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S.'E ANALYTICAL MMISODS FOR SOLSNG A
ALI CLASS OF 3OINDJARY VALUE -PROBLE S

Glenn F. VanBlazicum, Jr. and R. Mit.tra
Antenna Laboratory

Maiversity of 3llnois

A1 class of elec;raetic boundaM value problems in which

thi geomet I ay be divided into two smi-infinite regi-ns can be

solved *xactiy by the Wiener-Eopf technique. Examples of such

gecetries, caUed basic Wienez'-Hopf gecet ries,, are a parallel-plate

waveguide bifurcation and an 'infinite array of thin plates. Certain

of these basic Wiene--Hopf prcblems can also be fozmulated in terms

of infin:ite- sets of 1-inear equations which may be solved exactly by

the conventicnal residue-calculus 1echnique. In general, however,

t'. 'p-_roble-s adnitting exact solution by either the iener-Hopf on

conventional residue calculus techniques are restricted to cetain

highly idealized geometries.

A variety of -boundary value probIez. related to basic Wiener-

Hopf geometries but of more practical interest, may be solved by a

modification of the conventional residue-calculus technique, by

the generalized- scattering matrix technique, or by a combination of

the two methods. Golutibn of a class of infinite sets of equations

by the modified residue-calculus technique (MRCT) is based on

construction of a meromorphic functicn f(w) satisfying certain

criteria determined by the form of the equations as well as an

auxiliary requirement imposed by the edge condition. The solution

is obtained by integrating certain functions related to f(u) over

contours in th& complex w-plane.



A rapidly convergent nmerical method for constructing f(w) in the

MRCT is presented. The .MECT solution Is given in a for.m convenient

for ccoputation, not involving nuerical integration or solution of

large order zatrix equations which are time consuming and potentially

inaccurate from a co-putational standpoint. In addition, the FRCT

autoatically guarantees satisfaction of the edge condition and

includes built-in tests on the convergence of the solutSon.

An additional group of r--dified Wiener-Hopf geomet'ies in which

modal expansions are possible are solved - a co.binat .on of the .CT

and the genera-ized scartering mai-r-ix procedure. A- L2e.,-,ifg matrix

description, including both pronagating and evanescent modes, for a

modified Wiener-Hopf geometry is obtained in a convergent Neumann

series form by ccnsidering the phenomenon of multiple reflections

between junctions in a related auxiliary geometry. Each of the

auxiliary junction problems is solved either by exact methods or by

the MHCT.

The analytical methods described in this thesis are applicable

to waveguide discontinuities, including steps, bifurcations, and

diaphragms, in both rectangular and circular waveguides; to phased

arrays of dielectric-filled waveguides with thick walls; to a variety

of diffraction surfaces and gratings; and to many other modified

Wiener-Hopf geometries. Numerical examples of discontinuity,

array, and grating problems are included to illustrate the application

of the methods.
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I. INTRODUCTION

It is well known that a class of boundary value problems may be

solved exactly by the Wiener-Hopf technique (Noble £1958)). One

method used in the solution of such problems by the Wiener-Hopf

technique is formulation in terms of a semi-infinite range integral

equation of the form

J o(u)K(v-u)du = 4(v)

where 660-V In th= .kiiov function and the kernel function K(v) and

the inhomogeneous term $kv) are known from the geometry and the

excitation. The solution of integral equatiols of the type (1.1) is

di-cussed in the r-assical paper by Wiener and Hopf [1931).

An ali-':na tive Drocedtrw, often referred to in the literature

as ;ones' method (see Noble [1958)), leads directly to a Fourier-

transformed version of (1.1) in the general form

K(a) A+ (a) = T(a) + B.. (a), ('1.2)

where a is the Fourier transform variable. Equation (1.2) has two

unknowns, A and B_, analytic in the upper and lower half planes,

respectively, of the complex a-plane with a common strip of overlap.

K(a) and *(a) are known functions.

An entirely different method for formulation and solution has been

applied to a number of uroblems solvable by the Wiener-Hopf technique.

The alternative approach is based on expansion of fields in terms of
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nom-al -odes of the sei-nfinite rtons and matching the resultant

expressions at the plane of the interface. Fourier analysis of these

field exuressions leads te an infinite set of s--!ltaneous linear

equations for the node coefficients. The exact solution of these

equations by a residue-calcuus teclhque is discussed in Section II.

An alte-ative -ethod of solution by direct inversion has been found

by Mit-tra [1963].

The Wiener-.%Df =ethod. and the residue-calculus technioue are

quite ve.satile, i-inding app~lcation in rather diverse areas of

mathematical physics, e.g . , atoustic and electromagnetic wave

pnopagation, design of optimal filters, etc. Also, the Wiener-Hopf

and -esidue calculus techniaues ar- the only known methods for exact

solution of a class of problems not confo--ulng to separable coordinate

systems. Nonetheless, the scope of these techniques is limited to
idealized geometries satisfying. certain strict requirements.

In recent years, there have been attempts toward extending

Wiener-Hopf and residue-calculus techniques to a wider :lass of

problems of more practical interest. These may be described as

modified Wiener-Hopf geometries, since they can be related to a

basic Wiener-Hopf geometry. Typical examples are diffraction by a

thick half-plane, scattering at the junction of two cylindrical or

parallel-plate waveguides of dissimilar transverse dimension,

radiation from a dielectric loaded waveguide phased array, etc. In

this thesis, some methods are presented for formulating and solving

a class of problems of the modified Wiener-Hopf type.
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A rapidly-convergent numerical method based upon an extension of

the conventional residue-calculus technioue is presented for the

solution of a class of infinite sets of simultaneous linear equations.

In this method. the need for numerical inversion of large matrix

equations, such as those derived in an integral equation approach to

these boundary value problems, is eliminated. In the present

approach, the solution is obtained in the same form as generated by

the conventional residue-calculus method, permitting rapid numerical

calculati6n. In addition, the procedure guarantees satisfaction of

the edge condition, which is a significant advantage over certain

iterative techniques where it is difficult to advance a direct proof

that the edge condition is indeed satisfied.

A class of related problems is solved by the generalized

scattering matrix procedure (Mittra and Pace [1963]), in which the

method of multiple reflection between juc-._i4ns is extended to

inclile some junctions which are not exactly solvable, but for which

very accurate numerical solutions can be obtained by the modified

residue calculus technique. For the sake of completeness, a brief

description of the scattering matrix procedure is included in Section

II. Applications to phased arrays as well as diffracting surfaces

and gratings are made in Sections IV and V, illustrating that a

combination of the modified residue-calculus method and scattering

matrix techniques is useful for resolving a rather large variety of

boundary value problems which may be identified as modifications of

the basic Wiener-Hopf geometry.
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II. ANALYTICAL i --HODS

The analytical methods applied t6- problems in this thesis are

described in this section. The methaiae app1:cable i6 - ,class of
modified Wie6er-Hopf type geometries in which the lecLLo'netic

fields may be expanded in terms of a discrete set of modes. The

eigenvalue spectrum associated with these problems is discrete by

virtue of either restriction to closed regions or periodicity L open

regions. In this event, the fields are completely described by the

set of mode coefficients. The methods described here are used to

obtain the required mode coefficients by a rapidly convergent

ntunerical technique.

The Modified Resdide.!-Calculus Technique

The modified residue-calculus technique (MRCT) recently introdur-ed

by Mittra, Lee, and VanBlaricum [1968], is a method for the approximate

solution of a class of infinite sets of simultaneous linear equations,

such as those generated by a mode matching procedure at a discontinuity

in a waveguide. When the equations admit an exact solution, the MRCT

gives that solution, but the approximatd Solutions to other problems.

is obtained without the need for numerical inversion of extremelyA
large-order matrix equations.

The appropriate sets of equations have the general form

Z A -- + - ) C- + - ), m = 1, 2, 3, ... (2.1)
a-ym ~+Y a +y a-n=l n n n+1m Ym

where {cn , fyn} , {)n  are all known and {A I are to be determined. The
{n" nd {n n

MRCT is an extension of the conventional residue-calculus technique, which



provides an exact solution to a set of equations of the general fo

'2.1) when X 0, m =1,2, 3 .

The conventional residue-calculls technique was introduced by

Berz [1951] and applied to the set of equations occurring in the

problem of diffraction of a plane wave by a set of parallel plates.
)

Subsequent applications of the technique have been made by Whitehead

[1951], Hurd and Gruenberg [1954], and Wu and Galindo [1966] to

cases which are relevant to certain aspects of this thesis. Another

application of the method is found in Collin [1960].

The conventional residue-calculus technique can perhaps best be

described by an example which is related to a set of - .tions derived

in Section III. These equations, related to a si:9le waveguide

bifurcation, are

E An( = 2 (2.2)n=l n a--nmm0 m a , +0 3,..

Z A (-)- ,m , 2, 3, ... (2.3)
nl ay p +Ym

where

a )V 2-(ni/a) 2 /(nt/a) 2-k2
n 0 0

/2 2 )2 2
n :k -(nir/b) : - j (nir/b) -k

00

2 2 2 2
yn =k 0°-(nit/c) = - J (nit/c) -k 0

and the equations are to be satisfied simultaneously.

It is desired to construct, by means of contour integrals of a

known meromorphic function, equations of exactly the same form as (2.2)

F- -
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and (2,S) and to solve for the {A I by identifying corresoonding te-s.n

The required meroiorphic function g(w) satisfies:

(g:l) g(w) has simple poles at = 6 15 WO 1:31 ... I and at

p

(g:2) g(n) = 0, n = 1, 2, 3,.

(g:3) g(yn) = 0, n = 1, 2, 3,.

(g:4) g(w) is algebraic (specifically g(w) Kw- 3 / 2 ) as

iw I.

