o
L g s e
PaN SR

AFCKL-68-0062

AMTENNA LABORATORY REPORT NO. 68-3

SOME ANALYTICAL METHODS FOR SOLVING A
< CLASS OF BOUNDARY VALUE PROBLEMS

by
G. F. VanBlaricum, Jr. and

R. Mittra

a1y«

AB T UM L e SR Dv -
e p XL Tt TN YR

Ve e
P

Corract No. AF 15{628)-3819
Project No. 5635
Tk No. 5636502

Wk Unit o, 56360201

AD 6763

Tscthricai Recory No. 15

JUNE 1968

Prepared for
AIR FORCE CAMBRIDGE RESEARCH LABORATORIES .
GFFICE OF AEROSPACE RESSARCH -
UNITED STATES AIR FORCE m 'f'j g
BEDFCRD, MASSACHUSETTS 01730 e~
Comxact Monitor - Robart A. Shore
Microwave Physics Laborstory

ANTENNA LABORATORY it
DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS 61801

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED

it mey be relessed to the Clesringhouse.
Depertment of Commercs, for sale to the genersl nublic.

/Of

&-5-——“....,. § Ay e et gm, 5 |y g v -
Cakagia ) it




gy

IR

L R\ =
N “«ks

JIUSESUUTE...\- Pl S-S U

~ v e e e s
N e N e o - - = e .

AFTCRL-68-0352
Antenna Laboratory Reycrf\ﬁo;~§8—3;

SOME ANALYTICAL NETHODS FOR SOLVIKG A

CLASS OF BGUNDARY VALUE PROBLEMS

by
G. F. VanBlaricum, Jr. and

i. Mittrs

Contract No. 2F19(628)-3819
Project Yo. 5635
Task ¥o. 563502

work Unit No. 56350201

Technical Report Yo. 1E
June 1958

Prepared for

Air Force Canmbridge Research Laboratories
Office -of Aerospace Research  °
United States Air Force
‘Bedford, Massachusetts 01730
Contract Monitor - Rorert A. Shore
Microwave Physics Laboratory

Antenna: Laboratory
Department of Electrical Engineering
University of illinois
Urbana, Illinois 61801

DISTRIBUTICN OF THIS DOCUMENT IS UNLIMITED

It may be released to thé Clearinghouse, Department of Commerce, fcr
sale to the general public.

R ——0r

ey

o dben % mak

-

PECEEL R

Ju L‘w‘m< =




N R R A A X L1 ot L

ST *Iren

sy

EEYSTENS: WNEY R Tt e o /] ooy

I AT

NHE o fe s A

HAY RN YT Ny 3

NP L1 4

[ R &) RAN o 1y 4

abay

Ner b

Y 34 AN

w

SDVE ANALYTICAL METHODS FOR SOLVINSG A
CLASS OF SOUNDARY VALUE PROBLIMS
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4 class of electromagretic boundary Jalue problems in #hich
th@ geometry =ay be divided into twc semi-infinite regicns can be
solved zxactly by the Wiener-Hopf techniqus. ZExaspies of such
geoxetriés, called basic Wiener-Hopf geocetries, are a parallel-plate
waveguide bifurcaticn and an infinite array of thin plates. Certzin
of these basic Wiener-Hopf prcblexs can also be forculated in terms
of infinite sets of linear eguations which may be sélved exactly by
the conventicnai msiéue-calculfas teChnique. In gemeral, however,
ths probiess adnitting exact solution by aither the Hiener-Hopf or
conventional residue calculus techniques are restricted to certain
highly idealized geometries.

A variety of boundary value problems, related to basic Wiener-
Hopf geometries but of more practical interest, may be solved by a
modification of the conventional residue-calculus technique, by
the generalized scattering matrix technique, or by a combination -of
the two methods. Solutiom of 2 class of infinite sets of equations
by the modified residue-cslculus technique (MRCT) is based on
construction of a meromorphic functicn £f(w) satisfying certain
criteria determined by the form of the equations as well as an
auxiliary requirement imposed by the edge condition. The solution
is obtained by integrating certain functions related to f(¥) over

contours in the.complex w-plane.
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' auxiliary junction problems is solved either by exact methods or by

A rapidly ccanvergent nuzerical nethod for comstructing f{w) in the

MRCT is presented. The MRCT solution is given in a fors convenient
for ccoputation, not involvirg numerical integration or solution of
large order matrix eguations which are tize consuaing and potentially
inzccurate frem @ cosputational standpoint. In addition, the MRCT
automatically guarantees satisfaction of the edge condition and
includes built-in tests on the convergence of the solution.

An additional group of modified Wiener-Hopf gecmetries in which
modal expansions are possible are solved‘ég 2 cozbinat on of the MRCT

and the gemeralized scattering matrix prccedure. A ziavtering matrix

description, including both propagating and evanescent modes, for a

nodified Wiener-Hopf geometry is cbtained in a convergent Neumann

A6« oo i a8 s =

series form by ccnsidering the rhenomenon of multiple reflections

between junctions in a related auxiliary geometry. Each of the

e

e

the MRCT.
The analytical methods described in this thesis are applicable

to waveguide discontinuities, including steps, bifurcations., and 1

diaphragms, in both rectangular and circular waveguides; to phased

arrays of dielectric-filled waveguides with thick walls; to a variety

iy

of diffraction surfaces and gratings; and to many other modified
Wiener-Hopf geometries. HNumerical examples of discontinuity,
array, and grating problems are included te illustrate the application

of the methods.
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I. INTRODUCTION

It is well kﬂown that a class of boundary value problems may be
solved exactly by the Wiener-Hopf technique (Noble [1958]). One
method used in the solution of such problems by the Wiener-Hopf
technique is formulation in terms of a semi-infinite range integral

equation of the form
J ¢(u)K(v-u)du = p(v) (1.1)
c

where ¢(u) 3e +hc unkuows function and the kernel function K(v) and
the inhomogeneous term %(v) are known from the geometry and the
excitation. The solution of integral eguztions of the type {3.1) is
diccussed in the rlassical paper by Wiener and Hopf [1931].

An al*_znative procedure, often referred to in the literature
as Zones' method (see Noble [1958]), leads directly to a Fourier-

transformed version of (1.1) in the general form

K(a) A+ (a¢) = ¥(a) + B (a), (1.2)

where a is the Fourier transform variable. Equation (1.2) has two
unknowns, A+ and‘B_, analytic in the upper and lower half planes,
respectively, of the complex a-plane with a common strip of overlap.
K(a)vand ¢(a) are known functions.

An entirely different method for formulation and solution has been
applied to a number of nroblems solvable by the Wiener-Hopf technique.

The alternative approach is based on expansion of fields in terms of

2 Yariiss
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norz2i modes of the semi-infinite regions and matching the resultant
éxpressions at the plane of the interface. :;‘ourier analysis of these
field expressions leads t¢ an infinite set of sizultaneous linear
equations for the mode coefficients. The exact solution of these
equations by a residue-calculus technigue Is discussed in Section II.
2n alternztive method of solution by direct inversion has been found
by Mirtra [1963].

The Wiener-Hopf cethod and the residue-calculus technique are

quite versatile, finding application iz rathsr diverse areas of

thezatical physics, e.g., avoustic and electrozaganetic wave
propagation, design of optimal filters, etc. £lso, the Wiener-iHopf
and residue calculus techniques arz the only known m=ethods for exact
solution of a class of problexs nz;t conforsing to separable coordinate
systems. MNonetheless, the scope of these techniques is limited to
idealized gecmetries satisfying certain strict requirercents.

In recent years, there have been atteapts towaré extending
Wiener-Hopf and residue-calculus techniques to a wider zlass of
problems of more practical interest. Thess may bé described as
modified Wiener-Hopf geometries, since they can be related to a
basic Wiener-Hopf gecmetry. Typical examples are diffraction by a
thick half-plane, scattering at the junction of two cylindrical or
parallel-plate waveguides of dissimilar transverse dimension,
radiation from a dielectric loaded waveguide phased array, etc. In
this thesis, some methods are presented for formulating and solving

a class of problems of the modified Wiener-Hopf type.
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A rapidly-cosvergent numerical method based upon an extension of
the conventional residue-calculus technique is presented for thie
solution of a class of infinite sets cf simultaneous linear equations.
In this method. the need for numerical inversion of large matrix
equations, such as those derived in an integral equation approach to
these boundary va2lue problems, is eliminated. In the present
approach, the solution is obtained in the same form as generated by
the conventional residue-calculus method, permitting rapid numerical
calculation. In addition, the procedure guarantees satisfaction of
the edge condition, which is a significant advantage over certain
iterative techniques where it is difficult to advance a direct proof
that the edge condition is indeed satisfied.

A class of related problems is solved by the generalized
scattering matrix procedure (Mittra and Pace [1963]), in which the
method of multiple reflection between junc-iuns is extended to
incli'le some junctions which are not exactly solvable, but for which
very accurate numerical solutions can be obtained by the modified
residue calculus technique. For the sake of completeness, a brief
description of the scattering matrix procedure is included in Section
II. Applications to phased arrays as well as diffracting surfaces
aad gratings are made in Sections IV and V, illustrating that a
combination of the modified residue-calculus method and scattering
matrix techniques is useful for resolving a rather large variety of
boundary value problems vhich may be identified as modifications of

the basic Wiener-Hopf geometry.
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II. ANALYTICAL METHODS

The analytical methods applied I3 +ha prcbiems in this thesis are
described in this section. The methods .are apﬁlicabli t56 a class of
modified Wiener-Hopf type gecmetries in which the slectromagnetic
fields may be expanded in terms of a discrete set of modes. The
eigenvalue spectrum associated with these problems is discrete by
virtue of either restriction to closed regions or periodicity i. ope
regions. In this event, the fieids are completely dgscribed by the
set of mecde toefficients. The methods described here are used tc
ocbtain the required mcde coefficients by a rapidly convergent

numerical technique.

The ¥odified ResidﬁégCa}culus Technique

The modified residue-calculus technique (MRCT) recently intf@duced -
by Mittra, Lee, and VanBlaricum [1368], is a method for the approximate
solution of a class of infinite sets of simultaneous linear equations,
such as thcse generated by a mode matching procedure at a discontinuity
in a waveguide. When the equations admit an exact solution, the MRCT
gives that splution, but the approximaté solutions to other problems.
is obtained without the need for numerical inversion of extremely
large~order matrix equations.

The appropriate sets of equations have the general form

o A A

z An (c i’Y + D )=( l + m )’m=l’ 2, 3. ot (2.1) ¢
n=l nom n'm P m p m

where {an}, {Yn}” {An} are all known and {An} ave to be determined. The

MRCT is an extension of thr conventional residue-calculus technique, which
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provides an exact solution to a2 set of equations of the general form

{2.1) when Am =0, m=1,2, 3, ....

. The conventiocnal residue-calculus technigque was introduced by
Berz [1851] and applied to the set of equations occurring in the
problem of diffracticn of a plane wWave by a set of parallel plates.
Subsequent appli

tions of the technique have been made by Whitehead

[1951], Hurd and Gruenberg {195%], and Wu and Salindo [1966] to

cases which are relevant to certain aspects of this thesis. Another
application of the method is found in Collin [1960].

