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48STRACT
Concept learning is investigated by constructing a cumputer
program named CE, which is simiiar to EPAM in many respects. The
main feature of this research is the learning of hierarchial con-
cepts, i.e., concepts in terms of other concepts. In addition the
concepts can be either conjunctive or disjunctive. CE can generalize
on the instances qgiven to it. and it can adapt, i.e., it car correct
grrors made in generaiization. The learning ability of CE is demon-
strated on two examplie tasks: a concept learning task, and a rote
tearning task. Computer experiments confirm the effectiveness of
CE on these example tasks. Aithough not simulated on the machine,
we investigate a geometr; anaiogy task which requires relational

concepts.
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CHAPTER |
INTRODUCTION

Concept learning is an important complex infcrmation process.
As such 1t has received the attention of scientists who study the
representation and processing of information. Three such aroups
of scientists are philosophers, psychologists and computer scien-
tists. QOur approach is a mixture of the approach of psychologists
and computer scientists, our obJlective 1s artificial irtelligence -
the censtruction of computer porgrams that exhibit irtelligence.
The purpose of Section 2.3 is to place our approach into its!
proper perspective.

8efore we can do this we neea a cefinition of concept learning.
This 1s given in Sections 2.1 and 2.2. Our de“inition i1s suf-
y general to inciude work in pattern recognition. The
difference between work 1n pattern recognition and concept learning
1s mainly one of approacn.  Some workers fe.q., Banerji [21),
consyder  congept learning  and  pattere learning’ to be the same

process.

g

Tre purpose of this thesis is twofoid, Tre first 15 to
discover @ better model of concept learning., One 1mportant

feature of this megel G5 the ability to generalize. Another
feature of thiy medel 1S the atility to learn concepts in tersy of

Other cancepts.,
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The second purpose is to investigate the relationship between
concent tearning and a rote iearning theory called EPAM, which is
alsn a computer program., A computer program that ic similar to
EPAM iy many respects has been constructed. The program is called
Concept-EPAM, (E, to distinguish it from other versions of EPAM.
Due to the similarity of CE to EPAM we give an explanation of EPAM
in Section 2.5,

The basic difference between EPAM and (E 15 the introduction
of the set membership relat "n, «<; EPAM only uses the equalrty
relation, =. The usefulness of this ne relz .yon is described in
Chapter 111 by exploring how concepts are stored in memory. This
extension of EPAM changes both the retrieval process, descriped in
Chapter IIl, and the learning process, described in Chapter IV.

The learning strategies of CE are two interacting pro..sses.
image elaboration and tree modification. The hierarchial structure
of CU i< apparent in the discussion of mage elaboration.

The implementation of CE is descrived in Chapter V. The
experiments tnat have been given to CE are described in Chapter VI.
After some basic information is given to CE, two tasks are pervormed:
a cu..cept learning task, and a pair associate task. Although not
simutated on the machine, we describe a geometry analogy task which
requires relational concepts.

Chapter YII contai: s conclusions and observations,




CHAPTER 11
APPROACHES TO CONCEPT LEARNING
The main purpose of this chapter is to describe other research
in concept learning so as to place this work in its' proper per-

spective, To accomplish this we .irst give some definitions.

2.1 The Definition of the Task

A concept is a set of objects that are members of some universe.
A description of 2 concept is an expression in some language wihich
1s satisfinad oy every member in the concept. Every concept has a
description, however, the “size" of the expression may be quite

large. Concept learning ic the process of generating a description

of a concept given some objects that are in the concept and other
cbjects that are 1.0t in the concept.

The procedure used to irnvestigate concept learning is the
same one that is used in a psychological experiment. The subject,
CE in our case, i1s presented with exemplars* and is told whether
or not they are members of a concept. After acquiring a descrip-
tion of the concept the subject is presenteu with other exempliars,
some of which he has never seen, and asked if they are in the con-

cept. This is pasically the same task used by Hunt [8].

* Exemplars are "typical” members nf concepts. This term-
inclogy is from Bruner [4]; for the most part we use his term-
inology.
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Information is presented to CE 'n the form of a triplet.
<exemplar: <name- <<ign>, For exemple, the input ABC C1 +,
means that the three letter word ABC is an exemplar of the con-

cept C1 and CDE C1 - means that CDE is not a member of concept

Cl.

Infermation 1s retrieved from CE by inputing the triplet,
<exemplar- -name- ?. An output of + or - occurs depending on
whether the object (exempiar-name pair) is fournd to be true or
faise. The question, <exemplar- ? « , wili retrieve the name if

the exemplar 1s contained 1n only one concept. For example, we

¥<
g
!
é
E
i

1 would Tike ABC 7 + to retrieve the name (2. However, most exemplars

are in several different concepts, as we will see. Examples of
the retrieval process are presented in Chapter VI.

Generalization is the ability to predict whether an object

never seen before is a member of a concept. Since only a few
members of a concept are given, generalization 15 necessary to
learn the concept. Generalization from a list of given elements
cannot be perfect. A contradiction to the generalization can
appear at any time when new lists of elements are exhibited. The
predictive ability of a concept learner 15 "good" 1f correct
1dentification occurs most of the time. A concept learner must be
able to correct mistaken generalization when necessary. We are

3 not concerncd with avoiding mistakes altoget’ =r but with "qood"

TN

generalization and with the adaptive abrirties of the concept

.

learner.
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2.2 CLilesses of Concepts

Several types of concepts are now defined. The simplest case

is the conjunctive concept. A conjunc.ive concept is represented

by the conjunction of the features possessed by all of the exemplars
n the concept. For example, the concept, Cl, of those three

letter words whose first ietter is A and whose second letter is B.
15 a conjunctive concept. We can denote 1t by AB_ (1. The dash
ndicates that the third letter i1s 'rrelevant. ABC and ABD are

both exempiars of CI,

A disjunctive concept is the union of sasveral conjunctive con-
cepts. For example, the concept, CZ2, of those t"-ece letter words
whose first letter is A or whose first Jetter is B, is a dis-
junctive concept, This concept can be represented by the dis-

. i ction of two conjunctive concepts. (A B _ ) C2. The dash

again indicates irrelevant letter positions and the wedge

1" "

indicates .ogical "or.

A hierarchial concept defines sets of objects whose parts are

also concepts. Let us consider the concept 'A' (3, where 'A’
stands for any written letter a, and C3 is the concepts' name.
ABC, abc, abe , etc.. are all members of C3 because the first
letter of each s an a. If the disjunctive, 'A', of all written
a's 1s Jearned, C3 becoiws just a simple conjunctive concept,

‘A . This illustrates “he advantage (or necessity) of describ-
ing one concept in terms of inother,

A relational concept is a ‘et of objects, each object has two
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(or more) subparts that satisfy some relation. For example, the
following objects have subparts which are related by “next”; ACB,
BEC, and FAG. This relational concept can be described as "the
third letter is 'next' after the first letter." Geometry analogy
problems are another example of objects whose subparts are reiated.

These problems are discussed in Chapter VI.
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2.3 Related Work in Conzept Learning

Concept learning is a fundamental process according tc
philosophers. For example, Quine [12] considers concepts as the
basis for understanding language. Quine [12] states "Conceptual-
ization on any considerable scale is inseparable from language,
and our ordinary language of physical things is about =< basic
as language gets.“] Quine [12] examines the notion of meaning and
objective reference. However, he is more concerned with the
structure of language then the process of acquiring concepts.

The niost popular approach, typificd by Sebestyen [13], is
the evaluation of discriminant functions. Statistical tzachniques
are often used to determine coefficients of the discriminant
function. Although the number of coefficients that need to be
determined are large, some good techniques have been developed

for determining them. This approach 1s called “classification
theory." A more powerful method called feature extraction 1is
desireable. Feature extraction is a process that generates

“good features.” Feature extraction is a d1fficult problem and
few pattern recognizers incorporate it, rather they are

dependent on the initial measurements (i.e., basic features).

The purpnse of feature extraction s to reduce the number cf terms

in the discriminant function., The only work known to us which

incorporates feature extracticn is Uhr and Vossler [16]. Their

}Ni]lard Quine, Word and Cbject (Cambridge Press, 1960) p.3.
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features are templets, and a few pertinent templets are selected
from a set of 75 templets.

A classical study in concept learning is by Bruner, Goodnow,
and Austin [4]. They define concepts and deal mainly with con-
Jjunctive concepts, but they do discuss disjunctive concepts.
Several strategies for learning concepts are proposed., The
strategy for learning disjunctive concepts only allows for objects
whose subparts have binary values. Experiments on human subjects,
simiiar to the type performed by CE, are used to test the theories
of learning. Bruner's subjects learn concepts made up of basic
concepts well known to humans, e.g., number of boarders on a card,
shapes, etc. Brirer [4] does not 1nvestigate how humans learn
these basic concepts from sense data. Bruner's strategies are
not used in CE, at least not 1n an obvious way.