Condition (g:4) is a physical constraint of th5 problem (in this case,

an edge condition) and insures a unique solution. TechniGues for

constructing such a function are well known, and g(w) takes the form

g(w) = K exp(Lw) (W.p)3(w,a) (2.4)

where

II(w,) =nl (i -U--) exp(jwb/n-.) (2.5)

and similarly for H(w,a) with b replaced by a and 11(w,y) with b

replaced by c. Also,

L = ja [n(a/b) t £n(b/c)] (2.6)
a

In the complex w-plane, let C be a circle of infinite radius

enclosing all of the poles and zeros of g(w), and consider contour

integrals of the type

1 1g(w) dm 1
1_ ' m dw, m 2, 3,

and

_ _= = _ -_, _.
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g(w) m , 2,

Applying the residue theorem and noting the properties o-F g(w) stated

above, one obtains the-following identities:

E R(a n) (- -R (-ax) ) t g( m 0 (2.7)
n n=!- p

ZR=(a)(R(.- n) + Y) 0 (2.8)
n=1 gn a n~ g P aD+

where R (c) = residue of g(w) at w = ax . If g(w) is no.ralized tog n n

-ake R (-a) = 1, i.e.,g p

exD(La )I(-D, 'a)
K ( =-( ) (2.9

p(- p, p y)

(2.7) and (2.8) may be identified with (2.2) and (2.3) and the solution

given simply by

An = Rg (n ), n = 1, 2, 3, (2.10)

The modified residue-calculus technique proceeds in a similar

nanner. Again, application to an example provides the most convenient

exposition of the method. Suppose that the following equations are to

be solved simultaneously:

E An--n + -- - + M (2.11)
nl aYm yn+Ym p+m -y 2.Ym

n 11

Z A (2.12)
n=l nai-B m x+(.
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As before, construct a mercmorphic function f(w) having specified

pre-perties:

(f:l) f(w) has simple poles at w = a C2a a3, "'', and at

p

(f!2) f( n ) =0, n 1, 2, 3,.

(f:3) fCyn ) + nf(-y n 0, n = 1, 2, 32 ....

(f:4) f(w) is algebraic as Iwi Co . Specifically, f(w) ' Kw

^ -< v, and the exact value of v is determined by a-

physical constraint. It will be shown later that v may

be determined directly from the asymptotic behavior of

the A's as m becomes large.M

It will be noted that conditions (f:l) and (f:2)-are identical

to (g:l) and (g:2) imposed on g(w), the function appropriate for the

reduced problem with A 0. Condition (M:3) is a generalization of

(g:3).

If such a function f(w) satisfying (f:l-4) can be constricted,

then the solution to the equations proceeds as before. Consider the

contour integrals along C

E-Lj -) + X-f(--w+,Id ,m- 1, 2,, 3, ..
ci~ f W-M Mw+Yl

and

1 f(w) dw, m 1, 2, 3,.

C

Again by residue techniques, the following results obtain:



X- -

A A 9

Z R(a)( + m ) Rf(-a)(-- + -)
n=1 n an+YM p p-YM

+ [f(ym) + X I-S-ym] 0, m = 1, 2, 3, ... (2.23)

r R. (a( ) -R.G) . ) + f(8) 0, m =1, 2, 3,
n=1 n m

(2.14)

where Rf(a) = residue of f(w) at w = a . Provided f(w) is normalized

to make Rf(-ep) = 1, (2113) and (2.14) may he identified with (2.11)
I. p

and (2.12) yielding

An  Rf (a ), n = 1, 2, 3, ... (2.15)

Construction of f(w). The key step in the modified residue-

calculus technique is thd construction of f(w). Unlike in the

conventional technique where all of the poles and zeros of the function

as well as its asymptotic behavior are prescribed, in the modified

technique only a subset of the collection of zeros is known explicitly,

while all of the poles and the asymptotic behavior are again known.

Since f(w) must coincide with g(w) in the limiting case A - 0, f(w)

may be written in the following form:

f(w) = K'exp(Lw) J(w*a)nI(w,r) (2.16)

where L, H(w,O), and 1(w,a) are given by (2.5) and (26), and where

fl(wY)) 11 (1 - exp(+jwc/nn), (2.17)
n=l n
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with {y n' being the as yet unknown zeros of f(w). Comparison of

f(w) with g(w) shows that except for constant factors the two functions

are related by shiffSng an infinite set of zeros {y I of g(w) to
n

fy n'1 of f(w), and that when X - 0, the zeros must coincide.n in

The asymptotic values of the set {I '} may be determined by
n

imposing condition (f:3). Let D = Yn'-Yn be the difference of the
n

zeros. Condition (f:3) requires:

II(Ym'O)jI(Ym'Y') K' exp(-LYm)jI(-ym, 8)H (-Y ,y9
K' exp(LY) + Xn-- i

M  (¥m+ap )W(y;a)- m  (-Ym+a p )H(-ym,a)

- 0, M = 1, 2, 3, ... (2.18)

For m large, the constants may be replaced by their asymptotic values,

e. 0 ni- -Jni/b, a n' -jnw/a, yn n -jnw/c, and D n ' D (an assumedi~. n jgb n n

asymptotic value), so that (2.18) becomes approximately

K' exp(-jLE) 11 [(1 -i .)exp( me Ej -exexp 2)
c n1 n 1 b~ci nSn=l l

.nj mc , .mc _ .-+ a ) jn [(1 -

P n=1 na exp)]a_

+ AK' exp(+JLMI)nI [( + m.)exp(- ') nm E (1 + n 7 2)exp(- m)]I i c n=l n bn=l n
(+ j-n + a) iH (I + =)exp(- ME)]

c pn= na na

0 0, m = 1, 2, 3, .... (2.19)

Equation (2.19) can be:.reduced by observing that the infinite

products take the form of an infinite product expansion for the gamma

function (see Noble [1958J).



I' (+-L 3 )exp(x/an) 1an+ [r exp(--cx/a) r(l+b/a)
r(1+b/a + x/a) L

for x / xi (2.20a)

2 sin(-xT/a-blT/a) ex (-iCx/a)r(l+bla)
r l+b/a-x/a)

for = - lxi (2.20b~)

where C Euler's -constant.

Utilizing these relations iii (2.19), one has after rearranging and

canceling like terms:

2 sin(-mir-jcD) + X msin$'-mina/c)/sin(-nrnb/c) (2.21)

But sin(-mina/c) =sinC-mr-mirb/) ;( 1 )m sin(-mirb/c)

and sin(-mir-JcD) (-1) M sin(jcD), so that (2.21-) becomes, in

the limit as m -

2 -sin(jcD) li X mr

or D -1sin-'(- lin X~ (2.22)
jc 2 M--*m

The explicit evaluation of D = li D n permits a priori determination

of how the zeros of f~w) are to be shifted for large indices. It will

be shown subsequently that an expression equivalent to (2.22) may be

obtained directly from the edge condition.



exact deermnation of the shifted zeros {ytn' for, very n is not

possible. However, for purposes of numerical computation i- suffices

to use the determined asymptotic value for all but the first few, say

H of them, and to find those first M values explicitly. Also, except

for exponential factors and an irrelevant, constant factor XK', the

Sfirst M t ers of the infinite product may in general be replaced by
a polynomial of degree M. That is,

K" 11 (l-w/y I) = M + alM-1 ... + aM-1 w + a
n=l

-P(w) (2.23)

where to specify the functional hehavior it is sufficient to determine

the M polynomial coefficients a1 , a2, ... , aM.

Accodihiy, the function may be written

f(w) K'P(w) exp(Lw)fl(w,O)ff(M)(w,y')
(w+a )1(w,c) (2.24)

4 p

where IT (wy') denotes the omission of the first M factors from (2.17)

and replacement of Yn' by Yn + D for all n > M. For simplification

irite

f(w) K' P(w)f'(w), (2.25)

where f'(w) incorporates all of the known parts of f(w).

The polynomial coefficients may be determined by imposing condition

(f:3) for n = 1, 2, 3, ..., M. Specifically,

I yM aYM-1+ +a+ Mf' [M+ alYn + "'' + aM-1 Yn + aMf'(Yn)
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H M-1
+ Xn K' [(-7n ) -+ a (-Yn )  + . + aM_l(-Yn) + aM]f'(-Y n ) 

= 0

for n = 1, 2-, 3, ..., M, (2.26)

yielding a set of M simultaneous linear equations for al, a2, ...

aM. Sblution of the set of equations may be accomplished by usual

numerical methods. Once P(w) is known, the constant K' may be

chosen to satisfy Rf(-ap) = 1.

It must be noted, however, that even though the MRCT requires

numerical solution of a set of linear equations, the-difficulty of

that solution in no way approaches that of attempting a direct

inversion of a truncated form of the original infinite set. For

most instances, it suffices to solve a 5 x 5 or smaller set of

equations explicitly in the MRCT, while much larger ones wculd be

appropriate for the truncated set. In addition, the truncated set

for (2.11) and (2.12) is quite ill-conditioned, while the set for

the MRCT is well-behaved. An example in Section III illustrates the

rapid convergence of the solution via the MRCT for a-waveguide step

discontinuity.

An additional feature of the MRCT for numerical work is that

a built-in convergence test is available, because the function found

numerically must satisfy conditions (f:2) and (f:3). A numerical

test of these conditions may be almost trivially incorporated into

a computer program.

Perhaps the greatest advantagc of the MRCT is that satisfaction

of the edge-condition via (f:4) is a priori guaranteed. And, more

importantly, when the slight modifications of the geometry alter

the edge behavior, the correction is made automatically in the MRCT.

A further discussion of this property is given in Section III.

• == . , . • - = + . -. .= . •'.
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Generalized Scattering Matrix Technique

The generalized scatter1in :atrx technique is another nethod for

solving a class of boundary value problems. The concept of a generalized

scattering matrix, introduced by Mittra and Pace [1953] is very closely

related to the scattering matrix of circuit theory (Seshu and Balabanian

[1959]) or of microwawe network theory (Collin [1956]). However, it

differs in that it is extended to consider evanescent as well as
propagating nodes, so that in wraveguide Junction proble=s, the

scatteri ng matrix will in general be of infinite order. (In subseouent

discussions, the terr "scattering =tr,ix" will mean "generalized

scattering =a-rix." )

The scattering matrix is defined for a junction between two

regions in which the fields may be expanded in =odes, such as the

th
waveguide bifurcation of Figure 2.1. If the n TE mode is incident

upon the plane z=O fro region (A), fields are reflected back into (A) *1
and transmitted into (B) and (C). The E connonent of t-he field is

thexpanded in a Fourier sine series, and the coefficient cf the n

mode referred to the Dlane z=O is defined as the anvlitude of that

thmode. If the amplitude of the n mode incident in (A.) is one, then

th
the amplitude of the m scattered mode in (A) is S' (m,n) and the

amplitude of the mth transmitted mode in (B) is SBA (m,n). Terms

SM(m,n) and sBA(m,n) are the general matrix elements of S and SBA,

respectively. The other scattering matrices are similarly defined.

In conventional scattering matrix formulations, the modes are

normalized so that a propagating mode carries unit power. Since the

generalized scattering matrix includes evanescent modes, such a
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Figure 2.1 H-plane waveguide bifurcation
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normalization is inappropriate. One consequence is that the

scattering matrices are not symmetric.

