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FOREW ORD)

This reort is acniuto tb--2--75

werethefi-st three chapters of a book to be published by

AmercanE.l.e~ier Publishing Co-mpany, Inc.

In~ the previous report it was mentioned that the

chapters of the book foiiowing Chapter III w -uld not be published

in~ report forr,,, Nevertheless, the present report is being

publishled fo-r t 'o reasons. one is that the chapters reonorted

here contain mucli material which did not appear in previous

publiLcations. These additions are both in the way of formali-

zations and intr-protations of previous work.

Another reason for publishing this report is the fact

that on seeing t.'re first repurt, many people on our mailing list

'have 'ime to .n Chapters IV and V as sooni as they are

writterl." Thi.s okLenables us to do just that. As a result,

thiis r'port is mnerel~y the first draft of these chapters. I

believeo that th,,e final version, both of this report and the

previou:; one, will1 be much more readable than these.

Tne work reported on here was carried out by myself

a nd g r,;., A aLt students si,;porl-.ed by the :. S. Air Force ciffice

of Scienti fic Research uinder grants AF-OSI-125-67, AlF-OSR-125--65,

and by, the National Scienz-ce Foundation under -irants GK 1386,
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GK 185 and GP 658. Some of the graduate stuaents whose work is

reported hera were supported by DE NSF cnd Case Fellowshns.

A word of apology has to be added regarding the forrat

of this report. it starts on "page 164" ari " chapt -er IV. The

main reason is time pressure. The Table of Contents show

similar pecurliarity of behavior. The page numbers shown for

Chapters I - III are only approximate. The contents of Chapters

I and II are exactly as in the previous report. in Chapter III,

what is called Section 9 in the Table of Coritents did not appr

in the previous report. What is called Section 10 in that

chapter appeared as Section 9 in the pi'evious report. The

section called Section 9 of Chapter Ii in the mabl of Contents

appears as an appendix to the present report. The page numbers

Sshown in the Table of Contents for Chapters IV and V refer to

the page numbers of this present report.
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SCHAPTAh IV - DESCRIBING PAT'LiRNS

1. introduction

The importance of pattern recognition to solutions cf

problems and games was discussed briefly in Section 3 of

Chapter I. In Chapters TI and III, as b.ets like T. , V, S
i ' fX

W. , K. , ani blocks of E. or that of the Kernels of functions2. 1 1

lij' Q were discussed, it was implicLtly or explicitly stated

that he use of these sets in the construction of so'ution

m-thods are practicable it and only if they can be described

effi cientl y.

This ch ?-e .<il be deoted eitirely to the discussion

..... desritons, and the- vo the effic enc% of descrition

.ornds . the set '..,o O 1%1 scr , , t

1 t 0.. 'o to -no

OL S i i t . . ' " s tbe reaer

* ) ec s- de t- t.o"'' n. .- r t-.o d r . .. h L . , _)

*-- r..... . . . . . .

1: C 1" a 1V

e iibe



of these expressions as denoting sets. For tris latte- to be

~~ile.it i~necessary that some of the syntLactic erntitieS

be predicates elefiiing certain "i4ntuitively recognizable" sets

of objects in the Universe of Discourse. in addition, tLhe

syntiz1 . has to have var~ous orays of combrin pleiatst

yield compound statements. Tha se compound statements W'ill denote

sets which are uniquely related to, the irntuitively recoqoizab-le

sets in a way dictated by the st-lcture of the rompound state-

ments,

The first few -ections of this chapter will be .:..oted

to the development of some formal definitions and th,-n to some

specific languagjes which are meanI~IgIL.U in a wide variet.; of

Universes of Discourse. The otaior c-irhasis will be or the

"efficiencies" of these languages.

By the efficiency of a langu--;e fclr the description

of a given set will be meant the "size" (in some _,:nse) of the

" hortest" expression which denotes that --' t. This size

depends on the set as well as the predicates of the language

and tha repertc're ol_ combination modes avaiiable. it will be

raken for gr.. _ed that new predicates --,an be defined for en-

rich~lng the language. That Is, some compound statements may be

replaced by shorter expressions by defining if ew syntactic

entities in the langu-ge.

The deti :i'on of the word, "size" was kept purpo)se-

fully vague in !,c Last. paragraph; because a precise definition

~biqhea' ily dependent on technology) is hard to give i
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absol te terms. tn a verv rougn w ay one may say that the size

of an exp'ess.on is measu_-ed by the nur.oer of symbols in it.

in tne author's own thinking (for reasons which will be

clarified in the proper context) certain symbols in the ex--

pression (like "or': of Prooositional Calculus) szem to have

r greater siZe than others (iC.e "aid").

The discussion above has been limited to The nature

of statements which describe "given" sets. if by "civen setC'

one means a set for which a description is available then the

problem of obtaininq a short description turns out to be a

criva- one - or at least a problem of transliteration. However,

if by a "given set" one means a s :t whose elements are all

a, .lable as a list, then one can consider the problem of

generating a succinet statement in a language which will -

satisfied by every element of the list and by none else. This

roughly, is the problem of "concept lea"ning."

Since such lists are impossibly large in practical

cases one may, instead, consider a case where only some members

of a set are exhibited on a short list. This, however, can

give no meaningful clue to a learning prog-am. One can infer,

without any contradiction from the presentation, that every

object belongs to the set. It is essential that at least some

members of the complement of the set are also exhibited in

another short list. One can then consider the problem of

generating a succinct statemceit which will denote some set which

contains every element of the first list and none of the elements
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of the second list. Typically, such a statement will be

satisfied by certain objects which do not appear on either list.

Thusi the expression will have "generalized" on the examples

given. The mode of this generalization will be dependent on

the method used for generating the describinq expressions and

to a certain extent on the language, since the language de-

termines the succinctness of the statements. However, the

"correctness" of the resulting generalization - whether the
I

descriptic. actually denotes the set one "had in mind" in con-

structing the lists - is not at all determinable from the

method of description generation a-lone.

Ine next chapter will describe certain algorithms for

generalizations of the restricted ("not necessarily correct")

variety, it will also discuss the possible situations under

which generalizations -ay turn out to be correct.

Rough definitions of a few more terms may be useful

for the reducti,n of confusion. In the literature, the term

"pattern recognition" is used in two implied s-enses. In one

sense it stands for what has been called generalization above.

In this book "Pattern Learning" and "Concept Learning" or

simply "Learning" will often be meant to signify the same

phenomenon. In the other sense the term "Pattern Recognition"

means the recognition of an object as bei.nging to a pattern of

known description. In this book the terms "Pattern Recognition,"

SRe uu," tion" and "Object Recognition" will all be used in

this sense.
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Another term, "'Cnce;pt Formation" is often used for

what has been called "Concept Learning' above. in the next

chapter a much more complex phenomenon will be called "concept

formation."

The word "concept" will often be used for the word

"pattern" in this book. The reason for this is historical -
2-1, 28

the initial models and languages developed at Case, were

developed for understanding the psvchoiogical process of concept

19
formation. The relevance of the ideas to the field of pattern

recognition was realized only later. This realization immed -

ately led to the need foi further developments of the formaJ'LsmS.

It is the author's belief that these further developments have

made vhe T-heory eve.. more relevant -o psychology then they were

before. The t ... ory, in its present form, therefore, will use

both the terms.



2. Some Basic Terms and Discussions

eihe present s'-ction will formalize some of the 1basic

ideas referred to in Section 3 of Chapter I to initiate t,_he

discussi i.

A pattern recognition environment (called envilronment

for short) is an ordered pair <U,P> where U is an abstract set

and P is a family of non-trivial partitions on U. In much of

what follows, the family P and each of its elemen-ts will be

considered tc :je ;"Lnite, although some of the definitions and

results are meanii:.ful even if some elements of OP are infinite

classes.

U will be referred to as the Universe of Discourse

(or Universe for short). Each eleF-m t of ) will be called a

Rroperly. If P is a property, ti~an each element of p P P (where

p, clearly is a subset of U) will be called a value P.

The reader will notice that the word "value"i'u~

for certain pre-defined subsets of L,,e Universe of Discourse

while i-i most of machematical .1iterature word "property"

is 1ised in thi~s sense. However, it may be wojrthwu.Lle to recall

that the property "redness"~ and the propeicy "color" are two,

distinct things. "Redness" i:- a property in the usual mathe-

matical qense. But "color" is also referred to ais property in

common parlance: a fact one would like to eog-an;izO in the

theory, Psy:chologis-s use the words "character istic" o-r

"dirne'li ion" instead of the word "oroperty."2

A concept (or a pattern) is defined recursively as



foll11ows:

(C 'L A v.alace of a p -operty is a concept

CCii) If: A ar'd B are concepts then k. B is a

concept

(Ciii) If A isa concept, then the complement

A of A is a concept

(Civ) Nothing is a concept unless its being so

follows from (i), 7L) and (iii) above.

In most of the previcous wur-. at Case, (iii) all-ve was

replaced by, "If A and B are concepts, ther- A - B is a concept.11

TPowever, in such cases, the class of concepts do not form a

B(y )lean Algebra except for The cases whore each element of :

w.Na a finite partiti. a. Thi i because complements ofF concepts

imay not, al,,,ays be concepts If part Itions have an in fin it, numpb-r

of blocks. The diffi-culty is removed by t-he defin-itions * 'OOVO.

It could also hav~e boon removed by allowing infinite' Unions and

mntorsections: however,.Ilnce the des;cription 1 :inquaqes pre -

supposed in this 1_eok bed I.ns to have praco i a 1 ii f fi cult 105

any time infinite :perati ens arc, used (cliff icul1ties shared by

any pattoern recoun it jon scheme viS ldinfilitocy processes) it

was*cn ido rod more me an t nc;fo to ha et ie do t n ion s as abe cco

O ne cai im t ivate thie ajbove do f in t ten of a eon.-cp t by sa YInq,

A co ncep t is a ISet of) th Uri ns A nose 0ilm't --, are, r(eCe11ir1 1b1 e

as on en, md to iv by vit ci- of the ir proper ties.

For convo,_nionce cl §later 3 is es s ion, .esh a 1- doef ine

an envir-onment to bDe t iito If 'Is -i f ln~lt to family aInd'. eawh

oioment of , isatnvcprlto.



Given a subfamily P' of P one defines a Labclass

of the class ot all concepts as follows-,

(i) Any value of any elcment of 9' is a member of

(ii) If A and B are members ot C,,, , then A Uj B and

Aare members of ~~

(iii) Nothing is a member of Cp, -in'-ss its being so

follows from (i) and (ii) above.

By this definition, the class C,, is the class of all.

concepts.

A subfamily of 1,- is called a fine structutao family

if and onl 'y if C ., C

A finite fine struiict,,re family H -P, P. -p
nj

is s&§, to )e full If

p1. p2 in (4.1)

t1 2 n

for each pr
rIA fine structure family of prop rtii-s n-1 any tenviron-

ment set the liimit to the distiri-inshabiljity of members of th-e

Univer!-e, as will be showni presontly. If T-he fine str-ucture

family is much smaller than the set 'I' then the properties out-

side the fine structure famLily mer Ly af fect the efficien cy of

description and ,ot the u' -imate capability of descripti.11

Nevertheless3, since efficiency of description is crucial , tlhe

distinction between 9. and ' esscont ja to The cuis iderat ions

of this chapter. To keep th is bas ic rol e of the t ine s tructure

family clear one do f ines s ol 1o S .
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A real environ--nt is a triple > wheto <U,1 )>

is an environment and 9' is a fine structure subfamily of V.

t,' is not necessarily a proper subfamily of P, although in all

interesLing cas s it wouLd oe.) 9 will be called the input

ro erties of the environment.

In the next few sections oniy finite reai environments

will be considered. In the work described in the next sectin,

real environments with a full fine structure family of input

properties will be assumed.

All description languages discussed in this chapter

will have es it., notivation t.... 3ool Algebraic structure of

the class of concepts as U t:w.< ..b)ove. Althouqh the languaqes

l in mod of cribn concepts, one aspect of

thom wILl remain the aie. Th I  pertains to tho fact that any

concept of the form shown . epression 4. 1 above is in one

sense, very h ,,: t, rtubers of u both of which belon.- to

the sot

Dp ...
1 n

-are .ndst inu ,hacie one of them bclongs to any concCt C,

trn titrle Le., r .- he lnio,; to it. Tis can be readily

i:: sno,;n ,' indit ion n,.:or LheC least nonb,,r ofs .,t thoret _a_

:-norat <; '< t 1 i Lh ) t t .e o. one acco n-i to

(C , ( I an (C tii ,imvc. In T a ' st r'g<, ' vE-rs ion

on h ttatant i'an n: madn

Th, ;r: 4.: Lt ,,e iexzi nv non' (net ne,<essar ily

t <:n t.) s,,t I ;e teat " he.W r ,,.a.h i I, let
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P, C P.. Let a and b be two elcments of U guch that for each

i , I both a and b is a member of i" Let C be any concept.

Then a c C if and only if b E C.

Proof: Let C be a conc-pt according to (Ci) in the

definition. Then there is a P. ' and a Pi, c P. suc", that

C = Pi. Since a c P. ana a c = p , , we have pi ± "

But since P i is a partition, p i i y implies i = i'

Since by hypothesis b p, , one has b C al!-. The cunverse

follows. Le", now the theorem be true for any concept which ca-

be constructea with n or less set theoretic connectives. Let C

be constructed by n+l set theoretic connectives. If C = A - B,

then either F4 -- A or a .i B. Let a - A. Since A is constructible

vith less than n connectives, b A by induction hypothesis, so

that b c A B. Similarly if a B. Ine converse follows also.

Tf C A, the7 if b is nt in C, ii is in A. But A has less

than c. connective Hence, since b A and by the sym.,etry of

the theorem a A whicn -s impossi le since a A. 1 Hence,

b C

Any object in U then, can be complet.ely Serii-, d

(so far as its membership in all c-ncepts aro concerne;) by

indicatinq its memblership in ore eiement o' each of ,he P roner

ties in G. n the basis of this fact one can make the f i

def i-nitl, -s.

R na inite 'eal o z', ronment <U, , , a eneral-

ized object 1.s a strin.ci ot characterq . the form

IP n S t Itn 2



such that for ea-.'ih k, P.p. -:P. and

kk

1 2 n

A generailzed obiect i s a n o i f f allI P

a~nd p P, p. . . i ither contained in or disjoint

f rom p.

F o an rinite environmen nt (or even an erv,,i-ronment

'whete i finit -, n in an o'L-ect may be considered to bec

equal to the -ard polity ot 9)' even wo'rere the enviror. -nt is

1o0 tul In 1 i envirjrlen t of Course, it is necessary

to hoc . n e,.lua to t .e carlina-l ivOf " in in", o'bect. it

may ce -ct iced -iat an, o bjct de f r nes a con c ep to -he

L~ -h-1-se -) the svyiboi5 P

tr c oro.s c- C. 0 r sar n t:eicrto ~oects How

v~~~~~~~~~~~~ riec i s: 0'~to bcii cr- <I .~.~

.wvo tcvOx r

P. r, x. . . ~
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~i abl1e. The predicate will be t.rue for all. members ofth

value ,of the property P. Any member of th- ob-ject

(P., Ip * P. 'p. , -nen satisfies the statement 5(x),

where Fc(x) denotes the statement

(P Wx = p.i (P.i (X) = p, 2 . (Pi Wx = Pi

Th.i5 statement mnay, be consid-red to "describe" the object

(P P'; .. P ~Pi ) In the sense tha th sentence Sla)
~1~ln n,

will be true for all elements a of the oblect.

Obvio:usly , concept7r other than objects can be simi i 1r I

"described" by statemnt -nrli the basic predicae F

where P t, - P and usua'. _oaical Icennectivc:s. 'L ,,e a ny.

object and the description of ayConcept-- in sl,:cn a1 lanovia-le,

one can readily ue-term lne whether , 'he ob otscotaineI

-hne (-on ckp t o)1-r not. Alqorithms ano fo-,3t-~s ulsc-: to .0S I I

recogn ition processs i e oes' S~ -Cre r e:S e tl Mcav'h.

certin Important. aspects Of'~e~ r an'>ce lbr

The cenit-rail ques I- ion rec-ar n,-i Scr:,ot'cs areZ t "0

ti ) ,4- 3C cnc0 S.- sro21 S7 0e:~to bet

s. eos 3 nIa

~'~i ~o e hci e th ~e- rn~o or ai Sorc y cso



whether tla- obiact is contained inI the concept?

