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SUMMARY
A
Using a generalization of Newton's method, & nonlinear
parabolic equation of the form up —u, - g(u), and a

nonlinear elliptic equation u__ + u - eu, are solved

XX yy
numerically. Comparison of these results with results
obtained using the Picard iteration procedure show that in

L[]
many cases the quasilinearization method offers substantial

advantages in both time and accuracy.
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SOME NUMERICAL EXPERIMENTS USING NEWTON'S METHOD FOR
NONLINEAR PARABOLIC AND ELLIPTIC
BOUNDARY—VALUE PROBLEMS

Richard Bellman

Marlio Juncosa
Robert Kalaba

l. INTRODUCTION

The numerical treatment of initial-value problems in
ordinary differential equations on an electronic digital
computer usually is no more involved in the nonlinear case
than in the linear one. In the handling of boundary-value
problems this is not so. In the linear case, when a solution
exists, the applicability of the superposition principle
provides a decided advantage in boundary-value problems in
that it leads to solving at most a number of initial-value
problems equal to the order of the system. On the other hand,
in the nonlinear case, one of the possibilities for solution
is to resort to an iterative technique which replaces the
problem with a sequence of linear problems in which one can
use the superposition principle.

In solving the differential equation

(1) L(u) = £(u)

where L 1is a linear ordinary differential operator of at
least second order and conditions are prescribed to bde
satisfied by u(x) at at least two points, ne may linearize
by using Picard's method which introduces a sequence of
functions [u(k)(x)] which satisfy the same boundary conditions
as u(x) and the linear ordinary inhomogeneous differential

equation




P—2200

(2) p(e+1) | pu(kdy

When the sequence [u(k)(x)] converges _“he convergence is

linear, 1i.e.

] ) S L o) )

a8 Kk - 00 .

However, 1f f(u) 4is differentiable, we can linearize

in a different way. If c¢ne replaces the right hand side of
(2) vy

f(u(k)) + (u(k+l) = u(k))r'(u(k))

then we have again a linear inhomogeneous ordinary

differential equation

(l;) Lu— f,(u(k))u(k+1) — r(u(k)) - u(k)f'(u(k))

which results in a sequence (u(k)(x)} which, when convergent,

' is usually quadratically convergent, 1.e. ‘

(5) wl*1) _ oy o(ul®) ~ 4)?)

as k -» oo.

The icdea of the use of second—order convergent iterative
procedures for solving systems of equations other than alge—
braic or transcendental is not new. However, except for the
work of Hestenes (1] and Stein (2] and a brief mention in
Milne's book, sec. 49 {3], it seems to have received only

scant attention in the American literature on numerical

S
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analysis compared to that in foreign publicationa. In 1905,
only a {ew decades after Picard's work, Chaplygin (4] presented
what amounts to Newton's method for approximate integration of
differential equations. More recently general {functional-
analytic treatments of Newton's method and some of its variants
in a Banach space have been given by a number of authors,
notably Kantorovich [5,6], Zagadskii, Mysovskikh, Penyo,
Collatz, Schroder (7], Eartle, and Stein.

References to most of these and to others can be found in
(2,6,7].

From the pracztical point of view, in spite of all this
analytic treatment, because of the effects of truncation
errors, round—off errors, crude bounds on the higher order
derivatives, the labor of computing higher order derivatives
or differences for the nigher order methods, the accuracy
desired in the final approximation to the solution, and the
word length and computing mode of the machine available for
the computation thg efficiency of tne higher order convergent
methods vs. that of lower order methods cannot be decided
solely on the basis of the order of convergence. /n analysis
of the interaction of such effects is generally far more
difficult than that of simply determining orders of convergence.
This difficulty, if not impossibility, Justifies some numerical
experimentation. Although Kantorovich, Collatz, and Schrader,

give some examples of applications to eigenvalue problems,

integral equations, and differential equations (mainly ordinary)
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and Hestenes and Stein give some applications to the calculus
of variations, the body of experimental results in the
American literature is still quite small.

For ordinary differential equations there is quite a
large number of stable methods of numerical integration whose
truncation errors are of fairly high order in the integration
step size. Consequently, by the choice of one of such methods
the interaction between the truncation errors and the rate of
convergence of the numerical solutions of either (2) or of (4)
a8 a function of k can be kept quite small. Hence the
computational effort to obtain numerical approximations to the
solution of (1) 1s largely determined by whether ona chooses
to solve the linear differential equations (2) or (4), thus
comparing quadratic convergence (5) and some extra computation
in the evaluation of r'(u(k)) in (4) with linear convergence
(3) and no evaluation cof derivatives of f in (2). This,
indeed, has been compered by one of the authors for a simple
nonlinear second order ordinary differential equation with
two point boundary conditions. See [8) wherein is given a
novel relatively general derivation of (4) utilizing the
operatien of function maximization. See also [12) for more
general applications.