The generalized scattering matrix technique is a means of

solution for problems which are related to an exactly solvable

auxiliary problem. For example, the inhomogeneously-filled waveguide

bifurcation of Figure 2.2 is related to the simple bifurcation of

Figure 2.1, which may be solved exactly by either Wiener-Hopf or

residue-calculus techniques (Section III). If the dielectric region

(C') is recessed as in Figure 2.3, the resultant problem involves

two junctions, namely junction 1, the original bifurcation, and junction

2, the interface between regions (C) and (P'). Each junction problem

may be solved individually and represented by scattering matrices,

AC AB CA CC CC'e.g.SS 1  , S1 , 1 2 , etc.

Suppose now that a TE wave is incident upon junction 1 from

region (A). This wave is completely determined by the coefficients

of the modes, and hence can be represented by a mode column vector

€ such that *is the coefficient of the it mode in the incident

field. At junction 1, fields are reflected back into region (A) and

transmitted into regions (B) and (C). The mode vector for the field

AAreflected back into (A) is S1 , and for the field transmitted into

CA
(C), the vector is S1 #. Part of the wave transmitted into (C) is

reflected back into (C) and part is transmitted into (C') at junction

2. The mode vector in region (C') is S CC C . Figure 2.4 depicts
2  1

symbolically the multiple reflection phenomena between junctions 1

and 2. The fields in each region are the sums of the fields

transmitted or reflected successively. It should be noted, though,
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Figure 2.2 Singly-inhomogeneous waveguide bifurcation
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Figure 2.3 Auxiliary geometry for singly-inhomogeneous bifurcation
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that since the effect of propagation over the distance 6 has been

neglected, the Y Lults ae-e valid only as 6 -) 0, in which case the

geometry reduces to that of Figure 2.2, the desired geometry. The

fields in the dielectric region may be represented by the mode

vector 4, which is found by summing the fields transmitted into (C').

C'C CA C'C CC CC CA
2 2 S1  2 1

+ 'C (SCCCC 2 S CA+2 1 2 1

-'C- C )f-n CA

n S 2 1 2 (2.27)

Equation (2.27) takes the form of a Neumann series, which can be

summed in the standard way. Proof of the convergence is given in

Pace [1964]. Also, the mode vector 4 must be given in terms of the

composite junction scattering matrix (no subscript), so that

C'A

C'C CC CC--i CA
2  -S 2  1(2.28)

where I is the identity matrix. Since the result (2.28) is valid

for arbitrary incident mode vector , the implication is that

SC'A SC 'C CC CC -1 CA (2.29)S =S (I-Sz S2 ) S (29
2 1 2 1

The other scattering matrices for the problem can be found in an

analogous manner.
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Equation (2.29) is formally exact, since all of the auxiliary

scattering matrices may be found exactly. For practical purposes, K
however, results are found approximately by truncating the scattering

matrices and performing the inversion numerically. Many interesting

problems may be solved approximately by the generalized scattering

matrix procedure even when the auxiliary problem cannot be solved

exactly. Often a very good approximate scattering matrix represent-

ation of the auxiliary problem can be found (for example, by the

modified residue-calculus technique) so that the composite scattering

matrices may be found as before. An example of this kind is given

in Section III.
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III. INHOMOGENEOUSLY-FILLED WAVEGUIDE BIFURCATION

Among the problems occurring in microwave theory are waveguide

discontinuity problems. Most of the problems of interest do not

possess exact solutions, so that many approximation techniques for

the solution of such problems have been developed. Many such

techniques and their application to finding equivalent transmission

line and lumped circuit element representations for waveguide

discontinuities are given by Marcuvitz [1951]. Since usually the

equivalences are treated with respect to one or two propagating

modes, description of discontinuities is often given in terms of

modal reflection and transmission coefficients (i.e., scattering

matrix elements).

The simple bifurcation problem (Figure 2.1) admits an exact

solution, but the generalization to the inhomogeneously-filled

bifurcation (Figure 3.1), which may be applied to waveguide junctions,

waveguide diaphragms, and even to phased arrays, cannot be solved

analytically in closed form. However, the modified residue calculus

technique is expressly suited for solving such problems approximately

andwill be applied in this section to the solution of the inhomogen-

eously-filled waveguide bifurcation. Numerical results for a set

of special cases are given, and application to related problems

are discussed. Application of the results to the phased array is

made in Section IV.

Analysis

The geometry of the inhomogeneously-filled bifurcation is given

in Figure 3.1. The septum at x c, z > 0, is assumed to be infinitely
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pV

Figure 3.1 Inhomogeneously-filled waveguide bifurcation



thin and perfectly conducting. Regions (B) and (C) are filled with

media of relative dielectric constants b and c, respectively.

Assume that TE modes with electric vector parallel to the edge
po

of the septum are incident upon the plane z=O from regions (A) and

(B) with amplitudes A and B, respectively. By linearity, the

excitations may be treated either together or separately. No loss

of generality results from not considering explicitly excitation

from (C), since the role of (B) and (C) may be interchanged and

the principle of superposition applied.

The total electromagnetic fields may be derived from the only

non-zero component of electric field, E
y

Hx J.o 3 (3.1a)
0

H (Ey (3.1b)Hz ]W1o yx

(exp(jwt) time variation is assumed throughout). The analysis and

exact solution for the reduced problem eb = £C = 1 was given by

Hurd and Gruenberg [1954]. Formulation for the generalized problem

proceeds in a similar manner.

The formulation of the problem is facilitated by an auxiliary

geometry, that of Figure 3.2. Dielectrics in regions (B) and (C)

are recessed small distances u and v, forming regions (B') and (3),

and (C') and (C), respectively. In the five regions, the transverse

electric field may be written
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(A) Z =- A nsin(nzx/a)exp(janz) + A sin(px/a)e(-jbr) (3.2a)
Y n

(3,) E = 7 sin(nwx-0/b) E[ exn(-jS z) + D exp(JOnz)] (3.2b)
y n=n n n

(B) E = Z F sn(nz(x-c)/b)exi(-j3 z) + B sin(p-(x-c)/b)exp(j5z)
y n= n

(3.2c)

(C') E = : si(n-nxlc) [C ex?(-jyrz) + E exp(jynz)] (3.2d)
Y n=n

(c) -E = K Gn sinC xlc)exp(-j7 z) (3. 2e)
nn

whereCLn 42 (ia2

n =.c-(nzlb)2

Yn 0 o2 (nz/c ) 2

kn 2 (1/b)2

n : c k o2CnjIc)2

2 2

0 a0

Except for a constant factor, the transverse components of the

magnetic field in the corresponding regions are fofind by partial

differentiation with respect to z.

Matching tangential field components at z = v, 0 < x < c, and

equating Fourier coefficients yields
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C ex,(-j- v) +- E ext(jynv) =G exp(-jy v) (3.3a)j

C exD(-jy v) + y E exp(jy 01J G=x(-(.b

A z = u, c < x < a, a sim-la procedure yields

B ex-,(-jg u) + D exp(jB u) ex:(-j-%u) +- B ex-(jT u) (3.4a)

n n n n D

OU n n n n n

0

= --{~Fexv(-j - u) + 6E' W B extp(jT u)J (3.4b)
M0 n n

In the limit as u -),.0 and v -j-0, these eau'azions can be sLmlified to

give

E =I C (3.5a)
n n n

20
D = B +-- -e B (3.5b)

p

where n n 2L~

(-n( n

n

61 Kronneeker delta

For u = v = 0, the auxiliary and original geometry coincide, so that

Ii
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the relations of (3.5a-b) nay be used in formulation for regions (A),

(B), and (C).

Matching tangential field components at the plane z=O gives

the following expressions:

A sin (psx/a) + E A sin(n-x/a) =
n=ln

n=1

Z B (l+9 )sin(nz(x-c)/b)
n=.l

+ 2-P-- B sin(p-d(x-c)/b), c < x < a (3.6b)

p p

and

-a A sin(pvx/a) + E a A sin(nnx/a) =
Pn1 n n

*" cc

Z" yn C n(-l+n )sin(rnrx/c) 0 < x < c (3.7a)
n=l

Fi n B n(-l+n )sin(nv(x-c)/b)n=l

+ 2_ P-P-B sin(pir(x-c)/b) c 4 x < a (3.7b)

Relations among the mode coefficients may be obtained by multip2ying

the equations above by sin(mirx/c) and sin(m=(x-c)/b) and integrating
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in the respective regions 0 < x < c and c < x < a. Employing the

integral identities

Fsin(m-ffx/c)sin(nurx/a)dx ( -l) m~l mir sin(nirc/a)
jc 2 2

a n-ym

and

asin(mr(x-c)/b)sin(nx/a)dx - r - -~ nc/

b a 2_0
c n m

the relations for the mode coefficients become

Asin(Dnc/a) + ZAsin(n-,rc/a)
2 2 EAn 2 2

ap-y, n1 a -ym

2
= (l)m+1 S C (1+x 33IL 2mr m, m

- sin(pffc/a) + Ca sin(nirc/a)-apA 2 2 + Eann 2 2ap-y n=1 a -ym

m+l c2

~sin(p~rc/a) + E A s in(nwc/a)
2 2 n 2 2apA n1l a -pm n m

- B C1+E ) P - -- -- BSP (3.10)2mir m m 2pT +T M

p p



30

-!Asin(pnc/a) + Z a A sin(nic/a)
p 2_02 n=1 nl 2 2

p m n m

-h! On B ml+g) UP

(3.11)

For simplification in notation, let

B = 2---- B (3.12a)
(a047W )(p+ p)

A' = A sin(nnc/a) (3.12b)
n n

A' = A sin(pnc/a) (3.12c)

Equations (3.8-11) may be cast into more easily recognizable

form by adding g.'1 subtracting multiples of the equations. The

resultant equations are

*_, At(- ) - A'( 1 ) + (-1)m cl  C /, 0 (3.13)
nJ. 'a ni+Ym c-'( Ymmm" 0

Z'A(- + - ) - A'(-.-- + -)=0 (.

n1_ nym anf+Ym P ym aP inA

E a n........... b. O B m/n'r 0 (3.15)
n-1 "n;i. ip0i m
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E A'(---- 2 -- 1- At( + a
n=m m na-0 ID

+ 6Pb 2 0 B/p, = 0 (3.16)
m p

These equations are valid for each m = 1, 2, 3, .... These

simultaneous infinite sets of equations for the {AAI, {Bin, and

{C ) are in the general form discussed in Section II, hence approximate

solution by the modified rosidue-calculus technique is possible.

Because of the wide variety of possible variations on the basic

geometry, the solution of the sets of equations will be discussed in

general and then restricted cases of greater interest will be treated

in detail.