(ii Given t,,.!' setz: of objects, how should one con-

ZDrucL a sh ort de-scription of a concept wh-ich

contai .-. elements of the first set anci no

iiie~ - - th e s ec on d s et?

in thIs and the next chapter ce the earlirr

alternativeatmt at nseL thesc qUSti-,,nrs will 0

ciesc~ b~ hey are i cudc hi ecause llev comoare 4:ivrr-

wit'.-,t sorne Pu bI ied work by ot"her ,%Lr'%-ers, ann,

r s , S 0 m0 na3 r

1rob0



3. Concp iofs -A Description Larnuaqe

T37he discussions 'n this sr- '-ion are based on the

work of the aut< or, 28and Pennypacker. ThVe formalism de-

veloped here cirew out of some previou s thoughts of the author,

which had led to a more primitive description language which

wa!7 later abandioned in, view of *~inefficiency. However, SOme

of the basic Lueas relevant to T hatC work have been re~ained:

these have been discussed' in trhe previous section.

k~liven an environment <UJ_> and a concept C, a property

is called Directly Relevant to a non-empty concept if and onfly

if it has at least one value whose intersection with the concept

4- empty.

A property P is called relevant t, a non:e: y ~l.~~

C w>th re-pc to a family of rou .rties if and only if e1ither

it is directly relevant to C or if there tcxists- a property

Q(,,-P) Ln J with a v.alue q such that q Q~C is non-empty and P is

relevant to q 2C with respect to 3

In short, a vr,. :er ty is not relevant to a concept

when know~nq about the value of this property for an object

does not (either b-y itself or -in conjunction with other

proPerties) help in the recog~nition of the object as belonging

in the concept. This statement will N forwaized presentily;

the f: l._owing definitions and theorem will be needed for this

formalization.

Given an environment <UI)> and a concept C, a finite

s Ubf Z? ilIy P2 ' . P iof is called sufi-icient for c ifI ' 2 n



and onlyif either

(Si) n 1 and C has non-enpty intersections

:in .,ore than one value of P,

ii) " p .... .,;here pP P. and there
k = .

is no subse': of P. Ii : n) with this

property. (Note: n can be 1 in this case

also.)

A set of pi-c -erties J- is called a sufficiercv family

for a conceot C if either " is sufficient for C according to

(Sii) above or there is a member P : j which is sufficient for

C by (S ) above and -.7 is the union of P with some sufficiency

fam ly of each of the non-empty intersectlons of C with the

values of P.

Theo. ern 4.2: et iPi (1 'i n)) be a sufficiency

famiLy for C. Let pi P.i for eac i. Then either

P l " P 2 ° P n C O r P l P 2 -) " " ! p n " C .

1 2 p IC nr1 p p<

Proof: if there is no property P in (Pj such that
k I

Pk has more than one value with non-empty intersections with C,

then C p P2  "' p, and the theorem is evident. Let

-the theorem be true if there are k properties in Pi ] with more

than one value with non-empty intersect'ons with C,. The theorem

is true for k = 0. If it is true fe k = m, let k m+l. Assume

(without loss of generality) that. P1 has more than one value

with nor.-empty intersection ith C and iur any p' ( P such that

C - p' , 0, C F p' has a.sufficiency family which is a subset
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of fPJ. If C 0 p! 0 ' then the theorerm follows immediately.

Otherwise the sufficiency ramily for C ' 1p which is a subset

of 1PI contains less than or equal to m properties which have

more than one value with nor-empty intersection with c n
Hence, Pi ") P 2 I ... n pn C np 3 P C by induction hypothe is.

This theorem leads to the following explication of the sign-

ificance of relevant properties.

Theurem 4.3: Let 3 = [Pl 'P2"..Pn} be a sufficiency

family for the concept Let P1 c J be not relevant to C with

respcct to 3. Let P Pll 'I2 .pimj. For any set

lp~iPi Pi 2 i n) if ' 0 P1 1 n P2 0 . Pn n C then

for all k(l k m) Plk p 2  n ". p n 0

Proof: By Theorem 4.2 the hypothesis

pl1 n P2 ;' o Pn (I C i"plies P 1 ' P2 0... nPn Q C'

or P 1 1 lp 2 O¢  . Op" 0P p1 1 P P 2 P2 f. 2 Pn - If

Plk O P 2  ... nPn '' then Pl is directly relevant to

P n ... n Pn 0 C(# 0) and hence, relevant to C, leading to

contradiction.

This theorem indicates that when testing an object

for inclusion in a concept, irrelevant properties need not

be I-ested.

Let. C be a concept with sufficiency family

[P1 '2 P and let each property P. be relevant +o C with

respect to (Pl OP2  P Then a list of k ists, headed by

the name "C" is called a conception list of C Lf

eitVer (Ci) k =, the unique list is headed by the

Ii
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name "P." where 1 i i n and P. has more

than one value with non-empt"' int.-rsection

with P.. It is a list of ordered pairs

consisting of thL names of the values of

P. with non-empty intersections with C

t-gether with the na,. s for these inter-

sections.

or (Cii) n = k and each list is headed by a name

"P." and contains a single ordered pairI

consisting of the name of the undque value

p4 e P. which has non-empty intersection

with C and of the name "C."

A set of conception lists form a conception of a con-

cept C if and only 'f it contains a conception list of C and a

conception of every concept whose names occur in the conception

list. It. is clear that a conception list of C satisfying (Cii)

above is a conception in itself.

Some of, the ideas nssocniated with the above definitions

and assertions can be exemplified by considering a specific

Universe. Consider an Universe of Discourse, consisting of 40

elements as --scribed below and exhibited in Figure 41. (This

samne basic Universe will also be used in exempli.. j the ideas

introduced in jection 5.)

Th.: 40 elements will be d,-noted by the consecutive

positive integers. The following subsets of the Universe will

be taken to form the elements of the basic partitions.



/ 5 7 9
2 4 JE I10

/I / 1 158J L
/2 14 /G

i4

2 21 22 P3 23L 24 z25

S22 27 9 30

! 3/ 3,35 5 ,
P 3 34 36 p81  40

WI W 3

"gure41
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p1 = 1,2,..., 101

#p2  liiJ 12.....203

P3  = 21, 22,23,24, 25}

P 4 = f26, 27,28, 29, 30)

p5  = {31, 32,.. 403

q1 = t1,2, i1, 12, 21, 26, 31, 323

q 2  = (3,4, 13,14,22,2 i,33, 34}

q- = j5,6,15,16, 23, 28, 35, 36-

q4 = f7,8, 17, 18, 24, 29, 37, 381

q5 = f9,10 19,20,25,30,39,4n)

Rq P5 -)q5 ; R 2 q , 2 -2 P5 (P2 ( q 
3 U q4 ))

R= - -R R
4 1 -

S! = q]_ ; S2 = qU3 q 4  S3 q5

T p T 'J T2 T
T= P1 J p2  = P 3 Up 4  T 3  P 5

W = q, W2 q2 J q4 q q5

Figure 4.2 identifies the basic sets and t-', elements

of the Universe.

The- are ,ive properties in this environment

s S ,s J
I ,1 2

1 , 2 , 3

I



R =R IRI fR 3 R P
2 3 4

P =(Pi 1 ,p2 ,p3 P P4 'P5I

q , (q, ,q 2 Iq 3 eq 4  q 5

cp,qI is a fine structure family for this environment; s0 i.s

(p,W,S). The family tp,q) is a full fine structure family,

while [p,W,S) is not full. In the present discussion, p and q

will be taken to be input properties, yielding the real environ-

ment 'U tS,IreWp,q,Rj. p,q)>. in this environmen~t (11,133 is

not a concep*, for example.

If one considers the concept T, I it can be seen that

q is not relevant to it with respect to (p,q,i". However, q is

relevant to T I with respect to t(q WDJ. R is not directly

relevant to q3 althzugh it is relevant to qwith respect to

The coaception of the concept A 16 R, (i.e., the

jet (3, 4, 13, 14, 1~ l, 22,27) an be wr ittent v ~rious ly.

R (R, ,A)
A:

would be a possible land the shortest possible) conception. One

other would be

A B

%P '2 #B (?3 1C) -(p 4  D) -(p, G] q -{ E

(q 13 F
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C D E F G

- (P3c) -. (P 4 .,D) - (P 2 ,E) - (P2,F) -(Pl ' )

- 2,C) q (q 2 1D) q- (q 2 ,E) q- (q3 F) q- (q2 G)

using fp,q) as ' sufficiency family. Another, somewhat shorter,

would be a-e following

A B

P (P2 ,B) - (P1 ,G) - (p 4  D) - 3'. C) - (P 2  B)

W (W 2 B-)

C D G
(p 3  C) (pi ( G)

q- (q2 ,C) SI-(S D) q -(q2 G)

w- (W2 ,D)

which uses (p qSW) as sufficienc, tamiy. ft can be seen

asil-y tiat 'pq,W' or (p,S,W) could be used as sufficiency

mi 1 , a .so" It can also be .- en that the size of the

.ff ci' e-,ny fatrily used haF no strong etect o-v the size of the

C' .. C hileC (R,W) is a very effective suftici ncy set

ft P, or, .c . The size of the conception gets smaller

when we auqmc,,: ih.s >3st sufticiency set to (p,q,SW). Chanqing

(p,q,S,W) to {o,,, actually decreases the s'ze of the con-

cept von

't should be noted that when one uses a full

i7,ne structure suft c env' fatpi.y, t;e coa'ception of i'-v con-

cepts other than values cf f. i.e strac.,ure pdroperties and their

intersections end up c........:: ,tie coc\>e tion of every obiect



contairnec in the concept. This is the consideration which

leads to the ';.-:ed for propertic- other than input propertieb

for purposes of description. This point will. be discussed

aoa.,n in later, sections.
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4. A eoli-.nA~cih sn ocoin

I.e importance of conceptions ar'.;?s because there

exists an alaorithm whic-n cun recocon i.,ze a. ob-enThect in a red.-

environment as belcu)ging to -a con,-e-nt whose Cocton isfl1 2.~l

This algorithm wili 'be g)"ven later, after some other idecs

associated with recojuIrIit'-._on have beel- discussed. H;- . t-ver, the

basic 1iea iLnvolved In the agor-Ithn can be ndicated here quite

Let- there be 4, en an object: (Pi P,

n n and the co-nce pti"or. o f a cc.-.epf- C. One can determine

wutnr he ob~e ct beonas to t-he concept as follows, . Tite

con.-eottn Ist of C includes only one relevant propert

(ac c -rci n2 to~Ci) FthnC has non--empty- intersectos .015t

01' ~~toe value :-t . As Sum e co I olc~v ZI a t PisaT

bn:,t P roo~v Lhe tC %bc -Or icte to e of P in

thL ~ce' oo~s

S t ', &n th I O?5O cn cc~

VV e" t

'--I hs tJ h'e naeflc 'so owe e r t n at
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tho recursive deterll airL f the containment of the obhect

in C 7 does not invoive ona' in an infinite !oop. Thal thi

does not occor is. i dcated by Lemma 4.6 1eLow, which ndicates

that if a propertv oucurs alone in tne ccncepticn list of C'I t en arther tents are unnecessary.

One also needs to discuss the cse where a set of

properties P, P', occur in the conception of aC r

to (Cii) above. If this is an uit set, then the procedure i

as indicated abort, except that the name o' C is C

Lernna 4.6 below the object is known to be contained ir C,

O.herws . , C has "he form P1  p' p" and one 'eelv

successively to see if the objiect is conL' "e in

the ist -s exhausted. Th_ valiity o s s .

*" ....... "O' "V l ir

. . ,,..,. nt qy Le,' 4.5 Ielo
are in- e1 oo o., i

s r e o * Sds J

Into th& ,e s jn o7 e e.compli C tep d ta Str., i' no.

emlae 4. 4: 1t P, P, f'aS '""fl- ** '. v

s ''. 2L1C ;It i-pnc ts:~11 --

e i

. . ..F' *' -'- V 
"  -

.
" 

-"

," by tho4 3 tac t23~t I.-, 's .' ,.:'"o .' ' ... .n~ ', t .t - v - .':
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p anid cthers are ilot. ccntradict ng h oren 4. 1 ivi en ce,

X C, hen X=X 'p 1  C p1

L,.mra 4.B~ fC p. '*p ... a nd

n

and thei'r inter'seot-Lj~.-, is the Universe. AS o' X -- pi &

- o,.C nce A .rhe rx rxerse f(o11o-..s tri vially since

Le t n I

f x p &X 0. p. toe
I .~ n

tnn p P A .

-)C S, I> 5h P" iV

It
no~e o O asn) -wtvIces*



properties mentioned in the conceptiornc are all input propert'A_ ,

and henCe, are listed in J-eobject, in th-s case, deti~rmina-

ionl of the truth of statements like X P, above Is a triv,_a_

matter of look-up.

However, the test b~ e .~frdto find whether

X p PI'Is not always such a st-IaigqhIC forward irocess. If P is

not a member of PI, one nvee&, extra infor-ination to know if

p This informnation -"ill be cod i-f ed in; the present
recog.-it-ion scheme by st ip'ula ting that conceptionis for the

values of P i~available in an acceptable foryn. The follo-wing

t deflnitions clarify what is meant by "'acceptai.)e" here,

The -description list of the Univer : is a list of lists

headed by the --me "U." Each list in the list of lists IS

headed by the namre of a - -oper-ty in P, relevant to U with

Jrespec-t to 63 and there is a list headed by the name of each
relevant property in 2,The 11I - headed by P is a I-st of

ordnrt.J pairs containing the nan.-Is of the values of P and the

nare of their interqect ionJs 7 1th U.

A set of lists is a descition list rtr-uct'-re of the

Universe if it contains7 Lle des-cription list of the Universe and

a conception for all concE.-ts whose xiamc occurs in the descrLp-

tIon list of the Universe.

it is to be noted that given a real environment

<U.''>Ithe AeLcription list oir the Universe is unique

Howe~rthe conceptJo list -I& any other concept is not

necss~arily uniq,., n.-or i~s a description list structure of the
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Unvre n . Howve, the f l? cw,,inq theorem i s tirue.

Th ec.rem_4 . 7: In an environment <U , ? each

elen1-1Ent of- P -is relevant to th-e Uni-vErse with respect to B

Proof": Since 2)' is jfine structure famrily of

p-ropertie;-s, ar- concept is a Boolean function of valu,-e of

elements of rnAlso, since each element P of Pis a non-

trivial! Partition, any val,3ue p of P is a pro~p-:w subset of t-he

Un ive r se, Fence, thore: an object X (;r-h is not contained in

D. L et X=p. 2 2 . p, where n is the cardinality Oft

Thmen, s ince p :71 p I p- r- . " 2 ;'--1 n = j0 P is directly

rel.evant to p1, P .. 2p and hence, relev,.ant to T he-

Universe.

Hence, the name of ev~ery element of P - ~heads some

list in the descripticon list of the Universe. HI-.lever, thi6

does not necessarily Make a " escrJ~ption list structure of the

Univ.,erse "acceptable' informat _on for finding whether an object

X i cotaied n s!~evalue P of a non-input property, Some

further definitions are needed.

Given a cescription list structure of the Universe, a

prloperty P B is called predefined if and only if either

(Di) P E: B_'

or D1i) All properties whose names occur in the con-

ceptions of all, vaiues of P are pre-define--

propertieCs.

