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SOME NUMERICAL EXPERIMENTS ÜSINO NEWTON'S METHOD FOR 
NONLINEAR PARABOLIC AND ELLIPTIC 

BOUNDARY-VALUE PROBLEMS 

Richard Bellman 
Mario Juncosa 
Robert Kalaba 

1.  INTRODUCTION 

The numerical treatment of Initial—value problems in 

ordinary differential equations on an electronic digital 

computer usually is no more involved in the nonlinear case 

than in the linear one.  In the handling of boundary—value 

problems this is not so.  In the linear case, when a solution 

exists, the applicability of the superposition principle 

provides a decided advantage in boundary—value problems in 

that it leads to solving at roost a number of initial—value 

problems equal to the order of the system.  On the other hand, 

in the nonlinear case, one of the possibilities for solution 

is to resort to an iterative technique which replaces the 

problem with a sequence of linear problems in which one can 

use the superposition principle. 

In solving the differential equation 

(1) L(u) - f(u) 

where    L    is a linear ordinary differential  operator of at 

least second order and conditions are prescribed to  be 

satisfied by    u(x)    at at  least  two points,     ne may  linearize 

by using Picard's method which  introduces a  sequence of 
Ik) functions     (uv   '(x))    which satisfy the same boundary conditions 

as    u(x)     and the linear ordinary inhomogeneous differential 

equation 
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(2) Lu^+1)  - f(u^)). 

Ik.) When the stquenoe     (uv   '(x))    converges ';he convergence Is 
« 

linear,  I.e. 

(3) u(yc+1) - u - 0(uW _ u) 

AB      k  -» 00 . 

However, If f(u) la differentlable, we can linearize 

in a different way. If one replaces the right hand side of 

(2) by 

f(u<k)) Mu(k+l)-uW)f.(uW) 

then we have again a linear inhomogeneous ordinary 

differential equation 

(k) Lu- f'(u^))u^+1) - f(uW) - u(k)f'(u^)) 

which results in a sequence (u^ '(x)) which, when convergent, 

is usually quadratically convergent, i.e. 

(5) u^1) -u- 0((u^) -u)2) 

as ic -» oo . 

The idea of the use of second-order convergent iterative 

procedures for solving systems of equations other than alge- 

braic or transcendental is not new. However, except for the 

work of Hestenes [1] and Stein (2] and a brief mention in 

Kline's book, sec. 4Q [}],   it seems to have received only 

scant attention in tne American literature on numerical 
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analysis compared to that In foreign publications. In 1905, 

only a few decades after Plcard's work, Chaplygln [4] presented 

what amounts to Newton's method for approximate Integration of 

differential equations. More recently general functional- 

analytic treatments of Newton's method and some of Its variants 

In a Banach space have been given by a number of authors, 

notably Kantorovlch [5»6], Zagadskli,, Mysovskllch, Penyo, 

Collatz, Schroder [?]. Bartle, and Stein. 

References to most of these and to others can be found in 

[2,6,7]. 

Prom the practical point of view. In spite of all this 

analytic treatment, because of the effects of truncation 

errors, round—off errors, crude bounds on the higher order 

derivatives, the labor of computing higher order derivatives 

or differences for the nlgher order methods, the accuracy 

desired In the final approximation to the solution, and the 

word length and computing mode of the machine available for 

the computation thf efficiency of tne higher order convergent 

methods vs. that of lower order methods cannot be decided 

solely on the basis of the order of convergence. An analysis 

of the Interaction of such effects Is generally far more 

difficult than that of simply determining orders of convergence. 

This difficulty, If not Impossibility, Justifies some numerical 

experimentation. Although Kantorovlch, Collatz, and Schroder, 

give some examples of applications to eigenvalue problems. 

Integral equations, and differential equations (mainly ordinary) 
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and H«8t«n«B and Stein give some appllcatlone to the calculus 

of variations«  the body of experimental results In the 

American literature Is still quite small. 