Solution of the Sets of Equations

Because of the linearity of the system, it suffices to treat

excitation from ragion (A) and region (B) separately. Excitation

from region (A) is most applicable to specific cases of interest, so

the discussion of the general solution will be in that context. Suppose,

then, that B=O and hence -=O in (3.16).

The inhomogeneous bifurcation is a generalization of the simple

bifurcation in which .b Cc = In the simple case, 9m = 0,

so that except for the factor A', equations (3.14) and (3.16) reduce

to (2.2) and (2.3), where the {All are identified with the {A I. Thenn

solution is exactly as described in Section II except that the mero-

morphic function g(w) is n( ilized to give R (-a ) A'. Solution of

the general case is based on mcdifications of the function g(w) of

(2. 4.).
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Suppose that a meromorphic function h(w) can be constructed which

satisfies:

(h:!) h(w) has simple poles at w = -a and at w = a2 , a3

(h:2) h(O ) + C Mh(-0) =0, m = 1, 2, ....

(h:3) h(y m)+Xh( - yM) - o,m - 1 , 2, 3,.

(h:4) h(w) t, Kw- , 4/3 < v < 5/3, as IwI * aw. (The exact value

of v is determined by the edge condition and will be

discussed subsequently.)

Consider the follow-ng integrals in the complex w-plane, where C is a

closed contour enclosing all of the poles and zeros of h(w).

1 (h(w) 1__wi--~(j-)dw= E Rh~) )R. )
w+ im  n=I h(an) (an+y m (-a)(a -YM

+ h(-ym) = 0, m = 1, 2, 3, .... (3.17)

1.. 4(h(w) hCW))dw = cn

2-- C Am w+ym  nl nYm an +m

- p +  h(y ) + h(-ym) 0,
n p + a p-y m  m m

m = 1, 2, 3, ... (3.18)

I (h~w))dw co R~a
1Tr W+I ,hw) (an)(a +- Rh(_ap)(a -0

m nl n m pm

+ h(-O) - 0, m 1 , 2, 3, ... (3.19)
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1 .h(w) + gm co

YFj W-A W+ nfi Z R(a)( 4 F+ a +
n=l n n

S_)(___. n
- R -M + h(Bm ) + 9 h(-Am) 0 ,

-a.)( +a + SM

M = 1, 2, 3, ... (3.20)

When h(w) is normalized to make Rh(-a) = A', (3.17-20) may be

identified term by term with (3.13-16) to generate the solutions to

the sets of equations. The results are:

A' = Rh(an), n = 1, 2, 3, (3.21)

m+1 inlTC : (-1) - h(-ym), = 1, 2, 3 (3.22)mn 2 in "'

c n

m

B mhC_-0 ), m = 1, 2, 3, (3.23)
m b2 m

The required function h(w) takes the form

h(w) = K exp(Lw) , w (3.24)

(w+a )ll(w,a)
p

The zeros { n } and ryn1 reduce to the zeros {8 } and {y of g(w) when

n n" n n

X = 9m = 0 (equivalently, eb = cc = 1). The constant L is given in

(2.6) and the factor K is chosen to satisfy the normalization require-

ment. The nominal algebraic behavior of h(w) is asymptotically
-3/2 an '

w , but corrections are made by the asymptotic shift of and yn
n n
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from their nominal values of 8n and Yn . Properties of the sets of

zeros are determined concurrently by (h:2), (h:3), and the edge

condition.

The solution for excitation from region (B) proceeds almost

exactly as for excitation from (A). The function h(w) differs in

that the pole at -a D and the zero at 8' are eliminated, so that h(w)

maintains the same algebraic behavior as before. Subsequent arguments

pertaining to the edge condition and asymptotic behavior carry over

verbatim.

Edge-Condition and Asymptotic Behavior of Zeros

So long as simple dielectrics (% < -, cc < -) fill regions (B)

and (C) and only TE excitation is considered, the inhomogeneously-

filled waveguide bifurcation has the same edge behavior as the simple

bifurcation. Thus, h(w) 6 Kw-3/2 for both cases. However, two

infinite sets of zeros must be determined simultaneously to satisfy

(h:2) and (h:3). As in Section II, it is possible to extract

information about the asymptotic zero positions by studying conditions

(h:2) and (h:3) for large indices.

Suppose that for n very large, the propagation constants may be

written

( =-jnn/a
n

8n = -jnn/b

-jnT/c

n' -jnw/b + S
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Y = -jndi/c + D
n

where S and D are the assumed asymptotic shifts of 0 and y' from the
n n

unshifted positions. Imposing (h:2) for m large in the form

h(8m )/h(-Om) = - m yields

im/ba( m/b
" (1--jn.i/b+S
( h ) exD(-2jminL/b) +

-_jnl/b+S

R,.-im I/b +M /b

1(1- _jn/c+D )(l- t--- )

x +jmrIb -jma = - g (3.25)
,(-+jii/b )fO- ji/) in

-jnni/c+D -jnd/a

The exponential convergence factors in the products have been omitted

to simplify the appearance of the equation. When the products are

replaced by their simplified forms from (2.20a) and (2.20b) and when

the quotient containing a is replaced by its limiting value, equationp

(3.25) reduces to

sin(mn-jSb)sin(mlrc/b-jDe)

sin(mra/b) 2 m (3.26)

Since a = b + c, this expression may be further reduced to

sin(jSb)sin(mnc/b-jDc) I

sin(mnc/b) - - 9 m (3 27)

The corresponding result for (h:3) may be obtained from (3.27) upon
AI!

interchanging b and c, S and D, and replacing m by X

in . .
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sin(jDc)sin(mrb/c)-jSb) 1 , (3.28)
sin(m7rb/c) ^m

ror simple dielectrics, both m - 0 and Xm - 0 as m . Thus,

the R.H.S. of (3.27) and (3.28) tend to zero, and hence so must the

L.H.S. if the equalities are to be maintained in the limit. This

requirement is satisfied by D = S = 0, so that asymptotically the

new zeros 8' and Y' tend to the old zeros 8 and y . The choice
n n n n

S = D,= 0 is consistent with the edge condition, for no algebraic

correction to the asymptotic behavior of h(w) is permitted.

In the most general case, i.e., when one or both dielectrics

assume limiting values as electric or magnetic conductors, such

direct limiting arguments for (3.27) and (3.28) fail. They fail

because the limits as m -* of the sine ratios fail to exist even

though the R.H.S. cf each equation does have a limiting value. Two

cases of particular interest, namely the waveguide step and the

diaphragm, may be solved as special limiting cases of the inhomogen-

eously-filled bifurcation. In those cases, limit difficulties with

respect to asymptotic behavior of the zeros reflected in (3.27) and

(3.28) can be circumvented by direct imposition of the edge condition.

Although the two problems will be discussed in greater detail

subsequently, the behavior of the set of zeros of h(w) for their

solution will be treated as special cases.

Case 1. When the dielectric in region (C) is allowed to become

a perfect electyic conductor and the dielectric in (B) remains simple,

the geometry reduces to the waveguide step discontinuity of Figure 3.3.
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N,

Figure 3.3 Waveguide step discontinuity
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in this case, -oc0 as m-ealu but 1 or-of

X is readily interpreted as the node reflection coefficient at the

interface between regions (C') and (C) in the auxiliay--y geo-etry of

Figure 3.2. Natially, when the dielectric becomes a perfect electric

conductor, each node reflection coefficient becozes -1.

The limit of the R.H.S. of (3.27) is zero, but the -R.H.S. of

(3.28) is + 1/2 for all m. The choice S = 0 reduces the L.H.S. of

(3.27) to zero, so that (3.27) is satisfied in the limit. 1owever, the

choice S = 0 reduces (3.28) s.iply to

sin(jDc) = 2 (3.29)

which then ic, t-at

I) = - (3.30)

Thus the zeros {yn) are asymptotically shifted from {yn} by then

amount D = - but the asymptotic shift of the {0.1 is zero.

The edge condition for the waveguide step is that of a right-

angle perfectly conducting wedge. The field behavior requires that

h(w) Kw-5 / 3 , which differs from the behavior for simple dielectrics

by the factor of w . It would appear at this point that a new

form for h(w) must be found to account for the new edge condition.

However, the asymptotic shift of the zeros {y;) automatically

incorporates the algebraic correction to h(w).

The ratio r(w) of h(w) with shifted zeros to h(w) wit!, unshifted

zeros is essentially J(l-w/(y+D))

r(w) = (3.31)
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However, substitution of asymptotic values for Yn and reference to

(2.20a) and (2.20b) yield a simpler expression for the ratio, namely

r(w) rq+jDc/;)r(l-jwc/-a) (3.32)r~) (!+jDc/-z-jwclz)r(z)

.rom the asymptoric value of the ratio of ga ..am functions (r(x+b)/

(x) ' x as x -) given in Noble [1958), the ratio (3.32) becomes

.Dc
r(w) K(-jh-,! (3.33)

Substitution of the asymptotic value of D = - ja/6c yields

r(w) KIw (3.34)

Thus the proper algebraic correction to h(w) is automatically provided.

Case 2. When region (C) is filled with a perfect electric

conductor and region (B) becomes a perfect magnetic conductor, the

geometry reduces to a waveguide terminated by a combined magnetic

and electric wall, as in Figure 3.4. Although this problem is

essentially non-physical because magnetic conductors fail to exist,

it is indeed useful as an auxiliary geometry for solving the problem

of an inductive diaphragm in a waveguide. Its application to the

diaphragm will be discussed subsequently.

The magnetic conductor in region (B) gives the value +1 for each

9m" As in Case 1, Xm -i for each m. Unlike Case 1, however, the

[ limiting procedure applied to (3.27) and (3.28) fails completely,

indicating that the zeros fail to have a specific asymptotic shift,

I



40

x

®b MAGNETIC WALL

ELECTRIC WALL

-Z

Figure 3.4 Magnetic-wall, electric-wall termination
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except possibly in an average sense. Fortunately, though, the edge

condition for Case 2 is known exactly, so that edge condition

information can be used to advantage.

Because the geometry of Case 2 may be directly related to the

inductive diaphragm, the edge condition is that of the diaphragm, 
"

which like the simple bifurcation, requires h(w) It, Kw 3 /2. Since

no algebraic correction to h(w) is required, the edge condition alone

yields

S= 0 (3.35a)

D= 0 (3.35b)

for the asymptotic shifts of the zeros. Since the conditionz %',.:2)

and (h:3) for the magnetic-electric wall case are somewhat stronger,

it may very well require longer for the actual zeros to approach

the asymptotic values. However, because the actual shifts of the

first few zeros of h(w) are found explicitly, the numerical results

fo% scattering matrix elements for low-order modes are quite

insensitive to evrors in the location of large-order zeros of h(w),

hence in S and D.

