R

Seiriebiuierns T

LTI LN SR

T

e Mg . -
i VU T ) 2

I,

o YT S
P e R e o

I

PSR T TR R T

CAFOSR O G8-RU8E o

!

676293

D

NOME RESULTS IN A THEORY OF PROBLEM SOLVING
(PART 1i)

R.B. Banerji rErn :{?‘r‘t
0CT 2 2 1963 ,"

3 -
'L.;‘-. - d L_l_'J
‘-

'

A

3. This document has been approved for pudblic
‘Moaao and sale; its distribution 12 unlimited,

YRR

- SRC-68-10

]




SCME RESULTS IN A THEORY OF PROBLEM SOLVING (PART II)

R.B. BANERJI

SRC-68-10




S it

g bk e

et S

SYSTEMS RESEARCH CENTER
CASE WESTERN RESERVE UNIVERSITY
UNIVERSITY CIRCLE
CLEVELAND, OHIC 44706
NOVEMBER, 1uo7

This work was sponsored in part by the USA Air Force Office of
Scientific Researcn uoder grants AF-0SR-125-67, AF-0SR-125-6%, ard by
the Nationa! Science Foundation under grants GK 1386, GKI85 and GP #58.




o A RN AL IR

FOREWORD

This report is a continuation of brC-126-2-67-59
entitled, "Scme Results in A Theory cof Problem Sclving," which
were the Ffirst three chapters of a book to be published by

gevier Publishing Company, Inc.

[

American E

n the previous report it was mentioned that the

[

chapters of the bookx folilowing Chapter III weuld not be published
in report form. Nevertheless, the present report is being
pubiished for two reasons. One is that the chapters reported
here contain much material which d4id not appear in previous
publications. Thess additions are both in the way of formali-
zations and intovpretations of previous work.

Another reascn for publishing this report is the fact
that on seeinyg the first repurt, many people on our mailing list
have as.od me to "send Chapters IV and V as soon as they are
written." This veport enables us to do just that. As a result,
this r-port is merely the first draft of these chapters. I
believe that the final version, both of this report and the
previous one, will be much more readable than these.

The work reportecd on here was carried out by myself
and gracuate students supported by the .. §. Alir Force Office
of Scientific Research undexr grvants AF-0SR-125-67, AFP-0OSR-125-65,

and by the National Science PFoundation under arants GK 1386,
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GK 185 and GP 658. Some of the graduate stuaents whose work 1is
reported herz were supported by NDE' NSF and Case Fellowsh.™s.
A wexd of apology has to be added regarding the format
of this report. It starts on "page 164" ari "rhapter IV." The
main reason is time pressure. The Table of Tontents show
gimilar pecurliarity of behavior. The page numbers shown for
Chapters I - III are only approximate. The contents of Chapters
I and II are exactly as ir the previous report. In Chapter III,
what is called Section 9 in the Tabie of Contents did not appr -
in the previocus report. What is called Section 10 in that
chapter app=2ared as Section 9 in the pievious report. The
section called Section 9 of Chapter II in the m™able of Contents
appezrs as an appendix to the present report. The page numbers
shown in the Table of Contents for Chapters IV and V refer to

the page numbers of this present report.
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CHAPTEK IV - DESCRIBING PATLERNE

1. ‘ntroduction

The importance of pattern recognition to solutions of

proklems and games was discussed briefly in Section 3 of
o
£X

| Ki , and blociis of Ei or that or the Kernels of functions

Chapter I. In Chapters JTI and III, as =ets like T, . T, §

ik» @ were discussed, 1t was implicitly or explicitly stated
that he use of these sets in the construction of soluti~n
mothods are practicable it and only if they can be
efficiently.

This Chup.er wlil be deva

and the way

Livy duscori

ntroduced
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of these expressions as denoting sets. For this latter to be

r-s3iple, it is necessary that some of the syntactic entitiec

[

efining certain "intuitively recognizable" =ets

-

pe predicates ¢
of cbjeccts in the Universe of Discourse. In addition, the
synta. has to have various ways of combining predicates to
yield compound statemeuts. Thase compound statements will denote
sets which are uniguely related tc the intuitively recognizable
sets in & way dictated by the st-mcture of the compound state-
ments.

The first few =ections of this chapter will ke w.voted
to the develcpment of some formal definitions and th-n to some
specific languages which are meaniangfu. in a wide variet, of
Universes of Discourse, The wajor eaphasis will be on the
"efficiencies" of these languages.

B the efficiency of a languzze for the description
of & given set will be meant the "size" (in some ..2nse) of the
"shortest" erpression which denotes that ~2t. This size
depends on the set as well as the predicates of the language
and tha repertcire ©. combination modes available. It will be
caken for gr: .led that new predicates ~an he defined for en-
riching the language. That is, some compound statements may be
replaced by shorter expressicns by defining new syntactic
entities in the langu.Jje.

i

The definit on of the word, "size" was kept purpnse-
fully vague in *li¢ 1ast paragraph; because a precise definition

\be1ng heav1ly dependent on techneology) is hard to give in
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by "given set”

i trivial one - or at least a problem cf transliteration. However,

if by a "given set" one means a sot whose elements are all

i av~lable as a list, ther one can consider the problem of

? generating a succinet statement 1n 2 language which will hre

N

é satisfied by every element of the list and by none else. This,
; roughly, 1s the problem of '"concept learning.”

f Since such lists are impossibly large in practical

§ cases one may, instead, consider a case where only some members

nf a set are exhibited on a short list. This, however, can

give no meaningful clue to a learning prog.am. One can infer,
without any contradiction from the presentation, that every
object belongs to the set. It is essential that at least some
menbers Of the complement of the set are also exhibited in
another short list. One can then consider the problem of
generating a succinct statement which will denote some set which

contains every element of the first ilist and none of the elements
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of the seccond list. Typically, such a statement wil. be
satisfied by certain objects which do not appear on either list.
Thus, the expression will have "generalized" on the examples
given. The mode of this generalization will be dependent on
the method used for generating the describing expressiocons and
to a certain extent on the language, since the language de-
termines the succinctnecs of the statements. However, the
"correctness" of the resulting gensralization - whether the
descriptic.. actually denotes the set cne "had in mind" in con-
structing the lists - is not at all determinable from the
method of description generation 2alone.

The next chapter will describe certain algorithms for
generalizations of the restricted ("not necessarily correct”)
variety. It will also discuss the possible situaticns under
which generalizations may turn out to be correct.

Rough definitions of a few more terms may be useful
for the reductiun of confusion. 1In the literature, the term
"pattern recognition" is used in twe implied sinses. In one
sensa it stands for what has been called generalization above.
In this book "Pattern Learning” and "Concept Learning" or
simply "Learning" will often be meant to signify the same
phenomenon. In the other seuse the term "Pattern Recognition”
means the recognition of an object as belonging to a pattern of
known description. In this book the terms "Pattern Recognition,"”
YRecus ' tion" and "Oblect Recognition” will all be used in

t+his sense.
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Another term, "Concept Formation" is often used for

what has been called "Concept Learning" abcve. In the next

1

chapter a much more ceomplex phenomenon wiil e called "concept
formation."
The word "concept" will often be used for the word

pattern” in this kook. The reasorn for this is historical -

3

o 27, 28
the initial models and languages devaloped at Case,” were

-~

developed for understanding the psychological process of concept

i . 1 - . . .
formation. ° The relevance of the ideas to the field o

h

pattern
recognition was realized only later. This realization immedi-
ately led to the need foi further developments of the formaiisms.
It is the author's belief that these further developments have
made the *'heory eve.. more relevant .o psychology then they were
before. The t...ory, in its prescnt form, therefore, will use

both the terms.
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2. Some Basic Terms and Discussions

‘the present saction will formalize some of the hasic
ideas referred to in Section 3 of Chapter I to initiate the
discussi: 1.

A pattern recognition environment (called environment

for short} is an ordered pair <U, > where U is an abstract set
and P is a family of non-trivial partitions on U. In much of
what follows, the family ° and each of its elements will be
considered *c De Jfinite, although some cf the definitions and
results are meaniiigful even if some elements of © are infinite
classes.

U will ke referred to as the Universe of Discourse
{or Universe for short}. Each eleront of " will be called a
Property. If P is a property, tuen each element of p ¢ P (where
p, clearly 1is a subset of U) will be called a value ¢ P,

The reader will notice that the word "value" iz uerd
for certain pre~defined subsets of t.ue Universe of Discourse

1

while i1 most of mathematical iiterature '’ . word "piroperty”

is wsed in this sense. However, it may be worthwhile to recalil

] "

that the property "redness" and the preperty "color”" are two
1 distinct things. "Redness" iz a property in the usual mathe-

matical sense. But "color" is also referred to as properiy in
common parlance: a fact one would like to recognize in the
theorv., Psvychologists use the words "characteristic" or

”29

"dimension" instead of the word "wroperty.

A concept (or a pattern) is defined recursively as




3
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3 .
! follows:
(ci) A valne of a property is a concept
{cii) If A and B are concepts then 4 U B is a
concapt
{Ciii} If A is a concept, then the complement

A of A is a concept

{Civ) Nothing is a concept unless its being so

follows from (i), ..} and {iii} above.

In most of the previcus work at Case, (1ii) ab~ve was
replaced by, "If A and B are concepts, the~ A 7 B is a concept."”
However, in such cases. the class of concepts do not form a
Bunlean Algebra except for the cases where each element of

wars a finite partiti.a. This is becaus

D

complements of concepts
may not always be concepts if partitions have an infinit. numboy
of blocks. The difficulty is removed by the definitions above.
It could also have beon removed by allowing infinite unions and
intersections: however, since the description languages pre-
supposed in this book begins to have practical difficulties
any time infinite -perations are used (difficulties shared by
any pattern recognltion scheme using infinitary processes) it
was conslidered mere meaningful to have tae definitions as above.
One can motivate the above definition of a concept by saying,
"A concept 1s a scot of things whose elements are recognizable
as belonging to it by virtuo of their properties.”

For convenience ¢f later discassion, we shall define

an environment to be 1inite 1f ' is a findte family and oh

(SRR TS

\

element of 1s a finite partition.
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Civen a subfamily ' of f one defines a subclass

>

Con of the class of all concepts as follows:
{i) Any value of any element of ' is a member of
CP"
(ii} If A and B are members ot Cor then A U B and
A are members of C,,.
{iii) HNothing is a member of CP' an'ess its being so
follows from (i} and (ii) above.
By this definition, the class (,, is the ciass of all

concepts.

A subfamily ' of P is called a fine structur. family

if and onuiy if CP' = CP'
A finite fine structure family V' = {P? Py "'”Pn}
is sa.l to e full 1 f
E R T N 4.
P Pyi Tp AR (4.1)
1 2 n
for cach P.; ?r.

“r
A fine structure family of prop-:rties in any =nviron-
ment set the linit to the distinguishability of members of the
Universe, as will be shown presently. If the fine structure

3

family is much smaller than the set ’, then the properties out-

side the fine ~ructure famils er>ly atfec he efficiency o©
de the fine struct £ ly merel ffect t £f y of

description and ot the ultimate capability of description.

Nevertheless, since efficiency of description is crucial, the

distinction beotween V0 and ' . essentiar to the cuasiderations

i

of this chapter. To keep this basic role of the fine structure

family clear one defines s follows.
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A real environment is a triple <., ., " > where <U, 1>

smplh e o e

is an environment and ' is a fine structure subfamiiy of 1.

e

/¢ is not necessarily a proper subfamily of ¥, although in all

s

interesting cas. s 1t wouud pe.) ' will be called the input

e M

kroperties of the environment.

In the rext few sections only finite real environments
, will be considered. In the work dascribed in the next sectionn,
v rcal environments with a full fine structure family of input
properties will be assumed.

All description languages discussed in this chapter

will have 5s its motivation the Boolean Algebralc structure of

8]

the class of concepts as Jd~fined “bove. Although the languages
will differ in tho mode of describing concepts, one aspect of
them will remain the same.  Thi pertains to tho fact that any
concept of the form shown i expression 4.1 above 1s 1in one
sense, very barcic:  two members of U both of which belong to

the seot

DN P §
pll }v‘:‘ |

JL ni
1 2 n

are indistinguishable:  1f one of them belongs rto any concept O

L L_

&

i thon the other wust alae melong to 1t.

~3

his can be readily

3 - b ] - - . AN T PR el -} - - - [ -3 N 3 e s
shown by induction over cthe least numbor of sot theoretical

N Ny g h i N L Tty ot - b - ~
Aperatoers necded Lo oxhibit the concepnt

9y e one according to
{(Ci), (ci1) and (Criyv) above. In farsi, (ven a strongor

Version

af this statemoent con be made.

m - ] -3
Theorem 4. 1: Lot Lo andexed by othe (not necessarily
S - s o ! — - - M
fintte) set Tos0 that = P L. For oach i I, 1ot
A i
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p. € P,. Let a and b be two elcments of U such that for each

]
a
&

i
i ¢ I, both a and b is a member of i Iet C be any concept.
Then a ¢ C if and only if b ¢ C.

Proof: Let C be a concept according to (Ci) in the
definition. Then there 1is a P, e £' and a p;, € P, suc. that

C =P Since a ¢ P; ana a ¢ = p., , we have Py Nro ., #4g.

FS

i
-

But gince P, is a partition, < ”!pi, # @ implies 1

Since by hypothesis b ¢ p. , one has b ¢ C als~. The cuaverse

follows. Let now the theorem be true for any concept which can

be constructed with n or less set theoretic connectives. Let C

: f be const.ucted by n+l set theoretic connectives. If C = A _ B,
. then either a ¢ A or a ¢ B, Let a < A. Since A is constructible

.i; ! with less than n connectives, b ¢ A by induction hypothesis, so

that b ¢ A _ B. Similai.y 1f a ¢ B. The converse follows also.

Tf ¢ = ¢ A, then if b is n>t in C, 1t is in A. But A has less
; than o connective:. Hence, since b « A and by the symmetry of
3
§ the theorem a ¢ A which is impossible since a @ A. Hence,
nh = C.
4 4 Arniy obiect i1n U then, can be completely specified
W # {sc far az its membership 1n all c~oncepts are concerned} by
indicating 1ts membership in ore element of cach Of the proper-
§ ties 1n ''. Gn the basis of this fact one can make the followinag
definitions.
! Tiven a finite real environment <U, ', ', 3 general-
E 1zed oblect is a string of characters of the form
(p. .o P, .p., +....P_ ,p. ) where n 1s a finlte inteaer
. 1 i i, X4 i by - :
1 1 Ps “ n n 5
3
¥
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veviable. The predicate will be true for all members of the
value , of the property P. Any member of th~ coiect

{(P. 2 TERRERTY P. ,p. )}, <ien satisfies the statement S{x),
i
1 1 n n

Th.s statement may be ccasidered to "describe" the object

(P. ,p. i...; P, ,p. ) in the sense that the sentence §
. i T
1 n n

will be true for all elements a of the object.

Obvicusly, concepts other than objects can be similarly

" . 39 P i : . | : ; - . - - —_
described” by statements inv:iving the basic predicates F{x} = ¢
< g ks’ ~ Bl A - - N ~ ~a ) - TR PR
; . where P ¢ ¢, p ¢ P and usual .ogical connectivos.  oilven any
. 2 1 3 - N Do o~ . o~ . v g 8 3 -~ -
object and the descripticn of any concept 1 such a Languaje,
s . . 3. e — o T - -} 3 = ~ o~ o~ S| 4
£ one can readily determine whether the Obj20U 1s contained in
the roncept or not. Algorithms and formats used Or suah
P 1o v 3 " oMY AL o S T3 ey Aaaay vyl YR | Mo armwh v ey
recognition processes w.aoil DRe Qoscripoed presentiy. Meoanwh Ll
—~ ey i g . PR = e N E = T aen, s . - s ! a4
certain important aspects of this elementary laniuaage will bear
discussion.
- Yo mey sy Ay - SV
The central gquestion regarding dosoriptions are oo
Tsllowing:
d 3 {i) Glvan o a concept 1w shoudd te desomiption e
i t £
: N stored so as to use as smalloan amount of mewmors
. oo L3N il
. k] pDAass H RN
; . -l v‘ 3 ~ r . Al - ~ ~ - ¥ ~ - —-
» [\ll) MUOW :\’,‘uid Tiie JL‘E\,Z}QCL\-" DT SOaNCeDt e stored
.
and processed so that, Suven an 2ot and 2 c.n-
. .
~ept one can determir »oas efficiently as uossoUlo




~

N

Wﬁm LRI A <o

b R,
4 S

[
~—

(111

whether the objlect is contained in the concept?
Given tw™ sets of cbjects, how should one con-
s.ruct a short description of a concept which
contai~ s au! elements of the first set and no

2

emer = of the second set?

(-

C 1ng these gu~stions will be
S aa 3 5 5 ~ 3ol - ~311 2 e . - .
described. They are included here because they compare favor-

20 31

abliv with s¢ i1l fele S wnrk e AR ar - A it - I
AN sy Wit some deJ. L5NES wWOoIrx v}' acher WO NE2YS ; anaa, i
L - t t ~ Dan g ~ e e = - R 3o vy A ~ - N 1y e e
the author's cpinien, Shads some 1iant o the nature of the

problemn

-




3. Conceptions - A Description Lanquage

The discussions in this sc :tion are based on the
: : 28 32 . s
work of the autnor, and Pennypacker. The formalism de-

~ =
. - \ ; B . <!
veloped here arew cut ¢f some previous thoughts of the author,

1, Y

which had led to a more primitive descripticn language which

was later abandoned in view of 1+s inefficiency. However, some

of the basgsic i1ueas relevant toe that work have been retained:

-

oy

thess have been discussed in the previous section.

¢iven an environment <yY,?> and a concept ¢, a propertv

is cailed Rivectly Relevant tc a non-empty concept 1f and only
1{ it has at lesast one value whose intersection with the concept
ig enply.

A property P is called relevant tu a non-empty concept

C with re-nect to a family F of propecties if and only if either

it is directly relevant to € or if there exists a property
Q{#P} in & with a value g such that g /) ¢ is non-empty and P is
relevant to ¢ {1 C with respect to F.

In short, a preerty is not relevant to a concept
when knowing about the value of this property for an okject
does not (either by itself or in conjunction with other
properties) help in the recognition of the object as belonging
in the concept. This statement will bhe formalized presentiy;
the following definitions and theorem will be needed for this
formalization.

Given an environment <U,Y> and a concept C, a finite
subfenlly

Py . P} of ¥ is called sufiicient for C if

Y n
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c P, and there
1
< n} with this
be 1 in this case

called a sufficiercy family

oY
i
{8i1i) c= 7 p.. where p..
x =1 ‘i o
is no subse: of P.|1 ~
4
property. (Nocte: n can
also.)
7, & —_ o~ r+ e o
4 set of prcerties & 1is
for a concept C if either & is sufficient for
(Sii) above or there is a member P < J wiich

kY

¢ by {5i} above and 3 is the union of P with
famiiy of each of the non-empty intersectt
values of P.

Theo. em 4.2; et {(p.l{1 < i =n)}

i
family for C., Let P, ¢ P. for each i. Then
T, . T = C or p, SN
pL .t"z pn E 1 p2 pn

Procf: If there is no property P
Py has mecre then one value with
then C = p, 7 P, T oee. D P and the theorem

the theorem be true if there are k properties

than cne value with non-empty intersections with C.

ons

1s evident.

ol

C according to
is sufficient for
some sufficiency

of C with the

be a sufficiency
elther
C o= g

in {Pi} such that

non-empty intersections with C,

Let
in iPi} with more

The theorem

is true for k = 0. If it 1s true for k = m, let k = m+l. Assume
(without loss of generality) that P, has more than one value

1

with non-empty intersection with

chpt £ Y, CcOp

and itour any p' ¢ P

has a.sufticiency family which i1s a

1 such that

subset
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of {Pi}. If ¢ N p; = @, then the theorem follows immediately.
Otherwise the sufficisncy ramily for C f:pl which ig a subset
of {Pi} contains less than or sgqual to m properties which have
more than one value with nor-empty intersection with ¢ ) Ty
Hence, p, i pziW eee N p, = C P;pl ¢ ¢ by induction hypothesis.
This theorem leads to the following explication of the sign-
ificance of relevant properties.