The conventional residue-calculus technique can perhaps best be
described by an example which is related to a set of - .itions derived
in Section III. These equations, related to a sivple waveguide
bifurcation, are

. > 1 1
£ A( ) = ,m=1,2, 3, ... (2.2)
n=l P an-Bm ap+8m
> 1 1
£ A ( ) = ,m=1,2,3, ... (2.3)
=l B % Tm %o
E where
- k2 2 ./ 2,2
e = /k -(nn/a)” = - j Y(nn/a) -k°
] —_—
Bn = v’koz-(nn/b)2 = -3 »’(nﬁ/b)z-ko2
_ L2 2_ ./ 2.2
Y, = ko ~(nn/c)” = - § Y(nu/e) --k°

It is desired

known meromorrhic

and the equations are to be satisfied simultaneously.

to construct, by means of contour integrals of a

function, equations of exactly the same form as (2.2)

e S e v e e —————— —— o o
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and {2.3) and to solve for the {An} by identifying corresponding terms.

The reguired meromorphic function g(w) satisfies:

(g:1) g(«#) has simple poles 2t w = & T,y Egs -e., and at

15

W=-Q.
P

(g:2) g(Bn) =0,n=1,2,3, ....

(g:3) g(Yn) =0, n=1,2, 3, ....
(g:4) g(w) is algebraic (specifically glw) ~ Kw-alz) as -

ful + =

Condition (g:4) is a physical constraint of the probiem (in this case,
an edge condition) and insures a unique solution. Technigues for

3 constructing such a function are well known, and g{x) takes the form

i(w,B)A(w,Y)

3 g(w) =K exp(Lw) T;;é;sﬁz;faj- 2.“)

s where

nw,8) = I Q- lg—) exp(jwb/nw) (2.5)
n=1 n

and similarly for N(w,a) with b replaced by 2 and Nl(w,y) with b

replaced by c. Also,

L = j= [#n(a/b) + < tn(b/c)] (2.6)
é
L In the complex w-plane, let C be a circle of infinite radius
1 enclosing all of the poles and zeros of g(w), and consider contour

integrals of the type

H 1
-y § gﬁgl-dw m=1, 2, 3, ...
2ﬂ] w-8 ? ? 4 ? ?

and

TRV,




T

Epplying the residue theoren and noting the properties of g(w) stated

above, one obtains the -following identities:
s 5

i 1 )
nzl Rg(an) (an_sm) - Rg(-up) (ao+8n) + g(Bm) =0 (2.7)
(- -] . 1 »

- = - 7 - - =0 .
nzl Rg(an) (un_ym) ?g( up) (un+7h) + g(yn) (2.8)

where Rg(an) residue of g(w) at w = . If g(w) is normalized to

cake Rg(—up) 1, i.e.,
exp(LuD)H(-aD,a)

XK= T (2.9
H(-ap,B)H(—ap,Y) ?

(2.7) and (2.8) may be identified with (2.2) and (2.3) and the solution

given simply by

An = Rg(an), n=1l, 2, 3, .... (2.10)

The modified residue-calculus technique proceeds in a similar
manner. Again, application to an example provides the most convenient

exposition of the method. Suppose that the following equations are to

be solved simultaneously:

S S W S, (2.11)
n=l © % 'n Y %tV % T
> 1 1
nil A“(“n'em) = = v (2.12)
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As before, construct a mercmorphic function f(w) having specified

properties:
(£:1) £(w) has simple poles at w = @y5 Gy gy oees and at
W= - up.
(£:2) f(Bn) =0,n=1, 2, 3, «ue.
(£:3) f(Th) + ‘.nf(-:«n) =0, =1,2,3, ...
(£:8)  £(w) is algebraic as |[w| + =. Specifically, f(w) ~ Ke ",
‘1< v, and the exact value of v is determined by a.
physical constraint. It will be shown later that v may
be determined directly from the aéymptotic behavior of
the Ami§ as m becomes large.
It will be noted that conditions (f:1) and (£:2) are identical
to (g:1) and (g:2) imposed on g{w), the function appropriate for the
reduced problem with Am = 0. Condition (f:3) is a generalization of -
(g:3).

If such a function f(w) satisfying (f:1-4) can be constrycted,

then the solution to the equations proceeds as before. Consider the

contour integrals along C

1 §[f(w) e E0a m=1, 2,8, ...,

by o
2n3 wYp, m w+ym
c
and
1 £(w)
5;3- § b dw, m=1, 2, 3, .... .
e m

Again by residue techniques, the following results obtain:




9
© A A
1 m 1 m
£ Ra) ( + ) = R(-a ) ( + —)
n=1 f''n L an+ym £ 7p up+ym cp Y
+ [f(Ym) + lmf(-yml =0, m=1, 2,3, ... (2.13}
; Rf(an) (a—_l_'-a-—) —Rf('-(! ) (u .}B )} o+ f‘(sm) =0, m=1, 2, 3, ...,
n=1 m p pT n
(2.14)

where Rf(an) = residue of £(w) at w = a . Previded f(w) is normalized
to make Rf(—cp) = 1, (2.13) and (2.1%) may be identified with (2.11)

and (2.12) yielding
8 =Rfo ), n=1,2,3, .. (2.15)

Construction of f(w). The key step in the modified residue-

calculus technique is thé construction of f(w). Unlike in the
conventional technique where all of the poles and ieros of the function
as well as its asymptotic behavior are prescribed, in the modified
technique only a subset of the collection of zeros is known explicitly,
while all of the poles and the asymptotic behavior are again known.
Since f(w) must coincide with g(w) in the limiting case A, 20, f(w)

may be written in the following form:

F(w) = K'exp(Lv) "g:i§3g§¥57;; . (2.16)
p b

where L, H(w,B), and N(w,a) are given by {(2.5) and (2.6), and where

©

Mw,y') = 1 (1 - ;lir) exp(+jwe/nn), (2.17)
n=1 "n

T e e Y ad
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with fyn'} being the as yet unknown zeros of f(w). Comparison of
£(w) with g(w) shows that except for constant factors the two functicns
are related by shifting an infinite set of zeros {Yn} of g(w) to .
'{yn'} of f(w), and that when Am = 0, the zeros must coincide,
The asymptotic vélugs of the set {1n'} may be determined by
imposing condition (f:3). Let Dn = yn'-yn be the difference of the

zeros. Condition (f:3) requires:

My ,8M(y ,v") K' exp(-Ly )I(-y_,8)(-y_,YD
K' exp(Ly_) L o + A I L —
m (Ym+qp)H(§$;a7 m (’Ym+“§)“(‘Ym’d)
=0,m=1, 2, 3, ... (2.18)

For m large, the constants may be replaced by their asymptotic values,
- i.e., Bn 4 -jnn/b, @ ~ -jnn/a, Y, v -jnn/c, and Dn A~ D (an assumed

i asymptotic value), so that (2.18) becomes approximately

X! exp(-jlﬂ%}) n ftQ -
n=1

Hexp(T)] 1L - srber xR ()
ngl Q- ggOéxp(ggqj

DT
%1 (-37; + ap)

[

+ Am K! exp(+jL%§) n [(1+ %%Jexp(- g%) T [+ 5;3%37;Jexp(— %9]

=1 n=1
’ nn ®
'l’ S e IE _ELC” .
: (+ j=+ ap) nfl 1+ —Jexp(- —)]
:
it =0,m=1,2, 3, «... (2.19)

‘Equation (2.19) can be:reduced by observing that the infinite

products take the form of an infinite product expansion for the gamma

; function (see Noble [1958]).




Aoy 2o | a2y
M -

‘-.Ww,_‘; AALe

e

11
it X
H. 1+ an+b)exp(-x/an)
n=1
e
exp(-cx/a) _ T(1t+b/a)
I'(1tb/a + x/a)
= << for x # - |x] (2.20a)
2 sin(-xn/a-bn/a) exp(-Cx/a)T'(lt+b/a)
r(1+b/a-x/a)
for x = - |x| (2.20b)
where C = Euler's.constant.
Utilizing these relations in (2.19), one has after rearranging and
canceling like terms:
2 sin(-mw-jeb) = + Ay sin{-mna/c)/sin(-mab/c) (2.21)
But sin(-mra/c) = sin(-mm-mab/e) = {-1)" sin(-mub/c)
and sin(-mn-jeD) = (—l)m+l sin(jcD), so that (2.21) becomes, in
the limit as m -+ =,
2 sin(jeD) = - 1lim A
Mo |
or D= = sin"Y(- & 2im A ) (2.22)
e 2 m
m<o
The explicit evaluation of D = lim D permits a priori determination
. n—)m
of how the zeros of f(w) are to be shifted for large indices. It will

be shown subsequently that an expression equivalent to (2.22) may be

obtained directly from the edge condition.

R R +
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j ] Fxact determination of the shifted zeros {Yn'} for every n is not
z possible. However, for purposes of numerical ccmputztion iz suffices

; to use the determined asymptotic value for all but the first few, say

M of them, and to find those first M values explicitly. Also, except

for exponential factors and an irrelevant.constant factor X'', the

first M terms of the infinite product may in general be replaced by

a polynomial of degree M. That is,

M e ey e Vel o aw

M
K'' "1 (1~H/in)
n=1 '

wta

n
o
+
o
[
o
-+
+
{
2

"

- P(w) (2.23)
i

- where to specify the functional hehavicr it is sufficient to determine

1

the M polynomial coeffigiénts*al, A5y eees Aye

Accordingly, the function may be written

£(w) = K'P(w) exp(L)iGw, )T (w,y 1)
’ (w+ap)n(w,a)

(2.24)

where H(M)(w,y') denotes the omission of the first M factcrs from (2.17)

ok
S

- and replacement of yn' by Y, t D for all n > M. For simplification

write

T

™
Jh i ottt o i p—r—— p e < AN

f(w) = K' P(w)f'(w), (2.25)

R A S O ML AN )

where f£'(w) incorporates all of the known parts of £(w).

g

The polynomial coefficients may be determined by imposing condition

—

(£:8) forn =1, 2, 3, ..., M. Specifically,

PO

X! EYz + alyz—l

ey
. -

ooty v+ adft ()

ey
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#a K L) ra Gy e, (v )+ adEy) = 0

forn=1, 2,3, ..., H, (2.26)

yielding a set of M simultaneous linear equations for A1s 8ps s
Ay Solution of the set of equations may be accomplished by usual
numerical methods. Once P(w) is known, the constant K' may be
chosen to satisfy Rf(-up) = 1.

It must be noted, however, that even thcugh the MRCT requires
numerical solution of a set cf linear equations, the difficulty of
that solution in no way approaches that of attempting a direct
‘inversion of a truncated form of the original infinite set. TFor
most instances, it suffices to solve a 5 x 5 or smaller set of
equations explicitly in the MRCT, wyile much larger ones wculd be
appropriate for the truncated set. In addition, the truncated set
for (2.11) and (2.12) is quite ill—conéitibned, while the set for
the MRCT is well-behaved. An example in Section III illustrates the
rapid convergence of the solution via the MRCT for a waveguide step
discontinuity.

An additional feature of the MRCT for numerical work is that
a built-in convergence test is available, because the function found
numerically must satisfy conditions (£:2) and (£:3). A numerical
test of these conditions may be almost trivially incorporated into
a computer program.

Perhaps. the greatest advantagec of the MRCT is that satisfaction
of the edge-condition via (f:4) is a priori guaranteed. And, more
importantly, when the slight modifications of the geometry alter
the edge behavior, the correction is made automatically in the MRCT.

A further discussion “of this property is given in Section III.