The work of Hunt [8] relates a computer model of concept
learning with research on concept learning in humans. He notes
that concept learning “,.. s a hierarchial affair. One must have
a concept in order to learn more concepts.“2 Hunt does not deal
with learning "concepts of concepts.” The issue of hierarchial
concepts is primarily how this research differs from Hunt's. Con-
cepts of concepts are tuilt into the basic structure of CE.

Banerji [1] also noticed the usefu' ess of concepts ~f concepts.

Banerji's work is concerned with expressing objects and concepts in

?Hunt. Marin, Stone, Experinents 1n Induction, (Academic Press,
N.Y. and London, 1966), p. <.
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a formal description language, Essentially our description of
objects do not differ from his, both lanquages contain the re-
lations, set membership, ¢, and equality, =. However, Banerji's
language 1s more general, n particular, the language described
in Banerji [1] contains quantification of variables. A concept
learning algorithm for one of Baner)i's languages was p:oposed
by Windeknecht [17]. The algorithm was successful; however, it
applies only to a restricted class of concepts.

Our approach combines Banerji's description language and
EPAM. The tanguege of CE is similar to Banerji's and the
structure of CE 1s similar to EPAM. We describe EPAM next and

following that {Chapter IIl) we describe CE.
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2.4 Rote Learning and Concept Learning

Rote learning in humans is studied in an experiment called
pair-associate lexrning, In this experiment the subject is
presented with a list of paired terms. The first term of the
pair is called the stimulus and the second term 15 called the
response, After being presented with the list, the subject 1s
shown a random stimulus and is asked to reply with the appropriate
response. After his reply the correct response is given, The
list is then recycled through until the subject answers correctly
to each stimulus on the list.

The basic problem facing the subject 1s to learn to make a
discrimination between different items on the Tist. The phenomenon
called stimulus generalization occurs .n which the subject reacts
with the same response to different stimuly. Thus after learning
a response to a particular stimulus, a whole class of stimuli will
elicit the same response.

The idea of stimulus generalization forms a connection between
experiments in rote learning {n particular EFAM since it exhibits
this ohencmenor) and experiments 1n concept learning. In the pair-
associate task a response to one stimulus may be elicited by cther
stimylus which have not appeared on the original training list.
Power and Trabasco [3] nave suggested an experimental continuum
from the pair-asscciate task, in which each stioulus 1S paired with
a unique response. to a concept learnirng task, where severa)

stimulys dre paired with the sa.e response.
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The process of generalizaticn is not as simpie as we seem
to indicatz. There are influences which restrict the range of
generalization and restrain the subject from making the same
response to all physically similar stimulus. The manner in
which humans draw boundaries between members of a class and non-
members of a cldass 15 not =2asily urderstood. The relation be-
tween generairzation which cccur in humdans in performing the
pair-associate and concept learning tasks 1s not obvious. Hunt
states:

The fact that list length nas different effects 1n the

concept learnming dand the pair-assoctates task, taken

togetner with tne fact tnat generalizaticrn between

stwmyls apreacy to play a different part in each situa-

tion, suggests tnat different psychological processes

are inyolved and trat one simuylation ough® not L0 be

expected to cover both fields.3

CE uses the same processes for both tasks,
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2.5 EPAM

EPAM is capable of learning (memorizing) objects. The objects
used in CE are the same as tihose used 1n EPAM. 0Objects are either
simple or compound., A simple object 1s a list of pairs, the first
member is an attribute: the second member 1s either 1 or 0. Al
simple cbjects have the same attribut.s. A compound object 1s a
st of pairs, the first member is an attribute:. the second member
1s an object, either simple or cwipound. The universe of objects
contains all the objects possible for given attributes.

An example of a simple object . the letter, A, which can be
encoded as,

((f, 0) (f, 1)

—

The fi‘s are the attributes of simpie objects. An example of a
compound object 15 the "nonsense syllable, XAT which 15 encoded
as,

(%t 2" T,

nd

, S rd . . . }
Here 151. 2 and 3 T are attribuytes paired with the simple objects

X, AT, respectiveiy.

Before we explain num EPAM Jearns these obiects. 1t 1s nelpful
to discuss the type of nfermation processing model with which we
are concerned. The mo, 15 shown In Fagurn 1. Tme ypfar~atiorn
processor receives nput informatian from the yniyerse and stores
infemation about them in an interng) representati-n. Irforeatian
about the untverse of oblects car then be retrievel by 35k ng

quest ons Of the system, Feedhals from tre  riierse g emplo,ed b
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analyzing responses to these questions 'n relation to the correct
responses. Internal changes are then made to decrease the number
of responses r error, The changes that occur 1n the internal
structure are called the processes of learning. The types of
changes that occur for any particular situation depend on the
strategies for learning.

The nput s encoded and then sent to the memory. The out-
put is received from memory and transmitted to the environment.
The objects described above are outputs of the encoder. This

thesis is mainly concerned with th: memory and the storing and

retrieving algorithms of the concept learning system,

The CE model of learning has basically the same structure
as does EPAM. The orgamization and processas of CE is different
and is presented 1n Chapter III.

The structure of EFAM is a binary decision tree. The non-
terminal nodes contain tests. When an object enters the binary
tree it follows a path down .. a terminal nocde. Its' path
through the tree depends on the result of the node tests. If an
object passes a test, the “+" branch is taken, if the test fails,
the "-" branch s followed. At the terminal node 1s stored an
internal image of an object that comprises all the information
memorized by the learner about that object. Associated with the
partial image is a cue token. When an object reaches a terminal

node, the cue token stored at that node evokes a new image from

the discrimination net in response. This process of evoking a
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response is called the association process.

The discrimination learning process 15 made up of two inter-
acting mechanisms called image building and tree modification.
The image building mechanism elaborates the internal image stored
at the terminal node. The tree modification mechanism grows the
discrimination net by constructing 2 subnet of tests based on
ditferences found and apperding the new subnet at the terminal node.
An example of the learning process in EPAM on a pair-associate
experiment 1s now shown.

Let us assume that EPAM already has been presented with a
list of pair-associate non-sense syllables. Figure 2 shows a
snapshet picture of a typical EPAM discrimination net. The
terminal node is A' where the blanks indicate that no information
is stored about the first and third letter positions, and the
prime means that only a partial image of an A is stored. The cue
token at the terminal node is R'E'P’. This cue token points to
the response REP also stored in the tree but not shown in Figure 2.

Suppose the following two pair-associate nonsense syllables

are presented to the net:

Stimulus Response
XAZ REP
XAQ 20X

The first stimulus obiect XAZ is sorted to the terminal node shown
in Figure 1. The cue token now evokes the stored response, and

REP is outputed. The output is compared with the paired response
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Figure 2

A Snapshot Picture of an EPAM Tree
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and found to be correct. The partial mage 's now elaborated by
storing new information, "t becomes X'A' .

Next the nput XAQ sorts to the same terminal node, the re-
sponse RtP is again yiven. This 1s a demonstration of stimulus
generalization sirce d'““erent st'muli produce the same response.
However, when the output is compared with the paired term, 20X, an
error 1s registered. To correct the error, discrimination between
the object XAQ and the partial imege occurs by modifying the net.
A test on some ditference 15 added to the EPAM tree and a new image
15 formed. The new tree 15 shown 1n Figure 3. Note that the re-
sponse 1mage Z"0"X" is also stored in the discrimination net and

a cue, 2'0°x', s stored witn the object.
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X'A'
Zlolxl

Figure 3

EPAM Trec After Learning Additional Stimuli




CHAPTER 111
ORGANIZATION OF CE'S MEMORY

EPAM is capabie of storing or memorrzing discrete objects
poth "smpie” and "compound.” In CE only classes of objects are
store?. Each class of objects represents a concept. A terminal
node represents the conjunction of all objects that can be sorted
to the node and match the image at the node. Thus, conjunctive
concepts are similar to partial mages n EPAM. Since a cun-
junctive concept is located at one terminal node, many different
objects will sort to the same terminal node. This implies that
the straiegy tor learming has to be d:fferent than that used by
EPAM, because we do not want to discriminate between the objects
of a single concept. The learning strategy 15 discussed 1n the
next chapter.

~ disjunctive concept 15 represented 'n the (B discrimination
net by letting two or more terminal nodes have the same name. For
example, the disjunctive concept (2. des.ribed by the two con-
Junctive concepts A C2 and B (€2 15 represented at two terminal
nodes in Figure 4. Both the name (CZ) and a description of a con-
Junctive concept (e.g., A ) are stored at a4 terminal node. [f
we ask the question, ACD C2 ? (v.e., *s ACD contatned 1n the con-
cept, C2). the objyect, ACD C2, will be sorted to the left node

of the CE tree shown n Figure 4. Since the cb)ect matches the

-19-
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A CE tree is shown. The boxes are terminal nodes. The lines

represent darbitrary paths to the terminals.
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image, the answer to the question 1s ¢+, The object BCD C2 would

sort to the right terminal node in Figure 4, and again the answer

‘s +. Thus, C2 1s the disjunctive concept, A_ B .