For ordinary differential equations there   Is   quite a 

large number of stable methods of numerical Integration whose 

truncation errors are of fairly high order In the Integration 

step slue.    Consequently, by the  choice of ono of such methods 

the Interaction between the truncation errori. and the rete of 

convergence of the numerical solutions of either (2) or of (4) 

as a function of    k    can be kept quite small.    Hence the 

computational effort to obtain numerical approximations to the 

solution of (1)  lb  largely determined by whether one  choose? 

to solve the linear differential equations (2) or (4),  thus 

comparing quadratic convergence  (3) and some extra computation 

In the evaluation of    f'(u^   ')    In (4) with linear convergence 

(3) and no evaluation cf derivatives of    f    in (2).    This, 

Indeed,  has been compared by one of the authors  for a simple 

nonlinear second order ordinary differential equation with 

two point boundary conditions.    See   [8] wherein is given a 

novel relatively general derivation of (4) utilising the 

operation of function maximisation.    See also  [12] for more 

general applications. 

For elliptic and parabolic partial differential equations, 

however,  the stable numerical methods comonly used for 

solution usually have truncation errors of low order  In the 

mesh sizes.    Furthermore,  the numerical treatment of elliptic 

and multl—epace—dimensional parabolic  ^ases almost  always 

result In systems of algebraic equations which are the 
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linearized discrete analogs of the partial differential 

equations and are usually solved by an Iterative procedure 

such as relaxation or overrelaxatlon. Consequently, regard- 

less of whether one chooses (2) or (4) for the linearization 

of (1), there Is considerable Interaction between the 

truncation errors of the discrete analog, the race of 

convergence (3) or (5)* depending on the choice of either (2) 

or {k),  and the rate of convergence of the relaxation or 

overrelaxatlon procedure. 

As £ result an analytic representation of realistic 

bounds on the total error Is very difficult, If not Impossible, 

to achieve. The purpose of this note Is to present the 

results of some experiments using (2) and (4) on two cases 

each oi a parabolic partial differential equation and an 

elliptic one. Vhese cases In each type differing only in the 

boundary conditions clearly show how markedly the superiority 

of the method (4) over (2) Is affected by the above-mentioned 

Interaction as the boundary conditions are changed. 

2. THE PARABOLIC CA3E 

In the Interest of simplicity the experiments on the 

parabolic case were carried out on the numerical solution of 

(6) Lu - ut - u^ - (1 + u
2)(l - 2u) 

over two different triangles« O^t^l— x,  0 £ * £ 1*  and 

0£t£l.5-x,  0^x^1.5. The boundary conditions In 

each case were so chosen as to give the solution 
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(7) u(x,t) • tan(x + t). 

s 

That thil solution 1B unique c»n be established easily by 

olassloal techniques. 

Solutions of the differential equation analogs of the 

Ploard Iteration (2) and of the Newton procedure (4) for the 

differential equation (6) were compared. The  numerical 

solutions In each case were obtained over the points 

(nAtfnAt) of a grid superimposed on the respective triangles. 

In order to avoid the possibility of numerical Instability 

(since we used Ax - At - .01 In the experiments) we used the 

Crank-Wlcolson difference operator [9,10] for the discrete 

analog of (6). Thus, lf u™ n designates the solution of a 

difference equation analog of (6) at the lattice point 

(mAt,nAt)  In the triangle and since an Iterative process is 

needed to resolve the nonllnearlty of (6), Lu is replaced by 

(k+1)        ^^ 
Vrn-l     Vn   _      1        Ldc+D      _ 2uU+l) + u(k+l) 

TT 2(Ax)< ,n+l 

+ Va,n-2Vn + umn,nJ' 
where 

^ 
denotes the final number of iterations to obtain an 

acceptable approximation to u    at the grid points on the 

line t • nAt. In the iterative formula two possibilities for 

the function to replace f(u^ *)    on the right hand dides of 

(2) and (4) were considered: one was simply f(u   ) and the W (O   nn'n 
other was the average (^^ n+1) •♦■ f(u   ))/2. However, 

since It developed early in the experiments that the latter 
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representation was a bit better than the former and since we 

were primarily concerned with a comparison of Plcard'a method 

with that of Newton, we continued with the latter» only for the 

remainder of the work, which Is reported here. 

The significant observation was that while the Picard 

procedure and the Newton procedure required about the same 

aunount of work in the case of the triangle 0 ^ t ^ 1 — x, 

0 ^ x ^ 1, about nine times the number of iterations required 

for Newton's method were needed to obtain comparable accuracy 

by the Picard procedure when the region of interest was the 

larger triangle 0<£t^l.5-x, 0 ^ x ^ 1,5. 