A description lLst structure ot thu Universe is called

valid if ev~ery element of Bis pre-defined. To exempli.fy
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vz-9_idity, the following is a description list of the Universe

shown. in Figure 4.1 in Section, 3. -he description list of T is

U

R R.,,R. (R R RR RR1 R) - R2 ,R2 ) - (R3 , R R4 )

(Si Is (S 2 e S3)

- .T ,) ( - (T, IT(T2 T3)

W 1 (w w) (W2 1w2 ] -(W 3 "w3 )

A possible description list structure "f U might contair in

addition to the above, the following conceptions

R1

q -- (q(ql ( )

q- (q2 ) (q (q ') y - (q4 ,6)

2 2 (q

hM

p (P

S - (S1 fM) - (S2 ,N) T - 'fl ,J) - T2 (K)

N F H

q - (q 3 F) q (q4 H)
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(Ti 1 ) (T 2  K) -(S .L -(S )

-(Sl Pi) S-(S 1  K)

S s - L)

( Fo ( 2  ,L

T -(T. e - (T~ I T -(T 9  kx- T. i

q -(q 5  () 3 1~S i)

p (pl c - (p2 (p 2  b~f S2 (S 3  )
p( 5

2 S5

s 2
q-(q, ,Wl) -(q 2  ,q q - (q 2  3~ (q 4  ,q 4

S 3

q -(q 5 ~S3
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w I  w2
1 3

q - (q ,WI) q - (q2 '2 ) -~ €3 (q 3)

4)S: (C - q4  ,q4 ) - (q5  ,s 3 1

T!  T T3

2 T3

T - (T1 PT) T - (T2 ,T2 ) T - 3T 3)

This description list structure wouli not ze valid, since i.. e

concept T1 is described in terms of T, which is not a pre-

defined property; also, descriptions of the cuncepts

q2 ' q3 14 ' 'whose names occur in the descriptions of values

of S, do not occur in tie list. In the above list, one replaced

the conceptions of T, T2 and T3 by

T1I T2I I
P - l 'P )  _ (P2 'P2)  P- 3P3 'P3)  - (P4  'P4 )

T3

P - (P5 T3 )

and added the conceptions

q 2 q 3 q 4

q - (q2 q2) q - (q3 q 3 ) q - (q4 ,q4 )
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p1  p2  p 3  p4

'2 Pp ( 3  P~ (p% 4 OP4)

the description list structure would be valid.

Theorem 4.8:- Given any object X, a property P,

p c P, and a valid descriPtion list structure of a finite

Universe, it can be determined by a finite process whether

x ID.

Proof,: One first associ 4tes an integer with every

prop-.rty cs fo~llows. With each element of 63' one associates

the integer 1. For any other property' P, -ne associa-ies an

integer n P defined as follows

n P= +m a x in p P' occurs in the conceptinn of some value of P).

With a valid conception of the Universe, n Pis uniquely defined

for every, property. The proof i.s by induction over n .

If nP 1. I then~ P f and the name of a value of P

occurs 11: X- X p if and only if this name is identical with

p. Hence, the theorem is truto for P if p =1

Ltot th theorem be true ift n P- k. 11 n k + 1, t hE,,n

irn thle conception of p, only such properties Q or'cur such that

SQ - k

If' the conception list of p contains the name of more

tv~an one v.alue 01 a property Q, then X ;; p only if X 21 q 0

for exactly onec q , Q. (Otherwfroe X is properly contained in

two disjoint sets.) Since there are only a finte number of

such values, the containment of X in one of themn can be

det2 mined by a finite process.
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if the conception iLst of p has one value from a

finite nurcther of properties, then, since for each property Q

in this list rQ , k, the containment of X in p can be

determined by a finite process.

Tc undt.stand the way the integers [n. are

associated with the properties in the above proof, one can

once more invoke the val-d description list structure of the

Universe exemplified in Figure 4-1. The integers asscciated

with the various propeicies .ccording t- tlc scheme described

in Theorem 4.8 is shown in Table 4.1. It will be also noticed

hat conceptions for q5 ' p5 and ql did not have to be incluud

in the valid description list structure since their names ne er

occured in the right hand side of any ordered pair in an' of

the conceptions.

In view of the discussions of this section and the

last, the reader will be able to convince himself that thc

process indicated by the recursive flow chart shown in Figure

4,2 can eifectively determine whether an object X belongs to a

concept C, if the conception of C and a valid description liqt

structure of the Univ-wrse is available. In this flow chart

three push down stacks are used: j, P and C. The list L is

list of ordered pairs which is to be empty at t:he first entry

to the program. The name of the concept is to be entered in

stack C before starting the program. In the flow chart, all

variables are to be interprtted in the normal manner as de-

noting the content of the address named. In the case of stacks.



p1

q1

R 3

S 2

T 2

w 3

Tiable 4. 1
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Olote same conv n: is followed exceict tiat the ott

of the >atest call is d,.- te'd by the stack name. o'lle ne

stack<s are referred to, rather than thteir -.ont~ -o .sare

used,

Ont:c can rec all at th ' Dont tore dif;-ere" _ con-

cept ions tor heConc-pt A i.n the ore>' cous cx.3mple. C ~ an

be sepnr that the second c-nceptionm Ih n Pt, q) a s s 7fic ien

set~i a .tujh the most spa-e--~ uin~ cou'ild be -u-ed cs

1,e ro tentlbecauise tho r-cut- marke" 2inFur4.

(necess itar cnq the 'use of: tone descript con± ! St. Struc ture

the tUiverse) i-s nev-.,er use_'. on, the other Ihandi the. z rst

conceptin shown wu innW nd R) needs -a decSitiot1-LS

Stru cture of Lhe unIverse.

I-, maiy be orE some '-te rest to" 11m"Ccate IcV t.. 1

the way tue_ val ~d esrption ist tutr s ~-..

r e c o qn 0to'o an oh b be ioa 'r.

beinq lised haantoC

A

a nd e 3~v noi'u

r) -,, I. . . . .

"aeA. T'rhs .:-.u.

* 4M
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R 2 n the co- .epti n list f A. As a resuL box 3 re-nters

the progra&il tasting the object as subset of R.&. Thie p eY

S occuring in con.o-eption list of K2 being unmarked, not

member of P, -and not occ-uring L, box 2 cnatches S i in the

description lisC of t'e Universe Sit> S occring in the con-

-eption ±ist of R Hence, box 3 re-e~ ers toe program te -ting

the object z: - subset of < q is unmarked, not in L ard

occurs in P. So box 4 matches in the conception list of S I

with the valkse of a in the object. Hence, box 5 tcsts theI object as a subset of q (as it did testing for w ) nd on

s% cccss, box 8 places (SS) in the list L. following -which

box 5 re-enters the progra tina the object as a subset of

Li (the intersection of SI with R). 2 s not marke-d in the

conception list of M; nor is it in P; hence. box 2 isolates

the val,,e T in the description list of the Universe and box 3
tests the object as a subset of T1 . pe being unmarked in con-

ce .;ion list of T1 not occuring in L and not being a member of

W', an attempt is made in box 4 to matca the value of p in the

object (p.) with the value p1 and P2 occuring in the conception

list of T1 . This results in a failure exit and box 3 tests the

object as a subset of T. This succeeds (in the saine way as

X C W2 succeeded). Hence, (T, T2 ) is placed in L by box 8 and

box 5 tests the object as a subset cf K. The first unmarked

property in the conception list of K (T), occurs in L (saving

the trouble of a re-evaluation), its value (y) matchcs the

value of T in N. Box 6 marks T in the conception list of K,



tests for th objec- :a. subset of K wI-t T T, k e F nds

the next n, .. - p r tv-, ' in L" tcathcc its v lue ( S )

in L sjith that in the concepti'., n list of K; hence, S .S marked

'n tr ine conception list of K and t-he next re-entry e;its,

unmarxing prooerties of K, tnen recognizing and hence, box 8

Rpces (R:R.) i L 1 The in tersection of R, with A being- A, R

is m.rkeQ in the conception list of A and the next recursive

entv exits with success, finding the object as a subset o F

and unmarkina the conception list of A.

#I
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5. 2.-nntlve ind S LelC 0a _1t a

As has been pointed out before, every descrip-tion

Iangmage is constructed owl: of a set of predicates and a mode

of combiLnatlon -~f predicates to yield compound stater-nts --ith

only oiie free variable So that in itb interpretation it denotesI a subset of the Universe of Discourse. in the languages discus-

sed in this section, the basic predicates are unary also (con-

t;--ning a single variable). In the language discussed so faxr

(whose sentences are conceptions') each set is described either

as the unicn of a class of' disjoint sets or as the inter _

of a claas of proper:ty-valueE. :"he basic buildir;- .~ocksof

the concepts Lhen are the ciase of -_;cepts each of whY :-h are

~ntersections of a cla s of V1petvs IhP b U I 1i n g

blocks will be -'c ootteconcepts" for the purposes of

the present 'ici

F'oe size of aconception describing a con-junctive

co-Icept certain,"y depends on~ the number of property val>' es to

be int,- .s cted t(, obtain the concept. The size of a conception

describing concepts other than conjunctive concepts is larger

than the sum of the sizes of the concept-ions describinux the

j disjoint con-iunctive concepts of which the givent Concept is tht;

union. If there is more than one co.-nception for the same con-

jcel-*t, then it is quite difficult to decide without careful

studl, as to which of the given conceptions has the minimum size.

it can be Purmised that in a real environment where P = Q and1

-is full, t.'Ie conception of a ccncept will be --mailer, the fewer
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the numbe: of conjunctive concepts used as building blocks for

the concept. In what fo lows the supposition will be mare

that if a conception describes a concepts as a conjunctive

concept, then this is the smallest conception for the concept.

Whether such a conception exists o-, not for a concept certainly

dep : ds on the environment, i.e., on the structure of the

properties available.

Given a certai' real environment and a certain con-

WON. -D.. ( of interest to find a shorter conception

S! The s concept. A method for doing this has

been developed by J. C. Pennydcker. Other related methods

developed by him will be discussedi later.

Given an Universe (for instance, the set of all

occurances of bit-configurations -n a squacxe grid of photo-cells)

whose elements can be coded into computer inputs, one can

generally come up with some fine structure family of properties

for that Universe. In the case of the square grid of photo-cells,

for instan-e, the excitation value of a particular photo-cell

divids the set of all bit-configurations on the grid into two

disjoint subsets. The family of properties defined by the

class of all photo-cells forms a full fine structure family.

The Universe of all configurations on a chess -boa-d has as fint

structure family the occupancy of each square on the board.

(As an aside, this fine structure family, of course, is not

full - not more than one white square can be occupied by a

black biship, for instance.) One can surmise with some confidence
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t.hat findinq a fine structure family of properties for an

Universe is a prob1cin that c-n be safcly relegated to the

intuition of the experimenter.

Howevex, in most Universes (except those specially

designed by psychologists for specific tests) one is specially

interested ir naving dIesc-ri~tions for certain given concepts

(the set of all "B' s oi, a photo-cell grid: the _,_ of all

forcing situations on a chess-board, etc.). Generally these

concepts are not e.onjunctive concepts , onle restricts o.-neself

to thke. input propert4-s alone. in the it.es:of practicable

brevity, it is essential to have prokerties in the environments

11 k such that the concept ions for these corcepts be sliort and (if

Ndracticable, conjunctive. A large part of the effort in the

field of pattern rec,-gnition -'- di'-ected tc&- ,rdE th-.e search forI suitable properties (the values of thesiz properties are called

-Itctures" in the field). Often acceptable looking f~eatures

are asisumed to exist. and statist.cal. methuds are develop_ d to

reduce the probability of in,7orrect. classification by choosingr

the least ha,:,ful conjujnctive concept to approiat h concepL,

at 1hond. Concep' s othE-:c khan conjunctive ones are often suc.-

cinc-tly expressed by invoking modes of comination other than

the one-s useu in Logic. Thejo will be discus :ed apo,)tropriateiy

later. Meanwhilo, one may- be tempted to pose thL f(oIowirL4

generc-.L problem.i, "Given a class of conc_-pts in a givcon real

environment L ,~ to enlarge the class of pro_-perties suc(h

that 2ach conce~pt in the class is conjunctive." in this form,
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the problem has a trivial solution, "Use each concept in the

class togehter with its complemenL as & property." This, of

course, does not reduce the memory size in any way. For a more

realistic p.sing of the problem, one needs to take into account

the size increase involved in incorporating these new pxoperties

into the description list structure of the Universe. The prob-

lem called, "feature extraction" is closely related to this

problem. To the best of the author's knowledge, suc a problem

has not been taken up in the literature in this form. Also,

si .ce the measure of size is highly language dependent, the

development of more powerful description languages is a

pre-requisitc.,

The major point that will be considered in this

section will be a mode of combining unary predicates which

renders it easy to have c-hort dc:;criptions, not only for con-

junctive concepts but fc a much larger class of concepts which

shall be called "Simple" concepts. The theor;- developed for

the purpose will also indicate m-'thods for describinr non-simple

concepts by the use of simple concepts which approximate it.

Also, in a later chapter it will be shown how one can use his

language for "generalization" or concept-learning.

At the preseit levd of de.'elopment of this theoty,

no distinction is made L"tween input and non-input properties.

Since given an envi-ronment <U,P>, 9' itself is a fine structure

family, one can say that tae theory deals with a real environment

<U, ,9>. At the present stage of thought it is not clear
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whether the extension :of the theory 1- the case where 2 '

in any but the most trivial way will be of use or not. A

late amount of theoretical development also is nedled because

the class of simple concepts indicate close relationships tc

topologies on the one hand and with decomposition of games on

the other hand. This will 'e indicated in detail later.

As before finite environments will be considerec!.

LE t P =[Pl 1P 2 -°Pn] and let for e -h i (1 s n),

P ,.. . Given a concept X, define a set X' ,
i [Pil 'Pi2 "'Pir.

calied the superconcept of X is follows

' Xs  ['I 0 PijlPi_ 2 X

That is, for: each i, one defines the set X. which is the union1

of tho- values c4: P which have non-empty intersection with X.

X 6 is obtained by ta.n" t. e internection of X. for all values
I

of i. As an example in the environment indicated in Fioure 4.2

the supercuncept of the concept - =5,6, 7,8,9,10, 13, 14, 15, 16,

19,20) would be the concept T1 ( (W2 U W3 ) (P1 Ij p9 2

(q2 Uq 3 - 4  2 4 )  (S1 U 2 U S3 ) ; that is

= 3,4,5,6,7,8,9,10,1 14 i5, it, 17,18,19,20 . has a as

its subset. This is true in -,eneral. That is
X

S
'

Theorem 4. 9- For any concept X, x x X

Ir. r
Procf: X=X(2 U=X p.n P 'X n,

for Pach i (1 i ". n).

I . . .
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o 'e v e r ,

r f, [x pij tU{x Ix pl) Oj = 1 J 1j Pij

Hence,

X X~ ti' 74

But,

p F ij p Pij

Hence.

tP.jpX 1i.i oil

-or each K; - n'M

ienice,

n
x L X p X6

From i theorem t foli,cws that X c-an be t.ken as
an -,proxiTrtion -or X in the sense that any { iement which is

not a mcmber I- c rtainly not - member c:- X As a matter

cf fact, a much s, jger tateme,i can be mad regarding the

approximating ability (,.L superconcepts. It can be noticed

for instance, that2 R 3) iW 1 W) WII K (1 J Sj ,;'3) -(T I U T2 3 P3 c ZJp, U'
Iq qt 4 q5 wiose comp].emcnt I s the -L

1 8, -,,10, 19,201 which is a subset ot a. Thi- also

ctuen r 4 0: o n tl It ci S

'c .oilarv[ 4, 10: For any ctnIcept x1, X
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Proof: X X

Hence, X :2

Thus, X andl Xs can , coked upon s lower &~

bounds of X. Hence, if one o-es dr's-]rJ'.ions o. X and

K, sone can recognize var ic s bj,:ct' -F neinq deti.nIte lr cn-

tained in X, others as def -itac n, ing .nt i;:1 A

In addition to the fai i1 tle pe I o'z'c of 1

concept and its complement y-.e2 -o -9rox imaL -n . con,

cept, it is to be noted that the -ia 7e rathet sipIt t"

scriptions in a specific language. T s is brought LcLoc

following theorem.

Theorem 4.11: For any concept.

x tC7p T7 TP. ,P.

Proof:

S xx = = i .p. l i P. p. X $ i.

i=1n

,= .. , i ._j p [3 p  Fii ! XP2 J1p P. P p..

!JjpUpi ~ .P , ,,. x = -

Hence, the superconcept of any cc -ept x. ,

described by storing the list of those proerv,/ val. :wi.i;h



nae mpj ntrs-ccions wtX.Tu the description of -

could be s~or-ed as

7i- ,p p q R
3~ '-4 - 1  1 IR 3 ' 2 ,'3 3

Clearly, this new mode of description of ccncepts makes it

necessary to have a new aluqorithin f-r- determi ning whether a

aive- object is contained in a superconcept or niot. Such a

pr 'ogram will1 be discussed later. Yeanwhiile, it is worthwhile

p.tInaotta h rsn lanc;uage of description (describ-

ing the superconcept of a concept .- nd its complement) dc-s not

fos tr i'ct- one to- star' rg a~pprox imat ions alone. At some exi-

t , all concepts can bedescribed ex-ct',; if one al low-,s in

anh. 3riqae the capablxdity of expressing the union of describec-'

S -. Qc ee how this can he done the IolIlow;I ng ai-, 3t1 dueO

-eIi 4': For all coicezt s X~ (N.

