
NN

S'R

A OE FCNETLANN

RIHRa. HR A
a71

ia

I' hs6o ethsbenapoe opaiW
;;es n aeisdsrbto sulutd

SR -6 -

A MODEL OF CONCEPT LEARNING

RICHARD H. SHERMAN

SRC*.8-

SYSTEMS RESEARCH CENTER

CASE WESTERN RESERVE UNIVrRSITY

UNIVERSITY CIRCLE

CLEVELAND, OHIO 44106

JUNE, 1968

This work was sponsored in part by the USA Air Force Office of
Scientific Research under Grant # AF-AFOSR-125-67, and by the Naio,al
Scier-e Foundation under Grant # GK-1386. The author was gjiven support
during this study by an NDEA Fellowship.

A MODEL OF CONCEPT LEARNING

Richard H. Sherman

ABSTRACT

Concert learning is investigated by constructing a cui,,;uter

program named CE, which is similar to EPAM in many respects. The

main feature of this research is the learning of hierarchial con-

cepts, i.e., concepts in terms of other concepts. In addition the

concepts can be either conjunctive or disjunctive. CE can generalize

on the instances given to it, a nd it can adapt, i.e., it can correct

errors made in generalization. The learning ability of CE is demon-

strated on two example tasks; a concept learning task, and a rote

learning task. Computer experiments confirm the effectiveness of

CE on these example tasks, Although not simulated on the machine,

we investigate a geometr,, analoqy task which requires relational

concepts.

I

ACKNOWLEDGMENTS

It gives the author great pleasure to acknowledge the cor.-inuous

help and valuable suggestions of Dr. George Ernst.

The research reported here was supported in part by Airforce

Grant # AF-AFOSR-125-67, NSF Grant # GK-1386.

The author was given support during this study by an NDEA

Fellowship.

I
1 -iii-

I

TABLE OF CONTENTS

PAGE

List of Illustrations vi

List of Tables vii

Chapter I Introduction I

Chapter II Approaches to Concept Learning 3

2.1 The Definition of the Task 3

2.2 Classes of Concepts 5

2.3 Related Work in Concept Learning 7

2.4 Rote Learning and Concept Learning 10

2.5 EPAM 12

Chapter 1Il Organization of CE's Memory i9

Chapter IV Learning Strategy 27

4.1 Image Elaboration 27

4.2 Modifications of the CE Tree Due

to Learning 29

Chapter, V The Implementation... 34

5.1 The Executive 37

5.2 Storinq and Retrieval 38

Chapte- VI The Example Tasks 42

6.1 Basic Information 42

6.2 Concept Learning Task 49

6.3 Paired Associative Task 55

6.4 Geometry Analogy Task 58

-iv-

TABLE OF CONTENTS (cont'd)

Chapter VII Conclusions and Observations. 67

Appendix A Computer Input and Output 71

Bibliography

LIST OF ILLUSTRATIONS

FI URE DESCRIPTION PAGE

1 The EPAM Information Processing System. . .. 13

2 A Snapshot Picture of an EPAM Tree 16

3 EPAM Tree After Learning Additional

Stimuli 18

4 A Snapshot P'cture of a CE Tree 20

5 A Tree with one Equality, =, Test 22

6 The Top Level Organization of CE 36

7 General CE Flow Chart 39

8 Snapshot Picture of Part of the CE Tree

After Learning Basic Information . .. 48

9 The CE Tree After Learninq the Pair

Associate Task 57

10 A Sample Geometry Analogy Problem 60

1i CE Subtree After- Learninq Step a of the

Geometry Analogy Task 62

12 A Geometry Analeoy input and its Encodinq 64

13 Input to the CE Execut,,e.. 72

14 An Input to CL From" tnie Executive 73

15 A CE Subtree wit, '?isiunc':Ye Concept CLI 74

-vi -

LIST OF TABLES

TABLE DESCRIPTION PAGE

1 A Sunwrary of Tree Modifications. 30

2 A Partial List of Inputs Given to CE

in Step a.45

3 A Partial List of Inputs Given to CE

in Step b.47

CHAPTER I

INTRODUCTION

Concept learning is an important complex information process.

As su-h it has received the attention of scientists who study the

representation and processing of information, Three such n'roups

of scientists are philosophers, psychologists and computer scien-

tists. Our approachn is a mixture of the approach of psychologists

and computer scientists, our objective is artificial ir-ligence-

the construction of computer porgrams that exhibit intelligence.

The purpose of Section 2.3 is to place our apor ach into it,,

proper perspective.

Before we can do this we need a aefinit-on of conce~t learninQ.

This is Qiven in Sections 2.1 and 2.2. Our de'inition is suf-

fic-,ent~lY ucreral to An>dewrk ir, pittern recoqnition. The

di fference Oetween work in, patterr recuoQni tjn dand concept 1 earninq

is mTainly on)re 0o7 approacn. Somie w'c"kers Ie q.ael ~

cons i er conlcert learninq, a F"d patterni ar n to b e the sr37e

p roces

T!re ,lurpo-se of thli thesis is twofoid. Tne first is to

ii coee t et- rkdel ot -concept learnii no, One ipotant

-etAe of this; fllcaels the mi to gener. l~ iz nte

feiture of tfli:, de 0 tne tuill't, to >aerrn conc.Opts, in fern's Of

oth)er cOncepts.

-2-

The second purpose is to investigate the relationship between

concept learning and a rote learning theory called EPAM, which is

also a computer program. A computer program t~iat is similar to

EPAM ir many respects has been constructed. The program is called

Concept-EPAM, CE, to distinguish it from other versions of EPAM.

Due to tht similarity of CE to EPAM we give an explanation of EPAM

in Section 2.5.

Sk .The basic difference between EPAM and CE is the introduction

of the set membership relat-1n, ; EPAM only uses the equality

relation, =. The usefulness of this ne. rel ion is described in

Chapter III by exploring how concepts are stored in memory. This

extension of EPAM changes both the retrieval process, described in

Chapter III, and the learning process, described in Chapter IV.

The learning strategies of CE are two interacting pro-sses,

image elaboration and tree modification. The hierarchial structure

of C' is 3ppart t in the discussion of image elaboration.

The implementation of CE is described in Chapter V. The

experiments that have been given to CE are described in Chapter VI,

After some basic information is given to CE, two tasks are perTormed:

a c,..cept learning task, and a pair associate task, Although not

simulated on the machine, we describe a geometry analogy task which

requires relational concepts.

Chapter VII contai, conclusions and observations,

CHAPTER II

APPROACHES TO CONCEPT LEARNING

The main purpose of this ch:dapter is to describe other research

in concept learning so as to place this work in its' proper per-

spective. To accomplish this we irst give some definitions.

2.1 The Definition of the Task

A concept is a set of objects that are members of some universe.

A description of concept is an expression in some language which

is satisfied oy every member in the concept. Every concept has a

description, however, the "size" of the expression may be quite

large. Concept learning is the process of generating a description

of a concept given some objects that are in the concept and other

objects that are i_,t in the concept.

Fhe procedure used to investigate concept learning is the

same one that is used in a psychological experiment. The subject,

CE in our case, is presented with exemplars* and is told whether

or not they are members of a concept. After acquirinq a descrip-

tion of the concept the subject is presented with other exemplars,

some of which he has never seen, and asked if they are in the con-

cept. This is basically the same task used by Hunt [8].

Exemplars are "typical" members if concepts. This term-
inology is from Bruner [4]; for the most part we use his term-
inology.

-3-

-4-

Information is presented to CE in the form of a triplet,

<exemplar <name sign,, For example, the input ABC Cl r,

means that the three letter word ABC is an exemplar of the con-

cept Cl and CDE Cl - means that CDE is not a member of concept

ClI

Information is retrieved from CE by inputing the triplet,

<exemplar- name- ?. An output of - or - occurs depending on

whether the object (exemplar-name pair) is found to be true or

false. The question, .-exemplar- + , wi-i retrieve the name if

the exemplar is contained in only one concept. For example, we

would like ABC + to retrieve the name C2. However, most exemplars

are in several different concepts, as we will see. Examples of

the retrieval process are presented in Chapter VI.

Generalization is the ability to predict whether an object

never seen before is a member of a concept. Since only a few

members of a concept are given, generalizition is necessary to

learn the concept. Generalization from a list of given elements

cannot be perfect. A contradiction to the generalization can

appear at any time when new lists of elements are exhibited. The

predictive ability of a concept learner is "good" if correct

identification occurs most of the time. A concept learner must be

able to correct mistaken generalization when necessary. We are

not conceri,,d with avoiding mistakes altoget' r but with "good"

generalization and with the adaptive abilities of the concept

learner.

SI

-5-

2.2 Classes of Concepts

Several types of concepts are now defined, The simplest case

is the conjunctive concept. A conjunc-ive conce t is represented

by the conjunction of the features possessed by all of the exemplars

in the concept. For example, the concept, Cl, of those three

letter words whose first letter is A and whose second letter is B.

is a conjunctive concept. We can denote it by AB_ Cl. The dash

ndicates that the third letter is irrelevant. ABC and ABD are

both exemplars of Cl.

A disjunctive concept is the union of several conjunctive con-

cepts. For example, the concept, C2, of those three letter words

whose first letter, is A or whose first letter 4s B, is a dis-

junctive concept, This concept can be represented by the dis-

-i ction of two conjunctive concepts, (A B) C2. The dash

again *ndicates irrelevant letter positions and the wedge

indicates logical "or."