Theorem 4,3: Let & = {Pl ,Pz..QPn} be a sufficiency

family for the concept ¢ Let P, ¢ § be not relevant to C with

respact to 3. Let Py = {pll ‘Pyy r+++Pi ). For any set

i
{pllpl € P,

;0 25 1S n} if g # Py; Npy Nwee Np, N C then

for all k{1l s k s m) Pix Pzpz,\ cae N P ne#g.

Proof: By Thecrem 4.2 the hypothesis
P11 N N M ses N P, ic#P irplies P13 N P, M oees N P, ST
or Pyy P»pz M vas M P, nNg = P11 fipz N oeee Fapn A 8. If
Pk M pyli ... Np =@ then P, is directly relevant to
P, N oeas N P, M C{# P) and hence, relevant toc C, leading o
contradiction.

This theorem indicates that when testing an object
for inclusi-n in a concept, irrelevant properties need not
be *ested.

Let C be a concept with sufficiency family
{P1 'PZ ,.oan; and lat each property P, be relevant ¢o C with

respect to [P /Py ""Pn}' Then a list of k .ists, headed by

1

is called a conception list of C .f

the name “C"

either (ci) k = 1, the unigue list is headed by tlhe

O e
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name "Pi" where 1 € 1 € n and Pi has more
than one value with non-empt ; inv~rsecticn
with Pi. It is a list of onrdered pairs
consisting of the names of the values of

Pl

Pi with non-empty intersections with C
trgether with the nan .s for these inter-
sections.

or {(Cii) n =% and each list is headed by a name
"Pi" and contains a single ordered pair
consisting of the name of the un/gue value
P; € Pi which has non-empty intersection
with C and of the name “C."

A set of conception lists form a conception of a con~-
cept C 1f and only 'f it contains a conception list of C and a
conception of every concept whose names occur in the conception
list. It is clear that a conception list of C satisfying (Cii)
above 1s a conception in itself.

Some »f the ideas nssoriated with the above definitions
and assertions can be exemplified by considering a specific
Universe, Consider an Universe of Discourse, consisting of 40
elemen*s as “*=scribed below and exhibited ir Figure 4.1. {This
same basic Universe will also be used in exemplui. j the ideas
introduced in _ection 5.)

Th. 40 elements will be d-noted by the consecutive

positive 1integers. The following subsets of the Universe wiil

be taken to form the elements of the basic partiticns.
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Py = (21,22,23.24,25}

P, = {26,27,28,29,30}

p, = {31.32,...,40]

q, = {1,2,11,12, 21,26, 31, 32}
q, = {3,4,13,14,22,27,33, 34}
q, = {5,6,15,16,23,28,35, 36}
q, = {7,8,17,18,24,29,37, 38}

a; = (9,10 19,20,25,30,39,40]

Figure 4.2 1dentifies the basic sets and ile
of the Universe.
The. » are »ive properties in this environment

§ = {8

T= T, ,T

It
b3

W

elements
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JR. .R,}

R = {R{ /Ry SRy R,

P={p; Py, Py Py /P!

q = {q; .9, (a3 /9, 95}
‘p,q} is a fine structure family for this environment:; so is
{p,W,8}. The family {p,q} is a full fine structure familv,
while {p.W,$} is not full. In the present discussion, p and g
wiil be taken to be input properties, yielding the real environ-
ment <U,{S,T.W,p,.q,.Rf.ip,q}>. 1In this environment {11,13} is
not a concept, for exampie.

If one considers the concept Tl , 1t can be seen that
g is not relevant to it with respect to {p.q.,u1}. However, q is
relevant to T, with respect to {g W,p}. R is not directly
relevant to Gy although it is relevaot to q, with regpect to
ip.R}.

The coinception of the concept A =%. "' R, (i.e., the

~
£

set (3,4,13,14,15,16.22,27]) an be written variously.

B

l

? - {W, .A)
R -~ (R'\ sAB

would be a posasible {and the shortest possible) conception. One
other would be

A
!
p

- P, :B) - (93 €Y - {py D) - (p (E) - (qy . F
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G
|

i
? - (p3 lc) (Pz lk) f - (Pl ,w)

Q=g
i
o
o
g
{
o
o8]
8]

Q ~—rg —
1

. C) - {ay . F) q - (q‘Z . G)

using {p,q} as = sufficiency family. Another., somewhat shorter,

would be tihe following

- (92 ,B) - (Pl ,G) - (p4 ,D) = {?ﬂ /C)

E oy —tp
!
o)
()
os)

- (93 ,C)

W 0 —)

- (Q2 'c)

I —Wh—r —O
o
- -~
=
£ =G
i
)
Pt
®

which uges (p,q,S, W) as sufficienc, family. It can be seen
casily that (p,q.W) or (p,S.W) could be uszed as sufficiency
families alsc., Tt can also be .zen that the size of the
sufficiency family used has no strong etiect on the size of the
concepuion.,  While (R,W) is a very effactive suffici ncy set
for a, ip,q} is not. The size of the conception gets smaller
when we augment this izst sufticiency set te (p,q,S$.W). Changing
(p,q, 8. W) to {p,yq. W} actually decreases the size of the con-
ceptiun.

It should alsu be noted that when one uses a full
tine structurs sufi.cilency Tamily, the conception of 2ny con-
cepts other then values of fine structure properties and their

intersections end up centaining the covnce tion of every obrect

TS,
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containad in the concept. This i1s the consideration which
leads to the ra2ed for properties other than ilnput properties
for purposes of descripticn. This point will be discussed

aaa.n in later sections.

I
e

g S

H
' + . o
T " S
v,
4




4. A Recoanit.on Algorithm using Conceptions

T™he importance of conceptions

exists an algorithm which c&n recognize a

environment as belcnging to a contept whose conce
This algorithm wili: he given later, after some other 1deus

associated with reccgnition have beern discussed.

besic idea involved 1in the alyorvithm can be indicated here

Let there be given an object (P, .p, : P, Py ;-..:

concepticon list of C includes only one relevant property

<

PR Y ~ { A Y ») [T P T o . . - 3 . 3 PR
{according to (Ci)) P, then € has non-empty intersections with
oo iy N 1 . w o - -1 he) v &
mOore thh one valuse of B, ASsSume [orv trhat P oi1s oan
vy Ny Sy Ml FRN ~1 ~ TN T~ S . Ty o 2
1npet propecty.  Then the obhiect indicates the valus of P oin
RS [ - & N 3 o N ~ P
WLl LU . 1 VasLily 0985 Ot o aCTul Tne
, . .
B T TR Sy v < o -~ il Y 3oy ~ - - 3 - . ;e
N et List 0f O, tiqon the ohtect 1y not mtaned o O,
R \ R . , N -
- o . ST K- tmvaee d
. helow. ) oOn the other and 1T the C¢hiect 18
A value ., 2f P, othen onoe Jd0es O OW SO
ES
N s - + [N <. - [ R - N . .-
JUrLa tnat vt T coOnta;ned 1noC. { e g R
-~ PN | (Y 3+ -~ - -3k ~ ooy &
not a8 rod JR One then intervat3ies (RN
[N LYY Y I ey T Yy, Y Nt Ry s e ey g ~ T vet N Trky
N JOIN WIS e Namd ippears N Uhe QUi N T S 200
— .- S - ~ e ~y T ~ 5 N ¥ JRu Do - wy g oy a e
?:Q\-;;}E? T e ul ot 1l Lho O 0. LE o oTaonTatnied
e . B RN R s $3 ey -y R
ST oL The adognacy tothis procedure 13 indrraced oo
1
TSN I
My Mg 1y e roefl AE oA thino N O oy
ey oA L e arerud DU one tnhing Nowa Ve that
Al
— R i} o o
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the recursive determination of the containment of the object

in ¢ O 21 does not invoive one in an infinite loop. That this

does not ccecur iz indicated by Lemma 4.6 below, which ‘ndicates

@]

that if a property coucurs alcone in the conception list of

LN carther teslis are unnecessary.

)
Foy

One also needs to discuss the cagse where a set «

properties B, P', P".,.. occcur in the conception of C acooraing

to {£ii) above. If this is an unvt get, then the procedure is
as indicated above. except that the name of ¢ ¢ 1s C ard L,

y
-
3
W
o)
.
3
o

Lemma 4.5 below the cbhiect i1g Xnown to be acont

Otherwise, ¢ has the

3]

i)
6]
n
=3

o
ot
3
o
.
o
o
(o9
O
3
[t
53
4]
™
84}
1
Ji

successively to see if

i)
o
=g
¢¢]
e)
o

td
D
I
Ind
b
Ui
3
1
]
I
o
ot
w3
@
o
o
o]
)
-
oy
“y

~ <« Y1 &% Ty o - I = e as) . E P P o ~ -~ S o -
tiil the list is exhaustad. The validity of this process is
[ . e s [ —
brought out by Lemma 4.5 below.

Ty - HR oy . ¥t

e rollowing ALTA0naN qutte Ur L

) ~ T ~ ~ = M - S o= 1 -
are nc. uded tor combpleteness and to establish that ooh
1 Ly ey o gy o oy by " i o IN e ~ - B
suLructure soheeporon 18 ~iin G JIro W
; . - L .
v . - §an R s am Ty ~ R . . - ~ e C v -

1Nto tne desian of every complicated data struccare D AT
S

T N t ~ | S, ~r v B I

Lemma $.4: It p, = P, has non-ompry 1nt S Bow ot

e et et e l 1 - -
- 3 s - Loy K e - -
Coand 1N s 4 2L ect wiltt non-empty wntoersoestion ' B
N - £ - - & -~
R U and anvay 1o X = U [

L
B g \ .
iU opart 1s obvio n SN ‘
+ N ¥ yF g - by Y
part. one nores thar ot X @ o Then X v,y The ren 4.
A, by
ot MNee by €30t PRI it ey 1 s [N e g
) [ it AT Thay 3 s o4 . N Unhae Vot . - 0 ’ N
1 :

< Py oLs no and Lome obhtects o N ave o T :
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o, and cthers are not., contradicting Thecrem 4.1.) Hence, Lf

B

X = C, then X =X 7 p; = Cp.

s
N
[

3 z - o o~ ~ ~ -
g Lemma 4.5: Tf ¢ =p,. TP, ... o . and
8 St . iy

[
—
-t

w
s
et
0
D
.
.
.
\
-
o]

é{ : be¢ ”.pl‘ # @ then X « ¢ if and only = p A2 i L
n I

. lence, X = C. The converse follows trivially since

@]
i
el

It p, ¢ - & & X - p, then X O = @,
4.

10e ~rn0f 1s evident,

(e

X . S - - by PR
3 It wax SOOLT QuUr gquaiitative SION Tnat uho
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properties mentioned in the conceptions ave all input propertiss

istad in e object., In this case. detarmina-

e

and hience, are
tion of the truth of statements like X & p, above 18 a trivial

matter of look-up.

p
§2)
l:‘
rH
¢
g
=
D
[
£t
0
tn
|_J -
o
fo
)
5
8]
s
I
1)
(a1

Howsvey, the test o

ifi
(-’-

¥ & p, is not alweys such a raight-~forward process, If P is
not a member of ', ons needs extra information te know if
A= Py- This information will he codified in the presant
recognition scheme by stiprlating that conceptions for the

values of P i. available in an acceptabls form. The following

definitions clarify what is meant by "acceptacle” here.
Y

The description list of the Universs is a list of lists
headed by the rame "U." Each list in the list of lists is

headed by the name of a ; operty in P, relevant to U with
respect to * and there iz a list headed by the name of each
relevant property in ©. ‘The iist headed by P is 2 list of

ordered palrs containing the namas of the values of P and the

nane of theiyr intersecticns -ith U.

A set of lists is a description list riructnuxe of the
Universe i. it contains wie description listc of the Universe and
a conception for all concegts whose name cccurs in the descrip-
tion list of the Dniverse.

It is to be noted that given a real envircnment
<4, 7.£'>», the deccription list oi the Universe is unique
Howev2y, the conception list ~f any other concept is not

necessarily uniguwe: nor is a description list structure of the




¥

SEPR T Pt

[y

1s

7
AN

property

P A Bt i e

(23]

< 1
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{(De1)

N
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does not necsssarily make a

Universe “acceptable"” inform
contained in some
further definitions

iven a cescription list structure of the Universe,

)
‘5
fe)

Universse unigus However, the fcllowing theorem is true.
. Thecrem 4.7: In an environment <U, P, P'>, each
* element of P - ' is reievant to the Universe with respect tc ¥
Procf: Since P is a fine structure family of
propertiss, arv concept 1is 2 Boclean function of value of
2lements of ?', Alsgoe, since each element P of £ is a non-
trivial partiticn, any value p of F is a propor subset of the
Universe. Hence, there iz an object X wnich 18 not contained 1in
e. Let X = p, & Py Soeaa D p, where n is the cardinality of
', ‘Then, since p leW Po (1 eas fgpn = g, P ig directly
rzlevant to p, ='“:pz AR P and hence, ralevant to cthe
Universe.
Hence, the name of every element of P - ©° heads some
list in the descripticn list of the Universe. Hcrever, this

description list structure of the

ticn for finding whether an cbiject

a

value p of non-input property. Some

are heeded,
a

is called pre-defined if and only if either

:‘)I

P e
All properties whose names ocour in the con-

D

ceptions of all vaiues of P are pre-defined

properties.

A description list structure of the Universe is called

valid 1f every element of ¥ is pre-defined.

To exemplify
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velidity, the following is a description list of the Universe

showr in Figure 4.1 in Section 3. Tthe description list of U is

- - - - )
‘Rl ' Rl) (Rz R 2) (R3 ' R3) \R4 ’RQ'
.Y - - f
‘i ébl; (SE 152) ‘EJ 153)

hd ’\Tl IT!) b (T2 iTr}) - (T 'Tg)

X, g e U e e
]
v

X possible description list structure ~f U might contair in

e T e e T B T e

addition to the above, the following conceptions

! o

| |

? g4 - (Ql !a) = {Q2 15) - (qv fY) - (Q4 15) f - (ps !a)
vy

b - f .

H q (q, Q)

§ g Y 3

i ! !

: . ) )

; ? (Pe  8) f (pg V) P {pg +6)

4 - - {g - A

. Q (QZ  8) q (g3 FY) q (q4 , 6

%

&

£ R, ?

[ | |

i S - {S; M) - (S, W) Tk a3 - 1K)

: N F H

| | | |

4 - (@4 :F} - (g, +H) T - (py +F) T - (p, «H)
q - (a5 .F) a - (q, H)

et e e R R
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J K R,
! , | |-

- {m L - 7 . 4 -
ot a i (T oK) S - (S, (L) - (S, .2)
a8 - (Sl cJ) 5 - (Sl LK}

[
;S - (52 /L)
T - (T2 IL)
Z € I
i ! |
T ~ s\T?_,e} - (T3,1} 'ir— (Tz,e) "’7— (TB,I)
g - {qg ¢) 5 - (85 ., 1)
R4 b o
| | | |
P - {pl :CD) - (P2 ,“f) ;]) - (Pz ,\V) S - (Sz Ig) - (83 :q)
M T (q5 !\F)
g N
l :
T; - (Sz Ig) - (qs 1“)
p - (p; 5} p - {p; M)
Tl Tz
q - (ql lwl) (qz :q2/ q - (Q2 ' 3) (Q4 'Q4‘
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Tl Tz
!

q - (ql ’Wl) q - (qz iq2) - 1q3 lq3)

hE

!
T Ty T3
| l |
T - (fl iTl) T - (Tz ;12) T -~ (ﬁ 3 7T3)

This description list structure would not be valid, since wie

concept Tl is described in terms of T, which is not a pre-
defined property; also, descriptions of the cuncepts

4y 9y + wy v whose names occur in the descriptions of values
of S, do not occur in tne list. In the above list, one replaced

the conceptions of T, . T, and T3 by

T T,

P - Py .Py) - (P, .P,) p - (Py ,P3y) - (P, .Py)
T
|
P

and added the conceptions

93 d4

! !

a - {95 .45 a - (g, q,)
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Py P2 P3 By
E |
p - Py Py p - (P, Py} F - (py +P;) p - (py /Py

the description list structure would be valid.

Theorem 4.8: Given any object X, a property P,

P £ P, and & valid description list structure of a finite
Universe, it can be determined by a finite process whether
X = 1.

Proof: One first associates an integer with every
propoxrty as follows. With each element ¢f ' one associates
the integer 1. For any other prcperty P, "ne asscciates an
integer Dy defined as {collows
n, = 1 + max {np,l?' occurs in the conception of some value of Pl.
With a valid conception ¢f the Universe, np is uniguely defined
for every property. The proof is by induction over np.

If Ny = 1. then P ¢ ' and the name of a value of P
occurs i ¥. X « p if and only if this name is identical with
p. Hence, the theorem is true for P if p = 1.

Let the theorem be true if ny = k. 1If n, = k+1, then
in the conception cf p, only such properties Q orcur such that
nQ S K.

If the conception list of p contains the name of more
than one value ot a property Q, then X « p only if X VMg # &
for exactly one q < Q. (Otherwise X 1s properly contained in
two disjoirt sets.) Since there are only a finte number of

such values, the containment of X in one of them can be

detormined by a finite process.
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if the conception i:st of p has one value from a
finite nurher of properties, then, since for each property Q
in this list rQ < k, the containment of X in p can be
determined by a finite process.

Tc¢ understand the way the integers {nP} are
agssociated with the properties i~ the above procof, one can
once more invoke the valid description list structure of the

Universe exemplified in Figure 4.1. The initegers asscciated

with the variocus propercies zccording t~ the scheme described
in Theorem 4.8 is shown in Table 4.1. It will be alsu noticed
“hat conceptions for dg + Pg and qy did not have to be incluued

in the valid description list structure since their names ne er

occured in the right hand side cf any ordered pair in an, of
the conceptions.
In view 0of the discussions of this section and the

last, the reader will be able to convince himself that the

process indicated by the recursive flow chart slown in Figure
4,2 csn eilectively determine whether an object X belongs to a
concept C, if the conception of ¢ and a valid description list
structure of the Univirse is available. 1In this flow chart
three push down stacks are used: J, P aad C. The list L is «
list of ordered pairs which is to be empty at the first entry

to the program. The name of the concept 1s to be entered in

SRR

stack C before starting the program. In the flow chart, all
variables are to be interpreted in the normal manner as de-

noting the content of the address named. In the case of stacks,
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R? in the conception iist of A. As & resu’t, box 3 re-anters
the preogram, testing the cobiect as subset of R,. Tha properiy

menber of P, and not occouring 1o L, bDox 2 matches Sl in the

degcription lisc orf the Universe with Sl cccuring in the con-
~gpticn iisv of Rza Hence, box 3 re-2nfers itue procram testing
the cbiject ¢ 2 subset of §,. ¢ is unmarked, not in L ard

occurs in . So box & matches a5 in tha conception list of §

-

with the value of g in the obiect. Hence. box 5 tests the

object as a subset of g, {(ag i1t <id testing for w,} and on

[44]

list L. following which

~s
e
pord
o
]

p
gaccoss, box 8 places (S,;E‘,:L
bex 5 re~enters the progra  «=sting the cobject as a subset of
@ (the intersection of Sl with Rz). T s not marxed in the
conception list of M; nor is it in P; hence. box 2 isolates

the valve T* ir the description list of the Universe and kox 3
cests the object as a subset of Ty« P being unmarked in con-
cewzion 1ist of Tl not cocuring in L and not being a member of
P', an attempt is made in box 4 to matca tne value of p in the
object (93) with the value P and P, occuring in the conception
list of Ty- This results in a failure exit and box 2 tests the

object as a subset of T This succeeds (in the same way as

2
X < W, succeaded). Hence, (T,Tz) is placed in L by box B and
hox 5 tests the object as a subset ¢l K. The first unmarked
property in the conception list of X (T), occurs in L (saving
the trouble of a re-evaluation), 1its value (&z) matchos the

value of T in k. Box 6 marks T in the conceplion list of K,
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evexy description

language 18 constructed out of a set of predicates and a mode

ombination ~f predicates to yvield compound staterents -ith

S
r
9

only onhe free variable 30 that in its interpretation it denotes
a subset of the Universe of Disccurse. In the languages discus-

sed in this section, the basic predicates are unary also {con-

DA RS RN R

t>ining & single variable}. 1In the language discussed so far
{(whose sentences are conceptions) each set is described either

as the unicn of a class of disjoint sets or as the interso .:un

L N

of a class of property-values. ™e basic buiiding =.ocks of

é the concepts then are the ciass of ~7icepts each ci which are

§

§ «htersections of a class of propeviv-valoss. The building

!