0,t~.2ya~ P Such, that. P. pM Q I

s i~'t. i mplies p. rplcn -A bC. 1 y

or n: t p1 I. e- xlis p. (- I.e., Pi li'
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P. X

o r

x (X S S

however, by Theorem 4.9

{'Xll x

.id the theoremfoiws

C.oncepts which are e l".3 c herseco epS wil

be -?alled sim~ple concerpt ;. .E, surerconcept of lnv coniceot

Theoar em11 4. 12: All. con >mict ive coincepts are- sio ,_plo,

Poo'c eT X be -on unctivi -, Clat S eiss tl3r x1-,

& sb eP P.''f p c a u o C

tor each k (I 'k m) .--.ch ta t

Wehave

x p

xm

Ht c

thereere f t-,~al~ f ow V c,.
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an a 'SC ('fl'n c t IAf e -'

cocets an cncpt ay be dc scr-,bed as then"un:On" st£imple

conceors. However, t7rie numnber or simnple concepts nftOlC 12

rhne union may c Iuc smaller iman toe niamber of con'unet i ye

concepts needed-. lls-7-pioc-uncep-s hh are noti con~unctlve

S ias a sn e f~ t*

A ':t fo rwa rc CIoo itni e tsottti-

whther ,.- ' on. t,3 -cc' ed so a! sc,> aoc r no..

an w':- socet Mr I~t e oe

iv 0. 1V S r3Ct

-Q- 10 S, a'-----' Il 0l .

-. - . . .N N- .. N

ii 55 7 '<V~ '' 5l'<'AC K ta o
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sublat, 7e of the set of all subsets of K, considered as a

lattice undec inclusion is anti-horomorphic to the lattice of

all simple cvcepts under inclusion. For the purpos of this

sectio, it is only neede show that the set of all subsets

of K, partially ordered by inclusion is -ti-homomoiphic to th-

set of all simple concepts, partially ordered by inclusion.

The mapping H, described above is the anti-homomorphism involved.

This is shown in the following theorem.

Theorem 4.13: Let a anA 5 be s-bsets of K and let

H(a) and H(5) be the corresponding simple concepts. Then

a I R implies H($) Z H(a).

Proof: If a Q 5 then pi. c a implies pij C 8 forji
Hence,

U tpijlPij U c 0

Hence,

H&(P Tpijpj P 1 pij Ha).

The converse of this theorem is not necessarily true:

there may be more than one a with the sarmie value for H(a). How-

ever, among all a having the same value for H(a) an unique one

can be chosen.

Theorem 4.14: If H(a) = H(a) = A, then H(a, U 0) a A.

Proof: Let a and be two arbitrary subsets of K,

Pij c a implies Pil n H(a) =
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whenc.

Pij Hf)

similarly,

P. " implies pij H( )

hence,

pij C a U 8 impli-s P. H(i U H(P)

or
r Pi H(a) 1 H($8)

whence,

U Pij p i U nJ H(c) H(,)

Sor

I H(a U q) 2 H(a) n H(O)

However, by Theorem 4.13

H(a) D H(a U 8)

H(O) ; H(a U j

so that

H(a) n H(O) 2 H( U S)

which, with the previous inequality, shows

H(a) Q H(s) = H(a U 0)

If

H( ) = 1 A() A

as give- by the hypothesis

.......................................
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A H J(aL) H (a) n~H(P) = l(a U ~

Since the set of all subsets of K is finite, the set

of all subsets a of K such that H(a) = A is a finite class of

sets. If M(A) is the union of all subsets a of K such that

H(t) - A, then this M(A) is an unique set such that

H(M(A)) = A. In the following theorem, discussion will be

limited to those subsets of K which are M(A) for some simple

concept A.

Theorem 4.15: If n and B are simple concepts then

A z B implie a M(B) M(A).

Proof:

A CB

Hence,

A rB = A

Since,

A = H(M(A)) and B = H(M(B))

H(M(A) U M(B)) = A n B : A

as indicated in proof of Theorem 4.14.

But by definition of the function M

H(M(A) U M(B)) = A implies M(A) U M(B) M M(A)

whence,

M(B) M (A)

Given any simple concept A, M(A) can be found effect-

ively. It will be shown in the next 7hapter on concept learning

that a rather straight-forward algorithm exists which can find

the value of M for the smallest simple concept containing a I
I

- z -- 2 _ 4



-229-

given set of exemplars. James Snediker has written a program

based on 'indek echt's work which learns superconcepts of

concepts from examples and stores them as values of the M

function. 34 For the purposes of this chapter, it will be

assuned that the descriptions of simple concepts A are stored

as the lists M(A). According to the last two theorems given

two concepts A and B, one can fird by merely comparing the

lists M(A) and M(B), whether A is a subset of B or not.

If now one has the values of M(As ) and M(Ts ) stored

in a comr er memory, one can deduce if a certain object X is

a member of A in an approximate manner. If M(X) 0 M(As ) then

X As However, X, being an object, is either contained in

A or is disjoint from it, according to Tbeorem 4.1. Hence,

SX A A. If, on the other hand, M(X) ; M(As ) then X X As .

i this rase, X c A> and since A As, X % A. If neither of

these cases hold, then no conclusion can be drawn regarding

the inclusion of X in A.

This approximate procedure is an analog of the

Pennypacker recognition procedure described in the previous

section. However, 't is done by very simple programs based on

very simple data structures.

If one can find simple methods for calculating the

M-functions 1a] whose corresponding simple concepts tH(a)]

yield a given concept by union, then the above approximate

recognition method ,an be improvel quite easily. In that case,
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the pcoblem reduces once more to assuring oneself that the

number of rimple concepts needed to- describe a concept be not

excessively large - even though one already has the assurance

that i, would not be larger than he number of conjunctive

conceptd needed to describe a concept.

Before this last aspect of efficiency of description

is disrcsssed (and this will be discussed in a more generalized

case in the next section) one must also point out that for the

list compprison algorithm to be effective the description M for

the concepts involved has to contain every property in the

environment, not merely a fine structure family of proper,(Aes.

Hence, it is required to introduce some further algorithms for

deducing property-values from the input properties as was done

in the previous section. This would require the storixg of

certain property-values as described concepts. Efficient

methods for this have not been developed yet.
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6. A Generalized Descript-n Lanquaqz: Syntactic

xiomat isations

In this section the ideas introduced previously will

be generalized and given a syntactic fcrm similar to that of a

formal logic. This will enable generalizations to description

languages of greater flexibility and descriptive strength than

are presently avallable. Several stages of development of such

a language will then be exhibited and their use exemplified.

Indications will be given later of how far these uses have

been implemented on a computer.

It probably need not be established in any great

detail to any discerning reader that what have been called

conceptions and subset of K in the previous se-tions are merely

different ways of putting together atomic formulas to yield

statement forms. These statement forms are characterized by

the fact that they have only a single free variable. The

component predicate letters are all urary (have only one

argume-t) and give rise to predicates with one free variable.

When these are put together to form statements, Lhey all have

the same free variable so that the resulting statement form

has or- free variable only.

What have been called objects in the previous sections

are also examples uf compound statement forms with a single free

variable. These statements with a single free variable define

sets of elements for which the statements are true. On the

basis of this, tests have been described so far whicr) test the
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inclusion of one set in aaother. However, it nas been tacitly

implied that these tests will be used more often (and in th-

case of iinr'packer and the author i work, exclusively) when

the included set is denoted by an object.

In the cases treated so far, where the environments

have been finite, one could construct objects such that the

name nf every input -roperty occured in it. As a result, the

sets indicated in Theorem 4.1 could actually be denoted uy a

finite statement corresponding to an object. Since two elements

in such a s, t cannot be di -,inguished by aqy concept, one might

consider each n*,cject as denoting a single element. As a result,

the objects themielves could be considered as the elements o -

the Universe. This point of view will be persued in the rest

of this section even thovgh s:ime of the discussions of this

paragraph are invalid in cases where the Universe is not finite.

When an object k is an element of the value pi of

the property Pi 0 this fact can be expresseu by a statement of

the form k Pij" This would necessitate that values of dif-

ferent properties to have different names. However, there are

certain advantages to using the same symbols for the n-ames of

values of different properties. Some of these advantages were

indicated in Section 3 of Chab ar I. If such similarities of

namon are allowed, then a statement of the form k c p ij becomes

ambiguous since pi anl mi, 4 ' ay be the same symbol. It is

mc ' advantageous to express the fact that the object k is an

element of the value pij of property P. by a statement of the

form Pi (k) p ij"



In the past, names of concepts have been attached to

the conccptions or the lists M(A). In effect, the descriptions

have stood for statements S(x) with a single free variable x,

and the names C of the concepts attached to the descriptions

have indicated in effect that an object k is an element of the

concept C if and only if the sentence S(k) is true; in effect,

these have stood ror statements of the form x e C = S(x).

So fa- it has been assumed that names of properties,

their values and concepts are symbols. However, it has

-Iready been indicated in Chapter I that various concepts can

be given short descriptions if one allows the processing of

the names of properties and values. it will, therefore, be of

advantage if these are allowed to be objects, so that set

theoretical processes can be carried out on them. This would

allow the same programs that process objects to process the

names also and a large amount of descriptive power would be

obtained without vitiating the flexibility of the processing

and without increasing undu ' the size of the program- which

do the processing.

One, of course, must take cognizance of the fact that

the set tneoretical processes discussed so far are merely

capable of working on sets defined by unary predicates, while

most of the time the processing of names that goes on in pattern

recognition activitie- irivolves the calculation of functions

and the ascertainment of relations. This, however, presents

no problems, since runctions and relations, being1 sets of
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ordered n-tuples, may themselves be -gnsidered to be oncepts

in an Universe of ordered n-tuples. Also, n-tuples have tho

obvious r. properties defined by each of their components. 'This

fact will be made use of repeatedly in the examples that follow.

It may be pointed out, of course, that this point of view

"ndicates tlit some objects under discu,'sUn will be constructed

out of property names which are entirt .y different f,.om the

property names used for constructing other objects. This may

be looked upon as indicating the existence of a set of environ-

ments rather than a single one. Alternatively, one may con-

sider that each object is constructed out of only a subset of

properti-s. This certainly would perclude the objects from

being unit sets. Since such a possibility has to be admitted

in any infinite enviroiiment (and, as will be seen presently,

this is a very natural requirement), one need not disreqard

this latter interpretation of an object. There is, mcr- r,

a hilosophiz justification to it when one considers that

the description of an 'object" (ii comnon parlance) often

depends on the context. when one talks about a person. for

instance, he may be talking about every appearence of the

person on every occasion ('He expresses himself we1 l") or of

a specific appearence of a specific trait ('He was angry to-day").

when one says, "The letter X he may be talking of a class of

letters or a single mark on paper viewed from five directions

or the rame single mark seen in a certain illumination t a

certain time.



in any case, the corne ~e set T-'eoret Ca L iaterpreta-

tion of t-he syntac-tic structure has not been investigated y-t.

Especially in its fully- 6oo ,eloped form, discuissed at the enld

of this section, this lack of interpreta-tion _aises sievc-al

que.-tions regarding tche formal properties of th: _ logic involv.ed.

For the prescnt, attention will be directed towards the

syntactic properties of the lan~g1.ae only and its interpr,_tation

will be taken informally t.o be as motI o by, the discussion

abc v .

The major syntactic feat-ures, ot thejgae have

-. iready been discussed. Initalon"suesta

i symbols, which will be taken to be countalbly irzi -iite. To qi cc

sys+.act ic meanaw osc set, they wil bI e identif ied w i.t -

words on a fi1 'te fiphcibet. T S 0t ;-f 3,mbolzs. t' ~ w

4, the special a. "i s P,; e~c C" ~p tc

s t r 1l I N (s tu iI'n rfr a sr 1l ar xi a b I CCt% I co-

struCtL Oi Va~ Viacsc te most ol\ ious

int',?ru-.etati ins oiii bo th, Set -1 o',biects" as defined

be~ 'ro In w,,a~ f:0 11'o t1 i e bas il ",le 1ii Ons ot the syntactic

Il i Ai~c ven an ~ r ex e --, bP some exac ,le

bn- out ,,e pDcwe-, .,17 some _tntercreta-

is i svmbo 1.

A ,-boS a ft-erm.

1i -I term ; O.J:! a torm, tluon is ar
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rdere_ aO is the left. hand element of the

ordered pair and is the right hand element of

the ordered pair ae.

4. An ordered pair is an ordered pair string; if

a and B are ordered pair strings, then q is

an ordered pair string.

5. If a is an ordered pair string then (a) is an

6. An object is a term.

An example of the syntactic appearence of an oL'ject

may be worth giving here

(name, harry; house, (number, five; street, 1-uther))

denotes (under interpretation) a person called harry whose

house is distinguished from others by an address. The value

of the property "house" itself is an object here.

7. The string IN is a term.

8. If a is a term and is a term then a(o) is a

term.

9. If a is a term and is a term, then (c=.) is

a statement.

10. If a is a statement and is a statement, then

---a, (ave), (a&:), (a,- ) are statements.

11. If a is a 2rm and is a symbol, then (ac,)

is a statement.

12 If c is a symbol and 8 is a statement, then

iNcaO is a concept. a is the name of the

-- - 2 2-I l L - 2
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conc-pt and the intention of the concept.

It is worth remarina at this point that the syntactic

entity "concept, " as defined here is at variance with the

meaning attached to the word in previous discussior'. In the

parlance of the previous discussion; a concept would be the

set of all elements of the Universe which satisfies the inten-

tion of a syntactic entity, "concept." The intention is what

has previously been alluded to as the "description" of the

concept.

Among the set of statements defined above a subset

will now be defined to be the se- )f "true statements." For

this some auxilliary definitions are needed. This involves a

mapping (called "value') from a subset of the set of all terms

and ordered pair strings into the set of all terms and ordered

pair strings, defined as follows.

13. The value of a symboL is itself.

"4. The value of IN is not defined.

15. The value of a term of the form a(f) is defined

if and only if the values of a and P are defined,

the value of is an object and the va'ue of a

is the left hand element of sc,.e unique ortered

paij. in the value of . In -his case, the

value of a(O) is the rich hand element 'f t,

ordered pair of which the value of a is the

left hand element.

As examples, the value of color((shape, square;

color, blue)) is blue while the values of color ((color, red;
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color, blue)) and colork(shape, square; size, big)) is

undefined.

l1. he value of an ordered pair a, 6 is defined if

and only if the valu - and 8 are defined.

In that case its value is a',$' where a' and

8 are the values of a and 5 respectively.

17. The value of an ordered pair string a;$ is

defined if and only if the values of a and

are defined. In that case its value is af; '

where a' and S' are the values of a and 8I respectively.

18. The value of (a) is defined if and only if the

value of " is defined. In that case the value

of (a) is (a.') where a' is the value of a.

19. An object is an exe lar if its value is itself.

20. Two symbols are identical if they constitute

th same string of characters.

21. Two ordered pairs are identical if their ieft

hand elements and their right hand elements

are identical.

22. Two exemplars are identical if each ordered

pair of one is identical to some ordered pair

of the other and vice versa.

23. A statement (ac ) is true if and only if the

values of a and 0 are defined and the value of

a is identical to the value of 8-
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2. Given a set D of concepts a statement is >-true

if and only irf it is true or if the statement

is of the for (acS), i.- the name of somse con-

cept K In D and the statement obtained by re-

placing every occurence cf IN in the intention

of K by a, a D-true statement results.

25. (a\'8) is D-true if and only if either a or p3 is

D-true; (tp)is D-+-ue if and only if both a

and 'd is D-true. (-)is D-true ~fand only if

(,v)is D-true; i~ s D-true if and only if a

is not. true and does not contain the term IN.

It may be worthwhile at this point to exemplify the

utility of this system in terms of the exariole z;sed at the end

of Section 3 of Chapter I. Let D consist of the single concept

T.N'-aEi((head(borders(IN)) =tA & ((head(crosses(IN)) -f)

v (tail fborders (IN)) = t) & (tail(crasses(IN)) = 0M.))

Then the st-tement ((crosses, (head, f~tall,t) ;borders(head,t,tail,

fl)e) is a D-'trtue stat-emfent. This can be seen as follows.