A hierarchial concept defines sets of objects whose parts are

also concepts. Let us consider the concept 'A' C3, where 'A'

stands for any written letter a, and C3 is the concepts' name.

ABC, abc, Lzib , etc., are all members of C3 because the first

letter of each is an a. if the disjunctive, 'A', of all written

a's is learned, C3 becoi+ts just a simple conjunctive concept,

'A' This illustrates he advdntage (or necessity) of describ-

ing one concept in terms of inother.

A relational concept is a :et of objects, each object has two

(or more) subparts that satisfy some relation. For example, the

following objects have subparts which are related by "next"; ACB,

BEC, and FAG. This relational concept can be described as "the

third letter is 'next' after the first letter." Geometry analogy

problems are another example of objects whose subparts are related.

These problems are discussed in Chapter VI.

!

4

i
I

I

I
23 Related Work in Concept Learning

Concept learning is a fundamental process according to

philosophers. For example, Quine [12] considers concepts as the

basis for understanding language. Quine [12] states "Conceptual-

ization on any considerable scale is inseparable from language,

and our ordinary language of physical things is about - basic

as language gets." 1 Quine [12] examines the notion of meaning and

objective reference. However, he is more concerned with the

structure of language then the process of acquiring concepts.

The most popular approach, typifi J by Sebestyen [13], is

the evaluation of discriminant functions. Statistical t2chniques

are often used to determine coefficients of the discriminant

function. Although the number of coefficients that need to be

determined are large, some good techniques have been developed

for determining them. This approach is called "classification

theory." A more powerful method called feature extraction is

desireable. Feature extraction is a process that generates

"good features." Feature extraction is a difficult problem and

few pattern recognizers incorporate it, rather they are

dependent on the initial measurements (i.e., basic features).

The purpose of feature extraction is to reduce the number of terms

in the discriminant function. The only work known to us which

incorporates feature extraction is Uhr and Vossler [16]. Their

Willard Quine, Word and Oblect (Cambridge Press, 1960) p.3.

-8-

features are templets, and a few pertinent templets are selected

from a set of 75 templets.

A classical study in concept learning is by Bruner, Goodnow,

and Austin [4]. They define concepts and deal mainly with con-

junctive concepts, but they do discuss disjunctive concepts.

Several strategies for learning concepts are proposed. The

strategy for learning disjunctive concepts only allows for objects

whose subparts have binary values. Expefiments on human subjects,

similar to the type performed by CE, are used to test the theories

of learning. Bruner's subjects learn concepts made up of basic

concepts well known to humans, e.g., number of boarders on a card,

shapes, etc. BrLer [4] does not investigate how humans learn

these basic concepts from sense data. Bruner's strategies are

not used in CE, at least not in an obvious way.

The work of Hunt [8] relates a computer model of concept

learning with research on concept learning in humans. He notes

that concept learning "... is a hierarchial affair. One must have

a concept in order to learn more concepts. "2 Hunt does not deal

with learning "concepts of concepts." The issue of hierarchial

concepts is primarily how this research differs from Hunt's. Con-

cepts of concepts are [uilt into the basic structure of CE.

Banerji [1] also noticed the usefu7 ess of concepts -f concepts.

Banerji's work is concerned with expressing objects and concepts in

2 Hunt, Marin, Stone, E xperin,ents in Induction, (Academic Press,
N.Y. and London, 1966). p. 12.

-9-

a formal description language, Essentially our description of

objects do not differ from his, both languages contain the re-

lations, set membership, L, and equality, =. However, Banerji's

language is more general, in particular, the language described

in Banerji [1] contains quantification of variables. A concept

learning algorithm for one of Banerji's languages was pfoposed

by Windeknecht [17]. The algorithm was successful, however, it

applies only to a restricted class of concepts.

Our approach combines Banerji's description language and

EPAM. The language of CE is similar to Banerji's and the

structure of CE is similar to EPAM. We describe EPAM next and

following that (Chapter III) we describe CE.

-10-

2.4 Rote Learning and Concept Learning

Rote learning in humans is studied in an experiment called

pair-associate le,'rning, In this experiment the subject is

presented with a list of paired terms. The first term of the

pair is called the stimulus and the second term is called the

response. After being presented with the list, the subject is

shown a random stimulus and is asked to reply with the appropriate

response. After his reply the correct response is given. The

list is then recycled through until the subject answers correctly

to each stimulus on the list.

The basic problem facing the subject is to learn to make a

discrimination between different items on the list. The phenomenon

called stimulus generalization occurs n which the subject reacts

with the same response to different stimuli. Thus after learning

a response to a particular stimulus, a whole class of stimuli will

elicit the samp response.

The idea of stimulus generalization forms a connection between

experiments in rote learning (in particular EPFM since it exhibits

this phenomenon) and experiments in concept learnlng. In the pair-

associate task a response to one stimulus may be elicited by other

stimulus which hdve not appeared on the original training list.

Power and Trabasco [3] have suggested an experimental continuuml

from the pair-asseciate task, in which each stl.: ulus is paired with

a unique resp-se, t3; a concept learninQ task, where severa,

stimulus are paired with the sa e response.

JI

The process of generalizationi is not as simple as we seem

to indicatc.-1 There are influences which restrict the range of

generalization and restrain the subject from making the same

response to all physically Oimilar stimulus. The manner in

which humans draw boundaries between miembers of a class and nor-

members of a class is not 2asily urderstood. The relation be-

tween gener~a I zation which cccur in humians in perform-ing the

pair-associate and concept learning tasks is not obvious. Hurt

states:

The fact that list lengthr nas different effects in the
concept learninq and the pair-assouates t3sk, taken
toqether with tne fact that qeneralizatio between

tIiU 1 cea to play a different part in each situa-
tion, sujqqests tniat different psycholoqic3l processes
are iinvfolved! and that one s,,fulit ion ouqh*. not ~obe
expected to cover both fields.3

CE uses *t',e sime Lrrocesses for ot tSk

-12-

2. 5 EPAM

EPAM is capable of learning (memorizing) objects. The objects

used in CE are the same as tiose used in EPAM. Objects are either

simple or compound. A simple object is a list of pairs, the first

member is an attribute-, the second membe- is either 1 or 0. All

simple objects have the same attribut-s. A compound__obj-ect is a

list of pairs, the first member is an attribute: the second member

is an object, either simple or cotipoufld. The universe of objects

contains all the objects possible for given attributes.

An examle of a simple object 1- the letter, A, which cdan be

encoded ds,

((f1 0) 'f2 1) .

The f. S are the attributes of simp~e objects. An example of a

compound object is the 'nonsense s-Yllable, \AT wrV,!ch is encoded

as,

((1 t x) fd A'(,rd T)

st lid rdHere 1 ,2 and 3" are attributes Q.Arpd with +he siriple objects

A. , T, re-sppCtiveiy.

Before we expli.3n n E PAM learns these objet.~ ~ ep

to discuss the tvve of 1rinomation lrocess 1 nQ'cyc ne ch ~e

are concerned. Thne ix~ s shoin in %e~' r, fe 'fra 'o

processor recc'iyes npzjt it1~orr'dtinrp fro- the univer,,e -1:st4eIinfc-mation about ther in in internd' representditi>r, :rf - -a r

ibout the uni verse of ;-be et s cLr t"her be ret r e e-- tvY 3rk'n

2,uest-crs 0* the S'v5te--. Q e d~ rj __I~'; se~V.~~

Input
Output -

enod

-14-

analyzing responses to these questions in relation to the correct

responses. Internal changes are then made to decrease the number

of responses in error, The changes that occur in the internal

structure are called the processes of learning. The types of

changes that occur for any particular situation depend on the

, strategies for learning.

The input is encoded and then sent to the memory. The out-

put is received from memory and transmitted to the environment.

The objectL described above are outputs of the encoder. This

thesis is mainly concerned with th, memory and the storing and

retrieving algorithms of the concept learning system.

The CE model of learning has basically the same structure

as does EPAM. The organization and processes of CE is different

and is presented in Chapter III.

The structure of EPAM is a binary decision tree. The non-

terminal nodes contain tests. When an object enters the binary

tree it follows a pdth down I- a terminal node. Its' path

through the tree depends on the result of the node tests. If an

object passes a test, the " " branch is taken, if the tcst fails,

the "-" branch is followed. At the terminal node is stored an

internal image of an object that comprises all the information

memorized by the learner about that object. Associated with the

partial image is A cue token. When an object reaches a termrinal

node, the cue token stored at that node evokes a new image from

t
th i c i i a i n ne n r s o s . T i p o e s o v k n

l-15

response is called the association process.

The discrimination learning process is made up of two inter-

acting mechanisms called image building and tree modification.

The image building mechanism elaborates the internal image stored

at the terminal node. The tree modification mechanism grows the

discrimination net by constructing a subnet of tests based on

differences found and apperding the new subnet at the terminal node.

An example of the learning process in EPAM on a pair-associate

experiment is now shown.

Let us assume that EPAM already has been presented with a

list of pair-associate non-sense syllables. Figure 2 shows a

snapshot picture of a typical EPAM discrimination net. The

terminal node is A' where the blanks indicate that no information

is stored about the first and third letter positions, and the

prime means that only a partial image of an A is stored. The cue

token at the terminal node is R'E'P'. This cue token points to

the response REP also stored in the tree but not shown in Figure 2.

