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OPTICAL STUDIES OF LATTICE VIBRATIONS
IN II-VI SEMICONDUCTING COMPOUNDS

M. Balkanekl

Laboratoire ¢e Fhysique des Solides
de la Paculté des Sciences de Paris

1. Introduction.

In recent years considerable efforts have been developped to-
ward the understanding of the main features of lattice dynamics of
a great number of crystals among which the II-VI semiconductor com-
pounds have a good position. Neutron scattering technics beging in-
applicable to most of these compounds the experimental determinations
of the normal mode frequencies are essentially done by infrared spec-~
trometry and Raman scattering. Being ionic crystals all these com-
pounds pcssess first order dipole moments due tu the relative dis-
placement of the comstituting iona. The optical vibrational modes
are often allowed for optical transitions in view of specific selec-
tion rules and give the possibility of direct determination of the
frequencies of these modes at the center of the Brillouin zone. Those
of the optical modes which are not allowed for direzt optical transi-
tions are often allowed in Raman scattering and hence available far
direct determination by spectrosccpic technics.

Normal modes frequencies at the edge of the Brillouin zone eare
determined by second and higher order processes due to their partici-
pation in two or three phonon combinations as well in infrared spec-
troscopy 8 in Raman scattering.

The realistic boundary conditions taking into consideration the
discontinuity at the surface of the crystal bring up the surface modes
of vibrations for the normal lattice end the localized surface modea
for a crystal with foreign atoms absorbed at the surface.

Presence of imperfections or foreign atoms leads to the appear-
ance of localized modes of vibrations which ere also coupled to the
radiation field by means of resonant absorption in the infrared region
and by Raman scattering.




Parallel to the experimental investigations theoretical studies
have been developed and the dispersion relations calculated for seme
of the II-VI compounds. The theory of syatems with high impurity con-
centration and the lattice dynamics of the alloys is now under way.
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2. Crystal Structures.

The II-VI semiconducting compounds crystallize in a variety of
polymorrhic modifications, the principal structure types being :

-t L MR e

a) Cubic zinc-blende (sphalerite) structure ' 'sed on the cubic space

e .
group Td :

5 g

ZnS, 2nSe, ZnTe, CdTe, HgS, HgSe, HgTe crystallize preferen- 7}
tially in the zinc-blende structure. ‘
Each unit cell contains 2 atoms and the crystal will therefaore
pcssess 6 phonon branches.

b) Hexagonal wurtzite (zincite) structure based on the hexagonal

space group cgv H

Zn0, ZnS, CdS, CdSe crystallize preferentially in the
wurtzite structure.

Each unit cell contains 4 atoms and the crystal will therefore
possess 12 phonon branches.

A schematic representation of these two crystals crystals struc-
tures is given in Fig.1.

Figure 1. Schematic representation of Blende and Wurtzite crystal structures,




On the le’t side is shown the cubic structure where one can
distinguish three different successions of layers A, B, and C, with
alternating atoms. On the right side is the hexagonal structure where
one finda only two differernt successions of layers A and B respectively.

On Pig.2 are schematized the two elementary cells contzining
two atoms for the cubic structure shown on the left and four atozs
for the hexagcual structure on the right.

Figure 2. Representation of elementary cells :
a) left cubic structure

b) right hexagonal structure

The first nearest neighbours in both structures are at the cor-
nerg of a regular tetrahedron related to those of the group IV semi-
conductors. For this reascn many physical properties are analogous
in both types of crystal lattices.




The two respective environments in the cubic and hexagomal
structure are shown in Fig.3.

PP

Figure 3. Environments in the cubicz left and hexagonal right structure.

The bounding in the crystals of the II-VI compounds spares the
complete gap from ionic to covalent.

The first Brillouin zone deduced from tpis structure is showmn
-in Pig.4 respectively for the blende and the wurtzite.

t’. ..... X O (8

FPigure 4, Pirst Brillouin 3one for Blende and Wurtzite.

- ¢ EYZRES © Y




T nc————

R T T

3. Dispsrsicn Relations.

In ths harmonic approximation whers ths potsntial snergy of a
crystal is sxpsndsd in puwer of the displacsment of the atoms from
their equilibrium positions and the sxpansion is broksn off ths quad-
.ratic terms; the equation of motior of ths atom k with maas o in the
unit cell 1 subjJect to ths displacsment u, with ¢« = x, y, 2 1s given
by

P

o ol IR0 s27
m 3,(3) *l");' }E@aa(n,) l‘p"k') = 0 (3.1)

where & is the force constant matrix dspending oniy on the distance
batween cells (1)-3(1') due to the periodic symmetry of the lattice.

The normal modes and thsir frequsncies are solutions of ths set
of equations for all unit cslls of the crystal. Becauss of ths psriod-
ic symmetry the modes have wave like phass variation from cell to ¢sll
and specific rslative motion in the cell.

Ths dynamical natrix being of the form

1
q @6l ki)
Copli™yi) = g(—:‘;—)m exp[-ig.x(1)] (3.2)

ths systsm of 3n linear and homogenious equaticns has non-vanishing
solutions only if the detsrminant

| 2
Copli ki) = 6" by 8pp = 0 (3.3)
vanisghes.

This "characteristic" equation gives ths chractsristic frequen-
cies w(g) whose grephic repressntations are ths dispsrsiom curves of
the crystal.

A certain number of invcatigations have bsen dsvsloped aiming
the ki:owledgs of ths dispersion curvss of ths II-VI compowds. Some
of them "2 bassd on the shell modsl develop ths formal discussion
without actually doing the calculations. Calculating the dispsrsiomn
relations of blends or wurtzits structurss in the shell model would
involve a large number of parameisrs which make such calculatimms
weaninglsss.

Msrten 3 has davslopsed a ssries of studiss ir. which the luttice
vibrations of blends and wurtzits structures are investigatsd omn
microscopic basis coneidsring ths dynamical matrix without and with
long rangs Coulomb intsractions. Here again the numsrical calcula-
tiors haves not been carried out throughout the whole Brillwuin zone
and only the optical modes at the centsr of the Brillouin zone have
been deduced.




Recently Nusimovici and Birman 4

have performed the explicite
calculations of the dispersion relations for CdS-wurtzite structur-,
The single phonon frequencies have been used to calculate the farce
constants. The model considers shnrt range interactions correspond-
ing to central forces between first, second and third neighbours and
to central angular forces between first and second. neighbours, as
well as long range Coulomb interactions depending on a parameter

having the dimensions of a spring constant.

The wurtzite is supposed %0 be ideal and from the point of
view of the short range interactions the anisotropy is represented
by the third neighbour forces as shown on Fig.5.

Struciure
of Wurtzie Céf

(P

i, ®

TRy

The short range potential is written as

where A, p, v, and 8, correspond to central forces between first,
gecond and third neighkbours, ke, ke,, kra end kre' carrespond to

non-cantral angular forces between first and second neighboursa.

Figure 5. Arfsotropy deduced from short range interaction in Wurteite,
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The Coulomb part has been determined by summing the second
derivatives of
v© = ®k %k
ot I 2(2,k) - z(2,x")]
using the Ewald transformation.

The Coulomb field is proportional to a parameter p = q‘?/a3
having the dimensions of a spring constant, g being the effective
charge of the iom and a is a lattice parameter. The values of the
parameters taken in this first calculations are the following :

A= 1.061x105 dyn/en ,

b= 0.203><105 dyn/cnm ,
B

v = -0.086%10” dyn/cm ,

5= -0.085x105 dyn/cnm ,
kg = C.170x10° dyn/em ,
kg, = 0.154x10° dyn/en ,
K.g = Epgtkpge = -0.0216x10° dyn/em ,

p = 0.032x10° dyn/cm .

The dispersion curvec of wurtzite for the I'A; 'M and TI'K direc-
tions of the Brillouin zone calculated by this method are given iu
Pig.6.
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Figure 6. Dispersion curves of Wurtzite for the M, I', A and K points
of the Brillouin Zone.
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A calculation done for an hypothetical cubic CAS shows the dif-
ferences betweer the two phases : wurtzite and blende.
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Figure 7. Dispersion reletions for Blende for the M, T and L points

of the Brillouin Zone.

An important check of their calculation is given by the two-
phonon optical data obtained by infrared and Raman spectra. Table I
compares the two-phonon Reman scattering in CdS calculated by Nusi-
movici and Birman with the ones obtained by Tell, Damen and Porto 3

.