% blocks will he ca.led Yconiunctive concepts” for the purposes of

% the vpresent discuszion.

4

% The gize of a conception describing a coniunciive

i

: cencept certainly Jdepends on the number cf property values to

i be 1interscoted toe obtain the concept. The size of a conception

? describing concepts other than conjunctive concepts is larger
than the sum cf the sizes of the conceptions describing the

§ disjoint conjunctive concepts of which the given concept is the

union. If there is more than one conception for the same con-

cept, then it is quite difficult to decide without careful

stud as to which of the given conceptions has the minimum size.

It can be surmised that in a reaxl environment where © = ' and

is full, the conception of a concept will be smaller, the fewer i




the numbe: of conjunctive concepts used as building blecks for

N

the concept. In what 7o lows the supposition will be made

3

that if a concepftion describes a concepts as & conjunctive
concept, then this is the smallest conception for the concept.
Whether such a conception exists or not for a concept certainly
dep.nds on the snvironment, i.e., on the structure of the
properties available.

Given a certa’™ real environment and a certain con-

L% may bo of interest to find a shortexr conception
Lol denetss The seame concept. A method for doing this has

-

been developed by J. C. Pennypackeraﬁz Cther related methods
developed by him will be discusssd later.

Civen an Universe (for instance, the set of all
occurances nf bit-configurations on a squace grid of photo-cells)
whuse elements can be coded into computer inputs, one can
generally come up with some fine structure family of properties
for that Universe. In the case of the square grid of photo-cells,
for instan~e, the excitation value of a particular photo-cell
divides the set of all bit-configurations on the grid into two
disjoint subsets. The family of properties deiined by the
class of all photo-cells forms a full fine structure family.

The Universe of all configurations on & chess ‘board has as fine
structure family the occupancy of each square on the hoard.
(As an aside, this fine structure family, c¢f course, is not

full - not wmore tharn one white square can be occupied by a

black biship, for instance.) One can surmise with some confidence
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*hat findirg a fine structure family cf properties for an

Universe is a problem that con be safely relegated to the

intuition o0f the experimenter.,

However, in most Universes (except those specially

designed by psychologists for specific tests) one is specially

interested ir naving Jdescriptions for certain giwven concepts

(the set of all "B"'s on a pshoto-cell grid: the ... of all

forcing situations on a chess-board, etec.). Generally these

concepts are not ~onjunctive concepts 1. one

restricts oneself

to the input properties alcone. In the intecegt of practicable

brevity, it 1s essential to have properties in the envirconments

such that the concepticns for these concepts be short ana (if

wracticable; ceonjunctive. A large part of the effor:t in the

field of pattern recugnition is directed tow.vds the search for
suitable properties (the values of these properties are called

"feotures" in the field). often acceptable looking ieatures

are assumed to exist and statist.cal methods are develop.ad to

reduce the probability of incorrect classification by choosing

the izast harmful conjunctive concept to approximate the concep.o

at hand. Concepis others than conjunctive ones are often suc-

cinctly expressed by invoking modes of combination cther than

the cnes useud in Logic. These will be discussed aporopriately

later. Meanwhilc, one may be tempted to pose the following

enerasl problem, "Given a class of concipts in a given real
g Y g

environment <U,%,#'>, to enlarge the class of preperties such

that each concept in the class is conjunctive.” In this form,
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the problem has a trivial solution, "Use each concept in the
class togehter with its complement as & property.” This, of
course, does not reduce the memory size in any way. For n more
realistic pcsing of the probklem, one needs to take into account
the size 1lncreace involved in incorporating these new properties
into the description list structure of the Universe. The prob-
lem called, "feature extraction® is closely related to this
problem. To the best of the author'‘s knowledge, sucun a problem
has not been taken up in the literature irn this form. Also,

si.ce the measure of siz

D

is highly language dependent, the
development of more powerful description languages is a
wre-requisita.

The major point that will be considered in this
section will be a mode of combining unary predicates which
renders it easy to have short descriptions, not only for con-
junctive concepts but for a much larger class of concepits which
shall be called "Simple"” councepts. The theor:;, developed for
the purpose will also indicate mothods for describipa non~simple
concepts by the use of simrle concepts which approximate it.
Alsc, 1n a later chapter it will be shown how one can use his
language for "generalization" or concept-learning.

At the presei.t lev~l of development of this theovry.
no distincticn is made b~tween input and non-input properties.
Since given an environment <U, >, ¢ 1tself ie 2 fine structure
family, one can say that t.ue theory deals with a rea. environment

<y, P, P>, At the present stage of thought it is not clear




whether the extension «f the theory *n the case where ' # P
in any but the most trivial way will be of use or not. &
lar,e amount of theoretical development also is nesdsd because
the class of simple concepts indicate close relationships tc
topologies on the one hand and with decomposition of games on
the other hand. This will e indicated in detail later.

As before finite environments will be considered.

let = fPl ’PZ"'Pn} and let for ec h i (1 < 1 S n),

= - . . e . "
P, = {$i1 Pyy ""piri}° Given a concept X, define a set X,

calied the superconcept of X 1s follows

x® = U ip..lp.. N x ¥ @}
1 =

That is, for each i, one defines the set X, which is the union
of tho.e values of P{ which have non-empty intersection with X.
x® is obtained by taking the intersectiun of Xi for all values
of 1. As an example in the environment indicated in Ficure 4.2
the superconcept of the concept @ = {5,6,7,8,9,10,13, 14,15, 16,
19, 20} would be the concept TN W, Uwy) 0 (py Uopy) )

(@, Uagy Uy Uaggd N (Ry U RN (S, U, USy): that is

a® = {3,4,5,6,7,8,9,10,1 ,14 15,1¢,17,18,19,20 . ~° has 2 as
its subset. This is true in -reneral. That is

Theorem 4.9: For any concept X, X «

Procf: X =X U =X

each 1 (1 -~ 1 = n).




Howaver,
o
L) ' ' p. .} = {¥% 3, { ..
U [x Npysd = U (x ﬂzljix ARJIPR N
] =1
Hence,
X=0 N J.L_i!'x N pi; # gl
But,
X flpij - 913
Hence.
I = J{o . : }
hie y lﬁ,ji}& pi1 # QJ

“or each 1+ { s ¢4 <

Hence,

1

Ui jxn Py * 2}

PR

)

i

>

a_’ X
4 B

1= 1

From Ch®- theorea it follows that X° ran be taken as

an “pproxir-tion s0or X in the sense that any € lement which

- s . .
not a member . X° i3 ¢ rtainly not - member c: X As a mattey

¢l fact, a much s*.liger statemen. can be made regarding the

approximating ability ot superconcepts. It can be noticed

L ~ X -s _ . i | ~ s :
for instance, that a- = (Rl.J R2 L’RB) ;;;Wl\J WZ\J WB)
M (sy s, U sy) (T U, T3Y 0 (py U p, U Sy Upy Upl)

f}{ql Loa. o d, U‘q4 U'qs} whose complement is the sor

S {n,h00,8, 0 10,19.20]) which is a subset of g This alsc
18 true o Geooval:s tl ok ig

. , . TS

Cerollary 4 10: For any cuacept ¥, X° < ¥




Proof: X° 2 X

Hence, X =2 iﬁ

=S s . ‘
Thus, X and X" can ~= soked upon as lower anu u, e~

>

. . . - L8 .
bounds of X. Hence, if one ¢ .oves drgcriviiong ol X and

—rsams

X, one can recognize varic.s objoct: 2f peing detinitely con-

tained in X, others as def 1itel» n . ! .ing 7 mtrins nox.
In addition to the fac 1@ the upe concepos of a
cencept and its complement yiel S0 ep2roXimaz . ng o 2 oon -

cept, it is to be noted that they a. ¢ nhave rathe: simple e
scriptions in a specific language. Tt s 1s brought ou* y tae
following theorem,

Theorem 4.11: For any concept

-8 m ol 1 SR Y \('_»_-_: v
X L “pij{pij e P, P, P,y (X 2
Proof:
n
x> = N Ulp..lp., e P . p X # 2]
R 117515 i i
i=1
n
= M 1‘\/;{ ; . L8 P, = X = }
0 SINEY L Py 2
- n ) T o
- oo . . ) N = g3l
3 w r;j!plj Pl ;K } PX i
i =1 -
= | ¢ ‘ o . } , ~ e 5) R RS - b a -8
J 1};3““31,J Poooy C Ry, R E L

Hence, the superconcept of any cc <ept X <an bhe

described by storing the list of those proverity vaiuos wi.ich
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have empty lntersections with X. Thus, the description of

could be s*ored as

;) JRy SRy, T, Ty ,hﬂ)

Clearly, this new mode of description of concepts makeg 1t
necessary to have a new algorithm frr determining whether a
give.:. oblect is contained i1n a superconcept or not. Such a
rrogram will be discussed later. Meanwhile, it is worthwhile
Po. ‘ting out that the present language of description {describ-
ing the superconcept of a concept and its complement) dc=s not
restrict one to steyng approximations alone. At some exi:z

%, all concepts can be described ex»ctly if one allows In

the  anyage the capability of expressing the union c¢f described

sets. T0 see how this can be done the following are introduced.
. .S 8.8
Taeorem 4.11: For all concepts X7 = (X7}
Troet:
LS s T 7 N b
X° = Jip.dp.. < P, , P LoD, X o= @
117513 1 1 i3
w o, oo oany pooo© Poosuch that P Cop. N = @ implies
k 1 B
D . tho b o1s p - X wmplies p. -
1o L 1)
g - . , . FSy S 1
one obta.ng p = X7 omplies poo- (X )7, t.e., p « X amplies
: 1] T L]
0 V5
I Y.

Henoe,
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sublat. e of the set of all subsets of K, considered as a
lattice under inclusion is anti-horomorphic to the lattice of
all simple cuncepts under inclusion,33 For the purpose of this
sectio: it is only neede . show that the set of all subsets

of K, partially ordered by inclusion is ~ti-homomoiphic to th-
set of all zimple concepts, partially ordered by inclusion.

The mapping H, described above is the anti-homomorphism involved.
This is shown in the following theorem.

Theorem 4.13: Iet o and B be subsets of K and let

H(a) and H(B) be the corresponding simple concepts. Then
a S 8 implies H(B) < H{a).
Proof: If a & g then pij € g implies pij € 8 for

~ ]
each pij € Pi . Pi e .

Hence,

p.. € B}.

s . ] !’ {
U ipijlpij e a} = U (PiyIPs

Hence,

H(s) = U Tpy1P;

e 8} s U {pijIpij ¢ a} = H(a).

The converse of this theorem is not necessarily true:
there may be more than one a with the same value for H(a). How-
ever, among all o having the same value for H{a) an unique one

can be chosen.

Theorem 4.14: If H{a) = H(a) = A, then H{a U B) = A.

Proof: Let a and f be two arbitrary subsets of K,

P.

ij € @ implies P; NHia) =@
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whenc:
- {
Pis H{a)
similarly,
pij « f implies pij < H(B)
hence,
o ‘ - e
pij e o J B implirs Pij & H{a) U B(B)
or
oy, = H@ TTH(E)
whence,
. . U & {
U {Fl]‘pi] e o U B} < H{a) N HIR)
or

H(a U B} =2 H{a) N H(B)
However, by Theorem 4.13

H{a) =2 H(a U B)

H(B) = H(a UJ B)
so that

H{a) M H(B) 2 H{a U 8}
whirh, with the previous inequality, shows

H(a) M H(B) H(a U B)

i

If

H{a) = H(8)

i
>

as give by the hypothesis

s EEA) !@x?‘i&"ﬁ*{.‘:‘rm
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a = H{a) = H(a) N H{B) = H(a U 8}

Since the set of all subsets of K is finite, the set
of all subsets a of K such that H{a) = A is a finite class of
gsets. If M{A) is the union of all subsets a of K such that
H{a) = A, then this M(A) is an unique set such that
H{M(A)) = A. In the following thecrem, discussion will be
limited to those subsets of X which are M(A} for some simple

concepi A.

Theorem 4.15: If A and B are simple concepts then

A & B impliea M(B) < M(A).

Proof:

Hence,
ANB =2
Since,
A = H{M(A)) and B = H(M(B))
H(M(A) UM(B)) =AM B <A
as indicated in prouf of Theorem 4.14.
But by definition of the function M
H(M(A) U M(B)) = A implies M{(A) U M(B) & M(2)
whence.
M(B) < M(a)
Given any simple concept A, M(A) can be found effect-
ively. It will be shown in the next chapter on concept learning
that a rather straight-forward algorithm exists which can find

the value of M for the smallest simple concept containing a
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given set of exemplars. James Snediker has written a program
hased on 'indek.echt's work which learnsg superconcepts of
concepts from examples and stores chem as values of the M
function.34 For the purposes of this chapter, it will be
assuvmed that the descriptions of simple concepts A are stored
as the lists M(A). According to the last two theorems given
two concepts A and B, one can fird by merely comparing the
lists M{A) and M(B}, whether A is a subset of B or not.

If now one has the values of M(AS) and M(Ks) stored
in a comy :cer memory, one can deduce if a certain object X is
a member ¢f A in an approximate manner. If M(X) 2 M(Ks) then

=5 . . . . . .
% A°. However, X, being an object, is either contained in

J’ut =

or is disjoint from it, according to Theorem 4.1. Hence,

|

X S A. If, on the other hand, M(X} 7 M(A®) then X % A%,

in this rase, X & AS, and since A < As, X £ A. If neither of
these cases hold, then no conclusion can be drawn regarding
the inclusion of X in A.

This approximate procedure is an analceg of the
Pennypacker recognition procedure described in the previous
section. However, 't is done by very simple programs based on
very simple data structures. |

If one can find simple methods for calculating the
M-functions {a} whose corresponding simple concepts {H(a)]
yield a given concept by unicn, then the above approximate

recognition methoa ¢an be improved quite easily. 1In that case,
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the problem reduces once more to ascuring oneself that the
number of cimple concepts needed tn describe a concept be not
excessively large ~ even though one already has the as_urance
that i* would not be larger than he number of conjunctive
concepts needed to descrilbe a concept.

Before this last aspect of efficiency of description
is disemzsed (and this will be discussed in a more generalized
case in the next section) one must also point out that for the
list comparison algerithm to be effective the description M for
the concepts invelved has to contain every property in the
environment, not merely a fine structure family of properiies.
Hence, it 18 required to introduce some Iurther algorithms for
deducing property-values from the input properties as was done
in the previous section. This would require the storirg of
certain property-values as described concepts. Efficient

methods for this have not been developed yet.

A T STRRANADN L A A e e e . N R
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6. A Generalized Descript-on Languags: Svntactic

Axiomatisations

In this section the ideas intrcduced previously will
be generalized and given a syntaccic fcorm similar to that of a
formal logic. This will enable generalizations to description
languages of greater flexibility and descriptive strength than
are presently available., Several stages of development of such
a language will then be exhikited and their use exemplified.
Indications will be given later of how far these uses have
been implemented on a computer.

It probably need not be established in any great
detail to any discerning reader that what have been called
conceptions and subset: of K in the previous se~tions are merely
different ways of putting together atomic formulas to yield
statemont forms. These statement forms are characcerized by
the fact that they have only a single free variable. The
component predicate letters are all unary (have only one
argumert) and give rise to predicates with one free vaciable.
When these are put together to form statements, they all have
the same free variable so that the resulting statement form
has or~ free variable only.

what have been called objects in the previous sections
are also examples of compound statement forms with a single free
variable. These statements with a single free variable define
sets of elements for which the statements are true. On the

basis of this, tests have been described so far whicr test the
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inclusion of cne set in aanother. However, it nas been tacitly
implied that these tests will be used more often {and in the
case of :~nrpacker and the author ; work, exclusively) when
the included set is denoted by an object.

In the cases treated so farx, where the environments
have been finite, one could construct objects such that the
name of every input ~ropexty occured in it. As a result, the
gets indicated in Theorem 4.1 could actually be denoted vy a
finite statement corresponding to an object. Since two elements
«n such a 8.t cannot be di- ..nguished by any concept, one might
consider each ~lject as denoting a single element. As a res.lt,
the objects themeselves could be considered as the elements of
the Universe. This point of view will be persued in the rest
of this section even though szsme of the discussions of this
paragraph are invalicd in cases where the Universe is not finite.

When an object k is an element of the value pij of
the property Pi ., this fact can be expresseu by a siatement of

the form k = Py This would necessitate that values of dif-

j*
ferent properties to have different names. However, there are
certain advantages to using the same symbols for the names of
values of different properties. Some of these advantages were
indicated in Sectior 3 of Chap 2r 1. 1If such similarities of
names are allowed, then a statement of the form k ¢ pij becomes
ambiguous since pij ané Divar Ay be the same symbcl. It 1is

mCc ~ advantageous to express the fact that the object k is an

element of the value pij of property P, by a statement of the

form Pi(k) - pij'
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In the past, names of rconcepts have been attached to
the conceptions or the lists M(A). 1In effect, the descriptions
have stood for statements $(x) with a singie free variable x,
and the names C of the concepts attached -0 the descriptions
have indicated in effect that an object k is an element cf the
concept C if and on'y if the sentence S(k) is true:; in effect.,
these have stocd ror statements of the form x ¢ C = S(x).

So far it has been assumed that names of properties,
their values and concepts are symbols. However, it has
~lready been indicated in Chapter 1 that various concepts can
be given short descriptions if one allows the processing of
the names of pruperties and values. It will, therefore, be of
advantage if these are allowed to be objects, so that set
theoretical processes can beg carried out on them. This would
allow the same programs that process objects to process the
names also and a large amount c¢f descript.ve pcwer would be
cbhtained witnout vitiating the flexibility of the processing
and without increasing uadv'r the cize of the program: which
do the precessing.

Cne, of course, must take cognizance of the fact that
the set theoretical processes discussed so far are merely
capable of working on sets defined by unary predicates, while
most of the time the processing of names that goes on in pattern
recognition activitiec 1involves the calculation cf functions
and the ascertainment of relations. This, however, presents

no problems, since tunctions and relaticns, being sets of




ordered n-tuples, may themselves be _onsidered to be concepts

in an Universe of ordered n-tuples. Alsc, n-tuples have tho
obvious n properties defined by each cf their compenents. This
fact will be made use of repeatedly in the examples that follow,
i It may be pointed out, of course, that this pcint of view
‘ndicates tX3t some objects under discursion will be constructed
out of property names which are entirr .y different fiom the
property names used for constructing other objects. This may
be looked upon as indicating the existence of a set of environ-
ments rather than a single one. Alternatively, one may con-
sider that each object is constructed out of only a subset of
properci.s. This certainly would perclude the objects from
being unit sets. Since such a possibility has to be admitted

in any infinite enviroument (and, as will be seen presently,
this is a very natural requivrement), one nead not disregard

this latter interpretation of an object. There is, move. ¢,

a shilosophic justification to it when one considers that

tha description of an "object® (in common parlance) often
depends on thes context. When one talksz about a person. for
instance, he may be talking about svervry appearence of the
person on avery occasion ("He expresses himgelf well") or of

i a spacific appearence of a specific trait {("He was angry to-day").
When one says, "The letter X" he may be taiking of a clasz of
latters or a single wmark on paper viewed from five directions
or the same single markX geen in a certain illumination ut a

certain time.

o . [ e etiasaie e st a s
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In any case, the comp
tion of the syntactic structure has not been investigated yet.
Especially in its fully doveloped form, discussed at the end

of this section, this lack of interpretation raises sevcral

[

questions regarding the formal properties of the logic involved.

For the present, attention will be directed towarrds the

£
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syntactic properties of the language only and its interprctation
will be taken informally to be as motivated by the discussion
above,

The major syntactic features of the language have
wlready been discussed. 1Initially, one assumes ~ set Of
gymbols, which will be taken to be countably 1riisrte. To give

syntactic meaning to such 2 set, they will he ldentified with

words on a f1 i1te alphabet. The set of symbels. togother with
the special symbols (,),..:, =+, ..&, ~ ¢ and -~ 214 a specific

string IN {(standiny for a sinagle variable "Input™) will con-

1 P N e ey e - o T r e s 1! - e
struct alt vaile phirases ot fhe {anJguage. The most obvious
interpretations will be on the set of all "cbhiyects" as defined
befere. In wnat follows the basic definitions of the syntactic
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~rdered peir. o is the left hand element of the

ordered pair and g is the right hand element of

the crdered pair o.f.

