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1. Introduction. 

In recent years considerable efforts have been developped to- 

ward the understanding of the main features of lattice dynamics of 

a great number of crystals among which the II-VI semiconductor com- 

pounds have a good position. Neutron scattering technics be0ing in- 

applicable to most of these compounds the experimental determinations 

of the normal mode frequencies are essentially done by infrared spec- 

trometry and Raman scattering. Being ionic crystals all these com- 

pounds possess first order dipole moments due t& the relative dis- 

placement of the constituting ion3. The optical vibrational modes 

are often allowed for optical transitions in view of specific selec- 

tion rules and give the possibility of direct determination of the 

frequencies of these modes at the center of the Brillouln zone. Those 

of the optical modes which are not allowed for direct optical transi- 

tions are often allowed in Raman scattering and hence available for 

direct determination by spectrosccpic technics. 

Normal modes frequencies at the edge of the Brillouin zone are 

determined by second and higher order processes due to their partici- 

pation in two or three phonon combinations as well in infrared spec- 

troscopy as in Raman scattering. 

The realistic boundary conditions taking into consideration the 

discontinuity at the surface of the crystal bring up the surface modes 

of vibrations for the normal lattice and the localized surface modes 

for a crystal with foreign atoms absorbed at the surface. 

Presence of imperfections or foreign atoms leads to the appear- 

ance of localized modes of vibrations which are also coupled to the 

radiation field by means of resonant absorption in the infrared region 

and by Raman scattering. 
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Parallel to the experimental investigations theoretical studies 

have been developed and the dispersion relations calculated for same 

of the II-VI compounds. The theory of systems with high impurity con- 

centration and the lattice dynamics of the alloys is now under way. 

2. Crystal Structures. 

The II-VT semiconducting compounds crystallize in a variety of 

polymorphic modifications, the principal structure types being t 

a) Cubic zinc-blende (sphalerite) structure  \sed on the cubic space 

group T, : 

ZnS, ZnSe, ZnTe, CdTe, HgS, HgSe, HgTe crystallize preferen- 

tially in the zinc-blende structure. 

Each unit cell contains 2 atoms and the crystal will therefore 

possess 6 phonon branches. 

b) Hexagonal wurtzite (zincite) structure based on the hexagonal 
A 

space group CJ : 

ZnO, ZnS, CdS, CdSe crystallize preferentially in the 

wurtzite structure. 

Each unit cell contains 4- atoms and the crystal will therefore 

possess 12 phonon branches. 

A schematic representation of these two crystals crystals struc- 

tures is given in Pig.1. 
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Figur« 1.  Schematic representation of Blende and Wurtilte crystal atructuraa, 
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On the left side is shown the cubic structure where one can 

distinguish three different successions of layers A, B, and C, with 

alternating atoms. On the right side is the hexagonal structure where 

one finds only two different successions of layers A and B respectively. 

On Pig.2 are schematized the two elementary cell3 containing 

two atoms for the cubic structure shown on the left and four at ens 

for the hexagonal structure on the right. 

Figure 2.  Representation of elementary cells : 

a) left  cubic structure 

b) right hexagonal structure 

The first nearest neighbours in both structures are at the cor- 

ners of a regular tetrahedron related to those of the group IV semi- 

conductors. For this reason many physical properties are analogous 

in both types of crystal lattices. 



The two respective environments in the cubic and hexagonal 
structure are shown in Pig.3« 

Figure 3. Environments in the cubic left and hexagonal right structure. 

The hounding in the crystals of the II-VT compounds spares the 

complete gap from ionic to ccvalent. 

The first Brillouir. zone deduced from this structure is shown 

in Pig.4 respectively for the blende and the wurtzite. 
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Figure 4.  First Brlllouln son« for Blend« and Wurtilte, 
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3. Maperalon Relations. 

In the harmonic approximation where the potential energy of a 

crystal is expended in power of the displacement of the atoms from 

their equilibrium positions and the expansion is broken off the quad- 

ratic terms» the equation of motion of the atom k with mass m. in the 

unit cell 1 subject to the displacement u with a = x, y, z is given 

by 

■k»«'!1^, f vik'JVk,!) (3.1) 

where * is the force constant matrix depending only on the distance 

between cells s(l)-s(l*) due to the periodic symmetry of the lattice. 

The normal modes and their frequencies are» solutions of the set 

of equations for all unit cells of the crystal. Because of the period- 

ic symmetry the modes have wave like phase variation from cell to cell 

and specific relative motion in the cell. 

The dynamical matrix being of the farm 

1 Im. m, ,; 
(3.2? 

the system of 3n linear and homogenious equations has non-vanishing 

solutions only if the determinant 

VkV)-",26
kK. 

&
ap 

= ° (3'3) 

vanishes. 

This "characteristic'1 equation gives the chracteristic frequen- 

cies w(jq) whose graphic representations are the dispersion curves of 

the crystal. 

A certain number of investigations have been developed aiming 

the knowledge of the dispersion curves of the II-VI compound?,. Some 
1 2 of them ' based on the shell model develop the formal discussion 

without actually doing the calculations. Calculating the dispersion 

relations of blende or wurtzite structures in the shell model would 

involve a large number of parameters which make such calculations 

■aaaalngless. 

x 
Herten  has dsveloped a series of studies in which the lattice 

vibrations of blende and wurtzite structures are investigated on 

microscopic basis considering the dynamical matrix without and with 

long range Coulomb interactions. Here again the numerical calcula- 

tions have not been carried out throughout the whole Brillxmin zone 

and only the optical modes at the center of the Brillouin zone have 

been deduced. 



Recently Nusimovici and Birman   have performed the explicite 

calculations of the dispersion relations for CdS-wurtzite structur--. 

The single phonon frequencies have been used to calculate the force 

constants. The model considers shnrt range interactions correspond- 

ing to central forces between first, second and third neighbours and 

to central angular forces between first and second neighbours, as 

well as long range Coulomb interactions depending on a parameter 

having the dimensions of a spring constant. 

The wortzite is supposed to be ideal and from the point of 

view of the short range interactions the anisotropy is represented 

by the third neighbour forces as shown on Fig.5. 

Structure 

of Vurltit» Cd? 

Figure   5.     Anfsotropy  deduced  from  short  range   interaction   In Wurtcita. 

The short range potential is written as 

1  T- */*_     \2  ..   1     T-       v _   2,*„        N2 *iZ6(cr    )2+i   JZ     kero
2(69      )« 

^3° iJ- £ S-Cd-S J 

2,tn       v2 + i    "«- 
' Cd-S-Cd 

S-Cd-S 

where \, \x,  v, and 6,  correspond to central forces between first, 

second and third neighbours, kQ, kQI, k - end k _,  correspond to 

non-central angular forces between first and second neighbours. 
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The Coulomb part has been determined by summing the second 

derivatives of 

„C   T~      ek ek'    

Ik  | i(l,k) - s(l,k»)| 
l'k* 

using the Ewald transformation. 

2    3 The Coulomb field is proportional to a parameter p = q /a 

having the dimensions of a spring constant, q being the effective 

charge of the ion and a is a lattice parameter. The values of the 

parameters taken in this first calculations are the following : 

X = 1.061X105 dyn/cm , 

u = 0.203X105 dyn/cm , 

v = -0.086x10' dyn/cm , 

6 = -0.065X105 dyn/cm , 

kQ = 0.170X105 dyn/cm , 

ke, = 0.154X105 dyn/cm , 

Kr6 = ^e^re' = -°-°2l6x10' dyn/cm , 

p = 0.032X105 dyn/cm . 

The dispersion curvec of wurtzite for the FA} Hi and rK direc- 

tions of the Brillouin zone calculated by this method are given iu 

Fig.6. 

s 

Figur« 6.     Dispersion curvei of Wurttite for the M, r, A and K points 

of tha Brillouin Zone. 



A calculation done for an hypothetical cubic CdS shows the dif- 

ferences between the two phases : wurtzite and blende. 
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Figure 7.     Dispersion relations for Blende for the M, r end L points 

of the Brillouin Zone. 

An important check of their calculation is given by the two- 

phonon optical data obtained by infrared and Raman spectra. Table I 

compares the two-phonon Raman scattering in CdS calculated by Nusi- 

movici and Birman with the ones obtained by Tell, Damen and Porto . 

In more recent work  Nusimovici and Birman made a direct 
7 comparison between infrared spectra obtained experimentally 

the calculated two-phonon density of modes. 
and 
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Table I 

Two-phonon Ramcn scattering in CdS-wurtzite 

Experiment 

(cnf1) 
Interpretation Calculation 

(cm-1) 

97 2r6 90 

2M4 86 

207 M1 © M- 201 

M2 © M 202 

K2 © K3 209 

K3 
© K3 210 

328 M2 ©M4 323 

M3 
®M4 328 

K1 ©K3 331 

347 A1 ©A, 342 

M1 © M2 345 

M1 © M1 344 

M2 © M2 346 

M1 © M, 342 

M3 
» M 346 

K2 © K, 347 

K2 © K2 346 

K3 
© K3 344 

K3 
© K2 346 

j6 4 A1 © A1 363 

K1 ©K2 368 

K1 © K3 369 
M1 « M1 368 

556 2K 558 

2M3 
550 

605 2r1 596 

2F5 
;D 616 

Photon-Fhonon Interaction. 