N h B N
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Generalized Scattering ¥aurix Technique

The generalized scattering zatrix techaique is another nmethod for
solving a class of boundary value problems. The concept of a generalized
;cattering matrix, introduced by Mittra and Pace [1963] is very closely
related to the scatiering matrix of circuit theory (S2shu and 3alzbanian
[2959]) or of nicrowzve network theory (Collin [1956]). However, it
differs in that it is exterded to cousider evanescent as well as
propagating modes, so that in waveguide junction problexns, the
scattering catrix will in general be of ipfinite order. (In subsequent
discussions, the term Yscattering patrix" will c—ean Ygenaralized
scattering oatrix.")

The scatterizigﬁatrix is defined for a junction between tw

regions in which the fields may be expanded in codes, such as the

. -z . — s S - : P
waveguide bifurcation of Figwre 2.1. If then  T7E mode is incident

“upon the plane z=0 from region (&), fields are reflected back into (4)

and transnmitted into (B) and (C). The Ey cozponent of the field is

. . . . omaos th
expanded in a Fourier sire series, and the coesficient cf the o

node referred to the plane z=0 is defined as the anmplitude of that
mode. If the amplitude of the nth pode incident in (&) is one, then

AR

the amplitude of the ot? scattered mode in (A) is ST '(m,n) and the

ampiitude of the ol transmitted mode in (B) is SBA(m,n). Terms

AR A

SAA(m,n) and SBA(m,n) are the general matrix elements of S and SB R
respectively. The other scattering matrices are similarly defined.
In conventional scattering matrix formulations, the modes are

normalized so that a propagating mode carries unit power. Since the

generalized scattering matrix includes evanescent modes, such a

. _ —

N PPl v ot i

- Trw i

i b s v vebyen H
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Figure 2.1 H-plane waveguide bifurcation
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normalization is inappropriate. One consequence is that the
scatzering imatrices are not symmetric.

The generalized scattering matrix technique is a means of
solution for probiems which are related to an exactly solvable
auxiliary problem. For example, the inhomogeneously-filled waveguide
bifurcation of Figure 2.2 is related to the simple bifurcation of
Figure 2.1, which may be solved exactly by either Wiener-Hopf or
residue-calculus techniques (Section III). If the dielectric region
(C') is recessed as in Figure 2.3, the resultant problem involves
two junctions, namely junction 1, the original bifurcation, and junction
2, the interface between regions (C) and (C'). Each junction problem
may be solved individually and represented by scattering matrices,
eg. IO, SfB CA L0 Lot

Suppose now that a TE wave is incident upon junction 1 from
region (A). This wave is completely determined by the coefficients
of the mcdes, and hence can be represented by a mode column vector
¢ such that ¢, is the coefficient of the i'" mode in the incident
field. At junction 1, fields are reflected back into region (A) and
transmitted intc regions (B) and (C). The mode vector for the field
reflected back into (A) is SiA $, and for the field transmitted into
(), the vector is SEA ¢. Part of the wave transmitted into (C) is
reflected back into (C) and part is transmitted into (C') at junction
2. The mode vector in region (C') is Sg'CSEA $. Figure 2.4 depicts
symbolically the multiple reflection phenomena between junctions 1

and 2. The fields in each region are the sums of the fields

transmitted or reflected successively. It should be noted, though,

o ot e ey
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Figure 2.2 Singly-inhomogeneous waveguide bifurcation
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Figure 2.3 Auxiliary geometry for singly-inhomogeneous bifurcation
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that since the effect of propagation over the distance § has been
ueglected, the 7 .sults are valid only as 6 + 0, in which case the
geometry reGuces to that of Figure 2.2, the desired geometry. The
fields in the dielectric region may be represented by the mode
vector ¥, which is found by summing the fields transmitted into (C').

. _ Lrcca cre_ce.ce Ca
$=S, S ¢+S, S S S

cic cc.cc,2.CA
S2 (Sl S2 ) Sl ¢+ ...

o+

H
g sCC(sCCSECyNCA, (2.27)
hep 2 17277

Zquation (2.27) takes the form of a Neumann series, which can be
summed in the standard way. Proof of the convergence is given in
Pace [1964]. Also, the mode vector ¥ must be given in terms of the
composite junction scattering matrix (no subscript), so that

1
v=s"h

_ L'c,. cecC -1 CA
= 5, (I-8775,7)7"8," (2.28)

where I is the identity matrix. Since the result (2.28) is valid

for arbitrary incident mode vector ¢, the implication is that

CtA CC.CC,~1.CA

S 1 32 ) sl (2.29)

_L'e
=, (I8

The other scattering matrices for the problem can be found in an

analogous manner.
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Equation (2.29) is formally exact, since all of the auxiliary
scattering matrices may be found exactly. For practical purposes,
however, results are found approximately by truncating the scattering
matrices and performing the inversion numerically. Many interesting
problems may be solved approximately by the generalized scattering
matrix procedure even when the auxiliary problem cannot be solved
exactly. Often a very good approximate scattering matrix represent-
ation of the auxiliary problem can be found (for example, by the
modified residue-~calculus technique) so that the composite scattering
matrices may be found as before. An example of this kind is given

in Section III.
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III. INHOMOGENEOUSLY-FILLED WAVEGUIDE BIFURCATION

Among the problems occurring in microwave theory are waveguide
discontinuity problems. Most of the problems of interest do not

possess exact solutions, so that many approximation techniques for

the solution of suchk problems have been developed. Many such

; techniques and their application to finding equivalent transmission

é‘ line and lumped circuit element representations for waveguide

discontinuities are given by Mércuvitz f1951]. Sincé usually the

E ‘ equivaiences are treated with respect to one or tWwo propagating

' medes, description of discontinuities is often given in terms of

modal reflection and transmission coefficients (i.e., scattering

matrix elements). i
The simple bifurcation pfoblem (Figure 2.1) admits an exact

solutién, but the generalization to the inhomogeneously-filled

bifurcation (Figure 3.1), which may be applied to waveguide junctionms,

T

waveguide diaphragms, and even to phased arrays, cannot be solved
analytically in closed form. However, the modified residue calculus

technique is expressly suited for solving such problems approximately

e oo~ e

; and will be applied in this section to the solution of the inhomogen-
eously-filled waveguide bifurcation. Numerical results for a set

of special cases are given, and application to related problems

e W e -

are discussed. Application of the results to the phased array is

LAV S i o

‘ made in Section IV.

{ Analysis

The geometry of the inhomogeneously-filled bifurcation is givén

in Figure 3,1. The septum at x = ¢, z > 0, is assumed to be infinitely
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Figure 3.1 Inhomogeneously-filled waveguide bifurcation
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thin and perfectly conducting. Regions (B) and (C) are filled with

'
P ] ] o . oy o

media of relative dielectric constants éb and €es respectively.
Assume that TEPO modes with electric vector parallel to the .edge
! of the septum are incident upon the plane z=0 from regions (A) and
(B) with amplitudes A and B, respectively. By linearity, the
excitations may be treated either together or separately. Ho loss
; - of generality results from not considering explicitly excitaticn

from (C), since the role of (B) and (C) may be interchanged and

the principle of superposition applied.

The total. electromagnetic fields may be derived from the oniy

F_ non-zero component of electric field, Ey.
H = —— <= (E) (3.1a)

x jwuo 3z Ty

1 3

. = jwuo s (Ey) (3.1b)

]

; (exp(jwt) time variation is assumed throughout). The analysis and
L exact solution for the reduced problem €, = €, = 1 was given by %
F ; Hurd and Gruenberg [1954]. Formulation for the generalized problem
| proceeds in a similar manner.

The formulation of the problem is facilitated by an auxiliary
geometry, that of Figure 3.2. Dielectrics in regions (B) and (C)

are recessed small distances u and v, forming regions (B') and (3),

L3S T LT SR It S A M Ot S
- PN S S

and (C') and (C), respectively. In the five regions, the transverse

electric field may be written

PG o T T
.
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Figure 3.2 Auxiliary geometry for inhomogeneously-filled bifurcation




28

VI nfz 3_ sin(zzx/a)exp(ie_2z) + A sin(pzx/a)exp(-j“c%z.) (3.2a)
(8') Ey = nfl sin(a=(x-c)/b) [Ein exp(-jsnz_) 3 exp(jsnz)] (3.2b)
: (3) £, * ) sin(nr(x-c)l’a}'exp(-jgnz) + B sin(pa(x-c)/blexp(§E,2)
n=1l -

(3.2¢)

(') £ = I sia(asx/c) [C_ exp(-jy_z) + =_ exp(jy_z)] (3.23)
y a=1 a n n n

©) Ey = n§1 €, sin(nzx/c)exp(-j?nz) (3.2¢)

where e = 7‘402—(!13/3)2

n
] 8 = 4.5.02-(n=/b)2
’ Y. = :/.402-(n:/c)2

: n

A 'é'n = n/ebkoz-(n:-'/b)2

-Y-,‘, = /&:ckoz-(nx/c)2

2_ 2
ko CY) uoleo

Except for a constant factor, the transverse components of the
magnetic field in the corresponding regions are foind by partial
differentiation with respect to z.

Matching tangential field components at z = v, 0 < x < ¢, and

equating Fourier coefficients yields




c, exp(-j'hv) + 2 exP(JTnV) =6, exP(‘3an)

Y.
] . - . _ T
--!-\ncn exp(-j'rnv) + Y B exp(jynv)] = -G

=)
[+ ;’O

Atz =1u, c £x < a, a si2llar procedure yields

s 3 =T exp(-38 P 58
Bn exp(-janu) + Dn exp(jsau) = E, exp( anu) + Gn 3 exp(jspu)

1 ¢ - -
-eTo{-B s 3, exp\-jsnu) +8 D exp(]Bnu)]

o= = D = T
= —={B8 ex?(-;;snu) + & 8. 3 exp(]BPu)]

(2411 2 n

In the lipit as u + O and v + 0, these equations

give

E =2 C

n R n

28
D =5 B +&  —E—3
(8P+Bp)

Y Y

where Xn = (= _?)
Yoty
B -B.

g = (=)

Bn+8n

6§ = Kronnecker delta

exp(-37_v)

27

(3.32)

(3.3b)

(3.82)

{3.4b)

can be sizmplified to

(3.52)

(3.5b)

For u = v = 0, the auxiliary and original geometry coincide, so that

L AU RVENA WV IR

e et o <o morma
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the relations of (3.5a-b) rmay be used in formulation for regions (&),

o §, roked &g

(8}, and (°).
Matching tangential field components at the plane z=0 gives
the following expressions:

A sin (pax/a) + I An sin(nzx/a) =
n=1

(f £ C_(3#2 )sin(nax/c), 0 < x < c (3.63)
ney ®m -7 =

x©

nfl Bn(l+5n)sin(nn(x—c)/b)

B
+ 2—E— B sia{pa(x-c)/b), ¢ < x <a (3.6b)

3 (BP+BP)
and

g -z A sin(pix/a) + £ a A sin(nmx/a) =

5 P P n=1 nn
E

: 4 ©

. . y_ C_ (=142 )sin(nux/c) 0 <x <c (3.7a)
i S T Y n - =

p n=1

o

-]

nil Bn Bn(-l+£n)sin(nﬂ(x-c)/b)

\fod
AL

s % ik atin b -t v

7

B2
: + 27—£L:?L-B sin(pn(x-c)/b) c 2 x<a  {3.7b)
= \_ (Bp+8p)