,-‘
1]

4. an ordered pair is an orderxed palr string:

« and B are crde.ed pair strings, then a:8 is

an ordered pair string.

5. 1f o is an ordered pair string then {a) is an
ohiject.
6. An object is a term.

An example of the syntactic appearence of an clhject

AT 7 A s LR R S R A R e R

S may be worth giving here

{name, harry; house, (number, five; street, luther))

denotes (under interpretation) a person called harry whose
house is distinguished from others by an address. The value

of the property "house" itself is an cobject here.

7. Thz string IN is a term.
! 8. If ¢ is a term and B is a term then a{R) is a

term.

S g 8 e

9. If o is a term and B is & term, then (o=B) is

e | a statement.

10. If a is a statement and B 1s a statement, then

i Lo

~a, {avB), (a&B), (o—~B) are statements.

11. If o is a 2rm and £ is a symbol, then {ceB)

o : is a statement.
S 12 1f ¢ is a symbol and B is a statement, then

INea=p is a concept. o is the name of the

»
i3
i T
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concept and the intention cf the concept.

It is worth remarx..ing at tihils point that the syntactic
entity “"concept.” as defined here is at variance with the
meaning attached to the word in previous discussior<. In the
rarlance of the previous discussion; a concept would be the
set of zll elements of the Universe which satisfies the inten-

tion of a syntactic entity, "“concept. The intentisn is what

has previously been alluded to as the "description"” of the
concept.

Among the set of statements defined abcve a subset
will now be defined tc be the se. of "true statements." For
this some auxilliary definitions are needed. This involves a
mapping {called "value") from a subset of the set of zll terms
and ordered pair strings into the set of ail terms and ordered
pair strings, defined as follows.
i3, The value of a symboli 1s itself.

4, The value of IN is not defined.

15. The value of a term of the form a(8) is defined
if and only if the values of a and B are defined,
the value of B is an object and the value of a
is the left hand element of scae unigue ordered
paii in the value of B. 1In chis case, the
value of a(f) is the ric’.c hand element ~f tre
ordered pair of which the value of o is the
left hand element.

As examples, the value of color{(shape, sguare;

color, blue)) 1s blue while the values of color((color, red:;
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color, dlue}) and color({shape, sguare; size, big)) is

undefinegd.

16, Te value of an crdered pair a,86 is defined if
and only if the valu~~ ~° ([ and 8 are defined.
In that case its value is a',8° where o' and
8* are the valves of a and 8 respectively.

17. The wvalue of an ordered pair string a:B is
defined if and only if the valueg of ¢ and B
are defined. 1In that case its value 1is a';§*
where o' and B' are the values of a and B
regpectively.

18. The value of {a} is defined if and only if the
value of u is defined. In that case the value
of {a) is (a') where o' :is the value of u.

18.  An object is an exemplar if its value is itself.

20. Two symbols are identical if they constitute
the same string of characters.

21. Two crdered pairs are identical if their iefr
hand elaments and their right hand elements
are idertical.

22. Two exemplars are identical if cach ordered
pair of one is identical to some ordered pair
of the other and vice versa.

23. A statement (a=B) is true if and only if the
values of o and P are defined and th: value of

a is identical to the value of B.

© A I CRAMRNR T BN, | B b s
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_ 24. Given a set D of concepts a statement is D-true
§ { if and only if it is true or if the statement
§ is of the form (ae8), B 1. the name of some con-
; cept K in D and the statement obtained by re-
: % placing every occurence cf IN in the intention
; f Kby a, 2 D-true statement results.
é 25. (av@) is D-true if and only if either o or B is
% D-true; (a%8) is D-~true if and only if both a
? and 8 is D-true. ({9} is D-true ‘£ and only if
i {~0v8} is D-true: ~a is D-true if and only if «
i is not true and doese not contain the term IN.
2 It may be worthwhile at this point to exemplify the
§

utility of this system in terms of the example used at the end

of Section 3 of Chapter I. Let D ceonsist of the single concept
Incaz { (head (borders (IN)) = t, & {{(head{crosses(IN)} = f)

£1))).

Then the stotement {({crosses, (head, £f:tail, t) iborders(head, t, tail,

H]

; vi{(taili{borders(IN}) = t) & {tail(crosses(IN))

fi)eaw) is a D-true statement. This can be seen as follows.

§ Since the statement s of the form ae¢f, one obtains by definition
24 above that the statement is +trus if and only if the statement

obtained b, replacing all cccourences of IN in the statement to

the right of @ in the concept above by (crosses, (head, f:tail, t};
borders, {(head, t;tail, f)) is D~-true. This siLatement is of the

form 0&B. The right hand conjunct of this statement is
(head(bordew((crosse&,&haﬁd,f;tail,t)vbordersr(hwad,t;tai;,f)))) =

t). By defipition 23 this is true 1f the values of the terms
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on the left and right of the = sign Le identical. The valus
of the term t is ¢t py definition 13. The vaiue of the left

hand term is defined by rule 15 to be the value of head(ihead.

t:tail;£f)) which is t again. §o ona of the conjuncts of the

intention of the concept named "a" is true. Thz other conjunc

i# of the form aVf and is true by rule 25 if either of the
two @’ “juncts is true. The first cisjunct is

(head {crosses ({crosses, (head, £;tail. t);

borders, (head, t:tail, f)))) = £}
which is again true by definitions 23 and 15 and 13. One dis-
junct being true, the statement is trus,

Before exhibiting by some more examples the extient
of the power of the language, .t is worthwhile to point out
that any statement in this language which does not contaipn IN
can be tested for truth by carxying out an algorithm on the

statement which is closely related to the definitions 1-25

above. This algorithm is shown in Figure 4.3 in flow chart

form.

In indicating the fiow chart it has been assumed

that the tests indicated in the control boxes of the flow
chart can indeed be performed. The assumption can be justified
on the basis of what is known about svntax-directed parsing
to~day.35 The point will not be belaboured here.

since the progrars are recursive, some of zhe

variables used are actually stacks. 7T< distingu.ish them from

other variables, their names have been written in upper case
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letters while other variables are named in lower case letters.

; As before names are written in quotes and their content without

gquotes.

It might have been useful at this point to irclude

BT I ST

a proof that the algori. hm exhibited in Figure 4.3 doe:
terminate for every statement not containing IN. However, the
proof is simple and the reader may be left to convince himself

of the fact. However, the fact that the algo.ithm does terminate

leads to the useful ract that all statements in this language

¥

can be recognized as vrue or false. The language is "complete'

in that sense. It is also "consistent” in the sense that all

LMK, AN R, TR

statements are not true. Alsc, it is "decidable" in the sense
that givern a statement it can be decided with a finite number

of operations whether it 1s true or not. However. these

assertions have very iittle significance 1in the mathemat:ical

trict

U

sense, since what has been described above is not, i1n a

sense, a logical theory. Later opn in this sect:on, in the
interest of greater strength, the language will be extended

into a logic. Meanwhile, the following examples will show

il [

that the language. even 1n 1ts present torm, has considerable

strength.

g
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The first example indicates how rep:
integers and operations on inregers can pe descr:ibed within
the machinery of the language descril» ' so far. It will be
congide.~d that the 1ntegers aro oxyvrossed by binary nur-rals.

&
A

ach numerati will be cons:dered to nave two proverties, "head®




e e L e

e st et i i

WD

PRI R

and "tail." The values of "tail" are " and "i," and cztand
Zor the leasit significant digit of the numeral. The values
of "head" are either "null" or an integer, representing the
more significant digits of th- numeral. To make sure that
confusions do not result from leading zeros, they will be

disallowed in the description. In what follows a set of con-

cepts will be introduced w~hich will define positive integers,

Py

the relaticn of natural ordering among integers and sums of
integers. From these, the recl~r will convince himself, the
arithmetic of positive integers can be defined. Zero and

negative integurs can also be defined with some work.

1}

INedigit= ((IN 0) v (IN = 1))

INclesgsd=z {(first{IN) = 1) & (second(IN) = (})

INenumer= (( {head (IN) = null) & {tail{in) = 1)) v {(head(IN)

¢ numer) & {(tail{IN)} ¢ digit}))

INelessz (({(head{first{(IN}) = null) & ~(head{second(IN})
= noetl))) v ((first,t rad(first{IN)):second. head
{(s2cond {IN))) ¢ less)

v {{head{first(«4N})) = head{second(IN}))

INegumds { (second (IN) = 0) & (first{IN) = third{IN})})

st (IN) = c<hird{IN)))

joW)
-
A
—-
4
[
e
2]
¢
—
[
ot
il
[¢4]

v {{secon:

IN€carrys ({first(IN) = 1} & (seccnd{iN) = 1})

INcsums ((\Jirst, tail(first/IN)):second. tail{second{IN)};

thirvd, taii(third{IN)}) < sumd; & ({(-{({first,ta:l

bt iy v
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{first {IN));second, tail(second{JN))) = carry) &

second, head (second (IN)):

—
o~
n
-
"
0
o
o3
1]
w
oF
—
]
e
3
0
rtr
o~
[
i:c"
—

thira, heada third (IN))) ¢ sum))
v {({{first, tail{first(IN));second, tail (second {IN)))
¢ carry) & ((first,head{first(IN)):second, head

(second{IN)) - -third, head (third (IN)) ¢ ripple);)))

v {({firs* (IN) = null) & {second(IN) third (IN)))

v {(second (IN) = null) & (first{IN) third (I8} )))

INcripplecar= ({first(IN) = 1} v (second(IN) = 1))
INcripples (~((first. tail{first{IN)):~=cond, tail(second{IN)});

third, tall(third (IN)}) ¢ sum) & ((~{{first,tail

¢ ripplecar)

h
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& {{first,head{first(IN)):second, head(second (IN))

AL

third, head{tnird(IN})) = sum)) v {({(first,tail(first

B, - B . 3 - - i
; {IN}):;second, tail{second {IN))) ripplecar; &

= null) & {(first, second(IN);second, (hoad, null:
tail, 1Y third, third{IN)) - sum}) -+ {({second{IN)

= nall) & ({first, first (IN):second, {head,null;

numerals such that the third s the sum of ¢he firsy two 1n
the usual sunse.  The Univesse of Triples has three properties

Y 1 e~ n o AR o3 T v e [ ~Y N .~y . - u L 1
rirst, second” and "third., The description of "sum
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esgencially says, “The tail of the third is the sum of the
tzils of the first and second. If there is no carry then the
head of the third is the sum 0f the hsads of the first and

second. If there is a carry, then the heads of the first,

second and third are celata2d by ripple.” The description of

ripple is the same as the description of sum, except for the

]

addition of a bit in the lea.* sign’ficant digit which :

e SR R S 5

allowed to "ripole through.”

An example, represerting the binary sum 1 + .1 = 100,

%
3
X
£

will probably clarify matters furcher. The elem. 1t of sum of

et

concexn here 18
(first, (head, null;tail,l);second, (herd, (head, nuil:tail, 1);
tail, 1) ;third, {head(head(head,null tail,l):tail,0):tail. 0)}
Initially, tail(first{IN,, = I;taili{second{IN}) = 1;
and tail{third{(IN)) = 0, satisfying the first conjunct of the
first disjunct in the intenticon of th concept named "sum."”
Hence, since (first,l;second,l} is an element of "carry" the
object {fiizt.nu.l;seccond, (head,null, tail, 1);third, (head, (head,
null;tai., «):;tail,0)) is to be a member of "rippie" by the
=econd disjunct of the second conjunct of the first disjunct
in intention of "sum." Since “first(IN)" for this new object
is “null” the third disjunct of “ripple" has to be satisfied,
that i3 the obic.c (first, (head,null;tail,l);seco.d{he>d,null;
tail, 1);thi.d, (head (head,null;tail, 1) ;tail, 0)) has to belong to
“sum.” Aguzin, the tails satisfy the first conjunct in the

first disjunct. Also, there is a carxry so that the object

oo P AR TN T 20 SRR it W
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agllrsecond;null;third, (head, ~11:tail, 1)) must be a

member of ripple. Hence, again by +the third disjunct of

rippie {first,rull:second, thead,nuli;tail, l);thi.3(head, nuii;

tail, l}) must kelong te sum. By third disjunct >f sum one must

have ({head,null;tail,l) = (head,null;tail, 1)) which is true.
One might obisct tc the rather cumbersome nature of

the concepts. However, anv sta’ement describing a complicated

operation like arithmetic sum is bound to ke somewhat cumber-~

[

some. The present statements are certainly less cumiersome
than, say the Boolean expression describing a parallel thirty-
six b+ adder and vet 1s expressing operations on strings cf
arbitrary length.

However, the expression (head, {head, (head,null:+zil,1);
tail,1};tail, 0) is certainly a more cumbersome expression than
100 or even (x = 1) & (y = 0) & {z = 0}. Later on in this
section methods will be considered which will reduce the
unwieldyness of objects in the language and will also enable
the attachment of names to objects. This way, it will be
easlier to express operations by meais other then through
relations.

The importance of the last sentence above becomes
clear when one wants to express facts like 1+1+41=11 and
11+101=100+4+160, Unless some concept other than sum is to be
introduced anew (a wastefuvl procedure), one has to introduce

existential and universal quantifiers into the language so the

above facts can be expressed respectively by saying "for any
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z such that 141 = z it is true that z+4l = 11" ind "for any 2
such that 11+101 = z it is true that 1004100 = z." This,

of couzse, renders the recognition process of Figure 4.3
inadequaie. Before these facts are discussed, one more example
will be given which will bring out some further strengths and
weaknesges of the language.

One can imagine classifying the vesider' s 0f a street
by their name, their house of residence, their age range
{small, big) and sex. The house 0of residence may be described
by their size, color and level of beauty ({(and perhaps even
number, which would render the environment for houses non-full,
which it is anyway). A typical person might be an object like
{name, lucy: age, small; house. {size, small; coloxr, white;

look, pretty): sex, girl}

In such an Universe, a relation like fatherhood can
be expressed as follows

INe fathers ((house (first (IN)) = house (second (IN))) & {(2~e(first

(IN)) = big) & (sex(first{IN)} = man}))
that is. "of two people in the same house, the adult male is
the other ones father."” The description is certainly incomplete,
but can be improved -pon.

The difficulty in the way here again is ones inability

¢, make such simple statements as "Harry is Susan's father.”

One can try to get around this by including the father's name
in the object, but then cne has to make a decision on whether

to include the father’s name only or te include the entire
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cbject describing the frather. The second gives rise to an
infinite recursion: the first leads to the obvious problem
of finding the father's father. Any cross-indexing needs the
~attachment of names to obje ~ts as are needed in the case of
numerale.

These and related difficulties can be resolved (as
far as the descr: 'tive strength of the language is concerned)
hy introducing variables other than IN inte the language and
allowing logical guantifiers. Also, capabilities have to be
established for naming objects by strings cof symbols. However,
strings of symbols, unlike symbels, should be processable. To
enable this, & new syntactic entity will be introduced. 1In
this new rotation, the object (head, {head(head,null;tail, 1j;
tail, C):tail, 0) could have the representative STRING
{1,0,0,numer) and if (first,a;second,B) was an element of
"fatherhood," then a could be represented by STRING(father.
of,3). Such naming processes, of course, should be describable
within the language. Also, one should have the freedom of
introducing axioms in D other than concepts. To do this, the

1

symbol =, whic'. so fars had no logical significance, has to be
a part of the theory. The concept of "proof" has to be intro-
duced as in any logic. This renders recogni+ion of objects
as belonging to concepts more difficult. However, Milliken
has shown that a suitable modification of the algorithm shown

in Figure 4.3 can be .nade which enables recognition cof some

, . . 43 .
concepts even 1n this extended language. Since the extended
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language enables its own description »nd can drscribe integevs,
it i= clear that a mechanical recognition procedure for all
objects is impmsa*bl&g44
In what follows, the extended language will he iniio-
duced and exemplified. A large part of the language will be
similar to the one discussed befcre.
a) The Syntax
1. Any string of lower case latin letters and arabig
numerals is a symbol. A symbcl 1s a L.im- Any
string of greek letters is a variable. A
variabla is a term.
2. If A and B are terms, then A, B is an ordered

pair. An ordered pair is an ordered pair strina.

If A and B are ordered pair strings, then A;P

is an orderad pair string. If A ig aa orierved

pair string, then (A) i3 an ckject. An ob,..t
is a term.

The important thing added tc t..2 syntax at this point
1s the variable. The dir-erning reader probably noti~ed before
this that IN was playing a role similar to a variable in the
previous discussion. However, a larger repertoire of variables

are necessary for full flexibility of use. Going on with the

syniax:
3. If A 15 a term and B 1is a temm, then A(B) is a
term.
The term
color(a)

Ab .




stands for the English phrase "the colc. of ¢ " Generally

such a teyxw is meaningful only when a stands for some object

{coloy, red; size, big; number, 135);
in this case color({a) would stand for
red.
However, this interpretation, unlike the previous case, is part
of our axiocm set now.
4. If A and B are terms, .ten (A=B) ard (AcB’ are
statements. If A and B are statements, then
{avB), {AsB). (A-B), (A=B} and ~A are statements.

5. {f A is a statement and B is a variable, then
(VB)A and (IB)A are statements.

Rule 5, above, 1is one of the major reasons for intro-
ducing variables as parts of the syntax. 1lso, the use of =
now has a logical interpretation as a propositional connective,
rather than merely as a cue for recognition as it had been in
the previcus discussion.

It has already been pointed out before thet in this
description language one hus the freedom of giving names tc
sets of objects aund using these names to define new sets of
vbiects. However, these names are arbitiarily given symbols

and did not have any syntactic relationship to the set of

[as

cbjects being defined. Hence, 1f one had to defin. a class of
sets which had similar structures. this similar:ty would not

be reflected 1n the given names. Thus, the set of all wuwmbers
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greater than 3 and the set »f all numbers greater than 50 would
be given two different names and the fact that each set has a
lower bound would be lost. The reader is to recall that calling
them things like "greater thaa 3" doec not help, since the lan
guage deals with symbols as a single ent.lty.
A part of what foliows is directed towards giving a
number of string processing akilities to any automaton using
the language and for using these abilities to tie in the names
of sets and objects with their structure. However, in line
with previous procedures, the mapping which define the prucess
will be .ncluded only in the axioms of the system. What follows
then is orly the syntactical part.
6. A symbol is a train. If A and B are trains,
then A,B is a train. If A is a train, then
STRING(A) is a string. A string is a train.
7. A term .t an gperand If A and B are operands,
then A,B is an operand. 1If A is an operand,

then TIE(A) is a representative. A string is

a representative. A .epresentative is an

operand.

8. EMPTY is an uperand. If A is a representative,
then STRIT (A}, END{A) and REST(A) are operands.

G. if A is a representative, then REPINV{A) is a
term. If A 1¢ a term, *fnen REP(A) 1is a

representative.

Examples of s*rings and representatives are

D R R R
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1,12 1A

STRING({2,0,1 numj
STRING (CTRING (1, 0,num), STRING(2.1,num), sum)
TIE (STRIP(REP(a)), end(B8))
TIE (brother, of, name (first(a)))

10. If A and B are representatives, then (A=B) is
a statement.

The following exampies will indicate to the reader
the usefullness of strings .a obviatins the difficulties
mentioned earlier. Although the concept of "truth" has not
been introduced in this feormalism, the reader should be able
to follow tiie examples from ai. intuitive understanding of *+he
neasing of truth.

Let there be a concep” in D as given before

aec fatherz (age (first{a}}) = big) & {sex(first{a))) = man)
% (house (first{a)) = house(second{a}})
A tyr -al object in "f sher” might ke
(first, {nhame, trank;sex,man;house, (size,small;
color,blue; look, pretty);age, big);seccnd, (name
susan:sex, girl;house, {size,small:color. blue;
lonk, pretty) rage, small)).