6

In more recent work Nusimovici and Birman made a direct

comparison between infrared spectra obtained experimentally 7 and
the calculated two-phonon density of modea.
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Table I

Two-phonon Ramsn scattering in CdS-wurtzite

Exper-i:x::ent Interpretation Calcul:aji —
lom ) (cm )
97 21‘6 90

2M4 86
267 u1 ® M3 201
M2 @ M3 202
K2 ® K.5 209
K3 ® K3 210
328 M2 9 M4 323
M3 ® M4 328
K1 ® K3 331
347 A1 ® A3 342
M, oK 345
M1 ) M1 344
¥, ® M, 346
M1 -] M3 342
M3 £ M3 346
K2 @ K3 347
K2 @ K2 346
K3 & K3 544
K3 L] K2 346
364 A1 @ A1 363
K1 @ K2 368
K1 @ K3 369
M1 ¢ M1 368
556 2K1 558
2M3 550
605 21‘1 596
2rg (L) 616

4. Photen-Phonon Interaction.

One of the main possibility to obtain experimental. precisione
on the diepereion relations and particularly the normal modee fre-
quenciee at the center and the edgee of the Briilouin zcme are infra-
red spectroscopy and Raman scattering. For the II-VI compounde of
blende and wurtzite etructures these two methode are complementary
becauee of particular eelection rulee hased on eymmetry coneidera-
tions.
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The optical absorption is given by the transition probability
proportional to a matrix element which is different from zero only
when energy and momentum conservation rules are obeyed. The matrix
element fo} optical abtscrption depends on the dipcle moment operator
V. It is then easy to deduce by group theory arguments the optically
active normal modes in blende and wurtzite structures. These are of-
ten different from that active in Raman scattering while in those
cases the matrix element is related to the polarizability tensor R.

4.1, Infrared Dispersion.

When the electromagnetic field acts on the crystal there is a
coupling between the elastic waves giving the phonon fields and the
electromagnetic waves giwing the photon fields.

The electromagnetic field is given by Maxwell's equations :

retE=11,

£t Bip = -2 8
divDp=0 , (4.1)
divjg=0 ,

end Q=g .+ 42 . (4.2)

The phonon field is described by the induced polarization duvc
to the displacement in opposite directions of the two sublattices
formed by charged ions and the internal electric field Eint equal
to the macroscopic electric fieli in the crystal,

£ -1

R=Neyu+—pm B (4.3)

and also by the equation of mction

. 5 M N ey eT
Mg+ (Mo - ——3-—-—)1a=eT Bien (4.4)

The solutions of the coupled system of equations representing
the radiation field and the phonon field ,.ive th« infrared dispnrsion
for a given crystal.

A detailed analysis of infrared dispersion for blende and wurtz-
ite structures has been carried sut by Le Toullec & 3 this chapiter
summarize the results.
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4.1.1. Blende.

Iu a rigid ion approximgtion when the ionic charge is centered
on the ion, the dynamical mairix can te written in two terms :

q
The first term concerns the short range interaction and the second
the Coulomb interaction dve to long ra:ge forces. The polar modes

which are infrared active arise from these Coulomb forces.

The first term gives all the ncrmal modes. For q = Q the secu=-
lar equation (C—w 1) gives two distinct roots threefold degenerate :

[
ac

> PIM GO B (4.6)

w
op m, m

The displacement vectors correspo.ding to Woo

two sublattices moving i.a the same direction, those corresponding to

are ¥, = %5 with the

0y, &re u1==-(m2/m1)§2 y with the two sublattices mcving in opposite
directions. To the optical modes corresponds on induced dipole moment

equal to

m1+m9

u:e* u1_‘ . (407)

In a rigid non-polarizable ions approximation the Coulomb potential
energy can be written

'
o= -—-k—k—— (4.8)
11 r( ) = r(
k!
and the coefficients Cc deduced from ¢ for q = 0 are
c, 0 _ 4 N ey ©pr __ﬁ .
C gl .)--—-——7—( ——ﬁ) {4.9)
af 'k k )1 2 3 q2
(mm,

whore N is +he number of ion paires per unit volume. If we hav: the
propagation vector g along the 0z axes we obtain now two opticsl
branches instead of one. The first %no is twofold degenerate cor-
responding to vibrations perpendiculer to g :

2 MmNe 1. .
NTO=‘°O -_-BM—— where M=T‘:+m—2 \4.10)




g |

12

where W is the optical frequency when the Coulomb forces are neglect-
ed and the second W non-dsgenerate corresponding to vibrations
parallel to g :

(4.11)

Compar:d to equation (4.4) we see that these two equations differ by
the effective charge 012 instead of egen due to the fact that we have
considered rigid non-polarizable ions.

The displacement in the case of polarizable atoms will be

_ p Eint

= (4.12)
M( ng-we)

Substiituting in equation (4.3) and subsequently in equation (4.2) we
obtain the equation of optical dispersion of the crystal

2
4T[NeT

?)

+ —-——2-— (4.13)
M(wTo-w

) o
elw) B

and in the limit w = 0 we have the static dielectric constant

4T N eT2
—_— (4.14)

E =€E_+
2
MwTo

where from
(e,-€,)
e(w) = g + —Oé—";—:—m (4.15)

Wpo = @

two cases can be distinguished.
First case : € = 0 ; u /g /’/Eint : longitudinal wave.

(e - )uw, 2
e=0=e°°+—°-2—°°—g-9 (4.16)
Wpg = @

hence 2
2 2 2 4T N ep
w o= wTO (Eo/ev:o) = wTO + e 5 (4.147)

Tnis frequency is independent of the wave vector g and is equal to
the longitudinal optical frequency of the system without the external
field being applied.

Second cryse : Y j_ Q j_ Eint ¢ transverse wavs.

From Maxwell's equations one deduces

2
22 (e -€_)u,
T T e
w W - W

TO
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The incident light interacts strongly with trarsverse optical
phonoms of the crystal. The narmal mede of the coupled system :
photon + phonons (T0) 4is called polariton. The dispersion relation
of polaritons describes the vhenomena of optical’ dispersion. The
dispersion w = £(q) curve could be easily deduced if one conuiders
the Lwddane-Sachs;Teller relation

wd =l (e /e,) . (4.19)
Equation (4.18) is now written
2 3
(") -
q2=—1-2-e°° wa—z—'-ig = (4.20)
c we - w
T0

The dispersion curve of polariton gives w = f£(q) for a system of
coupled photons plus optical phonons is represented in Fig.B.

© et}

q lerr)

Figure §. Dispersion curve of cptical phonons coupled with photons.
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4.1.1.a) Introduction of Damping.

In the harmonic approximation all phoiions are independent from
each other and therefore the equations’ of motion are lineear. In real-
ity the system of equations is coupled through the unharmonic terms
of the potential., Part of the electromagnetic energy brought into
the TO by the incident radiation field is transferred to other pho-
nons. The introduction of a damping ccnstant in the phenomenological
equations expresses this fact and the equation of motion becomes

2. -
DY+ mYBHFmu U= e, B (4.21)

Equation (4.15) should now be written

2
(e - o,
e(w) = g + 5 9 2 20 e (n + ik)2 . (4.22)
Wng = @ - iyw

The real and imaginary parts of the dielectric constant are then :

> o, 2
.. (e -&_)(wnmw)w
€. = n-x¢ = £, + c 2“ 5 go > 2TO ; (4.23)
(wTO-w )+ Yw
(e - ) w?l YW
€, = Bk =02 10 : (4.24)

(ng-w2)+ yzwz

The frequency Ws pole of e{w), can be writien

Wp = W, + iwi (4.25)
with
! 1/2 172
w, = Loga(r2/1 " = ugy [1=(1/20,0)%]
and (4.26)
Y
(di = P .

The real part of Wn represents the resonance frequency and 4if-

fers very little from w,. since (y/wTO) £

TO
The imaginary part of w, measures the damping.

wr is a root of e(w) = 0 and can be written

1/2
o, = Lo 5-(/8)1 - [1v/2] . (4.27)
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The infrared dispersion curves for the transverse modes are
rep: asented on Fig.9.

W

g =k & 0

Imaginary part of q

qP-n,J‘ﬂ.
Reai part of g

Figure 9. Anharumonic dispersion curve for the TO mode.

WAVE NUMBER

Figure 10. Anharmonic optic conetants,

(1%
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e Cz2nk

CORSTANTS

DIELECTRIC

wave NWum3ER [cm-t)

Figure 11. Anharmornic dielectric constants,
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4.%.1.b) Experimental results from infrared spectro-
SCOLY.