The essential test of the proper c ,oice of asymptotic shifts is

the saticfaction of (h:2) and (h:3). Of course, when the conditions

assume proper limiting forms, the problem is greatly simplified.

However, arguments such as those for Case 2 may be invoked wheo direct

limiting procedures fail. In some cases, moreover, explicit computa-

tion of exact zero locations may lead to a numerical determination

of the asyptotic shift of large-index zeros. 
In all, any reasonable

H

_ _____ ____
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means that yields satisfaction of (h:2) and (h:3) and the edge

condition may be useful.

Construction of h(w)

Since the functional form of h(w) is known exactly, construction

of h(w) consists in determining the unknown zeros. As in the problem

discussed in Section II,'it is not possible to determine all of the.

zeros exactly. Again it suffices to substitute asymptotic values for

all but the first few values of 0' and Y' and to find the first values
n n

explicitly. Suppose that M values of 0' and M values of I' are to
n C n

be found explicitly, and that M = MB + MC . Actually, a polynomial of

order M is determined since exact location of the zeros is errelevant.

The function may be written

h(w) = K P(w) exp(Lw) 'MB)(w,0t)J( w) (336)
(w+ca )H1(w,a) (.6

~p

where I(B) (w,0') denotes omission of the first MB factors and

replacement of Pv' by On + S for n > MB, and similarly for .(MC)(w,7).

P(w) is a polynomial of order M. For simplicity, write

h(w) = K P(w)h'(w) (3.37)

where hWt) incorporates all of the known parts of h(w).

Although ths method of determining directly the polynomial

coefficients which is described in Section II is perfectly applicable

Sto this case. an altern-t .1^ mathod of specifying P(w) is superior

fur numerical work; albe- -aare comnplicated. The method consists of

wriiing P(w) as a known polynomial of order M plus a correction

0I

.7 - ___________
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polynomial of order M-i. For convenience in notation, let

W. , 2, M

W i+MB Yi' i = MB + , MB 2 , .. ,M B + MC = M

W . , i = ~, i2, ... , H MBB

t 1, 2, ' B

ti+MB = 1i i MB + 1, MB + 2 , ..., M
}B

Thus, conditions (h:2) and (h:3) for the explicitly shifted zeros read:

h(W.) + Tih(-W.) = 0, i 1, 2, .,., M (3.38)

Now write P(w) in the following form:

M M M w-W.
P(w) = ( (l-w/W.) + [IF. I (W._2.)] (3.39)

i ~ I I WWI i=l i=l j=l 1 i
.4.

The first term of P(w) is readily recognizable as the product of

unshifted zeros. The second term, in which the coefficients F.,
1

i = 1, 2, ..., M, are to be found, for'ms the correction polynomial.

The normalizaxion of the second term is such that P(W.) F., i = 1, 2,

i.

Substituting the new form of P(w) into (3.38) yields

£. M
L K n'(W )F t t K h'(W m ) H I (l+W /W.)

m m m m I

-4F_____ __
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M M -W -W.
+ Z [F. H = 0, n= 1. 2, 3, ... , M (3.40)

i=l j=l
i/

Since the only unknowns are the UPi}, which appear linearly, (3.40)

is actually a set of M simultaneous linear equations for the {F.
}1

Solution of such sets by numerical methods is well-known. In actual

practice, Gauss-Jordan elimination in double-precision complex arithmetic

was used on an IBM-7094 digital computer.

The advantage of this scheme for finding the polynomial is that

the unknowns are of first-order, while the unknown polynomial

coefficients- in the direct method are of zero-order. The alternative

method reduces to F. = 0, i = 1, 2, 3, ..., M, when the geometry1

reduces to a simple bifurcation; for the same case, the direct method

yields rather large values for the unknowns. The best test of the

polynomial determination is the satisfaction of (h:2) and (h:3), or

equivalently, (3.38). The correction polynomial method is consistently

superior to the direct polynomial method in satisfying (3.38)

numerically.

Application to Specific Examples

Simple dielectric fillings. Apart from the homogenecus

bifurcation, the simplest geometry is that of Figure 3.1, in which

regions (B) and (C) are filled with simple dielectrics. For a fixed

waveguide width a, the reflection coefficient varies with the position

of the septum (i.e., with the ratio c/a). Over intervals in which

both guide (B) and guide (C) are cut off, the magnitude of the

_ .. . ..... I
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reflection coefficient is unity. Because the cut-off dimension also

varies with the nature of the dielectric filling, the interval of

total reflection varies with the dielectric constant. Figure 3.5

illustrates the cut off phenomenon for a singly-filled bifurcation.

Region (C) is filled with a dielectric Cc, but region (B) is unfilled.

For the guide dimension a = 0.751, the reflection coefficient for

the TE mode from (A) is given for ec = 1.0, 2.0, and 3.0. Note

the coincidence of the reflection coefficients up to the point

c/a = 0.33 at which point the unfilled guide (B) cuts off. Also of

interest are the limiting values as c/a = 1, in which cases the

junction becomes that between an unfilled guide and a filled guide

of identical dimension. The cut off points fOr the guide (C are

readily observable as break-points in the curves of Figuve 3.5. Both

ma&nitude and phase of the reflection coefficient for discrete values

of c/a for the same geometry are giver in Table 3.1.

Reflection coefficients for the doubly-filled bifurcation are

depicted in Figure 3.6. In each case, guide (B) is filled with a

dielectric Cb = 3.0, while results are given for ec = 1.0, 2.0, and

3.0. Again break-points in the curves may be identified with cut off

dimensions in the waveguide. As before, a = 0.75X.

Step discontinuity. Of greater practical importance than the

simple dielectric-filled bifurcation is the waveguide step discontinuity

of Figure 3.3. Extensive results for step discontinuities of various

kinds are given in Marcuvitz [1951], where primarily variational
techniques are employed to finai the dominant mode reflection

coefficient and equivalent circuit reactance. However, no results

_______ ____________________ _____________________-_____
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TABLE 3.1

Reflection Coefficient for Inhomogeneously-Filled Bifurcated Waveguide

Reflection Coefficient (Magnitude, Angle)
c/a

C =1.0, b =1.0 £c=2.0, Cb=i.0 Cc=3.0, cb=1.0 2
c b - b- c b

0.0 0. 0. 0.

0.1 (0.051, 36.30) (0.051, 36.10) (0.051, 36.10)

0.2 (0.148, 50.60) (0.148, 50.50) (0.147. 50.30)

0.3 (0.420, 53.60) (0.420, 53.10) (0.416, $2.50)

0.4 (1.000, 112.30) (1.000, 109.i° ) (0.847, 100.60)

0.5 (1.000, 127.20) (0.656, 110.80) (0.620, 134.30)

0.6 (1.000, 112.30) (0.417, 135.50) (0.510, 152.00)

0.7 (0.420, 53.60) (0.318, 151.80) (0.433, 162.50)

0.8 [0.148, 50.60) (0.264, 164.50) (0.371, 170.50)

0.9 (0.051, 36.30) (0.244, 174.80) (0.358, 177.70)

1.0 0. (0.252, 180.00) (0.365, 180.00)

Ii

ii
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' C

seem to be given for the junction of guides 
of different dimension I

and different dielectric filling, which is the most general case 
7

of Figure 3.3.

Because the step discontinuity is merely an extension of the

inhomogeneously-filled bifurcation, scattering matrix representations

of the discontinuity can be readily found by the MRCT. Although it

often suffices to determini only the dominant mode reflection

coefficients, knowledge of the scpqcering matrices, even though

truncated at a small size (1.5, for example), makes possible very

simple solutions of .ach problems as the thick-wall phased array

(Section IV). In addition, knowledge of the high-order mode

coefficients for the scattered field permit very accurate determination

of the electric or magnetic field at the discontinuity. An example

of the truncated scattering matrix SAA for a step discontinuity is

given in Table 3.2. The guide width a = 0.75A and c/a = 0.3; region

(B) is unfilled.

Even though only . very small n1.-Wner of zeros of the function

h(w) are determined explicitly in the solution of the step problem,

availability of apprc;.imate values for the high-order mode coefficients

per-its computation o: the electric field at the plane z = 0. Assume

that a TE10 mode of unit amplitude is incident from region (A). The

c.oefficients of the first twenty reflected modes are found by the

i -'T and the total field is calculated from the truncated Fcuricr

series at z = 0. The amplitudes of total electric field for Stcp

widths of 0.2a, 0.3a, 0.4a, and 0.5a are shown in Figure 3.7. It is

important to note that the fields are computed in region (A), so that

U1
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the extremely small value (almost zero) of the field from x = 0 to

x = c for each case illura es the satisfaction of the requirement

Etan = 0 on x 0 to x = c for even the runcated series. Comparison

of the fields in the aperture c < x <-a as computed in region (A) wieth

the corresponding values computed, in region (B) have shcwn agreement

to several significant figures. Although the mode coefficients found

Jy the ORC are only approximate, the field found fro the i is probably

vex*,rear to a least-mea.-square approximation to the actual value

because of the Fourier-Bessel inequality.

The reflection coefficient as a function of relative step vidth

c/a is shown- in Figure 3.8, Region (B) is filled with dielectric

= 1.0, 2.0, and 3.0. The guide idth a = 0.75X. The limiting

case c/a = 0 yields the reflection coefficient for the air-dielectric

inteiface in a waveguide; the case c/a = 1 Yields the reflection

cotefficient -1 for a shorted waveguide. As previously, the break

points in the magnitude and phase curves occur as guide (B) cuts off.

Magnetic and electric wall. The magnetic wall-electric wall

termination of a waveguide illustrated in Figure 3.4 may be solved

by the MRCT as discussed under Case 2. The geometry of Figure 3.4

is useful as an auxiliary .geometry in the solution of the waveguide

diaphragm of Figure 3.9. An additional auxiliary geometry is the

shorted waveguide, the solution of which is trivial.

Consider equal excitation o.F the SIaphragm of Figure 3.9 from

regions (A) and (A') in a symmetric sense, i.e., with electric vectors

in both regions pointing in the same direction. Then at the plane

z = 0, the electric vectors add in the aperture and vanish on the
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diaphragm, but the transverse magnetic vectors cancel exactly in the

aperture. Thus placsment of a magnetic wall in the aperture has no

effect on the fields, and so far as region (A) is concerned, the

geometry is that of Figure 3.4. Alternative equal but antisymmetric

excitation of the diaphragm from (A) and (A') causes the total electric

vector to vanish on the plane z = 0, so that an electric wa2.l may be

placed there without effect. Then, the geometry for region (A) reduces

to a shorted waveguide.