Since the statemrent ;.s of the form ac; , one obtains by definition

24 above that the statement is tru,-, if anrd only if th(c- statement

obtained b- replacing all oc:curences of XN :,i the statenl':nt to

the right of in the concept above by (crosses (head, f -tail, t

borders, (head,, t; ta i.], f) ) is D-true. Th1-is sktmrtis of the

form OL&f. TJi."e right hand, conjunIct Cif this statement is

(head (border:1(crosses, t)ad -, jborders, (he-.dt; tai k, f) ) )

t). By de i ii;f.n 23 this is true itthe val~ues of the terms
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on the left and right of the = sign Le identical. The value*

of the term t is t ty definition 13. The value of the left I
hand term is defined by rule 15 to be the value of had(head. 4

t;tail;f)) which is t again. So one of the conjuncts of the

intention of the concept nwmed "a" is true. The other conlunct

is of The form aVO and is true by rule 25 if either of the

two d' juncts is true. The first uisjunct is

(head(crosses((crosses, (head,f;tai!0 t);

borders, (head,t;tail,f)))) = f)

which is again true by definitions 23 and 15 and 13. One dis-

junct being true, the statement is true.

Before exhibiting by some more examples the extent

of the power of the language, It is worthwhile to point o _t

that any statement in this language which does not contain IN

can be tested for truth by carrying out an algorithm on the

itatement which is closely related to the definitions 1-25

above. This algorithm is shown in Figure 4.3 in flow chart

form.

In indicating the flow chart it has been assumed

that the tests indicated in the control boxes of the flow

chart can indeed be performed. The assumption can be justified

on the basis of what is known about Fntax-directed parsing
35

to-day. The point will not be belaboured here.

since the progrars are recursive, some of -.he

variables used are actually stacks. T- disting ,ish them from

other variables, their names have been written in upper case
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letters whie other variables are nlamed in lower case letters.

As before names are writteo,7 in quo'tes and their content without

quotes.

It might have been useful at this po int to irclude

a proof that the algor.JThm exhibited in Fiqure 4.3 doe..

terminate for every statement not containing IN. However, the

proof is simple and the reader may be left to convince himself

of the fact. However, the fact that the algo--ithm does terminate

leads to the useful tact that all statements in this language

can be recognized as true or false. The language is "completc"

in that sense. It is also "consistent" in the sense that all

statements are not true. Also, it is "decidable" in the sense

that aiven a statement it can be decided with a finite number

of operations whether it is true o,.nt~ However.. these

assertions have very ilittle sitgnifi cance in- t-he mithe-at-cal

-ense, since what has been described above is not, in a strict

stense, a logical theor-y. Later on inthis sect eon, in t-hE

interest. of -creater strenqth, the language wi'll be extended.

"nt I L:gi. Meanwhile, the follc,,,Yng exam~les will show

that the langua.e even in1 its ;DresenL t torn' has cons ider~ible

The first example _ndlcates horw rco ~esentat~ions cf

integjers a-nd operat ions on Lntecers can be Jo 'cr~lled wti

the machjinery; of th-e lanc_ uaqe Llescr- n. so far. It will _)e

cons iae_-d th'at the inrteoers areo exr_3sed b1 b rncwris

Each numeraL will 'L*e cons .dereJ.. to n-ave t po 'oertie-s, "h'ead"



and "tail." The values of "tail" are " and "i," and Ztand

:or 1-he least significant digit of the numeral. The values

of "head" are either "null' or an integer, representing the

more significant digits of th-, nuineral. To make sure that

confusions do not result from leading zeros, they will be

disallowed in the description. In what follows a set of con-

cepts will be introduced dhich will define positive integers,

the relation of natural ordering among integers and suns of

integers. From these, the rez. r will convince him:nself, the

arithmetic of positive integers can be defined. Zero and

negative integcrs can also be defined with some work.

INe:digit-((IN = 0) v (IN = 1))

IN~leesd=((first(IN) - 1) & (second(IN) = 0))

INenumer:-(('head(IN) - null) & (tail(T, =i)) ((head(iN)

numer) & (til(IN) digit")

INeless-(((head(first(TN)) = null) & -(head(second(TN))

nye' ))) - (firstj :ad(first(IN))r:' n..........

(second(IN))) less)

, ((head(first(iN)) head(second(IN)))

& ((firsttail(fi.rst(iN)),secnd,tail (second(IN)))

ie1ossd )

INcsuwd-1((second(IN) - 0) & (first(IN) - third(IN)))

v ((second(IN) =  1) & -(first(IN) = third(IN)))

INCcarryE((first(IN) - 1) & (secc-d(iN) 1))

third,t.aii(third(IN))) c sumd) & ((-((first tail

I
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If rst IT N));second~tail(sPcnc-oid(YN))' carry) &

((f irt, head (fis(IN));secnd1, Iead (.ecold (IN)Y

thiru,head',third()) sur)

t Ccarry) , ((first~lhead(f.Jrst(ILN))7second~head
(second(IN))-third,head(thi rd(IN)) e ripple)i)))

((firs41IN) =null) & '(secn-nd(IN) = third (IN)')

((second(IN) null) & (first(IN) = thlrf(Ili))))

I7N, ripplecar-((fi.-rst(IN) =1) , (second(IN) =lV)

INc ripplel - (f irst, tail (f Irst (IN)) ; - :cond, tail (second kIN))

third, tail(third(IN))t) Csum) & '(~(first, tail

(fist(N)) :ecodt~ii (ecnd(N) Cripplecar)

& ((f ir-st, head '-irst (IN)), second, head (second (IN)h

(T' . i~d t I(c(TN~ )tcod sep-l-od (IN

third, he,-, d(thir- IN)) ripp f))-' ((f U.s(,LN)

- r s1 t, s, ir e C o d NT) ; -e c nd, id,~ null.:

t 1, 1' thu I r(- - T N) s um s e ec on d 1N)

t tai , I t~ 1 dThu ird (IN))

S me e xc p: Js rabui tls ' s o thi last

r!ea~l t, neS. Tfle e' Y, 7' iu iri- orjer&, t-Jples of

nerssuctuIat t-1,1 -1172us the s,,m. ao te trst. two in

L fe 52 ~.uS Th U uvesea: ir jles asthr" Po 17 0r p r t I I S

rs t. e Io and thi , The ofsa "uana s um
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esserivcialiy says, "Tthe tail of the third is the sum of the

tails of the -first and second. If there is no carry then the

head of the third is the sum of -he heads of the f irst and

ser-ond. If there is a carrv, then the heads ofc the first,

second and third are :elat, !d by ripple."I The description of

jripple is the samne as the description of sum, except for- the

addition o:f a bit in the lea.- sign-ficant 44git which i

aloed to "ripple through."

An example, representing the binary sum 1 + _i 100,

wil1l probably clarify matters further. The elem.. -it of sum cif

concern here is

tail, 11) ;third, (head (head (head,1 tail, 1) ;tail, 0) -,tail. 0))

initially, tail(first(IN') - 1;tail(second(IN) = l1;

and tail(third(IN)) =0, satisfying the fir-st oonjunct of the

first dirwjunct in the in~tention of th concept nam~ed "sum."

Hence, since (first,1;sccond'l4) is an element of "carry" the

object (f ii:t, nu-i; second, (head, null, tail, 1) ; third, (head, (head,

null~tai.,A,),tail,O)) is to be a mrember of "rippitL" by the

-econd ditsjunct of the second conjunct of the first dlisjunct

in intention of "sumn." Since "'first(IN)" tor this new object

is "null" the third disjunct of "ripple" has to be satisfied,

that ia the obj-;. (f irst, (head, null; tail,l1) seco.,d (hc-d, null;

tail, l) ;thiLi. (head(head,niull;tail,1);tail,0)) has to belong to

sum kAn, the tails satisfy the first conjtinct in the

first disjunct. Also, there is a carry so that the object
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(f irst, nulisecond~nuil1,third, (head. -<;tail, 1)) must be a

member of ripple. Hence, again by the third disjunct of

riJ pIe (frst,rnul'-second, (heaO,nul -taiI,lI);thi--9(head,nuII;

tail, 1)) must belong to sum. By third disjunct Df sum one must

h ave ((head, nuI17ta il,l D (1head,null, tail,!)) which is true.

one mioght object to the rather cumbersome nature of

the conicepts. H-owever, anyv statement describino- a compl.icated

operation like arithmetic sumf is bound to be somewhat cumnber-

some. The present statements are certainly less cumbersome

than; say thIe Boclean expression describing a parallel th~rtv-

six b~r± adder and vet is expressing operations on strings cf

arb-.trary length.

However, the expression (head, (head, (head~nuiltai.L,l),-

taiI,l);taiJl,0) Is certainly a more cumbersome expression than

100 or even (x = 1) & (y = 0) & (~z = 0). Later on in this

section methods will be considered which will reduce tho

unwieldyness of objocts in the language and will also enable

the attachment of names tko ob ects. This way, it will be

easier to express operations by meaiis other then through

relations.

The importance of 'the last sentv--ce above becomes

clear when one wants to expre-ss facts like 1+1+1=11 and

11+101=100+100. Unless some concept other than sum is to be

introduce6 anew (a wasteful procedure), one has to introduce

existential and universal quantifiers into the language so the

above facts can be expressed respectively by saying "for any
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z such that 1+1 z it is true that z+1 = ll" ,nd "for any z

such that 11+101 - z it is true that 100+100 = z." This,

of course, renders the recognition process of Figure 4.3

inadequa-ke. Before these facts are %4iscussed, one more example

will be given wlich will bring out some further strengths andI weaknesses of the language.

One can imagine classifying the resider.2 of a street

by their name, their house of resid-nci, their age range

(small, big) and sex. The house of residence may be described

by their size, color and level of beauty (and perhaps even

number, which would render the environment for houses non-full,

which it is anyway). A typical person might be an object like

(name, lucy; age, small; house, 'size, small; color, white;

look, pretty); sex, girl)

In such an Universe, a relation like fatherhood can

be expressed as follows

INefathers((house(first(IN)) = house(second(IN))) & ( -e(ffrst

(IN)) = big) & (sex(first(IN)) = man))

that is- "of two people in the same house, the adult male is

the other ones father." The description is certainly incomplete,

but can be improved -pon.

The difficulty in the way here again is ones inability

t_ make suc simple statements as "Harry is Susan's father."

One can try to get aro-und this by including the father's name

in the object, but thcn one has to make a decision on whether

to include the father's name only or to include the entire
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object describing the father. The second gives rise to an

infinite recursion: the first leads to the obvious problem

of finding the father's father. Any cross-indexing needs the

numerals.

These and related difficulties can be resolved (as

far as the descr.--tive strength of t-he language is concernef)

by introducing variables other than IN into the language and

allowing logical quantifiers. Also, capabilities have to be

established for naming objpcts by stL.4ings of symbols. However,

strings of symbols, unlik- symbols, should be processabiLe.. To

enable thi's, a new syntactic entity ,,rill be introduced. In

thi-s new notatcion, the object (head, (headi(head,null;taLl, 1);

tail, 0);tail, 0) could have the representative STRING

(±,0,0.numer) and if (firsta-secon&, ) was an elfe-,aent of

"fatherhood," then a could be represented by STRING(father.

of,,i). Such naming procosses, oil course, should be describable

within thc language. Also, one shuld have the freedom of

introducing axioms in D) other than concepts. To do this, the

symbol -,whic
t so fuz had no logical significance, has to be

a part of the theory. The concept of "proof" has to be intro-

duced as in any logic. This renders rezognil-ion of objects

as belonging to concepts m'ore difficult. H1-owever, Mill iken

has shown that a sL,,table modification of the algu:rithm s-hown

in Figure 4.3 can be .-lade which enables recoqnion of some

43concepts even 11- this ext-ended language. Since the exteridcl
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language enables its own description ,76 can dscribe integers,

it iF clear that a mechanical recognition procedure for all

44objects is imposs'bl

In what follows, the extended language will be intro-

duced and exemplified. A large part of the language will be

similar to the one discussed before.

a) The Syntax

I. Any string of lower case latin letters and arabic

numerals is a sybol. A symbc2. is a t-rmn Any

string of greek letters is a variable. A

variable is a term.

2. If A and B are terms, then A,B is an ordered

p2air. An ordered pair is an ordered pair strina.

If A and B are ordered pair strings, then A;B

is an orderad pair string. If A is ai ordered

pair string, then (A) is an .0je ct. Ai ob,....:r

is a term.

The important thing added tc t..a syntav at this point

a the variable. The dir'erning reader probably not,-ed before

this that IN was playing a role similar to a variable in the

previous discussion. However, a larger repertoire of variables

are n-2essary for full flexibility of use. Going on with the

syn i-ax :

3. If 4 is a term and B is a tern, then A(B) is a

~Le rm.

The term

Icolor(a)
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stands for, the Enalisb phrase "the coic: of F Genetally

such a terai is meaningful only when a stands for some object

like

(color, red; size, big; number, 135):

in this case color(a) would stand for

red.

However, this interpretation, unlike the previous case, is part

of our axiom set now.

4. If A and B are terms, ,hen (A=B) a-d (AEB' are

statements.. If A and B are statements, then

(AVB), (A&B), (A-B), (A-B) and .-A are statements.

5. If A is a statement and B is a variable, then

(VB)A ind (HB)A are statements.

Rule 5. above, is one of the major reasons for intro-

dlcing variables as parts of the syntax. Also, the use of=-

now hab a logical interpretation as a propositional connective,

rather than merely as a cue for recognition as iL had been in

the previous discussion.

It has aiready been pointed out before that in this

description language one has the freedom of giving names tc

sets of objects ajid using these names to define new sets of

b-jbects. However, these names are arbitiarily given symbols

and lid no4 have any syntactic relationship to the set of
objects being defined, Hence, if one had to dofin- a class of

sets which had similar structures, this similarity w;ould not

be reflected in the qiven names. Thus, the set of all ' r
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greater than & and the set if all numbers greater than 50 would

be given two different names and the fact that each set has a

lower bound would be loat. The reader is to recall thaf calling

them things like "greater than 3" doeL not help, since the Ian

guage deals w'ith symbols as a single entity.

A part of what follows is directed towards giving a

number of string processing abilities to any automaton using

the language and for ubing these abilities to tie in the names

of sets and objects wi+-h their structure. However, in line

with previous procedures, the mapping which define thp prucess

will be ncluded only in the axioms of the system. What follows

r then is only the syntactical part.

6. A symbol is a train. If A and B are trains,

then A,B is a train. if A is a train, then

STRING(A) is a srin. A string is a train.

j 7. A term ji.- an operand If A and B ire operands,

the,- A,B is an oierand. If A is an operand,

then TIE(A) is a reprcsentative. A string is

a resentative. A cpresentati.ve is an

2p rnd_

8. EMPTY is an operand. If A is a representative,

then STRIV (A), END(A) and REST(A) are oper nds.

9. If A is a representative, then REPINV(A) is a

term. If A i a term, turen REP(A' is a

rEfpresentat ire.

Examples of s rings and representatives are

L___________
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STRING (2, 0, 1 num)

STRING(CTRING(1,0,num), STRING(2, 1,nuim),sum)

TIE(STRIP(REP(C)), end(O))

TIE (brother, of, name (first (a)))

10. If A and B are representatives, then (A=B) is

a statement.

The following examples will indicate to the reader

the usefullness of strinqs i obviatin- the difficulties

mentioned earlier. kithough the concept of "truth" has not

been irtroduced in this fnrmalism, the reader should be able

to follow tile examples from ai, intuitive understanding of -he

mea.:ing of truth.

Let there be a co ep: in D as given before

aefather--age(first(a)) big) & (sex(first(a))) man)

& 'house(first(a)) house(second(a)))

A tyr -al object in "f mh might be

(first, nae, trank;sex,man;house, (size,small;

color,blue;look,pretty) ;age,. big) ;second, (name

susan sex,q rl;house, (size, smallcolor. lue;

look, pretty) ;age, small)).

One can call Frank "Susan's father" - a rather

i generalized naming opezation which was imoossible in the

language so far. For this, one can now define an axiom a-,

fol lows

aefather-(REP(f 'rcst()) = TIE (father, of, name (seconc(a)))

which, by the rules descriled later, would yield tho statement
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(REP(name,franksex,,.n;house of residence

(size mall;color,bluelook,pretty'-age,big)) =

STRING (father, of, susan)

V.. exact way in which the truth of this statem t

is derived in the language w.lJ oe shown after the axiom

system has been discussed.

b) The axiom schemata

1. A statement (A=B) is an axiom if "nd only if

(i) A and B are each the same (identical) term.

Two obiects are identical if every ordered

pair appearing in A is identical to some

ordered pair appearing in B and vice versa.