Relations among the mode coefficients may be obtained by multiplying

the equations above by sin(mmx/c) and sin(mm(x-c)/b) and integrating
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4
i

in the respective regions 0 < x < c and ¢ < x < a. Employing the
integral identities

c
J sin{mix/c)sin(nwx/a)dx = (-l)m+l %?-532%225121
a—
(o]

n YITI

and

a

J sin{ma(x-c)/b)sin(nmx/a)dx = -'%}-.552%33545 s
o -8

(o4

2 'm

the relations for the mode coefficients become

Asm(mrc/a) + T A sin(nwc/a)
2 2 I
p 'm - n ‘m
2
_ m+tl c¢
= \-l) .2_’11;1’- Cm(l‘*'lm)

(-]

- Asin(Bnc/a) + 5 o A sin(nnc/a)
P 2 2 nn 2 2

ap—ym n=l L
m+l c2
= =1 — -
(-1) 2mw 'm cm( l+km)

Asin(gnc[g) + ; A sin{(nne/a)
2 2

. n 2 .2
ap-Bm n=1 an—Bm
2 2 78
— D B geP
T omm Bm(l+£m) 2 B(sm

29

(3.8)

(3.9)
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—a Asin(gnc/a) + ; a A sin(nwc/a)

* P 02_52 n=1 nn (!2"82
pm n m
2 2 2B 8B
=-L2.8 B (-14£ ) D _PP_ 3P
Z2nm m m m 21 4. 7w
(8 +8 )
p D
(3.11)
&
For simplification in notation, let
:
_ B
B=2—PF 38 (3.12a)
(B_+8)
P P
A; = An sin(nmnc/a) (3.12b)
A' = A sin(prnc/a) (3.12¢)
2 Equations (3.8-11) may be cast into more easily recognizable
form by adding ~z? Subtracting multiples of the equations. The
v resultant equations are
i: > 1 1 mtl 2
2 A ) - A! + (-1 ¢y C /ma=0 3.13
| B MG (“p-Ym) ) v.C/ (3.13)
{
-  art +;\"‘)-A'(l t—2) =0 (3.1%)
rg‘ | ey DY FY &y %Yy
" : 1 1 2
! e oAvZ o ) . AdY - =
P EAGT ) - A (T3 ) - b BmBm/m'n 0 (3.15)
P n=l n'm P m
: H
L.
&i s o o
i . - _
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o 13 £
1 n 1 ™
r A + ) - AY( + )
n=1 B an-Bm an+8m ap+Bm ap—Bm
P2 ¢ B/ =
+ &b BPB/pn' =9 (3.16)

Thése equations are valid for eachm = 1, 2, 3, .... These
simultaneous infinite sets of eyuations for the {Aﬁ}, {Bm}, and

{Cm} are in the general form discussed in Section II, hence approximate
solution by the modified r«sidue-calculus technique is possible.
Because of the wide variety of possible variatisns on the basic
geometry, the solution of the sets of equations will be discussed in

general and then restricted cases of greatcr iaterest will be treated

in detail.

Solution of the Sets of Equations

Because of the linearity of the system, it suffices to treat
excitation from ragion (A) and region (B) separately. Excitation
from region (A) is most applicable to specific cases of interest, so
the discussion of the general solution will be in that context. Suppose,
then, that B=0 and hence B=0 in (3.i6).

The inhomogeneous bifurcation is a generalization of the simple
bifurcation in which € = €, = 1. In the simple case, gm = Am = 0,
so that except for the factor A', equations (3.14#) and (3.16) reduce
to (2.2) and (2.3), where the {Aﬁ} are identified with the {An}. The
solution is exactly as described in Section II except that the mero-

morphic function g(w) is nc alized to give Rg(-cp) = A', Solution of

the general case is based on mcdifications of the function g(w) of

(2.%).
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Suppose that a meromorphic function h(w) can be constructed which
satisfies:

(h:1) h(w) has simple poles at w = - and at W = a;, G, Ugy seee

(h:2) h(Bm) + smh(-sm) =0,m=1, 2, 35 auee

(h:3) h(Ym) + Amh(—ym) 0O, m=1, 2, 3, eeus

(h:8) h(w) ~ Kw °, 4/3

S

v < 5/3, as |w| + = (The exact value
of v is determined by the edge condition and will be
discussed subsequently.)

Consider the following integrals in the complex w-plame, where C is a

closed contour enclosing all of the poles and zeros of h(w).

1 1 C) I 1y oo 1 .
vl § (W)dw = nil Rh(an)(“nﬂm) R ( ap)(aD_Ym)
C -

+ h(-Ym) = 0’ m = l’ 2’ 3, LI (3.17)

X © A
1 § h{w) h(w) 1 m
— 0 (—=+ 1 —)dw = I (CI]¢ + )
" c ¥Yp o P n=1 "% %Tm %ntTp
1 Am
-Rh(—ap)(a ov t = = ) + h(Ym) A h(-Ym) =0,
p 'm P 'm

1 h(w) - 1 1
2_7\’j- § (W+3m)dw = n§1 Rh(an)(ﬁ) - Rh('-ap)('-;—m—')
C P I}

+ h(-Bm) =0, m=1, 2, 3, ... (3.19)
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13
1 h(w) h(ﬂ) - !
213 § (w—Bm ¥ o w+B dw = £ Rh(a )( ¥ )

3
1 m s =
- Ryl Y5t g + B(B) + £.n(-B ) =
= pm m

m=1, 2,3, ... (3.20)
When h(w) is normalized to make Rh(-aD) = A', (3.17-20) may be
identified term by term with (3.13-16) to generate the solutions to

3w
the sets of equations. The results are:

Al=R(a),n=1,23, ... (3.21)
c_ = (-1)"+ —%E—-h(—ym), m=1, 2,3, oot (3.22)
ey
m
B = =1, 2, 3, cous (3.23)
m bB

The required function h(w) takes the form

N(w,B8' )N(w,y"')

hw) = X exp(lw) = STt
P b

(3.24)

The zeros {BA} and {yé} reduce to the zeros {Bn} and {yn} of g(w) when

Am = Em = 0 (equivalently, gy = € = 1). The constant L is given in

(2.6) and the factor K is chosen to satisfy the normalization require-

ment. Tbe nominal algebraic behavior of h(w) is asymptotically

-3/2

W , but corrections are made by the asymptotic shift of Bé and Yﬁ

o SR AR
. %




i e pu i+ AP )

3
i
i
H
&
¢

34
from their nominal values of Bn and Y- Properties of the sets of
zeros are determined concurrently by (h:2), (h:3), and the edge
condition.

The solution for excitation from region (B) proceeds almost
exactly as for excitation from (A). The function h(w) differs in
that the pole at -ap and the zero at Bé are eliminated, so that h(w)
maintains the same algebraic behavior as before. Subsequent arguments

pertaining to the edge coadition and asymptotic bchavior carry over

verbatim.

Edge Condition and Asymptotic Behavior of Zeros

So long as simple dielectrics (eb <@, e, < =) £ill regions (B)
and (C) and only TE excitation is considered, the inhomogeneocusly-
filled waveguide bifurcation has the same edge behavior as the simple
bifurcation. Thus, h(w) ~ Kw_3/2 for both cases. However, two
infinite sets of zeros must be determined simultaneously to satisfy
(h:2) and (h:3). As in Section II, it is possible to extract
information about the asymptotic zero positions by studying conditions
(h:2) and (h:3) for large indices.

Suppose that for n very large, the propagation constants may be

written
@ = ~jni/a
Bn = -jnu/b
Y, = -jna/c
B; = -jnn/b + S




y! = -jna/c + D

'
n

where S and D are the assumed asymptotic shifts of Bﬁ and 75 from the

unshiftad positions. Imposing (h:2) for m large in the form

B8 )/h(-8 ) = - £_ yields

. _ _=jmu/b
(EfffffSB_o exp(-2jmaL/b) = -:nﬂ/b*S)
-jmn/bi'aD B n(1- 1222221_.)
I ~jnm/btS
~jma/b _yooo_ #jmasb.
. 1= =7em (- 7z _E (3.25)
- _+jma/b o —jmm/b m .
i _jm;/c+D)n(l -;nn/a)

The exponential convergence factors in the products have been omitted

to simplify the appearance of the equation. When the products are

replaced by their simplified forms from (2.20a) and (2.20b) and when

the quotient containing ap is replaced by its limiting value, equation

(3.25) reduces to

sin(mn-3jSb )sin(mnc/b-jDe)

sin(mna/b)

Since a = b + ¢, this expression may be further reduced to

3in(§Sb)sin(mnc/b-jbec)

sin(mnc/b)

The corresponding result for (h:3) may be obtained from (3.27) upon

interchanging b and ¢, S and D, and replacing Em by Am.

_1
=568 (3.26)

_ 1
=-5¢ (3 27)
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sin(jDe)sin{mnb/cX§Sb) _ 1,
sin{mab/c) T T2 (3.28)

Tor simple dielectrics, both Em -+ 0 and Am + 0 asm-~+«, Thus,
the R.H.S. of (3.27) and (3.28) tend to zero, and hence so must the
L.H.S. if the equalities are to be maintained in the limit. This
requirement is satisfied by D = S = 0, so that asymptotically the
new zeros BA and y; tend to the o0ld zeros Bn and Y- The choice
S = D. = @ is consistent with the edge condition, for no algebraic
correction to the asymptotic behavior of h(w) is permitted.

In the most general case, i.e., when one or both dielectrics
assume limiting values as electric or magnetic conductors, such
direct limiting arguments for (3.%7) and (3.28) fail. They fail

because the limits as m -+ « of the sine ratios fail to exist even

‘though the R.H.S..cf each equation does have a limiting value. Two

cases of particular interest, namely the waveguide step and the
diaphragm, may be solved as special limiting cases of the inhomogen-
eously-filled bifurcation. In those cases, limit difficulties with
respect to Asymptotic behavior of the zeros reflected in (3.27) and
(3.28) can be circumvented by direct imposition of the edge condition.
Although the two problems will be discussed in greater detail
subsequently, the behavior of the set of zeros of h(w) for their
solution will be treated as special cases.

Case 1. When the dielectric in region (C) is allowed to become
a perfect electric conductor and the dielectric in (B) remains simple,

the geometry reduces to the waveguide step discontinuity of Figure 3.3.
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In this case, Ea<* 0 as o+ =, but Aa = - 1 for ezch n. The value of
Am is readily interprezed as the nth oode reflection coefficient 2t the
interface between regions (C') and (C) in the auxiliary geczetrv of
Figure 3.2. Naturally, when the dielectric becozes a perfect electric
ccnductor, each rode reflectiorn coefficient becozes -1.

The 1linit of the R.H.S. of (3.27) is zero, but the R.H.S. of
(3.28) is + 1/2 for 21l n. The choice S = 0 reduces the L.H.S. of
(2.27) o zero, so that (3.27) is satisfied in the 1init. However, the

choice S = Q reduces (3.28) simply to

sin(jdc) = (3.29)

N =

L SOy OOy S S

which then implics that

D= - e (3.30) ) é

&

[¢]

Thus the zeros {75} are asymptotically shifted from {Yn} by the
amount D = - jé%3 but the asymptotic shift of the {B;} is zero,

The edge condition for the waveguide step iz that of a right-
angle perfectly conducting wedge. The field behavior requires that
h(y) ~ Kw_sls, which differs from the behavior for simple dielectrics

- by the factor of w-lls. It would appear at this point that a new
form for h(w) must be found to account for the new edge condition.
However, the asymptotic shift of the zeros {y;} automatically
incorporates the algebraic correction to h{w).