One of the main possibility to obtain experimental precisions 

on the dispersion relations and particularly the normal modes fre- 

quences at the center and the edges of the Brillouin zone are infra- 

red spectroscopy and Raman scattering. For the II-VI compounds of 

blende and wurtzite structures these two methods are complementary 

because of particular selection rules based on symmetry considera- 

tions. 
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The optical absorption is given by the transition probability 

proportional to a matrix element which is different from zero only 

when energy and momentum conservation rules are obeyed. The matrix 

element for optical absorption depends on the dipole moment operator 

Y« It is then easy to deduce by group theory arguments the optically 

active normal modes in blende and wurtzite structures. These are of- 

ten different from that active in Raman scattering while in those 

cases the matrix element is related to the polarizability tensor 71. 

4.1. Infrared Dispersion. 

When the electromagnetic field acts on the crystal there is a 

coupling between the elastic waves giving the phonon fields and the 

electromagnetic waves giving the photon fields. 

The electromagnetic field is given by Maxwell's equations : 

CSi Ö = £ £ » 

1 » 
isi S±nt - - i Ö » 

div D, =■  0 , (4.1) 

div fl = 0 , 

and    C = JBint + 4Tt£    . (4.2) 

The phonon field is described by the induced polarization dui 

to the displacement in opposite directions of the two sublattices 

formed by charged ions and the internal electric field ]}.   .  equal 

to the macroscopic electric fiell in the crystal, 

S,H,I» + ir   £int        ' (4'3) 

and also by the equation of motion 

a N e    e 
M Ü * (Mu.^ -JL^k)^ gint    . (4.4) 

The solutions of the coupled system of equations representing 

the radiation field and the phonon field „ive thu infrared dioporsion 

for a given crystal. 

A detailed analysis of infrared dispersion for blende and wurtz- 

tructures has bee 

summarize the results. 

ite structures has been carried out by Le Toullec  ; this chapiter 
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4.1.1. Blende. 

In a rigid ion approximation when the ionic charge is centered 

on the ion;  the dynamical matrix can be written in two terms  : 

caß(k *•) " Coß{k"k,> + <Wk kf) (4.5) 

The first term concerns the short range interaction and the second 

the Coulomb interaction due to long ra.;ge forces. The polar modes 

which are infrared active arise from these Coulomb forces. 

The first term gives all the nrrmal modes. For q = 0- the secu- 

lax equation (C-a> I) gives two distinct roots threefold degenerate : 

u  = 0 . 
ac    ' 

1/2 
(4.6) 

The displacement vectors corresponding to u     are u,   - U„ » with the 

two sublattices moving i.i the same direction,  those corresponding to 

to     are u  =-(nu/m )u? , with the two sublattices moving in opposite 

directions. To the optical modes corresponds on induced dipole moment 

equal to 

(4.7) »= ** »1 
Vm2 

m. 

In a rigid non-polarizable ions approximation the Coulomb potential 

energy can be written 

e,   e, 
4-l    T- k    k' 

kk' 

and the coefficients C deduced from * for q = 0 are 

(4.8) 

CC (   °    ) = °<x^k k,; 

471 N eu    e,.,    6^      q a. k   pk'  f BB      V*6x 
^T72  V   3    "    „2  ; (4.9) 

(Vk,)"6    J      *£ 

whore N is the number of ion paires per unit volume. If we have the 

propagation vector a along the Oz axes we obtain now two optical 

branches instead of one. The first ü5TQ is twofold degenerate cor- 

responding to vibrations perpendicular to g s 

2 

^TO = w0   " 

2      411 N e1 

3M where   M = — + — 
mi      m2 

(4.10) 
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«here u,. is the optical frequency when the Coulomb farces are neglect- 

ed and the second IIL    non-degenerate corresponding to vibrations 

parallel to a : 

. 871 N e 2 ,      4KB e 2 

Compared to equation (4.4) we see that these two equations differ by 

the effective charge a,    instead of e e„ due to the fact that we. have 1 si 
considered rigid non-polarizable-ions. 

The displacement in the case of polarizable atoms will be 

u=_VSin|_      m (4>12) 

Substituting in equation (4.3) and subsequently in equation (4.2) we 

obtain the equation of optical dispersion of the crystal 

471 N e 2 

c(u) = c    + 5J5- (4.13) 
M(u,T2-u

2) 

and in the limit u = 0 we have the static dielectric constant 

471 N e 2 

e° = E» + T7^" (4'u) 

where from 

e(„,. .„, lv!=Lis (4>|J) 
■*po " " 

two cases can be distinguished. 

First case  :  e = 0 ; y //a /^Sln*  * longitudinal wave. 

e=0=E„,^>§° U.,6, 
"TO"» 

hence „ 
471 N 8 

•"L2 = "TO (eo/e»> = UT0 +      M e"T        ' U'17) 
00 

This frequency is independent of the wave vector a ssd is equal to 

the longitudinal optical frequency of the system without the external 
field being applied. 

Second case  : li 1 a 1 S>   *  :  transverse wave. 

Prom Maxwell's equations one deduces 

cfq2 (eQ-eo>TQ ,   * , 
2    =  e»o +  5 r =  E(w)       . (4.18) 

CO 0)_„   -   It) 
TO 

s" 
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The incident light interacts strongly with transverse optical 

phonons of the crystal. The normal mode of the coupled system ; 

photon + phonons (TO) is called polariton. The dispersion relation 

of polaritons describes the phenomena of optica1 dispersion. The 

dispersion u = f(q) curve could be easily deduced if one conaiders 

the Lyddane-Sachs-Teller relation 

\0=  ^S (ec/eJ 
Equation (4.18) is now written 

4 " 1 e«o » 
"2-"L0 
2    2 

WT0 

(4.19) 

(4.20) 

The dispersion curve of polariton gives u = f(q) for a system of 

coupled photons plus optical phonons is represented in Pig.8. 

iU Issr*! 

Figur» 6.  Dispersion curve of optical phonons coupled with photons, 
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4.1.1.a)  Introduction of Damping. 

In the harmonic approximation all phonons are independent from 

each other and therefore the equations of motion are linear.  In real- 

ity the system of equations is coupled through the unharDionic terms 

of the potential. Part of the electromagnetic energy brought into 

the TO by the incident radiation field is transferred to other pho- 

nons.  The introduction of a damping constant in the phenomenological 

equations expresses this fact and the equation of motion becomes 

■5 + »T J + »^0»
a«i Sint  • (4.21) 

Equation (4.15) should now be written 

E(W) = e^ +      2        2 ■ (n + ik)'  . (4.22) 
UT0 " u    " ±yU1 

The real and imaginary parts of the dielectric constant are then ; 

r  **  (eo"^ ^0™ r . oil e, = 2nk =  5—=- 5-3  . (4.24; 
1       («jj--cu2) + 7

2"2 

The frequency m., pole of e(ui), can be written 

Uj = cor + iu^ (4.25) 

with ^2 l/2 

«r - C^§-(Y
2/4)]   = "T0 Cl-(Y/2u)10)

2] ' 
and (4.26) 

MY - - *  . 
i    2 

The real part of w_ represents the resonance frequency and dif- 

fers very little from w Q since (Y/W»A) C 1 

The imaginary part of to,, measures the damping, 

u- is a root of e(u) = 0 and can be written 

2 / 2 1/2 
(0L= Ko-(Y74)]  - [iY/2]  . (4.27) 
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The infrared dispersion curves for the transverse modes are 

represented on Fig.9. 

Imaginary part of q 

Figure  9.     fcnharmonic  dispersion,  curve  for   the  TO mode, 

WAVE      NUMBER 

Figure 10.  Anharmonic optic constant!. 
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Figure 11.  Anharmonlc dielectric constants. 
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4.1.1.1a) Experimental results from infrared spectro- 

scopy. 

Dispersion in blende type crystals has been studied by many 

authors. In recent years systematical studies have been developed 

as well by reflectivity as by absorption measurements in the infra- 

red region. Recent results for blende are summarized on Table II. 

Table II - Blende 

Frequencies of the optically active modss in 
Blende type crystals determined by infrared 

spectroscopy. 

