prescribed; the field equations then 

establish the corresponding complete time-dependent distributions over 

the volume of the block.    Thus the field equations do not in themselves 

fully determine the phenomena, but merely propagate the effects of the 

boundary and initial conditions in the proper manner. 

But for the purpose of simulating turbulence, what are the appropri- 

ate boundary and initial conditions to apply?   The field equations them- 

selves do not enlighten us directly on this crucial point.    Nevertheless, 

there are other considerations which do lead to fairly satisfactory 

answers.    In this connection,  it is convenient to consider the initial 

conditions and the boundary conditions separately. 

In regard to the initial conditions, it is shown elsewhere in this 

report that for a simple cubical grid of N   points, there are 2lr initial 

• 
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9 
degrees of freedom.    This means that 21^ initial velocity components may 

be prescribed arbitrarily. Hence the number and variety of conceivable 

initial combinations is extremely large. So how shall a specific suit- 

able initial combination be selected or prescribed? 

The key to the answer lies in the fact that fluid turbulence is an 

instability phenomenon.    It is characteristic of instability processes 

that initial perturbations serve mainly as a triggering mechanism; the 

state ultimately attained is essentially Independent of the exact nature 

of the triggering disturbance.    The reason is that certain components of 

the turbulence tend    to grow and others to decay until an inner dynamic 

equilibrium Is attained.    This ultimate equilibrium depends on the intrin- 

sic mechanism of turbulence rather than upon the exact form of the 

triggering perturbation. 

It is known,  however, that the initial response of a particular 

flow field to an Imposed disturbance may be relatively sensitive to 

certain ranges of frequencies or wavelength and comparatively immune to 

others, although the ultimate state is independent of these details. 

Hence it is probably advantageous, though not essential, to assume an 

initial velocity perturbation which contains a wide range of wavelengths 

and frequencies.    Apart fron this rather mild requirement, however, the 

exact form of the initial perturbation should be immaterial in the long 

run. 

Pre« this it appears that any random set of initial velocity pertur- 

bations is adequate for starting the calculation procedure.    In any case, 

the precise influence traceable to the specific initial input used may 

bn expected to fade out with time in a roughly exponential manner, 

quickly leading to a state of the system which may for all practical 

purposes be regarded as stationary and representative.    At least, this 

is the assumption made in the present analysis. 

Turning now to the conditions along the bounding surfaces, we find 

a more difficult problem.    The reason is that the  Influence of the 

boundaries, unlike that of the initial state, does not diminish with 
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time.    Hence there is no possibility of obtaining a valid solution 

unless the boundary conditions are defined in an appropriate way. 

In this connection, one important clue is that the flow field is 

homogeneous.    Therefore, the exact placement of the reference grid is 

arbitrary and immaterial.    Ihus the overall statistical results obtained 

from a certain system of blocks should be the same as those from another 

system of blocks displaced with respect to the first by arbitrary amounts 

along all three axes.    Of course,  if there is s verticed displacement 

between these two reference systems, there must also be a corresponding 

horizontal relative velocity between them. As has already been shown, 

this is necessary in order that both systems of reference blocks shall 

have corresponding velocity relationships with respect to the mean flow 

passing through them. 

Another way to view the matter is that the translation of any plane 

by any amount in any direction should not change any overall statistical 

characteristics pertaining to that plane, provided only that it remains 

parallel to its original orientation and that it retains a corresponding 

velocity relative to the mean flow. 

Another clue concerning the character of the boundary conditions is 

that each bounding surface is the common interface between two sdjacent 

blocks.    It serves as a medium of transmission of the influence of each 

of the blocks upon the other.    Furthermore, there is a kind of symmetry 

in this two-way transmission.    The reason is that both blocks are suffici- 

ently large that all statistical characteristics of the turbulence are 

sensibly equal in the two volumes.    It is seen therefore that each bound- 

ing surface is the common Interface between two large volumes whose fluid 

contents exhibit statistically equivalent behavior. 

Another significant attribute of turbulence that should be borne in 

mind in formulation of appropriate boundary conditions is the element of 

randomness in the phenomena.    The statistical concept of correlation, as 

explained in an earlier section,  is helpful in this connection.    In 

particular, we require that the velocity correlation coefficient !*(?_,-) 
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«hall be negligible if the distance f^. between the two points involved 

is sufficiently large, say equal to block size L. 

Consider specifically two points P and Q,  point P being somewhere 

on the left bounding surface and point Q being somewhere on the right 

bounding surface of the block.    The distance between P and Q is never 

less than the block size L regardless of the precise locations of P and 

Q on the respective faces«    Hence the velocity correlation between P 

and Q must be negligible for all possible pairs of locations.    Similar 

conclusions can be drawn for another pair of points P' and Q* on the 

front and rear bcxmding faces of the block,  respectively.    Similarly 

for points P" and Q" on the upper and lower faces. 

At first glance, the above restriction seems to rule out the idea 

of treating the spacewise velocity components as periodic functions of 

wavelength L, equal to block size.    For if such periodicity were assumed, 

then pairs of points could always be found on opposite faces for which 

the correlation coefficient,  instead of vanishing, would equal unity! 

What seems to be demanded,  instead,  is a certain statistical ran- 

domness in the boundary conditions.    It is well understood, of course, 

that turbulence is a partly stochastic process.    Since the field equa- 

tions themselves are strictly deterministic, the stochastic aspects can 

only enter via the initial and boundary conditions. 

It is undoubtedly possible to devise some calculation procedure of 

the Monte Carlo type to simulate the stochastic element in the boundary 

conditions, while still preserving the various types of statistical equi- 

valence previously discussed.    The advantage of such a procedure would 

be that all the foregoing requirements could be met,  including the re- 

quirement for high correlation at small distances and zero correlation 

at large distances.    Hence this possibility is worth more detailed 

study. 

It has been concluded, however, that a very slight relaxation of 

the above requirements leads to a great simplification of the problem, 

without any serious disadvantages.    Also,  it effectively minimizes the 
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stochastic aspects, and puts the calculations on an essentially determin- 

istic basis. 

The simplification consists of selecting for the initial perturbation 

a pattern which, although it may be somewhat random in other respects, 

is "blockwise periodic." By this term we mean that at the initial 

instant of time, the distributions of the turbulent velocity and pressure 

perturbations are Identical in all blocks. 

Now it follows rigorously from the equations of motion that if the 

turbulence is blockwise periodic at the initial instant, it remains 

blockwise periodic thereafter. 

To define this concept mathematically, let us take the typical 

scalar velocity component u(x,y,z,t), for example. The function u will 

be said to be blockwise periodic if, and only if, for all values of 

x,y,z and t we have 

uCx', y', z', t) « u(x,y,z,t) 

where      x' «= x + pL + qLOt ) 

y' « y + qL ) 

z' « z + rL ) 

and where p ) 
q ) - 0, + 1, + 2, + 3,   .... + 

(6-1) 

(6-2) 

(6-3) 

The term of qLOt in the above expression accounts for the difference 

in mean flow velocity in two horizontal planes separated by the vertical 

distance qL. 

This assumption of periodicity among the blocks,  is, of course, 

stronger than the requirement for merely statistical equivalence.    The 

distributions in the vnrious blocks could be statistically equivalent 

without necessarily being identical at every corresponding point of 

space and time.    On the other hand. If they are treated as stiictly 

periodic in this special way, then they satisfy statistical equivalence 
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identically. That is to say all volumetric integrals, averages, vari- 

ances etc. will be exactly equal for all blocks. 

It tums out that this assumption of blockwise periodicity supplies 

exactly the information needed to establish the unknown boundary condi- 

tions in a completely determinate manner, without recourse to auxiliary 

statistical hypotheses or ad hoc arguments. In other words, the hypo- 

thesis is very attractive because it succeeds so well! 

The method is also efficient numerically in the sense that the 

stored numerical information now is representative not Just of one block 

but of all blocks, and hence of the entire infinite field. 

One requirement that the assumption of blockwise periodicity does 

not fully meet is that velocity correlations should vanish at large dis- 

tances. Instead, it is found that the correlation coefficient itself 

becomes periodic in character. However, there is no great harm in this, 

provided that the basic wavelength is sufficiently large that the recurring 

correlation peaks are well separated. In fact if the correlation is 

negligible at the midpoints between successive peaks, each peak may be 

regarded as essentially isolated, and the spurious correlation at the 

full wavelength may be safely disregarded. Figure 6.1 may help to 

clarify these ideas, 
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7.    NUMERICAL RXPRESERTATION OT AN ARBITRARY 
SCALAR lUNCTIOK OF POSITION 

In this analysis ve deal with scalar functions auch as the velocity- 
components u, v, v, and the pressure function cp.    Typically these quanti- 

ties are continuous functions of the spatial coordinates x, y, z and of 

time t.    Symbolically ve may write, for example, 

u - u(x,y,t,t) (7-1) 

I\*rtheraore, the various partial derivatives of all orders exist and 

a?.e continuous functions of space and time. 

At any specified instant of time, however, the quantities of inter- 

est are functions of the space coordinates only.    Thus 

u - u(x,y,z) (7-2) 

Unfortunately, the functions of interest possess very intricate 

spatial distributions which fluctuate erratically with the passage of 

time.    In principle, these functions may theoretically be approximated 

by Fourier series (or Fourier integrals).    In practice,however, the 

number of terms required in the series is of the same order as the 

number of grid points in the block.    It is easy to see that round-off 

errors, even if negligible on individual teims of the series» will 

accumulate when summed over the very large number of terms required in 

the whole series.    This leads to excessive errors which vitiate the 

calculation.    The plain fact is, therefore, that we do not have available 

any suitable analytical expressions for describing such Intricate dis- 

tributions in a way that is adequate for purposes of numerical analysis. 

The problem, therefore,  is to devise a numerical scheme for approxi- 

mating the required functions to the requisite degree of accuracy.    The 

scheme must also be flexible and efficient. 
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For this purpose we define a suitable grldwork of reference points 

uniformly distributed throughout the space In question.    The values of 

the function are then specified for all points of the grid.    In addi- 

tion, a suitable three-dimensional Interpolation rule Is needed for 

estimating the value of the function at an arbitrary point lying any- 

where In the space between the specified grid points.    Since the func- 

tion being approximated Is single-valued everywhere,  It Is desirable 

that the Interpolation rule adopted be definite and unambiguous.    In 

other words,  once the values of the function are specified at the 

reference grid points, the function should be uniquely determined over 

the entire space. 

In the course of this research,  several different schemes of 

differencing and Interpolation have been conceived.    Three of these 

methods are described In the succeeding sections of this report.    They 

are discussed In order of Increasing complication.    However,  the third 

(Method C) was actually developed first and used In the work to be dis- 

cussed.    It was only later that It was realized that the simple Method 

A could be made to yield precise results. 
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8.     DIFFERENCING AND INTERPOLATION:    METHDD A 

Consider a cubical region of length L on a side.    Let each side be 
•5 

subdivided    into N equal intervals, thus defining a set of NJ cubical 

cells, each cell of length (L/N), as illustrated in Fig. 8.1.    Let 

these cells represent the control volumes for the finite-element 

analysis. 

Each of the above control volumes has a definite centroidal point. 

The centroido of the control volumes constitute a cubical array of 

grid points.    There are,  of course, N    grid points in all. 

For purposes of the present discussion,  let us choose an origin of 

coordinates as shown in Fig. 8,1.    Then the coordinates of the centroi- 

dal points may be expressed in the form 

x, - (1 - i) | i =  1,2,3,....N (8-1) 

rj - 0 - |) | • L 
2 J = 1,2,3,....N (8-2) 

*x ' <* - I' 1 k = 1,2,3,•..«N (8-3) 

We wish to dascribe, to within a suitable degree of approximation, 

the distribution, over the volume of the block,  of an arbitrary scalar 

function of position,  say u(x,y,z). 

The first part of the description consists of specifying the values 
o 

of u ■ u(i,j,k)    at each of the foregoing NJ grid points.    So far as 
3 

the immediate discussion is concerned, these N    values may be regarded 

as arbitrary. 

The second part of the description consists of a suitable interpola- 

tion rule for determining the value of the function at any point other 

than a centroidal grid point.    For this purpose we define a second set 

of cubical cells which we may designate as interpolation spaces or cells. 
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Fig. 8.1    Basic Grid for Differencing Method A. 
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An interpolation space is also a small cubical cell of length L/N on a 

side. However, it is displaced with respect to the control volumes. 

The previously defined grid points which are at the centrolds of the 

control volumes lie at the corners of the interpolation spaces. It 

follows that the control volumes and the interpolation cells are mutu- 

ally staggered relative to one another. Thus each octant of a contro] 

volume is in a different interpolation space. Conversely, each octant, 

of an interpolation space lies in a different control volume. 

Next, we adopt the rule that within each interpolation space, the 

variation of the function u shall be linear along every line parallel 

to one of the coordinate axes. This rule can be expressed in algebraic 

form. 

For this purpose, it is convenient to introduce the following 

auxiliary notation. Let 

? I    (x-i) 

! W 

o * % * i 

0 * Tl * 1 

0 < C JC l 

(8-10 

(8-5) 

(8-6) 

Thus the dimensionless coordinates 5> 11, Q may each vary over the range 

from zero to unity within any Interpolation space. 

Now the vartation of u within any particular interpolation space 

may be expressed by the polynomial 

u " Ao + Al ? + V1 + A3C + V* + A5C? + A^ + V1^    ^8"7) 

The A's are Initially unknown constants whose values must be determined 

from the known values of u at the eight comers of the particular inter- 

polation apace in question. At these eight comers, each of the coordi- 

nates, ?, r\t C,  is either zero or unity. Hence the foregoing equation 

to 

M 



can be written eight times, with the appropriate values ot I, X], C,  and 

u substituted each time. The  resulting set of eight simultaneous equa- 

tions Just suffices to determine the eight initially unknown constants. 

Because of the symmetry and the many zeros, the solution turns out to 

be quite simple. 

Note that Eq. (8-7) does, in fact, satisfy the requirement that u 

shall vary linearly along any line parallel to any one of the coordinate 

axes. This is because the coordinates §, Ti, C occur individually only 

to the zeroth or first powers. Purthennore, this equation contains all 

eight of the possible combinations of these factors, and is therefore 

the most general possible expression capable of satisfying this three- 

dimensional linearity rale. 

Note that the interpolation spaces along the six surfaces of the 

block extend into the adjacent blocJts. However, the variation within 

these spaces can be handled in much the same way as for the interior 

spaces.  In this connection, it is convenient to take advantage of the 

astumed spacewise periodicity of the function u in the x and z direc- 

tions. Thus 

u(i + N,J,k) 

u(i,J,k + N) 

u(i,J,k) 

u(i,J,k) 

(8-8) 

(8-9) 

There is also a periodicity in the y direction, but it is of a 

slightlv more complicated kind.    This matter is discussed elsewhere in 

this rejiort.    It suffices here to say that an appropriate periodicity 

rule is available for the y direction which makes the variation of u 

perfectly determinate also for the interpolation spaces along the top 

end botton surfaces of the block. 
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The foregoing discussion shows that once the values of u(i,j,k) are 
3 

arbitrarily specified at the Jr grid points, the above Interpolation 

rule defines the function u(x,y,z) uniquely over the entire volume of 

the block. 

This means, of course, that the distribution of u(x,y,z) Is also 

uniquely determined over each of the six square surfaces which enclose 

each control volume. This fact Is Important, because the application 

of the fundamental mass and momentum conservation laws Involves the 

evaluation of certain Integrals over these bounding surfaces. 

In addition, the determination of certain overall flow characteris- 

tics, such as the mean kinetic energy of turbulence, for example, in- 

volves the evaluation of corresponding volume integrals. Consequently, 

a unique rule for the variation of any function over the entire volume 

is necessary. 
2  2  2 

The six quadratic velocity products u , v , w , vw, wu, uv play an 

important role in the analysis. In dealings with these products, the 

usual quasi-linear interpolation rule is taken to apply to the indivi- 

dual factors, rather than simply to the product itself. Hence the 

variation of the product between grid points is quadratic along lines 

parallel to the coordlnace axes, rather than linear. While this compli- 

cates the calculations somewhat, it yields a higher level of consistency 

and accuracy than could otherwise be attained. In view of the basic 

importance of these products, which are associated with the Reynolds 

stresses, the added accuracy appears to be well worth the extra complica- 

tions. 

Since thu entire spacewise distribution of sny function is deter- 
3 

mined when the values sre known at the N grid points, it follows tbat 

all pertinent surface and volume integrals must be ultimately expres- 

sible directly in terms of these grid values. When these relationships 

are expressed in explicit form, they constitute the "differencing 

formulas" appropriate to the task at hand. 

42 



9.     DIFFERENCING AND INTERPOLATION:    METHOD B 

In this scheme,  two distinct families of grid  points are used, as 

shown in Fig. 9.1.    It is convenient to designate these families by 
I II means of superscripts      and      ,  respectively'. 

Points of family I are defined by the coordinates 

xj =  (i - |) | i = 1,2,3, N (9-1) 

yJ =  ^J  ' 2^ N " 2 J = 1'2'3, N (9-2) 

\ =  (k - |) | km 1,2,3, N (9-3) 

Points of family II are defined by the coordinates 

xf - 1 (jp 1- 0,1,2, N (9-4) 

yf = J (jjp -§ J = 0,1,2, N (9-5) 

«?- k (f) k = 0,1,2, N (9-6) 

Note that the two grids are mutually staggered relative to each 

other by the distance of half a cell width, L/2N, with respect to each 

of the coordinate planes. 

Corresponding to the two families Of interlaced grid points, there 

are two families of interlaced control volumes. All control volumes are 

cubical cells of length (L/N) on a side. The grid points of family I 

are the centroids of the control volumes of the first family. Likewise, 

the grid points of family II are the centroids of the control volumes 

of the second family. Furthermore, the grid points of family II lie at 

the corners of the control volumes of family I. Similarly, the grid 

points of family I lie at the corn "3 of the control volumes of family II. 
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These various relations ere inherently three-dimensional and are 

not easy to portray adequately in two-dimensional diagrams. Neverthe- 

less, Pigs. 9.1 and 9.2 may be of some help in visualizing the essential 

facts. 

Note that the overall volume of the cubical block under study is 

represented twice in this scheret once by the control volumes of family 

I, and once by the control volumes of family II.  There is a mutual 

overlapping of the individual control volunes. Thus the individual 

octants of a single cell of family I lie within eight separate cells of 

family II. Conversely, the individual octants of a cell of family II 

lie within eight separate cells of family I. 

Consider any one such octant as shown, for example, in Fig. 9»2. 

It is itself a cube of length (L/2N) on a side. One corner of this cube 

is always a grid point of family I. The diagonally opposite corner is 

always a grid point of family II. We define ench distinct octant as a 
■a 

distinct interpolatio space. There are therefore 8N distinct inter- 

polation spaces within the block. 

We note for comparison that Method A involves only N"^ distinct inter- 

polation spaces. This does not imply, however, that Method B involves 

an eightfold improvement in resolution. The reason is that the inter- 

polation spaces of Method A are "complete" in the sense that all eight 

of their corners are principal grid points. The interpolation spaces of 

Method B are initially "incomplete" in the sense that only two of the 

eight corners are principal grid points. To "complete" these spaces, 

we must define the values of the unknown function at the other six cor- 

ners of each space. 