The ratio r(w) of h(w) with shifted zeros to h(w) with: unshified

- zeros is essentially

B(1-w/(y_4D))

r(w) =
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However, substitution of asyaprotic values for Y, and reference to

(2.202} and (2.20b) yield a simpler expression for the ratio, namely

_ t(A+30c/32)P(A-jwc/=)
r(w) = T(1+jDc/a-3=c/=)T(1) (3.32)

Tron the asympiscic value of the ratio of gama functions (P(xib)/

r{x) ~ 2 as x - ») given in Noble [1358], the ratio (3.32) becones

_50e
p(w) v K(-559) 7 (3.33)
Substitution of thes asymptrotic value of D = - jn/bc yields
-1
v(w) ~ X'w /6 (3.34)

Thus the proper algebraic correction to h(w) is automatically provided.

Case 2. When region (C) is filled with a perfact electric
conductor and region (B) becomes a perfect magnetic conductor, the
geometry reduces to a waveguide terminated by a combiped magnetic
and electric wall, as in Figure 3.4. Althouzh this problem is
essentizlly non-physical because magnetic conductors fail to exist,
it is indeed useful as an auxiliary geometry for solving the problem
of an inductive diaphragm in a waveguide. Its application to the
diaphragm will be discussed subsequently.

The magnetic conductor in region (B) gives the value +1 for each
Em. As in Case 1, Am = -1 for each m. Unlike Case 1, however, the
limiting procedure applied to (3.27) and (3.28) fails completely,

indicating that the zeros fail to have a specific asymptotic shift,
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except possibly in an average sense. Fortunately, though, the edge
condition for Case 2 is known exactly, so that edge condition
information can be used to advantage.

Because the geometry of Case 2 may be directly related to the
inductive diaphragm, the edge condition is that of the diaphragm,
which like the simple bifurcation, requires h(w) ~ ki /2, Since
no algebraic correction to h(w) is required, the edge condition alone
yields

S=o0 (3.35a)
D=0 (3.35b)

for the asymptotic shifts of the zeros. Since the conditionz {(h:2)
and (h:3) for the magnetic-electric wall case are scmewhat stronger,
it may very well require lcpger for the actual zeros to approach
the asymptotic values. However, because the actual shifts of the
first few zeros of h(w) are found explicitly, the numerical results
fov scattering matrix elements for low-order modes are quite
insensitive to errors in the location of large-order zeros of h(w),
hence in S and D.

The essential test of the proper c cice of asymptotic shifts is
the saticfaction of (h:2) and (h:3). Of course, when the conditions
assume proper limiting forms, the preblem is greatly simplified.
However, arguments such as those for Case 2 may be invoked when direct
limiting procedures fail. In some cases, morecver, explicit computa-
tion of exact zero locations may lead to a numerical determination

of the usyniptotic shift of large-index zeros. In all, any reascnable
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means that yields satisfaction of (h:2) and (h:3) and the edge

condition may be usefui.

Construction of h{w)

Since the functional form of h(w) is known exactly, conrstructicn
of h(w) consists in determining the unknown zeros. As in the problem
discussed.in Section II, it is not possible to determine all of the.
zeros exactly. Again it suffices to substitute asymptotic values for
all but the first few values of Bﬁ and y; and to find the first values

explicitly. Suppose that HB values of 85 and M, values of Y& are to

c

be found explicitly, and that M = MB + M,. Actually, a polynomial of

order M is determined since exact location of the zeros is errelevant.

The function may be written

h(w) = K P(w) exp(Lw)H(Hﬁ)(w,B')H(HG)(w,y')
4(w+ap)n(w,a)

(3.386)

where H(ﬂn)(w,s') denotes omission of the first My factors and
raplacement of p; by Bn + S for n > MB, and similarly for H(Mc)(w,y).

P(w) is a polynomial of order M. For simplicity, write
h(w) = X P(w)h'(w) (3.37)

wheré hi{w} inccrporates all of the known parts of h(w).

.Although th2 method of determining directly the polynomial
coefficients which is described in Section iI is perfectly applicable
to this case, an alternative method of specifying P(w) is superior
fur numerical work, albeii Zore aomplicated. The method consists of

writing P{w) as a known polynomial of order M plus a correction
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polyncmial of order M-1. TFor convenience in notation, let

wi+HB = vy, 1= Hgtl, Mp+2, ..., Mo+ M, = H
to= g, i=1,2, ..., Hy
ti+MB =A, i=Mp 41, M4 2, ...,

Thus, conditions (h:2) and (h:3) for the explicitly shifted zeros read:

B(W,) + £.B(-W,) =0, 1=1,2, ..., M (3.38)

Now write P(w) in the following form:

M M M w-W.
P(w) = T (=/W) + I [F, T (z—=)] (3.39)
i=1 i=1 j=1 i7"y
j#i

The first term of P(w) is readily recognizable as the product of
unshifted zeros. The second term, in which the coefficients Fi’
i=1,2, ..., M, are to be found, forms the correction polynomial.
The normalizavion of the second term is such that P(Wi) =F,.,i=1, 2,
.., M.
Substituting the new form of P(w) into (3.38) yields
M

1w SF H
K h xwm)rm + th h (Wm) {iI=IJ (1+wm/wi)

3
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. M B -H_-W. .
+ £ [P, T (== =0,m=1, 2,3, ..., M (3.40)
- 1. W.-W.,
i=l =1 1 3
j#i .

Since the only unknowns are the {Fi}’ which appear linearly, (3.40)

is actually a set of M simultaneous linear equations for the {Fi}.

‘ Solution of such sets by numerical methods is well-known. In actual
practice, Gauss-Jdordan elimination in double-precisior complex arithmetic
was used on an IBM-7094 digital computer.

The advantage of this scheme for finding the polynomial is that

- the unknowns are of first-order, while the unknown polynomial
coefficients- in the direct method are of zero-order. The alternative
method reduces to Fi =0,1i=1, 2, 3, ..., M, when the geometry

reduces to a simple bifurcation; for the same case, the direct method

T

yields rather large values for the unknowns. The best test of the

polynomial determination is the satisfaction of (h:2) and (h:3), or

T

(aa

equivalently, (3.38). The correction polynomial method is consistently

superior to the direct polynomial method in satisfying (3.38)

b kitrass ainty

numerically.
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Application to Specific Examples

Simple dielectric fillings. Apart from the homogenecus

o noeuien s
N et

é bifurcation, the simplest geometry is that of Figure 3.1, in which
regions (B) and (C) are filled with simple dielectrics. For a fixed

waveguide width a, the reflection coefficient varies with the position

Mg HRTA ST s ot
—

% of the septum (i.e., with the ratio c/a). Over intervals in which

e
.

both guide (B) and guide (C) are cut off, the magnitude of the
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reflection coefficient is unity. Because the cut-off dimension alss
varies with the nature of the dielectric filling, the interval of
total reflection varies with the dielectric constant. Figure 3.5
illustrates the cut off phenomenon for a singly-filled bifurcation.
Region (C) is filleé with a3 dielectric €» but region (B) is unfilled.
For the guide dimension a = 0.75A, the reflection coefficient for

the TEl mode from (A) is given for €, = 1.0, 2.0, and 3.0. Note

0
the coinc¢idence of the reflection coefficients up to the point

c/a = 0.33 at which point the unfilled guide (B) cuts off. Also of
interest are the limiting values as c¢/a = 1, in which cases the
junctior. becomes that between an unfilled guide and a filled guide

of identical dimension. The cut off point: for the guide (C) are
readily observable as break-points in the curves of Figure 3.5. Both
magnitude and phase of the reflection coefficient for discrete valuesg
of c¢/a for the same geometry are giver in Table 3.1.

Reflection coefficients for the doubly-filled bifurcation are
depicted in Figure 3.6. In each case, guide (B) is filled with a
dielectric €, = 3.0, while results are given for €, = 1.0; 2,0, and
3.0. Again break-points in the curves may be identified with cut off

dimensions in the waveguide. As before, a = 0.75A.

Step discontinuity. Of greater practical importance than the

simple dielectric-filled bifurcation is the waveguide step discontinuity
of Figure 3.3. Extensive results for step discontinuities of various
kinds are given in Marcuvitz [1951], where primarily variational
techniques are employed to finu the dominant mode reflection

coefficient and equivalent circuit reactance. However, no results
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Figure 3.5 Reflection coefficient for inhomogeneously-filled
bifurcation (eb = 1.0, a = 0.75))
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Reflection Coefficient for Inhomogeneously-Filled Bifurcated Waveguide

Reflecticn Coefficient (Magnitude, Angle)

c/a

sc=l.0, eb=l.0_ ec=2.0, eb=l.0 ec=3.0? eb=l.0
0.0 0. 0. o.
0.1 (0.051, 36.3°) (0.051, 36.1°) (0.051, 38.1°)
0.2 (0.148, 50.6°) (0.148, 50.5°) (0.147, 50.3°)
0.3 (0.220, 53.86°) (0.420, 53.1°) (0.516, 52.5°)
0.4 (1.000, 112.3°) (1.000, 109.1°) (0.847, 100.6°)
0.5 (1.000, 127.2°) (0.656, 110.8°) (0.620, 134.3°)
0.6 (1.000, 112.3°) (0.417, 135.5°) (0.510, 152.0°)
0.7 (0.420, 53.6°) (0.318, 151.8°) (0.433, 162.5°)
0.8 {0.148, 50.6°) (0.264, 164.5°) (0.371, 170.5°)
0.9 {(0.051, 36.3°) (0.2u4, 174.8°) (0.358, 177.7°)
1.0 0. (0.252, 180.0°) (0.365, 180.0°)
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szem to be given for the junction cf guides of different dimension
and different dielectric filling, which is the most general case
of Figure 3.3.

Because the step discontinuity is merely an extension of the
inhomogeneously-filled bifurcation, scattering matrix representations
of the discontinuity can be readiiy fouad by the MRCT. Although it
often suffices to determini only the dominant mode refiection
coefficients, knowledge of the sca”cering matrices, even though
truncated at a small size (.5, for example), makes possible very
simple solutions of <uch problems as the thick-wall phased array
(Section IV). 1In addition, krowledge of the high-order mode
coefficients for the scattered field permit very accurate determination
of the electric or magnetic field at the discontinuity. An example
of the truncated scattering matrix SAA for a step discontinuity is
given in Table 3.2. The guide width a = 0.75X and c/a = 0.3; region
(B) is unfilled.

Even though only & very small muuper of zeros of the function
h(w) are determined ex)licitly in the solution of the step problem,
availability of apprcximate values for the high-order mode coefficients
permits computation o the electric field at the plane z = 0. Assume
that a TElo mode of unit amplitude is incident from region (A). The
coefficients of the #irst twenty reflected modes are found by the
onfT and the total field is calculated from the truncated Fourier
series at 2z = 0. The amplitudes of total eleciric field for step
widths of 0.2a, 0.3a, 0.4a, and 0.5a are shown in Figure 3.7. It is

important to note that the fields are computed in region (A), so that
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Figure 3.7 Amplitude of aperture electric field (a = 0.751)
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the exiremely small value (almost zero) of the field from x = 0 to
= ¢ for each case illustrates the satisfaction of the requirement

Etan:= G onx =0 to x = c for even the truncated serie;. -Comparison
of the fields in the apertura c < x < a as computed in region (A) wit
the corresponding values computed. in region (B) have shéwm agreement
to several significant figures. ‘Although the mcde coefficients found
-k? the MRCT are oniy approximate, the field found fro= then is probably
venixggép to alleast-nqah-gqpare approxization to the actual value
because of tﬁe Fouri;réBessel inequality.