Suppose, now, that both symmetric and antisymmetric excitation

are applied to the diaphragm simultaneously, so that addition occurs
AA b h

in (A) but exact cancellation occurs in (A'). Let Sbe the
- 1

scattering matrix determined approximately for the magnetic-electric
aland let S - I be the scattering matrix for the shorted

wall,anle

waveguide. Then the resultant scattering matrix S P for the diaphragm

is given by

AA 1 AA AA 1 AA
=-(S +S )-(S -I) (3.41)
2 1 2 2 1

If R is the complex reflection coefficient for the dominant mode for

the magnetic-electric wall, then the reflection coefficient. R for

the diap~x-agm of the same dimension is

R -R -1) (3.42)
2 1'

Because no power is transmitted beyond the magnetic-electric wall, the

magnitude of R1 is always exactly unity. The phase changes from 0 to

w as the ratio c/a goes from 0 to 1. The magnitude and phase of R as
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a function of c/a for the diaphragm is,given in Figure 3.10. The guide

width is a = .. 75A.

[ An additicnal application of the scattering matrix description of

the magnetic-electric wall geometry is diffraction by an infinite a_-ray

of thin conducting strips. This problem is discussed in Section V.

Alternatiye Solution Methods

By the very nature of the geometry of the problems related to the

simple waveguide bifurcation, it is apparent that alternative iuethcds

of solution exist. The generalized scattering matrix procedure is

directly applicable to many of the problems, since the geometries can

often be reduced to combinations of exactly solvable junctions.

Variational and integral equation methods such as those described by

Marcuvitz [1,951) have been applied with success t6 many such problems.

In any specific instance, the choice of method of solution can be made

in many ways.

As applied to geometries related to the waveguide bifurcation,

the modified residue-calculus technique possesses some great advantages.

First, it is extremely general. All of the problems discussed in

this section were solved by use of the same computer program, whether

the problem was the simple bifurcation to be solved exactly or the

magnetic-electric wall. Second, it generates scattering matrix

representations of discontinuities, such as those obtained by the

multiple-reflection, Neumann-series method. On the other hand, it

can generate the first M scattered mode coefficients foi, the first

incident mode without resorting to an MM matrix inversion. Inversion
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of large-order matrices is a major drawback to some methods in the

solution of integral equations. Not least imp0ftant is the automatic

satisfaction of the edge condition. In both diritct matrix inviasio

met'iods' as well as the generalized scattering matrix method, it is

difficult to prove directly that the edge conditio,u is satisfied.

In the HRCT, satisfaction is -a prwri, guaranteed.

-I
I-

t t

;
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IV. THICK-WALL PHASED ARRAY

At the present time, there is great interest in antennas which

are physically stationary but which electronically scan a relatively

narrow-beam throughout a region of space. Two particular applications Nr

are radio telescopes, in which the antenna is often so large that A

mechanical steering is prohibitively difficult, and tracking radars,

in which a physical antenna has too great inertia to be rapidly and

repeatedly scanned over a large area while tracking several fast-

moving targets. In electronically scanned antennas, phase changes

between elements steer the antenna beam without need for mechanical

positioning.

One type of electronically scanned antenna is a phased array of

open-end rectangular waveguides, a segment of which is shown in

Figure 4.1. Although the number of elements (waveguides) in such an

array is necessarily finite, it is not uncommon in practice for the

number of elements te be extremely large. For purposes of analysis, it

is convenient to assume that the array is infinite in extent and

periodic. The infinite array approximation is good for the majority

of elements away from the edges of the finite array. It is further

assumed that the waveguides are excited by the dominant TE mode with

uniform amplitude and periodic phasing to scan the beam. To be

determined for the array are the aperture fields, from which the

radiation pattern may be computed, and the reflection coefficient for

the dominant mode in each waveguide as a function of scan angle.

The infinite rectangular array was discussed by Wu and Galindo

[1966] for H-plane and quasi-E-plane scan for infinitely thin

__
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Figure 4.1 Phased array of open-end rectangular waveguides
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"aveguide walls and by Galindo and Wu [1.965] for -alls of finite

thickness. The case of thin walls and H-n~ane scan in euivalent to

dif--fraction by an infinite set of thin pa-rael plates, whidch nay

be solved exactly by the Wienec-:opf tecnnique (Carlrson and Heins

[1947) or by the conventional residue-calculus te-chnioue (Be-z [1951],

Whitehead [1951]). : oever, the co- espcmdIng problem with -gal-s

of non-zero thicl-ess cannot he solved exactly. Padiation at

broadside :ft. an array of thick plates sas studied by Lee [19571,

who resented a soluticn based on the Wiener-Sof technicue. By a

=nwerical solution to an 1tegnral eq.'aion for the aperture field,

Galindo and Wu [1955) were able to find reflection coefficients and

apnar-ne fields for several cases of wai thickness and vaveguide

dimension for angles of scan fron 00 to 900.

Not unexpectedly, the results of Ga.lindo and Wu indicate that

the reflection coefficient solutions for the thin -wal array are not

very good approximations to the reflection coefficients for arrays

with -.alls of non-zero thickness. Because a major consideration in

array design is to minimize reflection at the aperture, it is

essential tc know the variation of reflection coefficient with wall

thickness and, in some circumstances, with the dielectric properties

of the material filling the waveguide. (A technique socetimes used

to match an array is to fill the waveguides nith dielectric materal.)

But, it is extremely useful to determine the required information in

the simplest pcssible way, so that as little time as possible is

consumed in determining the required array characteristics.
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Because of the nature of the arxray gecmetry, fields in each region

may be written in modal expansions. As a result, the refliection and

-transmission characteristics of the array may be completely described

by a set of scaLrering =a&trices. Since the model for the ar-ray may

be reduced to two auxil:-j Junction prole=s, -the generalized

scattering =a-rIx procedure may be readily applied to -the ar-ray

geoe-try. The XRCT solution of one of the related junction problens

.a es possible an extremely sinple solution -to the irray preblem. In

Dartcua; , it pe-mits dete--rm ation of an approximate expression for

the daminant mode reflection coefficient in a f or suitable for simnle

hand calculation f data available in tab ar or grabhical forxm.

TThin a uo11 Array

The solution for the array 4ith thin walls and H-plane scan forms

the basis for the solution of the corresponding thick-wall arr ay. As

previously mentioned, this problem was discussed in detail by Wu and

Galindo [1956], who obtained an exact solution for dominant mode

excitation by means of the conventional residue-calculus tec,nique.

Because solution in terms of a generalized scattering matrix is

essential to further results, the solution for the thin-w-all array

with general TE excitation will be sumarized here.

The thin-wall array for H-plane scan is equivalent to a set of

thin, perfectly conducting plates uniformly spaced (Figure 4.2).

Each parallel plate waveguide thus formed is excited in the region

z < 0 by a TE mode cif unit amplitude. The electric field in the*1 p ,oth
m waveguide (region (A)) may be written
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E sin(a (x-ra)) exp(-jmu-jx z)
y a

+ , A sin(R!- (x-.a)) ex.(-jmu.-jt z) (4.1)

and in the open region (F)

= G exp(-jx-j-rz) (4.2)
y _n

where u= kasin 8

0

gn = (2ni+u)/a

n 0 ci

CL /k 2-(n-f/a) 2
n 0

-t Space modes for which - has a non-zero real part propagate away fromn

the array and carry real power. The number of propagating space modes

is a function of both guide width a and scan angle 9. Expressions

proportional to the ~ansverse magnetic field Hx are found by

differentiating (4.1) and (4.2) with respect to z.

Upon matching the transverse field components at z = 0 and

Fourier analyzing the resultant expressions _s described in Section

III, the following infinite sets of equations are obtained:

n1
Z n A (-1) exp(ju)-l)( )

n=l n q

- p[(-1) P exp(ju)-l]( --- ) = 0 (4.3)
p q
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nA[(- 1 )fl ey.D(ju)-Jj( I

n1 n -r

2
P[(-l) p exp(ju)-!] + 2 -T G = 0 (4.4)qq

The solution to (4.3) and (4.4) is constructed by means of a

meromorohic function g(w) which takes the form

g(w) = p exp[j(wc ) a In 2][ { - l ) P exp(ju)-i I
p

-O la /a 1-W/T
x -1fl ) (1 vn (4.5)

n=1l n=-a D In

The mode coefficients then are

R (a)
A = g , q1, 2, 3,... (4.6)

0 [(-l) q 6xp(ju)_,]

_ rg(-T )
Gq 2 q = 0, +1 , ... (4.7)

q 2a T q , 1 +
q

These solutions immediately yield the elements of the scattering

matrices corresponding to excitation from the (A) or waveguide region.

Since the incident wave was the pth mode of unit amplitude, the

scattering matrix elements are:

S AA(q,p) = A , q = 1, 2, 3, ... (4.8)
q

sFA(q,p) =Gq , q 0 , +1, +2, ... (.)

____________________________-~ _________________________________. I
• . .,7 --



where A and G are given in (4.6) and (4.7), resDectively. Solutionq q

for each value of p generates the entire scattering matrices, which

are implicitly functions of the scan angle 8.

The related scattering =atr-ices corresponding to excitation from

the (F) or free-space region are constructed in a similar manner. Assume

ththat the p free-space mode of unit amplitude is incident upon the

array. The electric fields in the waveguide region (A) may be written

'th(M guide)

= Z. A sin(-(x-ma))ex_(-jmu+z z) (4.10)
n1 n a n

and in the open region (F)

E = exp(-jg x+jT z)
y p p

+ E G exp(-jg X-JTnz) (4.11)
n--4

Upon matching E and H fields, the resultant equations may be

reduced to

2
Z n A U-1) exp(ju)-lJ(-"-) - 2- T 6q =

n=l n- q w q q

q 0 , 1 , + 2, (.2
CO2

EnA[(-I) n exp(ju)-l](--T) + 2 a__ T G 0
n=l nn q q

q = 0, + 1, + 2, (4.13)
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The solution to this set is constructed from a function

f w), "here

2f (w) =-2 aT e::D[j a In 21
a a

l-co a c l-W/Tn

nl 1w/- n n - Ip/Tn (4.14)

nI~p

The mode coefficients and hence scattering matrix elements are then

A = sAF(q,p) Rf( q q = I, 2, 3, ... (4.15)q q[ (-I1) q exp(ju)-1]

- rf(-T )
G S FF(q,) -q ,q ,+ , + 2, (4.16)
q 2a 2T

The properties of the thin-wall array for each scan angle e are

AA AF FAcompletely described by the four scattering matrices SA , S , S

and S . The dominant mode reflection coefficient, which is equal to

AAS (1,1), as a function of scan angle is depicted in Figure 4.3 for

three values of waveguide width a. The break points in the reflection

coefficient curves occur when a second space mode changes from

evanescent to propagating.