Ftortunately, each of these six corners is itself a midpoint between 

two principal grid points. Hence using linear interpolation consistently 

throughout, we may assign a value at each of these six points. The 

assigned value is always the simple arithmetic mean of the known values 

at the two corresponding principal grid points involved. Thus, for 

example, in Fig. 9»2 the value at point QII is the mean of the values at 
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points PII and All.    Similarly, the value at point Q'X is the mean of 

the values at points P'l and A'l.    Note that three of the interpolated 

values are derived from values at grid points of family I, the other 

three from grid points of family II.    Thus both families are represented 

exactly equally and symmetrically within each interpolation space. 

With the eight oorner values defined, we can once more write the 

variation over the volume and/or surfaces of the i'terpolation space in 

the form 

u » A0+A15+A2mA3C+A4TTC;+i\5C?+A6?TT+A7?r|C (9-7) 

where, for example, 

9      1        ^ 2N 
0*5*1 

n = (y-yj) r 0   *  T1  *  1 

r       1          \   2K o s c « i 

(9-8) 

(9-9) 

(9-10) 

and where the point at the "inner" corner x., y,,  z.   may be of either 

family, depending on the particular interpolation space being considered. 

It is apparent that the foregoing definitions suffice to determine 

uniquely the complete spacewise distribution of any scalar function 

u(x,y,z) in terms of the assigned values at the 2W principal grid 

points.    Consequently all surface and volume Integrals over the control 

cells can be uniquely expressed in terms of the appropriate grid  point 

values.    Hence the method leads to specific "differencing formulas" for 

such quantities as partial derivatives, gradients, divergences,  etc. 
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10. DIFraRENCING AND INTERPOLATION: METHOD C 

The differencing scheme described under this heading is merely an 

earlier and somewhat less fully developed version of the staggered 

scheme described as Method B. It ie important however, because the 

currently available computer program, TURBOCODE MARK V, is based on 

this system. 

Method C uses the two families of grid points and control volumes 

described previously. The interpolation spaces and interpolation rules 

are defined differently, however. In fact the interpolation spaces in 

this scheme are taken as identical with the respective control volumes 

themselves; there are therefore two distinct and overlapping sets of 

interpolation spaces. 

Thus within the volume and along the surfaces of any cell of 

family I, the variation of any scalar function u(x,y,z) is assumed to 

follow the rule 

u1 = AQ + AJ? + AgTi + A^C + AJTTC + A^r? + A^n 

^A^TTC ^(l-nd-rftd-C2) (10-1) 

where 

•1 * g * +1 (10-2) 

Tl - (y-yj) r 
-1   « Tl  <  +1 (10-3) 

C - U-zk) f •1 «c < +l (lo-M 

Similarly for any cell of family II, the corresponding rule is 

Ub 



u11 - ^ AIH + A^n + A3
IIC ♦ AJ1^ + Afct * Af et, 

+ A^V  +A*I(1-?2)(1-T12)(1-C2) 

where 
. /      IIx 2N 
? = (x-Xj  ) r 

n = (y-yj ) r 

, /      IIv 2N C = (z-zk  ) r 

-1 < Tl * +1 

-l < c < ^l 

(10-5) 

(10-6) 

(10-7) 

(10-8) 

There are a number of critical observations to be made about this 

scheme. 

Note first     that any given arbitrary point in the field is simul- 

taneously in two different interpolation spaces.    Two distinct inter- 

polation formulas apply which do not,  in general, agree exactly.    Such 

an ambiguity is not desirable,  although it may be argued that the dis- 

crepancies involved are small quantities of higher order, and hence 

relatively unimportant.    However,  the existence of two distinct rules 

makes it necessary to compute certain volume integrals twice, thus in- 

creasing the corresponding computation times in en undesirable way. 

Note secondly that the interpolation polynomial contains not eight 

but nine constants.    These are determined by matching the known values 

at the eight corners of the cell and the ninth known value at the 

centroid. 

It may be seen that the last term of the interpolation expression, 

unlike the others,  is quadratic rather than linear in the coordinates. 

The presence of this term markedly complicates the computation of volume 

integrals for the cell.    This is especially true in connection with the 
2 

volume integration of quadratic terms like u , uv, etc.    The linear 

teims among themselves have certain properties of symmetry and ortho- 

gonality which tend to simplify the resulting expressions.    The 
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characteristics of the quadratic term are more complex, and introduce 

various additional terras into the final results. 

Fortunately, the quadratic term has been so devised that it vanishes 

at all six of the bounding surfaces of the cells. Consequently it does 

not enter into the evaluation of any of the surface Integrals. 

As compared with Method B, it would seem that Method C does not 

intermesh the data of the two families as closely and completely as 

might be desirable. Thus in Method B, four of the data points in each 

interpolation space are of one family and four are of the other family. 

In Method C, on the other hand, eight of the data points are always 

of one family, and only one is of the opposite family; furthermore, the 

influence of even this one point of the opposite family vanishes along 

the bounding surfaces of the cell. 

Fortunately, Method C does possess some compensating computational 

advantages. For one thing, the distribution of any function u(x,y,z) 

over any bounding surface is expressed solely in terms of the grid 

values at the four corners of that surface. While this assumption does 

not fully utilize all of the information actually available, it does, 

of course, shorten and simplify the evaluation of all surface integrals. 
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11.     COMPARISON OF DIPFERHICINO METHODS 

In the course of the present research there has been a steady 

improvement in the conceptual basis for the numerical differencing 

techniques employed.    At first the equations to be solved were regarded 

simply as partial differential equations.    The numerical    techniques at 

this stage consisted mainly of replacement of infinitesimals by small but 

finite differences, with    a largely intuitive approach. 

It was soon realized,  however, that much better accuracy and 

computational stability could be achieved for a given mesh size by 

adoption of a finite-element approach.    An essential point is that the 

small but finite control volumes are not treated as mere infinitesimals. 

Accuracy is greatly improved by estimation of mass and momentum fluxes 

not merely from approximate local point values but as true surface 

integrals, in accordance with the previous carefully established Inter- 

polation rules. 

It was at about this stage that the interpolation method C was 

formulated and successfully applied in the program TURBOCODE MARK V. 

When first formulated,  it represented a considerable advance in numerical 

technique. 

Further theoretical progress since that time makes it clear that 

certain revisions of that scheme are desirable. These are described 

under Method B. 

However,  the same concepts that lead to the above revision, when 

followed to their logical conclusions, lead even further and so to 

Method A. 

The main advantage of Method A lies in its relative simplicity. 

It avoids the complexities of dealing with two distinct families of 

points.    It avoids the duplication of covering the same overall volume 

with two distinct families of control cells.    The application of the 

proper boundary conditions should be correspondingly simplified.    It 
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seems that the programming can be simplified and computation times 

reduced by adoption of this scheme. 

It la Intended that Method A will ultimately be programmed for the 

canputer.    Meanwhile, however, the present program based on Method C 

represents Investment of a considerable rec-'arch effort.    It is believed 

that this program, which has only recently been developed into a prac- 

ticable form, is capable of generating much useful basic information. 

Hence the imnediate effort will be to obtain this information with the 

existing program,  and to study and evaluate it, before proceeding with 

any major revision of the computer program. 
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12.     INITIAL NUMBER OF DEGREES OF RUBDGN 

In this discussion,  let 0 represent the number of grid points in 

one block.    For differencing met'.iod A, G equals N ;  for differencing 

methods B and C, G equals 2N  . 

At the initial instant of time, the velocity vector distribution 

over the cubical block is fixed when the distributions of the three 

individual scalar components,  u,  v, w, are fixed.    But if ve are to 

establish the initial distribution of u, values must be specified at 

all G grid points.    Similarly for v and w.    Hence 30 values are re- 

quired to describe the initial velocity field. 

However,  if the fluid is incompressible, not all of these 30 

values may be specified independently.    In fact, we must satisfy a mass 

conservation condition or continuity law for each one of the G control 

volumes centered at each grid point.    Hence there are 0 constraint 

conditions to be satisfied among the 30 velocity components.    Conse- 

quently,  only 20 of these quantities may be independently prescribed. 

We say that there are 20 initial degrees of freedom. 

For example,  if the u and v components are arbitrarily specified 

at all grid points, the w components are then fixed by the  foregoing 

continuity conditions.    If the distributions were not blockwise periodic, 

continuity constraints would determine w only to within an arbitrary 

additive function of x and y alone.    However, the assumption of period- 

icity  eliminates this arbitrary element and renders the solution for w 

unique. 

The initial values of the  pressures do not count as  initial degrees 

of freedom.    The reason is that once the velocities are specified, the 

pressures are also determined thereby.    The pressures cannot be assigned 

independently. 

It follows that for differencing method A,  there nre 2^ initial 

degrees of freedom; for differencing methods B and C,  there are ^N 

initial degrees of freedom. 
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However, the apparent arbitrariness of the 2G initial degrees of 

freedom requires qualification, as it car be somewhat misleading.    This 

enormous degree of latitude is permissible only because, at the initial 

instant,  the turbulence has not yet attained its ultimate stationary 

and homogeneous statistical stiacture.    Once this state is reached,  it 

will impose certain corresponding relations of statistical correlation, 

and thereby reduce the number of arbitrary or random degrees of freedom 

remaining.    Nevertheless, turbulence necessarily involves some irre- 

ducible core of randomness, and hence there will always be some  large 

residual number of arbitrary or random degrees of freedom.    If we knew 

what the essential constraints were,  it might be useful to impose them 

at the outset, much as we have done with regard to the continuity con- 

dition.    But we do not know them, at least not initially, so the matter 

is academic.    It is rather lucky that the calculation can proceed from 

such arbitrary initial conditions.    The reason this is allowable is 

that the turbulent structure has an inherent self-correcting character 

which drives it asymptotically toward a limit which is essentially 

independent of the initial conditions. 

The persistence through space and time of the net overall influence 

of the deterministic equations of motion,  in addition to that of the 

continuity equation,  is what imparts to the turbulent field its under- 

lying orderly structure, upon which are superimpos'id phenomena of a more 

rarlom character.    One method of expressing the orderly structure  is 

in terms of the correlation coefficient R defined in an earlier section. 
3 

Let us here apply this  concept to a simple grid of type A, with N    grid 

points.    In the present context, the appropriate definition of corre- 

lation coefficient is in the form of the matrix: 

R(p.q»r,T) 

N      N      N 
- -3   y     y     T   i Ju(i,J>k,t)-u(i+p,J+q,k+r,t+T)dt 

i»l J«l k=l     0 

(12-1) 
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where   p) 

q) - 0,1,2,3, 
r) 

(N-l) (12-2) 

Since each of the indices p,q,r varies over R distinct valuea, the 

expression (12-1) defines N    separate equations. These equations fix 
■a 

the values of the N element» of the correlation matrix fl(p,q,r,T). 

Each element is a function of the time parameter T. This matrix of 

functions provides a reasonably adequate description of the orderly 

structure cf the turbulent field. Ultimately, the matrix functions can 

be calculated from the computer simulation results. 

Now consider the special case T = 0 which establishes all specewise 
■a 

correlations at any fixed time. The NJ elements of the matrix R are 

now fixed constants. Suppose these N"' values are known or assumed, and 

are imposed as essential initial conditions. This additional constraint 

reduces the Initial number of degrees of freedom from 2NJ to N . Pre- 

sumably, the remaining NJ degrees of freedom may now be selected at 

random from some suitable probability distribution without appreciably 

affecting the structure of the turbulence. 
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13.    PARTIAL DERIVATIVES IN TERMS OP SURFACE IMTEGRAIfi 

In dealing with functions of position, ve usually need to estimate 

not only the values of the function ittJlf, but also values of its 

various partial derivatives.    Now a direct analytical differentiation 

of the approximate quasi-linear distribution as defined by any of the 

foregoing methods, A, B or C, is not adequate for this purpose.    The 

reason is that such an approximate distribution is only plecewise con- 

tinuous.    Estimates of first-order derivatives obtained by direct 

differentiation of this approximation would be discontinuous; estimates 

of higher order derivatives would be indeterminate.    This accords with 

the well known fact that the derivatives of an approximating function 

tend to be less accurate and well behaved than the approximating func- 

tion itself.    On the other hand,  integrals of an approximating function 

tend to be more accurate and well behaved than the approximating func- 

tion itself.    Fortunately,  it turns out to be possible to express the 

derivatives of a function in terras of certain surface integrals, as 

explained below.    Estimation of derivatives by this method of integra- 

tion avoids the rapid deterioration of accuracy associated with direct 

analytical differentiation; consequently, the integration method is 

always used in our work. 

With the Integral method explained below, derivatives are calcu- 

lated at all principal grid points; derivative values between grid 

points are then estimated, as usual, by quasi-linear interpolation. 

Thia process may be repested as often as necessary to obtain estimates 

of the higher order derivatives. 

In the calculus of vectors, the gradient of a scalar function at a 

point is defined as the resultant of a certain limiting process.    First, 

a small volume element fv is defined whose surface fis encloses a point 

in question.    See Fig.  13.1.    Secondly, an average value of the gradient 

within the   small enclosed volume  is defined.    This definition Involves 
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the evaluation of a certain Integral over the bounding surface of the 

eieiicrvt.    Finally, the volume of the element is allowed to shrink to 

zero.    The resulting limit of the average gradient is defined as the 

local gradient at the point. 

This rather complicated definition may be written symbolically in 

the form 

^tp = lim        fc f iodS (13-1) 
ÄV-0 6S 

where dS is an infinitesimal surface element on the bounding surface 

8S, while n is an outward unit vector normal to area dS. 

Inasmuch as the gradient is expressible in terms of partial deri- 

vatives in the form 

% - 1 (g) ♦ J (fe ♦ k (|P (13-2) 

it follows that the partial derivatives of cp are also definable in 

terms of surface integrols, that is, 

es 

63 

(fr •»•'»• *-o {fc ■/ • ^4 (13-5) 

Likewise, the divergence of a vector function u may be written 

V.u - lim   ( lb ( n • uds} (13-6) 

^-0     6S 
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However,  in work with numerical approximations of the present type 

in which the functions involved are specified only at discrete grid 

points, and the variation between these points is merely estimated by a 

kind of three-dimensional quasi-linear interpolation, the above process 

of going to the limit of zero volume cannot be accomplished with suf- 

ficient accuracy.    As mentioned above, the previously described  inter- 

polation schemes do not in themselves provide sufficient continuity in 

the representation of the function to define accurate local values of 

derivatives at a specified point by direct differentiation. 

Suppose,  however,  that we omit the above limiting process.    Instead 

we choose small but finite cubical elements as established by the 

finite spacing of the basic grid points.    Now the quasi-linear inter- 

polation scheme permits us to evaluate the various surface integrals 

required in the above definitiouh with excellent precision.    Hence we 

may calculate very ac    rate average values of gradient,  partial deri- 

vative,  velocity divergence, etc., over the volume element as a whole. 

In some instances, average values over the element are all that we 

require.    Thus in dealings with incompressible flows,  an exact solution 

would theoretically require that the velocity divergence vanish at all 

points of the field, not just at the basic grid points.    This ideal is, 

of course, neither attainable nor really necessary.    For a practical 

numerical solution it is quite sufficient to require that the average 

divergence vanish for each of the small cubical cells into which the 

field is divided.    Thus in Method A, for example,  for an overall cubical 

region or block of length L along each edge, with a basic grid spacing 

of dimension (L/N), there are N    individual volume elements involved, 

each a cube of length (L/N) on a side.    -Hence the non-divergence require- 

ment for the field bolls down to requiring that the average divergence 
3 

vanish for each of these N   distinct volume elements. 

In borne cases, however, the concept of an average value over the 

volume does not suffice.    What is required is a method of establishing 

local point values at the basic grid points,  so that a complete spatial 
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distribution of the quantity may be estimated by means of the quasi- 

linear Interpolation method previously mentioned.    For example, In 

applying the momentum Integral equations to volume elements > ve 

establish accurate average time rates of change of the velocities over 

these volumes.    This Is not really sufficient.    What Is needed, of 

course, are local values at the basic grid points themselves. 

To meet this requirement, we Introduce one additional postulate, 

namely, that the average value of a quantity over a given volume 

element constitutes the best available estimate of Its local value at 

the centrold of that element.    Because of this postulate. It Is of 

course necessary to establish the pattern of control volumes and grid 

points In such a way that the grid points are In fact located at the 

centrolds of the control volumes.    When this Is done, thi formulas of 

this section may readily be applied to calculate the values of diver- 

gence, gradient and partial derivatives at all the grid points. 

The results obtained In this way will depend on the particular 

differencing and Interpolation scheme Mopted, such as the methods A, 

B or C described elsewhere In this report.    Detailed results for differ- 

encing method C are presented In Appendix A. 

The following results are presented as typical examples of specific 

differencing formulas which are obtainable by use of the foregoing 

methods.    We show the typical partial derivative  (2*) as defined by 

each of the differencing techniques A, B and C explained earlier.    Other 

partial derivatives can also be found merely by systematic permutation 

of Indices In the following formulas. 
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Method A 

+ k [(:P(i+1>^k-1)+«5(1+1>J-l>k)-f<P(i+l*J+lA)+«(i+l^»k+l) (13-7) 

-cp(i-l,J,k-l)-cD(i.l,j-l,k)-o(i-l,J+l,k)-cp(l-l,^k+l)l 

Method B 

|j [^(l,J,k)] - ({) { | [f(W,j,k)V(l-l»4»iO | 

♦ ^ [cpII(l,J,k)-KpII(i,J-l>k)-KpII(i,J,k-l)4«II(i,j.i,k-l) 

-(pII(i-l,J,k)-CDII(l-l,J.l,k)-a>Il(i-l,j,k-l)-<pII(i-l,J-l,k-l)j}    (13_8) 

IT [(P^d^.k)] = ({) ^ iV^i+i^.k)^!-!^^) j 

+ Jg !ccI(i+l,j+l,k+l)-KDI(l+l,J,k+l)+oI(l+l,J+l,k)+<pI(i+l,J,k) 

cDI(i,lj+l,k+l)-crI(i,J,k+l)-roI(l,J+l,k)-coI(i,J,k) J } (13-9) 
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Method C 

h [^^)] 
(^){fiIX(l,J^)VX(l#J-l»k)VX(l#J»k-l)VX(i»4-l»k-l) 

V^i-l, J,k)-cpII(l-l,J-l,K)-cpII(l-l,J,k-l)-<3pII(i-l,J-l,k-l)} 

(^){cDI(l+l,J+l,k+l)-KD:[(l+l,J,k+l)-KnI(i+l,J+l,k)+tDI(l+l,J,k) 

-(»I(i,J+l,k+l)-CDI(i,J,k+i)-(pI(i,J+l,k)-CDI(i,J,k)\ 

(13-10) 

(13-11) 

It is also of Interest to consider a simple differencing formula 

such as might have been used in the absence of the finite-element 

principles expounded in this report. Thus, for a simple grid of the 

same type as used in Method A, we might have simply written, by 

inspection, 

1^ [cp(l,J,k)] - (|I;){cp(i+l,1),k)-cp(i-l,J,k)^     (13-12) 

The relative crudeness ofthis approximation becomes quite apparent 

when this expression is compered with the previous differencing 

formulas. 
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Ik.    CONTINUITY EQUATION 

Let U represent the mean-flow velocity vector, and u the turbulent 

perturbation. We apply the law of conservation of mass to a small but 

finite control cell of volume 6v and surface 6S. Let n be the outward 

normal unit vector at surface element dS. For the combined mean flow 

plus turbulence, this gives 

7.(u+u) = fv | (U+u)'n ndS - 0 (1U-1) 

tz 

For  reasons explained earlier, we have omitted the process of going to 

the limit of zero volume. 