UT0 UL0 £o e 
00 

References 

ZnS 274 350 8.3 5,07 a, b 

ZnSe 207 242 7.6 5.4 c 

209.5 250 8.1 5.75 d 

209 257 9.2 

9.1 

8.66 

6.1 

5.90 

e 

f 

g 
h 

ZnTe 177 205 9.1 
10.1 

9.67 

6.7 

7.28 

c 

f 

g 
h 

CdTe 141 168 10.2 

9.6 

9.65 

7.13 

7.21 

c 

f 

g 
h 

a) Le Toullec, Thesis- Paris. 

b) C.Hass and Jl'P.Mathieu, J. Phys. Radium J£, 492 (1954). 

c) A.Mttsuiehi, Paper presented at "U.S.-Japan Cooperative Seminar 
on far infrared spectroscopy", Colombus, Ohio, Sept.1965. 

d) M.Aven, D.T.F.Marple and B.Segall, J. Appl. Phys. 2£  Suppl., 
2261 (1961). 

e) S.S.Mitra, J. Phys. Soc. Japan .21 Suppl., 61 (1966). 

f) D.Berlincourt, H.Jaffe, L.R.Shiozawa, Phys. Rev. J_29_,   1009 (1963), 
g) S.Roberts and D.T.P.Marple (1967),  To be published, 
h) D.T.P.Marple, J. Appl. Phys. jj£, 539 (1964). 



PPP^VPPÜP' ■ «mpM^niH >WB1WBPv' WE WWW 

17 

4.1.2. Würteite. 

4.1.2.a) Short ran&9 forces. 

The unit cell contains 4 atoms 2 anions and 2 cations, 12 branches 

are therefore expected in the dispersion curves. 

The following relation between C coefficients results from the 

crystal symmetry » 

JS  / 0 x _ J / 0 . , N , 0 , 
(4.28) 

One obtains 6 different solutions of the secular equation. One is 
threefold degenerated and corresponds to the acoustical branches. 
From the 5 other solutions for the optical frequencies 2 are non-degener- 
ate^ are twofold degenerate and one threefold degenerate due to an 
accidental degeneracy for ut$,  = w^ ,,   . 

The relative motion of the four atoms constituting the unit 
cell is schematically res   esented on Pig.12. 

*t 
J 4 

">i nCv.ro (E,'.!",) w]1 
3 

,1 
2t 

1 

2 

't 

J^llCBi-O 

4 
o    » 

,1 
fe.O 21 

1 

3 

2 

.* 

^llfo-.r«) 

4 

,1 
CO "31 

1 

3 

2 

Figure 12. Relativ« motion of the four atoms  in the haxagonal unit cell. 

»««ma >**«isaim.wmm^M>it&,^4 
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In the optical modes of vibration for the frequency w. the sub- 

lattices with the same kind of atoms (1) and (3) are moving in the 

same direction and the sublattices with atoms (2) and (4) in opposite 

directions-. The displacement vectors are related by 

u (1) = _-2 u (2) = u (3) = --A u (4) . (4.29) 

This kind of displacement results into a total dipole moment 

per unit cell : 

M = 2 e* jj ÜÜ2 
1 m„ (4.30) 

For the nodes of frequencies Up and u_ the displacement 

vectors are of the same type but the induced dipole moment per unit 

cell is always equal to zero and therefore these modes are not optic- 

ally active. 

Pig.13 shows the relative position of the normal mode frequen- 

cies near the center of the Brillouin zone deduced only from the 

consideration of the nearest neighbours short range interaction. 

CU A to f 

tu, '211 

"^Jll 

"*u 

•»I 

5 

w2X 

w, '211 

IU 
'311 

*3J. 

Si 

Figure 13.    Position of the norasl mod« frequencies near q 

of short range Interaction only. 

0 In the case 

■■&tU&vk.Hk#H 



■^^*"^VMv«a«m 

'••«•»r- 'T&W'.'tv*,!wy 

* 

19 

4.1.2.b) Long range Coulomb forces. 

n 
The coefficient C deduced from the Coulomb potential energy 

can be written in the case of wurtzite : 

coß^k k,; " 
\ e

k.     . vv. W 1- 4« 

,) 
i75(La     6<xß ~2> ' (4'51) 

kk1 

L       are Lorentz factors in anisotropic crystals and their numerical 
values are known. 

Introducing Coulomb interaction into the determination of the 
normal mode frequencies one have also to distinguish between the 
case whera the propagation vector g is parallel or perpendicular to 
the optical axis Q. The modes corresponding to atom vibrations per- 
pendicular to thd propagation vector labelled TO and these to parallel 
vibration 10, // and J[ refers to the vibration of the atoms with re- 
gard to the e, axis. The optically active triply degenerate mode w 
without Coulomb interaction,  splits now into the following frequencies 

For    alfi : 
.2 „.2 „ „_2 

«LÖ = «H + 8.47 ~T > "*o£ «1J_ - 4.09 -^ ; <"m0/-«l^  - 4.39 -g- • 

For a. //fi » 

V" MV/' 
Na Ne 

<*L0//= w1//+ 8'17 "rf-    I    "SOI  = «i|  - 4.09 H jOj^ = w^ M 

Here N is the number of unit cell per cm , e is the electronic 
charge, and M the reduced mass : M = m.nu/Cm.wO  . These results are 
schematically represented in Fig.14. 

4.l.2.c) Infrared dispersion curves. 

Wurtzite being on uniaxial crystal, because of the anisotropy, 
the infrared dispersion curves depend on the direction of propagation. 
The solutions of the coupled equations giving the radiation field and 
the phonon field are now of the form t 

(n2-e.) [(n2-€|)(n2-e^)-n2sin2e(n2-e^)-n2co820(n2-ei)] » 0 . (4.32) 

8 is the angle between the propagation vector and the optical axis. 

Two types of solutions represented in Fig.15 appears. 

-~-*™^v>-v; JHtfWMMw^tBöagS*! 
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coulomb 
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«III 

u II 

Cd n 

qie    0   9RC 
Splitting of dispersion curves near q «  0 when Coulomb 

forces are taking Into account. 

a) on the left the propagation vector Is perpendicular to the c axis 

b) on the right the propagation vector Is parallel to the c axis. 
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Figure 15. Dispersion curve dependence on Che direction of propagation 
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A) Ordinary solution. 

n2 - ei = 0 . 

This solution is indeper^dent of the angle 6 (Pig-4a). The cor- 
responding dispersion relation is 

b) „2 „ _L P      „2 I ""LOI 
w2-UT01 

(4.34) 

B) Extraordinary solution. 

This second solution corresponding to the second factor of the 
equation (4.32) depending on the angle 9.  Two extreme cases can be 
considered  : 

0 = 0   i.e.    %// fi      and      9 = -z   i.e.    a j. £ 

- First case : g // fi ;  9 ~ 0 . 

The equation (4.32) becomes now : 

e ,An -e.) = 0 (4.35) 

e«= 0   gives    u = <*LO// t solution independent of a« 

The infrared active longitudinal phonon «LO// d° not influence the 
infrared dispersion in the considered direction. 

n -Ei = 0   gives the second transverse solution (Pig.4b) with the 
same dispersion relation as equation (4.34). 

- Second case  : a 1 fi »  9 = ■* . 

Equation (4.32) becomes 

ci(tt-£^) = 0 (4.36) 

where    e j  = 0   with   u * üL. Q . 

2 
n -•£//= 0   with.the dispersion solution "V/ 

2 _  1   .      „2 ^^M a  = "2 V "   ~2~2 5        ^ fa) -Uj, 0// 

(4.37) (Pig.4b) 

We have seen that c*poi  is a transverse optical mode u, J_ a with 

U 1 fi » ,*roi*' *s a transverse optical mode U 1 a with u / fi . The 
solutions of equation (4.32) are given on the Pig.4c. 

Experimental determination of these frequencies are made by 
the following two methods. 

" """""* *"»•**» *K»te**«fcSÄi,iiMe<siö8 
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') Sinple crystals of large dimensions. 

The reflectivity is measured under weak incidence angle (9~15°). 

f The curves representing the refractive index n(u) and the extension 

i coefficient K(u>) are calculated by means of Kramers-Krönig inversion 

I formula. \ 

i. 

The u_0 frequency is the frequency for which the quantity 

(2nK<i>) has its maximum. 

The öL- frequency is the frequency for which one has the rela- 

tion n2-K2 = 0 with (&i/bu>) > 0 . 

In order to be able to determine the four frequencies ID^Q// , 

t*po|   , uhjQ n, WJ^QI   , it is sufficient to prepare a sample with g 

axis perpendicular to the plane of incidence and to use a polarized 

light beam either parallel to the e, axis in which case one obtains 

ULO^and WTO>/»  or perpendicular to the c, axis in which case one ob- 

tains WJ^QI  and UJQI   . 

2) Thin films. 

When transmission or reflectivity measurements are performed 

on thin films under oblic incidence and with a light beam polarized 

in the plane of incidence, the transverse optical as well as the 

longitudinal optical modes interact with the infrared radiation and 

hence their frequencies can ba aeasured directly. In the case of an 

mria-Hai crystal if the thin film is such as to have the jj axis per- 

pendicular tothe substrate one measures then w^o/' a*^ the w^oi fre- 

quencies. This is the case of CdS thin films evaporated on silicon 

single crystal substrates. 