Thick-wall Array

The model for the thick-wall array for H-plane scan used by

Galindo and Wu, and to be used here, is a set of thick, perfectly



68

0.4-

3=0.5714 A

1.3

fmj6 

8=215 
A

0.1

0  300 1e90

SCAN ANGLE

7r

3 r
T

7r

2

a=,.7500A

2

0 I : 10 : 3=0. 5714 A
00 30 600o  30 sogoo

SCAN ANGLE

F T

Fiue43Ti-alary elcinc1fiin



69

conducting, parallel plates, as shown in Figure 4.4. The spaces.

-between the plates may be considered to be parallel plate waveguides,

each guide excited from the region z < 0 by a TE mode. Thepo

amplitude of excitation is uniform in each guide, and the phase

progresses from guide to guide to scan the main beam of the radiatic'n

pattern. The fields in the open (F) region admit a modal expansion

of the form (4.2) because of the periodicity of the structure and

the excitation.

Despite the modal expansions for the fields on either side of

the interface z = 0, matching of the transverse components does not

lead to a set of equations of the form solvable by the modified

residue-calculus technique. However, the modal nature of te fields

in regions (B) and (F) suggests description of the array in terms

of generalized scattering matrices. The scattering matrices may

be derived via the multiple-reflection, Neumann-series method

described in Section II for a suitable auxiliary geometry.

The auxiliary geometry appropriate for the thick-wall array is

that of Figure 4.5. The junction at z = 0 is precisely that of

the thin-wall array. An exact scattering matrix description of that

junction was given earlier in this section. Let the scattering
AA AF

matrices for the junction have the subscript 1, i.e., SA A SA F

FA FF
SFA1 , S On the other hand, the junction at z=-6 in each waveguide

is precisely the step discontinuity described in Section III. Although

the general waveguide step problem cannot be solved exactly, a very

accurate truncated scattering matrix description of the junction can

be found by the MRCT, as in Table 3.2. Let the scattering matrices



70

L1
m~lI

. m =00 'T ®

iM

r. nii
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for this ji~cin caz'-y the s ~~2, i4.e.z A~ AB Bk ;

The .fo,= scattern mat=rices :Ebr the cmsite -- y-SSZ

S~, ~ -wil have -no subscript.

Follcv.Ing the ltperfeto hezcrrea as depicred in

* : gure 2.4 and~ r-eftcing o to zero yie±ds Ne~ann series re=_ieet&aonS

for the composite sca-tern matrices. When wa-med, these give

SBB +s Bsaf-sM" S AS (4.17)

2 2 1 1

SBA. B A AA -lS EM - ? s 2 J S (4-2:9)

s" - . ,S ' (4.20)

It must be noted that each scatt-ering matrix with subscript 1 is an

implicit function of scan angle, so that the ccmposite scattering

matrices also are dependent upon angle.

Because the mateix inversion must, be performed nimerically it is

important to truncate the scattering matrices at the sm-allest size

which yields suitably accurate results. Since the scattering matrix

4 elements must also be computed, keeping the truncated matrices as small

as possible also reduces computation time. Just what constitutes

"suitably accurate" is a matter of judgment in each case, but numerical

results of this section give an indication of variation of dominant

mode reflection coefficient for matrix sizes of lxl, 3x3, and 5x5.



73

One particular advantage of foxuiating the thick-wall array in

terms of the scattering mafrix equations (4.17-20) is that when the

wall thickness c reduces to zero, the resultant scattering =atrices

reduce to exactly the thin-wall scattering matrices. This result

occurs because-for the case c=O, the scattering matrix description

of junction 2 yields

2 2 (4.21)

sBA -B (4.22)
2-

Substitution of these values into (4.17-20) reduce the equations to

simply the corresponding thin-wall scattering matrices.

Numerical Results

The scattering matrix methods just described were applied to a

vari .y of cases for the thick-wall array. Many of ths choices of

wall thickness and guide width were made to coincide with those given

by Galindo and Wu [1966] to permit comparison of results. In each case,

dimensions were chosen to allow only one propagating mode in each

waveguide.

In each comparison case, the scattering matrix method gave

numerical results for magnitude and phase of the reflection coefficient

versus scan angle which were indistinguishable from the results given

graphically by Galindo and Wu. By way of further comparison, though,

the method of Galindo and Wu was considerably more complicated. For

each choice of width, thickness, and scan angle, the appropriate
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integral equation was app- -oximately solved by4 Galerkin's method, and

involved solution of a 30x30 set of linear eouations. Then a

variational correction wA-s aoblied to obtain the reflection

coefficient. On the other hand, the scattering ratrix method

required solution of two auxiliary nroble=s firat by quite ele-entary

means, and then simple ccubinaticn in the form of equations (4.17-20).

Each conbination involved the nuerical inversion of a 5x5 matix.

Since the solution to the thin-all array problem is co: on to all

thick-wall arrays for the same width a, and since the solution of

each step width is valid for all scan angles, the number of

calculations for many related cases is considerably reduced.

The results of computations for one choice of spacing (a = 0.62k)

and four wal thickness from c/a = 0 to c/a = 0.12 are smmarized in

Tables 4.1-4. The reflection coefficients for the thin-wall array

(Table 4.1) are based upon the exact solution. In each of the other

three cases, approximate results for three sizes of truncated

matrices are given. The reflection coefficients found by the 5x5

scattering matrix inversion agrees exactly with the values found by

Galindo and Wu, and will be considered 1o be the "correct" value. The

results are also depicted graphically in Figure 4.6.

It is significant to compare the value obtained from the lxl

matrix with the correct value. Particularly for small scan angles,

the lxl value is very close to the correct value, often well within

one per cent in magnitude and five degrees in phase. Since a 1x

matrix is simply a complex number, the computation of the reflection

coefficient is almost trivial. It is particularly important to

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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Reflection Coefficient vs. Scan Angle for Thln-Wa1 lA

Phased A-rray (a/A = 0.6205)

Scan Angle Reflection Coefficienwt (Yagnitude, Angle)

00 (0.2561, 147.50)

100 (0.2490, 144.50)

200 (0.2268, 133.90)

300 (0.1878, 109.30)

400 (0.0525, 32.00)

500 (0.0021, 32.40)

600 (0.0050, 32.40)

700 (0.0298, 32.10)

80 (0.0745, 31.80)

900 (0.1438, 31.70)

'4V
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T L-BL _4 2

Reflection Coefficient vs. Scan Aagle for Thick-Wala Phased A-rray

(all = 0.6205. c/a = 0.02)

Reflection Coefficient (Yagnitude, Angle)

Scan Angle
!x! Mat-rix 3x3 Matrix 5*i5 jajtriL

Go (0.2730, 149.70) (0.2740, 148.60) (0.2743, 148.00)

100 (0.2656, 146.80) (0.2665, 145.80) (0.2657, 145.20)

200 (0.2419, 137.20) (0.2427, 136.30) (0.2428, 135.70)

300 (0.1974, !4.9 °) (0.19782 114.00) (0.1977, 113.40)

400 (0.0395, 51.20) (0.0393, 49.80) (0.0390, 48.90)

50°  (0.0183, 167.70) (0.0182, 168.60) (0.0182, 169.30)

600 (0.0164, 160.60) (0.0162, 161.60) (0.0162, 162.40)

700 (0.0195, 73.50) (0.0192, 72.10) (0.0188, 71.30)

:3Q0 (0.0608, 44.30) (0.0608, 43.20) (0.0606, 42.40)

900,  (0.1295, 37.80) (0.1298, 36.80) (0.1297, 36.10.)

i
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TAB.T 4.3

Reflection Coefficient vs. Scan Angle for Thick-Wall Phased irray

(a/A = 0.6205, c/a = 0.063)

Reflection Coefficient (Magnitude, Angle)Scan Angle - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Ix! Matrix 3x3 Matrix 5x5 Matrix

00 (0.3225, 153.30) (0.3239, 150.00) (0.3240, 1.48.30)

100 (0.3149, 151.00) (0.3159, 147.80) (0.3156, 146.10)

200 (0.2900, 143.40) (0.2897, 140.40) (0.2884, 138.70)

300 (0.2381, 126.40) (0.2350, 123.50) (0.2317, 121.90)

400 (0.0571, 119.60) (0.0506, 121.10) (0.0463, 123.10)

500 (0.0728, 163.00) (0.0726, 166.30) (0.0725, 168.40)

600 (0.0711, 161.20) (0.0705, 164.60) (0.0703, 166.80)

700 (0.0597, 141.80) (0.0560, 145.40) (0.0538, 148.40)

800 (0.0629, 99.10) (0.0553, 97.00) (0.0500, 96.20)

900 (0.1121, 65.00) (0.1059, 59.30) (0.1009, 55.50)

I[



TABLE 4.7

Reflection Coefficient vs. Scan Angle for Thick-Wall Phased Array

(a/A = 0.6205, c/a = 0.12)

Reflection Coefficient (Magnitude, Angle)
Scan Angle

ix? Hiatrix 3x3 Matrix 5x5 Matrix

00 (0.4261, 158.20) (0.4259, 153.30) (0.4251, 151.40)

100 (0.4193, 156.60) (0.4175, 151.90) (0.4157, 150.00)

200 (0.3961, 151.50) (0.3894, 147.20) (0.3842, 145.50)

300 (G.3429, 140.80) (0.3253, 137.30) (0.3140, 135.90)

400 (0.1711, 146.20) (0.1553, 153.60) (0.1494, 158.20)

500 (0.1902, 160.50) (0.1898, 166.70) (0.1898, 169.60)

600 (0.1888, 159.80) (0.1876, 166.10) (0.1873, 169.10)

700 (0.1783, 153.00) (0.1697, 160.10) (0.1668, 163.90)

800 (0.1667, 139.10) (0.1441, 146.00) (0.1349, 150.90)

900 (0.1719, 115.90) (0.1306, 116.30) (0.1097, 118.70)

Ii

.



t- I

79

0.1

IR1 6.3
i. 0 2

6.2

0.1

0 30 to soO

SCAN ANGLE

Figure 4.6 Reflection coefficients for thick-wall phased array
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notice that simDle exact reflection and transmission coefficients for

the thin-wall array may be combined with reflection and transminsion

coefficients for a waveguide step discontinuity (found by the MRCT

or even from graphical results, e.g. Marcuvitz [1951]) to yield an

excellent approximate result for the thick-wall array. The simplified

expression for the array reflection coefficient may be written

BA AA AB
T^ _R T

R = RB + I - (4.23)2 AA AA
2 R

where = AA

1 n (1,1)

AA AA
R S2 (1,1)

RBB BBR2 = sB(1,1)

TAB = AB(II)

TBA BA2 =52(1,1) -

Although the array of Figure 4.4 is shown without dielectric

filling in region (B), the solution for dielectric filling proceeds

-exactly as previously described. The corresponding dielectric-filled

step discontinuity is used as part of the auxiliary geometry.