By averaging this equation over time (or over a statistical 

ensemble of macroscopically similar cases), we find that the mean flow 

itself must satisfy the following mass-conservation requirement, namely, 

7»U Bv . U'ndS (1U-2) 

*J 

Subtracting (1^-2) from (lU-1) gives the net mass-conservation 

relation for the turbulence itself, that is. 

V'\i 1 I u.*n ndS (1U-3) 

's 

The integral in (lU-3) is evaluated over the surface of the ele- 

ment. But for the cubical control volumes here considered, the surface 

consists of six squares, each of area f>S,    Let the individual surfaces 
L 2 

be represented by the index k»l,2,3,U,5,6. Note that area 6S ■ (55-) 

and volun.e b\>  ■ (jr) • Therefore Eq. (lU-3) may be reduced to the form 
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k-1   RS    
k 

(lU-U) 

The quantity encloeed within braces represents the average mass flow 

per unit area through the kth bounding surface. 
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15. MOMENTUM EQUATION 

We apply the momentum theorem of fluid flow to the same small but 

finite Eulerian control cell used in the previous section. The follow- 

ing nomenclature is used to denote the various forces per unit area 

(and per unit mass) acting on the differential surface element dS, 

namely, 

F = mean viscous force 
n 

f ■ turbulent viscous force 
n 

* ■ mean pressure 

co = turbulent pressure 

For the combined mean flow plus turbulence, we obtain the equation 

jL f ^ (G+u)dv - -Tv! (u+u)(u+u)-»ds 
6S *v 

fts ^s 

(15-1) 

For the particular case of the simple uniform shear flow mainly 

considered in this report, the following simplifications apply to 

Eq. (15-1)> namely, 

A 

I* ndS » 0 
0 

^S 

[F dS » 0 
J n 
^S 

(15-2) 

(15-3) 

(15-M 
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U = i^y 

*  A A  A 

| UU«n.dS » 0 

(15-5) 

(15-6) 

Furthermore, the turbulent viscous forces fn may be expressed 
*       A       A 

specifically as f , f , f , namely, the forces on faces normal to the x  y  z 
x,y,2 axes respectively. Theee, in tarn may be written in the form 

* A--T A^T *•"». 

y    Vp      \0      vPy 

A A/-"      ^        Ay"      * *>■" 

f i- ^>+ j(^) + kr-^^ 

(15-7) 

(15-8) 

(15-9) 

The viscous stresses themselves can be expressed in terms of 

velocity derivatives.    For an incompressible fluid of constant viscosity 

^    xx'N « v 2 / öuN 
v"pV vW   (15-10) C-f>C-f)'*(£*%)     (15-«) 

v   P y" v 2   üy..      (15-11) 

Of course, the various partial derivatives shown here must be ex- 

pressed in terms of appropriate surface integrals, as explained earlier. 

With the various conditions listed from (15-2) through (15-15) 

Incorporated or implied, the basic aonentum equation (15-1) is reduc- 

ible to the form 
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T AAAAA - rAAA 

n IT:  I  y(iu+ui)'ndS - 7-  ' uu«ndS 

1 ■ V 

+ fc I fndS " fc I  ^S (15-16) 

This is the basic result required, although it is still in a some- 

what unwieldy form. It is convenient to introduce some auxiliary nota- 

tion as follows. Let 

1      I   /^   „ /^U 
^ ! ^)av = (ät) = ut 

6v 

(15-17) 

where u    is the mean time -ate of change of u over the volume *iv, and is 

taken as the best available estimate of the local point value at the 

centreid of the element. 

Let the remaining integrals be evaluated first over the six indi- 

vidual square boundia' surfaces,  k=lf2,3,k,5,6.    Thus,  let 

ük = .   i_  I j^  ' y(iu+ui)'ndSl 

'.: 

f 1    r -Ä *   1 
Tk = " l äs    uu'nds\ 

6S i 

6S k 

Pk = -fl~\ olds' 
6S 

(15-18) 

(15-19) 

(15-20) 

(15-21) 
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Purthermore, let us Introduce the abbreviation 

\'?*\ + \ (15-22) 

With this notation, the basic momentum equation (15-16) reduces to 

the relatively simple statement 

6 
A     A 

(15-23) 

Ity way of Interpretation, It might be remarked that all quantities 

(l5-l8) through (15-21) Inclusive have the dimensions and character of 

mean stress over the kth face, that Is, total force on the face divided 

by area. Purthermore, S. Is the stress associated with the shear rate 

0 of the mean flow. The turbulent apparent stresses or momentum trans- 

port terms are represented by T. » These latter terms sre quadratic In 

the velocities and are the only non-linear effects present. Purely 
* A 

viscous stresses are represented by H. . It has been shown that the H. , 

although linear. Involve the partial derivatives of the turbulent 

velocity perturbations, rather than the velocities themselves. 

It Is convenient In the subsequent analysis to lump the terms 
A     A     A A 

(Sy^T.+R) together under the separate symbol R. The reason Is that 

these particular components can be calculated directly from the turbu- 

lent-velocity distribution, without any reference to pressure distribu- 

tion. Determination of the pressure requires a separate and lengthy 

calculation, and the resulting average stress associated with the pres- 

sures is therefore represented by the separate symbol P. . 

Turning to Eq. (15-23) it is seen that the terms have the character 

of net force per unit mass, thst is to say, of acceleration. It turns 

out to be advantageous to employ the additional terminology below, 

namely, 6 

P - (?) I \ (15-2U) 
k.1 
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vcr $1 
k.l 

(15-25) 

Hence the basic mcmentum equation becomes finally 

u. = F - ^p (15-26) 

The term ? represents that part of the net accelerating force which can 

be calculated directly fron the velocity distribution existing at a 

particular instant of time. The term (-Vcp) is the net pressure force; 

it can be calculated only after the pressure distribution cp has been 

found. The unknown pressure function CD is Itself fixed by the velocity 

distribution, but the relation is rather complex. However, it can be 

solved by the method outlined in the next section. 
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16.    TURBUUMT PRESSURE DISTRIBUTION 

The manentum equation (15-26) has so far been useu   jnly to show 
A 

how the local velocity-time derivative u+ can be calculated when the 

direct velocity-induced forces F and the pressure forces (-^fp) are 
A 

known. It has been indicated that the forces P can be calculated in a 

relatively straightforward manner when the instantaneous velocity dis- 

tribution is known. The pressure forces, however, depend on the detailed 

distribution of the turbulent pressure cp, and this quantity is so far 

still an unknown. The purpose of this section is to show how CD itself 

is determined from the turbulent velocities. 

To show this, we need only to apply the divergence operator term- 

by -term to the momentum equation (15-26). Thus 

V«u. ■ V*F -  7«(^p) (16-1) 

The three terms in this equation can be expressed in expended form 

as follows: 

_2      f    * 
7.(9b) ■ T^cp ■ ^j i(^p)«ndS U 

k-l   KJ      k 
(16-2) 

*.;. ^ j F.^S - (|) i {fe! F.;*} 
^s k-1 6S 

6 

7-ut * ^ J 
^S k«l   fts    k 

(16-3) 

(I?) (16J>) 
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Consequently, with these definitions, the basic equation (l6-l) 

may be rewritten in the concise form 

7^. 7.;. (|£) (16-5) 

This is the partial differential equation which fixes the pressure 

distribution c. The quantity 7»P on the right side is a known function 

of the turbulent velocity perturbations. The quantity {—)  calls for 

some comment, however. 

Strictly speaking, for an incompressible flow, the divergence D 

should vanish identically, in which case its time derivative will also 

vanish. In actual computations, however, because of round-off or other 

errors of approximation, the calculated divergence will usually differ 

from zero by some very small quantity M).  In order to prevent such 

small errors from accumulating and growing, it is desirable to assign 

the value of (rr) in such a way as to tend to liquidate the error 

already present. Thus, we wish to eliminate the current divergence 

error SD within some small time interval fit'.    But how shall this time 

interval be chosen? If the rate of error correction is too small, the 

divergence errors will tend to accumulate and grow, perhaps excessively. 

If the rate of error correction is too large, the associated pressure 

pertarbations may become excessive; furthermore, the divergence error, 

instead of being eliminated, may be reversed in sign and possibly even 

increased in magnitude, thus leading to computational instability. 

Therefore, it is advisable to normalize 6t' with respect to appropriate 

reference parameters of the turbulence. Cell size ^  and mean turbu- 

lent energy E represent the natural reference parameters for this case. 

Hence we assign 

(5t) = ■ W' CD I ^ 6D (16-6) 

where C-. is a dimensionless coefficient whose optimum value can be 

established by numerical experimentation on the computer. 
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Conaequently, the basic equation for the pressure distribution now 

beoones 

^cp - V«P + CD " ^ fiD (j.6-7) 

where the right side Is a known function of the space coordinates. 

Therefore pressure cp Is the only unknown In Eq. (16-7). For accur- 

ate work, It Is essential that the last term In this equation be of 

wry small magnitude. 

This relation lends Itself to solution for the unknown pressure of 

cp by a numerical relaxation technique. The essential principle of the 

method may be sumnarlzed as follows. The calculation starts with an 

arbitrary Initial estimate or approximation for the unknown function cp. 

The local values of cp In the vicinity of the first grid point are then 

adjusted so that Eq. (l6-7) becomes exactly satisfied for the first 

control cell. Then the values In the vicinity of the second cell are 

adjusted In a corresponding fashion. This process Is continued syste- 

matically to cover the entire mesh. However, each time a local cell Is 

adjusted, this process slightly upsets any previously made adjustments 

In adjacent cells. Nevertheless, each step of the computation produces 

a net reduction In the overall mean square error. Hence a complete 

sweep of the mesh In the above manner substantially improves the 

original approximation. Therefore the above procedure may be repeated 

as often as necessary, until the absolute residual error In Eq. (16-7) 

Is everywhere less than seme very small pre-assigned l^mit. 

Calculation of the turbulent pressure distribution CD by the above 

Iteration nvethod Is quite straightforward in principle. The boundary 

conditions on the vertical faces of the block are simple because of 

the blockwise periodicity of the solution. The boundary conditions 

on the horizontal faces are bomewhat tricky, however, owing to the 

relative sliding between successive rows of blocks, as explained In 

another section of this report. Owing to the number of iterations re- 

quired to attain convergence, the pressure celculation is, of course. 
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quite lengthy.    It consumes by fsr the greatest proportion of the total 
computing time. 
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17.    BASIC SURFACE INTRGRALS FOR A FINITE ELEMENT: 
METHOD C 

This discussion applies to any scalar function of position,  say, 

for definiteness, the velocity component u.    We choose differencing 

method C for this discussion because,  as explained elsewhere, this was 

the method used in the program lURBOCODE, MARK V.    We consider an 

arbitrary cubical element, of either family, and of length 2a « L/N. 

The origin of coordinates is originally at the volume centroid,  and 

the dimensionless coordinates ?, T|, C take on values of + 1 along the 

bounding surfaces. 

The basli: interpolation formula for this case is 

u - A0+A1?+A2nfA3C+A1+ir,+A5C?+A6?nfA7?TiC+A8(l-?2)(l-Tl2)(l-C2) (17-1) 

Consider the application of this equation to the bounding surfaces 

of the element.    The surfaces in question may be those normal to either 

the x, y or z axes,  respectively; superscripts are used to distinguish 

these three orientations.    Consequently,  Eq.   (17-1) may be reduced to 

one of the three forms below, namely, 

uX - Aj + A^n + A^C + A*TIC (17-2) 

uy - A* + A*C + A*? + A^C? (17-3) 

u* . AJ + AJ? ♦ A^ ♦ Ahn (17-M 

The four constants in each equation depend only on the surface in 

question.    They are uniquely determined by the values of the function 

at the four corners of the surface (this feature is one of the advan- 

tages of Method C.) 
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A2 -l[- UA -UB + uc ^] 
A3 ■n* UA ■UB  ■ 

uc + UD] 

Consider the specific example Indicated in Pig.  17.1.    We drop the 

superscript notation for this portion of the discussion since there is 

no ambiguity in this case. 

Upon substituting the coordinates of the points A,  B,  C, D into 

(17-4),  and solving the resulting four equations for the four initially 

unknown constants, we obtain 

A0 ^ [+ UA + UB + UC + V ^-5) 

AI E H- UA + ^ ■ uc+ v! ^-6) 

(17-7) 

(17-8) 

An analogous treatment may be applied to the velocity components 

v and w.    It is convenient to denote the corresponding constants by 

B's and C's,  respectively. 

Now a review of the basic continuity and momentum equations reveals 

that the surface integrals involved therein are of three main types. 

An example of each type is presented below for the case of a surface 

normal to the z axis.    The extension of these results to other velocity 

components and other surfaces 1R easily made. 

+1 +1 +1 +1 
1 2     (   [ u(ad?)(edT1)  = J J  J   I A0+A1?+A2iT+A3?Ti"li?dTi - Ao (17.9) 

(2a)    -1 -1 -1 -1 

+1 +1 +1 +1 

-^-g- I J u(aTi)(adf)(adn) - £ J  J [AQ+A^+Agt^irWdTI - g^Ag    (17-10) 
^a)     -1 -1 -1 -1 
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TJ. + l     -j 

2N  a 

V 
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Z Plane 

'C 

A B 

C-H C-*i 

Pig. 17»1 Surface Element In Z Plane. 
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+1 +1 

(Sa)' 

+1 +1 

^72 J  J uv(ad5)(adTl) - J | J [A0+A1?+A2nfA3?Ti][B0+B1?+B2nfB35Ti]i?dTl 
■1   -1 -1   -1 

- AoBo+ ^iVVs) + f ^^ (i7-n) 

Note that the form (17-9)  represents a simple linear average value 

of the function u over the surface.    All constants except A    vanish 

trom the result.    In turn A    Is merely the arithmetic average of the 

four corner values.    This result Is consistent with elementary Intuitive 

expectations. 

In result (17-10)  all terms vanish except the coefficient of r|. 

The method of subscripting here used Is such that for a z surface the 

non-vanishing component Is A2;  for an x surface,  It would be constant 

v 
In this connection y surfaces are exceptional,  for TI Is a constant 

In this case and may be moved outside the Integral,  thereby reducing 

the Integral from the form (17-10) to the form (17-9).    As a matter of 

fact,  It Is advantageous In dealing with surface Integrals to shift the 

origin of coordinates Irom the centrold of the volume to the centrold 

of the surface directly Involved.    In this way we obtain ^or any y sur- 

face the result 11 ■ 0, whereupon the Integral  (17-10)  simply vanishes. 

Perhaps the most striking result is the integral  (17-11).    This 

goes well beyond what could be achieved by mere intuition,  or by treat- 

ment of the surface as If It were an infinitesimal quantity.    Note that 

all cross product terms drop out of the final result but that neverthe- 

less, all eight original constants are lignifleant and are retained. 

This undoubtedly represente a significant contribution to the accuracy 

of the mettod, especially for relatively coarte meshes.    Recall that 

the Integral (17-11) occurs in connection with the turbulent momentum 

stresses., and that the accurate evaluation of these stresses is one of 

the important goals of this study. 
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The results (17-9) >  (17-10) and (17-11) may be generalized by 

simple permutation of variables and subscripts so as to produce all the 

surface Integrals required In this analysis, without further recourse 

to detailed Integration.    In this way the fundamental continuity, momen- 

tum and pressure relations may be reduced to algebraic difference 

equations which may then be directly programned for the computer.    The 

essential features of this algebraic development, and of the results, 

are summarized in Appendix A. 
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18.    SCALE OF TURBULENCE 

One of the fundamental aspects of turbulence is the linear scale 

which characterizes the phenomenon.    It has already been pointed out 

that our method of analysis implies that,  in some sense, cell size must 

be small, whereas block size must be large in relation to the scale of 

turbulence. 

But how shall scale of turbulence be measured?    Several approaches 

have already been indicated.    One is based on the concept of correla- 

tion distance,  another on the wavelength    spectrum of the turbulence. 

A third method previously mentioned is associated with the idea of a 

critical cell size below which turbulence cannot be self-sustaining. 

All of these methods,  however,  involve lengthy and intricate calcula- 

tions . 

There is clearly a requirement for a much simpler measure of scale, 

which can be routinely calculated. To answer this need, a concept based 

on vorticity has been adopted. 

Prom the point of view of the finite-element method, the vorticity 

vector at a grid point may be defined by the relation 

uu = xr  I  nxudS 
OV ») 

fts 

-1 (18-1) 

Considering the separate scalar components of vorticity, we have 

2        2        2        2 
OU     s uu     + uu     + uu 

x y z 
sec 

Similarly, for the velocity components at any point 

(18-2) 

V2 2.2^2 
U    + V    + w 2E ^2/      2 ft /sec (18-3) 

where E represents kinetic energy per unit mass. 
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Both these quantities may be averaged by Integration over the 

entire volume of the block, thus yielding root-mean-square values 

y   2 and ^E respectively. 

Now a definition of scale X. may be written in the form 

2E 4 (18-M 
'n 

Note that the radical has the required physical dlmrnsion of length.    A 

dimensionless normalizing constant C is introduced to permit adjustment 

of the units of scale.    The value of C is assigned in such a way that 

the magnitude of ^ acquires a clear pi'nysical significance for a certain 

simple limiting case. 

The case in question may be repr»sented by a hypothetical velocity 

distribution of the form illustrated (for v)in Fig. 18.1.    The equations 

are 

P sin -r sm^ 

f.    .    2xx    .    2nz Q sin -j- sin -r- 

w « R sin ^JC 8ln ?H 

(18-5) 

(18-6) 

(18-7) 

This is seen to represent a simple reference sine wave of wavelength t. 

The constant C is now chosen in such a way that the scale parameter K 

for thli simple case turns out to be exactly equal to the wavelength I. 

This same value of C is then retained as a fixed constant for all other 

cases as well.    Consequently ^. may be interpreted as a kind of general- 

ized mean wavelength of the turbulence.    (See Appendix C,  Section U.) 

It is now proper to say concerning cell size ^, normalized scale 

of turbulence \, and block size L that we should ideally like to have 

^ « \ « L 
R 

(18-8) 
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Pig.  18.1    Veloslty Ccaponent T In Reference Wave. 
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Howerer, If H be sharply limited by computer memory capacity, ve are 
willing to accept the more modest statement 

(18-9) 
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19.    MEAN EFFECTIVE WRBUiarCE STRESSES 

One of the important objectives of the present research is to 

improve our understanding of the so-called Reynolds stresses» that is, 

the mean effective values of apparent stress associated with the turbu- 

lent momentum transport.    It is well known that turbulent fluctuations 

can be admitted into the Navier-Stokes equations of motion, and thst the 

resulting expressions can then be averaged over time (or over an ensemble 

of macroscopically similar cases)»    When this process is carried out, 

the equations which are recovered are exactly similar to the ordinary 

Navier-Stokes equations for laminar flow,  except for the presence of 

the additional Reynolds stresses.    In effect, this result tells us how 

the mean motion is affected by the mean effective turbulence stresses. 

However,  this is only part of the story.    What is required to complete 

the solution is a knowledge of how the effective stresses,  in turn, 

are affected by the mean motion. 