The reflection coefficient as a function of relative step width
c/a is shown_in Figure 3.8: .Region (B) is filled with dielectric
g, = i.o,.z‘o, and 3.0. The guide width a = C.75A. The limiting
case c/a = 0 yields the reflection coefficient for the air-dielectric
interface in a waveguide; the case c/a = 1 yields the reflection
coefficient -1 for a shorted waveguide. ‘As previously, the break

points in the magnitude and phase curves occur as guide (B) cuts off.

gggpetic and electric wall. The magnetic wall-electric wall

termination of a waveguide illustrated in Figure 3.4 may be solved
by the MRCT as discussed under Case 2. The geometry of Figure 3.4
is useful as an auxiliary geometry in the solution of the waveguide
diaphragm of Figure 3.9. An additional auriliary geometry is the
shorted waveguide, the solution of which is trivial.

Consider equal excitation cf the Jiiaphragm ofNFigure 3.9 from
regions (A) and (A') in a symmetric sense, i.e., with electric vectors
in both regions pointing in the same direction. Then at the plane

z = 0, the electric vectors add in the aperture and vanish on the
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diaphragm, but the transverse magnetic vectors cancel exactly in the
aperture. Thus placesment of 2 magnetic wall in the aperture has no
effect on the fields, and so far as region (A) is concerned, the
geometry is that of Ffigure 3.4. Alternative equal but antisymmetric
excitation of the diaphragm from (A) and (A') causes the total electric
vector to vanish on the plane z = 0, so that an electric wail may be
placed there without effect. Then, the geometry for region. (A) reduces
to 2 shorted waveguide.

‘Suppose, now, that both symmetric and antisymmetric excitation
are applied to the diaphragm simultaneously, so that addition occurs
in (A) but exact cancellation occurs in (A'). Let SiA be the
scattering matrix determined approximately for the magnetic-electric
wall, and let SZA = - I be the scattering matrix for the shooted

waveguide. Then the resultant scattering matrix SAA for the diaphragm

is given by

Yo

Nig

AA AA, _ 1, AA
S, t8, ) = —(sl -I) (3.41)

2

If Rl is the complex reflection coefficient for the dominant mode for
the magnetic-electric wall, then the reflection coefficient. R for

the diapla:agm of the same dimension is

R = %(Rl-l) (3.42)

Because no power is transmitted beyond the magnetic-electric wall, the
magnitude of Rl is always exactly unity. The phase changes from 0 to

m as the ratio c/a goes from 0 to 1. The magnitude and phase of R as
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a function of c/a for the diaphragm is-given in Figire 3.10. The guide
width is a = 0.75).

An additicnal application of the scattering matrix description of
the magnetic-electric wall geometry is diffraction by an infinite azray

of thin conducting strips. This problem is discussed in Section V.

Alternative Solution Methods

By the very nature of the geometrj of the problems related to the
simple waveguide bifurcation, it is apparent that alternative ietheds
of solution exist. The generalized scattering matrix procedure is
directly applicable to many of the problems, since the geometries can
often be reduced to combinations of exactly solvable junctions.
Variational and integral equation methods such as those described by
Marcuvitz [1951] have been applied with success t¢ many such problems.
In any specific instance, the choice of method of $olution can be made
in many ways. -

As applied to geometries related to the waveguide bifurcation,
the modified residue-calculus technique possesses some great advantages.
First, it is extremely generai. All of the problems discussed in
this section were solved by use of the same computer program, whether
the problem was the simple bifurcation to be solved exactly or the
magnetic-electric wall. Second, it generates scattering matrix
representations of discontinuities, such as those obtained by the

multipie-reflection, Neumann-series method. On the other hand, it

can generate the first M scattered mode coefficients for the first

incident mode without resorting to an M matrix inversion. Inversion
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of large-order matrices is a major drawback to some methods in the
solution of integral equations. Not least important is the automatic

satisfaction of the edge condition. In both dirgct matrix invzpsion

-meilods: as well as the generalized scattering mat>ix method, it is

difficult fo prove directly that the edge condition is satisfied.

In the MRCT, satisfaction is-a priori guarantzed.
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IV. THICK-WALL PHASED ARRAY

At the present time, there is great interest in antenras which
are physically stationary but which electronically scan a relatively
narrow beam throughout a region of space. Two(bartiéular applications
-are radio telescopes, in which the antenna is often so large that
mechanical steering is prohibitively difficult, and tracking radars,
in which a physical antenna has too great inertia to be rapidiy and
repeatedly scanned over a large area while tracking several fast-
moving targets. In electronically scanned antennas, phase changes
between elements steer the antenna beam without need for mechanical
positioning.

One type of electroanically scanned antenna is a phased array of
opeia-end rectangular waveguides, a segment of which is shown in
Figure 4.1. Although the number of elements (waveguides) in such an
array is necessarily finite, it is not uncommon in practice for the
number of elements tc be extremely large. For purposes of analysis, it
is convenient to assume that the array is infinite in extent and
periodic. The infinite array approximation is good for the majority
of elements away frem the edges of the finite array. It is further
assumed that the waveguides are aycited by the dominant TE mode with
uniform amplitude and periodic phasing to scan the béam. To be
determined for the array are the aperture fields, from which the
radiation pattern may be computed, and the refiection coefficient for
the dominant mode in each waveguide as a function of scan angle.

The infinite rectangular array was discussed by Wu and Galindo

[1966] for H-plane and quasi-E-piane scan for infinitely thin
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wavegnide w and by Galindo and Wu [1965] for walls of finite
thickness. The case of thin walls and f-plane scan ie eguivaleat to
diffraction by an irfinite set of thia parellel plates, which may
be solved exactly by the Wiencr-Hopf technigue (Carison and Heins
[2957D or by the conventional residue-calculus tachanique (Berz [39513,
Whitehead [29511). However, the correspcnding prodlen with walls
of pon-zero thickmess canznot be soived exactly. Radiztica at
broadside frcm an arrey of thick plates was studied by Lee [1957],
who presented 2 soluiicn based on the Wiener-Eopf techmique. Zy a
nuzerical solution to an imtegral eyusation for the aperture field,
BGalindo and Wu [1656] were able to f£ind reflection coefficieats zpd
aperture fields for several cases of wall thickeess ard waveguide
dimsnsion for angles of scaan from 0° to 290°.

Not unexpectedly, the results of Galindo and Wu indicate that
the reflection coefficient soiutions for the thin wall array are npot
very goodrapproximations to the reflection coefficients for arrays
with walls of non-zer§ thickpess. Because a najor consideration in
array design is to minimize refiecticn at the a2perture, it is
essential tc know the variation of reflection coefficient with wi
thickness and, "in some circumstznces, with the dielectric properties
of the material £illing the waveguide. (A technique sometimes used
to match an array is to f£ill the waveguides with dielectric materizl.)
But, it is extremely useful to determine the required information in
the simplest pessible way, sc that as little time as possible is

consumed in determining the required array characteristics.
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Because of the nature of the arrey geaeiry, fields in eack region
may be writzen iIn modal expensions. 2s a »1t, the reflection and
Transmission characteristics of the array may be cospletely described
by a set of scattering m2trices. Since the mcdel for the array zay
be reduced to two auxiliary junction problexzs, the generalized
scattering matrix procedure may be readily aéplieﬁ to the armay
geczetry. The MRCT solution of one of the related junction problems
makes possible an exirecely sizple solution to the arrzy prcblem. In
particular, it permits determinaticn of an approxizate expression for
‘the dominant mode reflection cocefficient in a form suitable for sizple

band calculation from data available in tabular or grabphical form.

. Thin-wall Array

The solution for the array with thin walls and H-plane scan forms
the basis for the solutioa of the corresponding thick-wall array. As
previously mentioned, this problem was discussed in detail by Wu and
Galindo [1956], w@ho cbtained an exart sclution for doninant mede
excitation by means of the conventional residuve-calculus technique.
Because solution in terms of a generalized scattering matrix is

essential to further results, the solution for the thin-wall array

with general TE excitation will be summarized here.

The thin-wall array for H-plane scan is equivalent to a2 set of
thin, perfectly conducting plates uniformly spaced (Figure 4.2).
Each parallel plate waveguide thus formed is excited in the region

z<0bya TED o mode of unit amplitude. The electric field in the

o

mth waveguide (region (A)) may be written
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Figure 4.2 Infinite array of thin parallel plates
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E, = sin(%:- (x-za)) exp(—jzu-jupz)

<s

+ I A sin(ﬁ?-(x—za)) exp(—j=u+janz) {%#.1)
r=1 <

and in the open region (F)

gy = ng.. G, exp(-j;hx-jfnz) (5.2)
where - u = koa sin 8
;n = (2nz+u)/a
G, = Jioé;(ns/ajz

Space modes for which L has a non-zero real part propagate away from
the array and carry real power. The number of propagating space modes
is a function of both guide width a and sc;n angle 9. Expressions
proportional to the transverse magnetic field Hx are found by
differentiating (4.1) and (%.2) with respect to z.

Uﬁon matching the transverse field components at z = 0 and
Fourier analyzing the resultant expressions 2s described in Section

I1I, the following infinite sets of equations are obtained:

P
£ nAL[(-1)" exp(§u)-11( )
n a_-T
n=1 n q

- pL(-1)P exp(§u)-11(

1 ]
- ) =0 (4.3)
P
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hy n . 1
£ n A [(-1)" exp{ju)-11(———)
n=l n (!n‘!'u.
P 32
- p[(-1)* exp(ju)-1] + 2 T Gq =0 (-4.9
The solution to (4.3) and (4.4) is constructed by means of a
peromorphic function g(w) which takes the form
- . a (-1)® exp(ju)-1
glw) =p exp[:(wfaP) 7 &8 2A——r ]
b
- l4a /an o l-wqu
x I =7 o Srowyr (4.5)
n=l._ - n ns-e pn
The mode coefficients then are
R (aq) )
A = £ 3 , a=1,2,3, ... (4.8)
q ql_'(-l)q exp(ju)-1]
ag(-1_)
G=—,§—-‘L, Q=0,+1, +2, ... (4.7)
9 24"z -
q
These solutions immediately yield the elements of the scattering
matrices corresponding to excitation from the (A) or waveguide region.
Since the incident wave was the pth mode of unit amplitude, the
scattering matrix elements are:
AA
$7(q,p) = Aq ’ q=1, 2,3, ... (4.8)
s™ap) =6, , q=0,+1,+2,. (4.9)
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where Ao and Ga are given in (%.8) and (4.7), respectively. Solution
for each value of p genesrates the entire scattering matrices, which
are implicitly functions of the scan angle 8.