Suppose the following two pair-associate nonsense syllables

are presented to the net:

Stimulus Response

X XAZ REP

XAQ ZOX

The first stimulus object XAZ is sorted to the terminal node shown

in Figure 1. The cue token now evokes the stored response, and

REP is outputed. The output is compared with the paired response

-16-

iI i R'E'P'

Figure 2

A Snapshot Picture of an EPAM Tree

and found to be correct. The partial image 's now elaborated by

storing new information, 't becomes X'A'

Next the input XAQ sorts to the same terminal node, the re-

sponse REP is again jven. This is a demonstration of stimulus

generalization sir'e dfrrerent stmuli produce the same response.

However, when the output is compared with the paired term, ZOX, an

error is reQstered. To correct the error, discrimination between

the object XAQ and the partial image occurs by modifying the net.

A test on some dliference is added to the EPAM tree and a new image

is formed. The new tree is shown in Figure 3. Note that the re-

sponse image ZOX" O is also stored in the discrimination net and

a cue, Z'O~x', 's stored witi the object.

-18-

I+

Figure 3

[PAM Trec After Learning Additional Stimuli

CHAPTER III

ORGANIZATION OF CE'S MEMORY

EPAM is capable of storing or memorizinq discrete objects

both "simple" and "compound,' In CE only classes of objects are

store-. Each class of objects represents a concept. A terminal

node represents the conjunction of all objects that can be sorted

to the node and match the imaqe at the node. Thus, conjunctive

concepts are similar to partial images in EPAM. Since a cc-i-

juncti e concept is located at one terminal node, many different

objects will sort to the same terminal node. This implies that

the strateqy tor learning has to be different than that used by

EPAM, because we do not want to discriminate between the objects

of a single concept. The learning strateqy is discussed in the

next chapter.

disjunctive concept is represented in the CE discrimination

net by letting two or more terminal nodes have the same name. For

example, the disjunctive concept C2, des-ribed by the two con-

junctive concepts A C2 and B C2 is represented at two terminal

nodes in Figure 4. Both the name C2) and a description of a con-

junctive concept (e.g., A) are stored at a terminal node. If

we ask the question, ACD C2 ? (i.e., "s ACD contained in the con-

cept, C2), the object, ACD C2, will be sorted to the left node

of the CE tree shown in Figure 4. Since the oel ect matches the

-19-

-20-

44

A CE tree is shown. The boxes are terminal nodes. Thle lines

represent arbitrary paths to the termninals.

I
-21-

image, the answer to the question is +. The object BCD C2 would

sort to the right terminal node in Figure 4, and again the answer

4s +. Thus, C2 is the disjunctive concept, A_ B

The hierarchial concept 'A' C3, where 'A' stands for any

written letter a, is a simple description of the disjunctive con-

cept A a a. Naturally, we want C3 to occupy a single

terminal node. Therefore, some non-teminal node must be the test

"is the exemplar's first letter a written a" (i.e., (ex 1I) € 'A'),

If the encoding of A and a are sufficiently different, the test

(ex 1) a would turn C3 into a disjunctive concept as shown in

Figure 5. The object, abc C3, would fail the test (ex 1) = A

while, ABC C3, would pass the test. Hence, the requirement that

C3 (and other concepts of the same form) occupy a single terminal

node implies that a non-terminal node may be a set membership test

instead of an equality test. The generalization to set membership

tests is quite complex. For example, to answer the test

(ex Ist) E 'B' we might "throw" the first letter, say b, of an

exemplar, back into the tree. But b may be in many different con-

cepts, e.g., lower case letter, vowel, etc. We must assume that

concepts "overlap" with each other in a complex way (i.e., the

intersection of two concepts is not necessariiy empty). However,

we can answer, a e 'A' because it is either true or false. This

is not a paradox; it implies that there must be tests on names.

Thus, objects are stored in the tree with the possibility of tests

on names.

-22-

Figure 5

A tree with one equality test and two terminal nodes is showrn.

-23-

Due to the importance of tests, we define the class of tests

that can be used at non-terminal nodes of a CE tree. A test has

the form, <feature, crelation> <image>. The relation is either set

membership or equality. The feature is an ordered list of attri-

butes that designates a subpart of an object. The image is the

information stored at some terminal node when the feature does not

designate part of a "simple" object (otherwise, the image is

either 'I' or '0' and the relation must be equality).

To explain how tests are performed on objects, we briefly give

an example of a compound object in CE. The compound object,

ABC C2, is encoded as a pair:

(1) (ex ((lst A) (2nd B) (3rd C)))

and

(2) (na ((lst C) (2nd 2)))

The attribute ex denotes that the second member of (1) is an

exemplar; na denotes that the second member of (2) is a name.

The second member of (1) is also a compound object. A,B,C,2

are simple objects and may be encoded, e.g., as

(3) A = ((f1 1) (f2 0) (f3 1) ...)

f1 9 f2, f3, "" denote elementary attributes of letters, i.e.,

number of straight line segments, arcs of circles, etc., and

0, 1 are values.

A feature of a test designates a subpart of an object. The

first attribute of a feature designates an immediate subpart, X,

of the object. The second attribute of the feature designates

-24-

an immediate subpart of X, etc., and the last attribute

designates the subpart for which the test is applicable. Suppose

that the tes., ((ex Ist) E 'A') is applied to ABC C2 as encoded

above. ex designates the second member of the pair (1) and

designates the A in (1). Thus, in this case, the test becomes

A t 'A' whose truth value depends upon what hds been learned,

previously.

Now we can state algorithm 1, used for the evaluation of

the set membership test. (Equality tests are similar to the

EPAM tests.)

1. Find the subpart designated by the feature of the test.

2. Form the question -subpart, image, ? and answer it as

if it were an input question.

As an examrnpe2 of algorithm I suppose the input ABC C2 + sorts

to the non-terminal test node (ex st) 'A'. The Question A 'A' ?

is thrown back into the tree. If a terminal node is found that

matches the object A 'A', the test (ex Ist . 'A' is true, other-

wise fa'se.

The images at terr.7ndl nodes are no. explvned. Ar. i:age

is the conjunction of several tests. Each test as the s rV fll-' "

as a test at a non-ter-inal node. However, in Wit"Or to - and

the rtlation can be 0 or j 'the nenatior :f and ,-esect-

ively). The usefulness ef these relations is discu-sse: ,n the

ne)t chapter. An example of an imaQe is the _orinction Of the

fo'lo~in9 tests:

-25-

((ex 1st) A'),

((ex 2nd) v B'),
k (na) =(C3)'

The object ACD C3 matches this image because the statements AcA',

CcB', and C3 r (C3)' are all true. The prime on the letter A in

the first test indicates that A' is an image of A. Thus, A' is not

the same as the externally encoded A, but only some partial image

of A. Note an object is said to match an image when all tests from

the image on the object are true. An object is different from an

image if any test of the image is false on the object.

Names of concepts as well as exemplars are represented as

concepts in CE. The name C3 is different every time it is written,

i.e., C3 c3, c3, are all slightly different. Thus, the name is

really a word whose first letter is a C (maybe capital, Roman)

and second letter is a 3. Due to the special role of names we

assume that names can be learned as disjoint conjunctive concepts.

Names are also le.rned in the tree. When an input sorts to

a new terminal node the name is thrown back into the tree and

learned as a concept, unless the name is an atomic symbol used

for output. This atomic symbol is called a print name and its' use

is shown in Section 6.

An example of learning a name is now given. When the object

ACD C3 reaches a new terminal node (a node with no image) the

name C3 is inputed into the tree as the list (OBJ. (Ist C)(2nd 3))

where OBJ. indicates that the encoding is a single object; C and 3

-26-

are toie simple objects that are subparts of an input object. The

test ((na) = (C3)') is then formed at the new terminal node. The

image (C3)' is identical with the image of the name C3 stored at

an individual node.

To execute the test ((na) = (C3)') on an object, the feature

na is found on the object. Then the object subpart remaining is

matched with (C3)'. If the object subpart matches the image, then

tne test has passed, otherwise the test has failed.

If the input is an image (such cases arise from algorithm 1)

the subpart na on the input is itself an image. The na image on

the inp,-t cannot be compared with the test image since descriptions

cannot be compared. However, we can require all tests in the

test image, say- (C3)', to be possessed oy the subpart na image oi

the input for the test to be passed, otherw se the test has failed.

CH PTEA IV

LEAPIN:NG STRATEGY

As in EPAM learr.ng consists of tvo processes: 1) Con-

structinQ and elabo, t-'n unaoes at ter-inoI nodt of the net,

and 2) Geos nu the net.

r s t vdt -Luss tre imaige e] boratlon process. then we

descrbe how the CE tree is :odifed by iearnng.

4. Imaae E .atlon

The lea-nqg stratey ap.ies to objects of any complexity.

(Co;,ple, ity , the depth of nest'nQ of ornpound objects.) if -he

subparts of a compound object are learned in the rE tree as a

member of a concept, then the compound object should be easier

to learn. Learn no must then involve throwing subparts of

objects back into the tree to retr,eve lnforr.ton (Image

elaboration of s rple oblects does not involve Jlrowing subparts

back.; Suppose, for example, the ,nput BBC r3 i is sorted to a

new terminal node and we wdnt tu form an initial tocus* image.

The exemplars immediate subparts are thrown into the tree to re-

trieve information, i.e., the question, B ? *, is asked. Since

this r d qLestion no]edrning of the object will take place.