The criterion for acceptance of an approximation was a 

commonly used one, viz.,  that the maximum relative change per 

line be less than a prescribed amount before passing to the 

next line. Thus our requirement was that k • min k auch 

that 

max 
m 

^ - "it1' 
^p.n 

1 ICT6 

Since in this problem the true solution is known (7)* we could 

have a criterion based on the true relative error. However, 

this is impossible when the solution is not known and we wished 

to simulate such a condition. A check was made on what the true 

relative errors were. In the case where the base of the 

triangle was 1.0 the maximum true relative errors on each line 

using Newton's method and using Picard*s were in agreement with 
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each other to about two significant figures.    These maximum 

true relative errors never exceeded    2.9 x 10 "^    and usually 

lay near the line    t « 1 - 5x/2.    When the triangle had a bass 

equal to 1.5 the solution using Newton's method was run only 

up to the line    t ■ 0.23    and with Plcard's up to    t » 0-5. 

Again for thf values obtained there was very close agreement 

between the  location and the value of the true maximum relative 

errors.    They were generally located near the line    x + t - 1.4 

and generally did not exceed    1.8 x 10" .    The substantial 

difference between true relative errors and the relative 

changes between successive iterations should be taken as a 

caution to numerical analysts to set bounds in stopping 

criteria based on relative changes between successive  iterations 

much lower than the desired maximum true relative errors. 

The following table gives the  comparative numbers of 

iterations to achieve our criterion for acceptance  of an 

approximation before going on to the next t-line. 

BASB OP 
TRIANOLE METHOD 

NIJMRER OP 
1TKRATI0NS t-INTERVAL 

1.0 Newton 2 
1 

(0.01,0.90) 
(0.98,0.99) 

1.0 Picard 4 

2 

(0.01,0.68) 
(0.68,0.95 
(0.93.0.99) 

1.5 Newton 3 (0.01,0.23) 

l-? Picard 28 (0.01,000) 

TABLE  1 
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THE ELLIPTIC  CASE 

The experiments on the elliptic case were carried out on 

the numerical solutions of 

(8) Lu " uxx + uyy " ^ 

In tl.<? region    0<x<l/2,     0<y<   1/4,     for two  sets  of 

boundary conditions    u s 0    In one  case and    u s  10    In the 

other.    The equation  (8)  Is of considerable  Interest  In some 

physical problems and the existence and uniqueness of the 

solutions to the  boundary-value problems we have here are 

assured by the  classical theory. 

In each of the  two cases we  compared the two methods     for 

linearization,   Plcard's and Newton's,  which resulted  In 

comparing the numerical solutions obtained for 

(9) u«"*1)  + u«^1'  - e""0 v   ' xx yy 

and 

MM U+D U+l) u^   ;k+1)        u(lc),, (IcK 
(10) U^ +Uyy -e U -« (1-UV/), 

respectively.     As   is   customary  In  dlscretlzing the  problem  for 

a numerical  solution,   the Laplaclan,     u       -f u     ,     In  (9)   and xx yy 

(10),  was replaced  at   Interior meshpolnts  of the  region  of 

Interest   by  the  expression 

(11) (u,        +u ,+u,        +u ,-4u       )/hc v     ' v   rrH-l,n        m,n+l m—l,n m.n—1 m.n^ 

where u    Is the discrete analog of u(inAx,nAt)  and m,n ^     \       >       / 
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h > Ax « Ay,    which In the experiments was set equal to 1/64. 

If we order the points     (in,n)    such that    (ni,n)    precedes 

(m'jn1)    If    n < n'    or If    n - n'    and m < m'   and denote 

the resulting set of 15'31 numbers    u;  '    which are the approxL 
III jtl 

matlons to the solution at  (mAx,nAy) at the k-th Plcard or 

(k) 
Newton Iteration by the same notation as above,  uv ', then, 

after division of the component equations by the appropriate 

factors, vli,, the negative of the coefficients of the central 

term,  u^ , In the equations, we obtain systems of linear 

algebraic equations 

(12) (I - Iv - Vu""1) . b«") 

to solve.  In (12), I, L^, and U^ are 465 x 465 matrices, I 

being the Identity, while L^ and U^ are respectively lower 

and upper triangular matrices appropriate to the particular 

method of Iteration, Plcard or Newton. Thus, for our problem, 

they are transposes of each other and have only two diagonal 

lines of nonzero elements; In the Plcard Iteration these ele- 

ments are Identically equal to 1/4, while In the Newton pro- 

2     (k) -1 
cedure they are equal to  (4 + h exp uv ')   where the 

(k) 
approximation uv '  Is evaluated at the central point  (ra,n) 

of the star of points Indicated In (11). The components of the 

Ik) ? 
vector bv ' In (12) are equal to -h^/h  times the appropriate 

values of the right hand sides of (9) and (10) respectively. 

