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DETERMINING THE TRANSFER FUNCTION OF A DYNAMIC
SYSTEM WITH CONSTANT PARAMETERS

B. B. Sodell'

This article examines a method of finding the pulsed transfer
function of a linear dynamic system with constant parameters; the
method 1s based on a comparison of the cross-correlation function of
the input and output signals of the system with the correlation
function of the input signal. Formulas are derived for the case when
the poles of the transform of the input signal correlation function
and the transfer function of the system do not coincide and have an
order higher than one.

In an investigation of the quality and accuracy of operation
of control systems during their normal exploitation the problem of
determining the pulsed transfer function g(t) in a time region or
of the transfer function of the system W(s) in the region of a complex
variable can arise.

To find the pulsed transfer function g(t) for stationary systems
with stationary random actions on the input, different methods of

solving the integral equation

K, ()= [ 80 Ky =) (1)

relative to the function g(t) are used [1].

Let us priefly examine some of them,
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1. Calculation of the pulsed transfer function g(t) by solving

the approximating system of linear algebralc equations

N

K= S kDK, (=T (2)

Equation (2) is solved by any of the known methods. Application
of the Gauss-Seldel iteration methods makes it possible to use
special-purpose computers (synthesizors).

2. Solution of equation (1) with a finite upper limit by the G
selection method. Selecting a value of g(t), we calculate the
integral in the right part of the formula until the obtained value of
the function coincides with the cross-correlation function ny(r)
determined from experimental data. "Control filters" are used to
solve the problem by the selection method.

3. Determination of the frequency characteristics of the
:yst?m. The basis of the frequency method 1s the reduction of
integral equation (1) to an algebraic equation with the aid of a
Fourier transform. As a result we determine the frequency
characteristics of the system in the form

wiw =20, (3)

where sx(”)’ Syx(J“) are the spectral and mutual spectral density of
the input and output signals.

Because of the large volume of computations, it is frequently
difficult to use these methods. Furthermore, due to the errors in
determining the correlation functions iteration methods can lead to
divergent iterative processes. The application of the frequency
method 1s connecteil with the necessity of calculating the spectral

density functions, which is not always convenient.
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Work [2] introduced a convenient method of finding the transfer
function of a system that does not require calculating the cross-
correlation function of the signals or the corresponding mutual
spectral density. It is based on the concept of the noise welight
function Kc(r), which is the correlation function of the reaction
of the system to an input signal and the form of a unit of white noise.
By using the relationships that connect the bilateral Lasplace transform
of the noise weight function Kg(p) and the correlation functions of

the input and the output signals Kgn(p) and Kgut(p) in the form

K8 . (P) = K¥(p)K§ (p), (4)

and also the connection of the bilateral Laplace transform of the
noise weight function and the transfer function of the system W(p),

which has the form
K (p)= W(p) W(—p),

from the known correlation functions of the signals we can determine
the transfer function of the system W(p) and, consequently, the

pulsed transfer function g(t).

The method is brought to a specific result for the case when
the correlation functions of the signals of the system have the form
Kin(e) = A% (cos By | 7| + Asin gy | <) (5a)

Kout(T) = Boe-f.'l'l(COSIp‘ltl+BSiﬂp3|'-|). (5b)

In actuality, simultaneous fulfillment of equalities (5a) and
(5b) 1s encountered rather rarely. If the correlation functions of
the signals are presented by different dependences, there can be
ambiguity in determining the transfer function. As A. N. Sklyarevich
has shown [3], this ambiguity can be removed by including additional

information about the system or about 1ts output signals, which
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significantly expands the possibilities of this method.