For elliptic and parabolic partial differential equations,
however, the stadle numerical methods commonly used for
solution usually have truncation errors of low order in the
mesh sizes. Furthermore, the numerical treatment of elliptic
and multi-sepace~dimensional paratolic cases almost always

result in systems of algebraic equations which are the
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linearized discrete analogs of the partial differential
equations and are usually solved by an iterative procedure
such as relaxation or overrelaxation. Consequently, regard-
less of whether one chooses (2) or (4) for the linearization
of (1), there 1s considerable interaction between the
truncation errors of the discrete analog, the rate of
convergence (3) or (5), depending on the cholce of either (2)
or (4), and the rate of convergence of the relaxation or
overrelaxatiorn procedure.

As & result an analytic representation of realistic
bounds on the total error is very difficult, if not impossible,
to achieve. The Surpose of this note 1s to present the
results of some experiments using (2) and (4) on two cases
each ci a parabolic partial differential equation and an
elliptic one. '‘‘hese cases in each type differing orly in the
boundary conditiors clearly show how markedly the superiority
of the method (4) over (2) is affected by the above-mentioned

interaction as the boundary ~onditions are changed.

2. THE PARABOLIC CASE
In the interest of simplicity the experiments on the

parabolic case were carried out on the numerical solution of

(6) Lu =u, —u = (1 + u2)(1 — 2u)

over two different triangles: 0t <l1l-x, 0¢x<1l, and
0 t<l.5-x, 0 x < 1.5 The boundary conditions in

each case were 80 chosen as to give the solution
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(7) u(x,t) = tan(x + t).

That this solution 1s unique can be established wasily by
classical techniques.

Solutions of the differential equation analogs of the
Piocard iteration (2) and of the Newton procedure (4) for the
differential equation (6) were compared. The numerical
solutions in each case were obtained over the points
(mAt,nAt) of a grid superimposed on the respective triangles.
In order to avoid the possibility of numerical instability
(since we used Ax = At = .01 in the experiments) we used the
Crank-Nicolson difference operator [9,10] for the discrete
analog of (6). Thus, if Unn designates the solution of a
difference equation analog of (6) at the lattice point
(mAt,nAt) 4in the triangle and since an iterative process is

needed to resolve the nanlinearity of (6), Lu 1is replaced by

(k)
“&f;ii “Ymn 1 Eu(k+l) _oylk+l) | (ke1)
. 2(ax)2 L m1kel Ym,n+l T Ym+l,n+d

X (k) u(k,,)+ u(k,,) ]

1,n ““m,n m+1,n

where kn denotes the 1’'inal number of iterations to obtain an

acceptable approximation to u &t the grid points on the

m,n
line t « nAt. In the iterative formula two possibilities for

the function to replace f(u(k)) on the right hand Jsides of

(k)

(2) and (4) were comideredi one was simpl t‘(\.ﬁn iy ) and the
k »
other was the average (f(um n+1) + r(uln n ))/2. However,

since it developed early in the experiments “hat the latter
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representation was a bit better than the former and siace we
were primarily concerned with a comparison of Plcard's method
with that of Newton, we continued with the latter only for the
remainder of the work, which is reported here. )

The significant observation was that while the Picara
procedure and the Newton procedure required about the same
amount of work in the case of the triangle 0 t 1l - x,
0< x< 1, about nine times the number of iterations required
for Newton's method were needed to obtain comparatle accuracy
by the Picard procedure when the region of interest was the
larger triangle 0 t¢1l.5-x, 0 x ¢ 1.5.

The criterion for acceptance of an approximation was a
commonly vsed one, viz., that the maximum relative change per

line be less than a prescribed amount before passing to the

next line. Thus our requiremsnt was that kn = min k such
that

“ain ~ Uain
“n.

-6

max < W0 .

Since in this problem the true solution 1s known (7), we could
have a criterion based on the true relative error. However,
this is impossible when the solution 1s not known and we wished
to simulate such a condition. A check was made on what the true
relative errors were. In the cas? where the tase of the
triangle was 1.0 the maximum true relative errors on each line

using Newton's method and using Picard's were in agreement with
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each other to about two significant figures. These maximum
true relative errors never exceeded 3.9 x 10~ and usually
lay near the line t = 1 — 3x/2. When the triangle had a base
equal to 1.5 the solution using Newton's method was run only
up to the 1line t = 0.23 and with Plicard's up to t = 0.5.
Again for the values obtalned there was very close agreement
betwesn the location and the value of the true maximum relative
errors. They were generally located near the line x + t = 1.4
and generally did not exceed 1.8 x 10—3. The substantial
difference between true relative errors and the relatlve
changes between successive iterations should be taken as a
caution to numerical analysts %o set bounds in stopping
criteria based on relative changes betwesn successive iterations
much lower than the desired maximum true relative errors.