Since in many realistic problems the sire of the problems 

is so huge as to preclude the use of Qaussian elimination to 
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solve the algebraic systems  (12),   we  chose the successive 

overrelaxatlon method of Young   [11],  primarily because  It  Is 

the  simplest   iterative method which  is substantially  better 

than the Oauss-fieidel method although  it  is recognized  that 

faster converging block relaxation and alternating direction 

methods are not much more  complicated than successive  over- 

relaxation . 

Applying the successive  overrelaxatlon method directly 

to the  systems   (12)   for a fixed  /alue of    k    would yield the 

Iterative formula 

(15) (I - a)Lk)u^1)  -   [coUk -  (a) - Dlju^1)  +   tb<k), 

r - 0,1,2,..., 

where    to    is  the overrelaxatlon parameter and  the  component 

equations are  solved successively   In the order which produces 

the  components of the vector    ui-    '     consecutively  in  the 

order  indicated  above.     However,   it   Is  clear  that  not   much 

effort  should  be  expended  in  obtaining a very  accurate   solu- 

tion  to   (12)   if    u^       '     la not  a  good approximation   to  the 

solution  of   (8) .     Similarly,   there   la not much point   to 

Iterating on  the   index    k     If   the  approximations  given  by   'ilj}) 

are  too  rough  as  a  consequence  of  terminating  the   iteration 

on    r    too  soon.     Thus  there  exists   the open problem as  to 

when one  should  Iterate  on    k     or  on    r    at  each  step.     We 

avoided   the  attempt  at   this  relatively difficult  analysis and 

simply   Iterated  on each  simultaneously using  the   formula 



P-2200 
12 

(14) (I - üJLlc)u
{ic+1)  -   [a*Jk -  (a) - l)l]u(lc)  + ^kK 

the oomponent equations being solved  in  the same order 

Indicated above.    Thus we see a strong  Interweave between the 

numerical method used for solving either  (2)  or (4)  and the 

rate of convergence  of the actual solutions of (2)  or of  (4), 

the difficulty of whose analysis dictates  experimentation. 

We also note  that  this  blend of iterative  procedures  for the 

solution of the  linear systems  (12)  and  the Newton or Plcard 

Iterations to solve   the original nonlinear problem has  the 

advantage that one does not have  to go  to  the full-scale 

effort of solving accuretely the  system  (12)   for each value 

of    k. 

As In the parabolic case the  criterion for stopping the 

iterations was that  the maximum of the absolute value of the 

relative change  between  consecutive  iterations of the  functional 

values be no greater  than    10 If this were  truly a bound 

on the relative error of the numerical  solution and the solu- 

tion of nonlinear equation  (8) with  the Laplaclan replaced  by 

the expression  (ll(,   then this criterion would be about  two 

orders of magnitude   too  stringent  to  be   Justified by the 

truncation errors.     However,   some measure  of  stringency   is 

dictated  by  the  heuristic  character of  the   stopping  criterion 

when one lenows  neither  the  true  solution  nor effective   bounds 

on  it. 

In the  case  of Plcard   iteration where     L.      and    U.      are 

fit) independent of    k,     if  one  were  to   ignore   the   fact  that     bv   ' 
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depends  on    k    the  theoretically optimal value of    cu    Is 