If the £ axis is parallel to the surface of the layer it is 

then possible to observe ULQI. 

!£ 

■öa*ft 
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The different experimental situations in which measurements 

have been made by Le Toullec  are listed in Pig.16. 

fi) thick crystals 
frequencies calculated by 

Kramers Krönig inversion 

X- 'MS// 16. b\ 
fig. 

I« 

LO± 

TO± 
'LOl 

"TOJ. 
fig- 

6.  a 

qj.c 

i- 11 z 
* // 2 

LO/? 

TOJL 

"LOJ. |6a,b\ 
fig- 

"TO± q //c 

thin crvstals active nodes   1     observed frequencies 
T 

,?   I 

^5 E 

X    3 

E sin 6  // c 

E cos tic 

q // ? 

LO // 

T0± 

UL0// 

"TO-L 

ION,? 
E sin t 1 c 

      E cos e // c 

5 1 t 

LO JL. 

TO 

"LOJ. 

»TO //< "TO      < -T0± 

Figur» 16.    Comparison of the optical frequencies of bulk samples and 

thin films, under oblique incidence and with polarised light, 
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The experimental results are summarized in Table III, 

Table III - Wurtzite. 

Frequency of the optically active modes in 
wurtzite structure crystals determined by 

infrared spectroscopy. 

"TO/ 
cm-i 

0).T0i 

cm-' 
<"L0/ 
cnr1 

<"L0| 
cnr' 

£°// ***// 
Eool References 

232 240 298 302 8.9 8.40 5.38 5.3 a 

233.6 241.2 299 305 8.9 8.50 5.38 5.29 b 

CdS 9.53 9.02 c 

235 242 296 303 6.42 8.37 5.32 5.32 d 

167 171 209 211.5 9.95 9.1 6.05 5.95 a 

166 172 211 210 10.16 9.29 6.3 6.2 e 

CdSe 

10.20 9.53 

6.05 5.95 f 

c 

168 171 211 211 9.6 9.3 6.1 6.1 d 

References 

a) Le Toullec, Thesis, Paris. 

b) A. Mitsuishi, Paper presented at "U.S.-Japan Cooperative Seminar 
on far infrared spectroscopy", Colombus, Ohio, Sept. 1965. 

c) D. Berlinccurt, H. Jaffe, L.R. Shiozawa, Phys. Rev. jj>o,, 1099 
(1963). 

d) H.W. Verleur and A.S. Barker Jr., Phys. Rev, J^, 750 (1967). 

e) S.S. Mitra, J. Phys. Soc. Japan 2±  Suppl., 61 (1966). 

f) Shiozawa and al., Research on II-VI compound semiconductors, 6 
quarterly Report, Contract No AP 33 (657) - 7399 U.S. Air Force 
Aeronautical Research Laboratories, Wright-Patterson Air Force 
Base, Ohio. 

4.2. Light scattering. 

The inelastic scattering of the phonons by the crystal is 

generally referred to as Raman scattering if optical phonons are 

involved in the processus and as Brillouin scattering if the acous- 

tical branches are involved. Phonons may be absorbed or emitted and 

accordingly stokes or antistokes lines will b3 observed on the long 

wave side or the short wave side of the incident radiation. The polar- 

isibility of the crystal is composed of two parts  :  one due to the 

nuclear displacements and the other to the consequent electronic 

polarization. 

■^^■Mmmaim 
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In first order the diffused intensity for the stokes Raman line 

in the harmonic approximation is 

Istokes = K vdiff 

nD+1   i • 
HH [ea aab "b e^iffl' 

n is the number of Fhonons occupying the initial p state, v. is the 
P i       th 
oscillator's frequency, e is the a  component of the unit polariza- 

diff th tion vector of the incident radiation, e.        is the b      component of 
the polarization unit vector of the diffused light, ex'b(q ) = bot v/^qu 
is the variation of the a .   component of the polarization tensor for 
the vibration with normal coordinates q . 

e 
Symmetry considerations and group theory arguments define what 

are for each normal mode the polarizibility tensor components which 

have changed during the vibration. It can be easily shown that in the 

blende type crystals the two modes at the center of the Brillouin zone 

ar* Raman actives. 

Experimental results giving the frequencies of the Raman active 

optima.   38 in blende structure are listed in Table IV. 

Table IV 

Observed frequencies of Raman active optical modes 
in blende structure crystals. 

UT0   "LO References 

ZnS   274    349      a) I. Couture-Mathlea,  J.P. Mathieu, C.R. Acad.  Sei. 
Paris .2J6,  371 (1953). 

205    253     b) S.S. Mitra, J. Phys.  Soc. Japan Supply, 61  (1966) 
ZnSe 204   251      c) M. Krauzman, C.R. Acad. Sei. Paris J>6J,1117 (1967) 

205    250     d) W. Taylor, Phys. Letters £££, 556 (1967). 

ZnTe 
177 206  c) M. Krauzman, C.R.Acad.Sei. Paris 264. 1117 (1967) 

174 203  d) f. Taylor, Phys. Letters ££&,  556 (1967>. 

4.2.2. Wurtzite. 

Selection rules for Raman scattering in wurtzite structure crys- 
9 tals have also been deduced by group theory arguments 

active modes in wurtzite are the dollowing i 

TO 

The Raman 

3 03,) { TO^U,) J T02(E2) j TO^Eg) | LO^E^ ; LO^U,) . 
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In Table V are given the experimental results determining the 

frequencies of the Raman active modes in ZnO and CdS single crystals. 

Table V 

Observed frequencies for Raman active optical modes 
in wurtzite structure crystals. 

«LO^ "LOy ^02 "TOii "lOy "TOj References 

ZnO 583 574 437 407 380 101 a) 

538 588 383 433 420 180 b) 

CdS 325 212 256 85 c) 

305 305 252 235 228 44 d) 

References 

a) T.C. Damen,  S.P.S. Porto,  and B.  Tell, Phys. Rev. J^2,  570 (1966). 

b) S.S. Mitra and J.I. Bryant, Bull. Am. Phys.  Soc. _10,  333 (1965). 

c) H. Poulet and J.P. Mathieu, Ann. Phys.  (Paris) °,  549 0964). 

d) B.  Tell,  T.C.  Damen and S.P.S. Porto,  Phys. Rev.   14fl.  771  (1966). 

Lftiltiphonou Interaction. 

The normal modes frequencies at the edges of the Brilluoin zone 

can be.deduced from infrared absorption due to multiphonon interaction. 

Generally all phonone can participate to multiple processes ; the ac- 

tual transitions obey selection rules deduced from symmetry considera- 

tions. 

The theory of the interaction of the radiation field with two 

or more normal vibration modes has been given in terms of second or 

higher order dipole moments       or as due to the presence of aiharmonic 

terms in the potential energy associated with lattice vibrations   ' 
'2 and also as a combination of both 

In the case of optical absorption due to double-phonon processes, 
the contribution to the imaginary part of the dielectric constant due 

to anharmonic terms higher than second order in the potential energy 

can be written 15 . 

ir J 
(u) 

Stiiia 
2      2 

2    EnjJlÜLlJj 
3d' 

da 

Here *T 5*(N/ii)-1/2 , b 

+ higher order terms , 

b3« 
M'1 bq (q) bq (q-) bQT0 y 

iS'*-.- '*.■>,. .{äRs»Hr".i 
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is the coupling fane between the TO mode and the phonons of wave 

vector a. « ± a-,   ,«!>..,= u. ± (I).,   , n. is the thermal mean value 

of the quantum number n.  . The factors (n.,+n.+l) and (n  ,-n.) give 
the temperature dependence of the additive and subtractive absorption 

bands. 

The summation is taken over the surface w(a) in the reduced 

Brillouin zone for which w(a) = u. .,(a)  • The critical points for 
this "combined" density of states give rise to bands in the absorp- 
tion spectrum. 

The contribution to the imaginary part of the dielectric con- 
stant due to second or higher dipole moments can be written : 

E"(U) = U2tf JZ 
2     n-.^-Myj) 

(u>) 

+ higher order terms. 

uj »j.   Igrad^a)!^ 
da 

ir 

Here   Jf(j ~^i) = ^2V^Q( j)-^Q(^)    is ^e change of effective charge 

associated with a given phonon (a) due to a second phonon ("!f). 
J J 

Thus independently of the nature of the processes with which 

one is concerned the characteristic variation of the absorption coef- 

ficient as a function of the temperature is the same. 