Sometimes an attempt is made to express this latter relation by 

means of an analogy with the viscous stresses.    The distortions! com- 

ponents of the viscous stress tensor are known to be proportional to 

the corresponding components of the strain rnte tensor based on the 

mean motion.    The constant of proportionality is, of course,  the 

ordinary molecular viscosity.    It is sometimes assumed,  therefore, 

that distortional components of the Reynolds stress may likewise be 

found by multiplication of corresponding canponents of the mean strain 

rate tensor by a suitable scalar factor of proportionality, the so- 

called eddy viscosity.    If this analogy were strictly valid,  it would 

represent a great simplification of the problem.    Unfortunately,  it is 

at best only a rough kind of approximation.    The melancholy fact seems 

to be that there does not necessarily exist any single common scalar 

factor of proportionality between the various Reynolds stress compon- 

ents and the corresponding mean strain rate components.    Consequently, 

s more fundamental approach to the problem is needed. 
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Since stress and strain rate are tensor concepts, it is advantageous 

for the present discussion to adopt Cartesian tensor notation and con- 

ventions. In particular, the coordinates x, y, z are replaced by x1, 

Xp, x_ respectively. Hence the general component of the Reynolds stress 

may be written in the symbolic form. 

"he" Jl ■ 1,2,3 

Contracting indices  (and applying the usual summation convention),  then 

dividing by 3 gives 

1 / TilN        1 / v 1 f 2 ,    2 ,    21 
3 C—> " 3 ^iV "-3Lttl + tt2 + U3J 

- - * -  - | E (19-2) 

where p represents the equivalent  "hydrostatic" pressure associated 

with the turbulence, while E is the corresponding mean kinetic energy 

of turbulencef 

The distortional Reynolds stresses are therefore expressible in 

the form 

where 6. . - + 1      if 1 ■ J 
iJ (19.U) 

- 0 If i >< J 

Ve now tackle the problem of identifying the specific parameters 

upon which the values of the stress tensor might depend.    For this 

purpose it is useful to distinguish four types of turbulent flows as 

indicated in Table 19*1. 
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TABLE 19.1 

Types of Turbulent Flows 

type I II III IV 

Definition 

Stationary? No Yes Yes No 

Isotropie? Yes No No Nc 

Homogeneous? Yes Yes No No 

Stress and Force Characteristics of Mean Flow 

Distortional 
Stresses? None Present Present Present 

Net Reynolds 
Forces? None None Present Present 

Discussion elsewhere in this report shows that for type-I flows, 

the distortional Reynolds stress tensor vanishes identically.    Or to 

put the matter more simply, there can be no mean effective shear 

stresses in an Isotropie flow field.    Hence the Reynolds stress is of 

the purely  "hydrostatic" type for this ease.    It follows that lype-I 

turbulence is too specialized in nature to provide information regard- 

ing a general state of stress. 

Flows of lype II, on the other hand, are much more interesting in 

that non-vanishing shear stresses are now definitely involved.    In 

fact this category represents the simplest possible case compatible 

with the existence of a general  state of stress at a point.    Therefore, 

it would seem to be the most profitable case to study initially for 

the purpose of establishing the parameters which determine the stresses 

at a point.    The simple shear flow which is the subject of most of this 

report is a particular example of a Type-II flow. 
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Of some Interest«besides the Reynolds stresses themselves, are the 

net resultant forceb per unit volume exerted by the Reynolds stresses 

upon a small volume element enclosing an arbitrary point. These 

resultant forces are proportional to the gradients of the Reynolds 

stresses. However, in any homogeneous flow field, the stress gradients 

are everywhere zero, of course, and the net Reynolds forces vanish, 

(in fact the net viscous forces associated with the mean flow also 

vanish in this case.) Consequently, in any homogeneous flow, the 

Reynolds stresses are determined by the mean flow, but the mean flow 

is not influenced by the Reynolds stresses. This fact represents an 

important simplification of the overall problem. 

Once the stress laws applicable to Type-II flows have been worked 

out, the study may be extended to the more complex flows of Type III 

and IV. There appear to be seme grounds for the hope that the laws 

ultimately established for Type-II flows will need only minor elabora- 

tion to serve adequately for the more complex cases. In fact it might 

well be that under certain circumstarces, the laws derived for TVpe-II 

flows may be applied unchanged to the other cases; however, much more 

work needs to be done before such a conclusion can be asserted with any 

degree or confidence. 

Another important application of the foregoing stress laws arises 

in tho following connection. In principle, the method of analyzing 

turbulence described in this report depends for its success on the 

creation of a mathematical model having a very large number of mesh 

points. Since not all possible difficulties can be faced and conquered 

simultaneously, it is tacitly assumed in much of the discussion In 

this report that the number of mesh points required for sa\ .sfactory 

results lies within the capabilities of the best modern computers, or 

at least within the capabilities of machines that will become available 

within a few years. In truth, however, this is probably an over- 

optimlotic view. Hence there exists a need for simplifying the method 

to the extent that it does truly fall vithln the capabilities of now- 
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existing equipment. Naturally, any such simplification entails a cer- 

tain loss of information. However, if the simplification is carried 

out Judiciously, the loss of information need not be too serious. 

The basis of simplification is obviously to ise a coarser mesh 

them that demanded by the "exact" theory. This means that components 

of the turbulence of wavelength smaller than the minimum attainable 

cell size cannot be explicitly resolved in the analysis. However, if 

the mean effective Reynolds stresses associated with this range of 

wavelengths can be correctly simulated, the resulting error in the 

overall motion should be quite negligible. 

As has been discussed earlier, it is believed that the above 

objective can be accomplished by means of an analysis In two stages. 

The first deals with the small-scale turbulence, the second with the 

large-scale turbulence. The cell size of the large-scale motion is 

taken as the block size of the small-scale motion. In the initial 

small-scale analyses, the full memory capacity of the computer is de- 

voted entirely to resolving the small-wavelength turbulence. Prom 

these results, It should be possible to infer simplified rules for 

establishing the corresponding small-scale mean effective Reynolds 

stresses. Such stresses can subsequently be Incorporated into the 

large-scale analysis to produce the required overall result. 

For the remainder of this section, we revert now specifically to 

flows of Type II. Since the Reynolds stresses are uniquely determined 

whenever the mean motion is specified, we may hypothesize that these 

stresses are, in general, some unknown functions of the mean velocity 

components and of their various partial derivatives of all orders. 

Also, we observe that the Navier-Stokes equations of motion are valid 

with respect to any inertlal frame. Furthermore, any coordinate frame 

moving at any constant velocity with respect to an initial frame is 

also an inertlal frame. It follows, therefore, that the Reynolds 

stresses cannot depend on the velocity components themselves since 

these are different in different inertlal frames, but must be functions 
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of the velocity dri'lvatlves alone. The velocity derivatives are in- 

variant with respect to a shift of inertial frames. However, for any 

homogeneous flow field, all velocity derivatives vanish except those 

of first order. We conclude, therefore, that the six Reynolds stresses 

at any point are each functions of the nine quantities ' _jl ) where 
i) 
J) 

ax. ■ 
1»2,3« 

/  1 \ 
The nine components of the unsymmetrical tensor ' r—"• ; may be 

» ox. y 
reorganized into six components of the symmetrical strain rate tensor 

7. . and three components of the rotation vector uu. , as follows. Let 

7ij    2 L 83^    ax J (19-5) 

J   = 1,2,3 

nn    z ^axi     BTJ    2   ijk v ax1y (19-6) 

where e   ■ +1 if i, J, k are in cyclic order 

■ -1 if i, J, k are in anti-cyclic order        (19-7) 

■ 0 if any two indices are equal 

for any given state of the mean motion as defined by the mean 

velocity vectors 

Ui " Ui (V X2' X3) (19"8) 

the actual values of the six strain rate components 7  and the three 

rotation components i«, will depend, of course, on the arbitrarily 

chosen orientation of the axes; consequently only three of the six com- 

ponents /.. characterize the actual nature of the mean strain rate. 

This can be readily seen if the principal axes are chosen as coordinate 

axes, for in this case the strain rate tensor reduces merely to the 
•   .   • 

three principal strain rates 7^-,* 7^» f^t  vhich now fully define the 
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character of the field. For the present discussion, hovever, it is more 

ccnvenient to choose the axes in a somewhat different way; clearly, the 

choice of a particular axis orientation entails no loss of generality in 

the phenomenon itself - this still represents a general state of strain 

rate at a point. 

We choose the p.xes x.., x», x, in such a way that x^. and x^ lie in 

that principal plane which contains both the algebraically largest and 

algebraically smallest principal strain rates. However, axes x. and x- 

are chosen to be at ^b with respect to the principal strain rate axes. 

Of course, x^ is the third principal axis, the one associated with an 

intermediate value of strain rate. The situation is shown in Fig. 19.1. 

Also shown are the familiar Mohr's circle representations for this strain 

rate condition, and for the associated Reynolds stresses. 

In this particular frame of reference, since x_ is a principal 

axis, we have 7 
-J3 

7-,  ■ 0.    The non-vanishing components are 7,,» 70^» 

7„ and 7..p.    However,  in this case 7,-j ■ fpo'  s0 t^8^ again there are 

Just three independent degrees of freedom in the strain rates.    Further- 

more, we choose the axes such that 7,p is positive.    Since axes x..  and 

xp are at 45    to the principal axes,  it follows that the magnitude of 

7      represents the maximum possible shearing rate.    Reference to Fig. 

19.1>  the Mohr's circle diagram,  should help make this clear. 

In discussing either the stress or the strain rate tensors, it is 

frequently useful to distinguish between the Isotropie and distortional 

components.    The distortional components of strain rate are defined by 

7U ' 71J " V 

where 7 - J ^ - 5 (^ + 722 * 7^) 

(19-9) 

(19-10) 

However, for the case of an incompressible fluid,ihich is the specific 

case to which this entire report is restricted, we have zero divergence, 

that is 
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NRCM. 102-68 

(a) Reference Axes X,, X-.Xj  and Principal Axes Xp,, Xpg.Xpj 
for Mean Strain Rote Tensor 

(b)  Mohr's Circles for Mean Flow Strain Rates 

k^m 

{No sum on i) 

(c)  Mohr's Circles for Reynolds Stresses 

Xp^ for 
Fig.  19.1    Reference Axes and Mohr's Circles of Strain Rate and Stress 

(a) Reference Axes x1, X2> x, and Principal Axes Xp1, Xp2, 
Mean Strain Rate Tensor. 

(b) Mohr's Circles for Mean Flov Strain Rates. 
(c) Mohr's Circles for Reynolds Stresses. 
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Kl ' * '  ^11 + f22 + ^3) " 0 (19-11) 

whereupon the dlstortlonal component becomes Identical with the strain 

rate Itself, that is, 

71J ' 7iJ 
(19-12) 

By rea^n of the zero divergence, which establishes another rela- 

tion of constraint among the strain rate components, the number of Inde- 

pendent degrees of freedom In the strain rate tensor Is reduced from 

three to two.    We may therefor-J at this point rewrite the strain rate 

components In the outlonal alternative form 

'11 

'22 

33 

€ 

2C 

(19-13) 

(19-UO 

(19-15) 

'23 

Si 
'12 

0 

o 

(19-16) 

(19-17) 

(19-18) 

where € and 0 now represent the two independent degrees of freedom In an 

explicit way.    If we set c » 0 In this result, we obtain the stn^n rate 

tensor associated with simple two-dimensional shear flow, with shearing 

rate 0; in fact the simple parallel shear flow which is the subject of 

most of this report is a particular flow of this type.    The foregoing 

strain rate pattern with € ^ 0 is therefore a generalization to three 

dimensions of the simple two-dimensional shear flow:  the meaning of Q 

has been appropriately generalized in a corresponding manner. 

We may summarize the argument to this point by stating that for 

homogeneous flows, the Reynolds stress components must be functions of 

the form 

(^) --v 
m • 

j = fij ^e' ^ V V ^ (19-19) 
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This relation may be simplified even further by dimensional analy- 

sis. Using reference parameters p, v and 0, ve set up the dlmenslonless 

forms of the various variables as follows: 

(19-23) 

L (19-20 

(19-25) 

Consequently ve obtain at last 

Ij" pvn (19-20) ;..«■ 

P*-£.I (19-21) «•-§ 

1    ATT 
(19-22) ■ 

1 "ff 

T^ - - U» U» - fjj (€♦, («{, <i^,   UJJ) (19-26) 

Each of the six dlmenslonless stresses is therefore a function of Just 

four variables, as shown.    This is the general form of the relation 

which we initially desired to ascertain. 

In the case of a mean flow which is purely two-dimensional, this 

relation simplifies drastically,  for in this case 

e» - 0, and luj - tu» » 0 (19-27) 

Consequently 

T^j - - u* u* - fttj ((»•) (19-28) 

where, from considerations of symmetry, two of the six stresses vanish, 

namely, 

Tg - ^ - 0 (19-29) 

Hence for turbulence in a two-dimensional homogeneous mean flow, the 

four dlmenslonless non-vanishing Reynolds stresses are functions of only 



a single parameter, lüt, the dimensionless rotation vector. This analy- 

sis makes evident the desirability of an early investigation of the 

two-dimensional homogeneous flow in which IU* varies over a range of 

values. 

Furthermore, for the special case of the simple parallel shear 

flow considered in this report 

1 i (19-30) 

Consequently for this particular case, the dimensionless Reynolds stres- 

ses reduce to four specific constants. 

Note that the foregoing method is free of any arbitrary or specu- 

lative assumptions regarding eddy viscosity, mixing lengths or the like, 

although it is, of course, restricted to flows of Type II. 

An interesting question arises in connection with the principal 

axes of stress anr1 strain rate. The principal axes of the strain rate 

tensor are, by definition, axes of zero strain rate. Similarly, the 

principal axes of the Reynolds stress tensor are axes of zero shear 

stress. According to our usual rheological notions of stress and strain, 

we would expect that along axes of zero shear strain rate the shear 

stress would also be zero. In other words, the principal axes of mean 

flow strain rate and Reynolds stress would be expected to coincide. But 

do these particular rheological relations necessarily apply to the case 

of fluid turbulence? There appears to be no definite proof that they 

do apply in general. This is an item on which it should be possible to 

obtain useful information by the methods of numerical simulation con- 

sidered in this report. 

Elementary theory can also shed some light on this question. For 

this purpose, let indices i, J, k now refer specifically to the princi- 

pal axes of strain rate. Now if any principal plane x.x is also a plan 

of symmetry of the mean flow, then it follows from this symmetry that 

T*. ■ 0 and r» « 0. However, in any such plane of ymnetry, it again fbUcvs 
ki        JK 
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that w* ■ 0 and uu» «= 0, It would appear that the converse must also be 

true. That is, if 'U* * 0 end 'u*  ■ 0, then also ▼♦. ■ 0 and T* = 0, 

vhere the three Indices 1, J, k are all distinct. Thus, 

If u* ■ 0 and u* « 0, then Tf. - 0 and  T*. * 0 '23 (19-31) 

if u* - 0 and u# = 0, then T*. = 0 and T* ■ 0 (19-32) 

if tu* « 0 and u* = 0, then r*   = 0 and T* « 0 (19-33) 

It follows also that if the mean flow be irrotational, the principal 

axes of stress and strain rate are then coincident. The implication is 

that for highly rotational mean flows, the principal axes of stress and 

ftrain may cease to coincide. 
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20. COMHJTATIONAL VERSUS HYDRODYMAMIC IHSTABILITr 

The dlBcusslon In earlier sections should make It abundantly c'ear 

that considerable Ingenuity and care are required to devise grid patterns 

and calculation procedures which will yield maximum accuracy and resolu- 

tion for a given computational effort and cost. A special difficulty 

that presents Itself in various guises concerns the stability and con- 

vergence of the calculation procedure. This is one of the fundamental 

problems generally associated with numerical methods. The particular 

difficulty in the present application is that turbulence itself is an 

instability phenomenon. There is always the lurking danger of introduc- 

ing inadvertently some sul>wj.c cause of instability in the calculation 

procedure, and confounding the results with the true physical instability 

which is turbulence. 

One common if indirect method of coping with questions of computa- 

tional accuracy and stability is to compare results obtained by numeri- 

cal methods with some known exact theoretical results. Unfortunately, 

in the turbulence problem, there are no known theoretical results to 

serve as standards of comparison. 

An alternative is to compare with experimental data. There is an 

enormous amount of experimental data available on various aspects of 

turbulence. Nevertheless adequate experimental data specifically appli- 

cable to the present boundary conditions might not be available or 

readily found. It may eventually prove necessary to undertake an inde- 

pendent experimental program for this express purpose. 

A more direct approach is to attempt to analyze theoretically the 

stability characteristics of the numerical method being used. Some 

tentative guide lines are available in this connection, although there 

does not seem to be available any standard and definitive technique. 

The present problem is especially difficult owing to the great length 

and complexity of the basic difference equations Involved, and owing to 
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their non-linearity. Hence the theoretical approach to stability le a 

full-fledged research problem in its own right. 

It is, however, a very important problem, and efforts will be made 

to pursue it as circumstances may permit. A successful theoretical 

analysis would provide definite and rational criteria of stability and 

should thereby improve the efficiency of the calculation procedure and 

the reliability of the results obtained. 

Meanwhile, the difficulty is being faced in a pragmatic way. Various 

common sense safeguards and criteria of a heuristic kind have already 

been provided in the program "nJRBOOODE, MARK V. Thus, for example, the 

degree of convergence demanded in the Iteration procedure which fixes 

the pressure distribution Is readily adjustable. A parameter is also 

provided to limit the maximum displacement of any fluid particle in any 

time step to any desired small fraction of a single cell length.  Pre- 

liminary numericcl experiments are producing useful guide lines concern- 

ing the optimum settings for these parameters, and concerning the corres- 

ponding level of residual error or noise produced In the calculation 

sequence. Furthermore, It is well known that the sovereign remedy for 

most Instability problems Is a reduction in the size of space and time 

Increments. Hence it is believed that stability problems are not likely 

to defeat the goals of the investigation, although they might very well 

increase the effort and cost required to attain these goals. 

Incidentally, it is believed that the comparatively sophisticated 

finite-element techniques being used in this problem are far less suscep- 

tible to instability problems than the looser methods based merely on 

replacing differentials by finite differences. It must be conceded, 

however, that no method of differencing, however refined, is altogether 

exempt from the hazard of possible computational instability. 
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21.    GENERATION VERSUS ANALYSIS OF TURBULENCE DATA 

The numerical description of a flow field  involves the use of a 

suitable grid of coordinate points in that field.    For the ordinary case 

of a cubical region of length L on a side, subdivided into cubical cells 
■a 

of length L/N on a side according to Method A,  there are N    cells. 
3 

Since a grid point is placed at the centroid of each cell, there are N 

grid points.    In the  program TURBOCODE, MARK V,  a staggered scheme of 

cells is employed. Method C, which involves 2N    independent grid points. 

Since MARK V may use values up to N ■ 8, the number of grid points may 

reach 102^ in all. 

The state of the turbulent flow at any instant of time may be ade- 

quately described by specification of the values of the three velocity 

components and of the pressure perturbation at each point.    Hence we 

have,  in MARK V, at least 8NJ items of data involved for each time step, 

that is, up to U096 items per step.    (Actually,  certain additional items 

of information are also needed near the top and bottom surfaces,  but 

this is immaterial for the present discussion.) 

Now the basic purpose of TURBOCODE, MARK V is to follow the  svolution 

of the turbulence resulting from an arbitrary initial perturbation. 