Dispersion in blende type crystals has been studied by many
authors., In recent years systematical studies have been developed
as well by reflectivity as by absorption measurements in the infra-
red region. Recent results for blende are summarized on Table II,

Table II - Blende

Frequencies of the optically active modes in
Blende type crystals determined by infrared
spectroscopy.

70 wLO € £ References

ZnsS 274 350 803 5)07 a, b
ZnSe 207 242 7,6 5.4

¢}

209.5 250 8.1 5.7 ¢

209 257 9.2 6.1 &

9.1 f

8.66 &

5.90 h

ZnTe 177 205 G.1 6.7 c
10.1 b 4

9.67 g

7.28 h

CdTe 141 168 10.2 7.13 ¢
9.6 ¢

5.65 g

7.21 h

a) Le Toullec, Thesis, Paris.
b) C.Hass and J.P.Mathieu, J. Phys. Radium 15, 492 (1954).

c) A.Mitsuishi, Paper presented at "U.S.-Japan Cooperative Seminar
on far infrared spectroscopy", C¢lombus, Ohio, Sept.1965.

d) M.Aven, D.T.F.Marple and B.Segall, J. Appl. Phys. 32 Suppl.,
2261 (1961).

e) S.S.Mitra, J. Phys. Soc. Japen 21 Suppl., 61 (1966).

£) D.Berlincourt, H.Jaffe, L.R.Shiozawa, Phys. Rev. 129, 1009 (1963).
g) S.Roberts and D.T.F.Marple (1967), To be published.

h) D.T.F.Marple, J. Appl. Phys. 35, 539 (1964).
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4.1.2. Rurtzite.
4.1.2.a) Short rangs forces.

The unit cell contains 4 atoms 2 anions and 2 cations, 12 branches
are therefore expected in the dispersion curves.

The following relation between C coefficients results from the
crystal symmetry i

N, O 0 ﬁ 0
cn(k k') = cg'y(k k') % czz(k k') . (4:-28)

One obtains 6 different solutions of the secular equation. One is
threefold degenerated and corresponds to the acoustical branches.

Prom the 5 other solutions for the optical frequencies 2 are non-degener-
ate,2 are twofold degenerate and one threefold degererate due to an

; accidental degeneracy for wy) = g, .

The relative motion of the four atoms constituting the wuit
cell is schematically re: esented on Fig.12.

'ty v

Wy (A1 (E,:f) Wy ’

‘9 *’
° i 31 . o—n
1
i Wo) By F) | E,iFy) Wo)
= e
i |I ‘—?
T 49 *
H 4
é SI 2 2 3
f
’ Wy @&:FD | Eery) Wiy
2' L, ]
I 2
1 ey
1
Pigure 12. Relative motion of the four etoms in the hexegonal unit cell,

G ez oS, SR ol
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In the optical modes of vibration for the freguency w, the sub-
lattices with the same kind of atoms (1) and {3) are moving in the

same direction anrd the sublattices with atoms (2) and {4) in opposite
directions., The displacement vectors are related by

e e AP D

% 2
B,(1) == =fq (2) =n(3) =~ -E;ga(lt) . (4.29)

agere o Y
)]
4
’

This kind of displacement results into a total dipole moment
per unit cell :

-

m, +m
M=2e* 31 "%;"2' . (4030)

e st

For the modes of frequencies w, and w3 the displacement
vectors are of the same type but the induced dipole moment per unit

cell is always equal to zero and therefore these modes are not optic-
ally active.

Fig.13 shows the relative position of the normal mode frequen-
! cies near the center of the Brillouin zone deduced only from the
consideration of the nearest neighbours short range interaction.

w A w *
(W | [ Wy iy ——=
Wy [— Wa [
wSII | p— w.')ll -
t
i
:
i
s Wy atY" m——
{
0 % 0 L
q’ °’
% %
‘z anion . ‘z cation "z anion . ‘z cation
" " L] L3
Pigure 13.

Position of the normsl mode frequencies near q

= 0 in the case
| of short range interaction only.

R ST
{” a Do G :

Ceadee
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4.1.2.b) Long range Coulomb forces.

The coefficient c° deduced from the Coulomb poiential energy
can be writtea in the case of wurtzite :

c., 0 . Nekek, Xk 4N g g
Coaply xr) = = 7;;;;";75 (L, Baﬁ--—-;g—ﬁ) y (4.31)

t
Ltk are ‘Lorentz factors in anisotropic crystals and their numerical

values are known.

Introducing Coulomb interacticn into the determination of the
normal wode frequencies one have also to distinguish between the
case whera the propagation vector g is parallel or perpendicular to
tae optical axis g¢g. The modes corresponding to atcm vibrations per=-
pendicular to the propagation veator labelled TO and these to parallel
vibration L0, / and | refers to the vibration of the atoms with re-
gard to the ¢ axis. The optically active triply degenerate mode w,
without Coulomb interaction, splits now into the following frequencies :

For gl g
2 2 2
2 _ Re™ | = - Ne~ . Sl | Ne
w = w1l + 8.47 5 mTO_L' w,l 4.08 58 wm/ w1// 4.39 5

For g /g ¢

2 2
N N
ugo = Wi y% 8T S 5 upg) = wy) - 409 5

Here N is the number of unit cell per cm3, e is the electronic
chargs, and M the reduced mass : M = m1m2/(m1+xr2) . These results are
schematically represented in Fig.14.

4.1.2.c) Infrared dispersion curves.

Wurtzite being on uniaxial crystal, because of the anisotropy,
the infrared dispersion curves depend on the direction of propagation.
The solutions of the coupled equations giving the radiation field and
the phonon field are now of tke farm :

(nz-:l) [(n‘?-el)(nz-e//)-nzsinze(nz-e//)-nzcoaae(nz-el)] =0 . (4.32)

§ is the angle between the propagation vector and the optical axis,
Two types of solutions represented in Fig.15 appeara.




20
with without with
coulomd coulomb coulomb
forces forces forces
Guog [~ _ — Oy
\\\ ,I
\\‘ i ’/’
a?v C : ‘;Q
Wa)y --..”:;:: _Tzr-:&gjsﬂ Wy
@ 7 -2 P
o =Z Wroyg
S s S R I T s —t gy
]
(jxy P e e = = ——— - - = ot—
30 LTH Wyn
{
; (‘)31 mv—'.-&:nz-v.xﬁc—-r_-"!———m.==.rrrnar=-= (4)31
! X
qLc¢ 0 qre
Figure 14. Splitiing of dispersicn curves near ¢ = O when Coulomb

forces are taking into account.

a) on the left the propagation vector is perpendicular to the c¢ axis

e -

b) on tha right tha propagaticn vector is parallal to tha c axis.

i-cue0 -t retQie? ) ki a0

ordinary extraordinary
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Rigura 35. Disparsion curve dependance on the direction of propagation
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A) Ordinary solution.
n2 - € .l. =0.

This solution is indeperdent of the angle 6 (Fig.4a). The cor-
responding dispersion rslation is

2 2
2 W=tys]

3 2
© =)

P
qQ = 28

o 1A

B) Extraordinary solution.

m (4.34)

This second solution corresponding to the second factor of the
equaiion (4.32) depending on the angls 6. Two extreme cases can bs
considsred :

06=0 i.e. g/ g and 6=-T§[ ie. gl1a

i - Pirst case : g/ g3 6=0..

The equation (4.32) becomes now :
2 -
e//(n el) =0 . (4.35)
e//= 0 gives ws= “’LO//! golution indepsndent of g.

The infrared active longitudinal phonon wpq v/ do not influence the
infrared dispersion in the considerc¢d direction.

i ]
s e fap oo 15 e -

nz-el = 0 gives the second transverse solution (Fig.4b) with the
same dispersion rslation as equation (4.34).

- Second cass : 3 ] ¢ ; =-1-2[.

FP

Equation (4.32) becomes

il el(nz-s//) =0 (4.36)

whsre t:l =0 with w= wLOl
n2--e//= 0 with.ths dispersion solution s
. . \.é
w-ufo
. q® = 42 Eof w? -——42 . (4.37) (Fig.4v)
‘ ] c w -w%o//

We have see. that wpg) ie a transverse cpticel mode y | g with
| wles gy is a transverss optical mods y | g with 4 /¢ . The
] 1 soluticasof equation (4.32) are given on the Pig.4c.

o

" Experimental determination of these frequencies are made by
the following two methods.

T e e M et R 3o
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1) Single crystals of large dimensions.

The reflectivity is measured under weak incidence angle (6~ 15°).
The curves representing the refractive index n(w) and the extension

coefficient K(w) are calculated by means of Kramers-Kridnig inversion
formla.