Two ordered pairs are identical if their

first elements are identical and their

second oiements are identical.

(ii) A and B are identical trains.

!(ii ) If A is a term of th; form C(D) .ere D is

an ob-ect, C the first element of some

uniQue ordered -,air of D and B is the

second element of the same ordered pair.

(iv) I f A is oI th'e forr TIE(C) or rIE(C EMPIT)

or TIE(EMPTY,;C) C is a train -nd B is the

zstr~ng4 sFRIN'G(C)

(v) If A is of the form END(C) where C is a

strinq of the form STRING(D,B) (alteriiatively

STRING (D, A)) and B is either a svrbol or a

s tr nq. .,

L ____ __ ___
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(vi) If A is of the form REST(C) and C is a

string of the form STRING(B,E) where D is

a symbol or a string, or if C is a symbol

and A is EMPTY

(vii) If A is of the form STRIP(STRING(B)).

2. Every stat-ament -(A=B) is an axiom if and only if

if T A and n are symbols bvt not ldentical or

if A (aiternati've'% B) is a symboi and B
(alternatively A) is an -ect

(ii) If A and £ are both objects 1which do not

contain terms' of th.9 form C(D) and A and B

-are not idntIca .

(£ii If A and B are bot:.> tr ns not

.vev t, ss axiom if B is an

.,lc AB are statemer s 3:,,- X is ci 11. t , e

-then the ,o- lowinci are a icms

(i) . - )AA) ,

V

In iv) x mus not occ: free :"A.n T In. y s

either a var.abiQ or a term e r n te CC'-re. o" C-C' X

A must to .n a s b-stat, eme B o , : - >t . (Y)., w.,e X

is a fre.e var.al nC



An occurence of a variable X in a statement 49

sadto be bound if it occurs insm u-statement o- A in.

the form (YX)C. An occurence which is not Loul I is called

free.

The symnboi S xA/ stands for the statement A' obtained
y

by replacing all free occurences of X in A by Y.

5. If A and B are +-.ate,.ents and X is a variable

then the followin; are axioms

(iv) ( (A_=b, ( (17-B) & (B-A)

fItz wil'l be n.oticed t1hat. some statemnents owhjch weroc

'true in the pre-vious system~ ar3_ -Pov LAXIo'Ms. For instanc,

(color( sizebig-color,~ ?,,)) =red) is an ixiorr. Howe %;-r,

since the recurs ivt fun-,tion "value" is -lot -defi;ed In the

new system, some th;statements, like (oo~is(frt

(col or, red; s ize, ,b i sec _..d, hand)) red!) is no t an 3\ lom,

be cause i rst (f irjt(co lor red; siz-, b Iqsec-nd, hand ) is no-, an

object 'out a qec:iterm~hc is not co, etch4 b%. rie

(bliii) above. The truth of the above stateflont 11- I nly

follcw frmth Initon of t..e rulsf interence os q~'.er

be Iow Meanwh-ile. itmrav. b e -. o r t -w iIe t o :,olnt out. th:-at

althouqh the statement above is not. an c'X tom its ea r i

not c-e either. Truth L-nd falsi~ty o"' stater!ments ire mucl, more

d~ftcoltto ttst zn the new syster:-: a3 ,)rjCtn ay

je



c) Rules of inference

Given a set D o: st. te'ents and a statement A, we

say A is derivabl from D if the.-a exists a sequence

l / S, . S of statrem-n t- such that S is the same as A and

for every i (1 i j eithel S. is an axiom, or S. is a

memrber of D or is inf..rred from previous stateme-;ts
S S (J,k < i)' by one cf the followino 5 rules of4 infe ence:

(i) From A to infer (A where X is a variable.

i i From A and (A-) to infeBr .

(i. From A and (X=Y), to .nfer A' where A' is

obtat.ed -o-,A by r t ing some occurences

X b.: ... som- occ ren<es v bx

l R ,FX)-. (where -s -a orm 3d --s

a r ep-= : t v e) to 'r - " RE q ()K)

..... t - % to inf r --A.

I t mivqE-A' 2)C y'k T j1 + Sn 0o t.w

\t the re. %7 sS-- , s. .E'- "'- 1 . .S IL

<-'rta in ax i on-s.

1C 1e ste e

:::(.color (f rct( Iis , £ccl .I r < :o <, i

. s o-: :a:lo ' o r C J S) -
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Since both of the above are derivable, one can replace (accord-

ind to rule (cii ) above) " (color, red;size,big)" in the second

by "first (fir- :, (colorred;size,big);second,hand))," the L.H.S.

of the first state 3nt; deriving th-e initial statement.

Again, one can derive REP(name, frank;sex,man;house of

residence, (si;--,small;color,blue;look,pretty) ;age,big)

STRING(father,of~susan) from the concept nared "father" and the

statement

i(afather)-(REP(first(a)) = TIE (father,of,

name (second (a)

in a similar mannie, in view of some of the axioms diescussed

earlier.

Before closing this section it may be worthwhile to

point out how th_ REP(representation) of the object nanmted

"fraak' does not have to be unique. if locations of houses

in cities and profe,. jlons of people were included in the

Universe, this object miqht also have STRING(frank,the,barber,

of,stville) as a representation and one could have statements

like

REPINV(STRING(father, of, susan) )

=RL2N'1 (STRING (frank, the, barber, of, seville)).

An example from the field ot character recognition

may motivate come readers more. Ass.ne that the Universe con-

sists of the diffezent configurations of excitations on a

square array of ,1hoto-cells and suppose one is interested in

all .onfigurations in which all excited photo-cells lie on aI
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straight line inclined to the horizontal edge of the photo-cell

at -45 '. Call it "negativediag."

In this Universe each photo-cell determines a property

whose values are called 0 and 1. Each photo-cell is de-ermined

by its Coordinates. Hence, the tThverse of photo-cells has

k, wo properties corresponding to the X and Y coordinates, which

will be cal>'d "first" and "second" here. T.e values of both

these properties are integers, which have been discussed before

in connection with th: description language. The reader will

-erify that a typical configuration on a 2x2 array may be

denoted by the object

((first, (headinull;tail, 1);second, (head, null;

taiil)),; (first, (head, (head,null;tail, I);

tail,0) ;second, (head, n;l:tail, i)),0; (first,

(headnu. -;tail, 1) ;second, (head, (head, null;

tail, L);tail,0)1 .l (first, (head, (head,null;

: tail, i) ;tail.0,O);second, {head, (head, nuilltail,

2 ;tail, 0)), 0)

representing the configuration

1 0

1 0

One can now write a statement which defines the set

"negativediaq."

aenegativediag (a$)(3y)(($() = 1) & (y(a) 1) & ,(=y))

& (1,0) (Vy) ((y () 1 ) *-, t(first, first(y),

second, second(y) ;third, 0) e sum))
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The language while describing concepts, has usefulness

in other information retrieval systems. Its use ii such

systems has not been investigated but it may be safe to say

that its capability, even if somewhat curtailed, may be greatet

than any conjunctive system of descriptors or association

strength networks discussed in the field.4 5

I
~In

Im
I

tI



7. Othonr DescrLption LantLa

Set theoretical descripio is have been used for con-

cept3 mostly by workeis interested in simulating human cogni-tive

i However, the entire bash. of Pattern Recoginition as

a onenn.,eno, is set theoretical or mo e precisely, logical.

T1he motivation behind the different meihods used in synthesizing

cr.ncept learning algoritnms often 'lie in fields- lke statis-

36 3.
tiCs, or linear alera h.o-wever, in every case the final

algorithm. for recogn ling an object as belonglry to a concept

or pattern (after the learning phase") can be looked upon as

sing a compound statement as the description of the concept.

This will be clear. if one considrs the case of a set of binary

vectors whose components satisfy a linear inequality. The set

000,001, 011, C, L1, 1111 of binary vectors, for itstacce, can

be represented by the linear inquaity

Booleac Ex.pression ( y + z) or the statement t 0) v (z 1)

S'milar statemenzs can be constructed for cases. -1- te

- di.s- rainar-ing , t, o.na~ti re non-i inear or even when c-h -cn-

ponents of the vectors come trom a continuam. Eaen comnowent

of the vecto.s are o:,roperties wh.se val1e.s isolate subsec o,'
the Universe. However, in this latter case. "ca. Ox-

pressions representing these tunctiovs need quantLfiers to take

care of infinite set- theo retic connectves.

The modes of combination available to Pattern Recog-

nition schemes based on statistics or linear algebra are

richer than those available to Boolean Alcebra. However, very
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often the effe!-tivenes6 of the various mtodes of combipation

dealt with in literature are strongly dependenL on the ltial

measurements (i.e., the input properties o. "f-- -ures") an

dependent in an extremely il'--urderstood w.%/, also, there is

no uniform method for changing one set of algebraic operatiIns

into another to yield new "features"~ from old ones. It, is tuI achieve such flexibility and to tie down the description with

the basic set theoretical structc:,,e of the problem that the

iar'quage of Section 3was clevt-lop-1.

Very little can be s.-Iid ze, araing the ultimate

effectiveness of Cie various .. gebraic or stati,'stically orienteu

lc~nu~g~ avalabl ta decrptc of patternis. Some of them

(like linear separation) essentiail> restrict the capability of

lesctipt .un for the sake of simplicity of descr-iption and

"trainng.' Oth- rs, like Bravermai-' s potential functcions, 3

are senjlv"op iideol' i,-i h e used (like Boolean

functiono) to) de.sicri-he any concept. 'Ahatever. However, these

latter lei--ad to problems of confidence l1imits and "generalization."

it -may be well to c0efer discussions of these to the next chapter,

when, learnx.ng JIs discussed.

Retuiainq to the di.Ecussion of the use ot. si-mple

Boolean expressions (or expressions in Propositional Calculu -s)

as a description lant-quz-(g, it has been shown in Sectikon5 c,

the class of describable concepts can be restricted for parsimony,

yielding, say. the cla..s of con-,unctive and simple concepts.

Pthouqh the class of simple concepts properly contains the

1I



class of conjunctive concepts, all cu.-epts are not simple and

modes of description have to be available for describing every

concept. Th- language c. the property lists is not adequate

for this. A suitable extension of it has bee-,n suggested which

is capab>'- of describing any conk.ept. Conceptions can describe

any concept also. The efficiency c4' :-th are severly restricted

for a large cl2-E of concepts. However, the ultimate capability

for description is not limited, as the-y are for perception-like

dev.1 es, whi.ch use hyperplanes as discrininating surfaces.

39
Two other languages, The CLS by Hunt, and rPAM by

Feige.ibaum, 40aL- restr-icted in their abil-Ity to the same extent

-as thie Conceptions. The relationship between the two have been

discussed by Hunt.. It is relevant to discuss here the salitent

points of difference between the k-licepti-ri on the one hand

and the CLS and the EPAiv onl the other.

The facc that the systems use~d by Hunt and Fe Lge-Iaum

are. binary i-rees while the Conc(eption allows more than two

branr-hes to emenate from the nodes is not a cruc ial difference.

All three a--et essentially t ~e structures - "he fact that only

one of the trees is non-binary is eoslly attributab i-c to the

strong iiwfluence that -che word 'b-t" has hald on psychologists

since 1948.

Thore are tc--o cricial differences bet ,oer. the CL-S

and EPAM tree anrh the Conception, however. one lies in the

fact that tne name of the concept descr-ibed by the :ree is

placed at the root of the tree in the Conception while ~ ~
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placed in the leaves in '-he otner two languages. Tihis looks

like an essentially wasteful feature of the Conception, since

there has to be a different tree for every concept. However,

there are some essentlal reasons for doi-*ng this, 0-- an

analysis of the basic sets invol:ed will show.

For one thing, a property which is relevant to a

concept A may not be relevant to a concept B. This fact can

be used advantageriusly in the Conception. But when the EPAJMI pro -essor, say, is testing an objoct for membership of B, it

still has to qo through a test for this nun-relevant property,

just because it was w.!orth t%-est'.ing in testinq for A.

There is anuther, much stronger reason for attac>. nq

concept names to roots of trees. Very often the same conk-apt

~urns out to be sib-concepts of two different concepts, in the

sense that there is a concept C, two property values o Pand

q n w- ocpsAadBscta B.

Then, the naimo- C can be placed on the conception. of A and D

instead of placinq the entire C tree twice in the conceptions

of A and B as would be ner-ssarv in the CIS or the EPAM.

(These remarks do not pertain to C'-EPAM developed by Ernst and

She--.nan, which will2 > c discudsed ae)

These differences occur essentidlly since it is oier-

looked in the other lanquages that a specific objtect can be a

memiber of more theni c~e concept - hence, one has to attach more

than one name to every leaf if the name of tu-ie concepts are to

be att,. 'hed to ieaves. Also, some of the intermediate nodes of
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a tree may contain e-ough information to iden.tify an object

in a concept while to recognize the same object in one o its

sub-concept- would necessitate going deeper into the tree,

Th- need for attaching concept names to nodes becomes

even more clear when one needs to define a new test ir terms of

old tests in the interest of silicityv f description In the

Conception, it is a mater of adding a new list into the Con-

ception of the Unjverse - while it is impossible in the other

two structures. No fl- -ole language "las appeared in tho

Pattern Recognition or cognit lve process research as a counter-

par. cf the description language discussed in Section 6.

Varic-.. languages, 1ike the lan:cua-qes deve loed by
Nauima,47 48

a r a s1maal and by Kirsch, carries out operations on names
of pro.,rt e but the Jr,cdures , not have the s ece lex-

I . , anJ f iit}'.. However, the :IR System cf P:ohae! has

cerc u, -miiz'arti with the ianrca'e or Se tion L which

4.

O< <, .r.ates t sN ilar tt,-s between SIR and the

]anquaqe d -cr: Section 0 aro, the sic ii ar it les in the

s. hcsure . . . same property-va lu-pi rs I e

str nged tog-etr r A values _,t pr -pert Cs MX" be ' ects

tt~e.s1.. .. itur et r nes : lf propert es Ca,, e

obiects in lIR.

Ii. SI S.R, a .X- . t s;ma. i ire Also a .. n. to namOs

-%:. ,alues of. roacri os. ". (n. harr,, r , ters -tom ,dick,

C1on) ;.aqe' 1 ,,, ] L. , . .c ..... .' '. a a dv ntage oa this



of courqe, is that the ob-ect, "na sense, has orcater

ef'fi-iency of proct..-sing. Fi i 4nstance, let the quest ion ",e

asked "Is Tom Harry' s brot-her?" (.' .e., le-t toni brother

(harry) bs posed as a th-orem). A special processor c-ould

answer tnis as "ye-." However, if the question is asked "Does

Harry have a brother aged 20?", the processor will have to

kiiowi that there are objects whose property "name" have values

"torn," "dick" and 'don": a fact which is not clear Fro"m the

furi ,at and a separate processor would be needed to incorporate

such extra assumpti1ons.

In fact, SIR as oriqinall y cnnceived and imo-lementei

connsisted mostly as a series of processors capable of handling

a special class of obj-ects. The syntacti7 restrictins the

objects were to satisfy -were def'itned -,ore terms o4- the

struct4ures of teprocessors. As a result', certain factsabu

ob ects were ar o de sc ri be while oth e rs tr e Mxsco

* ,nli:ke the lancjuacie dscr-ibled -n Section), 6, wh ',ere certai-n Loarts

are easy t,,, describe anda otnh'rs mer lore dlff Lcult to d

S c r Ihe Also; In the lnu oi o Section '- faCts wh hWere

I-)r iqLq Ily IAf -ulIt. to deks c ribe ca n be -'acie, t eS %oe Lr ie b

add-,nq new corncep~s. Most prsnt -Ira ynrn~ae

l ack th is flIex ib iItI' t%;throucih cexpa3ns ,n

49
SIR i, wh Ic,-h w,;a s s u o e st ed b a poh a I -is _'nheMIproved and flexibl1e ver--sIon o r SI, woul -- Jn t 5 has s boe m-,cn-

more similar to , the lan,uaa:e di-scussed in Section, t-.