Since the number of time steps involved in any adequate overall time 

period is large,  it is clear that we are confronted with an enormous 

volume of data - a veritable torrent.    It becomes a major problem as to 

what to do with this data, how to store it,  how to process it,  and so 

on. 

The basic tenet has been adopted that the generation of the basic 

data and its subsequent processing for various analytical purposes 

should  not be confounded within the same program.    Accordingly, TURBOCODE, 

MARK V is intended solely to generate the data.      The processing involved 

therein is minimal and is confined to those few statistical features 

which are clearly indispensable for providing a general indication of 
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the state of turbulence.    These include (for each time step)  space mean 

values of kinetic energy, turbulent shear stress and scale of turbulence. 

Consequently the generation of the data is accomplished with maximum 

efficiency and in minimum time. 

The results thereby generated are recorded and stored on magnetic 

tape for subsequent analysis and processing by a separate program or 

series of programs,  according to the type of information desired.    How- 

ever, for conservation of tape and recording time, provision is made to 

sample the generated data and to retain only such selected portions as 

are required for the subsequent analysis.     This avoids the indiscriminate 

taping of huge amounts of data far in excess of any realistic need. 

In a sense,  the generation and sampling of data in the present 

study plays a role comparable to that of physical experimentation in 

conventional research.    The subsequent analysis and manipulatio'.i of the 

data so obtained is a more or less distinct and separate step. 
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22.     PARTIAL SIMMAHY OP PRINCIPAL OONCEFTS 

The mean flow field Is a steady,  Incanpresslble, parallel and uni- 

form shear flow in which the mean velocity U is of the form 

U - i n y (22-1) 

where fl represents the constant shear rate, and i is a unit vector in 

the x direction.    Physical boundaries of the flow are at y ■ + •. 

The turbulence is homogeneous, that is.,  all statistical properties 

of the turbulence are uniform over the flow field.    However, the field 

is anisotropic, that is,  properties in one direction are in general 

different from those in another direction. 

All physical quantities are non-dimensionalized in terms of the 

reference parameters: density p, kinematic viscosity v,  and shear rate 

ft.    All possible uniform shear flows of the above type, when non-dimen- 

sionalized in this way, reduce to a single definite and unique csse. 

The energy spectrum of the turbulence is largely confined within a 

limited raige of wavelengths.      If we neglect some arbitrary but very 

small fraction of the total turbulent energy at each end of the spectrum, 

two corresponding limits of wavelength   are thereby defined, say L . mm 
and L      , between which nearly all of the turbulent energy lies. max' ^ ■* 

The flow field is subdivided    into large cubical blocks of length L 

on a side.    Each block is in turn subdivided    into many small cubical 

control volumes or cells of length (L/N) on a side.    The integer N fixes 

the fineness of the cubical mesh.    In the ideal case,  it is desirable 

that L i L       and (L/N)  *= L .   .    This implies that N i L      /L .   . max v '   '        min r max7   min 
Since the computer memory requirements are roughly proportional to 

N^,  it will probably be impossible to meet the above criterion.    In that 

case, the turbulence must be  subdivided    Into small-scale and large-scale 

components, and analyzed in two successive stages.    The method lies 

beyond the scope of this summary, but is detailed in the main text of the 

report. 
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The large cubical blocxs Into which the flow field Is subdivided 
are arranged In horizontal rows.    The horizontal mid-plane of each row 

has zero velocity with respect to the mean flow.    Because of the shear 

rate 0 of the mean flow, there Is a relative velocity of magnitude OL 

between any two succeselve rows.    At times t - 0, l/fl, 2/n, 3/Ci,,., 

all rows are aligned in an an staggered cubical array, such that all 

vertical faces of all blocks coincide and form continuous vertical planes. 

At all other times the blocks In successive rows are staggered with 

respect to one another.    See Fig.  5«1» 
At time t ■ 0, a set of non-divergent velocity perturbations Is 

assigned at the centrolds of all the control cells.    The perturbation Is 

arbitrary except that all possible wavelengths    In the range of Interest 

are present.    The Initial distribution of the perturbation velocities is 
taken as Identical for all blocks, that is all cells in corresponding 

positions in all blocks are assigned Identical perturbations.    Conse- 

quently, the subsequent motion throughout all blocks remains identical 

thereafter.    This spatial periodicity of the solution makes the subse- 

quent boundary conditions along the block surfaces perfectly definite 

and unique. 

The flow field passes through an initial transient in which the 

spectral distribution gradually changes from its arbitrary initial form. 

Ultimately,  seme definite equilibrium form and amplitude are attained, 

and thereafter, the turbulence remains in an essentially stationary 

state.    The resulting velocity compo...-uts and pressures over the entire 

block may be sampled for any desired number of successive time steps. 

With methods suggested in the main body of this report, this    data may 

be analyzed to establish any desired statistical properties of the turbu- 

lence,  such as tt» mean kinetic energy, Reynolds    stresses,  scale of 

turbulence, energy spectrum, various correlation coefficients, etc. 

The Initial state of the system is defined by the distributions of 

the three velocity components and the pressure.    However,  it may be 

shown that the equations of motion and continuity, along with the 
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boundary conditions, suffice to determine the pressure distribution 

uniquely whenever the velocities are fully specified.    Hence the pres- 

sure distribution is e. derived function which cannot be specified inde- 

pendently.    Furthermore,  not all of the velocity components are independ- 

ent,  for it may be shown from the condition of continuity and from the 

specified spacewise periodicity of the turbulence    that if any two of 

the velocity components are specified throughout the grid, the third 

component is thereby uniquely determined.    Hence there are Just two 

arbitrary initial degrees of freedom for each distinct grid point of 

the block.    Strictly speaking,  these arbitrary degrees of freedom exist 

only at the initial time t « 0,  for the entire subsequent motion is 

wholly determined thereafter. 

Determination of the pressure distribution which must co-exist with 

any specified distribution of the velocity components  involves a lengthy 

process of computation by successive approximations until the results 

converge to within the required degree of accuracy.    This entire itera- 

tion process must be repeated every time the velocities change, which is 

to say,  for every time step.    Hence the pressure computation takes by 

far the biggest part of the total computation time. 

The small but finite cells are used as fixed control volumes in an 

Eulerian sense.    The continuity and momentum equations are applied to 

these control volumes.    This involves evaluation of the forces and of 

the mass and momentum fluxes pertaining to the six square bounding sur- 

faces which enclose each cell.    The evaluate   ■  is accomplished by means 

of complete and detailed surface integrals.    Similarly, average values 

of momentum and energy enclosed within the cell are evaluaued by means 

of detailed volume integrals.    This painstaking integration technique 

constitutes the heart of the so-called finite-element method.    It con- 

trasts strongly with most ordinary differencing methods which use much 

cruder estimates of the required forces and fluxes.    The difference in 

accuracy is particularly important for relatively coarse meshes, such    s 

those which are necessarily involved in the present study. 
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For evaluation of the above surface and volume integrals with good 

accuracy,  it is essential to have a suitable interpolation rule which 

specifies how the various quantities vary in the space between the 

principal grid points.    Por this purpose a linear interpolation rule is 

employed.     It is postulated that values vary linearly along any straight 

line parallel to any one of the three coordinate axes.    It turns out that 

tnis rule determines the distribution uniquely throughout the entire 

space when values are specified at the principal grid points. 

In connection with the evaluation of various volume  Integrals, it 

is further postulated that the volume average of any quantity within any 

cell also constitutes the best available estimate of the local value of 

that quantity at the centroid of that cell. 

The finite-element technique is a method of approximation which 

employs a minimum number of definite basic postulates, and proceeds 

thereafter in a completely determinate and unambiguous manner consistent 

with these postulates.      The necessity for any subsequent ad hoc assump- 

tions is eliminated.    The numerical accuracy and stability thereby 

attained is probably the maximum attainable <n relation to the coarse- 

ness of the grid employed. 

The basic idea of the present calculation method is that if the 

velocity distribution is completely known at some instant of time, the 

new velocity distribution a short time later can consequently be found. 

First of all, the pressure distribution corresponding to the initial 

velocity must be calculated by the iteration method mentioned earlier. 

Next, the equations of motion are applied to the control cells to estab- 

lish the time rates of change of the velocity components at the centroids 

of the cells.    Finally, the new velocities are computed. 

The above cycle of calculations is repeated for every time step. 

Hence the motion of the system may be followed indefinitely, or as long 

as necessary to obtain the desired information. 

A particular feature of the above calculation procedure relates to 

the maintenance of a continuously non-divergent velocity distribution. 
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Because of round-off and other errore, the velocity distribution at the 

beginning of any time step may deviate very slightly from the required 

condition of non-divergence.    This is corrected in the following way. 

A very small correction term is included in the pressure distribution. 

This term influences the motion during the subsequent time step very 

slightly and in such a way as to tend to restore zero divergence.    Hence 

there is built into the calculation sequence a divergence correction 

which continuously compensates for accumulating round-off and other 

errors. 

An important question in connection with any numerical method,  in- 

cluding this one,  pertains to the stability of the calculation procedure. 

Owing to the great complexity of the final difference equations in the 

present problem, this aspect has not yet received adequate study.    How- 

ever, a number of common-sense precautions have been taken to minimize 

the danger of computationcl instability.    The main precaution involves 

limiting the time intervals to very small values such that the maximum 

displacement of any fluid particle is restricted to some small fraction 

of the cell size.    It is known that reducing the time Increment cures 

most problems of computational instability.    Furthermore, the improved 

accuracy associated with the finite-element method itself provides an 

enhanced resistance to instability difficulties. 

The basic assumptions and concepts here summarized suffice to 

establish a method for the computer simulation of the detailed station- 

ary turbulence in a uniform shear flow.    The data generated in this way 

is in some respects comparable to that which might in principle be 

obtained by direct experimental measurement.    The computed data,  how- 

ever, pertains to a very fundamental cese but one which would be rather 

difficult to set up experimentally.    Furthermore, the computed results 

are Incomparably more comprehensive than any that could reasonably be 

obtained by experiment.    The detailed data so generated represents 

fundamental information which may subsequently be analyzed from various 

points of view to establish corresponding overall statistical and 

phenoraenological characteristics of ^he turbulence. 

. 
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23. TOPICAL OMWTKR RBSUM 

Table 23.1 and Pig. 23.1 show some results of a typical computer 

run. For internal consistency this data Is included merely as an 

example; no detailed conclusions are offered at this time. More compre- 

hensive data and analysis are planned for the near future. Nevertheless, 

tte particular result shown supports the Idea, advanced on theoretical 

grounds in an earlier section of this report, that for block size L 

below some critical value, L , the initial turbulence dies away and 

laminar flow Is restored. The data also shows that the normalized 

divergence errors (column DBIG) and the Inherent noise level in the 

computer solution are extremely small. 

The data listed in Table 23.1 represents only the gross overall 

features of the turbulence.  (Most of the columns are self-explanatory: 

ENERGY ■ energy of turbulence per unit mass; UVBAR ■ Reynolds shear 

stress; SCALE ■ scale of turbulence as discussed elsewhere in this report; 

NIIER « number of pressure iterations for convergence.) Not shown, but 

available from this same computer run, is nn enormous mass of detail 

showing the individual velocity components and pressures at every point 

in the grid for every time step. 
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Table 23.1    Typical Computer Output 

TUKBOCOOE.        MARK     V 

mOBLi-M   NUMBtR 32 

MESH  SIZE     ■>  BY   S  Br  5  BY  2 

INITIAL  STATt 
KINETIC  ENERGY 
SPECTRAL  PARAMETER 
SUE  ÜF  BLOCK 

INTERNAL  CONTROL 
MAX.   ITERATIONS 
CONVERGENCE   PARAMETER 
MAX.    IIME   ,'NCREMENT 
ÜIVERGENCE  COEFF 
TIME   STABILITY   PAMAMETER 

OUTPUT  CONTROL 
OUTPUT   TAPE   UNIT  NUMBER 
LENGTH  OF  OUTPUT   BURSTS   tCYCLESI 
SPACE   (ILT.LEN  bURSTS   (CYCLES) 

ICYCLE 
Q 
1 
<■ 

3 

t. 

H 
9 

It 
U 
i-; 
13 
i. 

lb 
IT 
1« 
1-* 
I« 
II 

13 
In 
19 
I« 

TIME 
.00000 
.26H19-U2 
.76'»19-02 
.126*2-01 
.176t2-01 
.22bt<!-01 
.27o<«2-01 
.32b<»2-01 
.J/b^i-Ol 
.'*Ü6<»2-01 
."♦76'»2-01 
.b26t2-01 
.b7b'»2-ül 
.b2fa<»2-01 
.b7b>*2-01 
.726»2-01 
.77bt2-01 
.«26*2-01 
.a76'»i-01 
.92612-01 
.-»76*2-01 
.lU2b««00 
.10764*00 
.1126<t«ÜO 
.1 1 '..-.im 
.122b<t«00 
.12761-00 
.13261-00 

.100-01 
1.000 

.500*01 

999 
.100-02 
.100*00 
.100*07 

.0250 

28 
XESI 1 
i) 70 

ENERGY UVBAR 
.100-01 -.116-11 
.990-02 .218-07 
.972-02 .311-06 
.951-02 .965-06 
.936-02 .195-05 
.919-02 .325-05 
.902-02 .183-05 
.885-02 .666-05 
.869-02 .873-05 
.853-02 •110-01 
.837-02 .131-01 
.822-02 .160-01 
.807-02 .i«7-01 
.792-02 .216-01 
.778-02 .211-01 
.763-02 .271-01 
.7b0-n2 .303-01 
.736-02 •333-01 
.723-02 .362-01 
.710-02 .391-01 
.697-02 .119-01 
.685-02 .116-01 
.672-02 .173-01 
.660-02 .198-01 
.619-02 •521-01 
.637-02 .511-01 
.626-02 .561-01 
.615-02 .563-01 

SCALE NITER 
.186*01 »      0 
.186*01 »     21 
•186*01 ►     12 
•186*01 >     12 
•186*01 •     12 
•186*01 ►     12 
•186*01 >    ir 
•186*01 •     12 
•186*01 •     12 
•186*01 *     12 
•186*01  • •     12 
.186*01  < •     12 
.186*01  < •     12 
.186*01  < >     12 
.186*01  < '     12 
.186*01  • •     12 
.186*01  • '     12 
.186*01  < 16 
.186*01  * •     12 
.186*01  * 12 
.186*01  • 16 
.186*01  < 12 
.186*01  « 12 
.186*01  « 12 
.186*01  < 12 
.186*01  « 16 
.186*'1  « 16 
.186*01  « 16 

ORIG 
.000 
.000 

-.188-07 
.205-07 
.215-07 
.219-07 
.218-07 
.187-07 
.200-07 

-•iai-07 
-.210-07 
-.218-07 
-.238-07 
-.290-07 
-•321-07 
-•377-07 
-•106-07 
•161-07 
•310-07 
•136-07 
•186-07 
•371-07 
•102-07 
•119-07 
.171-07 
•502-07 
.312-07 
.251-07 

OUT 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
J 
0 
0 
Ü 
0 
0 
0 
0 
0 
0 
n 
0 
0 
0 
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2k.     POSTSCRIPT 

The purpose of this postscript is to record two important concepts 

whose value and significance were not fully appreciated at the time the 

main body of this report was written. 

The first idea pertains to a simplified analysis of turbulence by 

treatment on a purely two-dimensional basis.    One could set w » 0,    r- 

(any function) ■ 0, and treat u, v and u as functions of x, y and t only. 

Actually this approach was considered earlier, but was initially rejected 

on the ground that true turbulence is inherently three dimensional and 

should be treated as such.    Nevertheless,  it appears that an analysis of 

cwo-diroensional "pseudo turbulence" would be of considerable value and 

interest as an interim step toward the final goal.    It would undoubtedly 

resemble true three-dimensional turbulence in many significant respects. 

As a two-dimensional problem in the space coordinates,  it falls well 

within the range of existing computer capabilities.    It would enable us 

to increase the important mesh resolution parameter N without involving 

prohibitively large computer storage requirements.    It would also facili- 

tate all subsequent steps such as spectral analysis and the like.    While 

obviously not a complete substitute for the full three-dimensional 

treatment,  it would certainly be a valuable complement to the latter. 

It would be particularly useful and most relevant in the earlier stages 

of investigation as a tool for establishing basic concepts and methods. 

The idea of using simplifications of this type is nothing new;  somewhat 

similar simplifications have been made by Qnmons  (Ref.  2), Kraichman 

(Ref.  3) and others. 

The second concept is a 'further generalization of the idea of 

equivalent reference frames,  as outlined in Section 5 of the report. 

In Section 5 the basic unit of fluid to which the concept of equivalence 

has been applied has been the cubical block of length L on a side.    But 

it is both possible and advantageous to go further.    We can apply the 

■ 
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concept of equivalence to the individual cubical cell, of length « on a 

side.    In this case, the condition of equivalence can be reduced to the 

statement that the centroid of each cell bhall have zero velocity with 

respect to the mean flow.    This amounts to adoption of a kind of 

Lagrangian System,  in the sense explained in Appendix D.    The scheme 

has obvious merit in that all control volumes are truly equivalent.    The 

equations of motion are identical in form for all control cells;  there 

are no terms needed to reflect differences in mean flow velocity at the 

centroids.    Consequently, the complexities and pecularities of the slid- 

ing boundary condition, which is associated with the Eulerian system of 

rigid reference blocks, simply vanish from the analysis. 

If the control cells are rigid cubes of length (-) on a side, and 

if the centroids of these cells move with the main flow, the effect is 

as shown in Fig. 26.1.    At the initial (dimensionless) time t* ■ 0, and 

at subsequent Integral values of t* ■ 1, 2, 3»   > the cells form a 

simple cubical array as shown.    At other times the individual layers 

become staggered as shown.    The basic unit of analysis is now not a 

rigid block, but a stack of slabs measuring L by L horizontally, by 

(|) vertically. 

The dlff »rencing formulas to be used in this case will contain the 

time variable t, since they must account for the continuously changing 

geometry of the system.    However,  the basic method of deriving these 

formulas in terms of surface integrals still applies in the usual way. 

There seem to be no basic difficulties involved.    Nevertheless, some 

care is needed in defining the interpolation spaces which now also vary 

with time. 

Consider the set of paralleloplpeds formed by connecting principal 

grid points by straight lines.    In horizontal planes these grid lines 

form squares of size rr, in the usual way.    In vertical planes z ■ constant; 

however, owing to the continuous shearing motion, the "vertical" lines 

of the grid lie at an angle a with respect to the y direction, as shown. 

This angle changes continuously with time.    We irpose the restriction, 
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however, that at all times the angle a must lie between the limits 

- 1/2 s tan a s + 1/2 (26-1) 

These limits are reached at dlmensionless times t*  ■ 1/2, 3/2, 5/2,   

Each time the upper limit tan a ■ + l/2 is reached, the lines are all 

instantaneously flipped back to tan a » - l/2 in order to satisfy (26-1). 

The angle then smoothly increases again to the upper limit, whereupon 

the above instantaneous flip-flop action is repeated. The corresponding 

grid lines define a system of time-varying interpolation spaces. The 

moving lines form the edges of these spaces. It is quite natural to 

adopt the rule that within each interpolation space, the variation of 

all quantities shall be linear along any line parallel to any grid line. 