This usage of 'focus' is tle same as in Bruner [4],

j2'

-28-

There are three possibilities in retrieving information.

1. The subpart, B, is a member of only one concept, 'B'.

Then the name 'B' is retrieved.

2. In general we have "overlapping" concepts and B will

be a member of many concepts. Thus, tests on names

wili be encountered in sorting, B ? +, to a terminal

node. When a test on the name is encoLntered, a

search of the tree (i.e., an investigation of both

branches leading from the test on the name) is used

to find some names. If a terminal node is found such

that B matches the image of the exemplar, then the

image of the name is retrieved.

3. If the subpart, B, is not in any concept, we throw

the subparts of B back to retrieve information about

B itself. In this case B is a simple object and no

subparts can be thrown back into the net. Chapter

VI will give an exaiple of this process on more

complex exemplars.

To summarize, image elaboration of an object X, involves

searching the CE tree for those concepts of which some subpart

of X is a member. If no immediate subpart of X is a member of a

previously learned concept then the subparts are considered.

Search arises because some object may be in many different concepts.

-29-

4.2 Modifications of the CE Tree Due to Learning

Learning only occurs when 'nformation is presented to CE;

not when questions are asked. !n CE the first image at a

terminal node serves as a focus -mage for concept learning.

When additional objects are sorted to a terminal node image

adjustments are made or the net is g,'own by adding a new test

and a new termnal node To illustrate the strategy for net

modification, several cases will be examined. The different

cases depend on the three variables: 1) the sign of the input

(+ or -), 2) the result of comparing the exemplar of the input

with the tests at a teminal node, 3) the result of matching the

name ot the input and the image of the nameat the terminal node.

The cases are summarized in Table 1; we give examples below.

Case 1: The input, ABC C3 #, is sorted to a terminal node

whose image is ((ex Ist) - A'), ((na) -- CJ)')i. In this case,

no modification occurs because no difference is detected. Both

tests on the exempla,, ABC, and on the name, C3, are true. Thus,

the input hds already been "learned."

Case 2: The input, ABC C3 -, !s sorted to a terminal node

whose image is *(Uef Ist) D'), ((na) {C3)'I. In this case,

a difference is detected so we mark the test irrelevant, which

we denote by placing an X next to the test, i.e,, ((ex 1st) c D' X).

If the input, ASC C3 t, is sorted to the terminal node whose

image is ((ex Ist) -L A'), ((na) (C3)'), then mark the test

((ey Ist) A') ,rrelevant since 't s false on the input exemplar.

-30-

Case Name Exempla. Match Input
Number Match (tests on exemplar Sign Action

1 matches true + do nothing

t 2 matches false + make test X
irrelevant
or grow tree

3 matches all tests true make all tests
Y
irrelevant or
erase Y
irrelevant on
false test

4 matches false - do nothing

5 different all tests true + grow tree
on name
test

6 different false grow tree
on one
difference

7&8 different true or false do nothing

Table 1

A Summary of Tree Modifications

*

-3.

C ase -3: rf-e *nput, AIB~1 C3 -. so, ted to a termfinil node

whose imaqAe 's kex 2 nd - l', 1s. , H", tna) 7(C3));

All exeMpiar tEst are true on the *nput so wec mark all the tests

,rrele~ant by placing a i(next to, the tests. The new node is now

((ex Vt)), 'cx 2nd B'i.(n) (S) The reason

for using a d-IT~e~ert F'elevance slgn !n Case 3 fromn thle sign

used -r Case 2 ;. exp,)a ined if te, the Arnp e cas es.,

1~the -nput AL,- C orted to a termi nal node qhL,:e imnage

I~e D'x2n Y) , (noj) C

t hen, the ac ti1on , s to e-ase the Y 1 an on the test (ex 2 rd~ D))

n th's exomple all' v- -nmplar tests are t'~ue, howe~e , there is a

test marked Yiv-reant wh ch ,.s false on the nput.

Case 4: T he -rput, AC C3S -, Or ted to,, a terminalI node

wnose magqe 5 (n)sS The tts .t on

the e~emqK!, l alce ind we do nothin~j in tns ,i

Case 5: T hp nVA s~ ABC., CS3 a nd the tervn noi node is

iS , -A ~ (CAJ) ,,,c e all t es t (on t 0E, exempl1a r

ai e t v e het , 'U ' own bly tS n tihe t e S- t) n t tie na me,

Cmse e yi)u t A,,,(C1 3 andi(th)e i;aoje at ttoe termina I

nue \&J (L41) Tt tes +ti bmoth the

fx elliror aind T !1e (i~ re fd a I dri and the tree is qrnw'n by us 1 nq a

test ton th, err pa 0*,~

-32-

Case 7&8: A negative input, ABC C3 -, is sorted to a terminal

node and the name of the input does not match the name at the

nude. Nothing is done to the node in these cases.

When all tests at a node are marked irrelevant, the node is

considered blank and image elaboration occurs. Thus, Table I only

shows cases of tree modification.

One additional case of tree modification is not shown in

Table 1. If the input arrives at a terminal node where all tests

are marked irrelevant and in addition no new tests are found by

means of image elaboration, then CE assumes the concept to be a

disjunctive concept. For example, if the input, ABC C3 +, sorts

to the terminal node
(st) A2nd) r

(((ex 1) E A' X), ((ex 2) D' X), ((ex 3 rd) D Y),

((na) = (C3)'):

and no new tests are found by means of image elaboration, a new

non-terKial tree test is formed from one of the irrelevant tests

marked with In X. The criteria for determining which test is best

illustrated by means of an example given in Chapter V.

A few descriptive remarks about CE tree modification are

now made,. For conjunctive concepts, a feature possessed by a

positive instance of a concept but not possessed by another positive

instance of the same concept is aiways irrelevant to t' - concept.

This type ' irrelevance occurs in Case 2 of Table I afid is de-

noted by the sign, X. Another kind of irrelevance, deroted by the

sign Y, occurs in Case 3. When 3 negative instance of concept

- 33 -

possesses a fc-a~ure that a Dositive instance also possesses. then

t ha t f ea ture i s onlIy po ,ssi bly i rrel evan t to the concept.

Learning of concepts in CE involves a process of changing the

tests at the terTindi node image. wyhen the image has many testc-

tie extent of the concept is small beniuse only a few input ex-

emiplars matcn the IITmaie. .Ihen tne ima-e has only a few tests, the

extent of the concept is larqe because many input exemplars, matchi

the ,mage. it a positive inmut does not match an iriage, then the

extocnt of trie -oncept 1 nc, reased ty 7maki nq testc irrelevant. This

action cor'respon .- to case 2 of Table I1. if a negative input

matches an mracoe as i n C ise 3 (of Tau i e 1 tnnthe (extent of the

concep t i s dec reased tLy mc k inrq prev Iously1 irrelevant tests or by

ik ing all tests i rrelev in t tnus t orc inq i maqe elIaborait on to occur.,

CHAPTER VJ

THE IMPLEMENTATION

The mrain reason for programming CE ~s to evaluate its per-

formance on actual tasks. In general, when a few simple processes

(e.g., CE image elaboration and net modification processes) inter-

act in a complex way the result may be unpredictable. Another

purpose of coding the program is to del~onstrate that the theor-Y of

concept learning presented in this report is sufficiently complete

and detailed to be implemented on a digital computer. The computer

program provides a check on errors in the theory of CE. These

errors can be simple omissions of details., simple loqical errors.

or substantial omissions of pertinent tieor-y. Chapter 111 ano

Chapter IV give ,sufficient statement of CE's theorv- the preciSe

CE model is only stated in the working proqrarl.

CE is coded in i machine language cal led Sleutn I I On the

Un 1 ac 110I'7 computer it Case Western Reserve .1nivers it, List

processing fac ili t es . (1see Ernst t~cons ist of i flurltbe! of

subrout t nes wh, ch c.an be ref erenced f or, te Slet I 1 t cirquaqe.

rn st F5] shows how the descrivt ion I ist of P~3d he proet

lilts of LISP Ldn be Converted into * vpe li sts. i e,, ObCtSf

Section 2. (used In CE) Lcin eds ily lue encodjed i nto : e !''n

lists of Ernst [53. I he re iso) f or c_ ro!1ill' t Y ed- Is'

represent Jaul , besides be,,ng 3iv31 latle. 1S to C;orb!ne Qubjl Ities

-35-

of both lists and description lists into a single data structure.

The top level organization of CE is shown in Figure 6. The

executive runs the experiment and as such is a non essential part

of the program. The executive is described in the first section

of this chapter. The memory is described extensively in

Chapter III and will not be further discusse%. in this chapter. In

Section 5.2 the storage and retrieval algorithms are discussed.

-36-

Des c pt on

of input
Lu~u

-37-

5.1 The Executive

The executive controls the flow of inputs to memory.

Attribute-value pairs on objects are given to the executive. In-

puts are then generated by augmenting the given descriptions with

random noise at the lowest level (i.e, simple objects). For ex-

ample, a list of relevant feature values (e.g., 8 out of 15

features are relevant) of a B is used as a description. Remaining

feature values are then added at random to produce a typical B.

The storing and retrieving algorithms are techniques for

processing information. In CE the rote learning task requires all

inputs to have a '+' sign while for the concept learning task in-

puts have '-' s"gns also. The executive has the flexibility of

monitoring both types of tasks.

-38-

5.2 Storing and Retrieval

The CE program is written to procesS inputs of arbitrary corn-

piexity. The program subroutines must be able to employ the same

processes on data of arbitrary depth in their ist structures.