The related scattering matrices corresponding to excitation fron
the (F) or free-space region are constructed in a similar manner. Assume
that the pth free-space mode of unit amplitude is incident upon the

array. The electric fields in the waveguide region (A) may be written

(ﬁth guide)

_ oo (R s
;y = nii A 51n(?;{x ma ) )exp( ]mu+3anz) (4.10)

and in the open region (F)

E = exp(-j€ x+jt_z)
v P JEP J D

-3

+ I G exp(-JEnx-Jtnz) (4.11)

n=-o

Upon matching E and H fields, the resultant equations may be

rgduced to

o 2
(_1yR A 1 - qQ _
I nA 1) exp(ju)-11(—=) - 2 < T 8 =0

n=1 n q

™ 2
»N . a =
E n An[(—l) exp(]u)-l](a =)t 2 T % Gq =0
n=1 n q
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The solution to this set is constructed from a function
£(%), vhere f
i
a2 a H
= _n2_ el (3o a i
flw) =-2 = "p exp[j(w rp) = 2] B
© 1-7 /un © l-w/'rn ) ‘
x I-I (——2-—1_“/“ ) 11 (l_-?Tr—) (4.14) Y
n=1 n n=-e P |
Bt !
!
The mode coefficients and hence scattering matrix elements are then ;
R (a ) s
A = SAF(q,p) = £9q sa=1,2,3, ... (4.15)
q q[(-].)q exp(ju)-1]
F“F Tff("T ) '
G =S "(q,p) = > »qQ=",%+1,+2, ... (4.16) i
q 2a‘t -7

The properties of the thin-wall array for each scan angle 8 are

completely described by the four scattering matrices SAA, SAF, SFA

b

and SFF. The dominant mode reflection coefficient, which is equal to D

SAA(l,l), as a function of scan angle is depicted in Figure 4.3 for ‘%

three values of waveguide width a. The break points in the reflection :

coefficient curves occur when a second space mode changes from

evanescent to propagating.

Thick-wall Array

The model for the thick-wall array for H-plane scan used by

BGalindo and Wu, and to be used here, is a set of thick, perfectly

e ; T
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Figure 4.3 Thin-wall array reflection coefficient
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conducting, parallel plates, as shown in Figure 4.4. The spaces.

between the plates may be considered to be parallel plate waveguides,

each guide excited from the region z < 0 by a TEPO mode. The
amplitude of excitation is uniform in each guide, ard the phase
progresses from guide to guide to scan the main beam of the radiaticn
pattern. The fields in the open (F) region admit a modal expansion
of the form (4.2) because of the periodicity of the structure and
the excitation.

Despite the modal expansions for the fields on either side of
the interface z = 0, matching of the transverse components does not
lead to a set of equations of the form solvable by the modified
residue-calculus technique. However, the modal nature of te fields
in regions (B) and (F) suggests description of the array in terms
of generalized scattering matrices. The scattering matrices may
be derived via the multiple-reflection, Neumann-series method
described in Section II for a suitable auxiliary geometry.

The auxiliary geometry appropriate for the thick-wall array is
that of Figure 4.5. The junctisn at z = 0 is precisely that of
the thin-wall array. An exact scattering matrix description of that

junction was given earlier in this section. Let the scattering

matrices for the junction have the subscript 1, i.e., SiA, SﬁF,
SiA, SiF. On the other hand, the junction at z=-§ in each waveguide

is precisely the step discontinuity described in Section III. Although
the general waveguide step problem cannot be solved exactly, a very
accurate truncated scattering matrix description of the junction can

be found by the MRCT, as in Table 3.2, Let the scattering matrices

lan
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Figure 4.4 Infinite array of thick parallel plates
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i = - < . . 2% &3 22 33
for this junction carry the sudscript 2, i.e., Sé > 82 s S, 82 -

¢ =

The four scattering matrices for the compesite armay - 533, SB’

] w——
¢ [ &3
-9

S:", S

- %112 have mo subscript.

FTollowing the multiple-rellection phencmena as depicted in

oiatind

e
-

Figure 2.% and reducing 6 to zero yields Nerzann series representations

u‘lw

for the composite scatiering matrices. When summed, these give

PR

P

’ 33 _ 23 Bi._ A% 331 323 23 .
‘ , s¥ =5+ s prstt St st s (%.27)

— Fa__ A% 331
§°=s] ;-s; ;] s‘f (5.18)

n
1
/2]
]
0
b
:%
}
A,
iy
”~~
o
o
\t

YV W S VU v
[i- o S’l ] 5‘2 sl (3.20)

0
n
[72]
-t Iy
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It nmust be noted that each scattering matrix with subscript 1 is an

SACEE A

implicit function of scan angle, so that the cooposite scattering
matrices also are dependent upon angle.

Because the maisix inversion must be performed nuzerically it is

e e ——y e -

important to truncate the scattering patrices at the szallest size
which yields suitably accurate results. Since the scattering matrix

elements must also be computed, keeping the truncated matrices as small

s — A e

T T e

as possible also reduces computation time. Just what constitutes

A RARAD

Ysuitably accurste"” is a matter of judgment in each case, but numerical
results of this section give an indication of variation of dominant

mode reflection coefficient for matrix sizes of 1x1l, 3x3, and 5x5,
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One particular advantage of forzulating the thick-wall array ia

teras of the scattering nmatrix equations (4.17-20) is that when the

wall thickness c reduces to zero, the resultant scattering catrices

reduce to exactly the thin-wall scettering matrices. This result

Bt R ot o s nans

Vortw

B

occurs because for the case c=0, the scattering matrix description

of junction 2 yields

]
)
]
=]

(4.21)

et i A ¥ it

S, =8 =1 (4.22)

- Substitution of these values into (4.17-20) reduce the eguations to

simply the corresponding thin-wall scattering matrices.

Numerical Results

The scattering matrix methods just described were applied to a
variety of cases for the thick-wall array. Many of ths choices of

wall thickness and guide width were made to coincide with those given !

wRT T

by Galindo and Wu [1966] to permit comparison of results. In each case, i
g dimensions were chosen to allow only one propagating mode in each 1
waveguide.

In each comparison case, the scattering matrix method gave
nun2rical results for magnitude and phase of the reflection coefficient
i . versus scan angle which were indistinguishable from the results given
graphically by Galindo and Wu. By way of further comparison, though,
the method of Galindo and Wu was considerably more complicated. For

each choice of width, thickness, and scan angle, the appropriate

e A VMR
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[

. integral eguztion was a2pproxizately solved ﬁy Ga2lerkin's method, and

iavolved solution of a 30x30 set of linear eguations. Then a

i variational correction w2s applied to obtzin the reflection

coefficient. On the other hand, the scattering ratrix zethod

3 /E required solution of two auxiliary probiems first by quite elexzentary
| means, 2nd then sizple combinaticn in the form of equations (%.17-20).

E : Zach cozbination involved the mmerical inversioa of 2 5%5 matrix.

Since the solution to the thin-wall array prcblen is cozmon to all

» _ thick-wall arrays for the saze width a, and since the solﬁtion of

each step width is valid for all scan angles, the nuzber of

calculations for many related cases is coansiderably reduced.

; The results of computations for one choice of spacing (a = 0.621)

and four wall thickness from c¢/a = 0 to c/a = 0.12 are summarized in

Tables 4.1-4. The reflection coefficients for the thin-wall array

- (Table 4.1) are based upon the exact solution. In each of the other

three cases, approximate results for three sizes of truncated

V-

< -matrices are given. The reflection coefficients found by the 5x5
E o scattering matrix inversion agrees exactly with the values found by
§> Galindo and Wu, and will be considered to be the "correct" value. The
results are also depicted graphically in Figure 4.6.
It is significant to compare the value obtained from the 1x1
4 matrix with the correct value. Particularly for small scan angles,
3 the 1x1 value is very close to the correct value, often well within
one per cent in magnitude and five degrees in phase. Since a 1x1

matrix is simply a complex number, the computation of the reflection

o

coefficient is almost trivial. It is particularly important to

f
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TABLE 4,1

Reflection Ccefficient vs. Scan Angle for Thin-Wall

Phased 2rray (a/) = 0.6205)

-

Scan Angle Reflectiocn Coefficient (¥agnitude, Zngle)

o° (0.2561, 147.3°)
1g9° (0.2450, 1u4.5°)
20° (0.2268, 133.5°)
36° (0.1878, 199.3°)
40° (0.0525, 32.0°)
5¢° (0.0021, 32.4°)
60° (0.0050, 32.4°)
70° (0.0298, 32.1°)
goe (0.07u45, 31.8°)
90°

(0.1438, 31.7°)
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TARIT 4.2
Reflection Coefficient vs. Scan Angle for Thick-Wall Phased frray
(a/2 = 0.6205, c/a = 0.02)
Reflection Coefficient (M¥agnitvde, Angle)
Scan Angle ' —
1x1 Matrix 3x3 Matrix 55 Hatrix

c° (0.2730, 142.7°) (0.2750, 1748.€°) (0.2743, 148.0°)
10° (0.2656, 146.8°) (0.2565‘; 145.8°) (0.2657, 145.2°)
20° (6.2119, 137.2°) {0.2427, 136.3°) (0.2428, 135.7°)
30° (0.19745, 11%.9°) (0.1978, 114.0°) (0.1277, 113.5°)
400 (0.0395, 51.2°) (0.0393, 49.8°) (0.0330, 48.9°)
to° (0.0133, 157.7°) (0.0182, 168.6°) (0.0182, 169.3°)
80° (0.0164, 150.6°) (0.0162, 161.6°) (0.0162, 1562.4°)
70° £0.0195, 73.5°) (0.0182, 72.1°) (0.0188, 71.3°)
30° (0.0608, u4.3°) (0.0608, u43.2°) (0.0606, L2.u0)
30° {0.1295, 37.8°) (0.1298, 36.8°) (0.1297, 36.1°)
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) TABLE 4.3
. Reflection Coefficient vs. Scan Angle for Thick-Wall Phased Array
(a/x = 0.6205, c/2 = 0.063)
B Reflection Coefficient (Magnitude, Angle)
Scan Angle -
Ix3i Matrix 3x3 ‘Hatrix 5x5 Matrix

o° (0.3225, 153.3°) (0.3239, 150.0°) (0.3250, 148.3°)
10° {0.31%9, 15].¢°) (0.3159, 147.89) (0.2156, 146.1°)
20° (0.2%00, 143.40) (0.2897, 140.4°) (0.2884, 138.7°)
30° {0.2381, 125.4°) {0.2350, 123.5°) (0.2317, 121.9°)
4Q° (0.0571, 313.6°) (0.0506, 121.1°) (0.0463, 123.1°)
. 50° (0.0728, 163.0°) (0.0726, 166.3°) (0.0725, 168.4°)
. §0° (0.0711, 161.2°) (0.0705, 164.6°) (0.0703, 166.8°)
700 (0.0597, 141.8°) (0.0580, 145.4°) (0.0538, 148.40)
80° (0.0629, 99.1°) (0.0553, 97.0°) (0.0500, 96.20)
80° (0.1121, 65.0°) (0.1059, 59.3°) (0.1008, 55.59)

-
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Reflection Coefficient vs. Scan Angle for Thick-Wall Phased Array

(a/A = 0.6205, c/a = 0.12)

Scan Angle

Reflection Coefficient (Magnitude, angle)

1x? Hatrix

3x3 Matrix

5%5 Matrix

(134
10°
20°
3g°
yQo
50°
60°
70°
go°

g9°

(0.4261, 158.2°)
(0.5193, 156.6°)
(0.3961, 151.5°)
(6.3429, 140.8°)
(0.1711, 346.2°)
(0.1302, 160.5°)
(o0.1888, 159.8°)
(0.1783, 153.0°)
(0.1667, 139.1°)

(0.1719, 115.9°)

(0.4258, 153.3°)
(0.5175, 151.9°)
{0.3894, 147.2°)
(0.32353, 137.3°)
(0.1553, 153.6°)
(0.1898, 166.7°)
(0.1876, 166.1°)

(0.1697, 160.1°)

(0.1441, 146.0°)

(0.1306, 115.3°)

(0.4251, 151.4°)
(0.3157, 150.0°)
(0.3842, 145,59)
(0.3130, 135.9°)
(0.1u94, 158.2°)
(0.1898, 163.6°)
(0.1873, 169.1°)
(0.1668, 163.3°)
(0.13u9, 150.9°)

(0.1097, 118.7°)
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Figure 4,6 Reflection coefficients for thick-wall phased array
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notice that simple exact reflection and transmission coefficients for
the thin-wall array may be combined with reflection and transmigsion
coefficients for a wavegﬁidé step discontinuity (found byAthe MECT
or even from graphical results, e.g. Marcuvitz [1951]) to yield an
excellent approximate result for the thick-wall array. The simplified

expression for the array reflection coefficient may be written

BB T§A~R2A TQB
R=R, 0z < (4.23)
2 1 - gAB AR
2 M1
_ AA AA
where R;“ =5 (1,1)
AA _ _AA
R," =8,(1,1)
BB _ _BB
R, =8, (1,1)
AB _ _AB
T2 = 52 (1,1)
BA _ _BA
T, =5, (1,1)

Although the array of Figure 4.4 is shown without dielectric
filling in region (B), the solution for dielectric filliag proceeds
exactly as previously described. The corresponding dielectric~filled
step discontinuity is used as part of the auxiliary geometry.