The following table gives the comparative numbers of
iterations to achieve our criterion for acceptance of an

approximation before going on to the next t-line.

BASE OF NUMBER OF
TRIANGLE METHOD ITERATIONS t—INTERVAL
1.0 Newton 2 20.01,0.983
1 0.98,0.99
1.0 Picard 4 0.01,0.68
) 0.68,0.93
2 0.93,0.99
1.5 Newton 3 (0.01,0.23)
1.5 Picard 28 (0.01,0.50)
TABLE 1
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3. THE ELLIPTIC CASE

The experiments on the elliptic case were carried out on

the numerical solutions of

u
(8) Lu =u _ + u = e

in the region 0 x < 1/2, 0<y < 1/4, for two sets of
boundiry conditions u = 0 in one case and u = 10 1in the
other. The equation (8) is of considerable interest in some
physical problems and the exlstence and uniqueness of the
solutions to the boundary-value problems we have here are
assured by the classical theory.

In each of the two cases we compared the two methods for
linearization, Picard's and Newton's, which resulted in

comparing the numerical solutions obtained for

(9) W) o) | alk)

and

(10) “2?1) . uy;u) _ eu(k)u(k»,l) ) u(k)(1 _ (k)

respectively. As 18 customary in discretizing the problem for

a numerical solutlon, the Laplaclan, u + dpy in (9) and

(10), was replaced at interior meshpoints of the region or

interest by the expression

(11) (

+ +u

u u
m+l,n m,n+1

where L. 18 the discrete analog of u(mAx,nAt) and

’
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h = Ax = Ay, which in the experiments was set equal to 1/64,

If we order the points (m,n) such that (m,n) precedes

| _ (m*,n') if n<n' orif n =n' and m < m' and denote

' the resulting set of 15°31 numbers uéfg which are the approxi-
mations to the solution at (mAx,nAy) at the k-th Picard or

J Newton iteration by the same notation as above, u(k), then,
after division of the component equations by the appropriate
factors, viz., the negative of the coefficients of the central

tern, W in the equations, we obtain systems of linear
»

algebraic equations

(12) (1 - b, -y Julkt) o)

to solve. In (12), I, L., and U, are 465 x 465 matrices, I
being the identity, while Lk and Uk are respectively lower
and upper triangular matrices appropriate to the particular
method of iteration, Picard or Newton. Thus, for our problem,
they are transposes of each other and have only two diagonal
lines of nonzero elements; in the Picard iteration these ele-
ments are identicallyequal to 1/4, while in the Newton pro-
cedure they are equal to (4 + h exp u(k))°1 where the
approximation u(k) is evaluated at the central point (m,n)
of the star of points indicated in (11). The components of the
vector b(k) in (12) are equal to -hg/h times the appropriate
values of the right hand sides of (9) and (10) respectively.

Since in many realistic problems the size of the problems

is so huge as to preclude the use of Gaussian elimination to
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solve the algebraic systems (1), we chose the successive
overrelaxation method of Young (11], primarily because it 1is
the simplest iterative method which 1s substantlally better
than the Gauss—Seldel method although it 1s recognized that
faster converging block relaxation and alternating dirsction
methods are not much more complicated than successive over—
relaxation.
Applyling the successive overrelaxation method directly

to the systems (12) for a fixed value of k would yield the

iterative formula

(k+1)

(13) (1 - wr )l o (e - (0 - 1) 4 LK)

r = 0,1,2,...,

where w 18 the overrelaxation parameter and the component

equations are solved successively in the order which produces

(k+l)

=0 consecutively in the

the components of the vector u
order indicated above. However, 1t 1s clear that not much
effort should be expended in obtaining a very accurate solu-

tion to (12) 1if u(k+1)

is not a good approximation to the
solution of (8). Similarly, there 1is not much point to
iterating on the index Kk 1f the approximations given by 113)
are too rough as a consequence of terminating the ilteration
on r too soon. Thus there exists the open problem as to
when one should iterate on k or on r at each step. We

avolided the attampt at this relatlively difficult enalysis and

simply iterated on each simultaneously using the formula
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(14) (1 - o )ul®) o ey~ (0 - 111 4 wp(k),

the component eyuations being solved in the same order
indicated above. Thus we see a strong interweave between the
numerical method used for solving either (2) or (4) and the
rate of convergence of the actual solutions of (2) or of (&),
the difficulty of whose analysis dictates experimentation.
We also note that thia blend of iterative procedures for the
solution of the linear systems (12) and the Newton or Picard
iterations to solve the original nonlinear problem has the
advantage that one does not have to go to the full-scale
effort of solving accuretely the system (12) for each value
of k.