This is accomolished by recursively calling the subroutine within

itself depending on the level of the list structure.

The general flow of control in the CE program is diagramed

in Figure 7. To understand the sequence of operations we shall

follow an mnpu through the flow chart. The input is processed as

follows:

1. The first node in the tree is located.

2. The node may be a test (non-terminal node) in which case

control is transfered to step 3. If the node is a

terminal node control transfers to step 5.

3 The node is a test. The test is executed on the input

object. Becaus, of algorithm 1 a question may be asked

of the tree in executing this test. This question, con-

structed by a test in the tree, is called an internal

question as opposed to an external question asked by the

experimenter. The internal question is thrown back into

the tree to step 1, recursively. The yes-no answer is

then received and control continues to step 4.

4. The next node is found and control goes to step 2.

5. The node is a terminal node. The input is matched with

the terminal node. Depending on the sign of the input,

-39-

input

Find top node

iit a terminal node?e
3 Execute the test Match input with nodeo~n the input _

4I What is sign of input
Find the node according I

to the truth value of
the test ? + or-

6 Answers are givenj

Process next -

input ,

ILearning Strategies
are performed

according to
Tabl e I

Figure 7

General CE Flow Chart

-40-

control may be transfered to one of the following

places:

a. If the input is an internal question then the

yes-no answer is given accoraing to the match

at the node, Control is returned to the re-

cursive test in step 3.

b. If the input is an external question, asked by

the experimenter, it may be one of two types.

If the input is a yes-no question,

<exemplar> ,name> ?, then the output is given

and control exits to step 6. If the question is

to retrieve the name of an exemplar,

texempiar , ? the name at the terminal node is

thrown back into the tree recursively to retrieve

the individual name. The name is then outputed

and control exits to step 6.

c. If the input object is information presented by

the experimenter to the tree, ccntrol passes to

the learning strategies. Image elaboration or

tree modification (Table 1) occurs depending on

the match at the terminal node.

6. The next input is now given to CE by going to step 1.

The recursive nature of CE can be noted by examining the flow

chart. The entire routine (step 1) is called recursively by step 3

because of algorithm l and by step 5 because of image elaboration.

Also note that step 5 calls step 3 in matching an input to a

terminal node.

CHAPTER VI

THE EXAMPLE TASKS

CE must learn some basic information before attempting a

more difficult task. First, we describe the basic leirning ex-

periment and then three more complex tasks: 1) a concept learning

task similar to those in Hunt [8], 2) a paired associate task, and

3) a geometry analogy problr (see Evans [6]). The latter task

was not simulated on the computer due to the additional programming

it required.

6.1 Basic Information

The example tasks given to CE involve processing of compound

objects. In order to learn concepts about compound objects (in a

reasonable way), certain elementary concepts involving the sub-

parts of the compound objects should be learned first. Thus, to

learn concepts about letter strings and to use letter strings the

alphabet should be learned. StEp a, given below, is to present CE

with written letters as exemplars and thei" names which are atomic

symbols. The written letters are simple objects. A typical list

of inputs of this type is:

11

-43-

Step a:

<simple object, <atomic symbols sign-

A 'A+

A 'A' +

b 'A'

A 'A' +

B A'

A 'A'

The encoding of two simple objects in --neral will be different.

Thus, the A's will all be slightly different. However, any two A's

should be more similar" than an a and an A. The effect of this

learning is to discover the key features (attributes) of the dif-

ferent letters. Key features depend not only on the encoding of

the different a's but also on how they differ from the encodings of

the other letters.

All simple objects have 15 basic features. Seven of these

features are relevant for all letters and the other eight are

noise features. Thus, typicai instances of a B are generated by

providing 8 random feature values. The criteria for when a con-

cept has been learned is that one complete cycle through the list

produces correct classification for each element on the list.

In the first step 30 nembers and non-, mbers of the concept

of a capital roman A was given. This list was cyclec through

twice to complete learning. Of the 3G A's given, 24 were positive

-44-

instances of the concept 'A' and 6 were negative instances. Table

2 summarizes the nuoiber of simple objects presented to CE ir order

to learn the alphabet.

fable 2 shows that letters which occured early in the position

t of learning were hardest to learn. This occured because later

letters had a discrimination net to pick out the relevant features

of inputs, hence, learning was faster, All inputs of Table 2 were

given to CE and stored in memory in 30 seconds on the Univac 1107

computer.

Letters are in more than one concept. For example, the

written letter A is an 'A', a capital letter, a vowel, etc. Thus,

step b gives innuts to CE which have letters as exemplars and a

string of letters as a name. For example, in the in,.it A CAP +,

CAP is a compound object naming the concept of 'capita!" letters.

In step b, the concept vowel (VOW), capital letter (CAP), and

small letter (SML) are learned.

Step b:*

simple objects. name. sign-

a VOW +

a VOW

A CAP +

A VOW +

a SML +

We would like to present 'A' VOW + as an input, but 'A' is d
print naJm and cannot e used as an exemplar.

-45.-

exempler name number nut;Tber number number of
of ir1- of ' l' of '-' cycles
puts on instance instance through the
a list list

A 'A 30 24 6 2

a 'A 3C 24 6 2

B 'B 3u 24 6 2

b 'B' 30 24 6 2

F 'F' 2u 16 4 2

f 'F 10 16 4 2

J 'J 20 16 4 2

V 'K' 20 I 4 2

x x' 10 8 2 2

Y 'Y 10 2 2

Z 'Z' 10 8 2 2

z~ 2

la! e 2

A partila list of "n % given to CE in step a. The inputs appear

ir oJer of their position in learrino.

-46-

Since the alphabet has already been learned by CE, much of

the time spent in step b was in learning the names. Table 3

summarizes the inputs given to CE 1or step K, The inputs of

Table 3 were learned by CE in 20 seconds on toe Lnivac 1107

computer.

A snapshop picture of the CE tree fter ',arnivq the basic

information is shown in Figure 8. Notice th,. names of concepts

are always thrown back into the tree and lea,nc , unless the name

is a print name. For example, CAP is in the tree as a letter

triplet not as an exemplar-name pair. Notice also that tests in

Figure 8 may have three branches. When the feature of a test

does not designate a subpart of the input the test is undefined.

Hence, a third branch, which discriminates inputs with different

descriptions, may exist. The eximple tasks which use this basic

information are given next.

e efHDl er name nu!ber nupber nu mber nu-ber of
of in- ,of '+ of cycles
put-, on instance instance throuqh the
a 1ot list

A V0 A 0 8 2 1

A CAP 10 8 2 1

a SML 10 8 2 1

b SML 10 8 2 1

CAP 10 6 2 1

J CAP 10 8 2 1

K 'AP 10 8 2 1

Y D 10 8 2 1

z 4 10 8 2

Tdble 3

A t r ld I Iist k.f Inp ,tS q 1vtr to L E totL' K,

i

-48-

4- CJC~

(Ao

+ a

a C

-- . , 4-)

4-4

ev C" S

it a- L... 4JI
'4-.4-

Ci (%J -

-- 4- 'U.9
-S~i 0)' ~

:m- CL

It It 4J

4-4- 44A

4- of c

4--

x -S

-49-

6.2 Concept Learning Task

A list of letter strings are given to CE. The exemplars are

'typical' instances of the disjunctive concept, Cl, of those three

letter words whose third letter is a vowel or whose second letter

is a C or both. *'he growth of the CE tree is shown for each input

in sequence, using the learning strategy of Table 1. The inputs

are as follows:

<exeinplar> <name> <sign>

1. ABE Cl +

2. GCA Cl +

3. CEB Cl

4. BCA Cl +

5. GDF Cl

6. DCB Cl +

7. AGB Cl

The actions of the corresponding (serial) inputs are given in

order. The actions are numbered according to the number of the

corresponding input.

1. The initial image due to input 1 is from throwing the

first letter (i.e., A ? +) into the tree and retrieving

all names. The name, Cl, is also thrown into the CE

tree and learned. The initial terminal node is now:

{((ex Ist) (CAP)'), ((ex I t) 'A' , ((ex lst) E (Vow)'),

((na) = (Cl)')}.

-50-

2. The tests ((ex 1st) ' and ((ex (VOW) are

made X-irrelevant (See Section 4.2).

3. 4ll tests are true on the input; ((ex Ist) (CAP)') is

made Y-irrc int.

4. Since there are no longer any relevant images at the

node, CE decides to elaborate the image by adding the

new tests; ((ex 2nd) c 'C'), ((ex 2nd) F (CAP)').

5. The test ((ex 2 nd) E (CAP)') is made Y-irrelevant.

6. Nothing is done to the node.

7. Nothing is done to the node.

Se now recycle the list of inputs by presenting the same inputs

to CE again.

nd
1. The test ((ex 2 d) 'C') is made X-irrelevant. The

node is now elaborated by adding three new tests;
3~drd) CP' n

((ex 3rd) 'E') ((ex 3 E) (CAP)') and

((ex 3rd) / IOW)').