The use of interpolation spaces whose shape varies with time in a 

linear/cyclic pattern suggests that the control volumes might be allowed 

to change in shape in an exactly analogous manner. This is Indeed en- 

tirely feasible, and probably advantageous from a computational stand- 

point- At any rate, the choice between rigid or time-dependent control 

cell ::iiapes can be made on the basis of convenience, since either choice 

is correct. However, time-dependent shape of control cells seems 

slightly more consistent with the time-dependent shape of the interpola- 

tion spaces. If this "'dea is adopted consistently, we will have at 

times t* « 0, 1, 2, ..... all control cells and interpolation spaces 

_nstantaneously cubical. Similarly, at times t* - l/2, 3/2, 5/2, ...., 

all control cells and interpolation spaces flip-flop instantaneously 

from tan a = + 1/2 to tan Of ■ - 1/2. However, the principal grid points 

themselves continue to -nove on with a majestic Lagranglan dignity, 

utterly unperturbed by the periodic flip-flop of the reference grid 

lines. 

The gist of this postscript is that there is  an early requirement 

for a simplified two-dimensional treatment of turbulence, and that 

future work should emploj coordinates which move with the mean flow. 
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APPENDIX A 

DEVELOIMENT OF BASIC DIFFEREI,CE EQUATIONS 
(METHOD C) 

A.l LOCATION OP GRID POINTS 

In each of the horizontal directions x and z, and for both families 

of points, the number of grid rows needed is N. In the vertical or y 

direction, however, two extra rows are needed at the bottom and two at 

the top, to meet the special boundary conditions at these locations. 

Hence the number of stations needed in the vertical direction is (N+M. 

Consequently the indices i, j, k in the two families vary over the 

following ranges 

I   II 
i1 - iXi - 1, 2, 3, N 

J1 - J11 - 1, 2, 3,  (N-^)       (Al-1) 

I   II 
k1 = k""1 « 1, 2, 3, N 

Spacing between any two successive rows in the same family is (L/N). 

Any point (i,,)^)  of family II is staggered by the amount (L/2N) in 

each of the positive x,y,z directions with respect to the corresponding 

point (i,J,k) of family I. In the vertical direction, the lowest row 

is at J1 = 1, the highest at J  » (N+M; the reference plane y = 0 is 

chosen to lie exactly midway between the lowest and highest grid rows, 

for the sake of symmetry in the S forces. In the x and z directions, 

i  » k  » 0. 

the origin of coordinates is immaterial, and is arbitrarily placed at 

k  »0, 

The following grid point locations satisfy the above requirements: 
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Xi = N (1- ^ x11 - ^ i 
1         N 1 

i    L /. n    Nx 
yj • N 

('J- IT ■ ^ 
II      L  /, 

I      L ^    1^ 
^        N k 

M' (Al-2) 

The constants C   = ^ and C     « f in the above results are found 

from the conditions 

II        I 
yi    'yi 

^ (C11 

N  KL *-*h (*l-3) 

y, * y, -"      * i {, . c1 - c11) . o N+4 N 

Locations,  other them those at the principal grid points themselves, 

are denoted by dlmenslonless coordinates ?, T\, C.    Thus within a volume 

cell of family I, with centrold at  (l,  J, k)   , or anywhere along the 

bounding surfaces of this cell, which are surfaces passing through points 

of family II, we have 

-1 * 5 - I; (x - xj)  < +1 

'1 < Tl - IJ- (y - yj)  5 +1 (Al-k) 

■1 « C - |L ^ ' zk)  * +1 

Similarly, within a volume cell of family II, with centrold at 

(i, J, k)  , or anywhere along the bounding surfaces of this cell, which 

are surfaces passing through points of family I, we have 
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■1< ? - 1; (xj1 - X) S +1 

-1 « r| 2L (yj ■ y) * +1 

(Al-5) 
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A.2 SURFACE CONSTANTS 

Surfaces passing through points of family I, and perpendicular to 

the x, y or z axes« are denoted by superscripts Ix, ly or Iz,  respect- 

ively. For surfaces passing through points of family II, we use super- 

scripts IIx, lly or IZs In like manner. 

The three velocity components u, v, w are assumed to vary linearly 

along any line parallel to the x, y or z axes. Hence along a typical 

surface - let us say a surface Ix - we have 

u - AjX + A^ T! + A^ C + A^X TV 

v - BJX + B^ Tl + B^ C + B?* ry; 

w - cJX + cJX Ti + cJX C + C^X TV 

(A2-1) 

where the A's, B's and C's are constants whose values are to be deter- 

mined from .he known values of the u's, v's and w's at the four grid 

points which constitute the corners of the surface.  (This approach, 

Method C, Ignores the additional data available from the two other nearby 

grid points, lying off the surface on either side of its centrold.) 

Equations similar to (A2-1) may also be written for th.i other five 

surfaces denoted by superscripts ly, Iz, IIx, lly, Hz. 

Taking for Illustration only the expression for u In (A2-1), we 

have at the four corners 

u - u (l,J,k) 

u = u (l,J+l,k) 

u = u1 (ijjk+l) 

u - u1 (l,J+l,k+l) 

n = o C - o 

tl ■ +1 C - o 

ri ■ 0 C - +i 
n- +1 C - +i 

(A2-2) 
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On the other hand,  for the corresponding surface of family 11, we 

have at the corners 

u - u11 (i,J,k) Ti - +1 

u - u11 (l,J-l,k) Tl - 0 

u - u11 (i,J,k-l) Tl - +1 

u - u11 (l,J-l,k-l) Ti « 0 

C - +1 

C - +1 

C = 0 

C - o 

(A2-3) 

Now from (A2-1) and (A2-2) the solution for the A's becomes 

AjX(l,J,k) - \ [uI(i,J,k)+uI(l,ö+l,k)+uI(i,J,k+l)-KiI(i,J+l,k+l) 

AiX(l,J,k) 

A^Ci^^k) 

A^d,.)^) 

.1|V(.. )+u
I(   " ).UI(  '.  )+uI(   "   )]   (A2-UA) 

- Jj/u^ " )-uI(   " )+uI(  "  )^I(   "   )] 
- J[V( " )-uI(   " )-uI(  "  )+u

I(   "   )] 

Similarly for the other family 

Aj^d^k) 

A^CiJA) 

A^IX(i,J,k) 

A^IX(i,J,k) 

J [+uI(i,J-l,k-l)-KiI(l,(J,k-l)+uI(i,J-l,k)+uII(l,J,k)] 

^[-u^      - )+uI(      "      )-uI(      "      W1 (    "    )] 

^[-Ji      " )-uI(      -      )+uI(      "      )+uI (    "    M 

H+xH      " )-uI(      "      ).uI(      "      W1 (    "    )] 

(A2-4B) 

The above results may be extended to the other surfaces by cyclic 

permutations as symbolized by the diagrams 
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A 
z< 2 cv A A (A2-5) 

In other words, starting with any valid equation, and changing each vari- 

able or index thereof by a single step forward in the above diagrams, 

produces another valid equation. 

On the other hand, the subscripts as in AQ, A,. A-, A- do not 

change during the above permutations. 

Purthennore, the results can also be extended to the other velocity 

components by the permutations symbolized below, namely 

A C4 -B 

(A2-6) 

In sum we can say that Eqs. (A2-4A) and A2-UB), along with the 

permutation rules (A2-5) and (A2-6), fix all the A's, B's, and C's on 

the x, y and z surfaces of both families. The final expressions obtained 

are in terms of the u's, v's, or w's; that is, in terras of the velocities 

at the corner grid pointu. 

In the sections which follow, various quantities needed for the 

continuity and moment-i- equations are derived and expressed in terms of 

the above surface constants - the A's, B's and C's. If desired, these 

constants can then be ellmlnateC from the resulting expressions by 

substitution of the equations of this section. Hence the results re- 

quired can be expressed directly in terms of the velocity components 

themselves. Such expanded formulas were actually used in TURBOCODE, 

MARK V in order to avoid the large computer storage which would be re- 

quired for storing the many surface constants,  (it can be shown that t' 

number of storage places required for this pirpose is approximately 

72N (N+4).) The  expanded formulas are very long, however, and it is 

considered impractical to give them in this appendix. 
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A.3 DIVKHGENCE 

In terms of the surface constants, the expressions for divergence 

In the two families become 

iPiu**) -1 { [A^U+I,.],*) - A^l^A)] 

[cjs(i,j,k+i) -cjz(i,j,k)l} 

(A3-2) 
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A.k    MEAN STRESSES FROM IMPOSED SHEAR RATE 

The shear stress components associated with the interaction of 

the turbulent eddies with the mean shear rate n* ■ 1, and defined by 

Eq.  (15-18),  are as follows.    For family _ 

,Ix 

y 

Iz 
y 

Iz 
z 

i,J,k) 

l,J,k) 

l,Jik) 

l,J,k) 

(|)  {(J  - ? - |)2AjX  (i,J,k)  + i A^  (i,J,k)} 

-(|)   (  J  -^-i)Bf(l,J,k) 

(f) {(J - ? - |)cJz(i,J,k) + I C^(i,J,k)} 

0 

0 

(AU-1) 

(All-2) 

(AU-3) 
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Sljnllarly, for family II 

- (jp (tJ -x -1' «^(».i.« ^ ^(i.J.")} 
-(|){(j-¥- 1)3^(1,^)^^(1^)} 

- ({P  (J - f - i)  B^d.J.k) 
0 

■ 

s][Iz(i,J,k) 

sJIz(i,J,k) 

■ 

(Alt-It) 

- $ {(J ^ - |) ^'(LJ.« ♦ I cf (l,J,k)} 

0 

0 
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A.5    MOMENTUM FLUX 

The components of the quadratic momentum flux stresses defined by 

Eq.   (15-19)  are given below 

^X(l,J,k) - - [^(l,J,k)j4 i [A^d.J^)] 

T^C^J^) - - {s^d^.k) A^d^^k) + i B^d^kU^d.j.k) 

+ i B^X(l,J,k) A^X(l,J,k)  + I B^d^kU^d^k)} 

T^l^J.k) -  -  {cJX(l,J,k)A^C(l,J,k)  ♦ I C^l^J^A^d^^) 

+ I C^d^kjA^d^k)   + i C^d^kU^d^k)}    (A5-1) 

These results suffice to fix the pattern. The remaining equations 

may be found by application of the permutation rules (A2-5) and (A2-6). 

Exactly similar expressions apply to the surfaces of family II;  It Is 

necessary only to change superscript I to II. There are nine separate 

equations In each family, or eighteen equations In all for the T com- 

ponents. 
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A.6 LOCAL VISCOUS STRESSES 

The local vlocous stresses at a point follow the pattern below. 

For family 1, the local normal and shear stresses are, respectively, 

of the form 

T^(i,j,k) - ^ [AJ^I,.),*) - AJ^I-I,.),*)] - I DV,.),*) 

I^CM*) - E {K^Ufwo - cj^dj-i^rj 
(A6-1) 

+ [Bj
l2(l,J,k) - Bjl2(l,J,k-l)] } 

For family II, the corresponding forms are 

+ [i£z(i,j,k+i) - B^d,.)^)]} 

The other four stresses of each family are Jound by the usual per- 

mutations of (A6-1) and (A6-2). 

The divergences D   and D     which occur In these equations are of 

the order of the round-off error only and may be neglected If desired. 
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A.7   MEAN VISCOUS STRESSES 

The mean effective VIBCOUS stresses over the surface as defined by 
Eq.  (15-20) ape computed from the local VI.BCOUB stresses according to 
the following format 

For family I 

H^J/lO - j[^(l*J#k) + T^(i,J+l,k) 

+ T^d^J^+l) + T^d^J+lA+l)] 

^X(lJ,k) - I [T^(l,J,k) ♦ T^(l,4*l,k) 

+ T^Ci^^+l) + T^d^+l^k+l)] 

Hfd,J,k) - J [T^C^J^) ♦ T^xd,J+l,k) 

+ T^d^j^k+i) + T^d^j+i^k+i)] (A7-1) 

The components on the other two surfaces are now found by the 
usual permutation. 

For family II only the indices differ.    The first equation suffices 
to establish the sequence 

H^d^A). i [T^J-I^-D ♦ T^d,j,k.i) 

♦ T^(l,J-l,k) + T^(i,J,k)] (A7-2) 

etc. 
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.wm       ■ ,  ... ■ 

The local stresses may be eliminated from (A7-1) and (A7-2) by- 

use of (A6-1) and (A6-2). The process Is lengthy but not difficult. 

A single typical result is the equation 

Hf (i,J,k) - S {Aj7jt(i,J,k) * AJ^IJ+I,*) « Aj^d^^l) 

+ A^d^+l^+l) - Aj^i-l^k) - ^(i-l^+lA) 

- Aj^d-l^k+l) - /^(i-lj+l^+l)} 
* 

" | {^(^JA) + DI(i,J+l,k) + DI(i,J,k+l) 

+ DI(i,^l,k+l)} (A7-3) 

The extension of these results to all eighteen components follows 

in the usual way. 
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A,8 RESUI/TANT PRIMARY STRESSES 

The sum of the S, T and H stresses as given by Eq. (15-22) Is 

termed the resultant primary stress K« These R stresses are of the 

form 

R^U^hlO - ffilrf*)  + T^l^k) ♦ H^d,.)^) (A8-1) 

Eq. (AB-I) represents the x ccnponent on the Ix face. Components In 

the y and z directions are Indicated by corresponding subscripts, and 

the other surfaces are Indicated by corresponding superscripts. There 

are eighteen R stresses In all. Note, however, that eight of the 

eighteen S components in Eq. (A8-1) are zeros. 
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A.9 NET FRIMAia IORCES 

According to Eq. (15-24) the net primary forces are found by sum- 

mation of the primary atreaeea overthe six bounding suirfacea of the 

volume element. The results are of the following form. 

For volume elements vlth centrolds of family I, bounded by sur- 

faces of family II - 

iJ(i,J,k) - (|) { [n^dJ^) - R^d-i,;),*)] 

♦ jV^Cl,.),*) - R^(l,J-l,k)] 

♦ [RjIZ(l,J,k) - R^dJA-D] } (A9-1) 

Similarly, for volume elements vlth centroids of family II, 

bounded by surfaces of family I 

ifC*,«*) - (J) ( [R^d+l^^k) - Rf(i„J,k)] 

♦ [i^d^+i^) - R^d^jA)] 

♦ [i£Zd,J,k+l) - ^Zd>J^)] } (A9-2) 

Of course the corresponding y and z components are found by chang- 

ing all subscripts accordingly in Eqs. (A9-1) and (A9-2). There are 

three force components in each family, or six In all. 
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A. 10 MEAN PRIMARY PORCES 

Note from Bq. (16-3) that In order to determine the divergence of 

the net primary forces, It Is necessary to evaluate quantities of the 

form 

u- dS (A10-1) 

is 

We call these quantities the mean primary forces. Ely the usual Inter- 

polation rules of Method C, the mean value over the surface bS  Is 

simply taken as the mean of the four comer values« 

Thus for surfaces of family I, we obtain the form 

Of ■ J [^U^lO + l£(l,J+l,k) + r[(l,J,k+l) + pJ(l,J+l,k+l)] (A10-2) 

and similarly for the y and z components. 

Thus for surfaces of family II 

♦ F^d,.)-!^-!)] 
(A10-3) 

and similarly for the y and z components. 
Ix  Iv  Iz 

The total number of components Is six, namely, G , G , 0 , 
TTx   TTv   IT« /    * 

0     , C-*, 0     .    Note that the subscript and superscript letters 

arc always In agreement. 
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A.ll PRESSURE CCMPATIBILITjr EQUATION 

It Is convenient for this section to adopt a simple letter symbol 

for the divergence quantity V»P. We arbitrarily choose the letter Q 

for this purpose. 

Tran Eq. (l6-3) we obtain 

Q^l^k) - (|) {[o^d^,!.) - O^d-l^k)] 

♦ fo^d^A) - o^d^-iA)] 
i_ jr jr J 

♦ [(J^d^k) - 0^(l,J,k-l)] ) (All-l) 

4*lM*i - (|) {[G?d+i,j,K) - o^d,.),*)] 

+ [y(i«l«M) - o^d^ioj 

+ [o^(l,J,k+i) - 0jZ(l,J,k)] } (All-2) 

Substituting these results Into Eq.  (16-7) then fixes the pressure- 

compatibility equation, namely 

vVd^k) - Q^l^^k) + Cp £ y~2f D^l^k) (All-3) 

^"(l, J^) - QII(1, J,k) ♦ OU I /If DI3C(1, J,k) (All-4) 
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These results fix the required values of v qp throughout most of 

the grid.    Near the top and bottom of the block, however, special con- 

siderations apply because of the sliding boundary conditions.    In the 

first place the pressure-compatibility equations (All-3) and (All-4) 

are not even needed for the four rows J ■ 1> J ■ 2, J ■ N+3, J ■ N+U. 

The reason Is that these are extra rows outside the block.    The velo- 

cities In these rows are not computed by the usual method, but are 

found Indirectly by taking advantage of the sliding blockwlse periodi- 

city of the phenomena.    Hence values of v p are needed only over the 

range 3 * J * (N+2).    It turns out that Eq.  (All-3) la valid over this 

rarwe except for the single vtlue j   «3.    Similarly, Eq.  (All-4)  Is 

val.    over the required range, except for the single value J     ■ N+2. 

Modified equations are required for these two particular rows.    The 

necessary special equations are derived In Appendix B. 

Tracing back the Q terms In Eqs.  (All-3) and (All-4) shows that 

they are definite and known functions of the turbulent-velocity dis- 

tributions.    Hence they represent a constraint on v cp such as to make 

the resulting distribution of the pressure function op compatible with 

the already existing velocity perturbations,    nie last term on the 

right of (All-3) and (All-4) represents a correction for error diverg- 

ence.    Hie positive dlmenslonless constant C    should be large enough 

to provide good divergence correction, but not so high as to cause 

computational Instability; Its optimum value Is best found by numerical 

experimentation on the computer Itself. 
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A. 12    SOLUTION FOR PRESSURE B3f ITERATION 

By application of the differencing formula (13-10) we can express 

ö«p/äx ■ cp   at any grid point in terms of the values of cp at adjacent 

grid points. 
2   2 

A repetition of this procedure gives 3 c?/dx ■ äBP-Väx «op  at 

any point in terms of adjacent grid point values of cp. By cyclic per- 

mutation of subscripts, corresponding results can be found for 

8 Cp/3y ■ 3cp/3y ■ cp  and for ö cp/äz ■ &p /äz « cp . Adding these 
jr    yy ^ _?  zz 

three results finally gives an expression for v cp = (cp  + «p  + Op ) 

at any grid point in terms of the values of cp at nearby grid points. 

The procedure, while lengthy, la not difficult. 

It is convenient to multiply through by the factor 4 (L/N) in 

order to simplify the expression.  In this way we obtain the result 

P _ 

I (|) TV^JA) - «fa^tk) + I joV-i^k) + CPVJJ-I,*) 

+ cp^l^k-l) + cpI(l+l,J,k) + ^(I^+IA) 

+ cp^l^k+l)] - J [^(i-l^-l^-l) + cpI(i-l,J-l,k+l) 

+ cp^i-l^+l^-l) + cpI(i-l,J+l,k+l) + cpI(i+l,J-l,k-l) 

+ ^(i+l^-l^k+l, + <pI(i+l,J+l,k-l) + cpI(i+l,J+l,k+l)] 

" 12 [^(l-l^J-l^) + cp^i-l^^-l) + cpI(i-.l,J,k+l) 

^ cpI(i-l,j+i,k) + crVjj-lA-l) + «■'•(i^-l^+l) 

+ opI(i,J+l,k-l) + ^(i^+l^+l) + (pI(i+l,J-l,k) 

+ cpV+l^k-l) + cpI(i+l,J,k+l) + opI(i+l,J+l,k)] ujfrD 
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Exactly analogous results apply to the other family;  It is neces- 

sary only to change all superscripts fron I to II.    Hence a single 

explanation will serve to cover both cases. 