3 —
] The hierarchial concept 'A'_ _ C3, where 'A' stands for any
4 written letter a, is a simple description of the disjunctive con-

cept A_ _a_ _a__. Naturally, we want C3 to occupy a single
terminal node. Therefore, some non-terminal node must be the test
"is the exemplar's first letter a written a" (i.e., (ex 15%) ¢ 'An).
If the encoding of A and a are sufficiently different, the test

(ex ISt) = a would turn C3 into a disjunctive concept as shown in

T T I T T T N T e T R T

Figure 5. The object, abc C3, would fail the test (ex 15%) = A

while, ABC C3, would pass the test. Hence, the requirement that
C3 (and other concepts of the same form) occupy a sinale terminal
node implies that a non-terminal node may be a set membership test
instead of an equality test. The generalization to set membership
tests is quite complex. For example, to answer the test

(ex 1St) ¢ 'B' we might "throw" the first letter, say b, of an
exemplar, back into the tree., But b may be in many different con-
cepts, e.g., lower case letter, vowel, etc. We must assume that
concepts "overlap" with each other in a complex way (i.e., the
intersection of two concepts is not necessariiy empty). However,
we can answer, a ¢ 'A' because it is either true or false. This
is not a paradox; it implies that there must be tests on names.
Thus, objects are stored in the tree with the possibility of tests

on names.
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Figure 5

A tree with one equality test and two terminal nudes is Showr.
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Due to the vmportance of tests, we define the class of tests
that can be used at non-terminal nodes of a CE tree. A test has
the form, <feature- <relation> <image>. The relation is either set

membership or equality. The feature is an ordered list of attri-

butes that designates a subpart of an object. The image is the

information stored at some terminal node when the feature does not
designate part of a "simple" object (otherwise, the image is
either '1' or '0' and the relation must be equality).

To explain how tests are performed on objects, we briefly give
an example of a compound object in CE. The compound object,
ABC C2, is encoded as a pair:

(1) tex (1% ) (2" B) (3" 0)))
and

(2) (na ((15F ) (2" 2)))
The attribute ex denotes that the second member of (1) is an
exemplar; na denotes that the second member of (2) is a name.
The second member of (1) is also a compound object. A,B,C,2
are simple objects and may be encoded, e.g., as

(3) A= ((F1) (F,0) (f3 1) ..0)

f], f2’ f3, ... denote elementary attributes of letters, i.e.,
number of straight line segments, arcs of circles, etc., and
0, 1 are values.

A feature of a test designates a subpart of an object. The
first attribute ¢f a feature designates an immediate subpart, X,

of the object. The second attribute of the feature designates
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an immediate subpart of X, etc., and the last attribute
designates the subpart for which the test is applicable. Suppose
that the tes:, ((ex ISt) e 'A') is applied to ABC C2 as encoded
above. ex designates the second member of the pair (1) and 1St
designates the A in (1). Thus, in this case. the test becomes
A ¢ 'A' whose truth value depends upon what has been learned,
previously.

Now we can state algorithm 1, used for the evaluation of
the set membership test. (Efquality tests are similar to the
EPAM tests. )

1. Find the subpart designated by the feature of the test.

2. Form the question .subpart- <image- ? and answer 1t as

if it were an input question.

As an examjie of algorithm 1 suppose the input ABC (2 + sorts
to the non-terminal test node {ex ISt} . ‘A", The question A A’
15 thrown back 1nto the tree. If a terminal node is found that
matches the object A 'A°, the test (ex 1St) . AT s trye, cther-
wise faise.

The images at terminal nodes are now expli‘ned. Ar 1mage
15 the conjunction of several tests. [Each test has the same fore
a5 a test 3t a non-terminadl node. However, in addition to s oand
., the relation can be # or 4 [the nenation of = and .| respect-
tvely). The usefulness of these relations 1s discussec in the
next chapter. An example cf an 1mage is the Lonrjunction of the

fo'loming tests:

?
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C(lex 15Y) L Ay,

((ex 2"%) ¢ B'),

((naj =(C3)' ) .
The object ACD C3 matches this 1mage because the statements AeA',
CeB', and C3 = (C3)' are all true, The prime on the letter A in
the first test indicates that A' is an image of A. Thus, A} is not
the same as the externally encoded A, but only some partial image‘
of A. Note an object is said to match an image when all tests from
the image on the object are true. An object is different from an
image 1f any test of the image s false on the object.

Names of concepts as well as exemplars are represented as
concepts 1n CE. The name C3 1is different every time it is written,
i.e., C3 c3, (3, are all slightly different. Thus, the name is
really a word whose first letter is a L (maybe capital, Rdman).
and second letter is a 3. Due to the special role of names we
assume that names can be learned as disjoint conjunctive cdhcepts. ,

Names are also le:rned in the tree. When an input'ﬁoﬁtsfto |
a new terminal node the name is thrown back into the ﬁréefand,
learned as a concept, unless the name 1s an atomic symb§1;uséd! L
for output. This atomic symbol is called a print name ahd:itS' use ‘T
is shown 1n Section 6. | |

An example of learning a name is now given. When the object
ACD C3 reaches a new terminal node (a node with no image) the
name C3 is inputed into the tree as the list (0BJ. (1St C)(2nd 3))

where 0BJ. indicates that the encoding is a single object; C and 3
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are tne simple objects that are subparts of an input cbject. The
tast ({(na) = (C3)') is then formed at the new terminal node. The
image (C3)}' is identical with the image of the name (3 stored at
an individual node,

To execute the test ((na) = (C3)') on an object, the feature
na is found on the object. Then the cbject subpart remaining is
matched with (C3)'. If the object subpart matches the image, then
tne test has passed, otherwise the test has failed.

If the 1nput is an image (such cases arise from algorithm 1)
the subpart na on the input is itself an image. The na image on
the inp.t cannct be compared with the test image since descriptions
carnot be compared. However, we can require all tests in the
test image, say (C3)', to be possessed by the subpart na image on

the input for the test to be passed, otherwise the test has failed.




CHAPTER
LEARNING STRATEGY
£s an EFAM learring consists of two processes: 1) {on-
structing and elabocat ng :mages at terminal nodes of the net,
and 2) Grow nu the net.

Frrst we Jrsouss tne image elsboration process, then we

describe now the (L tree is modifred by learning.

4.7 Image Eigparation

The lea-ning strateay aprites to objects of any complexity.
{Coiplesity < the depth of nest'ng of compound cbjects.) 1f _he
subparts of a3 compound obgect are 'earned 'n the CE tree as a
member of & concept, then the compound odject should be easier
to learn. Learn ng must then 'mvolve throwing subparts of
objects back 'nto the tree to retrieve 'nforr.tion  (Image
elaboration of s mple gbjects does not tnvoive _hrowing subparts
pack.) Suppose, for example, the nput BRC C3 + 15 sorted to a
new terniinal node and we want to form an nitial tocus* image.
The exemplars 1mmedr'ate subparts are thrown into the tree to re-
trieve information, 1.e., the guestion, B ? +, 15 asked. Since

this 1< a questron no learning of the object will take place.

This usage of 'focus' 1s tne same as n Bruner [4].
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There are three possibilities in retrieving information.

1. The subpart, B, is a member of only one concept, 'B'.
Then the name 'B' is retrieved.

2. In general we have "overlapping" concepts and B will
be a member of many concepts. Thus, tests on names
will be encountered in sorting, B ? +, to a terminal
node. When a test on the name is encol"tered, a
search of the tree (i.e., an investigation of both
branches leading from the test on the name) is used
to find some names. If a terminal node is found such

that B matches the image of the exemplar, then the

image of the name is retrieved.
i 3. If the subpart, B, is not in any concept, we throw
E
the subparts of B back to retrieve information about

B itself. In this case B is a simple object and no

§ subparts can be thrown back into the net. Chapter

?1 VI will give an example of this process on more

; complex exemplars,

% To summarize, image elaboration of an object X, involves

§ searching the CE tree for those concepts of which some subpart
§ of X *s a member. If no immediate subpart of X is a member of a
% previously learned concept then the subparts are considered.

ii:

Search arises because some object may be in many different concepts.
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4.2 Modrfrcations of the CE Tree Due to Learning

Learning only occurs when ~nformation 15 presented to CE;
not when questions are asked. !n CE the first mage at a
terminal node serves as a focus :mage for concept learning.

When additional objects are sorted to a terminal node image
adjustments are made or the net 1s grown by adding a new test

and a new term'nal node To 1llustrate the strategy for net
modification, several cases will be examined. The different
cases depend on the three variables: 1) the sign of the input

(+# or =), 2) the result of comparing the exemplar of the input
with the tests at a terminal node, 3, the result of matching the
name ot the 'nput and the mage of the name.at the terminal node.
The cases are summarized 'n Table 1; we give examples below.

Case 1: The 'nput, ABC C3 +, 15 sorted to a terminal node
whose image 1s :({ex ISt) - A'), ((na) = (C3)')i. In this case,
no modification occurs because no d:fference is detected. Both
tests on the exempiar, ABC, and on the name, C3, are true., Thus,
the input has already been "learned."