The ¥no frequency is the frequency for which the quantity
(2nKw) has its maximum,

The wy frequency is the frequency fur which one has the rela-
tion n2-k% = 0 with (On/Dw) D 0 .

In order to.be able to determine the four frequencies NTQI’
qul q quﬁ,, qul y 1t is sufficient to prepare a sample with g
axis perpendicular to the plane of incidence and to use a polarized
light beam either parallel to the ¢ axis in which case one obtains
wLoAVand wTOAV’ or perpendicular to the ¢ axis in which case one ob-
tains wLol and (oTQL .

2) Thin films.

¥hen transmission or reflectivity measurements are performed
on thin films under oblic incidence and with a light beam polarized
in the plane of incidence, the transverse optical as well as the
longitudinal optical modes interact with the infrared radiation and
hence their frequencies can bes aeasured directly. In the case of an
uniaxial crystal if the thin film is such as to have the ¢ axis per-
pendicular tothe substrate one measures then w50y and the wppq fre-

quencies. This is the case of CdS thin films evaporated on silicon
single crystal substrates.

If the g axis is parallel to the surface of the lgyer it is
then possible to observe qul.

i oaer
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The different experimental situations in which measurements

have been made by Le Toullec g are listed in Fig.16.

e . trequencies calculated by
(\(5) thick crystals sctive modes | yromers Krénig inversion
o
. ’ <
- 3 -
_ b @ 1 E/0 Lo L s (e
4 :>" B gLz To # “0/ ° |atc
i lp
!
) 4
— 4 - |
%E> ] =LE] ol s
— Tl = 1 i fig.
i 7 gLe ! Tol oL (q.LC
| la ’
5 .
= ! !
: ; il e 10 / "ol (6-.b)
i s fig.
i é d /e Tol oL 0 \ape
l § :
2 | thin crvstals active modes ; observed frequencies
| (.‘ : T
1
i :
i Esine /¢ Lo / | Yo /4
Ecos o L ¢ 10 L oo L
L RV/K:
Esine L ¢ Lot “ro.L
B cos o [
i . / o 10 J< *r0 < %101
L N a L2
4 i
!
Figure 16. Comparison of the optical frequencies of bulk samples and

1 thin films, under oblique incidence and with polarized light.
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The experimental results are summarized in Table III.

Teble IIT - Wurtzite.

Frequency of the optically active modes in
wurtzite structure crystals determined by
infrared spectroscopy.

“T047 qu# YLoy “LO oy eql Eoc sy a?l References
em~ ! cm”

cw!  cm

232 240 298 302 8.9 8.40 5.38 5.3 a
233.6 241.2 299 305 8.9 8.0 5.3 5.29 b

cds .53 9,02 c
235 242 296 303 6.42 8,37 5.32 5.32 4

167 171 209 211.5 9.95 9.1 6.05 5.95 a

166 172 211 210  10.%6 9.29 6.3 6.2 e

CdSe 5,05 5.95 f
10.20 9.5% c

168 171 211 211 9.6 9.3 6.1 6.1 d

References
a) Le Toullec, Thesis, Paris.

b) A. Mitsuishi, Paper presented at "U.S.-Japen Cooperative Seminar
on far infrared epectroecopy", Colombus, Chio, Sept. 1965.

c) ?. Beglincourt, H. Jaffe, L.R. Shiozawa, Phye. Rev. 129, 1099
(1963).

d) H.W. Verleur and A.S. Barker Jr., Phys. Rev. 155, 750 (1967).
e) S.S. Mitra, J. Phys. Soc. Japan 21 Suppl., 61 (1966).

f) Shiozawa 2nd al., Research on II-VI compound semiconductore, 6th
quarterly Report, Contract No AF 33 (657) - 7399 U.S. Air Force
Aeronautical Reeearch Laboratories, Wright-Fatterecn Air Force
Base, Ohio.

4.2. Light scattering.

The inelastic ecattering of the phonons by the crystal is
generally referred to ae Raman ecattering if optical phonone are
involved in the processus and as Brillouin scattering if the acous-
tical branches are involved. Phonone may be aj’sorbed or emitted and
accordingly stokes or antistokee linee will b2 observed on the long
wave eide or the short wave side of the incident radiation. The polar-
1eibility of the cryetal ie composed of two parte : one due to the
nuclear displacements and the other to the consequent electronic
polerization.

Y. it
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In first order the diffused intensity for the stokes Raman line
in the harmonic approximation is

=K v

n_+1 2
4 p i v 4aife
Istokes diff'[ Vo ] [ea ®ah b ]

np is the number of phonoge occupyizﬁ the initial p state, v, is the
oscillator's frequency, e, is the a cog£§§ent of th:hunit polariza-
tiom vector of the incident radiationm, ey is the b component of
the polarization unit vector of the diffused 1ight, a;b(qe) = baab/bqe
is the variation of the LIRS component of the polarization tensor for

the vibration with normal coordinates Qe

Symmetry consideratioms and group theary arguments define what
are for each normal mode the polarizibility tensor components which
have changed during the vibration. It can be easily shown that in the
blende type crystals the two mcdes at the canter of the Brillouin zone
ars Raman actives.

Ex~arimental results giving the frequencies of the Raman active
optiza 28 in blende structure are listed in Table IV.

Table IV

Observed frequencies of Raman active optical modes
in blende structure crystals.

uTO uLO References

ZnS 274 349 a) L. Couture-Mathieu, J.P. Mathieu, C.R. Acad. Sci.
Paris 236, 371 (1953).
205 253 b) S.S. Mitra, J. Phys. Soc. Japan Suppl.21, 61 (1966)
ZnSe 204 251 c¢) M. Krauzman, C.R. Acad. Sci. Paris 264,1117 (1967)
205 250 d) W. Taylor, Phys. Letters 24 A, 556 (1967).

g 177 206 ¢) M. Krauzman, C.R.Acad.Sci. Paris 264, 1117 (1967)

ZnT :
174 203 d) W. Taylor, Phys. Letters 24 A, 556 (1967).

4.2.2. Jurteite.

Selection rules for Raman scattering in wurtzite structure crys-
tals have also been deduced by group theory arguments 9. The Raman
active modes in wurtzite are the dollowing :

20, (B,) 3 T01,,(A)) 3 T0,(E,) 5 T0,(E,) ; L01_L(E1) RUPACRE

1
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v In Table V are given the experimental results determining the
% frequencies of the Raman active modes in Zn0 and (dS single crystals.
¢

% Observed frequencies for Raman active optical modes

% in wurtzite structure crystals.

%

b

wLotl “Loy wP0, wTo1l oy W03 References
Zn0 583 574 437 407 380

101 a)

538 588 333 438 420 180 b)

cds 325 212 256 8s c)

305 305 252 235 223 44 a)
References

a) T.C. Damen, S.P.S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966).
b) S.S. Mitra and J.I. Bryant, Bull. Am. Phys. Soc. 10, 333 (1965).
¢) H. Poulet and J.P. Mathieu, Ann. Fhys. (Paris) ¢, 549 (1964).

d) B. Tell, T.C. Damen and S.P.S. Porto, Phys. Rev. 144, 771 (1966).

Multighonon Interacticn,

The normal modes frequencies at the edges of the Brilluoin zone
can be.deduced from infrared absorption due to multiphonon interactiom.
Generally =211 phonons can participate to multiple processes ; the ac-

tual transitions obey selection rules deduced from symisetry considera=-
tions.

The theory of the interaction of the radiation field with two

or more normal vibration modes has been given in terms of second or

higher order dipcle moments i or as due to the presence of atharmonic

terms in the potential energy associated with lattice vibrations al
and also as a combination of both 2.

In the case of optical absorption due to double-phonon processes,
the contribution to the imaginary part of the dielectric constant due

to anharmonic terms higher than second order in the potential energy
can be written 3 :

2 = 1 - 1
b,,, n, +<f(n, +<)
en(w) = 2% T %2 1 LA S Bl iq
I . Upg®ygel  @g0y, | grad w(g)lw=wjj,
+ higher order terns ,
3
Here ap = e*(N/M)J/z o’e

y Bium =
T 20,(a) Bqy(a') By,

X o3 AL e RS
) . o e G
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is the coupling forne between the TO mode and the phonons of wave
vector ay gj, TR mj Wye s Hj is the thermal mean value

of the quantum number n;j « The factors (nJ +n +1) and (n ,-n ) give
the temperature dependence of the additive and subtractive absorption
bands.