2. The test ((ex 3rd) s 'E') is made X-irrelevant.

3. Nothing is done to the node.

4. Nothing is done to the node.

5. Nothing is done to the node.

6. The test ((ex 3rd) c (VOW)') is made X-irrelevant. The

node is now:

{((ex 15t) 'A' X), ((ex 2nd) 'C' X), (ex 3rd) (VOW)' X),

'(ex Ist) (CAP)' Y) ((ex 2nd) (CAP)' Y), ((ex 3rd) 'E' X)

((ex I5t) (VOW)' X), ((ex 3rd) (CAP)' Y)}

-51-

7. The test ((ex 3rd) (CAP)') is ,ade Y-irrelevant.

Until now CE has tried to describe the concept, Cl, con-

junctively and has failed. Consequently, CE tries to describe

the concept disjunctively by growing the tree. CE must be

careful on what test to grow the tree. One of the tests marked

X-irrelevant will be used as a new non-terminal node. The

criteria is at least two positive inputs must pass the test. In

this way CE tries to form a conjunctive concept of a subset of

the positive exemplars. Since some positive inputs pass and some

fail the test, the test acts to discriminate between conjunctive

subparts of a disjunctive concept. This criteria for growing the

net is not shown in Table I because it is best illustrated with

an example. The list of inputs is now recycled again.

1. The tests ((ex It) E 'A'), ((ex Ist) E: (VOW)'),
(e3rd) E)(e rd)

((x 3 rd E 'E'), ((ex 3 rd (VOW)') are noted as

relevant to input 1.

2. The test ((ex 3rd) E (VOW)') is noted as relevant to

two positive inputs. Hence, by the growing criteria

(above) the test ((ex 3rd) (VOW)') is the new net

discrimination test. The subtree now looks like:

N_(ex 3r d (VOW)',)

l((ex 3r d
E (VOW),) I ((ex 2n d C

((na) : (Cl)') ((na) = (Cl)')

-52-

The initial image of input 2 is taken to be those tests

marked X-irrelevant that are p-assed by input 2.

For all remaining inputs, nothing is done to modify the tree;

the concept has been learned. The Appendix shows a computer

printout of the learned concept, i.e., a subtree of the tctal

memory.

Let us give CE a new list of letter strings. The exemplars

of this new list are instances of the conjunctive concept, C2, of

those three letter words whose first letter is a B and whose third

letter is an A.

The inputs are as follows:

•exemplar> <name> <sign>

1. BCA C2 +

2. BAE C2

3. BEA C2 +

4. CDB C2

ABA C2

1. The initial input sorts to the left node because the

test on the first letter is true. Since the exemplar

matches the node, a test on the name is the new net

discrimination. The tree is now:

• hi

-53-

L-_X 3rd) (VOW))

NN3

rdd

('na) (C!l I (exa 2ri) C

N1I _ N2

((ex 3 r d) (VOW)) ((ex I t) 'B'
lk((a) = C))(e s) (CAP)')

((na)) (C2)'C

An initial image of input I is stored in the tree.

2. The input sorts to the node labeled N2. Since the input

matches the node all tests are made Y-irrelevant.

3. The input sorts to Node N2. Since all test, ire irrelevant,

the image is elaborated. The new tests are:

((ex 2nd
) t 'E'), ((ex 2nd) (VOW)'), ((ex 2nd) E (CAP)').

4. The input sorts to node N3 and nothing is done to the

tree.

Th Thst (x 2 (CAP)') is made Y-.:relevant on

node N2.

The input list is now recycled.

The tests ((ex 2nd) L " (VOW)') are

marked Y-irrelevant. All thp tests are irrelevait so the

image is elaborated. The new tests are ((ex 3rd) £ 'A'),

and ((ex 3rd) t (CAP)').

2. The test ((ex 3rd) (CAP)') is made Y-irrelevant.

-54-

3. Nothing is done to the tree.

4. Nothing is done to the tree.

5. The input matches node N2. Any test marked Y-irrelevant

that is false on this input is made relevant. Thus the

test ((ex Ist) 6 'B') is made relevant by erasing the

Y sign.

The list is recycled again. All inputs are satisfied, hence, the

ccncept has been 'ar:2. Node N2 is now:

{((ex Ist) 'B'), ((ex 1st) E (CAP)' Y), ((ex 2 nd 'E' X),

((ex 2 nd) E (VOW)' X), ((ex 2 nd) E (CAP)' Y), ((ex 3 rd) E 'A'),

((ex 3rd) 6 (CAP)' Y)).

"4

f!

-55-

6.3 Paired Associative Task

Pairs of letter strings are presented to CE. Hunt [8] points

out that this task can be viewed as a pair associative task where

exemplars are stimulus and names are responses.

<exemplar or stimuli, <name or response> <sign>

JAD BIL +

TOD BER +

KEP NIS +

DAT REB +

The first input, JAD BIL +, forms an initial focus image by throwing

an examplar subpart into the tree, i.e., J ? t, and retrieving some

names. The terminal node is:

{((ex Ist) 'J'), ((ex Ist) (CAP)'), ((na) = (BIL)')}.

Again, the name, i.e., BIL, is learned. The next input, TOD BER +,

is given to CE anu' a difference is noted in the exemplar, hence,

tree modification take: Dlace as shown below:

((ex Ist) E (CAP)' ((ex 1 st) F-(CAP),')

Una) = (BIL)') _ (na) = (BER)') |

The next input, KEP NIS +, is sorted to the right node (above)

and a difference is detected. The tree is grown using the test

((ex Ist) E 'T') as the new net discrimination. The next input,

DAT REB +, sorts to the right node and a difference is detccied.

-56-

The final tree is shown in Figure 9.

Viewing this as a pair associative task, CE will produce

responses by asking questions like JAD ? +. Although, in general,

such a question may have many answers (due to overlapping concepts),

in a paired associative task each such question has a unique answer

because each stimulus has a unique response,

'1

-57-

I0

:3

SLii

Cj C II

x 3

4) C-
..- Li ~ 0

w. .J~

x< < MVI
L))

cr U 0

41

VI~ L*-1

x x m ~-
(U wi Li

-58-

6.4 Geometry Analogy Task

Until this point the examples have ben run on the Univac 1107

computer. The geometry analogy task has not been progrdmmed

because of the separate executive needed for learning relational

concepts aid algorithm 2. CE does not knc when to stop describing

concepts conjunctively and disjunctively and to start describing

concepts as relations,

For the geormetry analogy task, CE should first learn the

subparts of the analcgy pictures, i.e., the simple geometric

figures. Simple geometric figures are encoded as simple objects.

Names uf the simple objects are letter strings as shown below.

In step a, the concept triang!e (TR), square (SQ), rectangle (RECT),

etc., are learned. The simple geometric figures were not needed

for the CE program because the geometry analogy task was not imole-

mented. Sample inputs are given in step a.

<simple object, <name> <sign,

0 sq +

o sq +

C rect +

Asq

0 sq

As an example of learni,,g more complex objects, we shall

I.L

4i

, -59-

consider the geometry analogy task*, as typified by the one in

Figure 10. The problem is "picture 1 is to picture 2 as picture 3

is to which of the following pictures." The answer, according to

most people, is picture 6, The geometry analogy of this problem

is that 'the shape of the outer most figure in the left diagram

is the some as the shape of the figure in the right diagram."

Notice the two figures in the diagram are not identical; we

cannot say 3 = 0 . The two figures are the same because both

have the same name (square) with respect to a property (shape).

Thus, before CE can learn analogy problems it must have acquired

the concept of shape. Since names are stored in CE as concepts,

instances that were previously only names can be used as exemplars

of new concepts. To this end, CE is told that a square is in the

concept shape; a square is a four sided figure (FSF); etc. These

inputs were riot needed for the CE program because the inalogy task

was not given to CE. Ine new ex2cutive routine needed far the

analogy tas is explained in this section. Step b for the

geometry analogy task is now given.

The analogy problem is the same as considered by Evans [61.

1 2

3

0x

4 5 6 7 8

Figure 10

A sample geometry analogy problem from Evans [6]. The problem is

I1 is to 2as 3is toX." The answer is X=V.

A

-61-

,exemplar name <sign>

SQ SHAPE +

sq shape +

sq FSF +

rect shape +

Rect fsf +

The CE subtree after learning the inputs of step a is illustrated

in Figure 11. Note that we have introduced another level in the

hierarchy of concepts. That is 0 sq and sq E shape; however,

0I t stape. In general, there will be other concepts at the

same "level" as shape, e.g., four sided figures cf which q is

also a member.

A difficulty introduced by the geometry analogy task is the

need of "relational" concepts. That is, a test like "first is

the same as the second." The basic idea is contained in an

"extended" question as 0? (SHAPE)'. Since the figure

has several names, the input will sort to a test on names, say

((na) = (SQ)'). To answer this test we form the question

(SQ)' (SHAPE)' ? and throw it "nto the tree. If the answer is

negative, then the test ((na) = (SQ)') is false.

The description of the new test is neeHii for analogy problems

follows. The format of the test is S(feature, feature2 , <name>).

The logical interprctation of the test is: "There exists a name

(1,ex iS) S

+

{ex((1 st 'S'), (2 ndc Q) ex(l st 'R'), (2 nd E'E')

Figure 11

CE subtree after learning step A of the geometry analogy task.

-63-

y such that two exemplar subparts, -feature 1, -feature2>, are

members of y and y is a member of name-.' The S stands for the

predicate, similarity.

The test can be applied to the input

.I-
C

The encoding of the exemplar name pair is given in Figure 12. Thus,

the test S((ex left inside)(ex right)(SHAPE)') asks whether the sub-

part of the exemplar on the ieft-inside, i.e., 0 , is th, same

as the exemplar on the right, i.e., L , w'th respect to shape.