One can call Frank “Susan's father" - a rather
generalized naming operation which was impossible in the
ianguage sco far. For this, ocne can now define an axiom as
follows

defather— (REP(first{a)) = TIE(father, of, name (seccnd(a)))

which, by the rules descrilied later, would yield tho statement
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(REP{name, frank;sex,m.n;house of residence
{size,small;color, blue;look, pretiy) rage, big)) =

STRING(father, of, susan)

T... exact way in which the truth of this statemr 't
i# derived in the language wil! be shown after the axiom
system has been discussed.
k) The axinm schemata

1. A statement (A=B) is an axiom if ond only 1if

{i) A and B are each the same (identical) term.
Two objects are identical 1f every ordered

. : pair appearing in A is identical to some

. ordered pair appearing in B and vice versa.
T™wo ordered pairs are identical 1f their
first elements are identical and thelr
second clements are identical.

{11) A and B are identical trains.

(1131} 1If A is a *erm of the form CI{D) where D is

an obrect, C the first element of some

unigue ordered rair of D and B is the

; second element 0f the same ordered pair.

% {iv) If A 1is of the forr TIE(C) or TIE{C, EMPTY)

{ string STRING(C).

{v) If A is of the form END{(C) where C 1s a
string of the form STRING(O,B) (alternatively
STRING(D,A)] and B is either a symbol or a

sty na.
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If A is of the form REST(C} and
string of the forw STRING{B,Lj
2 symbol or a string, or if C 1
and 2 15 EMPTY"

If A is of the form STRIP{STRIN

Every statement ~(A=B) is an axicm i

,

1Y,
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If A and 2 are symbols but not
1f A (alternatively B) 1is

If A and £ are both obijects whi

contain terms of the form C(D)

C 1Ls a
where D 1s

s a symbol

(B)).

f and only i

a symboi and B

,
ch do not

and A and B

obrect.

If A and B are statements and X 1s a variable

then a10ms

(1) (A - (B-A})

(11)  ({A-{8-C)) ~({Aa=R) -ta-C)))
{i11) {({-a=~B)~(B~a}))

(1v) (VXY (A=B) = (A~ {"X)R})

(v) (M) A=A )

2y

(1v) X must not occur free 1n A. In (v) Y :is
able ¢r a term: however, no free ocourence of X oin
a sub-statement B of X r the “oim (YY) where X

3
a
Y
O
Y
N N
[
N
[
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An occurence of a variable X in a statement *» ‘s

said to be bound if it occurse in some sub-statement or A in

the form (¥X)C. An occurence which i1s not Loui 1 is called

free. f
The symboi ?XA/ stands for fhe statement A' cbktained : .

Y i

by replacing all free occurences of X in A by Y. f;fr
5. If A and B are r*atements and X is a variable 5; ;

then the following are axioms

{1} ((EX)A (VX)) ~A)
(i1) ((AVB)=((A-E)~B))

(111)  {(A&B)=z=~! 2v-B))

It will be noticed that some statements which ware
true in the previous syster arz now axioms. For instance,
{color{{size,big:colar, :4)) = red) 1s an axiom. Howevrr,

since the recursive funastion “value” is not defined in the

new system, some Gthe” statements, like {color{first{{first
{color, red;si1ze.hig ;secc.d hand))) = red) is not an axiom,

because first{fir-t{color red;sir=,biy):second, hand) 1s not an I

£

object but a gereral term which 1s not covered by rule

{bliii}) above. The truth of the above statement will

follow from the  _inltion of tle rules of 1nference
below. Meanwhile, 1t mav be wortnwhile to voint out
although the statement above i1s not an oxi10m, 1%§ neg:

not cne either. Truth znd falsity ©oF statements are
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C) Rules ¢f inference

Given a set D 0o: st terents and a statement A, we

oY

say A is derivabl from D if thera exists seqguence

Sl P

for every 1 (1 < 1 < 1. eithey Si ie an axiom, or S, is a

2 "“"Sn of statemont such that S is the same as A and

member of D or is inlcorred from previcus statements

following 5 rules of inference:

[92]
rn
-
p
A
s
-

L<
O
o
m

1
-
o
3
D

(1) From A to infer (VX)hn where X is a variabkle.

(11, From A and (&2-B) to 1infer B,

A and (X=Y), to infer A' where A' 1s

—
-
i
s}
iy
O
:__1
o 2

obtai1red from A by ore, Zing SOMe OCCUrences
S . . .
O A Ry Y and some occurences ol Y ooy X.
{iv)  From(REP{X)=Y} {(where X 13 a term and y 1s
a replusc itative), to
VU1 From {(A=B) o infer (B=A).

It may be worthwnlle at this poind to point out how
some of the previously d:iscussed statements are derivable
certalin axioms,

The statement

{color{srst{{fi1st, {color, re 5o, b1y
second, hand)) ) = e )
i derivable {ftrue’) singde
(Tile Ui l.rst, (Color. radrsioe, i) rseoana, hand )
= {color,red-ssioe.big)
s oan axiom by (bliii) above.
Alsy, {ooior({color, redrsire Loa) = rod) g oan axiom.
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Since koth of the above are derivable, one can replace (acconrd-
ind to rule (cii’) above) "{color.red;size,big)" in the seccnd
by “first{(fire*, (color, red;size,biqg); ;second, hand)},"” the L.H.S.
of the first sv.atei int; deriving the initial statement.

Again, one can derive REP(name, frank;sex,man;house of
residence, (siv>, small;color,blue;look. pretty) rage,big) =
STRING(father, of, susan) from the concept nared “father” and the
statement

{aefather)-~{REP(first{a)) = TIE(father,of,
name {second{a))})
in a similar manne., in view of some of the axioms diucussed
earlier.

Before closing this section it may be worthwhile to
point out how the REP(representation) of the cbjizct namad
"frank' does not have to ke unique. If locaticns of houses
in cities and profe. sions of pecple were included in the
tUniverse, this obiect might also have STRING(frank, the, barber,
of,seville) a3s a representation and one could have statements
like

REPINV (STRING(father, of, susan))
=RE.INV {STRING{frank, the, barber, of, seville)).

An example from the field ot character recognition
may motivate come readers more. Ass.me that the Uriverse con-
si1sts of the diffecent configurations of excitations on a
square array of rhoto-cells and suppose one is8 interested in

all vonfigurations in wnich all excited photo-cells lie on a

sakaan
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28]
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straignt line inclined tc the horizontal edge of the photo-cell
at -457, (Call it “negativediag.”

In this Universe each photo-cell determines a properiy
whese values are called O and 1. Each photo-cell is de*exmined
by ite coordinates. Hence, the "miverse of photo-cells has
two properties corresponding to the X and Y coordinates, which
will be called "first" and "second” here. The values of both
these properties are 1ntegers, which have teen discussed befcore
in connection with the description language. The reader will
verify that a typical configuration on a 2x2 array may be
denoted by the obkject

{{first, (head,null;tail, 1);:second, (head, null;
tail, 1)}, 1; {first, (head, {head,null;taii, 1);
tail, 0);seceond, (head,nvil:tail, 1)),0: {first,
{head.nu. .;tail, 1l);second, (head, (head, null:
tgil,l);tail,O)}fl:(first,(head,(head,null;
tail, 1} :tail,0) :second, (1ead, (head, null, tail,
i}rtail, 0)),0)
representing the configuration

1 0

1 0

One can now write a statement which defines the set
"negativediag."
aenegativediag= (I8) (Rv) ({8(a) = 1) & (v(a) = 1)} & ~(B=y))

& (I) (Ty) ({y(a} = 1) ~ ((first, first(y);

second, second(y};third,8) ¢ sum))
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T™he language while describing concepts, has usefulness
in other information retrieval systems. Its use irn such
systems has not been investigated but it may be safe to say
that its capability, even if somewhat curtailed, may be greate:
than any coniunctive system of descriptors or association

strength networks discussed in the field.45
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7. Qther Descraiption Languages
Set theoretical descriptions have been used for con-

cepts mostly by workers interested in simulating human cognitive
activiiy . However, the entire basi= of Fattern Recognition as
a phen:enc.. is set theoretical or mo: 2 precisely, logical.

The motivation behind the different meihods used in synthesizing
crncept learning algerithms often lie in fields like statis-

e 36 , T A , -

tics, or linear algebra”™ ; however, in every case the final
algorithm for recognizing an object as belonging to a concept

oxr pattern {after the "learning phase”) can be looked upon as
using a compound statement as the description of the concept.

Thiis wiil be c¢lear if one considrrs the case 0of a set of binary

1

vectors whos= components satisfy a linear ineguality. The set

{000, 00L,0L%, 100, 121,111} of binary vectors, for instaice, <an

. . . . 1 :
be rerreserted by the linear incquaiity 5> vy v o or the

N

et

Buoleal Eapression {~ v + 2z} or the statement (y = ()
Similar statemenis oan he constructed for cases whare the

discviminating functions are non-iinear or even when ths com-

ponents of the wvectors come from a continuam. Each componsnt

of the vectors ave properties whose valuns isolate subsets of

L

the Universe. However, in this latter casge

care of infinite set-theoretic connectives.
The modes of combination available to Fatiern Recog-
nition schemes based on statistics or linear algebra are

richer than those available to Bocolean Algebra. However, very
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often the effertiveness of the various wodes of combination
dealt with in literature are strongly dependenc on the 1 itial

measurements (i.e., the input properties ci "f~ntures") - and
dependent in an extremely il'-understood way; also, there is
no uniform method for changing one set of algebraic operations
into another to yield new "features” from old ones. It 15 to
achieve such flexibility and to tie down the description with
ithe basic set thecoretical structoere of the problem that the
language of Section » was developri.

Very little can be scid regaraing the ultimate

effectiveness of tiie various wa.gebraic or statistically orientea

languages available for description of patterns. Some cof them
{like linear separation) essentialiy restrict the capability of

Aescription for the sake of simplicity of description and

o . : . - . 38
“training.” Others, like Braverman's potential funccions,
are essentially “op - .nded” ana can bhe used {like Boolean

functions) to describe any concept whatever. However, these

latter lead to problems of confidence limits and "generalization."

It may be well to defer discussions of these to the next chapter,
when learning is discussed.

Retuining to the discussion of the use of simple

Boolean expressions {or expressions in Propositicnal Calculus)

as a description language, it has been shown in Section 3 how

the class of describable concepts can be restricted for parsimony,
yielding, say, the clavs Of conjunctive and simple concepts.

Pithough the clags of simple concepts properly contains the
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class of ccnjunctive correpts, all ccnacepts are not simple and
modes of description have to be available for describing every
concept. The language ¢ the property lists is not adequate

for this. A suitable extension of it has beesn suggested which
is capabl~ cf describing any con.ept. Conceptions can describe
any concept also. The efficiency cof Loth are severly restricted
for a large clescs of concepts. However, the ultimate capability
for description is not limited, as th=y are for perception-like
devires, which use hyperplanes as discriminating surfaces.

Two other languages, The CLS by Hunt, 2 and wPAM by

. 0 ‘ . L
Felqcnbaum,4L a.e restricted in their ability o the same extent

(o]

as the Concepticns. The relationship between the two have been
discussed by Hunt. It is relevant to discuss here the salisnt
points of difference between the Concepticn on the one hand

and the CLS and the EPAM on the other.

The facc that the systems used by Hunt and Feigenbaum
are pinary irees while the Conception allows more than two
branrhes to emenate trom the nodes i1s not a crucial difference.
All three are essentially t- e structures - “he fact that only
cne of the trees 1s non~binary 1s eesily attributabaie to the
strong 1nfluence that the word "bit" has had on psychologists
since 1948.

There are twvo crucial differences between the CLS
and EPAM tree ancd the Conception, however. Cne lies in the
fact that tnhe name of the concept described by the tree is

placed at the root of the tree in the Conception while .t is
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placed in the leaves in *he other two languages. ‘Inis looks
like an essentially wasteful feature of the Conception, since
there has to be a different tree fcr every concept. However,
there are some essent.al reascons for doing this, as an
analysis of the basic sets invoclved will show.

For one thing, a property which is relevant to a
concept A may not be relevant to a concept B. This fact can
be used advantagecusly in the Conception. But when the EPaM
proressor, say, is testing an object for membership of B, it
s*11l1l has to go through a test for this nun-relevant property,
just because it was worth testing in testing for A.

There is another, much stronger reason for attach.nag
concept names to roots of trees. Very often the same concept
curns out to be sub-concepts of two different concepts, in the
sense that there is a concept C, two property, values o 2 P and
g € Q and twe concepts A and B such that ¢ = p = n = g B,
Then, the name C can be placed on the conceptions of A and B
instead of placing the entire ¢ tree twice in the conceptions
of A and B as would be nec~ssary 1in the CLS or the EPAM.
{These remarks do not pertain to CEPAM developed by Ernst and

er.)

=

Shevman, which will e discussed la
These differences cccur essentially since it is over-
lovked in the other languages that a specific obiject can be a
member of more than crhe concept - hence., one has to attach more
than one name to every leaf i1f the name of tne concepts are to

be att« hed to leaves. Also, some of the intermediate nodes of
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a tree may contain enough information to identify an object
in a concept while to recognize the same object in one oi 1its
sub-concept~ would necessitate going deeper into the tree.

Tr.2 need for attaching concept namss to nodes becomes
even more clear whan one needs to define ¢ new test ir terms of
old tests 1n the interest of s:mplicity ¢f description. 1In the
Conception, it is 2 ma:tter of adding a new list intc the Con-
ception of the Universe - while it 1s impessible 1in the other
two structures. No flev .ole language has appeared in the
Fattern Recognition or cognitive process vresearch as a counter-
part cf the description language diszussed in Section b.
Various .anguages, Like the languages developed by

o 47 ‘ - , 48 4 ‘ L
Narasimham, and by Kirsch, carries out operatlions on names

o

of properties, but the procedures dn not have the same tlexi-~
hiiity and uniformity,.  However, the IR System of Raphael has

D T mop v+ 1 ov s tara ) Y 1 - o~ -~ e ews . [ S
Ceriaan o Zimilarities witn tne ranguage of Section bowhion

One of the greatest similarities between SIR and the

language dascribaed in Section & are the similarvities in the

structure oy obyools.  The same property-value-pairs are
stringed together, and values of propertics may be chilects

themselvos: 1L 18 ot whetner names of properties can be

Ir. SIR, a .1sv 2f symbals oare also allowed to names
& P ~ oy oy T oy e N - RN o N - [ > ;o1
of values of properoios. s, (o harry s brothers, {(tom, dick,
tand = 15 wenld be o4 ovalid obpcoot T T ey VE bR e
SON Gy age, Lo} Wil ge 3 vania o Ta0 . Ine aavantage ot this,
.
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of course, is that the obiect, n a sense, has greater

(

efficiency of processing. For instance, let the question be
asked "Is Tom Harry's brother?” (i.e., let tom ¢ brother
(harry) b+ posed as a theorem). A special processor could

i

answer tnis as "ye-. However, 1f the question is asked "Does
Harry have a brother aged 20?", the prccessor will have tc
kiiow that there are objects whose property '"name" have values

"tom," "dick" and “"don": a fact which is not clear from the

furwat and a separate processor would be needed to incorporate

such extra assumptions.

In fact, SIR as originally c¢onceived and implemented

consisted mostly as a series of processors capable of handling

k

{
-
1
(s
Jet
o
o
[4}]
t
=
D

. : a special class of objects. The syntacti~ restri

objects were to satisfy were defined more in terms of the

é structures of the processors. As a result, certain facts abourc

; ocbjects were earv to describe while others were impossicle
unlike the language described in Section 6, where Tertain parvrts
are easy tn describe and others merely more difficult to de-
scribke. Also, in the language of Section ¢, facts which were

E vriginally diff-cult te describe can be made sasy to descrive by

% adding new cornicep.s. Most present day descoription lanjuages

: ack this flexibiliuvy through expansion.

SIK I, = which was suggested by Raphacl as the im-
precved and flexible version of SIR, would 'n its basis be much
more similar to the language discussed 1n Section 6.
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i SIR IV 1s a Fivst O

Theory 1in the sense of Symbolic

Logic. Hence, the *esting of the truth of certain statements
110, in most tTeneral cases, turn out te be a search for
appropriate steps of the proof. This 1s at present extremely
difficult. ; On the other hand, many theorems 1in the
system can be provea vy simple processes, as was shown in the
irst pa-t of Section ©. Even the addition c¢f certain flexi-

ties of the language appearing in the second part of

[N

P

Section & does nut wvitiate the facility.

M e o~ N e -~ ek < - - T - +
fanguagés n o th. descripticn oI pattedns. it has neygs crad
- P T -~ v 1 - o . . 3y ~ 1
L@ GQlECUSSIon o0 languages where the basic predicates invelve
N ~ - . L | i N ~ Y -1 3 - -
srithmetic operavions: altnouanh 1t i1s cliear both fro

o 3 -~ = . ey oy 5 - e PR S - L
Metriathematics nd rrom the dirsouss:on -0 Section b, o)
= oo -3t ians can 7 -~ Feved v R <3 . S
pes) Queration Can Dy Lo Ludl 11 [ < D1ISCUSSsea 10
> ~3y 3yt ey Howoevar [ - N A e B, naiaacs { o~
- [ORR R BN RS A AW UAN S Le s 0% Lansiaadal (a il
o a4 A = a = N = I v oo . . SR -
statistical’” langua os5) are best Jdusc i oterms 0f thelr
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GEeneraLioing’ o oanitiity This willi e the next chaptor.
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CHAPTER V - LEARNING AND CENERALIZATION

1. introduction

In Chapeer I., the major concern was to develop
languages i.. which se*s of objects could be described in such
a way that a specific object could be tested for membership

in a set in terms of the object's properties. Associated

with any technique of concept learning - whether 1t be by

: L . : 3B N . . S0
discriminant functions, probability estimation, and such

like -~ has to have a language in which e:pressions can be

f difference

n
o

written to define a set. The ma)or points

=
oY)
0
r
®
r
’_
{u
=
[}

retween the ones described 1n the rore popular

onea in the field lie in the following way. In:itially, the

languages described 1in Chapter IV are essentially non-numerical,

80 that the obje~%ts do not have to be pre-processed to yield
numericai vaives of the properties. In the field of Pattern

n - Y oy o I - . o . s i Searnty sl e N -
Recognition, this pre-procassing s essantiaiiy a phznomenon

’

left ©

t of the learning and recognition technigues anajvsed.

o
rt

processing from recognition introduces areat difficulities in

~, o "y - e iy sy 4 B [ ’ T . e~ R

Drocessars 1n a Pattern Recogiition it s e
. T . - 1 - . " PR § . e e e - T .
noted that 1n the languag described sn Chapter IV, the
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one can diccuss the modificat-on of P in an enviromment to

1

render descriptions succincet.

“
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2. Learning Zonijunctive Concepts

E

The alcerithm described in this section wzg developed

b)

by Pennypacker for develsping conceptions (see Chapter IV,

Section J) for patterns on the basis of examples of okjects

. ; 32 . . ) s
belonging to the patterns. Unlike most experiments conducted

given tne freedom of choosineg
examples shown by the *trainer; alsc, it will ke given the
freedom of asking twc othe: guestions, "Is the pattern described

by the following conzeption completely contained in the pattern

undar consideravion?", and "Is this a correct concepticn for
the wattern under consideration?"” BRoth these questions can be

- . .,
¥

replaced by statistical *ests and this latter may e necessary
in real circumstances. However, the purpose of the investigation
was to establish the lcgical structure of the &'gorithm.

oy e -

The basis of the aigo.:thm lies in the isolsticn of

a set of proverty values G

1]
o
—

i v Py } such that
1 =2 Slg

; p N Fay M oee. D.psi “ X where X is the fpattern being

lil 2 S

learned and such that there 1s no subset of G whose intexr-
section is contained in X. If X is a conjunctive pattern,

this basic algorithm converges to yield a short conception forx
X. Otherwise it ylelds a conjunctive pattern which is a proper

subset of X. Examples outside the pattern and inside X are

then interrogated to yvield other conjunctive patterns. The




P T T

nrocess continuss till a set of conjunctive patterns srxe
nhtainasd whose union covers XK.
The operation Zf the algorithm needs the abllity %o

i obtain concapticns of Boolsan functicns of patterns having

known conceptions and testing for identity of concepts and

containment of one concent in ancther. It alsos needs the

-~apability of svaluating properties of objects, given the

g values of its input properties. Alcorithms for doing thess
5 have been develcped by Pennypacker: some of theso have been
: brizfly discussed in the previouvs chapter.
'3
' The oprration of the algorithm depends on the folloi'~
f ing lemmata.
Lemma 5.1: Ilet <U,P> be an envirconment and let
3 m—
: s 8 8 < s )
Y D . i 7 : LY f 3 b : i & wea o B .
Pri, 2, PRy Py 3 i Kej, Tk i,
& : 2 n 1°1 £-2 58 ¢
where for all ¢{l s ¢t s n} p_, € P_e P
t2, t
_. t
]
L and for all x{l < r = s} Py, j e P € S
! £r “
¢ Also, let Py N oeea N Pry # Fyy N eee N Phi
: 2 ““n 1 n
v and pzi !”7 - % @ m pni c p1' “'i m LR A ﬂ p }
: 2 n 11 s’s
; #(l < v s8, p, . = .
4 Then for nc x( o 85 Py i Py
i rir 1
)
\ Proof: Assvme to the contrary; then

i A

Pr: MNoeseNp.. «py 2 Neee NPy = SPpp . =P,
212 nln kl]l ksjs kr]r 111

whence,
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S 3 Tt AR e

23 ni Pii 2 Pai. (1 Lo P
2 n 1 2

P

>
]

ni
n

contrary to hypothesis.