Case 2: The 'nput, ABC C3 -, 's sorted to a terminal node
whose image s - ((ex 15Y) 0"y, ((ne) (C3)'}. In this case.

a difference s detected 50 we mark the test irrelevant, which

we denote by placing an X next to the test, 1.e,, ((ex 1St) e D' X).
1f the 'nput, ASC C3 +, 1s sorted to the terminal node whose

image 1s ({ex lSt) - A'), (tna) = (C3)'), then mark the test

((ex lSt) . A') rrelevant since 't 's ralse on the input exemplar.
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Case Name Exempla., Match Input
Number Match (tests on exemplar) | Sign Action
1 matches true + do nothing
2 matches false + make test X
irrelevant
or grow tree
3 matches all tests true - make all tests
Y
irrelevant or
erase Y
irrelevant on
false test
4 matches false - do nething
5 different all tests true + grow tree
on name
test
) different false + grow tree
on one
difference
748 different true or false - do nothing

Table 1

A Summary of Tree Modifications




Case 3:

whose 1mage S

A1l exempiar tests are true oOn 1
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Case 7&8: A negative input, ABC C3 -, is sorted to a terminal
node and the name of the input does not match the name at the
nude. Nothing is done to the node in these cases.

When all tests at a node are marked irrelevant, the node is

considered blank and image elaboration occurs. Thus, Table 1 only

shows cases of tree modification.

e
3
Wi
¥
i
§
5
T

One additional case of tree modification is not showr in

o

Table 1. If the input arrives at a terminal node where all tests

it

are marked irrelevant and in addition no new tests are found by
means of image elaboration, then CE assumes the concep*t to be a
disjunctive concept. For example, if the 1nput, ABC 3 +, sorts
to the terminal node

((lex 15%) ¢ A x), (fex 2" < o' 1), ((ex 3"%) ¢ D' ¥),

((na) = (C3)'):

and no new tests are found by means of 1mage elaboration, a new
non-termiial tree test is formed from one of the 1rrelevant tests
marked with ¢n X. The criteria for determining which test is best
illustrated by means of an example given in Chapter V.

A few descriptive remarks about CE tree modification are
now made. For conjunctive concepts, a feature possessed by a
positive instance of a concept but not possessed by another positive
instance of the same concept is always irrelevant to t*» concept.
This type ° irrelevance occurs in Case 2 of Table 1 and is de-
noted by the sign, X. Another kind of irrelevance, deroted by the

sign Y, occurs in Case 3. When 2 neqative instance of + concept
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possesses a feature that a positive 1nstance also possesses., then
that feature 15 only possibly 1rrelevant to the concept.

Learning of concepts in CE involves a process of changing the
tests at the terminal node image. When the 1mage has many tests.
the extent of the concept 1s small beciuse only a few 1nput ex-
emplars match the maage. When the 1me-2 has only a few tests. the
extent of the concept 1s large because many 1nput exemplars match
the *mage. 1t 4 positive 1nout does not match an 1mage, then the
extent of tne concept v, increased by making tests arrelevant. This
action corresponu. to Case ¢ of Table 1. if a negative 1nput
matches an 'mdage as n Case 3 of Table 1. tnen the extent of the
concept 15 decreased by making previously 1rrelevant tests or by

piking all tests irrelevant thus torcing 1mage elabordt on to occur.
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CHAFTER v
THE IMPLEMENTATION

The main reason for programming CE s to evaluate 1ts per-

formance on actual! tasks. In general, wnen a few simple processes

(e.g., CE image elabecration and net modification processes) inter-
p

act 'n a complex way the resuit may be unpredictable. Ancther

purpose ot codvng the program 1s to demonstrate that the theory of
concept learning presented 1n this report 15 sufficiently complete

and detaried to be implemented on a digrtal computer. The computer

program provides a check on errcrs 1n the theory of CE. These

errors can be simple omissions of detail<, stmple logical errors,

or substantral omissions of pertinent tneory. Chapter Il ang

Chapter [V give o sufficient statement of CE's theory: the precise

CE model s only stated in the working program.

CE 1s coded 1n 3 machine language called Steutn [ on the

Unsvac 1107 computer ot Case western Reserve University  List

processing facrlitres. {see Ernst [51). consist of 4 number of

subroutines whrch can be roferenced from the Sleuth 1] Yanquage.

Ernst [5] shows how the description lists of [PL and  he property

T1sts of LISP can he cunverted 1nto

type  lists.  Tre objects of

Section 2.5 {used n CL) can eastly be encoded 'nto the  type

Iists of frnst (51, The reasy

tar Cnoosing typed-lists to

represent daia, besirdes being avariable, r¢ te combine Quaiities

234
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of both lists and description lists into a single data structure.
The top level organization of CE is shown in Figure 6. The

executive runs the experiment and as such is a non essential part

of the program. The executive is described in the first section

of this chapter. The memory is described extensively in

Chapter II1 and wil) not be further discusse’ in this chapter. In

Section 5.2 the storage and retrieval algorithms are discussed.
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5.1 The Executive

The executive controls the flow of inputs to memory.
Attribute-value pairs on objects are given to the executive. In-
puts are then generated by augmenting the given descriptions with
random noise at the lowest level (i.e, simple objects). For ex-
ample, a list of relevant feature values (e.g., 8 cut of 15
features are relevant) of a B is used as a description. Remaining
feature values are then added at random to produce a typical B.

The storing and retrieving algorithms are techniques for
processing information. In CE the rote learning task requires all
inputs to have a '+' sign while for the concept learning task in-
puts have '-' signs also. The executive has the flexibility of

monitoring both types of tasks.
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5.2 Storing and Retrieval

The CE program is written to process inputs of arbitrary com-
piexity. The program subroutines must be able to employ the same
processes on data of arbitrary depth n their iist structures.
This is accomonlished by recursively cailing the subroutine within
itself depending on the level of the list structure.

The general flow of control in the CE program is diagramed
in Figure 7. To understand the sequence of operations we shall
follow an 1npu. through the flow chart. The input is processed as
follows:

1. The first node 1n the tree is lccated.

2. The node may be a test {non-terminal node) in which case

control is transfered to step 3. If the node is a
terminal node control transfers to step 5.

3 The node is a test. The test is executed on the input
object. Becausc of algorithm 1 a question may be asked
of the tree in executing this test. This question, con-
structed by a test in the tree, 15 called an internal
question as opposed to an external question asked by the
experimenter. The internal question is thrown back inte
the tree tc step 1, recursively., The yes-no answer is
then received and control continues to step 4.

4. The next node is found and control goes to step 2.

5. The rode is a terminal node. The input is matched with

the terminal node. Depending on the sign of the input,
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control may be transfered to one of the following
places:

a. If the input is an internal cuestion then the
yes-no answer is given accoraing to the match

at the node. Control is returned tc the re-
cursive test in step 3.

b. If the input is an external question, asked by

the experimenter, it may be one of two types.

If the input is a yes-no question,

<exemplar> <name> ?, then the output is given
and control exits tu step €. If the question 1s
to retrieve the name of an exemplar,

~exempiar> 7 +, the name at the terminal node is
thrown back into the tree recursively to retrieve
the individual name. The name is then outputed
and control exi1ts to step 6.

C. If the input object is information presented by
the experimenter to the tree, ccntrol passes to
the learning ctrategies. Image elaboration or
tree modification (Table 1) occurs depending on
the match at the terminal node.

6. The next input is now given to CE by going to step 1.
The recursive nature of CE can be noted by examining the flow
chart. The entire routine (step 1) 1s called recursively by step 3

because of algorithm 1 and by step 5 because of image elaboration.
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Also note that step 5 calls step 3 in matching an input to a

terminal node.




5
-
£
J4
3
v
*

PR

P

P

e R R T W

CHAPTER VI
THE EXAMPLE TASKS
CE must learn some basic information before attempting a
more difficult task. First, we describe the basic learning ex-
periment and then three more compliex tasks: 1) a concept learning
task similar to those in Hunt [8], 2) a paired associate task, and
3) a geometry analogy problc (see Evans [6]). The latter task

was not simulated on the computer due to the additional programming

it required.

6.1 Basic Information

The example tasks given to CE involve processing of compound
objects. In order to learn concepts about compound objects (in a
reasonable way), certain elementary concepts 1nvolving the sub-
parts of the compound objects should be learned first. Thus, to
learn concepts about lettevr strings and to use letter strings the
alphabet should be iearned. Step a, given below, is to present CE
with written letters as exemplars and ther» names which are atomic
symbois. The written letters are simple objects.

A typical Tist
of inputs of this type is:

-42-




Step a:
<simpie object- <atomic symbols - <sign»
A ‘A +
A ‘A +
b ‘A -
A A +
B ‘Al -
A ‘A +

The encoding of two simple objects in ~-neral will be different.
Thus, the A's will all be slightly different. However, any two A's
should be more similar than an a and an A. The effect of this
learning is to discover the key features (attributes) of the dif-
ferent letters. Key features depend not only on the encoding of
the different a's but alsc on how they differ from the encodings of
the other letters.

A1l simple objects have 15 basic features. Seven of these
features are relevant for all letters and the other eight are
noise features. Thus, typical instances of a B are generated by
providing 8 random feature values. The criteria for when a con-
cept has been learned is that one complete cycle through the list
produces correct classification for each element on the list.