Algor~thm 2 for thE evaiuatiGn of a similarity test is now

alven. The test S,featur feature name) operating on an in-

put is interpreted as 'there exists a n1 such that e! n ,

e2 nI +, and n1 n2 + where e! and e2 are exemplar subparts desig-

nated by -feature, and 'feature2' and n2 is ,name
,. To find if

there exists a nI, we ask the questions eI ? + and e2 ? +. This

timplies that non-terminal nodes like '(na) n) will be encountered.

The test ((na) n) will be true or false depending on the truth of

n n2 ?. In this way the inputs eI ? + and e2 ? * will go to

unique terminal nodes, and the names will be retrieved. The

similarity test is true if the two names are identical.

As an example of algorithm 2, consider the input,

C5

and the test, S((ex left inside)(ex right)(SHAPE)'). The first

feature, (ex left inside), designates the subpart 0 , and the

-64-

El C5 +

{ex((left S S) (right s)

na((Ist C) (2fld 5)))

S= ((Outside S) (Inside s))

s = ((f VI) Mf5 V2))

Figure 12

A geometry analogy input and its encoding.

-65-

second feature, (ex right), designates F' The test becomes

S(C ,[_l . (SHAPE)'). To answer this test the question

0 ? + is asked. It goes to a non-terminal nude with the test,

((na) = (SQ!'), (See Figure 8). To answer the test we throw

SQ' SHAPE' ? into the tree and get the answer +. Thus,

((na) = (SQ)') is true,

Note that the name retrieved in the above example may not be

desirable. Suppose the question 0 ? + (SHAPE)' reaches a non-

terminal node with the test, ((na) = (RECT)'). Since the question,

RECT' SHAPE' ? is true, the name, RECT, would be retrieved instead

of SQ. However, all squares are rectangles.

An example task of compound (analogy) figures and names is now

given. The executive which controls the experiment is explained

at the end of the example. The task is for CE to choose which in-

put is most nearly the same as the first input.

exemplar, name, sign>

1. ED : [] C5 +

2. nA @C5

3. @ C5
4. (Fh: r C5?

5. ® 0 C5

6. @: I~ C5S

CE will choose input 5 to be true and all other inputs

(excet 1) to be false; thus, 5 is the answer.

Input I is surted Lo a new node and a focus imag. is formed.

-66-

Thus, the exemplar subpart is thrown into the tree (i.e.,

Eol ? +), but oces not match a node. Then the sub-subpart is

thrown into the tree, (i.e., 1 ? +). The name, SQ' is

retrieved. We then throw the name back, (i.e., SQ' ? +) and

retrieve SHAPE'. A match of the subparts of the exemplar yields

th following terminal node:

{S((ex left outside)(ex rig,.t) SHAPE'),

S((ex left inside)(ex right) SHAPE'),

S((ex left outside)(ex left inside) SHAPE'),

((na) = (C5)')}

Ti complete the analigy task the executive gives the remaining in-

puts (2 through 6) to CE. If none of the inputs match the terminal

node, CE will employ Table 1 to modify the image until exactly one

input (2 through 6) matches the node. Thus, the second and third

tests are marked irrelevant and input 5 matches he image.

-' .k%~. .2

I

CHAPTFR VII

CONCLUSIONS AND OBSERVATIONS

The main feature of this research is the learning of

hierarchial concepts, i.e., concepts in terms of other concepts.

The concepts can be either conjunctive or disjunctive. CE can

gen(alize upon the instances given to it. In addition, it can

correct errors made in generalizing. To the best of our knowledge

no other computer program can learn hierarchiai concepts, mainly

because of the intrinsic dynamics of the problem.

Learning concepts of concepts is closely related to the dif-

ficult problem of feature extraction described in Chapter 2. The

tests of CE can be viewed as Boolean valued features. For example,

for any object the feature, (ex 1
st) 'A', is either true (has a

value 1) or false (has a value 0). The problem of learning a con-

cept is the problem of finding the relevant features. In CE this

involves finding the concepts possessed by the subparts of an

exemplar. In addition these features once "extracted" must be com-

bined with logical connectives (in CE conjunction and dis-

junction*). CE does not consider All possible concepts in

"extracting" features, it only considers all those concepts that it

has previously learned. This has the good quality that concept

Negation is strange- in order to learn with any level of con-

fidence, the concept (?x Ist) ! 'A', at least 25 inputs must be
given.

-67-

4J

-68-

learning improves with time since the repertoire of previously

learned concepts is increasing.

Unfortunately, the previously learned concepts come from some

concept learning task given to CE. If CE were to do genuine feature

extraction, it would have to generate, internally, concept learning

tasks as subproblems for some given task. That is, concept learning

tasks must be given to CE in a logical order.* Thus, it is that

first graders are taught the alphabet before they are taught to

read.

To our knowledge the only work that does feature extraction is

.hr and Vossler p6]. However, the features of CE are more general

than the templets used in Uhr and Vossler [16]. The templets are

fixed in size and are inherently conjunctive. In CE a feature

pertains to any concept, either conjunctive, disjunctive or

hierarchial, e.g., the disjunct 4ve concept of all a's.

In CE the basis for learning is the question ,exemplar, ? +.

The answer to this question, <name, , must be retrieved from the CE

memory. This process is how CE differs from other work. The

implied organization*" of other concept learners (e.g., Banerji (1],

Hunt [8]. Sebestyen [13]) is to look up the name of a concept in a

table to find a pointer to the description of the concept. Thus, to

CE will learn any concept; however, if the correct subconcepts
are not learned then learning will be difficult.

**

The organization is not stated because they do not have in
mind a memory full of concepts. It appears to us that the table
look up method is indicated.

pi

I
-69-

answer the question <exemplar, ? + such a program must start at the

head of a table and apply the description ef the first concept to

the exemplar, then the description of the second concept, etc.

Since each object may be in several concepts, the search cannot

stop with a match, but must go through the entire table. In CE an

input is sorted on the exemplar to a particular terminal, and the

name is retrieved. If an exernplar is contained in several concepts,

then a test on name occurs and a limited search is necessary.

However, never does CE search the entire memory. Thus, the memory

organization of CE is its main advantage because it answers

exemplar- ? + with only a limited search.

One of the primary design criteria is that Questions of the

form, ,exemplarname, ?, can be answered without search.

Algorithm 1 allows CE to do this. However, the answer may be

wrong if the concept was learned incorrectly, and CE will not

answer at all if it has not learned sufficient information.

The geometry analogy task at the end of Chapter VI requires

relational concepts. Certainl) any good concept lea'ner must have

this capability. The program that was written learns concepts in

terms of conjunctive and disjunctive concepts. Algorithm 2 is an

attempt to retrieve relational concepts without search. However.

the whole issue of relational concepts needs more investigation.

The basic difficulty is that identity is meaningless. The

statement. 0 0 , does not mean that they' are identical but

that they both possess the key features of a square. The

-70-

complication is that they are rectangles and four sided figures

also.

Another difficulty is that CE cannot describe general

relational concepts although CE can learn relations. This dif-

ficulty can be removed by the technique of Banerji (1]. The set

membership test can be extended to form a test that involves

several subparts of an ob2ect, e.g, ((ex 1 st) (ex 3rd)) E NEXT'.

For example, BFC would pass the test because C is next to B in the

alphabet. However, the learning of conceots involving arbitrary

relations is a difficult problem.

APPENDIX A

COMPUTER INPUT AND OUTPUT

Figure 13 shows some inputs given to the executive. The

relevant attributes of simple objects are given. The list of in-

puts for a particular experiment is illustrated on the list

labeled DI. The executive adds random feature values to the

description of an input to produce a "typical' input shown in

Figure 14.

The concept CLI, corresponding to the concept Cl of Section

6.2, is shown as a subtree of CE in Figure! 15. The encoded output

is given to make the interpretation easier.

-

-71-

-72-

A LST
AP:(LEVFLI (F2 VI)(F3 V2)(F4 VII(F5 Vl)(F6 VI)(F7 V2)(F8 VO)
alP=(LEVFLI (F2 VI)(F.5 V2)(F4 VIHF5 Vl)F6 VeJ'(F7 VWfF8 V;!))
CP=(LEVFLI W2a Vl)(VI1 F4 V2)(Fb VW)F6 VI)(F7 V2)(& VV)j
AQ=(LEVFLI (F2 V1HF" VI)F4 V?-)(Fb V2)(F6 VI)(F7 V2)(iw VI)
tiQ=(LEvFLl (N Yl)(Fa VW)FL. V?)(Fb Vl)F6 VIIIF7 V2)(F8- VI))
CQ1(LEVFLI (F2 VIDtF3 VI)F4 Vk)(F5 Vi)F6 VIHF7 V2) 1-6 vi))
I Q= OLEVFL1 I F2 VI)(F. Vl)(F4 V1HF5 V1(F6 Vid) W7 Vl)(FB VII)
LQ;ZLEVELI (F2 VgI)(F, V2)It-4 Vl)(F5 Vl)(F6 VeH)F7 VM)F8 VI))
tG=(LEVFLI (F2 ViHFS Vti)(4 Vl)(F5 VIHF6 VIU')F7 V2)(F8 VI))
PQ=(LLVFL1 (F2 V2)hF3 Vl)(F4 Vl)(F5 V2)(Fb Vl)(F7 V2)(FB Vlin
PH0(LEVFLI (F2 VIUtFJ V2)(F4 VI)(Fb V2)(F6 VL9 (F Vl)(F8 W)
HQ:(LEVFLI (F2 Vli(F6 V2)(F4 V)(Fb V2)(Fb V)(F7 VW)F8 U0))
Q(LEVFLI (F2 V2)(F3 V2)(F4 V2)(F V)(Fb VW)F7 V)(8 V))