Analysis of the absorption bands in the infrared studied as a 

function of the temperature allows to find the critical points of the 

combined density of states. It should be mentionel that this critical 

points do not have to correspond always to the critical points for the 

density of stateb for simple phonons. The condition grad W(-JJ) = 0 

can be satiefyed when grad u(^) = ± grad u(^,) with + for subtrac- 

tive and - for additive processes which correspond to equal and op- 

posite of sign slops of the two-phonon branches. It is also satisfied 

when grad w(^) = grad u(^i) = 0 which corresponds to critical points 

of the density of states curve for simple phonons. 

It cannot be distinguished between this two cases experimentally. 

It is then necessary to perform the calculation of the dispersion 

curves on the basis of a given model and calculate afterwards the 

hystogram of the double-phonon density of states and compare this 

hystogram to the experimental curve. In the case of a rigid ion model 

for CdS this wer* has been done recently by Nusimovici and Birmcn . 

The qualitative agreement between the two curves 1B satisfactory. This 

analysis shows also that all the early works on multiphonon spectra 

implies a great part of arbitrary assignments. 
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In Pig.17 are presented on the same fraquensy scale the two- 
phonon density of states and the absorption spectrum corresponding 
to double-phonon transitions in CdS. 

density 

440 

Figure 17.    Comparison between the calculated and the experimental 

double phonon densities. 

WS*!£|4£j; 
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5. Localized Modes of Vibrations. 

5.1. Localized Surface Modes. 

POT a finite crystal the surface atoms vibrates in a nanner 

different from the atoms in the volume. Wallis   has studied di- 

atomic cubic crystals and find that in addition to the normal modes 

of vibrations it appears localized surface modes whose frequencies 

are situated in the forbidden frequency gap between the acoustical 

and optical bands. The surface modes have non-vanishing electric di- 

poie moments and may give rise to infrared absorption. Such absorp- 

tion has not yet been observed experimentally. 

In order to be able to observe localized surface modes it is 

necessary that the ratio surface/volume is as large as possible. If 

one considers thin film samples the surface atoms can be seen as in- 
14 

dependent impurities atoms. There are approximatively 10  atoms per 
2 

cm at the surface and for a layer of thickness d this would ccrre- 
It % 

spond to 10   /d per cm   impurity atoms. Localized modes for impur- 
18      -3 ities become observable for concentration of the order of 10     cm 

and this means that surface modes can be observed in thin films of 

thickness d{ 1 n . 

5.2. Localized modes of vibrations due to impurity atoms in II-VI 

compounds. 

Localized modes have been observed by means of infrared spectro- 
.15 scopy in homopolar semiconductors like Si containing light impurities    , 

wj 
19 

16 17 
in intermetallic semiconductors like GaAs with Li and P  '  and InSb 

with Al 
18 

as well as in ionic crystals The frequencies of the 

localized modes due to substitutions! atoms and their coupling with 
20 

the radiation field can be deduced on the basis of simple theory 

when no changes in force constant are involved. 

Some semiconductor crystals of the II-VI group such as ZnSe and 
21 

CdS doped with Li and Al   have been investigated recently. Infra- 

red absorption due to localized vibrations in CdSe containing S and 
22 

CdTe containing Se and Li has also been investigated  . Here the 

frequencies of the absorption peaks attributed to localized modes 

are compared with that calculated for a mass defect in wurtzite CdS 

subject to appropriate normal modes frequency scaling. 

23 

"****M***"Wi<iiimiiiinittWBi«iti<iiai*h ■ 
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5.2.1. Theoretical considerations. 

The perfect lattice vibrational frequencies a are roots of the 

secular equation 

Det |Mu2-«| = 0 (5.1) 

where * is the potential energy matrix for the perfect crystal formed 

by atoms with mass M. The introduction of an imperfection into the 

crystal brings a perturbation c to the potential energy. The matrix 

representing the potential energy of vibration of the crystal with 

impurities is *+c. Tbe secular equation for the perturbed crystal is 

then 

Det |Mu)2-«-c| = 0 . (5.2) 

It is possible to define a matrix g whose coefficients are the 
Green's functions of the crystal  : 

g(Mw2-*-c) = 1 - go    . (5.3) 

The localized modes, due to presence of impurities, are then solu- 

tions of the secular equation 

Det |1 - g(u>) c(w)| = 0 . (5.4) 

•In the   wurtzite structure CdS the unit cell 1 contains four 
atoms k = 1, 2,  3»  4   which are respectively Cd_, Cd.,,  S,,  S,-  . 
We just consider a single mass defect (the force constants are left 
unchanged). The defect subspace is three dimensional and localized 
mode frequency is a solution of the secular equation (5.4). 

The matrix c is a unit three dimensional matrix multiplied by 

(NL-M1)"   where M1 is the impurity mass and M.   the mass of the re- 
placed host ion. 

The matrix fj Green's functions elements are deduced from the 
phonon eigenvectors jj(ja) and eigenfrequencies u (jq) : 

rilOrJh     T-^^^k'^expiq^-rD 
(5.5) 

^^.-Mi$mifäk 
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Prom the point group symmetry of the crystal around the defect the 

Green1 e. functions satisfy the following relations : 

and 
««k,«'k'(0'0) (»2)  - 6«a« ««k,«k(C'0) ^ 

6*^(0,0)^)  = gyk>yk(0,0) (a.2) . 

5.6) 

The impurity may replace either Cd or S and four different Green's 
functions are used in this problem : 

«? = Mi <Wi(0'0)(w2) • (5.7) 
g3 = M3 gz3,z3(0»0)(ü,2) » 

64sM3gx3,x3(°'0)(u,2) 

where M   and M, are respectively the mass of Cd and the mass of S. 

For many defect vibration problems and especially for band 
resonance calculations it is convenient to know 

ill. lim 0g(w*i<p) - g'(u) ♦ *Jv(») (5.8) 

The values of 

v«k,«'k'(1'1,)(u) si^aak{ii) Vk'^ exp ^pl-rl') ß[»(3a)-w] 
ig (5.9) 

are obtained by using the computed CdS spectrum *   for 125 values of 
a in the reduced Brillouin zone. The frequency band (u> \ ajj) is di- 
vided into Z = 61 equally spaced regions and the sum (5.9) carried 
over   m(cü^Z) («( (m+l)(w^2)    to from a hystogram for v. The va- 
lues of g'(u) are then obtained at the mid points of the hystogram 
sections by using the Kramers-Krönig relation 

*"* vi(ui') dw' 
Sj(«) - { 2 2 

"*** '""'^'^^***i&K4ttmisA*t*iM&i 
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The results for    oil V.(ü))    and for    u> g!(w)    are plotted in Figs. 

18,   19 and 20. 

WM(fw| 

"-I ,-'> :n 
r-- ri « " > ■    ' ' r- 

/Ml „ 
a.« 

Figure 18.     Imaginary part of the Green1a functions. 
WM vl ^ corresponds to curve l;^----. 
uu vo (u) corresponds to curve 2! —— 
M  2 

^U^^w) 

Jl 

ist. 
Figure 19.    Imaginary part of the Green's functions. 

"M 
V
3 ^ corresponds to curve 3;     

WM v4 ^ corresponds to curve 4:  —— 
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<*,»••> 

* . 

-»- 

Figur« 20.    Re&i part of the Green's function«. 
2 2 

(i) g'.(u) corresponds to curve 1, u g'-(w) to curve 2, 
2 2 

u s*3<»> to curve 3, end <o g'4 (a) to curve 4. 

The localized mode frequencies are solutions of the following 

equations : 

e a) g = 1  for the r mode 

e, a) 
1 » gp = 1  for the IV mode 

where the impurity replaces Cd and 

2 
ei u 6u ■ 1  for the T. mode 

2 
E, u) g. = 1  for the rc mode 3    4 5 

where the impurity replaces S 

(5.10) 

(5.11) 

€1 = (M^M'J/M,  and t^ = (ny-M')/«^ 

■■■'v# ua*3nts.ii • ■ii^w,i.i,. UlefeA| 
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The imaginary part of the Green's functions v.(to) may be ccm- 
pared with the one-phonon density of states in CdS recently calculated 
and shown in Pig.21.  The functions v (UJ) and v (u) related to the 

heavy Cd ion displacement vectors are enhanced in the low frequency 
acoustic region snd the functions v,(c»>) and v,(w) related to the light 
S ion displacement vectors are enhanced in the high frequency optic 
region. 

ApUHcm 

1.5 

ii     tfcm-« 

F18ure 21'    0ne Phon°° density of states for CdS. 
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a) Localized godea. 

The localized mode frequencies obtained from equations (5,10) 

and (5.11) are platted, in. Pig.22 versus e. 

Figure 22.    Localized mode frequencies for a mass defect — - I 

Is plotted versus t^   for curves 1 and 2 where tne 

impurity replaces Cd, and versus E. for curves 3 and 4 

where the impurity replaces S. Curves 1 and 3 correspond 

to r. modes and curves 2 and 4 to r, modes. 