As in the parabolic case the criterion for stopping the
iterations was that the maximum of the absolute value of the
relative change between consecutive iterations of the functional

values be no greater than 10—6.

If this were truly a bound
on the relative error of the numerical solution and the solu-
tion of nonlinear equation (8) with the Laplacian replaced by
the expression (11{, then this criterion would be about two
orders of magnitude too stringent to be jJustifled by the
truncation errors. However, some me&asure of stringency is
dictated by the heuristic character of the stopping criterion
when one knows neither the true solution nor effective bounds
on 1t.

In the case of Picard iteration where Lk and Uk are

independent of Kk, If one were to ignore the fact that b(k)
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depends on k the tneoretlically optimal value of w is
1.732 for the fastest convergence. For the Newton iteration
the value would be a little smaller, agaln ignoring the
change in Lk and in Uk ag well as 1in b(k) from lteration
to iteration, which we clearly cannot do. However, in the
case of zero boundary condlitlions for the Picard 1iteration,

where Lk and U are constant, the best value (or values)

k
of o are undoubtedly near the theoretical value noted above
since the change in u(k) over the region is very small (The
value at the center of the reglon obtained for the final
solution 18 0.007071 to four eignificant figures.). Conse—
quently, for this case we experimented only with the values
w=1.70 and 1.74. No such confidence existed for the case of
Picard iteration on the situation where u 1s equal to 10 on
the boundary because of the large variations in u(k) over
the region which would undoubtedly Iintroduce large changes at
a point from iteratlion to 1iteration. Of course, in the Newton
iterations, since Lk and Uk change from 1ilteratlon to
iteration, one has even less o!' an idea as to the optimal
value of w. Consequently, in the remaining cases a nunber

of runs for different values of « were made to estimate an

optimal value of @w. Table < below summarizes the results.
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BOUNDARY VALUE  NUMBER OF VALUE oF u (k)
CONDITIONS METHOD OF w ITERATIONS AT (1/4, 1/8)
uaso Picard 1.74 64 —0.007¢C71
n " 1 .70 77 1"
i Newton 1.95 258 "
" " l .7L‘ 64 "
1" " 1 .70 77 11]
" " 1 .50 154 "
" 4 1.00 426 u
u & 10 Picard 1.55 63 5.65995
" " 1 .50 5} "
" . 1.40 66 5.65994
B " 1.35 71 5.65993
" " 1 .30 76 "
" " 1.20 78 5.65992
: " 1.10 106 5.65997
" i 1.00 134 5.65998
L Newton 1.74 58 5.65995
n " 1 ‘70 51 1"
n " 1 .65 “6 "
" 11} 1 .60 u2 "
n " 1 .55 ql "
n n l .50 50 "
¥ " 1.40 66 5.65996
# " 1.00 148 5.65998
TABLE 2
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From the table we observe that for the case of zero
boundary conditions no advantage was obtained from the use of
the quadratically converging Newton procedure over the results
cbtained from the first order converging Picard procedure. In
fact, the same values of w gave the rapldest convergence in
both cases. On the other hand, when the boundary conditions
were raised to 10, implying raepid changes in u near the
boundary. the Newton procedure was more advantageous,
requiring some 41 iterations as compared to 53 for Picard's.
We note further thet curiously the optimal value of w was
slightly lower for Picard's procedure.

As an additional note we Iincluded the case of Gauss-—Seidel
relaxation given by w = 1 for comparison with successive
overrelaxation. As expected, the successive overrelaxation
method ranged from two and one—half to almost seven times
faster than Qauss—Seldel relaxatlon.

As an indication of the order of time for a computation,
it was observed that on the RAND Johnniac, a Princeton—type
machine on which the computations were carried out, it took
about eleven seconds for a Newtonian {terstion.

Another incidental observatiorn was that the points at

which the maximum relative change Iin u(k) took place were

invariably very close to the origin. In most cases it was at

the pcint (1/64, 1/64).

4. CONCLUSION

We have observed In these examples that when the 2ol 'tion

of a nonlinear problem has no steep gradients there seems to be
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no particular advantage in the use of Newtonian methods over
those of Picard. On the other hand, when steep gradients occur
thenn there is some advantage, greater in our experiments for
* the parabolic case than for the elliptic case, where there 1is
considerable interaction between the numericel method of
solution of the linearized problem and the convergence rate
of the iterated solutions of the linearized problem.
We remark finally that it is possible for the operator
L to be quasilinear as well, in which case there are obvious
modifications to linearize the nonlinear part of the operator.
We thank Alfred B. Nelson who programmed the experiments
for the Johnniac and Ardis McCarroll who collocated the results.
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