LO=(LEVFLl(Fk vW)F3 V2)(C'. VI)F5 Vk)(F, V2)(F7 V2)(Fb VW)
O.Q(LLVFLI (F2 Ve)(F4 V2i F4 e)(Fb V2)(F6 Ve)(F7 Vl)(F8 VI))
VQ-(LLVFL1 (F2 Vl)(FJ Vl)(F4 VI)(F5 V2)(Fb V2)(F7 VI)F83 VA)t (LEVFLI (F2 VIH(F3 VOW'F, VI)(F5 V2)(F6 VI)(F7 V2)(F8 ViO)
XQ(LLVFL1 (c2 V1)(F6 VW) FL. V2)(FS Vl)(Fb V2)(F7 V1)(F8 V2))I L0(LEVFLl (F2 Ve)(F,3 VI)(F4 VII(F5 v2)(F6 vi) (F7 V2)(F3 V~kkLA.z(LEVLLe (FIRST CtU)(SLCONu) AQ)(THNEE PGQ))
VOW(LEVLLe (FIRST Vu)4SLCONUJ UA)(THHEL wG))
LLI:(LEVLL2 (FIRST CU)(SECUNU LQJ(THkEE .LQ))I (LXT(EX4 ABL)(NA4 CLI)(SI(,N*
(EXT(Ex4 (CE)(NAM CLII (SIGN+)I(LX'r(EXM CEb)UNAM C!. I)SIGN)
(E(EXM a3CA)(NAm CLI)(SlkbN ~j IEXT(EXM GDF)(NAM CLl)(SION-)
(LXT(EXM LCb)(NAM CLI1(IGN)
(LX.T(EXM AGBH)NAM CLI)(SIGN-)

A8E=4LLVLL2 (FIRST AUHSECONU 8Q)(THHEE EQ))
GCL:-(LEl!LL2 (FIRtST GUI)(SECOND LQ)(THREL LQ))
LEB:(LEVLL2 (FIRST CtUHSECONu LG)(THkEL dQ))
dCAz(LEvLL4 (FIRST Bw)(SLCUN) LQ)(THRE. AG))
bDF=ILLVLLl (FIRST GWi)(SECON) OQ)(THkEE FQ))
UCH=(LEVLL2 (FIRST DIW)(SECONUJ LQ)(THHEL t3Q))
AGH=j(LEVLL2 (FIRST AUi)(SECONu bg)(THHEE tBQ))

A FIN[Figure 13

Input to the CE Executive

e" 1i v IA 2'

WN Zi .

I'l or (4'(go4 4
t&24tI fI s

LL3.LL2 t -Is -

ry -t4'

IW -,4 it

A W) ev -4

w ~N C4 -4 ey N ty ey (NI ~
w~~~4 Lt. 3.- k.. i -f - - 4 - 4-

N 0 N Y All Nr (4)

.0 Of' N

II P - It - L - .- 4 U A 4I 4-I -'~ ', 4. . 31 - -1 (1

it -qit -A It0 - . L 1 0 .

* 41 .0 1 9 ~ m W 4D
cmt Ny e'4 N Y Is N in- Ny N oN

0- 41 it 0 f i 0 - f 0 4 C
.0 In~ - 9 -1

wl

FY N ", ;

ItI
In N -. -In

.N .4 N 4 0'N Nv 4 4.A N v N

4 1, 41, A' ' ~ ~ . , :

110 (Y -

-4 -4 c .J Nr4 -- 1 r

O -. -

NY cm NN*

t, .0of ' - -w1, L

In - AD44n

*4 tv 0 0N yitl - -~ -4 1& -1tN11 L 1 A .

Z10 44N .
v 4 ~ 4 4 * 4 4 N 4

fy -nw
'n 0 ~ ~ - Q

0,A 0 a 4

On 40 it (''L
01 In a' --)-

A t 1
In-

l F. 'itI -,
z r) -4 05*

u/ . 01 1A)

4 It -C 0414 U,

0. 'D*4 :rUW ZIP I !t S

40 U- * A a. .

LLL

-T 4p-' o

of -,0a ry ' U LLit Ii)

o 41lO4 %~) x

AO~~41 * 14C'n in* 0)*A
n a

M AP IL M4. 0 W

W~) All, ~ f11 * *~ ' S

11 J112 4. A I

0 14 A " N19 .

O A In) * A) 0
LL 3 it toL - - a it

4L .
*I

0tf

BIBLIOGRAPHY

1, Banerji, R.B., "A Lang,,ge for the Description of Concepts,"
General Systems, Ludwig, ed., University of Alberta,
Edmonton, Canada. Vol IX, 1964, pp. 135-141.

2. Banerji, R.B., "A Language for Pattern Recognition," Pattern
Recognition, Pattern Recognition Society, to be published.

3. Bower, G.H., and Trabasso, T.R., "Concept Identification,"
Studies of Mathematical Psycholog, R.C. Atkinson, Ed.,
Stanford University Press, 1964.

4. Bruner, J., Goodnow, J., and Austin. G., A Study of Thinking,
John Wiley and Sons, N. Y., 1956.

5. Ernst, G., "Typed List Structures," Internal Document at Case
Western Reserve University, 1967.

6. Evans, T.G., ". Heuristic Progro to Solve Geometry Analogy
Problems," Proceedings-Srin Joint Computer Conference, 1964,
pp. 327--38.

7. Feigenbaum, E.A., "The Simulation of Verbal Learning Behaviour,"
Computers and Thought, Feigenbaum and Feldman, ed.,
McGraw Hill, 1963 pp. 297-309.

8. Hunt, E., Marin, v., and Stone, P., E perlments in Induction,
Academic Press, N. Y., and London, 1966.

9. Newell, A., "On The Analysis of Human Problem Solving
Protocols," Carnegie Institute of Technology, Computer Center
Report, 1965.

10. Mucciardi, A., "Adaptive Pattern Recognition Using Non-Linear
Elements," Systems Research Center Report SRC-65-A-64-22,
Case Institute of Technology, 1964.

11. Pennypacker, J., "An Elementary Information Processor for
Object Recognition," Systems Research Center Report
SRC-30-I-63-l, Case Institute of Technology. 1963.

12. Quine, W.V., Word and Object, The Technical Press of MIT and
John Wiley and Sons, N. V. and London, 1960.

-75-

-76-

13. Sebestyen, G.S., Decision Making Processes in Pattern
Recognition, MacMillian, N. Y-.,-192.

14. Simon, H.A., and F:igenbaum, E.A., "Generalization of an
Elementary Perci.ver and Memorizer Machine," IFIPS, 1962,
pp. 401-406.

15. Simon, H.A., and Sumer, R., "Pattern in Music," Carnegie
Institute of Technology, Complex Information Processing
paper #104, 1967.

16. Uhr, L., and Vossler, C., "A Pattern Recognition Program
That Gener3tes, Evaluates, and Adjusts its own Operators."
Computers and Thought, Feigenbaum and Feldman, ed.,
McGraw Hill, 1963, pp. 251-268.

17. Windeknecht, T.G., "A Theory of Simple Concepts with
Applications,' Systems Research Center Report
SRC-53-A-64-19, Case Institute of Technology, 1964.

Mra H

,,,I " j, 4 n. . .. ~ t I' , I,. . .,I, .,'.,.,1 . , . .. -

DOCUMENT CONTROL DATA R & D

j , l t I " O f ' t T 1 1 ' ' C j f T , L qh l(A" " " O ft

;ri:dnclaosif ied
* Weu Lern lieservo Universit"

_.XLye1lnd. Ohio ZL1O6 O
I Rt'Gl ' I.Iy lY L II!

A MODEL OF CONCEPT LEARNING

4 Or SCr ig' V NOTES (7"pfe of report and inclusive dae)

scientific; interim
.s AU TMORISO ft.Ir? .1amo, middle iniialI last name)

Richard H. Sherman

6 R1.'#-ORT DATE 7. TOTAL NO. OF PAGES 7b. NO. Or mars

June 1968 76 17
Sa. CONTRACT OR GRANT NO 9l. ORIGINATOR'S REPORT NUMBERISI

AF-AFOSR-67-125A
b. PP*,jCT No 9769-05

61102F job. OT-ER REPORT NOISI (Any othet.nuab - thtmay be ass ne*

d681304 I IA OSR 68-2084
I 6 OISTRI UTION STATEMENT

1. This document has been approved for public release and sale;

its distribution is unlimited.

II SUPPLLMENTARY NOTES 112, SPONSORING MILITARY ACTIVITY

TECH OTH Air Force Office of Scientific Research
Directorate of Information Sciences
Arlington, Virginia 22209

I) ABSTRACT

A learning program designated CE, Concept-EPAM, is described that modifies
EPAI4 through the introduction of a set membership relation. The effects of
this extension are considered with respect to methods of storing concept
descriptions in memory and methods of specifying learning and retrieval.
The learning strategies consist of interactions between image elaboration and
tree modification. Implementations ot CE are considered for a concept
learning task and a pair associate task. Applicability of CE to a geometry
analogy task requiring relational concepts is discussed. The relationship
between the learning of concepts of concepts and feature extraction is
illustrated.

DD ,oRM 1473