The mode coefficients for the field reflected back into (B) are

the elements of the first column of the scattering matrix S . The

field at the aperture may be readily computed from the modal expansion

at z = 0, c < x < a. Figure 4.7 illustrates the magnitude of the

aperture field for the array at four angles of scan. The array

____________________________________
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dimensions are a =0.62X, c/a =0.12.

The method described for the solution for the thick-wall array

is the first combined application of the MRCT and the generalized

scattering matrix method. The principal advantage of the combined

technique is that a geometry of some difficulty is reduced to two

geometries about which a great deal is known. It uses to advantage

the exact solution cf the thin-wall array as well as approximate

solution to a well known waveguide discbntinuity problem. The

rapidly convergent numerical technique for such a combined geometry

may be quite useful for a number of other problems which can be

reduced to two or more auxiliary problems solvable by conventional

methods or by the MRCT. Solutions for a class of such problems,

-tspecifically diffracting surfaces and gratings, are discussed in the

next section.

f

--,
F Ii,

.1.

dimesios ar a 0.6X, /a =0.1. .
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V. DIFFRACTING SURFACES AND GRATINGS

The modified residue-calculus technique and the scattering

matrix multiple-reflection procedure can be combined to attack a

wide variety of interesting problems, such as diffraction by a finite

circular cylinder, scattering from a semi-infinite cylinder of

rectangular cross section, and reflection at a dielectric step

discontinuity, to cite only a few. Another class of problems consists

of periodic diffraction surfaces and gratings. Since gratings are

finding- current applications, for example in resonators for lasers

operating at suboptical frequencies, alternative simple methods for

accurately finding reflection and transmission properties of gratings

and surfaces can be quite useful.

The general form of the periodic diffracting surface treated in

this section is shown in Figure 5.1. The geometry is essentially that

of the array of thick plates with a recessed dielectric filling*

Because the scattering matrix representation of the array of thick

plates is readily obtainable by the techniques of Section IV and

because the scattering matrices for the junction between (B) and (B')

may be found exactly, the combined geometry is most suitable for

description in terms of the multiple reflection phenomena.

An application of scattering matrix methods to diffractitg

surfaces has been made by Tseng [1967], who discussed in detail

diffraction and surface wave propagation on infinite periodic

corrugated surfaces. Although the corrugating fins were of zero

thickness in Tseng's problem, the most general unit cell

included multiple corrugations of various depths.

--m
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Figure 5.1 Infinite periodic diffracting surface
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To avoid repetition of the work of Tseng, only the formal

analysis for a few selected geometries is discussed in :his section, Ci

priarily to indicate the extension of the MRCT and scattering

=atrix Drocedure to cases other than the waveguide discontinuties and

array problems Treated previously.

Analysis

Let the junction at z = 0 in Figure 5.1 be designated by the
subscript 1, so that the scattering matrices for that junction, found

in Section IV, are B3 ,B FF. The modal expansion in
in Secion 11, are S l, S; , and S

the open region (F) is the same as described in Section IV. Further,

let the junction between (B) and (B') be denoted by subscript 2. The

BBscattering matrix of interest at That junction is S2 . If the

dielectric in (B') has relative dielectric constant cb, the scattering

matrix elements are given by

BB m n n
2 (n,m) 6 n  (5.1)

B +13
n n

where

X 2 2
Sk (n/b)

b0

are the propagation constants for the nth mode in (B) and (B'),

respectively. Limiting cases of perfect electric and magnetic

conductors in (B') yields

BBs5  - (5.2)
2

_ -i
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for electric wall at z=-d, and

BBS2  =+ I
2

for the magnetic wall. The surface with electric wall at z=-d is

shown in Figure 5.2.

An essential part of the diffracting surface is the recession

distance d. Propagation of the modes in guide (B) is represented by

the propagation matrix r, where

r(n,m) = 6m exp(-j0nd) (5.4)
nn

F or example, propagation from z = 0 to z=-d, reflection at junction

2, and propagation back from z=-d to z = 0 is represented by rsBr.

Since the high-order modes are evanescent, the effect of the propaga-

tion matrix r is to suitably weight them. The result is that

truncation at small matrix sizes (5x5, say) causes negligible error.

The multiple reflections for a wave incident from region (F)

yield the following expression for the composite scattering matrix

S F
F

F FF= 5SF +SFB rsBBrs BF

FB BB BB BB BF
1 IS 2 rS1 rs 2 rs1

i, + S1 F 2 FS F 2 r I  + ...

FF FB BB BB BB -BF=1 1 2 1 2



87

®1TT
,I0

Figure 5.2 Metallic modulated diffracting surface
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The scattering matrix SFF is of course a function of the incident

angle 0, because every scattering matrix with subscript 1 is an

implicit function of angle.

For the surface with dielectric filling, the transmission into

the dielectric region may also be found by the scattering matrix

method, so that

sB'F B'B - BB BB -1 BF (5.6)
2 1  2  1

An alternative interpretation of the geometry of Figure 5.1 is a

phased array with recessed dielectric filling, so that reflection

coefficients for periodic excitation from region (B') may also be

found by the generalized scattering matrix method.

Strip grating. The diffraction grating formed by an irfinite

set of thin parallel strips as shown in Figure 5.3 may also be

treated by the multiple-reflection scattering matrix procedure.

As with the waveguide diaphragm of Section III, the grating may be

I reduced to two solvable auxiliary geometries by considering symmetric

and antisymmetric excitation on either side of the grating. Suppose

the grating is excited equally and symmetrically from both sides.

For this excitation, the transverse magnetic field H in the apertures
x

of the gratings is exactly zero, so that a magnetic wall may be

placed in each aperture without effect. As viewed from region (F),

the structure for symmetric excitation becomes alternate magnetic

and electric strips, which is a limiting case of Figure 5.1 as the

dielectric in (B') becomes a magnetic wall and distance d reduces to

zero. For equal but antisvmmetric excitation, the electric fields
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cancel exactly in the aperture and the grating may be replaced by

a perfect electric conducting wall.

The solution for the magnetic-electric strip grating may be

obtained from equation (5.5). However, the scattering matrix SBB = I
2

(as in (5.3)) and for d=0, the propagation matrix also becomes r=i.

In that instance, then,

FF FF BB-1 BFS S1 (I-S ) S1 (5.7)

where the subscript s denotes symmetric excitation. By inspection,

the scattering matrix for the electric wall is

sFF (5.8)

* where the subscript a denotes antisymmetric excitation.

For simultaneous symmetric and antisymmetric excitation, the

incident waves from (E') cancel and the waves from (F) add. As a

result, the composite scattering matrix for the strip grating may be

written

4 FF 1 FF FF
S =(S +s)2 s a

1 FF
=-(S-I (5.9)2 s

Ndmerical results for selected diffracting surfaces were computed

* to test the multiple-reflection method. In all of the test cases,

the reflection coefficients were consistent with known power require-

ments, even with more than one space mode propagating. Reflection

5-BM
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coefficients for two cases are given in Table 5.1. The geometry is

that of Figure 5.2. For both cases, the width is a = 0.75X and

depth d = 0.5X. Case I has c=0 and Case 2 has c=0.3a. Case 1 is

the geometry of Tseng [19673.

TABLE 5.1

Reflection Coefficient for Diffracting Surface

(a 0.75X, d 0.5X)

Incident Reflection Coefficient

Angle e Case 1. c/a = 0 Case 2. c/a 0.3

00 0.3845 - jO.9231 0.0177 + jO.9998
150 0.1586 jO.9873 0.0732 + jO.9981
300 -0.2293 - jO.3921 0.0209 + j0.6055
450 -0.3139 - jO.0413 -0.2406 + jO.4956

Although the discussion of diffraction surfaces in this section

is rather brief and restricted to a few basic geometries, the combined

MRCT and scattering matrix procedures may be applied to a wide class

of surface and grating problems. Many variants on the geometry of

Figure 5.1 are possible, including geometries in which reflections

at more than two junctions are considered.

mI
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VI. CONCLUSIONS

The analytical methods described in this thesis provide a very

accurate and very rapid numerical means for Solving a class of

boundary value problems related to basic Wiener-Hopf geometries.

As compared to some variational or integral-equation techniques for

solving the same-types of problems, the MRCT and the scattering

matrix method, or both together, yield the most often required

information, i.e., scattering coefficients, in a very simple form,

without need for the iterative procedures, numerical integrations,

*or large order matrix inversions which often are time consuming

and potentially inaccurate from a computational standpoint. A

oparticular advantage of the methods described here is that in a

modified Wiener-Hopf geometry, a great deal of information already

known about the related auxiliary geometry is utilized in the more

complicated problem. For example, independent solutions of the

waveguide step discontinuity-and of the array of thin plates may

readily be combined to solve a much more difficult problem of great

practical interest, namely the thick-wall phased array.

One additional property of the MRCT is particularly significant.

The MRCT automatically satisfies the edge condition of the problem

being solved, even when the edge condition differs from that of the

auxiliary geometry, because a priori information about the edge

condition is incorporated into the construction of the required

meromorphic function. In contrast, satisfaction of the edge

condition in solution of a doubly infinite set of equations by

1k!I _ _ -
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truncation is strongly dependent upon the truncation procedure

(Mittra [1963]).

Although a variety of waveguide discontinuities were solved by

the MRCTj combination with the scattering matrix procedure permits

solution of such problems as thick diaphragms, trifurcations (Pace

[1964]), multiple diaphragms, and rectangular posts in waveguides.

Also, the MRCT can be extended to circular cylindrical geometries,

so that a variety of corresponding discontinuities in circular

waveguides.may be solved.

The applicability of the analytical methods of this thesis to

a wide variety of problems in both open and closed regions will

permit numerical solutions in a convenient form for many problems of

current interest.

_ _ _ _ _ _ _ _ __._ _ __ _ _ _
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