If we suppose Uy = 308 cm" for CdS a localized mode appears only if 

e_ > 0.36 for an impurity replacing S and e )> 0.58 far an impurity 

replacing Cd. If e is large enough, two modes appear out of the band; 

a singlet 1^ and a doublet r_ with a higher frequency than the singlet. 

The splitting increases when the impurity becomes lighter. Up to now 

localized modes due to a light impurity mass defect have only been 
f% 7        01 

observed for Li and Li in CdS . We shal discuss such modes observ- 
ed in other II-VI semiconductors. Predictions for different impurities 
in CdS are summarized in Table"VI. 

Table VI 

Localized mode frequencies for substitutions! 
impurities in CdS 

' I 

Impurity Replaced Ion M1 e <i>r. cm" loIV cm" 
5 

Be Cd 9 0.92 540 580 

Mg Cd 24 0.786 365 380 

Ca Cd 40 0.683 320 330 

0 S 16 0.5 324 339 
Li Cd 7 0.94 615 665 

» If-—■ ■ 
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For light impurities (e - 1) all the localized mode frequencies 

tend to infinity. This can be shown from the limit form of the Green's 

functions vhen w is much bigger than w(ig)  : 

but 

w 2v  ^- lff»k(te)l   1 

^ff0k(i3ä) V^ = &aß «Jfc, . 

then when w -» « 

and the solution for e is e ~  1 . 

b) Band Modes. 

When a heavy msss impurity is introduced a band resonance may 

appear at u \ i±,.  The response of the lattice is related to the imag- 

inary part of the imperfect crystal Green's functions 

[nv.(w)]/2w 
Im g.(w) = r 5— . 

1     [1 - £(02g^(ü))]2 + [KEUV^ü))]2,^ 

So a resonance is well defined at the u which is a solution of 

1-eu gJ(w) = 0 only if v. (to) is small. For 3e in CdS, e * -1.5 and 
— 1 

a resonance is expected at 210 cm 

The model on which this calculation is based being simple, one 

is justified to extend the results to other II-VT compounds when no 

considerable changes in force constants are expected when going from 

one compound to another. 

In the cubic crystals of this group, like CdTe for example, the 

site symmetry is T. and therefore one triply degenerate mode IV is to 

be expected. 

..*»»% 
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5.2.2. Experimental observations of localized band and gap 

mode8. 

5.2.2.1.  Se in CdS. 

Ihen introduced in CdS single crystals tho Se with mass M = 79 

replaces the S atom with mass m - 32, Cd having a mass of m = 112.4, 

we have the relation m_ \ M \ m The mass parameter in this case is 

e = (m -M)/m = -1.47 . The infrared reflectivity spectrum (Pig.23) of 

this system shows a resonance at 1B0 cm 
-1 

CdS«l.5XSe 

""WAVE NUMBER Cem-'D 

Figur« 23.    Infrared reflectivity ipectrum of CdS with 1.5 Z Se. 

-1— 
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This frequency being out of the restraWen region the corresponding 

mode could be considered as a gap mode. The density of mode at this 

frequency (see Pig.21) is very low, practically zero, one can there- 

fore consider that this mode is situated in a forbidden frequency 

region , the frequency gap , and is therefore called a gap mode. 

With increasing concentration of Se the gap mode frequency, a> = 180 
-1 ^ 

cm , splits off into two modes having respectively the characters 

of a transverse optical and a longitudinal optical modes.The frequen- 

cies of these two modes fall apart from each other linearly with the 

concentration and reach the limit of (ü„0 and üL« for CdSe respectively 

(o,_0 = 170 cm" and a.» = 210 cm" when Se approaches 50^. The varia- 

tions of ÖL.» and UJ_0 deduced from the position of each concentration 

of crossing of the zero line for the real part of the dielectric con- 

stant in changing from negative to positive values and from the posi- 

tion of the peak of the imaginary part of the dielectric constant are 

shown in Pig.24. 

n 
7 

E 

220 

210 

200 
tr 
UJ 
m    190 
3 
Z 

UJ 

I 
BOk. 

170 

160 

1501 

optical      frequencies    of   Cd Se 

Eic {T. 
— LO 
—TO 

E//C r"£ 
U -r- TO 

20 40 60 

Cd Se   coneenJrahon    C%2 

80 100        *Cd Se 

Figure   24. Frequency  variation  of   TO  and  LO   in   the   CdS-Se   alloy 

with   increasing  concentration  of   Se. 

In earlier investigations concerning the reflectivity 
spectra of CdS-Se alloys analogous results have been obtained. 
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5.2.2.2. SinCdSe. 

For concentration higher than 50$ of Se in OdS the situation 

will be inverted, the impurity will be now S in CdSe. S is a light 

impurity If = 32 in Ci.Se  substituting Se with m? = 79. the defect mass 

parameter e here is E = (79-32)/79 = 0.595. 

In -the wurtzite structure CdS have a unit ceil 1 containing 

four atoms k = 1, 2, 3» 4, which are respectively Cd-, Cd.--, ST and 

EL,.. The point defect introduced in the perfect crystal substitutes 

one of these atoms. In a first approximation only the mass defect is 

considered assuming that substitution of an atom for another does not 

introduce changes in the force constants of the perfect crystal. The 

localized mode frequency is a solution of the secular equation (5.4). 

To solve this equation it is necessary to take only a 3><3 submatrix 

G(u ) corresponding to the defect subspace. Substitution of the Cd 

and S atoms are studied with the mass coefficients respectively 

et = AM/M1   ,   e = AM/M- 

In the wurtzite crystal the point defect has no more the site sym- 
metry IV. but Cfi    and the triply degenerate localized mode r._ is now 
split into two modes I'    and IV simply and doubly degenerate. The local- 
ized mode frequencies are solutions of the following equations when 
the impurity replaces Cd atoms : 

2 
. e.u g_ =  1    for the IV mode doubly degenerate corresponding to 

vibrations of the impurity atoms perpendicular to the c axis of the 
crystal ; 

2 
. e.u» g. = 1 for the r, mode non-degenerate corresponding to 

vibrations of the impurity atoms parallel to the c axis of the crystal. 

When the impurity replaces the S atoms the localized mode fre- 

quencies are solutions of the following equations : 

2 
e,ü> g. = 1 for the rc mode , 
3  4 5 

2 
e,w gT = 1 for the IV mode. 
3  3 1 

The position of the localized modes is obtained directly accord- 
2  2 ing to these equations from the plot of us g(u ) as a function of the 

9 9 ! 
frequency in taking u> g(u ) = — . 
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If we admit that the density of states does not considerably 

changes from CdS to CdSe we may then use the calculated curve for CdS 

given in Pig.22, provide we make the appropriate frequency scaling 

in substituting for UL. the value of OIL. for CdSe which is UL- = 210 

cm" , to deduce to, . The values obtained in this way are ^(T.) = 244 

cm"  and ^(r^) = 256 cm" . The infrared reflectivity spectrum for 

CdSe containing S is given in Fig.25. 

CdSfOsks 

ISO 2C0WAVC     NUMBER     Cem-'D ' 

Figure   25. Infrared  reflectivity  of  CdSe with 0.5  XS» 

The experimental values deduced from Pig.25 are respectively 

u(r.)= 266.5 cm"1    and    w(rc) = 269 cm"1. 

The difference between the calculated and observed values could 

be attributed to a decrease of the first neighbours force constants 

when S io substituted for Se. 

The line width is of the order of 4 cm"    and the relative line 

width    Aw/to = 0.015    which is of the order of magnitude far relative 

broadening       when Aw describes the broadening of an optical spectral 

line due to anharmonic interaction involving the vibrational energy of 

the local mode. A temperature line shift is observed of the order of 

3 cm"1 betweer. 25°K and 300°K. 

On the basis of symmetry consideration it is easy to deduce the 

selection rules showing that from the split of r    and r_ modes only 

one wj.ll be optically active for polarized light. The r   will be active 

for light with E/C   and IV will be active for EJ,C. It is surprising to 

find out that experimentally the two picks seem to be optically active. 

.v«'»v 



f™ 

41 

When the concentration of S in CdSe increases the two localized 

modes 3hifta in frequency until reaching the limit frequencies corre- 

sponding to the normal modes in CdS respectively <4-Q = 240 cm" and 

WL 0 = 300 cm"
1. 

6.2.2.3. Light impurities in CdTe. 

CdTe has the cubic zinc-blende (sphalerite) structure band on 

the cubic space group Tl. The dispersion curves calculated for a 

hypothetical cubic CdS show only slight difference from that of wurtz- 

ite. If it is acceptable to use the same frequency distribution as in 

CdS it will be possible with an appropriate frequency scaling for LO 

to deduce a value for la. for each impurity. The frequency of the 

localized mode obtained in this way may represent a good order of 

magnitude to compare with the exprimeatal results. 

a) Se in CdTe. 