In the first step 30 nembers and non-n mbers of the concept
of a capital roman A was given. This list was cyclec through

twice to complete learning. Jf the 30 A's yiven, 24 were positive
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instances of the concept 'A' and 6 were negative instances. Tatle
2 summarizes the nunber of simple objects presented to CE irn order
to learn the alphabet.

Table 2 shows that letters which occured early in the position
of learning were hardest to learn. This occured because later
Tetters had a discrimination net to pick out the relevant features
of inputs, hence, learning was faster. All inputs of Table 2 were
given to CE and stored 1n memory in 30 seconds on the Univac 1107
computer.

Letters are in more than one concept. For example, the
written letter A is an 'A', a capital letter, 3 vowel, etc. Thus,
step b gives inputs to CE which have letters as exemplars and a
string of letters as a name. For example, in the in.it A CAP +,
CAP is a compound object naming the concept of “capital!” letters.

In step b, the concept vowel (VOW), capital letter (CAP), and

small Jetter (SML) are learned.

’ <simple objects: <name - -s1gn-
a VOw +
a VOl +
A CAP +
A VoW +
a SML +

4
We would like to present 'A’' VOW + as an 1nput, but 'A' is 4
print name and cannot “e used as an exemplar.

%

o o, S —————-r

-
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~exempler - name- number number nurher number of
of in- of '+ of - cycles
puts on  nstance Instance  through the
o a list ) __list o
A A 30 24 6 2
a ‘A 3C 24 6 2
B B! 3U 24 6 2
b 'B' 30 24 b 2
F B! 2u 16 4 2
t P! 20 1€ 4 2
J J! 20 16 4 2
K K' 20 1 4 2
X X! 10 8 2 2
y Y 10 5 2 2
Z A 10 8 2 2
fal e 2

A partial jist of int ‘s given to CE in step a. The inputs appear

in order of therr position in learning.
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Since the alphabet has already been learned by CE, much of
the time spent in step b was in learning the names. Table 3
summarizes the 1nputs given to CE “or step b. The 1nputs of
Table 3 were learned by CE in 20 seconds on the Univac 1107
computer.

4

A snapshop picture of the CE tree ~fter ':armiug the basic
informatyon *s shown 1n Figure 8. Notice th. . names of concepts
are always thrown back into the tree and learne , uniess the name
1s a print name. For example, CAP 1< in the tree 45 a letter
triplet not as an exemplar-name pair. Notice alsc that tests in
Figure 8 may have three branches. When the feature- of a test
does not designate a subpart of the input the test 1s undefined.
Hence, a third branch, which discrininates 1nputs with different

descriptions, may exist. The example tasks which use this basic

information are grven next.




evempler - name  number  nurber number nunber of
of 1n-  of '+ of ‘- cycles
put, on 1nstance  instance  through the
e ast st N
A VOa 17 g 2 1
A CAP 1C 8 2 1
a SML 10 8 2 1
b M 10 8 l 1
R CAP 10 3 2 1
J CAP 10 8 2 ]
K AP 10 g8 2 1
Y (P 10 g Z ]
A Ak 10 5 Z !
Table 3

Aopertial st of anputs given to CE oin step b
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6.2 Concept Learning Task

A list of letter strings are given to CE. The exemplars are
'"typical' instances of the disjunctive concept, C1, of those three
letter words whose third letter is a vowel or whose second letter
is a C or both, /he growth of the CE tree is shown for each input

in sequence, using the learning strategy of Table 1. The inputs

are as follows:

<exemplar> <name> <sign>
1. ABE C1 +
2. GCA \ C1 +
3. CEB 1 .
4. BCA Cl v +
5. GDF 1 -
6. DCB al +
7. AGB Cl -

The actions of the corresponding (serial) inputs are given in
order. The actions are numbered according to the number of the
corresponding input.

1.  The initial image due to input 1 is from throwing the
first letter (i.e., A 7 +) intc the tree and retrievinq
all names. The name, C1, is also thrown into the CE
tree and learned. The initial terminal node is now:

(lex 15%) ¢ (cAP)*), ((ex 1°8) € *A'), ((ex 1°%) & (vou)'),
((na) = (C1)")}.




-50-

2. The tests ((ex WSt) e 'A') and {{ex ISt) e (VOW)') are
made X-irrelevant (See Section 4.2).
3. A7l tests are true on the input; ({ex 1St) ¢ (CAP)') is

made Y-irre ant.

4. Since there are no longer any relevant images at the
node, CE decides tc elaborate the image by adding the

new tasts; ((ex an) e 'C'), ({ex an) e (CAP)').

nd

5. The test ((ex 2°°) ¢ (CAP)') is made Y-irrelevant.

6. Nothing is done to the node.

7. Nothing is done to the node.

We now recycle the list of inputs by presenting the same inputs
§ to CE again.
| 1. The test ((ex 2nd) e 'C') is made X-irreievant. The
node is now elaborated by adding three new tests;
! ((ex 37%) ¢ 'E'), ((ex 3™%) ¢ (CAP)') and
((ex 3") ¢ L/oW)").
2. The test ((ex 3rd) e 'E') is made X-irrelevant.
3. Nothing is done to the node.
4. Nothing is done to the node.

5. Nothing is done to the node.

% 6. The test ((ex 3rd) ¢ (VOW)') is made X-irrelevant. The .
node is now: ot
(lex %Y « A x), ((ex 2™) ¢ "' x), (Zex 3™9) ¢ (vow)' X),

dex 158 ¢ (CAP) Y). ((ex 2™y ¢ (CAP)' YY), ((ex 379) ¢ B X),

rd

((ex 1°%) ¢ (VOW)' X), ((ex 3"9) ¢ (CAP)' Y)}

e o s e e e T 128 S S
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7. The test {(ex 3rd) ¢ {(CAP)') is .ade Y-irrelevant.

Until now CE has tried to describe the concept, C1, con-
junctively and has failed. Consequently, CE tries to describe
the concept disjunctively by growing the tree. CE must be
careful on what test to grow the tree. One of the tests marked
X-irrelevant will be used as a new non-terminal node. The
criteria is at least two positive inputs must pass the test. In
this way CE tries to form a conjunctive concept of a subset of
the positive exemplars. Since some positive 1nputs pass and some
fail the test, the test acts to discriminate between conjunctive
subparts of a disjunctive concept. This criteria for growing the
net is not shown in Table 1 because it is best illustrated with
an example. The 1ist of inputs is now recycled again.

1. The tests ((ex 15%) ¢ 'A"), ((ex 1°%) ¢ (vow)'),

{(ex 3rd) e "E'), ({ex 3rd) ¢ (VOW)') are noted as

relevant to input 1.
2. The test ((ex 3rd) e (VOW)') is noted as relevant to

two positive inputs, Hence, by the growing criteria

rd)

(above) the test ((ex 3 e (VOW)') is the new net

discrimination test. The subtree now looks like:

(ex 3™ ¢ (vow)' )
/N
((ex 3"%) ¢ (voW)') ((ex 2"9) ¢ 'c)
((na) = (C1)*) ((na) = (C1)")

9

317
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The initial image of input 2 is taken to be those tests
marked X-irrelevant that are p2ssed by input 2.

For all remaining inputs, nothing is done to modify thc tree;
the concept has been learned. The Appendix shows a computer
printout of the learned concept, i.e., a subtree of the tctal
memory .

Let us give CE a new list of letter strings. The exemplars
of this new list are instances of the conjunctive concept, C2, of
those three letter words whose first letter is a B and whose third
Tetter is an A.

The inputs are as follows:

<exemplar> <name> <sign>
1. BCA c2 +
BAE c2 -
3. BEA c2 +
4. CDB 2 -
£, ABA C2 -

1. The initial input sorts to the left node because the
test on the first letter is true. Since the exemplar
matches the node, a test cn the name is the new net

discrimination. The tree is now:

T A NN RN e o b ik
e Rt s

L . - A————— o o




4 N1 N2
g ((ex 3™ . (voW)") ((ex 1°Y) ¢ "B
{(ra) = (C1)") ((ex 15%) ¢ (cAP)")
({na) = (C2)")

iy e

An nitial i1mage of 1nput 1 is stored 1n the tree.
: 2. The 1nput sorts to the node labeied N2. Since the input
matches the node all tests are made Y-irrelevant.
3. The input sorts to Node N2. Since all tests are irrelevant,
the image is elaborated. The new tests are:
((ex 2™) ¢ E'). ((ex 2"%) « (vOW)'), ((ex 2"9) & (cAP)').
4. The 1nput sorts to node N3 and nothing is done to the
tree,

5. The test ((ex an

) ¢ (CAP)') 1s made Y-i.relevant on
node N2.

The input list 15 now recycled,

1. The tests ((ex Z"d) e '7') and ((ex an) - {(VOW)') are
marked Y-irrelevant. Al]l the tests are irrelevant so the
image is elaborated. The new tests are ((ex 3rd) e ‘A'),
and ((ex 3rd) « (CAP)').