Lemma 5.2: Let <U,{> be an envirom.ient and

{pl ‘P, ,,..,Pn} & P, Let

Newe Np_. Sp, . Np,. = MNeea Np,. .
1 i N R L Ksig
: where for each r{(I < r € s}, 1 < kr < n and for 2ll m,
"’ > o 1 < < " t ~ T 1 ~ <
: Frpi ¢ Pm {1 m = n). Then for each r{(l = . = s}
. mn
g I, = i
r
Procf: Let kr = t. Then
: Pi. APy, De-eNp.. Sp.. =p,_ .
¥ lll 212 ni tlt krlkm

and

p-. Ok & Veee NE. . P s
A\lj l_ k j KL h 3

The theorem follows since P is a prrtition .d

ILemma 5.3: Under the hypothezis of Lemma .2 if

Pr: N Np.. Epy o (Veee Nop, .
412 ni_ kl]1 ksjs
then for some r(l < r s g)
k =1

1 ¢k <n for all r{l < r s s)
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and

kr # 1 for all r{l < 1 < 8)

indicates

2 s k_sn for all p

contradicting lLypothes

lemma 5.4: inder the hypothesis of Lemma 5.2 let

Pv: (P ewe 3P . Fpo 2 MNese NPy
111 ni kljl ksjs

+e Py ] be the sct ot all terms on the

and le* {p..
1 2 Yt

'p“w.;
e S
1

left hand side such that Pai # Py 3 for any r{(l s r < s).
hd xr'r

Then.

M
Meee Dpy; # Ppi, Mieee n pnin'

p Dy
(t+1)1t+l n

¢

Proof: By construct.on of the set [p;. ... P, 1.

1 t

the left hand side is equal to Py 4 N eee N P § which
s

11 s
directly contradicts the hypothesis.
The algorichm can now be justified rigorously. Any

object is an intersection of a set {pij } of property values.
i

If this object is properly contained in a conjunctive concept
which is to be learned then the hypothesis of Lemma 5.2 is

fu.filled. If now one removes from the set [pij } one value
i

By then one of four things may occur
o-o

(i) The new concept obtained by intersecting the
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elements of {pié } = p. . 1is the same as the
i foade)

cbiect.

(ii) ‘The new concept as oLtained above contains the
cbiact properly and is properly contained in
the conjunctive concepti being learned. This

fulfills the condition of Lemy » 5.1 and h« qce,

i< 3 does not owccur in the expression for the
c o

conjunctive concept to b> learned and hence,

. 1 3 N
can be removed from the set ipij ; without

ft

violating the hypothesis of Lemma 5.2.

{iii1) The new ccncept as obtained in (1) above coin-
cides with the corcept to be learned. This
terminates the le~rning process.

{iv) The new concept is not contained in the concept

]
SRNe

being learned. Then Lemma 5.3 holds and p,

occurs in the expression for the conjunctive
concept being learned,
If case (ii) holds, one can start the process over

again by remuving a new property value Pivyo from the set
A

G0

P, ) o~ p, . - If (iv) holds, then p, . is left in the set
Ji 070 oo

{pij ;] and never removed again. In either case, the test to be
i

pertormed on the set {pij } is constrained to be performed on
"1




[t e

a smaller set. Hence, if on each removal of a Py only {ir},

030

(iii) or (iv) holde the successive removal comes to arn end. If£
i* does not come to an and at (iii}, then the ccncept to be
lea. aea is not co jvnciive.
It is to be noted that the above discussion provides
.
the rationale for Bruner's conJervative focussing strategy.
Case (i) never occurs in his experiments since hiz input

properties are all the properties .n the envi-onvnt and the

input properties form a full fine structure family (see

R BT SR A R S D R

Chapte = IV). In the present case, where the environment con-

e

tains many non-input properties so that the a2ntire property se
is not full, the algorithm needs the wmodifiration discussed
pelow.

If (i} above is the case, then other property values

have to be removed from the set {pii }o If (i) helds for all
‘1,

values s0 removed, then combination of two v.ilues are removed

from {p,.. } and the procesg is regeated. At this point ful-
ij, v p

i

fillment of (iv) does not yield any result, since the cordition
of Lemma 5.2 1s not necessarily fulfilled any more. However,
the fulfillment of condition {(ii) is still significant, since
the hypothesis of Lemma 5.2 was not involved in the procof of
Lemma = 1.

By Lemma 5.4, as long as there 1s any property value

left in {pij }, there will be some combination of property
1




H
3]
«d
%3]

!

values whose removal will result in fulfillment of corniitio

~

(i1}, This way all property values not ocuring in the ex-
pressiocl of the conjunctive concept 1s removed in a finite
number of operations and condition (iii) ¢ -curs. If, however
the concept being learned is .ot conjunctive then conditich

(iv) oceurs on the removal 0° any proper~ty value. In this

5@ a new obilect is chosen wnich is contained in the concept

£

Leing lsarned but not 1n the conjunctive concepts learned so
tar and the process 1is repeated. Since in a finite environment

any concept is the union of 2 finite number ¢f con’nctive

concepts { ee discussion following Theorem 4.12), the process
tervuinates with the recognition of the concep:s

The above discussion constitut~s an informal proot
of the following theoran.

Theorem 5.5: 1In a fi ite environment the algorithm

shown in flow chart of Figure 5,1 terminates in & tinite number
of steps with the recogqnition ol a conrtent,

1t may be pointed out that the finiteness of the
alaorithm dees npot 1n any way assure a short description of the

concept learned, because a short description may not exist at

: all. Aiso, the psocess, though finite, may be incrdinately
leng.  This alse has some extremely adverse effect »r the

"generalizat.on” of the concept. This lattor will be discussed

in a later section.  In the next sectron an algorithm will be

discussed which tearns simple concepts in & finitte number of

steps. It utilizes the language discussed in Section 5, and
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whee, can construct saimple descorid

class of concepts than ti 2 ~onjunctive.

realistic crses (for instance. 1in

are two-valued) even this excludes

‘

igs]

anvironments

tions for a much

However, iil

aHere
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¥ = K
Q
- w | K nd v,o= M N R
§ &f ki __tl LN :«ao;tm; a.Qal pll. |p2‘lp’,‘ .
3 4 &
4
H N » - . - -
® Mp.. then ®,., = (¢l = ¢, ‘rom some i{l < i < m} and
£ ni i1+l 1
) n
y t € p . for aay ={l s k s nj}.
: The following lemms is imporiant.
"g“ gu [: ,[ \o
Lemwma 5.7: Kp ‘(Xl L oeea U XP;
Proaf:  Let Pog £ Kp' Then there is some
Ll o= < o) guch that S P .
xt‘ t ) ¢ Xt i'ms

Dut Prs © M(xl Jeos U X} implies

i~ il N XZ{T - ié = i; which =ads +o a contradiction.

Hern.ce, Pog £ M(Xi Josee U xb)a Hence, Kp < ﬁ(xl i seo xp)

pms

nr K 2 M{X, 'J eco X ).
o @O o)

1’- £Y = 3 . r‘ooor\ > € i . 3
Now len yt plll.l MNp Then P 4 Kp

m

for any .2{1 s m £ n}. Hence, X_ = p

N implies Pun 4 Kp ox

mn

ip <X =

L mn t

[ = ! = = N
¥e {pmn!xt £ pmn} *pmnlxt flme gl “mn

M{X,)

t

" iSince X, , being an object is either wholly contained in or

t

disjoint from any property value: see Theorem 4.1).

b
< N
So Kp M{xt) for all £(1 < t < p} or Kp < . Q 3 M(Xt)

= M(X1 U sas U Xt)(Theox n ¢.14).
This with the previous inequality yields the lemma.

One can thus construct the follow.ing algorithm for




learring 2 concept. Tha algorithm starts with two copies of
b -
. .o R AN - . P N -
K (¥ and ¥_} in memovy. Every time an object
o) o
P, ... " p_. 1s presented as belconging to a coniept X,
11 ni,
A a
3
I3 “ ,.,L _'-
the values p,y bsms n) are removed com K. to yield
ML +
n

. Similarly, any time the object is pressnted as belonging
2 2

to X, K, is similiarly modified te Kl+7. At any stage of
learning., :f m positive and n nsgative instances are presented,
il 3 , 2 —s
then 8{K ) s X~ and H{K ) = X .
T n
If X and X are both simple concepts then the
1
algerithm converges at some value of m and n such that H(Kn) = X
3
.2 o . Ce - .
and H{K") = X. Howevsr, if either X or X is not simple, then

one has to remain satisfied with the approximaticn +2 X given

A test 1as bezn developed by Windeknecht and Snediker

s ; . . ( s Lo 33, 34
to firnd out 1f a concept and its or plement are bHoth simple.
The test depends on the following lemma.

—

: s - .
Lemma 5.8: x = x anc X = x if and only if

Procf: The “"only i1f" part is immediate. For the

. . -5 , T
"if" part one notes that x Jx ¢ x° U x7. But x {J x

§
~
—p
.

5, =8 _ . . S, —8 - s
Hence, %~ |J x° = U, yielding x7 J %7 = 1. Hence, x = x

o Gy ol s

from hypo.aesis or x° = X . But by Theorem 4.10, x 2 x° = x

. IS R —3

- o~ 2 » . |
and also, x & x whence x = x°. x = x follows similarly.

The application of this test depernds on a test for




:
g

P R e T T2 L s

R

AP DPTRRIGETST: TR T

P i I

FEHTTTE

K{K;) r H(K;) being empty or. according to Theorem 4.14 for

1, .2 .. . .
H(Km U km} = §., The test for this is not straight forward;

given a subset T & K, it may ..t be easy to find out if

i

H{T) = B. C(Cleari, for =ny P ¢ £, H{P) #. Also, if T =2 P

<
then H{TL) & H(P} = #. However, there mav be some T which

doces net contain any F ¢ P as a subset and yvet H{T} = #. The

.
m ]
H

set [R, R, ,R4 r Tl in the example of Chapter IV is an example.
L9 ) -3
A rather invoelved nrocedure has been develcped by

Snediker for the test. Rather than aescribing the test in

detail heve., it may be more wo: hwhile to discuss the »9Faii
neag of the precedures discussed hare and
sections in realistic situaticns and Compare ther with other

well known Pattern Recognition techniyues,
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4, Pre. lems of Learning and reature Extraction

A study of either of the methods of learning in the
two previous sections is very illuminating in that it brings
to the attention of the readexr some of the major difficulties
in the way of pattern learning and points cut some of the
inmgortant requirements for an effective pattern learning tech-
nigue.

1t will be ri*iced in the case of both the methods

haw nney are wost effective in learni

fes]
G

patterns (or concepts)
ir o ceviain ¢lasses.  The Pennypacker technigue, altheough an
cffective procedure for all concepts, ensures rapid convergence
onlyv {x conjunctive concepts. The Windeknecht-Snediker tech-
nigue cerverges to the corract concept only 1f the concept i3
simple. Tn the Pennypacker techbnique, however, there 1s a
technigue for finding cut when a concept is not conjunctive and
rod i fying the algorithm to take account of this fact. In the
Windeknecht-snediker Algorithm, the corresponding test indicates,
not whetl.ar the concept being learned is simple, but whether
both it and i1ts complement is simple. No algorithin has been
developed which would learn any concept as an union of simple
concept in a way analogous to the Pennypacker algorithm.
However, the Pennypacker aljyorithu takes certain
liberties which are not used by any other algorithm known to
us. It asks the experimenter questions usbout the inclusion
relatisnsh’p batween the concept heing learned and concepts

described by the algorithm. The Bruney conservative focussin
Y g9
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strateqy on which th> Pennypacker algorithm is based, did not
aliow these liberties, altiough it did anvisage quaestions
from the subject regarding memberships of specific objects in
the concept being learned. The extra liberties were
necessitated by the fact that unlike in Bruner's case (and the
case of most psychological work after him), it was not assumed
that the input properties of the real environment is full.
This invalidates some of the metnods used in the psychological
experiments for obtaining new ~biects fr-m a focus object.

It is diff.icult to say how many of *~ne advantages
of the Pennynacker algorithm over the Windeknachi~Snediker
algorithm would remain if the extra liberties were taken away.
Jusi as one needs tc develop metheds fo- asking Bruner-type
guestions ("membership vather tha. inclusion®) in the environ-~
ment envisaged by Pennypactker, methods nead to be developed
alaso for modifying the Windeknecht-Snediker algorithm to the
cases where the concepts learned are non-simple. However, in
any case, since there are more simple concepts in an en.iron-
ment than there are conjunctive ones, the Windeknecht-8nediker
method ought to e more effective in geneval. However, in
environments where #li properti«s have oniy two valuez, all
simple concepts are conjunctive. In this caze the relative
advantiages disappear.

The weaknesses and strong points of the iearning
methe s discussed in this chapter may be used to develop a set

of criteria for the evelustion of concept learning methiods in




general. In the previous paragraphs the mechods of this

chapter have been discussed on the hggié of the fcllowing

guestions,

L. How rich i1s the class of concepts any one of
whose members can be learned by this method?

2. How rich is the class of conceprs any one of
whose members can be learned efficiently by
this method?

3. How rich is the class of ccncepts whose
descriptions are succinct when expressed in the
language envisagyud by the algorithm?

4. Given the interpretation ©f an environment as a

real pattern learning situation, how many

patterns to be learned can be expected to bhe

members of the class described in guestions 1,

2 and 3 aktve?

It can be seen that the class described in guestion 1

abeove contains the class described in question 2 {Nothing
can be learned efficiently unless it is learned:} In the case
of many methads, this latter class coincides with the class
described in question 3. However, this may not be true for all
methods and langtages. A mathematical study of this point can
not be attempted unless precise and acceptable Jefinitions of
the words, "succince" and "etiicient” be given. This will rot
be attempted.

Question 4, perhaps. needs some clar:ficacion, since




it refers, not to an abstract entity call~d the "environment"
in the discussion, sut to the unformalizable thing called
"real life," and the way one abstracts it to an "environment”
in the technic.. sense. In question 4, the words, "patternc
to be learned" refers to “real life, " as for example, the class
of "all roman letters projectra on a grid of photo-cells" while
the “classes described in guestions 1, 2 and 3" refer to the
describable classes after a class of piuperties have been
abstracted and used in a mathematical system. If in "real! life"
one was called upon to learn all concepts possible (ror instance,
if l-oacning the class containing "all lower case "a"s, upper
case "Q"s and all symmetrical fig-res" was as necessary as
learning the class of all upper case "B"s) the answers to
question 4 would coincjue with the answers to questions 1, 2
and 3 respectively. However, this 1. often nct true.

It has already been seen that in the case of the
Pennypackei technique the class described by question 1 1 .,
"the class of all concepts." The class described by questions
2 and 3 is, "the class of all conjunctive ccncepts.” 0Of course,
how rich this latter class is d~pends on the richness of the
family of properties in the envirom.ent. This :att r point will
be discussed presently. Meanwhile, it may be worth pointing
out that 1f one restricts oneseif to a family o:. -nput properties
{like, say. "the excitation level of each photo-cell 1in the
grid") the clas. of conjunctive concepts is not very rich,

egpecially with respect tn "real life."
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It ought to be poirted ocut, however, that the
flexibility of the languages described in Chanter IV . s such
that the definition of new properties are axtremely easy .o
incorporate in? ‘. anguage. This can L2 done, moreuver,
with respect to the class of patterns described in question 4.
No e ficient al-ovitim exists feor introducing such new properties,
but cerc” ‘n heuristics can be considered. This is done below

with espec t the Ur . :rss exemplified in chapter IV,

I the »:mvi onment consists of tl.e two proprercies p

and g ther. the only onjuactive concepts are the ten values of

r: and ana “he twenty- i1ve ubjects. Let us nw assume that

=Y

the concer~ A = [3,4,13,14,15,16,17,18.1,2,1.,12; h>s to be

icarned. 7Th2 onl way the Pennyparx<er algorith could learn

ot

he concep. weuld be as an vnion of exempiars. This wounld

render the learning pr cess extremel, inetrfic.en: and al o the

cronception of th- patteru learnea would be unwielidy. The sane
would be the case with respect to learning the concepts

B =1{5.6,7,8,9,10,19,20}, ¢ = {21 22,26,27} and

i
i

D 173,24,.5,28,29,30}. Huwever, at this pol.t it could be
rcalized (i f we had an algorithm strong enougn to ¢ it) that

A B (G Tl s tar unkn o wn), C J D (or T,) and U - T, - T

A
&
conld e used as 3 pro.erty of the environment and so could
AT R, 8 = R, and U - R, - R@' This would vield

e < Fe J
r =R, T and C = &, | T, at a considerable increase in

suc inctnoess of description.  However this succinctness would
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be purchased at ithe expence of s5tol.ng 'I’i T SR, SR, ada

R, {J R, in the description list of the Univorse. S ch _roperty

3 1

generation, then, can only be ivstified .o the, vield =« o nt

descriptions of many concepts vl leads o oelflcient Loartail
of concepts encountered late . Alsc .t has profound sigrnifi

"

cance with resgpect t~ the "reneralizing oilitv" o[ the lea-n.eo
algorithm, as will be show in the i -x7 secii n.

The readevr will note ¢ a ¢ Jomcept: T, , 7. Ry

and R4 as defined above led to nr 4 T LpTLIOng pISTERE
wihiich would no* have been learned T oexXamples.  They we ol

have be=n internally generated to “3ic .itate the so L,
corcepts which have been learned from oxamples. S oh soacoeos
are generalily called "features" in the literature a > proreuse
which isclates them are called "feature extracticn.”  in tn =
book, the term, "concept formation" has also beon e T
this phenocmenon.

It will be worthwhile at this point to conei o ¢ e
of the other learning algorithms in literatare and how o)

stand with respect tc the presently described methods.

Because of the C{:milarii, of the description lam o,
.
the first methods thatv come te mind are the EPiv, ~ ond the
30 . . \ . .
CSL~1. The comparative alvantage: of the la i t1es have bee
discussed beforehand. The major polnt to be made sout EPAX

1s really in connection with the timitations ot the (FAM tree.

Because the name of the concept occurs at ! o root f the free

two nen-disjoint concepts can not he very woeli deso ibed
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an EPAM tre . This puts essential rescrictions on EPAM as a
learning alyorithm; however, a recognizer using the EPAM tree
a5 the descriptilcn makes an extremely efficient property
evaluator.

Some of the drawbkacks of tne EPAM net have been re-

51 A .

rmoved by Finst and Sherman. It ras enapnled the building of
a Jescription language incorporating some of the highly desirable
characteristics of the pred:cate calculius language described in

section € of the previons chapter. Since

the Ernst and Sherman language is not completely formalized, a
de iled description of the languaze wiil not be given here.