A. N. Sklyarevich proposed another method for finding the transfer
function of the system W(s). It is based on representing the cross-

correlation function of the two nonstationary processes ny(t, t,) of

the input and output signals

L Kutt)= e~ K, Qu—t s (6)

when t £ tl’ by an expression of the form
[}
‘ ny(‘i‘l)"blg(t_u)l(x(tl_a)d”n (7)

and when t 2 tl, by the expression
A ¢
Kl t)=[ gt~ ) K, (, —u)du+ [ g(¢—u) K, (u— t)) du. (8)

For stationary processes equations (7) and (8) can be rewritten

in another form (considering that t - t, = t):
Ko = f B@K,(c+0)ds KO e

and

K, ()= j' gG+u) K, () du+ .! gz —u) K, (uydu (z3>0). (10)

When the transfer function of the system and the univariate
Laplace transform of the correlation function of the input signal
are proper fractions with simple poles ay and 83 in the left half-
plane of the argument s and when these poles do not coincide

(correlation resonance is not observed):

Ki(‘)=‘§'.4,¢"l"', (11a)

g = ;,B/e'l'(lka, <0; Rep;<0), (11b)

y




the expression for ny(t) when t 2 0 can be written in the form

Kys(v) = )3 AW (a)en'™ + );B,[F.(P;) +F,(— g, (12)
bunl

where Fx(s) is the univariate Laplace transform of the correlation

function Kx(r).

When the cross-correlation function can be presented in the form
Ky,(t)-), A+ LB >0 (13)

after comparing the right parts of formulas (12) and (13) we can

determine the expansion coefficients of the pulsed transfer function

| B (14)
B~ F B+ F.—8)

and, consequently, we can find g(t) in accordance with formula (11lb).

Let us show how this method can be expanded for the case when
the poles of the transforms of the input signal correlation function
and the transfer function of the system have an order higher than
one.

Let us examine this problem: from the known input signal
correlation function Kx(t) and the known pulsed transfer function of
the system g(t), taking the conditions of the physical possibility
of the system into account [g(t) = 0 when t < 0], let us calculate the
cross-correlation function of the input and output of the system
ny(T).

The Laplace transform of the function Kx(r) and the transfer

function of the system W(s) can be presented in the form

F (s)",%;.gl(s—’)" (15)
W(s) == )': Z,R Bw (16)
e rel =8y



In sccordance with the examined case we assume that the poles

of the functions Fx(s) and W(s) do not coincide:
‘Pt
The correlation function Kx(t) and the pulsed transfer function of

the system g(t) are connected with transforms (15) and (16) by the

inversion formula
" - otjo
z(0=57 / 2()ends,
. a=jo

where a is the abscissa of absolute convergence. Applying the

inversion formula to expressions (15) and (16), we obtain

K,(l)—i"i'A,, H‘;;. : (17
e DL = T (18)
Since
Tt
and
/x"e"dxuc‘":o%-}—)(ln"ﬁ;;—;!—, (20)

-

taking formulas (13), (17) and (18) into account, we obtain an
(1)

expression for the cross-correlation func¢tion ny

'S ¥is ’(“‘ l)’ Pl v
K= Z‘E‘Bn 2 t )'I'lél 21 ("'" l)'

'-l+l X L v
— 1)Y=+l (0 —1 4 ))! RO,
» c).:. v—1+)— )12 — k)t E,,_.B"" ,,,,,>;,(z~—1)|x

r—1 o= (— 1) (v —-1 4 j)! [ A=
x/-zo . r=1=N1 (1,+.’1‘_)NI
(--1/ -
TR L ] =0 (21)
6




From expression (21) it 1is evident that the cross-correlation
function 1is a combination of sums that contain exponential tevms
corresponding to both the input signal correlation function Kx(T)
(17) and the pulsed transfer function g(t) (18). Consequently, to
solve the reverse problem, determining the pulsed transfer function
from experimentally calculated correlation functions, it is
expedient to present the cross-correlation function in the form

4 ' K N :
K,@=3 3 Mur"" @+ F T M,e""' A" (:350). (22)

=l dml . Aml aml

Calculating the coefficients at each power t of the exponential
B, T
components e X of the sought pulsed transfer function, equating
them to the coefficlents Mkn of the experimentally calculated

cross-correlation function (22) and introducing the designation

Lt v o ~ . 1y 1
w lél v§| A= Gy (o, + B0+ » (2,— Bt/ ] Gr. 1 (23)

we arrive at the following system of equations:

M (R—1)1=B,pa,;
M1 (R—2)!: 2 Byg @y + Brp—y 8y 3
M2 (R—23)!=Bya8,y+ Byp—1 8+ Bip-284;

(24)