~n ts geea tthe~ I aiiuap:e i!. Sect lon 6 \,i well1



iTRI is a First OrcrTheory in the sense of Sw~rbo.1 1-C

'J) ji c. Hence, toe '-eftlng of lt.he truth if certain statementsa

,:i n most 2 eneral. cases, turn out to be a search, fo-r

a ppropriate steps of the proof. Ti is is at oresent extremelyv

difficult. 4 1 2 On the othe ,r hand, many theor-ems In the

system can bo oprov.eu oy simple processes, as was shown in the

hItIst pa-t~ of Section 6. Even the addoption ot cer-tain flex-

jtes of thle L :iu a ie a - ea r no i th:e s econ ' ar Lf

, -ct on,0 does not .,t ate the fcitY

The orsen tchpter ha dscussed! the role p aved by

~aqae nt'-- Clescrl ption of oatz e-ns. Ithas neg' 1c-d

ritho.etic operat ions: nlh a it is aCcar both fra07

Me3t, teatc 7no :rn Sh d Scso cn 1,a co t ,ta

S -Ih oc )e r at L o r, can 4n h,,-,das to,-e 1aa i -cs Q suse S 5

sau as) ae bSt L~ase c Ccm S: tSe o

ceercin a:iv. This i~ir ~' ~enx



CRA-,PTE'R V -LEARNING AND GENERAITZATION

1I introduction

In Chapuer I., the major concern was to develop

lF- iguztgC-S i., which se's of objects could be described in such

a way that a specific object could be tested for membership

in a set in terms of the object's propertCies. Associated

with any technique or concept learning - .-.hether it be by

uiscrim nant functionls, probabilityr es'I'Matron. and such

like - has to have a lancquage in which e::.press-rons,; can be

written to define a set. The ra~or po~nts of diffeenc

between the ones described in Chapter. IV a-nd theP 7-'re poooular

ones in the field lie in --he followinci way.. Tnitiai'iv, thie

langaqesdesrib d in Chapter IV a.-- essen tialy non-numericai,

so that the ob-ie--ts do not haeto be ore-;crocessed to yie'd

nume~ca vales f te properties. I h ~~ f atr

~econ~rfl tispre-process rno, iae'et m a n~m~-

left out of the2 lcarninq andi rvecoqnit,,Lon tcnieaasd

-t is the belief o" "!he autho thIat t7 SeprAT I on L) nr c-

processinq fro reai tto itzcce crdif incitc

the way, of answering the m r t.n ost x ita i,-n th-.e f

to -d ay v -low does _ ne oetler mlne _h, t'D" C e nr-

o-ocessors ra Pat-ern Rc.2 ''*n.e ititiJ

noted tiat *-he I ai,-cuacs 5o ---a cc C e rIhe
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no- -nu I r orertieT stand. -r h re-uits cH ure-crocess 100

toemot cocrtus.Tnus th,-e preeprocessiog is dIescribed

in- coo,_ Same nomrchthe patternis are descriLbed. Thus, the

effctienes" f re-rc~essrvcan, be dJiussed In an

comen wa'. t nL OO t t C wh-ie dIiscussing tne ±anqua ge

H Sctin . tntr, s~ cocas nu n c--hs s ar1 -' e-v to

adv.antages ..Lnurent in numerical croe:S.z ,

TN-I. schacrter I c- cr itcb ce rcta in a mIor i tO' J o:

-, tt: er n -, I 'U SL n -w> z e I a n -m.'lS -C ' cr Ibc.Dta te

-ire c-E

- emtaLme the alaior o~m

es r e oU enc t-,-e, a z .'r-

3 2, 27'

7. c .7 .- - x. 7- - - - , . . . .-. . -

X$T



one can diwmc-ss the mcdif icat on of P) in an environment to

rr-der descriptions succinct.



2 LearninQConj'Unctive Cnet

Thne aJ.a o r it. deas cr ib ed int iectio was develope'

by Pennvpacker for -dV:ve1.Dpinq conceptionF (see Chapter TV

S--ection )) f:or patterns on. the basit- of examples or ob-4ects

helongino to the roatterns. 32Unlike most experiments coniduicted

in t-e field (except those conaoct-d withi psycholoogical interest

by Bruner anxd hiS foll1 1ower-s, 36), the aloofithm vi11 be

given the freedom of chros~nQ4 examples on the basis of past

e-xamples shown by th,-,e tran a 4 )cz so, it will bE-- giv~enth

freedom of askinq two otheL questions, "Is 'Cte pattern described

by the fcrllo-winj concepti-.n completely contained in the patterzn

under considera.Lion?", and "Is this a correct conception for

the pattern under consideration?' Both these questions can be

replaced by statistical tests and this latter may be necessary

in real circumstances. However, the purpose of the investiqation

was to establish the lcgical structure of the e'gorithm.

The basis of the aigio.Lithm lies in the isolation of

a set of prrnerty values G L i p9 i ,.PS i uhta

P1, s X where X is the pzattern being

learned and such, that there is no subset of 0 whose inter-~

section is contained in X. If X is a conjunctive pattern,

this basic algorithm converges to yieldl a short conception for

X. otherwise it yields a conjunctive pattern whichi is a proper

subset of X. Ex,,imples outside the pattern and inside X are

then interrogated to yield other conjunctive o~atternis. The
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process continues tili a set of conjunctive patterns are

,bt.ained whose union covers X.

The operation --f the aiqorithm needs the ability to

obtain conceptions of Boolean functions of patterns havin;

known conceptions and testinq 'or identity of concepts and

containmient of one concert in another. xt also needs the

apability of evaluating properties of objects, qiven the

values of its input properties. Aloorithms for doing tlhee

have be n developed by Pennypacker: some of t he have been

brimt-fly discussed in the prqviotR chapter.

j lmaThe ow -ration of the algorithan depends on the follo7-

Lon me a 54: Let <U, (> bp an environment ana let
Plilf, P2, "" ? Pr'; kllnp-j . PkJ

0.f 2 n ifl k2j2  k sj5

where for all t(l t t n)Pt cPt P

and for all r(l ; r s) pr C P,. E P
~.r

Also, let 2 i I ... fl Pn Pli n "" n p
P 2 . 1 hl n

and 0 n P P, P '
ni kn S< 55

Then for nc r (l r s, Pk j P=li
r r

Proof: Assime to the contrary; then

p n nni PkJ j, "n Pk Js Pkr~ = Plil

2 n I1 ss rr

whence,
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.o pi Pii n P, n ... 0Pn 1 n

contrarv to hypothesis.

Lemma 5.2: Let <U,61> be an environ,,ient and

p 2  . p... , s.. nLet
n
Pill Pkl Qk2J,¢ ' Pks

2 n sii nsn

vzre for each r(i ! r : s), 1 k r  n and for all m,

aiq YV (I ! m n) Then for each r(i - s)
M

Jr k
r

Proof: Let k t. Then
r

Pl P2 i2  ... nin I = Pkri k

and

P k , - "" { k i k

The theorem follows since Pk is a p-rtition d
r

p ' iDk ik i.k .
r

Lemma 5.3: Under the hypothsis of Ler3ma '.2 if

d.i2  !- .. Lnin  Pk 1 s -

then for some r(l ', r i s)

k =1~r

Proof

1 k < n for all r(l r s)
r
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and
k 1 for all r(1 s i s

indicateF

2 - k n fox all p

contradicting L.pothe p 4

Lemma 54: Tnder the hypothesis of Lemma 5.2 let

~~Pli I  .o Pni Pkl l "" Pk J
n s

S and le- (Piii 'P-i2. Ptt be the s--t ot all terins an thL.

left hand aide such tndat Pmi # Pk for any r(l r ! s).

in r r

Then,

(t+i) it " r nin # P l n n n
t+l n n

Proof: By construction of the set il .
Pi 1 ti

the left hand side is equal to rI . P2ss which

directly contradicts the hypothesis.

The algorithm can now be justified rigorously. Any

object is an intersection of a set [pij ) of property values.

If this object is properly contained in a conjunctive concept

which is to be learned then the hypothesis of Lemma 5.2 is

fu~filled. If now one removes trom the set [piJi] one value

P O then one (f four things may occur

(i) The new concept obtained by intersecting the



elements uf pp.,  - p.. is the same as the

object.

(ii) The new concept as oltained above contains the

ob-:act properly and is properly contained in

the conjunctive concept being learned. This

fulfills the condition of Lem;-, 5.1 and hi -ce,

P does not occur in the expression for the

conjunctive concept to b? ]earned and hence,

can be removed from trie set I withoutI- i imm

violating the hypothesis of Lomma 5.2.

(iii) The new concept as obtained in (i) above coin-

cides with the concept to be learned. This

terminates the le rning process.

(iv) The new concept is not contained in the concept

being learned. Then Lermua 5.3 holds and
O-O

occurs in the expression for 'he conjunctive

concept being learned.

If case (ii) holds, one can start the process over

again by remov-ing a new property value pi,,, from the set
J 0

p.o~o If (iv) holds, then P, is left in thO set

j and never removed again. In either case, the test to be

pertormed on the set p. is constrained to be performed onperfomed o the et iiJi .~
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s maller set. Hence, if on ea(~ ,eoval of a pi ) only (i I

(iii) or (iv) holdE- the successive removal comes to a-, and. If

Udoes not come to an , nd at (iii , then the ccncept to be

1eoa-iea is not co j-2nCk-ve.

It is to be no+ ed that the above. discubjion provides

tne rationale fo7- Bruner' s con.zervative focussing otrategy.

Case (i) never occurs in his experimen ts sirce hi input

properties are all the properties In the env>~z nt and 11I e

input properties fom a full fine structure family (see

Chaptt- IV). In the present case, where the environment con-

tains many non-input properties so t>-at the ntire propetrty se

is not full, the algorithm needs the modifi.:ation di-c-ussed.

If (4) above is the case, then other prope~rty values

have to be removn d from~i the set .1 if (W hcids for all

va~lues so xemoved, then combination of t-wo 3Ies*re remnoved

from [Pj I and the proces. is repeatef& At this point fuU.-

fillinent of (i;., doe-i not. yield any result, sinc,-e the condition

of L,.mrna 5.2 is rnot necessatiy fulfilled any more. However,

the fulfillment of condition (iiL) is still sign ificaiit, since

the hypothesis of Lemina 5.2 was otinvolved in the proof of

L-e1.

By Lemm~a 5.4, as long ab there is :.n,; property valu.-e

left in [p 1i, there will be some combination of property



values wriose removal w -reut 'n fuilfillmer' W.t cor t N

(i i Trnls way all proaperty val*uo-0 not oc..'aring t th e ex -

pressioi. of the conjunctive cCncet Is removed in a finite

number of opersitions and condition (iii) c curs. If, however

the concept bernq learned is r.ot conjunctive then CondiJtLro,

(iv) occurs on tlk- removal o' any propc:-ty value. In thi11s

ea new object is chosen wiiich is contained in the concept

11e 1r iearrned but not in Lne con'jun-Ctive con1cepLS. learned so

Lr and~ too process is repeated. since -n a f ni te eoyvironment

aZ7 crc + -ie un or. of finite n'.mber efcoo 'netive

c. Ice -nts (- dicssion following Theorem 4.12), the process

ter. ~ L os i+h t ec rocnitLion of the concepi

T'If:above c' iscuss ion constitut-9 an informal proof

or tile f'ol.Lowl no theoro'-r.

Th eoe, om Ci I,-, i te env ironment the ailcierithm

snw-n 1low ha.-t I q, iue e r em i na t e- in ri C n i t o n um bc.r

It may. b e pointe k',d t that the fI t e ne ss of t he

a.Ierti dc.;es not in any way a-s skre a s-hort d(oser ipt ion of thle

concept learned, becau.-se a shor" tClescI i t non may not exist a

all. Aiso, the p,.ocess, tli.o)ugh fini to, m-,ay he inordiniately

oI. Th-, q I c'ra,, some e>: treme lv adverse of fort1 -)I, thle

"heneral1izat on ' o,0 thie concept. This la tt.-r w1ll be discussed

in a lateirscin In ttoe next. section a-n at-cor thm wil1 be

dIscassed '.whichi Learns simple concepts in a in te number of

steps. It uti)- ioes the lanqu ac d~scussed inr Section ',aid
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hc nce , can crinstruc t s imp1 e descr i.ptizs fcr a m o rih~r

-lass of concepts than z.~nntv.Howev.,er, u4 mary

rea ~tc c-ses (for instance, in envirommelits .ipz r--erties

are two--valued) even th~is excludes many concepts.
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CK

if Ki -
= t. ,t. ,.at p ad P 2i

11 the K tIt t, rom some m(l i T) and
n

t 4p fozr aw '-,(I k n

Tite f&lowing iemm- is important.

Lemma 5.7: K ( lX . .Ux).

Proof: Let p ,K K.. P hen there is some

Xt(1 t n n) vuch that X rQ p
t Ms'

1ut JPM 6 M(X1  "... U x" implies

P Q2 n F " x x whicl. cads t-o a contradiction.i P

hex-ce, po i M (x. U x Hence, K M M(x -%

nr K M (XI  J . .x p

Now le-- Xt  n ... ( '" ? i " l~n Pi K
• 1n m

tor an' .-J -4 m n). Hence, t ' Pmn im plies Pmn e p or

Y [PmnX t , Pmn= Pn m Xt n m 0) = C-.mn nr~mn Xtj

M(xt)

"Since Xt  being an object is either wholly contained in or

disjoint from any property value: see Theorem 4.1).

p
So K P M(X t) for all t(l t % p) or K p cn M(Xt)t=i

M(X1  --- L xt ) (Theot rf 4.14).

This with the previous inequality yields the lemma.

One can thus construct the "ollowing algorithm ,or



Sa rni~n n , et Th aI!c, rithm sta-rt- wt In two co pes c
K ~{K.L and K in nenorv. Every time an object

S" P. is presented as belonging to a concept X.

the values Pi (i m < n) are removed tom Ki to yield

Ki+ I, Similarly, an time the object is presented as belonoing
2

to X, K is sim_iarly modified to of t

learning, if m oositive and n negative inst-anCes are presented,

then ti(K. Xs and H(K ) x

if X end X are both simple o.nce t, then the

algorithm converges at some value of m and n such that H(K ) = X
and H(K2 )' _v

andH- .. owev-r, if .ither X or X Js not simple, then

one has to remain satisfied with the approximation to X giVen

by X and s

A .t.st .. ,ias been developed by Winatknecht and Snediher
32. 34

to find out if a concept and its c-.,plernent are ooth simple.

The test depends on the following lemma.

S -5C . I -
Lemma 5. 8: x = x an(- x x if and only if

S <N --
Ix J- O

Proof: The "only if" part is immediate. For the| --
"if" part one notes that x x - xs U But x J x = U.

--S , - S - -, , "s

Hence, x (j x 2 U, yielding x' Jx = U. Hence, x = x

froe hypo,.aesis or x = x But by Theorem 4.10, x o I" xS

S- -sand also, x . x whence x = x * x = x follows similarly.

The applicatinn it this test depends on a test for
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H( 2 H(F') being empty or, according to Theorem 4.14 for

1 21
U Km j . The teat for this is not straight forward;

given a subset T Q K, it may It be easy to find out if

11(T) .  . Clearl for -tny P c F, %(P) = 0. Also, if T'

then H(Tt ) H H(P) r ° However, there may be some T which

does not contain any e c P as a subset and yet H(T) = .0. T'he

set 1, ,R R - in the example of Chapter IV is an examp>.
2 'Rz4I'R34

A rather involved procedure has been developed by

Snediker for the test. Rather than aescribing the tzst in

detail here, it mav be more wo: hwhile to discuss tne :'tw'si.Ve- 2

ness of the prozedures discuosed here and i tn previous

sections in reaistic situations and compare > ,ith other

well known Pattern - cc;." - re, h ns s.es

!I
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4, Prc lems of Learninq and Feature Extraction

A study of either of the methods of learning in the

two previous sections is very illuminating in that it brings

to the attention of the reade. some of the major difficulties

in the way of pattern learning and points out some of the

imortant requirements for an effective Pattern learning tech-

n ique.

It will be n--iced in the case of both the methods

.a ost effective in learning pattern.s (or concepts)

e. , ta l. . s The Pennypacker technique, although an

effective procedure for all concepts9 ensures rapid convergence

orlv _ a conjunctive concepts. The Windeknecht-Snediker tech-

nique conrerges to the correct concept only if the concept is

simple. 7n the Pennypack-er technique, hc;<c'ver, there is a

technione for finding cut when a concept is not conjunctive anid

modIfy;in the algorithm to take account of this fact, In the

Windeknecht-Snediker Algorithm, the corresponding test andicates,

not whetlha r the concept being learned is s-mpe, but whether

both it and its complement is simple. No algorithm has been

developed which would learn any concept as an union of simple

concept in a weiy analogous to the Pennypacker algorithm.