1.732   for  the  fastest  convergence.     For  the Newton   iteration 

the  value would be a  little  smaller,  again  ignoring the 
(k.) change   in    L     and  in    U,     as well as  in    bv   '     from iteration 

to  iteration,  which we  clearly  cannot do.     However,   in the 

case of zero boundary conditions for the  Picard  iteration, 

where    L.      and    U,      are  constant,   the best  value   (or values) 

of    en    are  undoubtedly near  the  theoretical  value  noted above 

since  the   change  In    uv   '     over the region  is  very  small  (The 

value  at   the  center  of  the  region obtained  for  the   final 

solution   is 0.00/071  to  four  eignlfleant  figures.).     Conse- 

quently,   for this  case  we  experimented only with  the  values 

u) -  1.70 and 1.74.     No such  confidence existed for  the case of 

Picard   iteration on  the   situation where     u     is  equal  to 10 on 
Ik) the  boundary because  of  the   large  variations   in     uv   '     over 

the  region which would  undoubtedly  Introduce   large   changes at 

a point   from Iteration  to   iteration.     Of  course,   in  the Newton 

Iterations,   since    L,      and    U^     change   from  iteration to 

Iteration,   one  has  even  less   of an  idea    as   to  the  optimal 

value  of    u).     Consequently,   in  the  remaining  cases  a nunter 

of  runs   for different  values  of    c^    were  made   to  estimate an 

optimal   value of    OD.     Table  ^   below summarizes  the   results. 
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BOUNDARY 
CONDITIONS METHOD 

VALUE 
OF    0) 

NUMBER OF 
ITERATIONS 

VALUE  OF u^ 
AT  (1/4,   1/8) 

-0.007071 
u ■ 0 PIcard 

II 
1.74 
1.70 

64 
77 

ii 

Newton 1.95 258 11 

n 
M 

H 
1.74 64 n 

M ■ 1 
1.70 77 11 

H n 1.50 
1.00 

154 
426 

11 

u ■ 
n 

10 Plcard 
it 

1.55 6^ 5.65995 
II it 

1.50 53 11 

n " 1.40 
1.35 
1.30 

66 5.65994 
n 

n 
n 
11 

71 
76 

5.65993 
11 

II II 
1.20 78 5.65992 

II II 
1.10 
1.00 

106 
134 

5.65997 
5.65998 

II 

n 

Newton 
M 

'1 

1.74 
1.70 

58 
51 

5.65995 
11 

II 1.65 46 H 

n 
II 

1.60 42 11 

II 

H 

1.55 41 M 

II 1.50 50 11 

H II 
1.40 
1.00 

TABLE 

66 
148 

2 

5-65996 
5.65998 
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From the table we observe that  for the  case of zero 

boundary conditions no advantage was obtained from the use  of 

the quadratlcally converging Newton procedure  over the results 

obtained from the  first  order converging Plcard procedure.     In 

fact,   the  same  values  of    cu    gave  the  rapldest   convergence   In 

both  cases.    On the  other hand, when the  boundary conditions 

were  raised to  10,   Implying  rapid  changes   In     u    near the 

boundary,   the Newton procedure was more  advantageous, 

requiring some 41   Iterations as  compared  to   33  for Plcard's. 

We  note  further that   curiously the  optimal  value  of   Cü    was 

slightly lower for Plcard's  procedure. 

As an additional note  we  Included  the   case  of Qauss-Seldel 

relaxation given  by    CD -   1     for comparison  with  successive 

overrelaxatlon.     As  expected,   the  successive  overrelaxatlon 

method  ranged  from two and  one—half  to  almost   seven times 

faster  than Oauss—Seidel   relaxation. 

As  an  Indication  of  the  order of  time   for  a   computation, 

It  was  observed  that   on  the  RAND Johnnlac,   a  Princeton—type 

machine  on which  the   computations were   carried  out,   It   took 

about  eleven seconds   for  a  Newtonian   Iteration. 

Another  Incidental  observation was   that   the  points  at 

Ik) which  the maximum relative   change   In     uv   '     took place  were 

Invariably very  close   to   the  origin.     In most   cases   It  was  at 

the  point     (1/64,   1/64) . 

4.     CONCLUSION 

We  have observed   In   these  examples  that   when  the  sol   tIon 

of a  nonlinear problem has  no  steep gradients   there  seems   to  be 
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no particular advantage in the use of Newtonian methods over 

those of Picard. On the other hand, when steep gradients occur 

then tr.ere is some advantage, greater in our experiments for 

the parabolic case than for the elliptic case, where there 18 

considerable interaction between the numerical method of 

solution of the linearized problem and the convergence rate 

of the iterated solutions of the linearized problem. 

We remark finally that it is possible for the operator 

L to be quasilinear as well, in which case there are obvious 

modifications to linearize the nonlinear part of the operator. 

We thank Alfred B. Nelson who programmed the experiments 

for the Johnniac and Ardis McCarroll who collocated the results 
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