The summation is taken over the surface w(g) in tae reduced
Brillouin zone for which w(g) = ”jj'(g) . The critical points for
this "combined” density of states give rise to bands in the absorp-
tion spectrum.

The contribution to the imaginary part of the dielectric con-
stent due to second or higher dipole moments can be written :

L& (H +
e" = ne Z q-4) 5 2
tw) = X% I'u(;i J'I (q) i
( ) Igradw Q) |
W

+ higher order terms.

Eere x(j j' = bzuﬁbo(%).bn(3$) is the change of effective charge

associated with a given phonon (%) due to a second phonon (3?).

Thuas independently of the rature of the processes with which
one is concerned the characteristic variation of the absorption coef-
ficient as a function of the temporature is the same.

Analys.s of the absorption bands in the infrared studied as a
function of the temperature allows to find the critical points of the
combined density of states. It should be mentionel that this critical
points do not have to correspond always to the critical points for the
density of states for simple phonons. The condition grad w(g) =

can be satiefyed when grad w(%) =% grad w(%,) with + for subtrac-
tive and ~ for addivive processes waich correspond to equal and op-
posite of sign slops of the two-phonon branches. It is also satisfied
when graé w(%) grad w( ,) 0 which corresponds to critical points
of the density of states curve for simple phonons.

Tt cannot be distinguished between this two cases experimentally.
It is'then necessary to perform the calculation of the dispersion
curves on the basis of a given model and calculate afterwards the
hystogram of the ddbuble-phonon density of states and compare this
hystbgram to the erperimental curve. In the case 0f a rigid ion model
for CdS this werk has been done recently by Nusimovici and Birmen 6.
The qualitative agreement between the two curves is satisfactory. This
analysis shows also that all the early works on multiphonon spectra
implies a graat part of arbitrary assignments.
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In Fig.17 are presented on the same frequen:y scale the two-

rhonon denaity of states and the absorption spectrum corresponding
to double-phonon transitions in (CdS.

double phonon

density
Y Y Lo
440 500 600 )
cm-?

Figure 17.

Comparison betveen the calculated and the experimental
double phonon densitles.
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5. Localized Modes of Vibrations.

5.1. Localized Surface Modes.

For a finite crystal the surface atoms vibrates in a manner
different from the atoms in the volume. Wallis i has studiec di-
atomic cubic crystals and find that in addition to the normal modes
of vibrations it appears localized surface modes whose frequencies
are situated in the forbidden frequency gap between the acoustical
and optical bands. The surface modes have non-vanishing electric di-
pole moments and may give rise to infrared absorption. Such absorp-
tion has not yet been observed experimentally.

In order to be able to observe localized surface modes it is
necessary that the ratio surface/volume is as large as possible. If
one considers thin film samples the surlace atoms can be seen as in-
dependent impurities atoms. There are approximatively 1014 atoms per
cm2 at the surface and for a layer of thickness d this would ccrre-
spond to 1014/6 per cm3 impurity atoms. Localized modes Zor impur-
ities become observable for concentration of the order of 1018 cm'3
and this means that surface modes can be observed in thin films of

thickness d\( 14 .

5.2._Localized modes of vibrations due to impurity atoms in II-VI
compounds.

Localized modes have been observed by means of infrared spectro-
scopy in homopolar semiconductors like Si containing light impuritiea15
in intermetallic semiconductors like GaAs with ILi and P 16, 17 and InSb
with Al 18, as well as in ionic crystals 19. The frequencies of the
localized modes due to substitutional atoms and their coupling with
the radiation field can be deduced on the basis of simple theory 20
when no changes in force constant are involved. .

Some semiconduotor erystals of the II-VI group such as ZnSe and
CdS . doped with Ii and Al ai have been investignted recently. Infra-
red absorption due to localized vibrations in CdSe containing S and
CdTe containing Se and Li has also bsen inveatigated 22. Here the
frequencies of the absorption peaks attributed to localized modes
are ‘compared with that calculated for a mass defect in wurtzite CdS e
subject to appropriate normal modes frequency scaling.

3

T s - A A 1 i e o




o=

;
%
z
|
§

Jre—

A

R S g,

S—

PRNE o

30

5.2.1. Theoretical considerations.

The perfect lattice vibrational frequencies w are roots of the
secular equation

Det |Mw?-0] =0 (5.1)

where & is the potential energy matrix for the perfect crystal formed
by atoms with mass M. The introduction of an imperfection into the
crystal brings a perturbation ¢ to the potential energy. The matrix
representing the poteutial energy of vibration of the crystal with
impuritieys js ®+c. The secular equation for the perturbed crystal is
then

Det |Mw’~@-c| = 0 . (5.2)

It is possible to define g matrix g whose ccefficients are the
Green's functions of the crystal :

g(Hw’-0c) = 1 - go . (5.3)

The localized modes, due to presence of impurities, are then solu-
tions of the secular equation

Det |1 - g(w) e(w)] =0 . (5.4)

In the wurtzite structure CdS the umit cell 1 contains four
atoms k = 1, 2, 3, 4 which are respectively CdI’ CdII’ Srs 811
We just consider a single mass defect (the force constants are left
unchanged ). The defect subspace is three dimensional and localized
mode frequency is a solutionlof the secular equation (5.4).

The matrix ¢ is a unit three dimensional matrix multiplied by

(M’k-M')w2 where M' is the impurity mass and 4,  the mass of the re-
placed host ion.

The metrix g Green's functions elements are deduced from the
phonon eigenvectors g(jg) and eigerfrequencies wz(jg) :

0. (39) o5, (da) exp 1g(ri-rl')
Sak,atkv(lvl')(“’z) - 2k (5.5)

I ¥ M‘k"'/a( 2 [Pei?(39)]

T
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Prom the point group symmetry of the crystal around the defect the
Creen'e functions satisfy the following relations :

. gﬁki,d'k'(o’o) (wz) = aaa' gak,ak(O’O) (wz) .
Sxk,xk(0,0)(uz) = gyk,yk(c’o) (“’2) .

The impurity may replace either Cd or S and four different Green's
functicns are used in this problem :

g, = ¥, 3z1,z1(°’°)(“’2) ’
_ P 2
g, = ¥, 311;11‘”’0)(“’2) ' (5.7)
83 = u3 23,23(0’0)(“’ ) y
_ 2
84 'l MB ng,x3(0,o)(w )

where H1 and MS are respectively the mass of Cd and the mass of S.

For many defect vibration problems and especially for band
resonance calculaticns it is convenient to know

Hm o ., o glerip) = g'(w) + ;—3}, viw) . (5.8)

The values of

Vo, g1t (111 1)(@) = % % 0o 32) Thpr(da) exp 1(rd-ri') 8[w( 3g)-0]
(5.9)

are obtained by using the computed €4S spectrum 4 for 125 values of

Q in the reduced Brillouin zone. The frequency band (w < wy) is di-
vided into Z = 61 equally spaced regions and the sum (5.9) carried
over m(dﬁ/z) <w( (m+1)(mﬂ/z) to from a hystogram for v. The va-
lues of g'(w) are then obtained at the mid points of the hystogram
sections by using the Kramers-Krodnig relation

vl vi(w') dw'

gl (w) =I .
i ! 2 e

a2k (o SN T g 54
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The results for uy vi(m) and for “’2’5:".(“’) are plotted in Figs.
18, 19 and 20.

UH((-»)

Figure 18. Imaginary part of the Green's functions.
Wy Yy (w) corresponds to curve lijf ee—-aa-

Wy Vo (v) corresponds to curve 27 ——————
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Figure 19. Imaginary part of the Green's functions.
wy Vg (@) corresponds to curve 3! - aaa -

Wy Vg (w) corresponds to curve 4! —————
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Figure 20. Resi part of the Green's functions.

w g'l(m) corresponds to curve 1, uzg'z(u) to curve 2

]
© s'a(u) to curve 3, and m23'4 (w) to curve 4.