The mode coefficients for the field reflected back into (B) are
the elements of the first column of the scattering matrix SBB. The
field at the aperture may be readily computed from the modal expansion
at 2 = 0, ¢ < x < a. Figure 4.7 illustrates the magnitude of the

aperture field for the array at four angles of scan. The array
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Figure 4,7 Aperture field for thick-wall array
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dimensions are a = 0.62A, ¢/a = 0,12, .
The method described for the solution for the thick-wall array

is the first combined application of the MRCT and the generalized

scattering matrix method. The principal advantage of the combined

technique is that a geometry of some difficulty is rediuced to two

) U, -

geometries about which a great deal is known. It uses to advantage

~ the exact solution cf the thin-wall array as well as approximate

¢

ae o vera ek

solution to a well known waveguide discontinuity problem. The B

—
-

It

rapidly convergent numerical technique for such a combined geometry
i may be quite useful for a number of other problems which can be
reduced to two or more auxiliary problems solvable by conventional
‘ methods or by the MRCT. Sclutions for a class of such problems,
s specifically diffractihé surfaces and gratings, are discussed in the

; next section.
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V. DIFFRACTING SURFACES AND GRATINGS

The modified residue-calculus technique and the scattering
matrix multiple-reflection procedure car be combined to attack a
wide variety of interesting problems, such as diffraction by a finite
circular cylinder, scattering from a semi-infinite cylinder of
rectangular cross section, and reflection at a dielectr&c step
discontinuity, to cite only a few. Another class of problems consists
of periodic diffraction surfaces and gratings. Since gratings are
finding current applications, for example in resonators for lasers
operating at suboptical frequencies, alternative simple methods for
accurately finding reflection and transmission properties of gratings
and surfaces can be quite useful.

The general form of the periodic diffracting surfarce treated in
this section is shown in Figure 5.1. The geometry is essentially that
of the array of thick plates with a recessed dielectric filling.
Because the scattering matrix representation of the array of thick
plates is readily obtainable by the techniques of Section IV and
because the scattering matrices for the junction between (B) and (B')
may be found exactly, the combined geometry is most suitable for
description in terms of the multiple reflection phenomena.

An application of scattering matrix methcds to diffracting
surfaces has been made by Tseng [1967], who discussed in detail
diffraction and surface wave propagation on infinite periodic
corrugated surfaces. Although the corrugating fins were of zero
thickness in Tseng's problem, the most general unit cell

included multiple corrugations of various depths.
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To avoid repetition of the work of Tseng, only the formal
analysis for a few selected geometries is discussed in 'his section,
prizarily to indicate the extension of the MRCT and scattering

matrix procedure to cases other than the waveguide discontinuties and

array probleas treated previously.

Analysis
Let the junction at z = 0 in Figure 5.1 be designated by the

subscript 1, so that the scattering matrices for that junction, found

. . B3 _BF _FB FF . . .
in Section IV, are Sl » S; 5 S, 5 and S;°. The modal expansion in

-~

the open region (F) is the same as described in Section IV. Further,

let the junction between (B) and (B') be deroted by subscript 2. The

BB
2 *

dielectric in (B') has relative dielectric constant &> the scattering

scattering matrix of interest at that junction is § £ the

Datrix elenents are given by

B -8
5,°(n,m) = 6o(2 D) (5.1)
n _—
B_+8
nn

where

0
"

r'koz-(nﬂ/b)2

w
|

Jébko2-(nn/b)2

are the propagation constants for the nth mode in (B) and (B'),

respectively. Limiting cases of perfect electric and magnetic

conductors in (B') yields

82 = -1I (5.2)
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for electric wail at z=-d, and
BB
32 =+ 1
for the magnetic wall. The surface with electric wall at z=-d is
shown in Figure 5.2,
An essential part of tne diffracting surface is the recession
" distance d. Prcpagation of the modes in guide (B) is represented by
the propagation matrix T, where
r(n,m) = 62 exp(—jBnd) (5.4)

For example, propagation from z = 0 to z=-d, reflection at junction
2, and propagation back from z=-d to z = 0 is represented by PSZBF.
Since the high-order modes are evanescent, the effect of the propaga-
tion mateix T is to sqitably weight them. The result is that
truncation at small matrix sizes (5x5, say) causes negligible error.
The multiple reflections for a wave incident from region (F)
yield the following expression for the composite scattering matrix

SFP

FF FF FE_ .BB_.BF
Sl + Sl PS2 PSl

S

FB,.BB._.BB_ BB _BF

Sl PS2 PSl FS2 PSl

+

FB_ .BB ., .BB BB .2 BF
Sl P82 I‘(Sl P82 r) Sl R SRR

-+

FF FB__BB BB, .BB,.-1_BF
sl +8,°TS, 1‘(I-sl rs, r) sl (5.5)
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The scattering matrix SFF is of course a function of the incident
angle 6, because every scattering matrix with subscript 1 is‘an
implicit function of angle.
For the surface with dielectric filliﬁg, the transmission into

the dielectric regicu may also be found by the scattering matrix

method, so that

BB_.BB

1
BP(I—Sl Po2

1
GB'F _ B

2 r)'lsiF (5.6)
An alternative interpretdtion of the geometry of Figure 5.1 is a
phased array with recessed dielectric filling, so that reflection
coefficients for periodic excitation from region (B') may also be
found by the generalized scattering matriﬁ method.

Strip grating. The diffraction grating formed by an irfinite
set of thin parallel strips as shown in Figure 5.3 may also be
treated by the multiple-reflection scattering matrix procedure.
2s with the waveguide diaphragm of Section III, tbe grating may be
reduced to two solvable auxiliary geometries by considering symmetric
and antisymmetric excitation on either side of the grating. Suppose
the grating is excited equally and symmetrically from both sides.

For this excitation, the transverse magnetic field Hx in the apertures
of the gratings is exactly zero, so that a magnetic wall may be

placed in each aperture without effect. As viewed from region (F),
the structure for symmetric excitation becomes alternate magnetic

and electric strips, which is a limiting case of Figure 5.1 as the
dielectric in (3') becomes a magnetic wall and distance d reduces to

zero. For equal but antisvmmetric excitation, the electric fields

T R G

;

.
i

4,
2
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cancel exactly in the aperture and the grating may be replaced by '

a pevfect electric conducting wall.

The solution for the magnetic-electric strip grating may be

obtained from equation (5.5). However, the scattering matrix SBB =1

2
(as in (5.3)) and for d=0, the propagation matrix also becomes I'=I.

In that instancé, then,

FF _ _FF,. .BB,-1_BF L
s, =8, (I-s)7"s; (5.7) :

where the subscript s denotes symmetric excitation. By inspection,

the scattering matrix for the electric wall is

Sa = -1 (5.8)

where the subscript a denotes antisymmetric excitation. !

For simultaneous symmetric and antisymmetric excitation, the

ircident waves from (E') cancel and the waves from (F) add. As a

|
|
. s s . . i

result, the composite scattering matrix for the strip grating may be

written
FF _1,_.FF FF
S = E(SS + Sa )
_ 1, FF
= 5(85 1) (5.9

Nimerical results for selected diffracting surfaces were computed
to test the multiple-reflection method. In all of the test cases,
the reflection coefficients were consistent with known power requive-

ments, even with more than one space mode propagating. Reflection




Sl
coefficients for two cases are given in Table 5.1. The geometry is
that of Figure 5.2. For both cases, the width is a = 0.75) and
depth d = 0.5A. Case 1 has c=0 and Case 2 has c=0.3a. Case 1 is

the geowetry of Tseng [1967].

TABLE 5.1

Reflection Coefficient for Diffracting Surface
(a = 0.752, d = 0.52)

. Reflection Coefficient
Incident
Angle © Case 1. c/a =0 Case 2. c/a = 0.3
Qe 0.3845 - §0.9231 0.0177 + j0.8998
150 0.1586 = j0.9873 0.0732 + j0.9981
300 -0.2293 - §0.3921 0.0209 + j0.6055
ys50 -0.3139 -~ j30.0413 -0.2406 + §0.4956

Although the discussion of diffraction surfaces in this section
is rather brief and restricted to a few basic geometries, the combined
MRCT and scattering matrix procedures may be applied to a wide class
of surface and grating problems. Many variants on the geometry of
Figure 5.1 are possible, inciuding geometries in which reflections

at more than two junctions are considered.
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! VI. CONCLUSIONS

13

The analytical methods described in this thesis provide a very
accurate and very rapid numerical means for solving a class of
boundary value problems related to basic Wiener-Hopf geometries.

‘ As compared to some variational or integral-equation techniques for
‘ solving the same types of problems, the MRCT and the scattering
matrix method, or both together, yield the most often required
information, i.e., scattering coefficients, in a very simple form,
without need for the iterative procedures, numerical integrations,
or large order matrix inversions which often are time consuming

: and potentially inaccurate from a computational standpoint. A

. particular advantage of the methods described here is that in a

modified Wiener-Hopf geometry, a great deal of information already

A vam—

known about the related auxiliary geometry is utilized in the more
complicated problem. For example, independent solutions of the
waveguide step discontinuity -and of the array of thin plates may

readily be combined to solve a much more difficult problem of great

practical interest, namely the thick-wall phased array.

m—p—

One additional property of the MRCT is particularly significant.
The MRCT automatically satisfies the edge condition of the problem

being solved, even when the edge condition differs from that of the

Ny
At <5 e P s 2

auxiliary geometry, because a priori information about the edge

condition is incorporated into the construction of the required ‘ .
meromorphic function. In contrast, satisfaction of the edge

condition in solution of a doubly infinite set of equations by
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truncation is strongly dependent upon the truncation procedure
(Mittra [1963]).

Although a variety of waveguide discontinuities were solved by
the MRCT,; combination with the scattering matrix procedure permits
solution of such problems as thick diaphragms, trifurcations (Pace
[1964]), multiple diaphragms, and rectangular posts in waveguides.
Also, the MRCT can be extended to circular cylindrical geometries,
so that a variety of corresponding discontinuities in circular
waveguides.may be solved.

The applicability of the analytical methods of this thesis to
a wide variety of problems in both open and closed regions will

permit numerical solutions in a convenient form for many problems of

current interest.
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