2. The test ((ex 3rd) ¢ (CAP)') 1s made Y-irrelevant.
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3. Nothing is done to the tree,

4. Nothing is done to the tree,

5. The input matches node N2. Any test marked Y-irrelevant
that is faise on this input is made relevant. Thus the
test ((ex ISt) e 'B') is made relevant by erasing the
Y sign.

The 1ist is recycled again. All inputs are satisfied, hence, the

ccncept has been Yearnzu. Node N2 is now:

((lex 15%) ¢ 'B'), ((ex 1°%) & (cAP)' ), ((ex 2") & 'E' ),
((ex 2"y ¢ (vow)' X), ((ex 2"%) ¢ (cAP)' Y), ((ex 3™9) ¢ 'A"),
((ex 3™ & (cap)’ V)3,

e S s A bt 3

e e
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6.3 Paired Associative Task

Pairs of letter strings are presented to CE. Hunt [8] points
out that this task can be viewed as a pair associative task where

eremplars are stimulus and names are responses.

<exemplar or stimuli- <pame or response> <sign>
JAD BIL +
TOD BER +
KEP NIS +
DAT REB +

The first input, JAD BIL +, forms an initial focus image by throwing
an examplar subpart into the tree, i.e., J ? +, and retrieving some
names. The terminal node is:

((lex 1Y) ¢ 9'), ((ex 1°%) ¢ (CAP)'), ((na) = (BIL)')).
Again, the name, i.e., BIL, is learned. The next input, TOD BER +,
is given to CE and a difference is noted in the exemplar, hence,

tree modification takec place as shown below:

((ex 1°H07)

/X

((ex 15%) ¢ "3") ((ex 15F) ¢ 'T")
((ex 13Y) ¢ (cAP)") ((ex 13%) ¢ (CAP)')
((na) = (BIL)') ((na) = (BER)")

The next input, KEP NIS +, is sorted to the right node (above)
and a difference is detected. The tree is grown using the test
{((ex lSt) ¢ 'T') as the new net discrimination. The next input,

DAT REB +, sorts to the right node and a difference is detcc “ed.

o L e SR
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The final tree is shown in Figure 9.

Viewing this as a pair associative task, CE will produce
responses ‘by asking questions like JAD ? +. Although, in general,
such a question may have many answers (due to overlapping concepts),
in a paired associative task each such question has a unique answer

because each stimulus has a unique response.
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6.4 Geometry Analogy Task

Until this point the examples have be2n run on the Univac 1107
computer. The geometry analogy task has not been progremmed
because of the separate executive needed for learning relational
concepts and algorithm 2. CE does not kncw when to stop describing
concepts conjunctively and disjunctively and to start describing
concepts as relations,

For the geormetry analogy task, CE should first learn the
subparts of the analcgy pictures, i.e., the simple geometric
figures. Simple geometric figures are encoded as simple objects.
Names of the simple objects are letter strings as shown below.

In step a, the concept triang'e (TR), square (SQ), rectangle (RECT)},
etc., are learned. The simple geometric figures were not needed
for the CE program because the geometry analogy task was not imole-

mented. Sample inputs are given in step a.

Step a:

<simple object> <name > <sign>
O 5q +
O $qQ +
O rect +
(4 sq -
O 5q -

As an example of learniig more complex objects, we shall

T ot W SRERIV et g
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consider the geometry analogy task*, as typified by the one in
Figure 10. The problem is "picture 1 is to picture 2 as picture 3
is to which of the following pictures.” The answer, according to
most people, is picture €. The geometry analogy of this problem
is that "the shape of the outer most figure in the left diagram

is the sume as the shape of the figure in the right diagram."
Notice the two figures in the diagram are not identical; we

cannot say (J=00 . The two figures are the same because both
have the same name (square) with respect to a property (shape).
Thus, before CE can learn analogy problems it must have acquired
the concept of shape. Since names are stored in CE as concepts,
instances that were previously only names can be used as exemplars
of new concepts. To this end, CE is told that a square is in the
concept shape. a square is a four sided fiqure (FSF); etc. These
1nputs were not needed for the CE program because the nalogy task
was not given to CE. Tne new ex2cutive routine neeged fir the
analogy tasv is explained in this section. S*ep b for the

geometry analogy task 1S now given.

»
The analogy problem is the same as considered by Evans [6].




Figure 10
A sample geometry analogy problem from Evans [6]. The problem is

"1 is to 2 as 3 is to X." The answer is X = #7.
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Step b:

-axemplar: name- <sign>
SG SHAPE +
5q shape +
sq FSF +
rect shape +
Rect fsf +
The CE subtree after learning the inputs of step a is illustrated
in Figure 11, Note that we have introduced another level in the
hierarchy of concepts. That is [J : sq and sqg ¢ shape; however,
(O # shape. In general, there will be other concepts at the
same "level" as shape, e,g., four sided figures cf which sq is
alsc a member.
A difficulty introduced by the geometry analogy task is the

need of "relational” concepts. That is, a test like "first 1s

the same as the second.” The basic 1dea is contained in an
"extended" question as {07 + (SHAPE)'. Since the figure

has several names, the input will sort to a test on names, say
((na) = (SQ}'). To answer this test we form the question
(SQ)' (SHAPE)' ? and throw it "nto the tree. If the answer is

negative, then the test ((na) = (SQ)') 1s false.

The description of the new test is needed for analogy problems
follows. The format of the test fis S(«feature]> <feature2) <name> ).

The logical interpretation of the test 1s: "There exists a name




(} ex 15° '_j)

+

rex((15% ¢ 's), (an e 'Q'))
na(lSt e 'S'h

Figure 11

CE subtree after learning step A of the geometry analogy task.
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; y such that two exemplar subparts, -feature,-, ~feature2>, are
members of y and y is a member of <name-." The 5 stands for the
predicate, similarity.

The test can be applied to the input,

at €5 +.

The encoding of the exemplar name pair 1s given 1n Figure 12. Thus,

the test S{{ex left inside)(ex right)(SHAPE)") asks whether the sub-
part of the exemplar on the jeft-inside, 1.e.. 00 , is th. same
as the exemplar on the right, i.e., [:] , wth respect to shape.
Algor:thm 2 for the evaiuaticn of a similarity test 1s now
given. The test S{-feature,- feature2 ‘name->) operating on an in-
put 1s nterpreted as 'there exists a ™ such that ey Ny *,
e, N+, and Ny Ny + where e and e, are exemplar subparts desig-
nated by -featurel‘ and (featurez‘ and n, 15 -name-. To find f
there ex1sts a ny, we ask the questions e ? + and €y ? +. This
implies that non-terminal nodes 1ike ‘Ina) = n) will be encountered.
The test {({(na) = n) will be true or false depending on the truth of
nn, 2. In this way tne inputs e, ? + and e, ? + will go to
unique terminal nodes, and the names w11l be retrieved. The
sintlarity test 1s true if the two names are 1dentrcal.

; As an example of algorithm 2, consicer the 1nput,

ﬁ;ﬂ : C5 +,

o

and the test, S{(ex left inside)(ex right)(SHAPE}'). The first

feature, (ex left inside), designates the subpart O . and the
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O : 3 C5 +

{ex((Teft SS) (right s)
na((15% ¢y (2" 5)),

w
n

((Outside $) {Inside s))

v
u
——
Fam Y
-
——
ol
—
g

..... (f15 v2))

Figure 12

A geometry analogy input and its encoding.
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second feature, fex right), designates . The test becomes

St 2, . {SHAPE)'). To answer this test the question

3 ? + 15 asked. It goes to a non-terminal nude with the test,
((na) = {SQ}'), {See Figure 8). To answer the test we throw
SQ' SHAPE' ? intn the tree and get the answer +. Thus,

({(na) = (SQ)') 1s true,

Note that the name retrieved 1n the above exampie may not be
desirable. Suppose the question [J ? + (SHAPE)' reaches a non-
terminal node with the test, ((na) = (RECT)'). Since the questicn,
RECT' SHAPE' ? is true, the name, RECT, would be retrieved instead
of SQ. However, all squares are rectangles.

An example task of compound (analogy) figures and names 1S now
given. The executive which controls the experiment is explained
at the end of the example. The task 1s for CE to choose which in-

put is most neariy the same as the first input.

exemplar name - <sign>
o0 L c5 +
2. @ : © s ?
3. (::) A S5 ?
4, @@ c5 ?
5. Qéb : <:> s ?
.. @ : ] cs ?