The localized mode frequencies are solutions of the fQllowi=g
equations :
51 w2 &y = 1 for the P1 mode

. (5.10)

€, w g, 1 for the P5 mode

where the impurity replaces Cd and

2 5w
53 w 33 = 1 for the P1 mode

(5.11)
1 fuwmersmwe

2
€5 0 &,

where the impurity replaces S

€, = (M1-M')/M1 and €5 = (MB-M')/M3 :




and shown in Fig.21.

region.

pared with the one~phonon density of states in CdS r
The functions v (m) and v (w) related to the

acoustic region snd the functions v (w\
S ion displacement vectors are enhanced in the high frequency optic

34

The imaginary part of the Green's functions v. (m) nay be com-
ecently calculated

6

heavy Cd ion displacement vectors are enhanced in the low frequency
and v (w, related to the light

C
Tg(v)--}’cm-'
1.5
K, iy
1 M. Q’
L‘E M| M‘ ] 1
! 2 | M En‘
) o 2 -
5 i
] :
C
‘l’
: N L) ;Cﬂﬁ
100 200 300
Figure 21, One phonon density of states for cCds.
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a) Localized ¥odes,

The localized mode frequencies chtained from equations (5.10)
and (5.11) are platted in Pig.22 versus .
12

W .
Wn

&€

Figure 22. Localized mcde frequencies for a mass defect %:— -1
is plotted versus 2 for curves 1 and 2 where tne
impurity replaces Cd, and versus €5 for curves 3 and &
wvhere the impurity replaces S. Curves 1 and 3 correspond
to Iy modes and curves 2 and &4 to Ty modes.

If we suppose Wy = 308 cm'1 for CdS a localized mode appears only if
€ 2 0.36 far an impurity replacing S and €, 2 0.58 far an impurity
replacing Cd. If € is large enough, two modes appear out of the band;
a singlet I 1 and a doublet I‘5 with a higher frequency than the singlet.
The splitting increases when the impurity becomes iighter. Up to now

localized modes due to a light impurity mass defect have only been
observed for L16 and L17 in CdS'21. We shal discuss such modes observ-
ed in other II-VI semiconductors. Predictidns for different impurities

in ¢dS are sumdarized in Table VI.

Table VI

Localized mode frequencies for substitutional
impurities in C4S

Impurity Replaced Ion o € wf, em ulg cn !
Be cd 9 0.92 540 580
Mg cd 24 0.786 365 380
Ca cd 40 0.683 %0 330
0 S 16 0.5 324 339
Ii Ccd 7 . 0.94 615 665

LW L A L
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For light impurities (e = 1) all the localized mode frequencies
tend to infinity. This can be shown from the limit form of the Green's
functions vhen w is much bigger than w(jg) :

) o, (1%
Sak,ak(o’o)(w ) "': N 73

Jq ¥ w

but
+ 5 S
%; 0 3a) cﬁk.(aq) = 6a5 Byt s
then when w —» »

(0,0)(w?) — -1
Mkw

and the solution for € is e = 1 .

8ak, ak

b) Band Modes.

When a heavy mess impurity is introduced a band resonance may
appear at w < e The response of the lattice is related to the imag-
inary part of the imperfect crystal Green's functions

[Kvi(w)]/Zw
K ewzgi(w)]z + [Reuvi(w)]z/g

Im g (w) =

So a resonance is well defined at the w which is a solution of
1-cu’g)(w) = 0 only if v,(w) is small. For Se in CdS, € = -1.5 and
a resonance is expected at 210 em !

The model on which this calculation is based being simpls, one
is Justified to extend the results to other II-VI compounds when no
considerable changes in force constants are expected when going from
one compound vo another.

In the cubic crystals of this group, like CdTe for example, ths

site symmetry is T, and therefore one triply degenerate mode I'. is to
d 9

be expected.
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5.2.2. Experimental observations of localized band and gap
modes.

5.2.2.1. Se _in CdS.

When introduced in CdS asingle crystals the Se with masa M = 79
replaces the S atom with mass m, = 32, Cd having a masa of m, = 112.4,
we have the relation m, < u < m, . The mass parameter in this case is
€= (m1-l)/m1 = -=1.47 . The infrared reflectivity spectrum (Fig.23) of

this system shows a resonasmce at 120 e,

——CdS* 15% Se

€as

REFLECTIVITY [%)

. —

WAVE NUMBER [em-l] Y

150 200

Figure 23, Infrered reflectivity spectrum of CdS with 1.5 ¥ Sa.
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This fregquency being out of the restrshlen region the corresponding
mode could be ccnsidered as a gap mode. The density of mode at this
frequency (see Fig.21) is very low, practically zero, one can there-
fore consider that this mode is situated in a forbidden frequency
region , the frequency gap , and is therefore called a gap mode.

With increasing concentration of Se the gap mode frequency, wg = 180
cm-1, splits off into two modes having respectively the characters

of a transverse optical and a longitudinal optical modes.The frequen-
cies of these two modes fall apart from each other linearly with the
concentration and reach the limit of w

T0

and W for CdSe respectively
=170 en ! and W = 210 cm” | when Se approaches 50%. The varia-

W,
TO
tions of wLO and wTO deduced from the position of each concentration

of crossing of the zero line for the real part of the dielectric con-

A
(RO P g

stant in changing from negative to positive values and from the
tion of the peak of the imaginary part of the dielectric constant are
shown in Fig.24.

220 oplicol  frequencies of Cd Se
210
200|
190
180

170}

WAVE NUMBER Ccm™]

K0}

20 40 60 80 100 XCd Se
Cd Se concentrahion [ %]

Figure 24. Frequency variation of TO and LO in the CdS-Se alloy
with increasing concentration of Se.

24

In earlier investigations concerning the reflectivity

spectra of CdS-Se alloys analogous results have been obtained.
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5.2.2.2. 8 in CdSe.

For concentration higher than 50% of Se in 0dS the situation
will be inverted, the impurity will be now S in CdSe. S is a light
impurity M = 32 in C1iSe substituting Se with m, = 79, the defect mass
parameter ¢ here is E = (79-32)/79 = 0.595.

2

In the wurtzite structure CdS have a unit cell 1 containing
four atoms k = 1, 2, 3, 4, which are respectively CdI, CdII, SI and
SII’ The point defect irtroduced in the perfect crystal substitutes
one of these atoms. In a first approximaticn only the mass defect is
congidered assuming that substitution of an atom for another does rot
introduce changes in the force constants of the perfect crystal. The
localized mode frequency is & solution of the secular equation (5.4).
To solve this equation it is necessary to take only a 3X3 submatrix
G(wz) corresponding to the defect subspace. Substitution of the Cd

and S atoms are studied with the mass coefficients respectively
€, = AM/M1 - £y = AM/M3 .

In the wurtzite crystal the point defect has no more the site sym—
metry PD but C6v and the triply degenera*e localized mode P15 is now
split into two modes P1 and P5 simply and doubly degencrate. The local-
ized mode fregquencies are solutions of the following equations when
the impurity replaces Cd atoms :

5 s1w2g2 = { for the Ps rnode doubly degenerate corresponding to
vibrations of the impurity atoms perpendicular to the ¢ axis of the
crystal ;

. e1w2g1 = {1 for the P1 mode non-degenerate corresponding to

vibrations of the impurity atoms parallel to the ¢ axis of the crystal.

When the impurity replaces the S atoms the localized mode fre-
quencies are solutiong of the following equations :
2, _ x
e3w 8y = 1 for the Fs
2 -
e3w &s 1 for the F1 moda.

mode ,

The position of the localizsd modes is obtained directly accord-

ing to these equations from the plot of wzg(wa) as a function of the
frequency in taking wzg(wz) = é .
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If we admit that the density of states does not considerably
changes from CdS tuv CdSe we may then use the calculated curve for CdS
given in Fig.22, prcvide we make the appropriate frequency scaling
in_?ubstitutlng for Wy the value of wn for CdSe which is W = 210
cm ', to deduce w . The values obtained in this way are wl(F1) = 244
en” ! and wi(PS) = 256 cu '. The infrared reflectivity spectrum for

CdSe containing S is given in Fig.25.

wt —— 4 5e05%$

70 Cdse

604

REFLECTIVIT ¢ [%]

150 X waye NUMBER Cemt] v

Figure 25. Infrared reflectivity of CdSe with 0.5 % 5.

The experimental values deduced from Fig.25 are respectively
w(I‘1)=266.5 cn™'  and w(I‘S) = 269 cu ',

The difference between the calculated and observed values could
be attributed to a decrease of the first neighbours force constants
when S is substituted for Se.

The line width is of the order of 4 cm™ ' and the rela%ive line
width Aw/w = 0.015 which is of the order of magnitude fcr relative
broadening when Aw describes the broadening of an optical aspectral
line due to anharmonic interaction involving the vibrational eneryy of
the local mode. A tempcrature line shift is observed of the order of
3 cn”' betweer. 25°K and 300°K.