Suppose we have availeble a set of trial values of the function m 

at all grid points.    If this is in fact the correct function, then it 

will satisfy Eq.  (A12-1) at all grid points; the left side of this 

equation is known, of course, from the calculations of the previous 

section.    However,  if the trial solution is not correct, the terms on 

the right side of (A12-1) will not in general equal the known values 

required on the left. 

We must therefore devise a method for adjusting the cp's on the 

right so that the required value on the left can always be obtained 

at any specified point (i,J,k).    This procedure is then applied in 

succession to each point in the field,  for both families of points. 

The entire field is swept in this way again and again until, at length, 

the values of the required corrections become everywhere less than 

some very smallprc-assigned error.    This then fixes the required pres- 

sure distribution. 

An essential constraint upon the solution is that the  average 

pressure for each family of points is zero.    This follows from the 

very definition of the turbulent pressure perturbation as the net 

deviation from the prevailing mean pressure.    Consequently either the 

procedure for adjusting the cp's should leave the mean value unchanged, 

or it must be followed eventually by another correction which restores 

the zero mean.    This restoration is easily accomplished by addition of 

the appropriate constant to the values of cp at all points in the field. 

An additive constant leaves all differences unaffected. 

The simplest method of adjustment is to correct the value of 

Cp (i,J,k), which is the first term on the right side of Eq.  (A12-1), 

so as to bring this equation into balance.    This is the method that 

has been adopted in TORBOCODE, MARK V.    This procedure pulls the solu- 

tion away from zero mean,  but this is easily corrected later in the 

menner indicated above. 
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it is not difficult to modify the adjustment procedure so that 

it does not disturb the mean value in the first place. For this 

purpose it is necessary only to adjust not only ro (i^J^k), but also 

the next group of six points as well. These six points are all 

adjusted by equal amounts. This additional degree of freedom may be 

used to keep the mean value unchanged while Eq. (A12-1) is brought 

into balance. 

More elaborate relaxation procedures are also possible. Note 

that the 27 terms en the right side consist of the terra cp (i^k) 

itself, plus three other groups of six, eight and twelve members> 

respectively. If a separate correction quantity is assigned to each 

of these four categories, this provides four degrees of freedom. One 

of these is used to satisfy Eq. (A12-1), another to maintain zero mean. 

The remaining two may be utilized to minimize the square of the error. 

This leads to perfectly definite relaxation formulas. It is somewhat 

dubious, however, whether these more elaborate procedures have any real 

computational advantages. Hence they have not been utilized up to now. 

However, the matter may be worthy of further study. 

Each time the solution is advanced by one time increment, the 

above relaxation procedure must be repeated. The previously existing 

pressure distribution is taken as the first approximation for the new 

pressure. If time increments are small, the pressure distribution does 

not change much during any one time step, and the pressure solution 

converges in comparatively f*w iterations. 

Attention is invited to the fact that the pressures op and cp 

appear to be virtually independent of each other. This arises from the 

manner of differencing in method C. Such apparent separation cannot 

occur in differencing methods B or A. This circumstance might also 

make the pressure Iteration procedure in method C somewhat more suscep- 

tible to instability difficulties than would be tl»e case with either of 

the other methods. 
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A.13 NET PRESSURE FORCES 

Once the pressure distribution ep has been found, the net pressure 

forces are easily determined. The relevant difference equations for 

the tvo families follow the patterns below, namely 

^(i,JA) - + Jj; jcp^i^^) + dFdj-lA) + «Pu^k-D 

+ cp11 (i,J-l,k-l) - cp11^-!,.)^) - ©"(i-l^-ljk) 

©"(i-l^^-l) - ^(i-l^-l^k-l)} (A13-1) 

cp^I(l,J>k) - ^ ^(i+lj+l^k+l) + cDI(l+l,J,k+l) + ^(l*l,J*l,k) 

+ cpI(i+l>J,k) - «FdiJ+lfk+l) - CDI(i,J,k+l)- epI(i,j+l,k) 

- cpI(i,J,k))' (A13-2) 

The other two components in each family are found by the usual 

cyclic permutations of these equations. 
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A.Ik    VELOCITY TIME DERIVATIVES 

The local velocity time d-rlvatlves are now of the form 

uJ(l,J,k) - ^(l,J,k) - (£(l,.J,k) (AlU-1) 

Cyclic permutation gives the corresponding results for v. and v.. 

The expressions for family II are exactly similar. 
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A.15 NEW VELOCITIES 

The new velocities at the end of a time increment T are of the 

form 

uJ(i,J,k) = u^i^^k) + TuJ(i,J,k) (A15-1) 

The extension to the other components and to the other family is the 

same as in the previous section. 

This step completes the calculation of the new velocity distribu- 

tions at the end of the time interval. The whole process is then 

repeated for the next time interval. 
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APPENDIX B 

DIVERGENCE CORRECTION AT SLIDING BOUNDARIES 

B.l SLIDING INTERPOLATION 

It has already been pointed out in Appendix A that In the y direc- 

tion calculation of velocitieB, forces, pressures, and so on proceeds 

in the normal manner only over the range J ■ 3» ^ 5*   N+2. Values 

outside this range are obtained by an interpolation process which takes 

into account the sliding boundary conditions. Thus values at J = 1 and 

J ■ 2 are obtained by this sliding interpolation method from the known 

values at J » N+l and J ■ N+2, respectively. Similarly, the values at 

J ■ N+3 and J » N+U are obtained by sliding interpolation from the 

known values at J « 3 and J ■ U, respectively. It will be shown that 

this circumstance affects the divergences and the required divergence 

corrections in rows J » 3 and J  « N+2. 

The interpolation procedure is based on the fact that the entire 

solution is blockwise periodic. This means, for example, that at any 

time t 

uV^k) « u1 (i+Nt,N+2,k) 

uII(i,N+3,k) - uIT(i-Nt,3,k) 

(Bl-1) 

The complication arises, however, that the quantities (i+Nt) and (i-Nt) 

are usually not integers, and therefore usually represent positions 

which lie somewhere between grid points. Nevertheless, values at such 

intermediate locations can be estimated by linear interpolation 
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between the known values at the two adjacent grid points on either side 

of the desired location. 

Any real numbers can always be divided into two parts, one of 

which is an integer, the other a fraction of magnitude smaller than 

unity. It is convenient to introduce the notation 

1(3) ■ integral part of s 

F(s) = fractional part of s 

from which it is obvious that for any s 

(Bl-2) 

s - I(s)     +    F(s) (Bl-3) 

It follows from this that the required intermediate point falls 

between two adjac^wt grid points according to the relations 

or 

I(i  + Nt)   < (i 1- Nt)  <   l(i  + Nt)  + 1 

I(i  - Nt)  ^ (i  - Nt)  <   l(i  - Nt)  + 1 
(Bl-M 

The various integers in (Bl-4) may or may not fall within the 

range from 1 thru N, Inclusive. However, because of the periodicity 

of the solution we may shift each integer by any exact integral multiple 

of N such that the shifted value does lie within the above range. To 

express this idea we introduce a shift operator S ( ) such that 

1 < S(8) - s + KN < N (Bl-5) 

where K is an integer whose value is uniquely fixed by the above 

inequalities. 

With this notation we may now define the following quantities: 
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F(t) 

S [II 

S Cl(i+!ft') + l] 

iL - s [i(i+!rt')] 

LP 

ly - s CiCi-irt')] 

iyp-  S  [iCl-Rt')  +  1] 

t' ■ truncated time 

Shifted Indices (integers) 
for Interpolation at 
upper and lower (Bl-6) 
boundaries 

WU " WLP ' ^') 

VL ' WUP 
1 - ?(l?t') 

Weighting factors 

Consequently, the relations Implied by (Bl-l) can now be written 

explicitly in the form 

uI(l,2,k) - wLu
I(lL^N+2,k) + wLpu

I(lLp,N+2,k) 

u^Ci^N+S ,k) - wuu
II(iu,3,k) + ^i

n(l0p,3#k) (Bl-7) 

Note that these interpolation formulas are based on the values of 

the i'a and w's as evaluated at the beginning of the time Interval. The 

subsequent discussion will show the usefulness also of interpolation 

formulas based on i's and w's evaluated at the end of the time step. 

Using subscript N to denote new values at the end of the time 

step T,  we write 

■ t + T New time 

t'    ■ Ffaj.)        Truncated new time 

1^- S ClCi+NtjJ)] 

W" S ClU+Ntjp+l] 

L- -  S  [l(i-Nt')] UN N' 

iUPN - S [Ki-Ntp ♦ 1] 

New shifted indices (Bl-8) 
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UN 

LN 

»i« - '^ V 
VUro " ^^ N) 

New weighting 
factors 

Of course, for the functions being Interpolated, like velocities, 

pressures, forces, and so on, only the Initial values are known at the 

particular stage of calculation here involved. Hence,for these quanti- 

ties, only the initial values are Involved, in any case. To distinguish 

the following Interpolated values from those of (Bl-7) we add the sub- 

script s. Then 

u*(l,2,k) = w^l^N^k) ♦ w^uV^N^k) 

u" (i,N+3,k) - wUNu
II(lUN,3,k) + "upX^PN'

3'10     (B1"9) 

In certain calculations it will be useful to evaluate the small 

differences between the values given by the two different interpolation 

formulas (Bl-7 and Bl-9)•    Hence we introduce the further definitions.. 

AuV^k) = u^(l,£,k)   - u^i^k) 
AuII(l,N+3,k)  = UgI(l,N+3,k)   - uII(i,N+3,k) 

(Bl-10) 

A similar notation is applied to Interpolated forces and pressure 

gradients. 
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B.2 DIVERGENCE CORRECTIONS 

The  divergence at the lower boundary J ■ 3 "»ay be written out in 
full as follows: 

D (1,3,10 

(fc {uIIU>3,k) ♦ u^i^k-l) - «"(l^S^) - uII(i-l,3,k-l) 

♦ yII( " ) + vII( "   ) + vII(  "  ) + vII(   "   ) 

+ wII( " ) - wII(  "   ) + wIT(  "  ) - wII( »} 

♦ ill)  i^1'2^) + •XX(l#a»k-l) - «"(l-l,«^) - uII(i-l,2,k-l) 

- v1^ ,, ) - •**(  "  ) - vII(  "  ) - vII(  "    ) 

+ wII( " ) - w11*  "  ) ♦ wII(  "  ) - wII(  " )} (B2-1) 

To facilitate subsequent operations^ we adopt the following abbrevi- 

ated notation to represent the above result, namely, 

DV^k) - (Jj) {u^i^k) ♦ —} ♦ ({L) u11^,^) ♦ —}      (B2-2) 

This equation represents the situation at scne arbitrary time t, 

regarded as the initial tine of the current time step. Using subscript 

N to denote new values at the end of the time step, we may write 

Dj(i,3,k) - fa)  (uj^i^k) ♦ —} ♦ fa) {£(1,9*)  ♦ —}      (B2-3) 
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—. 

We subtract these two equations and Impoee the condition that the 

new divergence shall be zero. Then upon rearrangement - 

Dj(l,3,k) - 0 - D^l^k) 

(J-L) { [^(l^^) - uII(l,2lk)] * - -} 
(B2-4) 

The velocity changes on the right side of (B2-4) are computed from 

the equation of motion. The  situation is regular at J ■ 3, therefore 

[uj^i^k) - u^i^A)] - T [Ff (l,3,k) - ^(1,3^)]    (B2-5) 

However, at j « 2, the Interpolation rule applies. In particular, 

the new velocities here are of the form 

uJV^k) 

'VIX  {uII(iu,;N+2,k) + T[r[I(lIi(,N+2,k)-cpJ
I(iI/|..N+2,k)l} 

♦WL™ {UII( WN+2^ + T [^UV'**2'^ 

' "x^W**2'10] } (B2-6) 

Upon regrouping of the terms on the right side of this equation, 

and employment of the definitions of (Bl-9)> this result may be re- 

written in the concise form 

"N "(1,2,10 - if (l,8,k) ♦ T jV^(i,2,k) - o2(l,2,k) 1        (B2-7) 
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Next ve subtract the original velocity to find the net velocity change. 

Using the notation of (Bl-10), ve obtain 

[«P(M*) - uII(l,2,k)j 

- Au^U^k) + T [pg(l,2,k) - |j^Uft»k) - *pg(l,2,k)] (B2-8) 

It Is Instructive to compare this result with (B2-5)- This show. 

the difference In the velocity change between a regular Interior point 

>'j, and a point >2 exterior to the block. 

Upon substitution of the expressions of type (B2-5) and (B2-9) 

Into (B2-4) and rearrangement, the basic divergence equation may be 

reduced to the following fonn. The various groups of terms are Identi- 

fied by number, to facilitate the subsequent discussion. 

(l) 
fe { [^d^k) ♦ —] +[i)f (l,2,k) ♦ —]} 

(2) 

_o T  (3)      «   f r TT W 1 - ^»I(l,3,k) - (JjO { [^(1,3^) ♦ -—J 
r_iT C5)     i^ii (6) ♦ |V£(l,2,k) ♦ -— ) } ♦ | DV^k) 

? fe K'dlk) } (B2-9) 

•nils result establlshee both the required value of v «p, term (3)> 

and the corresponding pressure solution. The required value of v cp 

Is fixed by the tenus on the right, which depend only on the existing 

velocity distribution. Terms (U) and (5) together represent the main 

effect. This Is exactly of the same form as found in the interior 

regions of the block, except that the term (5) Involves the modified 
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interpolation formulas as signified by the s subscript.    Term (6) is 

the usual divergence-correction term.    The new term is (?) which repre- 

sents an additional correction associated purely with the sliding- 

boundary condition. 

On the left side, the term (l)  is found to represent the usual 

solution for v cp which may be expressed directly in terms of the pres- 

sures themselves.    Term (2)  is a small correction associated with the 

sliding boundary condition.    This correction must be included  in the 

iteration solution for the pressures,  in order to obtain a divergence 

free result. 

In expanded form, the two corrections associated with the sliding 

boundary condition are found to be as follows; 

S (fe)  {^(i^K)  + --} 

'  T ffc if*nii,**) + Au^l^k-l)   -AuII(i-l,2,k)-AuII(i-l,2,k-l) 

-Av11 (    "    > - Av1^ 

HAw11 (     "    )  .Awn( 

)   - Av1^ )-Av    ( 

)   -Aw1^      "      )^w II. )}(B2-10) 

(2) 
+ ,..-- (&) {A^U^K) ♦ —} - | (f)2{ |A^(l,3^) 

' h [^PI(i-1>3,k-l)-^cpI(i-l,3>k+l)-^pI(l+l,3,k-l) 

HAflp^l+l^k+l] } (B2-11) 

The corresponding results for the upper boundary may now be found 

by a systematic permutation of superscripts and indices. Hence we 

obtain 
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(1) 

■ IE {[<Px(i'N+2'k)+—]+ K(i»»4s#k)+ —]} 
(2) (3) 

- (JL)  {A<^(l,N+3,ii)  + —} - V2(pII(i,N+2,k) 
W (5) 

- - (JL) { [F^(i,N+2,k) ♦ — ] 4 [l^(l,»*3»k) ♦ - 

(6) (7) 
]} 

(Be-i2) 

where the required correction terms are 

(7) 

i(^-) {AUI(1,»+3^)^(1^+3,k+l)-AuI(l+l,N+3,k)-AuI(l+l,N+3,k+l) 

-AvI(       ,,      )-AvI( )^vI( )^vI( 

and 

+ AvI(       "      )^wI(       " )-AwI( 

(2) 

)W( " )}(Ba-13) 

"O ^x(i'N+3'k) + —} " + 2 ^   { + |WX(l»»^,k) ♦ — 

+ j^ |AcDII(l+l,N+2,k)+ ^oII(l,N+2,k+l)  + A(pII(i-l,N+2,k) 

+ AtpII(l-.\,N+2,k-l)l - |ij- |AcpII(l+l,N+2,k+l)  + AcDII(l+l>N+2,k-l) 

+ A(pII(i-l,N+2,k+l)  + A(pII(l-l,N+2,k-l)l \ (B2-1U) 

This completes the required divergence corrections at the sliding 

boundaries. 
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APPENDIX C 

EVALUATION OF KINETIC ENERGY, REYNOLDS STRESSES,  VDRTICITY AND SCALE 
OF lURBUIilNCE 

C.l    REmOIJ)S STRESSES AND ENERGY 

In differencing method C, the distributions over the volume element 

of typical velocity components,  say u and v, are assumed to be of the 

form below, for control volumes of either family. 

u = A0 + Aie + A2T1 + A3 C   + A^TlC + A5C? + A6?Tl + A^TTC 

+ A8(i-?2)(i-n2)(i-r.2) (Cl-1) 

B0 + B1? + B2T1 + B3C + B^TlC + B5C? ♦ B^Tl + B^nC 

♦ B6(i-?
2)(i-n2)(i.c2) 

The typical mean quadratic product uv over the volume element is then 

found by evaluation of the integral 

+1 +1 +1 

-1 -1 -1 
uv d?dTTJC (Cl-2) 

Since components u and v each have nine terms per Eq. (Cl-1), the 

integral in (Cl-2) has 61 terms in all. Fortunately, most of these 

vanish in the integration. The following basic types of integrals are 

encountered in the above calculation, namely 
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+1 

f 
-1 
[ ?nci? - 0 

n+1 

for n odd 

for n even 

J a-?2) «■ \ 
-1 

+1 

[ (1-f2) 9«; = 0 
-1 

(C1-3) 

and similarly for the variables 11 and C« 

Consequently, the required mean product reduces finally to the 

form 

^ = { AOB0 + | (A1B1 + A2B2+ A3B3) + I (A^ + A5B5 + A6B6) 

♦ Ip  iKft)  ♦ ^ (A0B8 ♦ AQBQ)   ♦ ^ AQBQ } (ci-M 

The first term on the right represents the product of the mean 

centroidal values.    The remaining terms  reflect the fact that the mean 

product over the volume differs appreciably from the simple  product of 

the two centroidal mean values. 

The overall mean product is then found by averaging of the above 

quantity over all the volume elements that constitute the block.    More- 

over,  the averaging must be carried out over the volume elements of 

both families.    Hence the total volume is covered  twice.    This  is a 

peculiarity of differencing method C. 
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By means of the usual method of permutation, the foregoing result 

may be extended to include all six of the possible quadratic mean pro- 

ducts, namely, uu, w, ww, vw, wu and uv. These represent the six 

Reynolds stresses. Furthermore, the sum of the first three of the 

above quantities represents twice the mean kinetic energy 2E. In fact 
this summation yields the result 

2* • {4+ Bo+ co ]+ j Oi2 + 4+ A32) + (Bi2 + 4+ ^ 
p   p   p ■ ♦ (cj ♦ c; * cp 

+ I IK + 4 + ty + K + 4 + B6) + (C4 + c5 + c6) . 