CE will choose input & to be true and all other inputs
(excert 1) to be false; thus, 5 is the answer,

Input 1 1s surted to ¢ new node and a focus imag. is formed.
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Thus, the exemplar subpart |03} is thrown into the tree (i.e.,

0 - +), but oces not match a node. Then the Sub-subpart is

thrown into the tree, {i.e., ? +). The name, SQ' is

retrieved. We then throw the name back, (i.e., SQ' ? +) and
retrieve SHAPE'. A match of the subparts of the exemplar yields
thz following terminal node:

{S((ex left outside){ex riéut) SHAPE "),

S((ex left inside)(ex right) SHAPE'),

S{(ex Teft outside)(ex left inside) SHAPE '),

((na) = (C5)')}

17 complete the analugy task the executive 7ives the remaining in-
puts (2 through 6) to CE. If none of the inputs match the terminal
node, CE will employ Table 1 to modify the image until exactly one
input (2 through 6) matches the node. Thus, the secord and third

tests are marked irrelevant and input 5 matches .he image.

v e m—————. b0 . o .
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CHAPTER VII
CONCLUSTONS AND OBSERVATICNS

The main feature of this research 15 the learning of
hierarchial concepts, i.e., concepts in terms of other concepts.
The concepts can be either conjunctive or disjunctive. CE can
gen¢ "alrze upon the instances given to 1t. In addition, it can
correct errors made 1n generalizing. To the best of our knowledge
no other computer program can learn hierarchiai concepts, mainly
because of the intrinsic dynamics of the problem.

Learning concepts of concepts is closely related to the dif-
ficult problem of feature extraction described in Chapter 2. The
tests of CE can be viewed as Boolean valued features. For example,
for any object the feature, (ex ]St) . ‘A", 15 either true (has a
value 1) or false (has a value 0). The problem of learning a con-
cept is the problem of finding the relevant features. In CE this
'nvolves finding the concepts possessed by the subparts of an
exemplar. In addition these features once "extracted" must be com-
bined with iogical connectives {1n CE conjunction and dis-
Junction*). CE does not consider 211 possible concepts in

"extracting" features: 't only considers all those concepts that it

has previously learned. This has the good quality that concept

*
Negation 1s strange: in order to learn with any level of con-

fidence, the concept {>x lSt) ( ‘A, at least 25 rnputs must be
given.

-67-
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learning improves with time since the repertoire of previously
learned concepts is increasing.

Unfortunately, the previously learned concepts come from some
concept learning task given to CE. If CE were to do genuine feature
extraction, it would have to generate, internally, concept learning
tasks as subproblems for some given task. That is, concept learning
tasks must be given to CE in a logical order.* Thus, it is that
first graders are taught the alphabet before they are taught to
read.

To our knowledge the only work that does feature extraction is
Jhr and Vossler [16]. However, the features »f CE are more general
than the templets used in Uhr and Vossler [16]. The templets are
fixed in size and are inherently conjunctive. In CE a feature
pertains to any concept, either conjunctive, disjunctive or
hierarch1al, e.g., the disjunctive concept of all a's.

In CE the basis for learning is the question <exemplar> ? +,
The answer to this question, <name- , must be retrieved from the CE
memory. This process is how CE differs from other work. The
implied organization** of other concept learners (e.g., Banerji [1],
Hunt [8], Sebestyen [13]) 1s to look up the name of a concept in a

table to find a pointer to the description of the concept. Thus, to

L 2
CE will learn any concept; however, 1f the correct subconcepts
are not learned then learning will be difficult.

*h
The organization is not stated because they do not have in

mind a memory full of concepts. It appears to us that the table
look up method is indicated.

~ v N
« ‘M‘“‘m‘ﬁmsﬁn NeiCiom
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answer the question <exemplar- ? + such a program must start at the
head of a table and apply the description cf the first concept to
the exemplar, then the description of the second concept, etc.
Since each object may be in several concepts, the search cannot
stop with a match, but must go through the entire table. In CE an
input is sorted on the exemplar to a particular terminal, and the
name is retrieved. If an exenmplar is contained in several concepts,
then a test on name occurs and a limited search is necessary.
However, never does CE search the entire memory. Thus, the memory
organization of CE is its main advantage because it answers
-exemplar- ? + with only a limited search.

One of the primary design criteria is that auestions of the
form, -exemplar-.name- ?, can be answered without search.
Algorithm 1 allows CE to do this. However, the answer may be
wrong 1f the concept was learned incorrectly, and CE will not
answer at all 1f it has not learned sufficient information,

The geometry analogy task at the end of Chapter VI requires
relational concepts. Certainly any good concept learner must have
this capability. The program that was written learns concepts in
terms of conjunctive and disjunctive concepts. Algorithm 2 is an
attempt to retrieve relational concepts without search. However,
the whole issue of relational concepts needs more investigation.

The basic difficulty is that identity is meaningless. The
statement, [J = O . does not mean that they are identical but

that they both possess the key features of a square. The
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complication 1s that they are rectangles and four siced figures
also.

Another difficulty is that CE cannot describe general
relational concepts although CE can learn relations. This dif-
ficulty can be removed by the technique of Banerji [1]. The set

membership test can be extended to form a test that involves

st) ( rd))

several subparts of an obrect, e.g, ({ex 1 ex 3 e NEXT'.
For example, BFC would pass the test because C is next to B in the
alphabet. However, the learning of conrcepts involving arbitrary

relations 1s a difficult problem.

N e AR R S,




APPENDIX A

COMPUTER INPUT AND OUTPUT

s.

Figure 13 shows some inputs given to the executive. The
relevant attributes of simple objects are given. The list of in-
puts for a particular experiment is illustrated on the list

Jabeled DI. The executive adds random feature values to the

e SO W

descriotion of an input to produce a "typical" input shown in

' Figure 14.

The concept CLI, corresponding to the concept C1 of Section

6.2, is shown as a subtree of CE in Figure 15. The encoded output

R

is given to make the interpretation easier.

27 -
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Input to the CE Executive

£Q})
£Q))
g80))
AQ))
Fa))
8Q@))
80))

RET L RES 2N

e

e




BALINISXT Y3 wou4 37 03

nday uy

y1 34nbl4

i [ ¢ 14 ZA g4 ) =G2IC2Y { 1A L3 ) =i21¢€27 {
A ET ] i =ILie2y 1 LA CE} ] TEEIE2Y t ZA LT} ) =56 1¢21 t 2A
(¥ ) VRS {44 ( A EZ 3 =ThICTE ¢ ZA 934 ] =090¢21 ¢ T2 1 ¥
) =6asv'2t ¢ tA (2 F] ) =2i0¢21 { A [ & 3 =LEOCEY t TA 214 )
ELI S XA t ¥, 144 H E2 R 81 ¥4 ¢ 24 114 ¥ z9T182% ( 4 &5 ) =
R AL ¥4 4 A t y =Qal¢2T IIuML y =HndEet ¢ t TA 94 ) f-pr2¢27 ¢
ok g ) =Evevet ¢ 2A 93 ) =aC2%21 t 2K 54 H =97 2¢21 t 1A
»3 ) =ha2eé t 2A [} t z2n2ven t TA 24 ) B LY %41 ( T at4
L 20T 44 ] 26 Stz ) s0zL142Y [ 1) 3¢ ] 3 =qL1I€27 [4 2A [ R &) 3
=2nIgeY : 2A 214 ) zi0n2¢ey 4 A 114 ) EL 2 FAT A { 1A ny4 ) =
T2CCPY ¢ A [ ) 29722¢2 Y t 24 14 ’ 21625 210NDDIS ) =0c0C27 t ‘
YA Q4 3 LIS 23 YA ¢ er 23 ¥ ELA A A ) ( 1A a4 ) B ¥ 41 4 1A
o LF] 3 ZINCC2T [ A LE] i =EngrZY t 1A €4 ¥ 2SeCC2Y 4 A 24
- ) TEHEETT ' 1 ]14 3 =992r2Y t T (4 €] ) =gL2¢27 t 1A (Y £ )
' =007¢2 H ZA €Ty ] =enggzt t Zh 214 ) =21gset 4 IA 114 ¥ 2
176229 t Zh nyd ) L F A ¢ 2A 64 H =10gF2T ( 2a 14 ) —8GCEe2Y
1S¥24 i =ganeet RN + 21IN12T i ¢ 1 TA LE] ) =inec2t t TA 13
y ZEnnE21 ¢ 2A S4 ) zGuns 2t { 14 LY ) zLancTY ' 1A L ¥] ¥
EAL T4 ] 2A ¢ H =CCus2TY ! IA 24 ) =65aF2T [ 2a av4 ] =
EY3 3 %41 t 1A S14 $ =100¢2T ! TA w14 3 =INHEZ T ¢ 1A €14 ¥ =¢inc2T
H E2 213 ] =02uT21 ( A 174 l} 570021 { 1s LR €] ¥ =2C0ag2t [
T4 %4 ) EFARIT A ! TA T4 ] =2ONCZT TIEMY ) =4GR ¢ t TA [-Z)
] =06eC Y ¢ 2A i3 ) z259¢ 2T { [} 94 ) =HeGC2T ¢ ZA G4 )
=959¢2¢ 4 2k «3 Y =096€217 { 1A c4 ) 2200021 ( 1A 24 ) =
Qe t 2A CA¥] ) €09t 21 ( TA C1y ¥ =019¢2% [ 24 "4 ] =G 19¢2Y
¢ an [ & ) EY AL 41 t A 214 ¥ =LYGC2T 4 2R 114 ) =C9¢2T t
YA ] 3 18462 ¢ 1A [¥] ] o898 ¢ za (%] ? STLIFTT LSwEd )
=9GeE . T ] ( 1A €4 ) 2eNeeet ( A Ix} 1] =L56¢21 t 1A 94 3
F £ 1% ¢ 1A ¢4 } L66E2Y f F4.) LY ) 2655527 ¢ TA [ ] ) =
ERAS ¥ A { IA s ] =19geet ( A CA ¥ ¥ =006€21 ( 2Aa G114 ) =GNgC2Y
| 1A (3 & ) =2reret t ek (A £ 3 ¢ 162t ] 2A 214 ¥ =92G¢21 ¢
1A 114 ) zje6e21 [ 1A 014 3 =9CGQTET l 2A 64 ] 2NGEZT ( TA