E e 1, t may be worthwhile to point out a few important
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prope.t es, "Ex" and "Na." The valuss of "Ex” [acronym Lor

g S BT ST Ce . - - iy 3 ~ R
MEemp i ) are objects in the sense discussod in Section H of

s . Ly ¢ I P R T IR T . PN - " 1 SN

Dhoprer 1. The values of "Na" are concept names. The JPAM-

SnRe o Lree cescribes s o sIngle concept consistin oy of exemplar-
nome Jatlrs och the ach exemplar bolongs to the concept
Having the pa red name. Thus, 1f an obtect ¥ beloniys te both
the concents A ond B then in the kEvpso-Sherman languaae the

. .
1y PR N . r AU S B O PO 1. P
poand {ux, N; Na, ) would botnh belonag o

B

~haes .o (BEa, Xooa, A
H e v i e . s | 1 3 .- - .
Cooooome 2pt descrioed 0y the rroee.

e

Th* other major depariure of e Ernst-shorman b

rop BEPAL 11e In the fact that the te 5t nodes of ¢ trew may

covtarn sraterents of the form "term o term” as well asg




“term = term"” while the conventional EPAM test nodes consist

This enables the language to have

of the latter types only.
some of the zdvantages of the language of Chapter IV,

Section 6.

the Ernst-Sherman learning algorithm can make use

A8 a result,

of previously learned concepts in describing new concepts and

thus, shows an important aspect of truly adaptive behavior.

Like most learning techniques based on Boolean

Algebraic methods (the Windekriecht-Snediker technique being a

the learning algorithm 1s most effective

notable exception),

like the Pennypacker

in learning conjunctive concer*s; however,

it can la2arn any concept. Moreover, it can learn

algorithm,

cencepts whose descriptions involve statements of the form

“term € term."

learning with the

The CSL-I technigue of Hunt,

description-tree developed by him, has one capability which

the Pennypacker algorithm lacks: it can learn succinct de-

scriptions of concepts whose complements are conjunctive. To

it has to store in memory all the oblects shown in

do this,

instead of modifying the de-

the concept and its complement,

scription with each new presentation of an exemplar as the

its parent, Bruner's conservative

Pennypacker zlgorithm and

Unlike the Pennypacker method, there

focussing strategy, does.

using non-input properties in the

is no method in CSL-I for

As a matter of fact, the advantages of having

description.
non-input properties (an advantage which is used by all human

beings) seems to have been completely neglected in all
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psychologically oriented structures of Pattern Recognition that
the present author has come across.

On a superficial study, it might appear that the
numerical techniques of Pattern Recognition discussed often
in literature are far stronger than the ones discussed here.

As a matter of fact, there is a tendency to include in the

field of Patterr Recognition only technigues bascd on the

theory cf vector spaces and probabilit,. The 1mportance of

the study and development of flexible description languages

as done here often seems t2 pe outside the pale of the field

of Pattern Recoganiticon. This is extremely hard to understand

h vlew of the corstart bemcanings in the Pattern Recognition
field regarding the elusive nature of the "feature extraction"
problem, which 1s 1nt.mately associated with the basic predicates
of description languages.

In what follows, & short discussion will be given of
the present author's interoretation of the methods and results.
in the field of numerical Pattern KRecoanition.

As has been pointed out before ror these methods to
be effective, one has to have properties whose values can be
represented as real numders.  Thus, 1n any environment with a
finite number of input wroperties (and no distinction has yet
been attempted betwecen input and non-input properties), each
object (rany authors prefer to call the objects "patterns"” but
it will be safer here to hold to an uniform terminology) is

represented by a vector in the space of n-tuples of reals.
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The learning aigorithms, on the baris of a list of objects,
tagged by their membership in a given concept C, constructs a
real function £ of n variaples (the "discriminant function")
such that for a large number of objects x encountered or ex-
pected to be encountered £(x) would be positive if and only if
the obiect belonged to C. In symbols

f(x) >0 =x¢ ¢

Just as in the case of the algorithms described
previously, the form of the function f is restricted to a class,
at least by the efficiency of recognition. That is, for some
of the algorithms the class of concepts described in question 1
is restricted and in others this specific class is unrestricted
while the class described in questions 2 and 3 are restricted
and, in most cases, identical. The class described in Section 4
can only be considered on the basis of experimentation and the
results of the experiments. Different methods have varied,
both with respect to their guality of the results and conclusive-
ness of the exreriments.

Comparisons of these different learning technigues
are generally made on the basis of the operational mode of the
learning algorithm. One criterion for this is whether a tech-
nique is adaptive, i.e,, whether the algorithm stores all the
tagged objects and constructs the function £ on the basis of
the entire set of tagged objects or whether the function f,
starting from an arbitrary initial value, is modified by each
tagged object in succession, so they do not have to be stored

for processing 'en masse.'

A a0 e




Ancther important criterion for distinction may be

on the basis of "motivation," i.e., the basis of choosing the
class of functions to be constructed. 1In some cases this
function is generated on the basis of the estimation of the

52, 53 That

parameters in a set of probability distributions.
is, it is assumed that the concept C and its complement C are
such that there exists two distributions p and ¢, characterized

by a vector of parameters £ such that the function f has the

form

f{x) = Eiiégl -1
g(x;8)

for some parameter-vector G. The class f is determined by the
tucms of p and g and the allowed range of choice of the vector
. The forms for p and g are chosen either on the basisz of the
workers belief (on the basis of empirical data, hopefully) that
the distributions p and g are adequate or by the fact that the
estimation of the parameters is computationally feasible for a
large set of tagged objects if p and q are assumed to havé
some given form. Unfortunately, reality does not often conform
to the conveniences or limitations of the theoretician.

Another basis for the choice of the class of functions

2
w37 That 1is,

f may be dictated by certain "distance functions.
cne starts with the axiom that there is a metric p on the space
of n-tuples such that if A is the set of all objects tagged as

belonging to C and B the set of all objects tagged as belonging

to C, then f is often defined by
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£(x) =min {p(x,y)} - min {p(x,¥)]}
yeh yeB
f(X) = E(XI;) I__ - E(X!;) ,_
VEA yeB

I denoting average value. Again, the class f is determined on
the basis of the investigator's choice of p - hopefully on some
rational or empirical basis. Often the class of f£f chosen by
different methods turn out to be the same.

A large number of authors restrict the class f directly
without reference to any statistical or metric criteria - which
to the present author's miad is no less justifiable than choosing
the claass on the basis of the faiths discussed above. The most
popular form, of course, is the linear one where

f(x) =a.x+b
where a is a vector and b a real number.54 It appears that
although the class of concepts descrikible by these linear
functions (the "linearly separable patterns") is much richer
then the class of functions discussed in the previous sections,

it is still a very small fraction of the class of all possible

concepts - even where the vector space under considerat:on is

the finite space of all possible binary sequences. What is

worse, even the class of concepts described by question 4 turns
out to oe inadequite on the basis of experimental evidence,
unless the set of properties defined by the components of the
vector is "adeauately chosen" - and there is no uniform way of

choosing the "adequate" representation.

S ————————r— o1 S e we A ki . B T TH T SV - L B
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The class f has been enriched by many workers by in-
1 cluding non-linear functions - especially polynomials of large
: degree. The only major difficulty with respect to such choice
lies with the very large number of coefficients needed for an
adequate description of the concepts. This difficulty is
analogous to the cases where the Pennypacker technique learns
a concept as the union of an inordinately large number of

] conjunctive concepts. Another analogous case arises where the
descrip® ‘on iz taken to be "piecewise linear," i.e., where the

description of C takes the form

i

X €C B((fl(x) > o) , (fz(x) > 0)s oo (fp(x) > 0))

where B is a logical combination of the statements

{(fi(x) > o[l s i < p} and fi(x) is a linear function. A sub-
class of the class of functions sc describable are those de-
scribable by the so called "two layer nets," i.2.., where B
yields a linearly separable function, so that the statement

above can be rewritten

N Mo

a; sgn [fi(x)] ta >0

3 i 1
E where sgn{t] =1 i7 t > o and o otherwise. "Multi~-layer nets”
can be similarly constructed, yielding richer classes of de-~
scrikable concepts.

When one considers adaptive techniques for the
evaluation of coefficients appearing in the representaﬁions in

any of the scheme. described above an important question arises

regarding the "convergenze" of the training scheme. Convergence

———— —— e e Ny r——— %P Ar i s+ %e4 4 S ————————_ - . o nbm et S £ n | § e Semgn A S # ok < . e e e i e
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proofs are known only for som2 of the algorith..s based on
statistical estimation,53 as also algorithms on the basis of
linear separability.SS The earlier algorithms were proven to
converge only in cases where the tagged okjects were from a
linearly separable concept and its compliment. Algorithms have
been suggested recently where the algorithme also indicate
failure when the concept is not lineariy separable.se In many
cases algorithms are introduced on the basis of empirical
eviderice that they converge "in many cases." Nothing is known
reqarding the convergence of algorithms for "multi-layer nets,"
although empirical algorithms have been used for designing
these in the literature, both for Pattern Recognition and
game-playing.

As has been indicated above, another major difficulty
with non-linear or piecewise linear discriminant functicns
(and to the pr sent author‘s mind these are the only functions
which have any promise of success) lies with the extremely
large number of coefficients to be stored. »5An equally important
consideration closely connected with this is the "generaiizing
ability" cof the discriminant functionas formed from these co~-
efficients. As was said in the beginning of Chapter IV, our
discussion has been limited to learning and describing concepts
without any reference tc the phenomenon of generalization.
Bome +ttempts will be made towards discussing generalization in
the next section. The discussion will attempt to bring out the

importance of appropriate description languages and "features."

e Vet S A T M s LS R AN R b Pl ke AR
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5. Generalization - “Concept Formation"” and Languages

It has been seen in the previous section that con-
cept formation or feature extraction plays a very important
roie in simplifying the expressions which describe a concept.
There has also been a belief that, somehow, extracting the
“"correct" features makes subsequent learning easier. Alsc,
that once one is in possession of a correct set of features
(i-e., has formed the right concepts) one can genceralize from
the encountered tagged objects wel ~nough to recognize latter
objects with a high degree of confidence based on the descrip-
tions formed by a learning program. In the absence of good
features, "rote learning" seems to be the or y possible learning
method and one cannc*: generalize well from a description learned
*by rote."

In what follows, a preliminary effort will be made to
give a rouch mathematical framework to give meaning to the terms
used above and justification for the beliefs indicatced.

The very existence of a possibility of generalization
indicates that the class cof all concepts to be recognize” (the
cla. ~ described by question 4 in the previous section) is re-
stricted to a subset of the class of all concepts. To make
this point clear, it may not be necessary to take the mcst
general environment. It will suffice, as an example, to take
an Universe having a full fine structure family of input
properties having n properties in the family and :: values of

each property. The main concern here will be the richness of
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the cl~ss of concepts rather thaa the simplicity of their de-
scription: hence, non-input properties need not be considered.

n . . . .
There are m objects in this environment and hence,

n
2" possible concepts. Any time a specific object,

Py N e N Ph; =X is known to bhelong to a specific (unknown)
1 n
concept, those concepts to which X does not belong are eliminated

from those under consideration, and the concept to be learned

m
is known to beiong to one of 2" -1 possible concepts. 1In

general, whei. kl objects are presented to a learning algorithm
as belonging to a concept and k2 objects are presented as
belonging o the complement of a concept, then there are

n"-k, -k,
2 possible choices for the concept. This number, it will

be noticed, does not reduce to 1 (to "correct" learning) till
k1 + kz = nm, (i.e., till every object in the Universe has been
presented).

A restriction of the class of concepts to be lenrned,
then, seems essential. Such restriction leads to oxtremely
fast convergence (exemplified, for instance, by the Pennypacker
Algorithm in the case of conjunctive concepts). However, re-
sults of experiments (on the perceptron, for example, or even
what can foresee in the fu. ire for the CSL or the Pennypacker
and Snediker Algorithms, indiscriminately applied) indicate
that ad hoc restrictions stand very little chance of "standing
up to reality." The restriction has to be learned, just as

the concepts themselves have to be learned.

Lot bbb - . S S . e S
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The last sentence has to be persued with some care.
It will be noticed that the learning of a concept consists of
the learning of the union of a class of objects. The learning
of a restriction, on the cther hand, consists of the learning
of a class of concepts. Although the language of Section 6,
Chapter 1V, is adequate for describing both sets and classes
of sets (so glibly, in fact, that unless a # a is introduced
as an axiom, contradiction will result!) it is probably pre-
mature to suggest that both the learnings go on in the same
language: Much better understanding of the "second level"
learning {learning of classes) will be needed before that.

For the present, it will be assumed that there exists
certain concepts which (even though one is not called upon to
learn them through tagged cbiects) may be used in constructing
simple descriptions of concepts th=t are learned by tagged
objacts. Second level learning (oxr "feature extraction" or
"concept formation") can thought of as consisting in the
recognition of the former concepts. 1In Section 4, and example
was agliven to indicate how this phenomenon may possibly be made
inte an algcr:thm. Very little research has gone in this
direction f{extraction of masks, as done by Uhr,57 and
Niellson:58 are efforts in this direction, although they are
strongly biased in the direction of character reccgnition and
can fail (see, for instance, BOGARng), when tried on more
ambitious projects.

It may be somewhat easier to express the thoughts and

ER T R ’ : : - . EE. g L e X N
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to reduce the chunce of misunderstanding if the above paragraph
is interpreted formally. This will be done in the next few
paragraphs. The reader is warned that the only reason for the
formalism here is precision. No deeper insight rosults from
it immediately.

let <U,P,P> be a real envircoment, where P is the
entire class of input properties. Let there alsc be given a
class F of specific modes of combination of sets to obtain new
sets (which modes may be operations like union and complementa-
tion or may be linear or non-linear threshold schemes)!. One
now defines an ordering O(P,F) on the class Co of concepts. If

the concept ¢,y is lower _“an concept C, in this order, then ¢

2 1

has a simple: description than C,-
Givenr a class of concepts C © Cp . P will be called

satisfactory for C, if every element of C ranks low in the

crder O(P,P). If © is not satisfactory, then a set of concepts
Co will be said to be concepts “formed in view of C" if
e {(c, ©)]c e CO} is catisfactory for C.

Evidentiy, the class C is "formed in view of C" in a
very trivial way. A good concept former wouid be expected to
form a class C, ‘n some "optimal” way which has not been defined
yet.

The restricted class of concepts to be considered
for svoiding the difficulty cf generalization will he ths class
which are easy to describe in terms of the language available

aftar concept formation. The major point that ought to be

N P PN
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emphasized in this section is that restrictions based on the
assumption of simplicity of description has an extremely strong
repurcussior on what one understands by the "generalizing
ability" cof a learning algoritnm.

"Generalizing ability" in the sense discussed before,
can at present be identified most closely with the term,
“confidence level” as used in the field of statistical
hypothesis testing. Also, the slignt confusion with respect
to the acceptable definition of "concept formation" is reflected
remaskably well in the slight confusion that occurs in the use
of the word "degrees of freedom" in that field (the present
author is thankful to Professor Herbert Simon cf Carnegie Tech.
for pointing this out).

This last fact cia probably be brought out by an
example. Let the experiment ccnsist of exhibiting two-digit
decimal representations of the first 99 positive integerxrsg,
tagging some of the representations with 1 and the others with

1,13,15,27,33,35,47,49, 53}

st

zero. Let all elements of the ser {1,

{

be tagged with I and let the =lements of {4,14,16,18,24, 312, 38, 42,

.

. 5% De tagged with 0. I

S

3
[

the valiues or the first and second

[es}
&)
+
n

digits dsfine the only two properties of the environment, one
can obtain the folll . ing contingency table for a Chi-Square

test

g
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Tagged with

0 1

1 0 2
2 2 0
Ending with 3 0 2
4 3 0
5 0 2
6 3 0
7 0 2
8 ? C
9 0 2
0 0 0

The contingency table yields a value of 27 for the
Chi-Square. This has a significance level (with the attendant
error arising from the cemall size of the sample and with a
degree of fre:dom 15} of 0.025 which may not be considered
significant. On the other hand, if evenness of a numeral is
considered to be a property of the cavirconment cne could get
the following contingency table

Tagged with

¢ 1
eveu 10 0
1
second digit odd i 0 10

The x2 this time, for the s ‘me hypothesis of uniform
distribution with tae degree of freedom 4 is 2C. This value
{quite accurately this time) is significant to the level of

less than .001.
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There is little in the theory of sampling itself to

indicate which of the two contingency tables should actually

be used for testing significance. It appears that to interpret

the phenomenon indicated above inside statistics, the latter
may have tc be enriched by considerations of the available
description language. The suggestion made some paragraphs back
regarding restricting the generalizable concepts to easily

descrilable concepts was based on the cbserxrvation that in any

AT LA horae e A P P - TR YRR WA, AR

contingency table, the cells are always chosen to be the ones
most easily describable.
The number of rows in the contingency table is large

if the concept being tested involves the union of a large number

ST ey, A e g

of simply describable ccncepts. This will explain the statement

in Chapter IV, Section 1 that the "size" of the connective "or

TR oy

seems to be larger than that of other usual connectives.

N M PG e

It must be pointed out that even when a concept is
described as an union of simply describable concepts, generali-
zation is not impossible. In the first contingency table above,
for instance, if the entries in each cell were doubled, one
could censider the table as a significance indicator for the
hypothesis, “All numerals ending in 2, 4 6 and 8 are tagged
with 1." Only more observations wot.. be needed. If it turns
out that the structure of the environment and of the language
are such that tco many observations are not possible in each

cell, generalization is impossible without a change in language.

One can think, for instance, of the concept of "even integers,”
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described as a piecewise linearly separable concept where the
only known feature cf an integer is its value. Generalization
would be impos-~ible on the basis of observing the two tagged
sets mentioned ai.."e. ©€n the other hand, if one used the
digits in the binary representation of the numeral as features,
the concept of even numbers would be linearly separable and,
hence, easily generalicable.

A learning and concept forming algorithm, starting
from a fine structure family of properties, could learn concepts
by some technigue in which the class of learnable concepts is
not restricted. If the concepts learned by it are not simply
describable {and if the extremely unfortunate situation discussed
in the previous paragraph does not occur), then the learned
concepts need a large number of tagged objects to establish
their significance. Once these are established, concepts may
be formed to simplify the description of every concept learned.
Attempts are then made to learn later ccncepts within the re-
striction imposed by the newly formed concepts. 1In the environ-
ment which follows a restriction dictated by these newly formed
concepts, generalization of the learned concepts will be easier:
otherwise the class of formed concepts would be modified.

It is the author's belief that the development of
this kind of algorithms is essential if Pattern Recognition is
to become a viable branch of Artificial Intelligence - indeed,
if Artificial Intelligence ever has to become a viable field.

So far the discussions have been carried out with
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the background of non-numerical description languages and
recognition techniques. In the case of techniques based on

the assumption that the cbjects are vectors of n real numbers,
analogous discussions remain valid. It may be worthwhile tco
limit discussions to polynomial discrimirzat functions. (It may
be repeated here that initial restriction of learnable classes
to "lipearly separable" or "distributed normally" impose con-
ditions on the initial measurements which are extremely 1ll-
understood). That is, let C be such that x €C = o < P(x)

where

n n
P(x) =a_+ 2= a, X, + I3 L. X, X
o] j =1 +°1 i, =1 i3 71 73
F ohenee + 2ZIZ ... 2O X, X. X X

ijk ... t 71 73 Tk T7T Tt

+ see t oo Q12..,n Xl x2 ee o xn.

It will be assumed that if an element is chosen from
the concept C, the probability that a specific x is chosen is
f(x,c); similarly the probability of x to be chosen when an
element is chosen from ¢ is given as f(x,c). It will be noted
that in Baysian techniques of Pattern Recognition, it is the
parameters of f that are estimated. However, since the "a"s of
the above polynomial are functions of these parameters (note
that f{x,c) = o if P(x) > o) it will be assumed that the
estimation of the "a"s is the matter in issue.

Let now kl vectors (;1 ,§ﬁ ,,,.,§k ) be presented to
" o e p 1
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#X : the learning algorithm tagged with 1 and k2 vactors

(zl 1Py seeciZy ) are presented tagged with G. On the hasis
"4

of these vectors the algorithm estimates coefficlents bo '

{bi}, {bij} ceans {b123...n}' {Of course, in any practical

case, many of the higher degree coefficierts will be zero.)

The "b"s are functions of the variables {;i ,§é ,.o.,§k } and
1

{Ei ,..,,Ek }. which have probability distribetions £(y,c) and
2

2
S
o
&

f{z,c) respectively. Hence, each b will have a probability
distribution and need not be equal to the "a"s unless k1 and

: k2 be extremely large. However, if the learning procedurs is
any good, the distribution of each b will be centered around
the corresponding a.

= In the language of the theory of small samples, each
coefficient b is an estimator of the corresponding a. While in
the past workers in the field have been gensrally satisfied if
the estimates are unbiased, for discussion of generalization,

the efficiency of these estimators must be known. The efficiency

will be given by the estimation procedure and the distribution
f(x,c). However, in the general case, the following discussion
is germaine.