Se H = 79 is a light impurity in CdTe which substitutes to the 

Te atom whose mass is m? = 127.6. The mass parameter in this case is 

E = 0.38. The longitudinal optical mode frequency is 0^- = 167 cm . 
JJU 

Prom the relations given in Pig.22 it is easy to deduce the value of 

the localized mode frequency which is UL  = 167 cm" . 

The infrared reflectivity spectrum for CdTe containing Se is 

given in Pig.26. 

CdT« + ~ |%5» 
CdTt 

WAVE NUMBER Cem"Q 

Figur« 26, Infrared reflectivity spectrum of CdTe with *» 1 X  Se. 
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The Kramers-Xröhig analysis of the optical constants; is repre- 

sented graphicall," in Fig.27. 

CdTt*~IXSe 

U . 2nk 

WAVE     NUMBER     Cem-'J 

Figure   27. Dielectric  constants  of  CdTe  with ^s. IX   Se, 

From the peaks of the imaginary parts of the dielectric con- 

stant we deduce the values of <»)_» = 139 cm"    and the localized mode 
-1 1 frequency I»L  =  170 cm    .  The calculated Im -r shows ^wo peaks at fre- 

quencies 162 and  180 cm~  . For pure CdTe the longitudinal optical mode 

frequency is ULQ =  16? cm"  ;in doped crystals we have üLQ =  1G2 cm 

and co,      =  180 cm"  ; UL» would then suffer a slight shift of 5 cm 

when a light impurity is introduced. 

The line width for w.  is of the order of  10 cm"    and the re- 

lative line width    Au/u - 0.059    which can still be considered as 

relative enharmonic broadening. 

b) Li in CdTe, 

The introduction of Li in CdTe has been done by the method of 

progressive crystallization. The crystals obtained by this method 

when at low concentration of Li approximately 0.1# are n-type and 
14      -^ with low free carrier concentration of the order of 8x10     cm    , At 

higher Li concentration approximately 1# the samples are of p-type, 

the free carrier concentration is very low of the order of 5x10   cm"*. 

JÜ: 
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The samplea with low Li concentration are opaque in the infra- 

red. At highsr Li concentration the samples become transparent proba- 

bly because of a partial compensation. 

At low concentration Li is supposed to occupy interstitial 

sites and tc act as a donor whereas at high concentration the occupa- 

tion of substitutional sites where Li acts as an acceptor becomes 

predominant. In the neighbourhood of 1$ of Li a partial compensation 

in  achieved and the samples are transparent. The absorption spectra 

of crystals with \$  of Li at 300°K and 100°K are given in Pig.28. 

« 
160 

140 

E 
a 

3 u 

40 

20 

Figure   28, 

200 WAVE      NUMBER Ccm-'3 300 ? 

Absorption spectra of CdTe with 1 %  Li at 300*K 

Pure crystal    

1 X  Li        — . — . —- 

and at 100'K 

Pure crystal   ■ 

1 X  Li       — .. — .. — 

These spectra clearly enow absorption peaks due to the presence of LI. 

The largest peak is centered at 270 cm" at 300°K and it shifts to- 

ward the high frequency for lower tempera cures : the maximum of the 

peak is situated at 275 cm"1 when taken at 100°K and it is at 277 cm"1 

at 25°K. 

The width öf this band of the order of 35 cm  is anormally 

large so is also the relative band width Aw/w = 0.130. 

**■""'m*fa *«''*--"**'***■***>-.*«**%£, aftnft^l 
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5.2.2.4. Impurities in ZnSe. 

ZnSe is again a cubic zinc-blende crystal for which the analysis 

of the infrared spectra concerning the phonon interaction with the 

radiation field can be treated on the ba3is of the equivalent disper- 

sion relation for the sphalerite CdS. The tacite assumption in calcula- 

tion the local mode frequencies OL  is that the frequency distribution 

is analogous to that of CdS. The experimental results are very close 

to that calculated in this hypothesis which can be therefore consider- 

ed as a satisfactory first order approximation. 

a) Mn in Znije. 

When Mn, M = 55, is introduced in ZnSe it substitutes the Zn 

atom of mass m = 65.A. The mass parameter is then e = 0.16. The mass 

difference being extremely small r \ 0.30 for a (i. = 25? cm~ the mode 

due to the presence of this icpurity is a band mode and therefore not 

directly observable in the frequency range out of the restrahlen. 

The infrared reflectivity spectrum of this system is given in 

Fig. 29. 

 ZnSt *t*«Mn 

 2nS« 

WAVE     NUMBER    Ccm-'J 

Plgure  29. Infrared reflectivity of ZnSe with 1.5 Z Mn. 

■WSÖ3S 
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A close examen of the optical constants displayed in Fig.30 

shows a structure on the imaginary part of the dielectric constant 
TO 

which gives two frequencies for the transverse optical mode : u. ■ 

19? cm" and w 
TO 

= 202 cm 
-1 

WAVE  NUMBER Ccm-'3 

Figure 30.    Dielectric constants of ZnSe with 1.5 %  Mn. 

For the pure ZnSe we have uT0 - 202 cm . It seems that the presence 

cf an impurity shifts the wLQ from uLQ - 252 cm" to an higher energy 

WL0 " 254 Cm" 

b) S In ZnSe, 

S is a light impurity in ZnSe substituting Se. The mass factor 

is e - 0.595. The frequency scaling done with üLQ = 252 cm" leads to 

a localized mode frequency w. = 297 cm" . 
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The reflectivity spectrum for 3 doped  ZnSd is represented in 

Pig.31. 

WAVE      NUMBER      Ccm-1} 

Figure   31. Infrared   reflectivity  of   ZnSe  with <vl   X   S. 

The real and imaginary parts of the dielectric constant deduced 

by the Kramers-Krönig analysis are desployed in Pig.32. 

Zn5t*vl%5 

100 

E*-n».K*. 
C*»2nK. 

(I      imClL3  

fHi) 

l 

200 300 
WAVE        NUMBER Ccm-'3 

Figure  32. Dielectric  constants  of  ünSe with ^1  2  S, 

::?;.  *■> : S^%J^ 
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The normal mode frequencies for £he undoped crystal are üL0 = 252 cm   ', 
WT0 = 2C'2 cm    ' and for the S doPed tiie local mode frequencies are 
<üjT° = 297 cm"1 and u^10-505.5 cm"1. 

The line width which is function of the concentration is in this 

case (~1# S) Au = 22 cm"    and the relative line broadening is AU/OJ = 

0.074. 

c) Te In ZnSe. 

Te with M = 127.6 is a heavy impurity in ZnSe. The mass para- 

meter is e = -0.615. A heavy defect in the lattice should lead to a 

resonance in the frequency allowed region or to a gap mode if the 

density of states at the given frequency is very low or pratically 

zero. 

The infrared reflectivity spectra for pure and Te doped ZnSe 

are given in Fig.33. 

50 WAVE     NUMBER    Ccm-'}    275      * 

Figure 33, Infrared reflectivity of ZnSe with 4 X  Te, 

■;•'-=*.<.-.>, *■»; :*.^„rt -^.üt&i^gU 
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The real and  imaginary parts of  the dielectric constant    are 

desployed in Fig.34- 
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Fl_gure_34. Dielectric  constants  of  ZnSe with  4  Z  Te. 

Prom the difference between the imaginary part of the dielectric 

constant for pure ZnSe and Te doped ZnSe one can deduce the frequency 

of the gap mode u)   =  182 cm -1 -1 The width of this band is Au> = 40 cm 

which combines the impurity line width and the band broadening due to 

the concentration.  The relative band broadening is Au>A> - 0*22  . 

4» "-,-,.;    ftjia 



r 
49 

7. Discussion. 

• | 

In spite of the considerable amount of work presently under way 

in the lattice dynamics of the II-VT compounds and the considerable 

progress it still remains much to be done. 

The dispersion relations for CdS have teen calculated in terms 

cf an extremely simplified model whose physical significance remains 

to be explicited. Although the first results are satisfactory and the 

eigenvalues and eigenfunctions have served as basis for the calculation 

of the local mode frequencies which are in good agreement with the 

experiment, it is certainly suitable t<  improve this model including 

physical parameter such as the electron polarizability of the ions. 

The calculated double-phonon density of states do not allow a direct 

comaprison with the two-phonon optical spectra in the whole 

spectral range. Such a descrepency should be understood eather in 

terms on unsatisfactory physical implications in the calculation of 

the frequency distribution curve or in terms of second order matrix 

elements for optical transitions employing more than two particles. 

The qualitative features of the normal mode spectra are well 

understood and the spectral measurements give satisfactory quantita- 

tive data for those modes which are coupled to the radiation field 

at the appropriate points of the Briilouin zone which are eather the 

center or high symmetry edges. 

Studies on thin films have proved to be extremely useful far 

the experimental determination of the normal mode frequencies. 

Surface modes are still to be seen experimentally. 