On the basis of symmetry consideration it is easy to deduce the
gelection rules showing that from the split of P1 and P5 modes only
one will be optically active for polarized light. The I‘1 will be active
for light with E/C and P5 will be active for ELC. It is surprising to
find out that experimentally the %two picks seem to te optically active.
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When the concentration of S in CdiSe increases the two localized
modes shifts in frequency until reaching the limit frequencies corre-
sponding To the normal modes in CdS respectively wp, = 240 em™ ! and

W, = 300 em .

6.2,2.3. Light impurities in CdTe.

CdTe has the cubic zinc-blende (sphalerite) structure band on
the cubic space group Tg. The dispersion curves calculated for a
hypothetical cubic CdS show only slight difference from that of wurtz-
ite. If it is acceptable to use the same frequency distribution as in
CdS it will be possible with an appropriate frequency scaling for LO
to deduce a value for W for each impurity. The frequency of the
localized mode obtained in this way may represent a good order of
magnitude to compare with the exprimeatal results.

a) Se in CdTe.

Se M= 79 iz a light impurity in CdTe which substitutes to the
Te atom whose mass is m, = 127.6. The mass parameter in this case is
E = 0.38. The longitudinal optical mode frequency is Wy = 167 em ',
From the relations given in Fig.22 it is easy to deduce the value of

the localized mede frequency which is w = 167 cm".

The infrared reflectivity spectrum for CdTe contalning Se is
given in Pig.26.
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Pigure 26. Infrared reflectivity spectrum of CdTe with A, 1 X 3e.
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The Kramers-Xronig analysis of the optical constantc is repre-
sented graphicall;” in Fig.27.
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Figure 27, Dielectric constants of CdTe with ~ 1% Se.

From the pesks of the imaginary parts of the dielectric con-
stant we deduce the values of w,, = 139 e ' and the localized mode
frequency w = 170 em 1. The calculated Im 1 shows *wo peaks at fre~
quencies 162 andi 180 cm . For pure CdTe the longitudinal optical mode
frequency is Wy = 167 cm 'in doped crystals we have W = 162 cm

L0
and W= 180 cm Powrg would then suffer a slight shift of 5 cm

when a light impurity is introduced.

-1

The line width for w is of the order of 10 e~ ! and the re-

lative line width Aw/w = 0.059 which can still be considered as
relative anharmonic broadening.

b) Li in CdTe.

The introduction of Li in CdTe has been done by the method of
progressive crystallization. The orystals obtained by this method
when at low concentration of Ii approximately O.1% are n-type and
with low free carrier concentration of the order of 8x10 4 3. At
higher Li cocncentration approximately 1% the samples are of p—type,
the free carrier concentration is very low ¢f the order of 5x1013cmf3.

R, mdie
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red. At highesr 1i concentration the samples become transparent proba-

F; . The samples with low Li concentration are opaque in the infra-
'# bly because of a partial compensation.

At low concentration 1i is supposed to occupy interstitial
sites and tc act as a donor whereas at high concentration the occupa-

ticen of substitutional sites where Li acts as an acceptor becomes
predominant. In the neighbourhood of 1% of Li & partial compensation
is achieved and the sanples are transparent. The absorption spectra
i of crystals with 1% of Li at 300°K and 100°K are given in Fig.28.
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H Figure 28. Abscrption spectra of CdTe with 1 Z Li at 300°K
|
E Pure crystal  ~---s-c-ceeo
o 1%Lt —_. =, —

and at 100°K
Pure crystal o ———

121.1 s TR gy
These spectra clearly show absorption peaks due to the presence of LI.
The largest peak is centered at 270 cm™ ' at 300°K and it shifts to-
ward the high frequency for lower temperatures : the maximum of the
pesk is situated at 275 cm | when taken at 100°K and it is at 277 cm '
at 25°%K.

The width ¢f this band of the order of 35 cm ' is anormally
large 80 is also the relative band width Aw/w = 0.130.
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5.2.2.4, Impurities in ZnSe.

ZnSe is again a cubic zinc-blende crystal for which the analysis
of the infrared spectra concerning the phonon interaction with the
radigtion field can be treated on the basis ¢f the equivalent disper=-
sion relation for the sphalerite CdS. The tacite assumption in calcula-
tion the local mode frequencies wy is that the frequency distribution
is analogous to that of CdS. The experimental results are very close
to that calculated in this hypnthesis which can be therefore consider-
ed as a satisfactory first order approximation.

a) Mn in Znge.

When Mn, M = 55, is introduced in ZnSe it substitutes the Zn
atom of mass m, = 65.4. The mass parameter is then € = 0.i6., The mass
difference being extremely small ¢ £ 0.30 for a Wy = 252 cm~1 the mode
due to the presence of this i:urity is a band mode and therefore not
directly observable in the fregquency range out of the resgtirailen.

The infrared reflectivity spectrum of this system is given in
Fig. 26G.
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Figure 29. Infrared reflectivity of ZnSe with 1,5 % Mn,
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A close examen of the optical constants daisrlayed in Fig.30

shows a structure on the imaginary part of the dielectric constap‘%
T

which gives two frequencies for the transverse optical mode W =

192 ew ! and @ = 202 cn .

TO
e 1 Zn Se+ 15% Mn A
€i & l""lll
X ThoN | C A — ¢
Eu=2nk ]
- 4
0N
[
Zz 3
s
5 2
O
@ |
€ — 1\ J - .
U I
w
-
w
(a]
300 gl
WAVE NUMBER Cem-']
Figure 30. Dielectric constants of ZnSe with 1.5 % ¥Mn.

For the pure InSe we have wpq = 202 cm-l. It seems that the presence

¢S an impurity shifts the w 4 from w;q = 252 em™! to an higher energy

P -1
“10 254 cm

b) S in ZnSe.

S is a light impurity in ZnSe substituting Se. The mass factor

is € = 0.595. The frequency scaling done with w , = 252 em ! leads to

a localized mode frequency w, = 297 e,
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2ctrum for 3 doped ZnSe is rerresented in

InSes~1% S

o~

WAVE NUMBER

CCm'lj 360 *

Infrared reflectivity of ZnSe with ~v1 Z S,

The real and imaginary parts of the dielectric constant deduced
by the Kramers-Kronig analysis are desployed in Fig.322.
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The normal mode frequencies for fhe undoped crystal are mLO = 252 cm ',
-1
= 202 cm

ng = , and for the S doped the local mode fregquencies are
0_ » =
‘l\l 297 cm

! and u\1L0=~305.5 em ',

The line width which is function of the concentration is in this
case (~1% S) Aw = 22 cm |
0.074.

and the relative line broadening is Aw/w =

¢) Te in ZnSe.

Te with M = 127.6 is a heavy impurity in ZnSe. The mass para-
meter is € = -0,615, A heavy defect in the lattice should lead to a
regonance in the frequency allowed region or to a gap node if the
density of states at the given frequency is very low or pratically
Zero.

The infrared reflectivity spectra for pure and Te doped ZnSe
are given in Fig.33.
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Figure 33. Intrared reflectivity of ZnSe with 4 X Te,
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The real and imaginary parts of the dielectric constant are
desployed in Fig.34.

WAVE NUMBER Cem~'3

Figure 34. Dielectric constants of ZnSe with 4 X Te.

Prom the difference between the imaginary part of the dielectric
constant for pure ZnSe and Te doped ZnSe one can deduce the frequency
cf the gap mode Wy = 182 cm . The width of this band is Aw = 40 cm |
which combines the impurity line width and the band breadening due to
the concentration. The relative band broadening is Aw/w = 0.22 .
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7. Discussion.

In spite of the considerable amount of work presently under way
in the lattice dynamics of the II-VI compounds and the ccornsiderable
progress it still remains much to be done,

The dispersion relations for 23S have teen calculated in terms
cf an extremely simplified model whose physical significance remains
to be explicited. Although the first regulte are satisfuctory and the
eigenvalues and eigenfunctions have served as basis fcr the calculation
of the local mode frequencies which are in good zgreement with the
experiment, it is certainly suitable %/ improve this medel including
physical parameter such as the electron polarizsbility of the ions.
The calculated double-~phonon density of states do not allow a direct
comaprison with the two-phonon optical spectra in the whole
spectral range. Such a descrepency should be understood eather in
terms on unsatisfactory physicsl implications in the calculatien of
the frequency distribution curve or in terms of second order matrix
elements for optical transitions employing more than two particles.

The qualitative features of the normal mode spectra are well
understood and the speciral measurements give satisfactory guasntita-
tive data for those modes which are coupled to the radiation field
at the appropriate points of the Brillouin zone which are eather the
center or high symmetry eiges.