In any good estimation technique each "b" will have

the corresp~nding "a" as mean and will have some variance §

which will decrease with increasing kl and k2. However, the
| rate of convergence can be seen to be seriously restricted by

the number of "b"s being estimated.

TN WS By bim - i e B me e e B A B e e e TR ke e el e e
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The number of degrees of freedom is not kl + k2 but
is reduced by the number of parameters being estimated. As a
result, the numper of observations necded for generalizavi-n
become lawrger, the larger the number of parameters estiamted

(i.e., the more complex the discriminant function is). The

reduction of the number of parameters is only possible by

using carzfuliy chosen mezsurements for ti.. components of the
vector. Even though the input properties look "naturally

1 numerical® that is no indication that the natural choice is
reflected in any way on the restriction to the concepts being

learned.

An example may make the point clear. Consider the

concept {4,5,8} in the environment indicated in Figure 1.1.

Denoting the "natural" property "number of borders” by x and

"number of figures" by y, this concept is represented by the

ﬁ i set of vectors {(2,1), (2,2), (3,2)}. The reader may convince

ﬁ % himself that this set is not linearly separable. However, if

new features z and w are defined as follows

z=2ifx=23,y-=1

z=1if x =2, y =2

4
|

= y otherwise

w=21if x =3, y =1

wo=3if x =2, y =2
w = x otherwise
the concept appeais as the set of vectors _(2,1), (3,1), (3.2)}

which is separated by the linear polynomial w - z - %. A very
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unnatural numerical measure turns out tc be the useful one as *
far as simplicity of sxpression is concarned.
An alternative moue of feature extraction may be

indicated by pointing ocut that the "features” z and w may well

have been looked upon as funciions of x and v which rendered

the concept separable. The forr of the function z{x,y) is :
seen to be quite complicated. Mence, if 2 non-linearx discri- j
inating function has to be constructed by replacing z and w by '
complex non-linear functions of x and y inw - z - %g all

semblance of giplicity would be lost. However, if one is

faced with a large number of highly complex discriminants for

a iarge number of concepts in an environment of n dimensional

vectors (xl 'Ky ,...,xn) and discovers a set of transformations

y; =Y; (xl ,...,xn)(l < isnr)

guch that the original discriminants are .imple functions of

the Y, + one may consider the y's as the significant feature.

LT kT g ¢

of the environment and use them for subsequent learning and
generalization.

In the absence of good measurer ats (good "features"
in the jeneral case) concept formation is an essential adjunct

to Pattern Recognition, no matter how sophisticated may be the |

mod-s of combination of the basic predicates. As has been said
before, past experience has shown that threshold gates are in
no way more effective than Boolean gates, if the features are

not good. On the other hand, recent work has shown that with

TIOR3 £ e e e e e S . . . .
e e et e
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good features, quite economical switching circuits (with a very

manageable number of gates) suff.ce for xecognﬁtion.so
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6. Learning Games by Generalization ~ Importance of Description

Lanquages
It was shown in Section 9 of Chapter III that the

sets {Wi} acted as adcyuate approximations to the evaluations

of any Tic-Tac-Toe-like game. It might be noticed that all the
bagic predicates involved in the description of the sets {Wi]
are the same as those involved in the description of Tic-Tac-
Toe-like games. Hence, the Universes and fine structure
families of properties needed for describing the rules of the
games are adequate for the description of the {w;}. However,

if in addition to the basic predicates one also used the derived

predicates fs(A) = i and (3n) ((n,A) € & (n,B) ¢ Cs), then

'8
the Cescription of the {Wi} becomer much simpler.

However, one important point was not made adequately
in the previous discussion: that learning descriptions of the
{wi} as combinations of predicates of the above form leads to
correct generalization with very little data.

The pcint is probably best illustrated by an example.
Consider any plane (horizontal, vertical or diagonal) in the
cubic board with three cells assigned to X and the rest by A,
as shown in Figure 5.%{a). For convenience, the cell assigned
to A have b:en shown empty. That any configuration in qubic
which contains a plane like this and it is the players mcve is
in Wé can be easily seen by the persual of Figure 5.2(b). Here

each Xi rapresents the iEﬂ move of the player and each Yi that

of the opponent. That this is also a member of Kg 3 seen by
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a persual of Figure 5.”(c) .nd the accompanying intersection
matrix (which can be seen to be merely an alternative represen-
tation of a weighted graph). The intersection nodes here have
been numbered to bring out the reason for Ki and Wi being the
same set.

Tt will be noted that the intersection matrix of
Figure 5.2(c) also describes other members of K¢ - Some of
*hese are shown in Figure 5.3. Also any position egquivalent
to one of these under the multifarious symmetries of the qubic
board,61 would have the same matrix. Also, a plane with some

extra ¥'s (for instance, with one between Y2 and X, in Figure

4
5.2) would have identical descriptions. So would a configuration
which have the same intersection matrix but with some of the
lines in a different plane (and all their symmetrical equivalents).
This mode of description (the intersection matrix is merely a
convenient representation of the statement forms discussed
before) is thus, more powerful than storing specific p~sitions
and considering the symmetries of the board. This latter method
has been a favorite in the field and both Citrenbaum and
Koffman have been erroneousl: criticized for not using this less
efficient method which is applicable only to Qubic. The number
ot symmetries in games like Bridg-it and Go-Moku are far fewer
but the description shown here rema.ns eqgually jeneral.

This is also a convenient place to point out that if
in Figure 5.2 there was an extra Y between Y, and Y, ., the

3

resulting pos.tion could have the same connection matrix but
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woulc not be a member of Wé. This indicates how sonme members
of U W: are not members of U W..

Koffman's learning program is designed to learn
dcecriptions of {Wi} when their elements occur in the course
of a play of the game. Here generalization is very much
facilitated by an analysis of the actual course of a game.

The program carries out the a-=lysis as follows.

The first game is played at random by the program
till it is defeated (or accidentally wins). The winning move
ie now removed and t... file uncovered by the process is stored

in the trivial matrix as a description of W From then on,

:
1
no win against the program is possible with a single threat.
When the machine is defeated {or acc.dentalily wins) by a “fork,*"
removal of the winning move reveals o position whose description
was already available in memory. At this point the previous
move is removed, and the line uncovered together with its inter-
section with the lines satisfying the previous description is
stored as a new matrix. Now the program blocks all forks and
initiates _t¢3 own forks when possible. Learning continues in
subsequent defeats and accidental wins by deeper forks in a
similar fashion. Successive previous moves are removed till

no match is found with previous descriptions. The last move
removed is then anzlysed to revcal the alternative threat that
was blocked. ‘he lines of this threat and that of the previous
one, together with their intersection pattern, is then stcred

i, a new matrix.




1
W
[

]

It ought to be pointed cut that in the absence of this
kind of analysis descriptions of the {w;} could be learned as
conjunctions of statements frcm a large number of examples by

scme algorithm analogous to Pennypacker's. However, the above

analysis leads tc a more ranid learning. As a result,

Koffman's program needs to play only about 12 games before it

g B g Al NG AT TR TR L ORI DRI

defeats its cpponent 0% of the time in Qubic and Go-Moku and

PYRpY

wins in Bridg-it every time it plays first.
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9. Auproximation to Strategies in Tic-Tac-Toe-Like Games

Tic-Tac-Toe-like games have already been discussed in
Section 5. 1In the present section certain subsets {w;} of S
(the set of situations) will be discussed which contain the
sets {Wi} slthough they do not coincide with the sets {wi}.

In what follows, the da=finitions for w; w.1l be introduced.
It will be shown ir. Chapter VvV that descri; ticns of {w;} are
much easier to learn than those of {wi}. The significance of
this learning will be clarified in Chapter V.

It will be recalled that a Tic-Tac-Toe-like game 1is
completely specified by a set N of cells and two subsets, G and
B, of ZN, called the winning and losing tiles. Giliven a game
<N,G, 8> one can define a reduced game <N,G,@>, with the same
set of cells and wirning files, but no losirg files. The
evaluations of <N,Q,®> will be denoted by {wl} and those of
<N,U,@> by {Wi}. Similarly, the situations to which (n,X) or
(n,Y) are applicable will be denoted by S( as

n, X) and S(n.Y)

before for <N,(,8> and by S° and s for <N,C,g@g>.

(n,X) (n,Y}
The following theorem indicates how the sets {w;}

act as approximations to wi.

Theovem 3.22: If s ¢ W, then's ¢« U Wi,

Proof: 1If s = wl then there 1s an n < N such that

s ¢ 8§ ard s, = (n,X){s) ¢ wW. However, s « S(n ) inplies
L ’

{1, X)
L -1
that s ¢ 5-L, {3 "{X)]

#

|s™hv)|. and s(n) = . Since L is

¥

empty in <N.G,@>. this also implies that s Also,

S(n,x)'
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8, = (n,X)(s) ¢ W,y implies that szl(x) = A for some A ¢ G and

ifnoBe¢ 8, sIl(Y) = 8. BAgain, since # is empty in <N,G,@>,
this implies (n,X)(s) ¢ W for <N,G,@> also. Hence, Wy “ Wi’
The theorem is thus true for i = 1.

Let the thecrem be true for i = k. Let s ¢ W If

k417

]
®
nCH

Wa , there is nothing to prove. Ctherwise recall that

j 1

and for each n' such
k

(n', Y ((n.X)(s)) ¢ U wj =

3 =1 3

there exists an n ¢ N such that s ¢ S(n,x)

that (n,X)(s) e S(n',Y)'

nCow
=

Since Sk 28 as pioved before and since Sbn =8
\

n, X) (n, X) 'Y)

can be proved similarly, this implies that s ¢ wﬁ+l' This proves
the theorem.

In what follows, elements of g‘wi will be given an
alternative description which will be easier to test than the
exhaustive trial irticated by the definitions in Section b used

so far. For this, the following ideas will have to be intro-

duced.
Let 2 and 3 be two arbitrary sets, let C - 2 x =& and
let # be a function mapping t.e range of the relation C .nto

integers. Then the pair <(.#> will be called a weighted graph

on a and ».
Given a situation s in a Tic-Tac-Toe-like game, let
<Cg ,#S> be the weighted graph on N and G definew 25 follows:
(i) {n,A} ¢ ¢ if and only if s{n) = A, n - A ana

-~

i
s (YY) TAa=g

T ro T L
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(i1) #,(8) = [a N s
The ideas involved here may perhaps be illustrated
by reference to Figure 3.6, showing some situations in a 3 x 3
Tic-Tac-Toe game. If the cells are called 1 to 9 in the usual
order then the set of all files are (l1,2,3),(4,5.6),(7,8,9),
{(1,4,7),(2,5,8),(3,6,9),(1,5,9) and (3,5,7). calling these
a to h respectively, the weighted graph of the board shown in
Figure 3.6(a) is
c = {(7,¢),(7,h), (2,e),(3,h),(3,9), (6,£), (B,e), 18,¢c)]
#(c) = 2; #(e) = 2; #(f) = 2; #(h) = 2.
C and # are represented in Figure 3.o(b) in a graphical form.
For an understanding of what follows it would be
worthwhile to indicate what happens to the graph <Cs ,#s> as
the situation changes as a result of applying controls and
distrubances {"moves" and "countermoves"). Two steps of change
are indicated in Figures 3.6(c). (d), (e) and (f). The effects
indicated in these pictures can be formalised as follows:
For each element n of a, let X, and Y, be two func-
tions from weighted graphs to weighted graphs defined as follows:
X, (<C, ¥>) = <C', 4>
where ¢t =[(x - {n})y x s, NCcC
and #'(A) = #(A) if (n,A) ¥ C
#{A) - 1 if (n,A) < C
Y (<C,#>) = <C',¢'>

r

where ¢' =f(a-{n})) x (8 -cm)). ¢
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#'(A) - #(A) for all elements of the range of C'.

Theorem 3.23: 1In any Tic-Tac-Toe-like game and any

situation s
<c(n.x)(s) ! #(n,x)(s)> =X, (<Cs ’#s>)

“Cms) © iy (s)” T Y (G5 57
whenever the left-hand sides are defined.
Proof- Let (n,X)(s) be defined, i.e., let s € S(n,x)‘
Then s(n) = A, If (n.X)(s8) = 8y - then sl(n) = ¥ and for all

meN, m»¥ n implies sl(n) = g(n), Hence, {(m,A) ¢ Cs if and
1

only if (m,A) ¢ Cs and m ¥ n. Also, for any A in the domain of
Cs' ' lA N sIl(A)I = IA N S—I{A)I unless n € A, i.e., if

(n,A) € C, in which case [A NsTH(M| = [ANs7Hm] - 1. This
proves the first part of the theorem. The prosi of the second
port is left to the reader.

For an alternat ve description of the sets {w&} one
his to define the following class {Ji} of sets of weighted
graphs.

A weighted graph <C.#> belongs to I if and only if
there is an A in the range of C such that #(a) = 1.

K.1 i8 defined for 1 > 1 as follows:

B

Let <C',4'> be any graph which is a member of

(
&

and such that for all n it is true that Yn(C‘,¢') €

(.
Cq

bt

]

Let fCl Cy venn, Cn} be the set of all subgraphs of C' such
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e
<

that for each p(l s p < n > (Cp .#p) is a member of
J

(4p is the restriction #' to the range of Cp). Let

(Al ,A2 fee Am) be a set of elements in the range of C' such
that there is at least one Aq(l < g S m) in the range of each
Cp(l S p s i). Let n be any element of a not in the domain of
C'. Let <C",#"> be constructed as follows:

c' =c¢ U f(nrAl)'(“'Az)""(n’Am)]
#"(A)=#‘(A)+lifA=Aq (1 <qsm)

#' (A) otherwise.

A weighted graph belongs to Ji+1 if and only if it

i
does not belong to U Jj but has <C",#"> above as a subgraph.
j =1

Theorem 3.24: 1If a graph <C,#> belongs to Jivl there

exists an n in the domain of C such that for all n',

i
(<C, #3 ) '
Yoo (X (<C2)) o g
) =1
Froof: By definition of Jisy <C, #> has no subgraph
i
belongying to o Ji' Also, there is a graph <C',#'> and a
1 =1

subgraph «<C".#"» ©f <C,#> such that <C",+"> is constructed

Let n

from <C',#'> as described in the definition of Ji+l'

be a member of a1 which occurs in ¢" but not in C'. From con-
struction of <C",#" > it is evident that

X (C7, et = <C' >
N ! .

Since (C",#") is a suburaph of <C,#>, <C',#'> is a subgraph
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A G i,

of X (<C,#>). since for all n', Y ,(<c' #'>) ¢ U J .,

and <C',#'> is 2 subaraph of xn(<C,#>), for all n',

i
<,
Yn, (xn C.#>) ¢ ; 9 . Jj

Theorem 3.25: For any Tic-Tac-Toe-like game, s ¢ Wy

if ~nd only if fs“l(x)f fs_l(Y)[, s_l(x) Z A for any A ¢ G
and <CS ; F> € Jk‘
Proof: Let k = 1.

If <Cs ,*S> £ Jl . then there exists arm z ¢ 4 such

that ]s—l(A) Nal =1 and sml(Y)iﬁ A=4g i1.e., for all celis

in A except one s(m) = X, and for one cell n ¢ A, s,n) = A.
) =1,... -1 -1,.. ) .
Since |8 “(X)]| = |s "(Y)]| and sT (X) A A" for any A' ¢ G,
8 € S(n,x)' Also, if (n,X)(s) = $, - then sl(w) = X and
sl(m) = s(m) = X for all cells of A. Thus s{l(x) 2 A and
(n.X)(8) - W. Hence, s ¢ Wi.
4 let now s ¢ Wi . s0 that there exists an n ¢ N such
that (n,X)(s) ¢ W. Let (n,X)(s) = Sy - Now SII(X)
s-l(xf U {n}. ¢&ince Sy € W, tnere 1s an A - C such that

s°l(x) ') {n} 2 A. However, since s y W, s_l(x) A A. Hence,

n € A and for all m ¢ A such that m # n, s{m) = X. Hence,

i

#S(A) = ] and s ¢ Jl’

Let now the tneorem be true for kX -~ 1. Let

<C ] = J. .. . X1 5
Cs AP J1+l Then by Theorem 3.24 there exists an n such

that for ail n'

(
[

. & > < }
Y. (X (<C .8 ) e




However, since s ¢ W and [s-l(x)l = ls—l(Y),, and

1

from the proof of Theorem 3.25 of <Cs ,#s> as a member of Ji+l

there is an n € N such that s(n) = A, s € § and hence,

(n, X)
(n,X){s) is defined. Also, whenever (n',Y)((n,X)(s)) is
defined, une has by Theorem 3.24

>

)

L) Cnx) (s)) YY) ((n.x) (s)

J.

‘ N

]
<
=
a
*
o
G

hence, there exists an n such that s ¢ S( and for all n'

n, X)
such that (n,X)(s) ¢ §

]

{n*,v)

(n'.Y){((n,X)(s)) ¢«

n -
b

s < wi+l.

Let now s < W Then, there exists an n such that

1+1°

s < S(n,x) and for 11l n' such that (n,.X)(s) < S(n',Y)
1

(n" Y)((a,X)(s)) ¢ O W

and hence,

Since YP,’X((<C ,*S*)) is a subgraph of Yol ,'QB) by

definition of Y . X (<C

¢ >) has sy ap? <z ¢
n n s g ) has subgraphs -C, , }

¥

o K, - Also, none of LGy ,‘k>} are subagraphs of
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< > ] ' ' ' ' 1 5.
C '#s , since <Cg ,¢.> 4 Ky by induction hypotheses

W C -

3 L

Hence, n must occur in the domain of each of these subgraphs.
So <Cs ,#s> has a subaraph which is obtained from {<Ck ,#k>}

by the construction shown in the definition of Kis1e Hence,

8 € K

i+l”
The reason for introducing the above theorems is the
fact that the only predicates needed for the recognition ot

members of Ki are *the values of *s for the differernt files

1
and (in view of the construction of Ki+l from 9 Ka) the
1 ;=1 )
fact that s(n) = A for some cell n common to a number of f:les.

. . . . N ,
Given a situation s ¢ {X,Y,A}, 1. ., an assignment of X, Y and
A on the cells, the search for files with given values ot =

. . : -1, . i
and having certain cells in s ~ (V) in common between files s

much more Adirected than the exhaustive mini-max searches

s

indicated by the definition of 1wi

The difficulty with the description of W throuah

the Ki ., however, lies in the fact that the W' contains
1
J W. . but does not coincide with it. Hence, the K are ono
* i
approximations to W.. The reason tor this 1s that the oo o
LS
. 2f Theorem 3.22 1s not true. QOne reason for this, on Larrn.
i that elements wi may be elements of L 1n =N,&, %, and s o
4
1)
$ member of - S(n X) anly bhecause L' is empty | N, oot
‘ n o< N .
i
. An example of this will be given 1 Chapter V., Scction o,
l. ¥
K Howe''er, because the differcnce between W @ and




i
¥
§:

{Wi} lies mainly because of the emptyness of L', a state 1in
J‘WR can be tested for membership in U wi by a somewhat well-
directed search also. & method for doing this has been pointed

-

out by Citrenbaum.o2

s . Is h]
Another wvary ir~ortant reason for using the {K.j; as

i
amproximations to the {wi} is that the {Ki}' being obtainable
from a specific mode of combination of statements of the form
*S(A) = 1 and (in)} ({(n,A) ¢ Cs & (n,B) ¢ CS), leads to easy
generalizations from examples. A learning program based on such
generalization was developed by Koffman,69 and will be discussed
in Section b of Chapter V. The descriptions learned by this
program is utilized by a gamz-~playing program to make very deep
forcing moves during the play cf any T:c-Tac-Toe-like game.

In this sense, the program is gamne-independent within this
class ©of games. Given any game <N,4,8> ¢ plays the game

legally and, on the kbasis 0f 1ts experience. iaxproves i1tz yame

- cften to defeat 1ts opponent.




s RN T i RN TR LR B TR

e e

R T

S 17 R A Gy

Fig ~e
#igure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure
Figure

Figure

Figure

Figure

3.7
4.1

4.2

4.2 (a)

4.3(b)

4.3(c)

5.2

5.3
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The Tower of Hanoi
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