Elementary calculations using Green function technics and 

assuming isotopic substitution without force constant changes have 

proved to be an extremely useful guide in the discussion of the 

experimentally determined localized modes due to impurities. The 

orders of magnitude calculated even in drastic assumptions coincide 

very closely to with the experimentally measured values. The reason 

ia probably the fact that the calculated density of states obtained 

in a very rough model which is used for the calculation of the local- 

ized modes frequencies is insensitive to 3light changes in force con- 

tents when an ion is replaced with a similar ion from the same groups. 

Only an improved initial model may lead to results more sensitive on 

subtile force constant changes produced by the substitution of analog- 

ous ions. 
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The first measured localized mode frequencies in II-VI compounds 
21 

are  those concerning the Li doped  ZnSe and CdS      .  In the case of CdS 

doped with Li    anormally large bands have been observed and attributed 
7 -1 6 -' to the presence of Li    at 457 cm      and Li    at 474 cm    . 

If Li wa3 substituting Cd atom the mass difference parameter 
7 ft 

would be e = 0.938 for Li    and t = 0.946 for Li   ,  this would give in 

tha simplest approximation of isotcpic mast- substitution for the 

localized mode frequency of the impurity atom vibration along the c 

axis the following values  s 

7 -1 for Li    ,  Wp. = 492 cm      , 

for Li    , wr. = 503 cm 

The calculated values are larger than that observed experiment- 

ally there would indicate that Li interacts stronger with the host 

lattice than a simple mass defect.  A change of force constant v/ould 

explain tbia difference.  Increase in the deviation of force constant 

from the host lattice force constant acts in the same direction as a 

reduction of mass i.e. increase of the localized mode frequency. 

The presence of 5 in CdSe crystals introduces a mass defect 

parameter e = 0.595 and hence 

top    = 244 cm"        ,      Wjv = 255 cm" 

Experimentally two peaks are observed at 266.5om~ and 269 cm" at 

room temperature. The calculated values now are smaller than the ob- 

served ones. This discrepency could be also attributed to a change 

in force constant where Se is replaced by S,in this case the substi- 

tution would means a decrease of force constant. 

The j.ine 'width is of the order of 4 cm" and the relative line 

width &w/w ig O.O15 which is of the order of magnitude for relative 

broadening 2' of the defect mode frequency when AID describes the 

broadening due to anharmonic interaction of an optical spectral line 

involving the vibracional energy of tha local mode. 

A  temperature line shift is observed of the order of 3 cm" 

between 25°K and J00°K. 

In the case of Li doped CdTe an absorption band is observed 
-1 centered at 270 cm  which could be attributed to localized modes due 

to the presence of Li but whose interpretation is difficult for many 

reasons a i particularly because of the band width which is of the 

order of 35 cm" and does not seem to vary considerably with temper- 

ature. The relative band width Aui/w here is 0.130 what is by a factor 

of 10 larger than what would be expected in the case of single subs- 

titutional impurity vibrations. 

.Vi-.'.ivsfe».;;,;:* 
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The essential contribution to the residual line width when 

T - 0 comes from the contribution of the spontaneous decay of the 

excited localized vibrations into bana modes. In this process the 

energy conservation principal J3 % ~  u should be respected. In the 

case of Li in CdTe, as well as in the other cases we have examined 

here, u \ 2 u , consequently the decay of a localized mode into two- 

band modes, is possible through the third order anharmonic potential 

and this decay eould be the dominant process at room temperature 26,27 

In order to understand the possibility to obtain optically 

transparent CdTe with relatively high concentration of li we had to 

suppose that at low concentration Li is donor and at high concentra- 

tion gives rise to acceptor levels. This leads to the possibility of 

an almost complete compensation for a given concentration of dopant. 

The interaction of an interstitial atom with the lattice is not the 

same as that on a substitutional impurity. It is therefore clear 

that although the mass is the same due to changes inthe force con- 

stant the frequencies of the localized modes should be different for 

the two situations. One should in such a case observe two absorption 
6      7 

peaks. In addition Li has two isotopes Li and Li constituting each 

one a mass defect and therefore giving rise to an absorption band each. 

All these are reasons to believe that the large band at 270 cm" 

contains a certain number of peaks remaining to be resolved in the 

simplest case. 

Experiments are now undertaken at different concentrations of 

Li in order to further investigate this situation. 

The presence of Se in CdTe leads to a typical localized mode 

whose frequency deduced from the Kramers-Krönig analysis of the re- 

flectivity spectrum inii = 170 cm" whereas the calculated value 
-1 

with the appropriate normal mode frequency scaling is u. = 167 cm . 

The presence of impurities at relatively high concentration seems to 

have an effect on the longitudinal mole frequency which is expressed 

by a slight shift of the normal mode frequency w Q is now 162 cm" 

and a longitudinal part to the local mode frequency appears at 180 

cm- . At high impurity concentration one can therefore define a trans- 
TO       -1 

verse and a longitudinal part for the local mode uu  = 170 cm  and 

a,h   = 130 cm"  the calculated value for the local mode frequency is 
■*■ _ i 

within these limits .• w. = 167 cm 

Analogous situation has been formed in ZnSe doped with S where 

the calculated value ux, = 297 cm" is within the limits of that ob- 

tained experimentally : OL  = 297 cm" and w.  = 30^5 cm" . 

, A*,*, <* *tw**»we*^H.jiw>^.«*$^ 
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Gap modes or band resonances have also been observed in the 

case of heavy impurities as for example 7e in ZnSe where a = 182 cm" 

has been deduced from the analysis of the reflectivity spectra. 

' A quite complete investigation on the effec ;s of heavy doping 

i has been carried in the case of the system CdSe-S. For Cd3 containing 

\ low concentration of Se the dopant acts as a heavy impurity and gives 

a gap mode at ui = 180 cm" . The increase of the 3e concentration 

brings up two constituants of the u> band having respectively the 
LO ° TO character of a longitudinal to   and a transverse mode w  . The fre- 

LO     TO     * ® quencies u>   and u   are linearly dependent on the impurity concen- 
g      g 

tration and tends toward the normal modes frequencies of CdSe at tne 

; high concentration limit. 

S in CdSe gives two localized modes t^(r )= 266.5 cm"  and 

üLCTJ-) = 269 cm  whose frequencies are also concentrations dependent 

and reach at high S concentration the normal modes frequencies for CdS. 

It seems experimentally that we have a continuous relation 

between localized and normal modes frequencies depending on concentra- 

tion. It will be highly interesting to undersee theoremoally such a 

continuous relation when we pass from a perfect lattice to a desorder- 

ed system. 

8. Conclusion. 

The discussion of lattice dynamics of II-VI compounds is quite 

general and interesting in one of the fact that the bonding spanes 

the whole range from covalent to ionic. A complete calculation of the 

dispersion relations is now available based on a simple model in which 

short range forces simulate covalent band contribution and Coulomb 

forces are functions whose origin is the ionic nature of the bounding. 

The parameters used in the calculation are plotted with the optically 

measured normal modes frequencies at the center of the Brillouin zone. 

The calculated phonon frequencies of the edge of the Brillouin zone 

in the principal symmetry directions compares well with the experiment- 

al values. 

;!*#*■*«* A* 
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Analysis of the coupling of the radiation field with the phonon 

field is developed in the frame of a macroscopic theory which account 

well for all the experimental situations. Measurements in blende and 

wurtzite structures are consistently analysed. 

It is shown that numerous arbitrary assignments in the multi- 

phonon optical spectra can be easily erroneous because while it is 

clear that critical points in the combined density of states give rise 

to absorption band it is not necessary that this critical point cor- 

responds to critical point in the single phonon density of states. In 

order to have a critical point in the combined two-phonon density of 

states the condition grad w(q) = 0 can be satisfied also when 

grad <D(^) = * grad u(^) which corresponds to equal and opposite of 

sign slops in the two-phonon branches. It is then cl'ar that the only 

correct assignments will come from the comparison of the optical ab- 

sorption spectra with the calculated density of states when the dis- 

persion relations are known. An example concerning CdS is given here. 

The introduction of imperfections in the crystal depending on 

the impurity mass gives rise to localized modes, to resonances or to 

gap modes. The examen of a certain number of systems has shown that 

at high impurity concentration the localized as well as the gap modes 

give rise to a restrahTen band in the reflectivity spectra which sub- 

mitted to a Kramers-Krönig shows contributions having transverse op- 

tical and longitudinal optical characters. With the increase of con- 

centration and forming the ternaryalloy& the frequencies of these two 

parts depart from each other and at about 50$ in, the concentration 

reach the values of the normal modes frequencies of the system. This 

frequency shift seams to be linear with concentration and offers an 

interesting feature in the study of the transition from perfect crystal 

with low impurity ccncentasctlai to the disordered ternary system. 

With the development of the investigations of the dispersion 

relations of perfect crystals we hope to see also further studies con- 

cerning the disordered alloys. 
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