My O0l=B,pa 0+ Byp— 18-+ * *+ By 8p+ By 81,

where R and N are the maximal orders of the pole Bk in expressions
(16) and (22). With system (24) we can easily determine the unknown

coefficients of the pulsed transfer function

A, ’
Bkr=T' (25)

where A 1s the determinant of system (24); L} is the minor obtained
by replacing the r-th column with the left part of system (24).
From system (24) we can derive a recurrent formula for

determining the unknown coefficients



u R—r
M.(r—l)i—‘Z‘Bwnanrh (26)

an

Bv"

In a particular case we can show that expression (14) follows from
formula (26) when r = v = 1 (the case of simple poles).
Thus, we can propose the following procedure for determining the
transfer function:
- ‘'using the recordings of the signal realizations on the input
and output of the system, by any of the known methods calculate
the correlation function Kx(T) and the cross-correlation function
Kyx(t) (1 20);
= approximate'the graphs of the correlation functions by
analytical expressions similar to (17) and (22);
- number the powers of the terms of the expansion of the correlation
function ny(T);
= calculate the values of the coefficlents akJ+1 from formula (23);
- ' determine the coefficients Bkr from formula (25) or formula (26);
- present the transfer function of the system in the form.of (16)
or, when necessu»y, transform 1it.
This method of determining the transfer function 1s an expansion
of the method proposed in work [3] for the case when the poles of
the transfer function of the system W(s) and the transforms of the
input signal correlation function Fx(s) have an order higher than one.
This significantly increases the possibilities of the given method
by creating prercquisites for alternating the calculation processes
in determining the characteristics of the system during its normal

exploitation.




Examples
l. The input of the object i1s fed a random r.ocess with the
correlation function
| K,(:)-:e-".'.
The behavior of the cross-correlation function in the region of
positive values of the argument 1s approximated well enough by the

K (-)-—»--r"'—_c_il—('-'r((‘ );)‘+OIS/;)),
yx 4 3 . '

Determine the transfer function of the object.

The coefficients Mkn (22) have the following values:

2 .
M“-—"s"; M"-—0,1875, Mu=—0,25.

From formula (23) find the values of akJ+1

1 1 2

! 1 !
%“‘“”ﬂ—h4+—1+J="T‘

1 | 3
a=— -0 ot - =]~

Using formula (26), find

B,=1; By=0; By =1

Thus, the transfer function has the form

| 1
W(s)= ) +(s+3)2

2. The input of the system 1s fed a random process with the

correlation function
The cross-correlation function in the region v 2 0 is approximated

by the dependence

FTD-HT-23-955-67 9



! 2124 948
K,,(t):-e"[( 1 t+ o5 3.,57)cos +(85 Tt 3757)slnt]+

41
+‘s‘""+“°‘(‘€—‘§sr)-

Since
‘ﬂ!_e“v E
Sln1==—-—-—"—,
/
M femv
CO§ < = —y T

we bring ny(T) to the form

K"("";'{“"(‘4'71—7+ﬁ7)+"'[ (4—1_/)2 + (2-:n’]+‘

aad 3 1 ¥
b "(T’+i +—2—i)+" '[(4 ) (2—/)’]} i
Pemr o

From this expression it is evident that

1 1 1 1
My=a—y t @3y M= Yoy
1 1

ey

—

2

Mn-

+2__j; MJ:’.-'

et

& 1 1
Mo=waxpy Y a=n’
Determine the coefficients akJ+l (23)

R S N E
m=7jtoy7 W= a—py " @+N’
1 1 1 1
m=gyjte=y T Iy e

6
aa, =“5—.

From formula (26) find the unknown coefficients
B,=0; B,=1; By=0; B,=1; B,:=2; By,-u.

The transfer function has the form'
N
Ve =GF1—p (<+1+/‘)‘~' s+2

742 +
e G TR c+
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Conclusions
1. The introduced formulas allow us to find the transfer function
of the system with sufficlent simplicity for the case when the poles
of the transfer function and the transforms of the input signal
correlation function have an order higher than one.

2. The obtained results can be used to develop special-purpose

computers for automating the process of calculating the transfer

function.

The author expresses his gratitude to Candidate of Technical
Sciences Ya. A. Gel'fandbeyn for a number of useful comments

expressed during discussion of the manuscript.
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