13 ] S99GCZIONG S ) 19827 Wyl ) =CYnl21 [ + N9IS H =2857121 1%3 ILZ8T2Y

. ey a A gme sen L ent A 2l oy Kb MMt Wkl

sk nddirki il o

VO WA SO ARADN vocd sV IAME o I i e




LAY

173 3dadu0) 3AL10unCsig y3im 99u1gng 37 v

S 94nbyy
[
t ¢ i t I3y [ &) dId ) =¢21onY { H tONOOH3S ald ] XA { X 2 f
v ot 4 ) SLL0eHY (iCw910 ) z02¢nny 11 ¥ SEHCHNY ( IR} ] drs y
=L2CunT { A 4¢3 ) INZCHnT it ) =2GCanT ¢ f IJMg dl4 ) TICE AN
¢ » Ll ] H z=2Cghny 11 ) L e rNT ¢ ¢ONC T3S dI4 } B2 PE %1% 4 ] o
LI ] 3 T29¢nnY 11 ) 2TCCHRHT e s ] arrari- 2 f1Tha1n ) THOLONT 11 )
=£99Gn] 181 ) IhQonY ( ( ( W¥N dal4 ) =99¢ 9 1 { (OND3S dl 4
3 ZZNICHY 1 v d¢ 4 ) ZLL0ENT CICHS TN ) 267ChnY i1 3 SENCanT (
' ¢ AISuls d714 ) =L2E00T ( A g o ) *hZ2ChaT (I€Ha(n ) SLOCS%T 1 )
] sIEeentY ¢ (ONC33S dld L] T1ZECHT t - dCd 1 TQICSNTY F R H T2¢CGHT
r~ [ { IIFuHL PE] 3 TINEGHL ( 1 dg 4 3 =h2§Sul 21 ) =21CSHT ‘ I}
1Su1 4 dl3 H =nGESHT { 2 d¢ ) ZEHESHT il ] SEPCSaY 424 ) TEGConT
3 ) ZHEENY t {UNOD3S wx3 dld ) =CL{EART { b} L] ) =275981 11
) =T12€907 N 3 Z0CCaAnT an ] =ZLLINT 4 [ ( € AIMg wY2 L E] y
=€219n? { ¢ {ONGD3S dld ? =201¢8t { v o d 4 SELOERTY 1I€nQ1N H
=NZCanT 11 3 SENChnY [} { §SNT4 ol 3 =LPCant [ A o4 3 SHPCHRT
11 ¥ =2SEhnT { [ X 1, ¥ dld ) ZOGChNT ( L oagCd ) EX AR S L 11 )
SINCHnY 4 (ONCHIS i3 ) SYLCHNY ( (44 da¢ 4 ) z2echat it ) SICCHhRY
dCd ) =gZpaet 44 ) B2 11110 ¢ AM4 ] =1Q28nT § { 4 L] L] wid J =
2¢09nT ( { (OM023% d13 ) SZNICNY £  J dac 4 ] =207 fI€%9TN 3 =
QZCanY F9 Y ) Tentonl ( ( 15414 Al } zdecant ( A oQ4 y THhPCunl ]
1e*91n ¥ SLRCSHY 14 ] AN ST} f (NG IS dl4 b =TPESHT { Al dac s )
=9IegwT 11 ) TTECSHT 4 { 33y ¢l4 ] =38ge4t { | e d ] SKPCCuY
i1 ) =Zigsnt ( { 1Sa14 d14 i THLLGHT t bl acd ) =L oCENT 41 3
=L2eenl d24 3 =09cHsT il ) =0Tnezy pey 3 zh10SeY GN 3 =ES0aN 1260041

ICTranT

R e R T

Lt are




BIBLIOGRAPHY

] 1. Baneryi, R.B., "A Lancage for the Description of Concepts,”
3 Generai Systems, Ludwig, ed., University of Alberta,

§ Edmonton, Canada. Vol IX, 1964, pp. 135-141,
§

2. Banerjv, R.B., "A Language for Pattern Recognition,” Pattern
Recognition, Pattern Recognition Society, to be published.

? 3. Bower, G.H., and Trabasso. T.R., "Concept ldentification,"
: Studies of Mathematical Psychology, R.C. Atkinson, Ed.,
Stanford University Press, 1964.

4. Bruner, J., Goodnow, J., and Austin. G., A Study of Thinking,
John Witey and Sons, N, Y., 1956,

_ 5. Ernst, G., "Typed List Structures," Internal Document at Case
! Western Reserve University, 1967.

6. Evans, T.G., "N Heuristic Progre to Solve Geometry Analogy
Problems," Proceedings-Spring Joint Computer Conference, 1964,
pp. 327-_38.

7. Feigenbaum, E.A., “The Simulation of Verbal Learning Behaviour,"
Computers and Thought, Feigenbaum and Feldman, ed..
McGraw Hill, 1963 pp. 297-309.

8. Hunt, E., Marin, v., and Stone, P., Experiments in Induction,
Academic Press, N. Y., and London. 1966.

9. Newell, A., "On The Analysis of Human Problem Solving
Protocols,” Carnegie Institute of Technology, Computer Center
Report, 1965.

10. Mucciardr, A., "Adaptive Pattern Recognition Using Non-Linear
Elements." Systems Research Center Report SRC-65-A-64-22,
Case Institute of Technology, 1964.

11. Pennypacker, J., "An Elementary Information Processor for
Object Recognition," Systems Research Center Report
SRC-30-1-63-1, Case Institute of Technology. 1963.

12. Quine, W.V., Word and Object. The Technical Press of MIT and
John Wiley and Sons, N. Y. and London, 1960.

-75-




13,

14.

15.

16.

17.

-76-

Sebestyen, G,S,, Decision Making Processes in Pattern
Recognition, MacMillian, N. Y., 1962.

Simon, H.A., and F:.i1genbaum, E.A., “Generalization of an
Elementary Percicver and Memorizer Machine," IFIPS, 1962,
pp. 401-406,

Simon, H.A., and Summer, R., "Pattern in Music," Carnegie
Institute of Technology, Complex Information Processing
paper #104, 1967.

Uhr, L., and Vossler, C., "A Pattern Recognition Program
That Generates, Evaluates, and Adjusts its own Operators.”
Computers and Thought, Feigenbaum and Feldman, ed.,
McGraw Hill, 1963, pp. 251-268.

Windeknecht, T.G., "A Theory of Simple Concepts with
Applications,” Systems Research Center Report
SRC-53-A-64-19, Case Institute of Technology, 1964.

R eeendly e o




Sy s g tion e

e ley mbacan oof tieae !

L N R N S I

stastyarge 1oy

DOCUMENT CONTROL DATA-R & D

voond wtinteme b pend LY FYT PR

verd e watered when the overall tepart 1a e tanseliad,

(8 tprar it ittty

Urriens dereareh Cenlor

veto Western leserve Universiiy
{~aveland, Ohio 44106

‘e, RO FONRT SFCUR.TY CLASHIPIC A TION

Unclassilied

2h, GHOUP

T REFEOmY TiY L E

A MODEL OF CONCEPT LEARNING

@ 0OrscHmbTive NOTES (Type of report and inclusive dates)
gclentific; interim
% AU THORS) 7irnt aame, middie Initial, last name)

Richard H, Sherman

6 REPORT HATE

June 1968

7a.

TOTAL NO. OF VAGES 7b. NO. OF REFS

76 17

68, CONTRACY OR GRANT NO

AF-AFOSR-67-125A

ORIGINATOR'S REPORT NUMBER(S)

b PROLECT NO 976905
- 61102F PP OTHER WEPGRT NO(SI (Any other numbers that may 5o essigned
. 51500 A0SR 68-2084

10 OISTRIBUTION STATEMENT

1. This document has been approved for public release and sale;
its distribution is unlimited.

11 SUPPLEMENTARY NOTES

TECH OTHER

t2.

SPONSORING MILITARY ACTIVITY

Air ¥orce Office of Scientific Research

Directorate of Information Sciences
Arlington, Virginia 22209

1 ABsTRACT

tree modification.

illustrated.

learning task and a pair associate task.
analogy task requiring relational concepts is discussed.
between the learning of concepts of concepts and feature extraction is

A learning program designated CE, Concept-EPAM, is described that modifies
EPAM through the introduction of a set membership relation.
this extension are considered with respect to methods of storing concept
descriptions in memory and methods of specifying learning and retrieval.

The learning strategies consist of interactions between image elaboration and
Implementations ot CE are considered for a concert

The effects of
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