Studies on thin films have proved to be extremely usetul for
the experimental determination of the normal mode frequencies.

Surface modes are still to be seen experimentally.

Elementary caiculations using Green function technics and
assuming isotopic substitution without force constant changes have
proved to be an extremely useful guide in the discussion of the
experimentally determined localized modes due to impurities. The
orders of magnitude calculated even in drastic assuzptions coincide
very closely to with the experimentally mweasured values. The reason
is probably the fact that the calculated density of states obtained
in a very rough model which is used for the calculation of the local-
ized modes frequeacies is insensitive to 3light changes in force con-

‘tants when an ion is replaced with a similar ion from the same groups.

Only an improved initial model may leed to results more sensitive on
gubtile force constant changes produced by the substitution of analog-
ous icns.

SR e e A v teuge
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The first measured localized mode frequencies in II-VI compounds
are those concerning the Li doped ZnSe and CdS . In thecase of CdS el
doped with Li anormally large bands have been observed and attributed

to the presence of Li! at 457 cw ' and 14° at 474 cm .

If Li was substituting Cd atom the mass differcnce parameter
would be € = 0.938 for Li’

the simplest approximation of isotepic masg substitution for tle

and € = 0.346 for Lis, this would give in

leccalized mode frequency of the impurity atom vibration aleng the ¢
axis the following values :

-1
492 com 3

for Li7 5 wP1

for Li® » wp, = 503 em .

The calculated values are larger than that observed experiment-
ally there wonld indicate that Li interacts stronger with the host
lattice than a simple mass defect. A change of force constant would
explain this difference. Increase in the deviation of force constapt
from the host lattice force constant acts in the same direction as a
reduc cion of mass i.e. increase of the lccalized mode frequency.

The presence of 35 in CdSe crystals introduces a mass defect
paraneter € = 0,595 and hence

wp, = 244 em !, wps = 255 cm |

' and 269 cm | at

room temperature. The calculated valuea now ave smaller than the ob-

Bxperimentally two peaks are observed at 266.5cm

served ones. This discrepency could be also attributed to a change
in force constant where Se is replaced by S,in this case the substi-
tution would means a decrease of force constant.

The iine width is of the order of 4 cm ' and the relative lins
width Aw/w is 0.015 which is of the order of magnitude for relativs
broadening 25 of the defect mode frequency when Aw describes the
broadening due to anharmonic interaction of an optical spectral line
involving the vibrasionsl energy of th: local mode.

A temperature line shift is observed of the order of 3 c:m"1

between 25°K and *00°K.

In the cass of Li doped CdTe an absorption band is observed
certered at 270 c:m'1 which could be attributed to localized modes due
to ths presence of Li but whose interpretation is difficuit for many
reasons a2 1 particularly because of the band width which is of the
order of 35 cm-1 and does not seem to vary considerably with temper-
ature. The relative band width Aw/w here is 0.130 what is by a factor
of 10 larger than what would be expected in the case of single subs-
titutional impurity vibvrations.
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The 2ssential contribution to the residual line width when
T~ 0 comes from the contributicn of the spontanzous decay of the
excited localized vibrations into bana modes. 1lu this process the
energy conservation rrincipal I: W = w should he respected. In the
case of Li in CdTe, as well as in the other cases we have examined
here, w e W consequently the decay of a localized mode into two-~
band modes is possible through the third order anharmonic poterntial
and this decay could be the dominant process at room temperature26’27.

In order to understand the possibility to obtain optically
transparent CdTe with relatively high concentration of 1i we had to
suppose that at low concentration Li is donor and at high concentra-
tion gives rise to acceptor levels. This leads to the possibility of
an almost complete compensation for a given concentraticn of dopant.
The interaction of an interstitial atom with the lattice is not the
same as that on a substitutional impurity. It is tnerefore clear
that although the mass is the same due to changes inthe force con-
stant the frequencies of the localized modes should be different for
the two situations. One should in such a case observe two absorption
peaks. In additicn Ii has two isotopes Li® and 1:7 constituting each
one a mass defect and therefore giving rise to an absorption band each.
All these are reasons to believe that the large band at 270 cm |
contains a certain number of peaks remrining to be recolved in the
simplest case.

Experiments are now undertaken at different conceatrations of
ILi in order to further investigate this situation.

The presence of Se in CdTe leads to a typical localized mode
whose frequency deduced from the Kramers-Krinig analysis of the re-
flectivity spectrum in w o= 170 cm—1 whereas the calculated value
with the appropriate normal mode frequency scaling is w, = 167 ew ',
The presence of impurities at relatively high corcentration seems to
have an effect on the longitudinal mode frequency which is expressed
by a slight shift of the normal mode frequency W g U
and a longitudiaal part to the local mode fregqueacy appears at 180

cm-1. At high impurity concentration one can therefore define a trans-

verse gnd a longitudinal part for the local mode wlTo = 170 cn” ' and

wl“U = 130 c:m-1 the calculated velue for the local mode freguency is

within these limits : @, = 167 em .

is now 162 cm

Analogous situation has been formed in ZnSe doped with S where
the calculated value ml = 297 c:m—1 is within the limits of that ob-

tained experimentaliy : wlTo = 297 cm” ' and wiLo = 30850m .
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Gap modes or band resonances have also been observed in the
case of heavy impurities as for example 7Ye in ZnSe where wg = 182 cm_1

has been deduced from the analysis of the reflectivity spectra.

A quite complete investigation on the effec:s of heavy doping
has been carried in the case of the systen CdSe-S. For CdS containing
low concentration of Se the dopant acts as a heavy impurity and gives
a gar mode atv wg = 180 cm-1. The isacrease of the Se concentration
brings ur two constituants of the wg band having respectively the

charazter of a longitudinal ngO and a transverse mode wg*o. The fre-
are linearly dependent on the impurity concen-

quencies ngO To
tration and tends tcward the normal medes freguencies of CdSe at tne
high concentration limit.

S in CdSe gives two localized modes w (T )= 2665 ca | and

wl(Fs) = 269 cm‘1 whoge frequencies are also concentrations dependent
and reach at high S concentration the normal modes frequencies for C4s.

It seems experimentally that we have a continuous relation
between localized and normal modes frequencies depending on concentra-
tion. It will be highly interesting to undersee theore~ically such a
continuous relation when we pass from a perfect latiice to a desorder-
ed system.

8. Conclusion.

The discussion of lattice dynamics of II-VI compounds is quite
general and interesting in one of the fact that the bhonding spanes
the whole range from covalent to icnic. A complete calculation of the
dispersion relations is now available based on a simple model in whien
short range forces simulate covalent band contribution and Coulomb
forces are functiuns whose origin is the ionic nature of the bcounding.
The parameters used in the calculstion are plotted with the optically
measured rormal modes frequencies at the center of the Brillouin zone.
The calculated phonon frequencies of the edge of the Brillouin zone
in the principal symmetry direntions compares well with the experiment-
al values.
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Analysis of the coupling of the radiation field with the phonon
field is developed in the frame of a macroscopic theory which account
well for all the experimental situations. Measurements in blende and
wurtzite structures are consistently analysed.

It is shown that numerous arbitrary assignments in the multi-
phonon optical spectra can he easily erroneous because while it is
¢lear that critical points in the combined density of states give rise
to absorption band it is not necessary that this critical point cor-
responds to critical point in the single phonon density of states. In
order to have a critical point in the combined two-phonon density of
stetes the condition grad w(q) = 0O can be satisfied also when
grad u(%) = % grad w(g'.) which corresponds to equal snd opposite of
sign slops in the two-phonon branches. It is then cl-ar that the only
correct assignments will come from the comparison of the optical ab-
sorption spectra with the calculated density of states when the dis-
persion relations are kmown. An example concerning CdS is given here.

The introduction of imperfections in the crystai depending on
the impurity mass gives rise to localized modes, to resonances or to
gap modes. The examen of a certain number of systems has shown that
at high irpurity concentration the localized as well as the gap modes
glve rise to a restrahlem band in the reflectivity spectra which sut-
mitted to a Kramers-Krionig shows contributions having transverse op-
tical and longitudinal optical cheracters. With the increase of con-
centration and forming the ternaryalloye the frequencies of these two
parto depert from each other and at about 50% in the concentration
reach the values of the normal modes frequencies of the system. This
frequency shift sesms to be linear with concentration and offers an
interesting feature in the study of the transition from perfect crystal
with low impurity concentretim to the disordered ternary system.

With the development of the investigations of the dispersion
relations of perfect crystals we hope to see also further studies con-
cerning the disordered allioys.
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