+ §7 \'4 + 4 + c7 I+ Ü 'Ve+ ^ + coc8 I 

+ 3!75 ,Aö + Be+ CI 
(C1-5) 
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C.2     VDRTICm 

The three vorticity corrronents at an arbitrary point within a 

given control volume ere expresseü  by the relations 

nj 

/ 2N \ /- Äv      ^u \ 

(C2-1) 

These expressions would be exact if the derivatives appearing in 

them were known exactly.    Unfortunately, only the approximate informa- 

tion represented by equations of the form (Cl-l)   is available.    Direct 

analytical differentiation of (Cl-l) degrades the accuracy somewhat, 

although the subsequent volume integration explained  below tends to 

offset this error.    The results obtained are of the form 

(§N)u)x=  (C
2-

B3)  H   (C6-V?    " V-V 
- ^m + C7»C  - 2C8(l-^)Ti(l.r2) 

+ 2B8  (l-f2)(l-T>£)f, (C2-2) 

The components tu    and iw    follow from this by  cyclic permutation. 

The mean square vorticity finally required  is defined by the 

integral 
+1 +1 +1 

"2 
ÖB 

-i -i -i 

2        2 2 1 
uu    + tu    + a'     I d^dTÖC x        y        z   j (C2-3) 
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Fortunately most of the Integrals  Involved in the evaluation of {C2-3) 

vanish identically.    The integration,  although quite lengthy,  is not 

difficult.    The result finally obtained  is 

(lij)2 ■?. r^-c/ ♦ (VA/ * (VB3)
2

1 t i u^f 

*   (B5-^)£ *  (C6-35)2 * A= . A2*  B^ B^ ♦ Of * z\ 1 

VA'^^WM*^^ 
16 

+ 27    (A6B8 + Ve) + (Blc6 + CUB8) + (C5A8 + A5C8) I     (c?J+) 

This result must, of course,  be averaged over all the volume 

elements of both families, in the same manner as for the kinetic 

energy. 
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C.3    SURFACE CONSTANTS 

Consider a typical control volume with a centroidal point of 

family I.    The eight corners and the centroid may be designated as 

follows: 

Up - uII(i,J,k) 

uA - uII(i-l,J,k) 

Ug - uII(i>j-l,k) 

uc - u^i^k-l) 

up, - uII(l-l,J-l,k-l) 

uAi - u^i^-l^-l) 

ly - uII(i-l,J,k-l) 

uc, -  U^i-ljj-ljk) 

(C3-1) 

u0 = u    (i,J,k) 

Similarly, consider a typical control volume with a centroidal 

point of family II» The nine corresponding points may be designated 

as follows 

Up - u^l+l^+l^k+l) 

uA - uV^+l^k+l) 

Ug - uV+l^k+l) 

uc . u^i+l^+l^k) 

Up' ■ u (i,J,k) 

uA/ - u
I(l+l,J,k) 

vy - ^(l^J+l^k) 

uc/ - uVfJ^+l) 

.II u0 - tt" (i,J,k) 

(C3-2) 

Now in either of the above cases we may apply Eq. (Cl-l) to all nine 

characteristic points of the control volume, thus obtaining nine simul- 

taneous equations. These are easily solved for the nine surface 

constants AQ through An, with the following results. 
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Ao • H { + UP + UA + U3 + uc + V + V + V + "p' } 

Ai x B { + UP ■ UA + ^ + uc ■ W + V UP' } 

A2 = S { + UP + UA ■ "B + UC ■ "C' + "B'  - "A' - UP' } 

A3 ' H { + UP + UA + "B ■ uc + V - V ■ V - up. } 

A4 = H { + UP + UA  - UB ■ UC ■ UC'  - "B' + "A' + UP' } 

A5 = I { ^ up - uA + Ug - uc - uc/ + v^, - uA/ + V } 

A6 = H { + UP ■ UA  " UB + UC + "C'  " "B'  " UA' + V } 

A7 ^ H + UP " UA  ' ^ " UC + V + V + UA/ "  V } 

A8 " U0  " A0 

Similarly; the B's are computed from the v's and the C's from the w's. 

Thereupon the mean energy is calculated from (Cl-5) and the mean square 

vorticity from (C2-4). 
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C.k    3CAIE OF TURBUI£NCE 

Consider a hypothetical velocity perturbation of the form 

u « P sin ¥ sln-p 

sin -j— sin -7- 

v - R sin -r- sin -?1- 

vhere P, Q, R and t are arbitrary constants. 

The mean kinetic energy E is then given by 

(CU-I) 

III 
21 " 3    J I    Cu2+v2^2] dxdydz . Jd^^+R2) 

*     0    0    0 

(Ä-2) 

The vorticity is defined by 

x     v |y     dz y (C4-3) 

and similarly for tu    and uu   by cyclic pennutation. y    z 
Upon differentiating, squaring and integrating, we obtain for 

the mean square vorticity 

—    ill 
2  1 

" ' ? J    J ^l  + ^y + ^ 1  ta'»di " ^ |(PV+R2)  (CU-M 
6 o d 

The scale of turbulence ^ is defined by the equation 

V   U) 

(CU-5) 
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wbere C Is a constant whose value ve wish to establish.    We choose 
this constant In such a way that the hypothetical perturbation of 

(Ck-l) shall be deemed to have a scale of turbulence ^ which Is equal 

to Its   wavelength I.    The logic of this choice id evident from Inspec- 

tion of (Ck-1).    Hence we substitute from (0U-2) and (cU-4) into (oU-5) 

and set \ - ■?. 

The result obtained thereby is 

*     1/   "2 
ick-6) 

Note that the arbitrary aaplltude parameters P, Q,  R cancel from this 

result, so that the constant of proportionality given above Is indepen- 

dent of these quantities. 

Equation (0^-6)  Is now taken as the definition of the scale of 

turbulence \, and Is regarded as applicable to all types of perturba- 

tions.    It may be interpreted as a kind of root mean square wavelength. 
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APPENDIX D 

FOURIER ANALYSIS OF TURBUI£NCE IN A UNIFORM SHEAR FLOW 

D.l    COORDINATE SYSTEMS 

In this appendix, all quantities are non-dimensional in the sense 

explained elsewhere in this report. 

Consider an arbitrary point which moves along with the mean flow. 

Let x, y,  z, t represent the ordinary tl ae-coordinates of the point in 

a rigid Cartesian axis system; we term these the Eulerian coordinates. 

Let %,  T), C>  T represent the corresponding Lagrangian coordinates of 

the point.    The Lagrangian coordinates are defined in terms of the 

Eulerian coordinates as follows: 

o 

0 

0 

(Dl-1) 

T  -  t 

Thus at time t = 0, both sets of coordinates coincide. 

Note that for a point moving with the mean flow, the Lagrangian 

space coordinates t, r\, C are constants, whereas the Eulerian space 

coordinates x, y,  z are,  in general,  functions of time.    Conversely, 

for a point fixed in space and not moving with the mean flow,  coordin- 

ates x, y,  z are constants, whereas ?, T), C are functions of time. 

15U 



In the present case of a uniform parallel shear flow whose 

(dlmensionless)  shear rate 0 equals unity,  we see that for a point 

moving with the mean flow,  the relations simplify to 

x«5+TTt   -?+yt      (?» constant) 

y = T\ - constant 

z m fm constant 

t - T 

(Dl-2) 

Therefore it euffices for this case tL take x, y, z, t, as the Eulerian 

coordinates, and %    v,  z, t as the Lagrangian coordinates. 

Consider a seo of simple cubic grid points in the fixed or Eulerian 

system of reference.    Let space and time points be defined as follows: 

hu-h N  V1       2; 

^ " M  (m " 2) 

L 
2 

i = 1,2,3, N 

J « 1,2,3, N 

k - 1,2,3, N 

m - 1,2,3, M 

(Dl-3) 

Let us establish a corresponding set of Lagrangian grid points, 

which move with the mean flow.    At time t « 0,  however, let the moving 

Lagrangian grid coincide with the fixed Eulerian grid.    Let indices a, 

J, k, m represent space time points in the moving system.    In particular, 

for such a moving grid point, we have 

x (a,j,k,m) - * (a - i) * * (j - J - i) 2 (« - i) 
N N 2' M 

(Dl-M 

where the indices a, J, k, m vary over the ranges previously indicated. 

The y, z and t coordinates remain as given in (Dl-3). 
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D.2 FOURIER SLUES  APPROXIMATION POH VELOCITY 
PERTURBATIONS 

It has been shown elsewhere in this report that It is permissible 

for purposes of approximation to treat turbulence as if it vere 

periodic in space, provided that the wavelength is made sufficiently 

large and the cell size sufficiently small. Corresponding considera- 

tions apply also to the time dimension. In principle, therefore, the 

space time structure of turbulence is representable by a four-dimen- 

sional Fourier series with a very large number of terms. The adequacy 

of such a representation in practice depends on the number of terms 

which it is feasible to retain, and also on the accuracy and precision 

with which the Fourier coefficients can be computed and expressed. 

We introduce the auxiliary variable 

6 - ^ (p? + qy * rz) + ^ (st) (D2-1) 

where p) 
q) - I, 2, 3, —- N 
r) 

s - 1, 2, 3, -— M 

Now the u velocity component is expressible in the form of the 

Fourier series 

N N        N        M 

riUiMJ -W W Ui,.,.r.,)iM 
q«l      r»l 6=1 

L rv / \  cos 6 \ 
^D(p'q'r'8)ä77*)' 

^      q^        (D2.2) 
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In this equation the velocity component u is normalized with 

respect to the root mean square turbulent velocity as represented by 

V 2E, where E is the mean turbulent kinetic energy. The variables sin 0 and 

cos 0 are also normalized by their respective root mean square values, 

both of which equal I//?« Such normalizing is optional, but does confer 

upon the Fourier coefficients, the A's and D's, certain advantageoun 

properties, as will be seen. The matrices A(p,q,r,s) and D(p,q,r,s) 

are four-dimensional arrays, each array consisting of N^I constants. 

Specifically at the moving Lagrangian grid points themselves, 

Eqs. (D2-1) and (D2-2) reduce to the forms 

e -1» fr« - i) + ,0 - ^w(k -1)] .£[.(.. |)] 
N    N   N   M 

^ -ZEE EK—' U 
W*      q=l r=l s=l 

/     v cos 9 "1 D(p,q,r,s) —r) (D2-3) 

Corresponding expressions for the other two velocity components 

can be written by permuting the foregoing equations according to the 

pattern 

w ^   ■ v    C^ 1 (D2-4) 

Certain features of the above results are noteworthy. First of 

all, it may be seen that once the Fourier coefficients (as well as the 

normalizing mean energy E) are known, the turbulent velocities are 

fully defined. The Fourier coefficients are the six arrays of constant? 

namely, the A's, B's, C's, D's, E's and F's. The total number of Fourier 

coefficients Is therefore 6rrM, or Just twice the total number of 
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velocity componcnte In the conplete space time grid block. Theoretically, 

these coefficients define the turbulent motion to Just that degree of 

resolution permitted by the constants N and M which fix the fineness of 

the coordinate mesh. The adequacy and resolution of this mathematical 

model theoretically Improve as the constants N and M are increased. 

However, as the number of Fourier coefficients Increases, the number of 

significant figures required for each constant also Increases, in order 

to prevent difficulties arising from round-off errors. 

Of course, the velocity components defined by Eqs. (D2-2) or (D2-3) 

are referred to the moving Lograngian coordinate system. However, if a 

transformation to fixed Bulerian coordinates is required, this is easily 

found by uae rfEqs. (Dl-2). The reason for Introducing Lagrangian 

coordinates in the first place is that the sliding boundary conditions 

along the top and bottom of the rigid Eulerlan block are thereby satis- 

fied. 

It should be stressed that the above Fourier i*presentation is 

complete in the sense that it duplicates the actual turbulence to 

within the allotted degree of resolution. Hence any or all statistical 

or phenomenological quantities that can be calculated from a finite- 

difference approximation of the velocity history, can also be calcu- 

lated directly from the Fourier coefficients themselves. 

Inasmuch as the Fourier coefficients depend only on the wave 

numbers ^, ^, =- and = but not on the space variables, ?, y, z, the 

turbulence is homogeneous. Also, since the Fourier coefficients are 

Independent of the time variable t, the turbulence is stationary. 

An Important advantage of the Fourier representation, as compared 

with the direct velocity components themselves, is that it more clearly 

reveals the structure of the turbulence. The direct velocity components 

in physical space seem so chaotic as almost to defy any efforts to 

analyze or order them. On the other hand, the Fourier spectral coef- 

ficic its can be expected to vary in some smooth and orderly fashion 

within the wave number domain. Hence there can be some hope of charting 
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this spectral variation, and perhaps of expressing it graphically or 

analytically in some greatly condensed and simplified form. If this can 

be accomplished it will mean that the problem of turbulence in a uniform 

shear flow is then essentially solved. However, since the wave number 

domain is four-dimensional, to sunmarize conditions in this realm in a 

way which is both simple and adequate may or may not be possible. De- 

tailed numerical data is required before this question can be settled. 

Attention is invited to the fact that the Fourier solution contains 

equal numbers of sine and cosine terms. Prom this fact, it follows that 

the overall turbulence is resolvable into components at each point of 

wave number space which are in cert'.in sense out of phase or orthogonal 

to each other. This is importanw /or the adequate description of turbu- 

lence. Conventional experimental methods of obtaining spectral Informa- 

tion about turbulence usually fail to disclose these phase relationships, 

and are therefore Incomplete in a very significant respect,  (in fact for 

a complete description, information on phase relationships Is Just as 

essential as information about amplitudes; in quantitative terms we may 

assert that exactly half the needed Information concerns amplitude, the 

other half concerns phase.) 

In principle, the equation of continuity and the three equations of 

motion could be written directly in terms of the Fourier coefficients 

themselves rather than In the more usual way, in terms of velocity compon- 

ents. These equations could then be solved for the unknown Fourier coef- 

ficients. This method, however, seems to Involve extreme analytical com- 

plexities and numerical difficulties, and has been discarded as being too 

unpromising. On the other hand, a feasible method of solution has been 

developed which establishes the velocities directly, without any reference 

to Fourier coefficients. Thus far in this discussion we have considered 

how unknown velocities may be expressed in terms of known Fourier coeffici- 

ents.  In the present circumstances, however, the velocities are the knowns 

and the Fourier coefficients the unknowns. Hence we face the problem of 

inverting the previous solution. Fortunately, it is characteristic of 

Fourier methods that the fundamental equations can be readily Inverted. 
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D.3    SOLUTION FOR THE TOURIER COEFFICIENTS 

For the purpose of Inverting the basic equation  (D2-2), we 

introduce the following notation 

9 = f2 (p^* qy ^ rz) + |^ (at) 

e'-f (P'? ♦ q'y ♦r'z) + f (s't) 

T        L        L        L 
f        f sin 9    sin 9/ d^ dy dz dt 

ss=tio z' • yio tto ^5)^7757" L3T 

(D3-1) T L L        L 

I    cos 9 cos  9/    dC dy dz dt 
"'tlo Jo yioU  n775)TO757      L3T 

T L L   L 

T    f r f   f  sin   :08 9^ dg dy dz dt 
8C =Jo L L    iL    ^^ ^^   L3T t=0 z«0 y-0    5"0 ^ A 

It can be verified by direct integration that the following ortho- 

gonality relations are valid, namely, 

(«) 

I  = +1 provided 
So 

O otherwise 

P - P 
q' - q 

r ■ r 

s  = s 
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(b) 
/      / 

p  = p 

I      = + 1    provided  ' cc 

q    =  q 
(D3-2) 

= 0 otherwise 

(c)    1=0    for all values of the indices. sc   

We now multiply Eq.   (D2-2)  through by Siui   d^ dy dz dt 

(1//2) L3T 

and integrate over the limits indicated in (D3-1). Upon invoking the 

orthogonality relations (D3-2), we obtain 

I 
t»0 z=0 y=0 5=0 

sin 9 d? dy dz dt  ./      v /__ _v 
7777-. -Hr  ■ A(p,q,r,6) (D3-3) 
(1//2)  L3T 

For purposes of approximate numerical evaluation, the integrals on the 

left may be replaced by corresponding finite summations. These are 

formed by multiplication of each principal grid value of u by the cell 

VOIUTV (-) and time interval (-). and then summation over the full ext 

of the space time block. Upon rearranging, we obtain the result 

N   N    N   M 
sin e 

(1//2) 
(D3-4) 

Proceeding in like fashion with the cosine term we obtain the corres- 

ponding result 

«..-.•> • .it L £ £ --^ ^> (D3-5) 
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The remaining Fourier coefficients may be found In like manner by permu- 

tation In accordance with (D2-4). 

The velocity components on the right side of Eqs.   (D3-^)    and 

(D3-5) are evaluated at the Lagranglan grid points.    These ma/ be 

obtained by Interpolation from the previously computed and known values 

at the Eulerlan grid points. 

A further Important result Is obtained from energy considerations. 

First,   both sides of Eq.   (D2-2) are squared and Integrated over the 

space time block.    In this process, the right side Is greatly simpli- 

fied through the application of the orthogonality relations.    The same 

procedure Is also applied to the other two components, and the three 

equations are then added together.    The following result is thereby 

obtained, namely, 
N        N        N        M 

2_J   2^   J^ 2^   ( LA2^P'q,r,S^ + ^(P'^1"'8)] 
]>1      q«l    r»l    s«l 

+ [B2(p,q,r,s)  + E2(p,q,r,s)   ] + [c2(p,q,r,s)  + ^taq^s)] } = 1  (D3-6) 

The physical interpretation is simple. Each quadratic term represents 

the fraction of the total kinetic energy of turbulence stored at the 

corresponding location in wave number space. The sura of all such 

energy fractions must equal unity. This simple form of result is the 

consequence of the normalizing procedures employed in the analysis. 

It is perhaps worth mentioning that a shift in the origin of the 

Lagranglan space time coordinates will affect all of the Fourier 

coefficients, but in a simple way. The total energy stored at each 

point in wave number space remains unchanged, but the separate sine 

and cosine components each undergo a simple phase shift. 

It might also be mentioned that all results obtained in this 

appendix by use of Fourier series have an equivalent representation in 

terms of truncated Fourier integrals. The difference is mainly one of 
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form, the series form beirv; somewhat more convenient for numerical 

methods. In the integral method, the Fourier coefficients are treated 

not as discrete constants but as continuous density functions in wave 

number space. Conversely, the discrete Fourier constants may be 

interpreted as pointwise approximations to functions which are, in 

fact, distributed continuously in wave number space. The distinction 

is largely academic. There is no difference in the final computational 

formulas which are obtained! 

This completes the essential features of the Fourier analysis. It 

is now possible to derive furtner interesting and useful results con- 

cerning quantities such as the Reynolds stresses, various correlation 

coefficients, and so on, but such additional topics lie beyond the 

scope of the present discussion. 

As a final cautionary note, we again observe that calculation of 

the Fourier coefficients from Eqs. (D3-4) and D3-5) is subject to 

inaccuracy from round-off errors, especially for high values of I^rM. 

It will be necessary to retain a sufficiently large number of signifi- 

cant figures in the calculations. It is a curious fact that if N^l 

is small, round-off error in the individual coefficients is small, 

but detailed resolution of the turbulence is poor. On the ether hand 

if NT< is high, resolution is good, but round-off error is high. This 

circumstance somewhat resembles the well known indeterminacy principle 

of Heisenberg.' 
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