However, the Pennypacker algjorith', takos certain

liberties which ar e not nised by any1 other alorithm known to

us. It asks the experimenter questions Tbout the inclusion

relati.nsh .p bltw-n the concept bei.ng learned and concepts

described by the algorithm. Tho Brunr cunservative focussing



strategy on which tz, Pennypacker algorithm is based, did not

alleow these liberties, altiXough it did envisage quastions

from the subject regarding memberships of specific objects in

the concept being learned. The extra Liberties were

necessitated by the fact that unlike in Bruner's case (and the

case of most osychological work affter him), it was ixot assumed

that the input properties of th,,e real environment is [ull.

This invalidates son'e of the methncCds used in the psychological

eeriet: for obtaining new 2-_blects fr.-m a frocus object.

it is dft.Lcult to say h-ow many of -ie advantages

of the Psnnyfoacker algorithm ovo~r the W:'ndeknechSnediker

algorithm would remain if the extra liberties were taken away.

Just as one needs tG develop methcds fc- asking Bruner-type

qpestions ("merbrship rat-ler tl-.dA. inclusion") in the environ-

ment envisaged by Pennypckex, m~ethods need to be developed

also for modifying the Windeknecht-Snediker algorithm to the

cazses where the concepts leirned a-e non-simple. However, in

any case, since there are more simple concepts in an en::Lron-

ment than there are conjunctive ones, the Wiiideknecht-snediker

methodi ought to be more effective in general.. However, in

environments where -li pzopert!P-. have oniv two values7, all

simple concepts are conj~unctive. In this caz- the relative

advant<iges disappear.

The weatknesses and stro,-g po.ints of the iearnitig

met'fc -s diiscuesed in tJui chapter, may be used to dfevelop a set

of criteria for the eve~ua' ion of co~ncept learning meti-ods in



gen.eral. in the previous paragraphs the me~nods of this

chapter have been discussed on the ofi- 0 the following

questions.

1; How rich is the class o f concepts any one ~

whose members can be learned 'by this method?

2. flow rich is 'the class of concepts any one of

whose members can be learned efficiently by

this method?

3. How rich is the class of concepts whose

descriptions are succinct when expressed in the

language envisa,,d by the algorithm?

4. Given the interpretation of an. environment as a

real pattern learning situation, how many

patterns to be learned can be expected to be

members of the class describedk in qut-stions 1,

2 and 3 ab-)ve?

It can be seen that the class describ-ed in quetion I

above ccntains the class des2cribed in question 2. (Nothing

can be learned efficiently unless -,t is learned.) in the case

of many methu.ds, this latter class coincide --. with the class

described in question 3. Howe ve r, this may not be true for all

methods and lang-,ages. A mnathematical studly of this point can

not be attempted unless precis e arnd acceptable "'efinitions of

the words, "succincCL and "et-Lici'mt" be given. This will not

be attempted.

Question 4, perhaps needs some clan ficaLion, zsince
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it refers, not to an abstract enti ty cal..'d the "environme-nt

in he disusio , ut to the uiformalizable thing called

"real life," and the way one abstracts it to Fan "environment"

in the technic- sense. In question 4, the words, "patternL

to be learned" refers to "rzal life," as fur example, the class

of "all roman lett(:-s-7 projectru on a grid of photo-cells" while

the "classes described in questions 1, 2 and 3" refer to the

describable classes after a class of pmperties lhave been

abstracted and used in a mathematical system. If ir, "real. life"

one was called upon to learn all concepts possible (tar instance,

if l.1-niing the class containing "all lower case "a's, upper

case %Q"s and all symmetrical fig-res" was as necessary as

learning the class of all upper case "B"s) the answers to

question 4 would coincliue with the answers to questions 1, 2

and 3 respectively. Howev,2r, this i . often nct true.

It has already beens seen that in t-he case of the

Pennypacker technique the class described by question I i

"the class of all concepts." The class described by questions

2 and 3 is, "the class of all conjunctive-: ccn-epts." of co,-urse,

how rich this latter class is dfpends on the richness of the

family of properties in th er~ioi.~t This uatt r poinC will

be discussed presently. M~eanwhile, it may be worth pointing

out that if one restricts onese-lf to a family ot :nput Properties

(like, say. "the excitation level of each photo)-cell in the

grid") the clas-. of conjunctive concepts is not very rich,

especially with respect to "real life."



28

It ought to be poi'-ted out, however, that, the

flexibility of the languages described in Chapter IV s such

that the definition of new properties are axtremely easy -o

incorporate in -" e jnguage. This can L- done, moie.ver,

with respect to the -lass of patter-s described in que.<,tion 4.,

No e Zicient ]-orrit.m exists for introducing such new properties,

but cerc- 'n heur'stics cai be considered. This is done below

with esoec t the Ui ; .rs- exemplified in chapter IV,

sectio!,

the' nv4 onment consis+s of t',e two properciesP

and q th-, the only onjuictive concepts are the ten values of

P and , and .he twent-,- t- objects. Let us , w assume that

the c )nce- A = {3,A 13. 14, 1.5, 16, 17, 18. 1,2, 1, i 2t h-, to b,-,

irarned. T' c oni. way the Pennypar-Ke,: alqori-L>, could learn

the concez wi Ald be as an ,.nion of c~oxmp._ars This vould

render the learning jr cess extremeI', ,inetfic en, and alo the

:oncepti-on of th,- U tter, ].earnea would be .nvieldy- The some

would be the ca4e with respect to learning the concepts

B = 5) ,7,8,9,10, 19,203, C £21 22,26, '7} and

D =  3, 24, 5,28,29, 30 . ffl.wevc', at this poi.t it _,ould be

(ifalizc i we had an iqcrithm stronq enougn to cit) that
A <.; B (V T 1  so. tar ;,Ak i wn), C J D (or T.) and u - 'I', -

cc>.I.d b used as n .rc -ert.' of the enviro-ment a 3o c-ou d

A . 7 R,) o = R and U -R, - R This would vield
4 4 *j j: T a nd C = a t a culs dincrease in

st..cic t 2ss of ,i-script.ion. Howe V,-, Yt- tIs Succinctness would
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be Durchased at. the expemce o. stoi. ig T. , . , ,R k< a3 d!

R3 J R in the description list of tho r ,iVr e. Sch " t

generation, then, can only be istif ed L: the, yield t, -

descriptions of many concepts s les 'o e ic ;en ,

of concepts encountered lat Aisc t hsorouand siyvi

cance with respect t.,- the ",eneral .ilit the lea-:u ,"

algorithm, as will be show in th>, ,x' 3e c . n.

The reader will note I a L .or, t ri, ,. ,

ana R4 as defined above led to n' J L:. :L<7 - S

which would not have been learnec • ,r 2xamp:es. Th...

have be-n internalIy generated to -ic .itate the

c.? oepts which have been learned from oxampleso :

are generally called ".features" in the LSteCr o'.o

which isolates them are called 'feature extra. t -o _, to

book, the te.m, "concept format ion" tiA. aIso .e . .

this phenomenon.

It will be worthwh le at th s po-in1 t1o .... Ho .

of the other learninq alqor thms in litet it re and hfAw v

stand with respect to the presertly d scriled methods.

Because of t'he >:.marii of thc d<.crption

the first methods that comv- to mind il r the EPJ , , ;no

30CSL-I. The comparative aAvantagc ,t.)r the 11, .es n. i

discussd be forehand. Tne major poi nt to A, 0u 'It EA.

is really .n connect, on with the i imi tat on e 'ho jAM re.

Because the name of the concept ovcxIrs at , r : re , i-o<.-

two non--disoint concepts can not be vurv wi de L..k.1



an EPAM tre TPhis puts essential reScr~ctjons on. EPAM as a

Ieaincg- a:. lorithn; huvlever. a recognizer usin.,, ttie EPAM tree

as the descri-ption makes an extremyelY eff irc-ient r.,-operty

eva lua tor.

Some of the druLacks of t-ie EPA-. not ha -e hea _n rt

moved by EFinst and Sherma. It- ~ as e n a bed r h e bu 1 dm ino of

a I escri-ption ian iacc i.ncorooratri., somc a:f the K Lably dies :raP e

charccteristics of the p r edic3 t c iua aa~g ec di

7ectilon 6 of the prevocus cune.Since ie 2'act torm.31.

haErnst and Sherma'. lanonacge is not <"nrIet-1v fo rm ai ; z a- "

de le.descriptk:an of the lan qua7a- .- i ,It_1- e :I _1Ven rI ,ere.

K ~t may be worr ,vnmhie to poL"nt a a few : noortcint

The IUniverso _)f Dmcr~lan"'aaoe n-asto

nrepe~ t es , Ex and Na. Thev L"( cov

xerflpi a'& a- c: n sen,,sc c4 iVSC _5 C O~ 1!

s c r iLes metfol concett cor- t', exer\tflDar-

~w ir K t~. h ccla

thle -c,~ d namve. "u, s c C- K'bt

Sh .P) tete 1- tIt e '~~

L. :'pt de -scr d, a DV t ,e -ree

r il EPA n the ofa c thaI -_t thle et n s attat ay

'7.' t 'a s~~atem'ni ~ ~ tIt eai trm e~:awi1
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"term term" while the conventional EPAM test nodes consist

of the latter types only. This enables the language to have

some of the advantages of the language of Chapter IV, Section 6.

As a result, the Ernst-Sherman learning algorithm can make use

of previously learned concepts in describing new concepts and

thus, shows an important aspect of truly adaptive behavior.

Like most learning techniques based on Boolean

Algebraic methods (the Windeknecht-Snediker technique being a

notable exception), the learning algorithm is most effective

in learning conjunctive concepts; however, like the Pennypacker

t algorithm, it can learn any concept. Moreover, it can learn

cnncepts whose descriptions involvL statements of the form

'term e term."

The CSL-I technique of Hunt, learning with the

description-tree developed by him, has one capability which

f Ithe Pennypacker algorithm lacks: it can learn succinct de-

scriptions of concepts whose complements are conjunctive. To

do this, it has to store in memory all the objects shown in

the concept and its complement, instead of modifying the de-

scription with each new presentation of an exemplar as the

Pennypacker algorithm and its parent, Bruner's conservative

focussing strategy, does. Unlike the Pennypacker method, there

is no method in CSL-I for using non-input properties in the

description. As a matter of fact, the advantages of having

non-input properties (an advantage which is used by all human

beings) seems to have been completely neglected in all



psychologically oriented structures of Pattern Recognition that

the present author has come across.

On a superficial study, it might appear that the

numerical techniques of Pattern Recognition discussed often

in literature are far stronger than the ones discussed here.

As a matter of fact, there is a tendency tc include in the

field of Pattern Recognition only techniques basedi on the

theory of vector spaces and probability. I& importance of

the study and development of flexible description languages

as done here often seems tc9 oc outside tne pale of the field

of Pattern Recocinitun. This is extremely hard to understand

-l ;iew of the constart bemc: nings in the Pattern Reognition

field regardinq the elsive nature of the "feature extraction"

problem, which is intlmately associated with the basic predicates

of description larngua .es.

In what follows, i short discussion will be given of

the present author's interoretation of thc methods and -esults

in the field of numerical Pattern Recognition.

As has been pointed out before -or these methods to

be effective, one has to hav-'e properties whoo values can be

represented as real n,, i ers. Thus, 11 Il. CniV(ironment with a

finite number of input proporties (and n,- distinction has yet

been attempted between input and non inpAt propertles), each

object (miny authors prefer t.- call the object. "patterns" but

it will be safer here to hold to an uniform termi-.oloqy) is

represented by a vector in the space of n--tuples of reals.
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The learning algorithms, on the basis of a list of objects,

tagged by their membership in a given concept C, constructs a

real function f of n variables (the "discriminant function")

such that for a large number of objects x encountered or ex-

pected to be encountered f(x) would be positive if and only if

the object belonged to C. In symbols

f(x) > 0 x C C

Just as in the case of the algorithms described

previously, the form of the function f is restricted to a class,

at least by the efficiency of recognition. That is, for some

of the algorithms the class of concepts described in question 1

is restricted and in others this specific class is unrestricted

while the clae& described in questions 2 and 3 are restricted

and, in most cases, identical. The class described in Section 4

can only be considered on the basis of experimentation and the

results of the experiments. Different methods have varied,

both with respect to their quality of the results and conclusive-

ness of the ex-eriments.

Comparisons of these different learning techniques

are generally made on the basis of the operational mode of the

learning algorithm. One criterion for this is whether a tech-

nique is adaptive, i.e., whether the algorithm stores all the

tagged objects and constructs the function f on the basis of

the entire set of tagged objects or whether the function f,

starting from an arbitrary initial value, is modified by each

tagged object in succession, so they do not have to be stored

for processing 'en masse.'
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Ancther important criterion for distinction may be

on the basis of "motivation," i.e., the basis of choosing the

class of functions to be constructed. In some cases this

function is generated on the basis of the estimation of the

parameters in a set of probability distributions. 52, 53 That

is, it is assumed that the concept C and its complement C are

such that there exists two distributions p and q, characterized

by a vector of parameters e such that the function f has the

form

f (x) =1
q(x;e)

for some oarameter-vector e. The class f is determined by the

fiozns Of p and q and the allowed range of choice of the vector

G. The forms for p and q are chosen either on the basis of the

workers belief (on the basis of empirical data, hopefully) that

the distributions p and q are adequate or by the fact that the

estimation of the parameters is computationally feasible for a

large set of tagged objects if p and q are assumed to have

some given form. Unfortunately, reality does not often conform

to the conveniences or limitations of the theoretician.

Another basis for the choice of the class of functions

f may be dictated by certain "distance functions. '
137 That is,

one starts with the axiom that there is a metric p on the space

of n-tuples such that if A is the set of all objects tagged as

belonging to C and B the set of all objects tagged as belonging

to C, then f is often defined by
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f(x) min p(x,y)] - min [p(x,y)}
yeA yCB

or
f(x) (x, y_ - p(xy) L_

yeA yeB

p denoting average value. Again, the class f is determined on

the basis of the investigator's choice of p - hopefully on some

rational or empirical basis. Often the class of f chosen by

different methods turn out to be the same.

A large number of authors restrict the class f directly

without reference to any statistical or metric criteria - which

to the present author's m.:.ad is no less justifiable than choosing

the class on the basis of the faiths discussed above. The most

popular form, of course, is the linear one where

f(x) = a . x + b

where a is a vector and b a real number.54  It appears that

although the class of concepts descrilible by these linear

functions (the "linearly separable patterns") is much richer

then the class of functions discussed in the previous sections,

it is still a very small fraction of the class of all possible

concepts - even where the vector space under consideration is

the finite space of all possible binary sequences. What is

worse, even the class of concepts described by question 4 turns

out to 3e inadequate on the basis of experimental evidence,

unless the set of properties defined by the components of the

vector is "adenuately chosen" - and there is no uniform way of

choosing the "adequate" representation.
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The class f has been enriched by many workers by in-

cluding non-linear functions - especially polynomials of large

degree. The only major difficulty with respect to such choice

lies with the very large number of coefficients needed for an

adequate description of the concepts. This difficulty is

analogous to the cases where the Pennypacker technique learns

a concept as the union of an inordinately large number of

conjunctive concepts. Another analogous case arises where the

descrip' *on i-. taken to be "piecewise linear," i.e., where the

description of C takes the form

x e C =_ B((fl1(x) > 0) , (f2(x) > 0), .... (f p(x) > 0))

where B is a logical combination of the statements

[(fi(x) > oil i p) and fi(x) is a linear function. A sub-

class of the class of functions so describable are those de-

scribable by the so called "two layer nets," i.e., where B

yields a linearly separable function, so that the statement

above can be rewritten

P
x 6 C H X a. sgn [fi(x)] + a > o

i = 1 1 o

where sgn[t] = 1 if t > o and o otherwise. "Multi -layer nets"

can be similarly constructed, yielding richer classes of de-

scribable concepts.

When one considers adaptive techniques for the

evaluation of coefficients appearing in the representations in

any of the scheme3 described above an important question arises

regarding the "convergenze" of the training scheme. Convergence
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proofs are known only for sota of the algorith,..3 based on

statistical estimation, as also algorithms on the basis of

linear separability. 55 The earl-4.r algorithms were proven to

converge only in cases where the tagged objects were from a

linearly separable concept and its compliment. Algorithms have

been suqgested recently where the algorithms also indicate

56failure when the concept is not linearly separable. In many

cases algorithms are introduced on the basis of empirical

evidence that they converge "in many cases." Nothing is known

regarding the convergence of algorithms for "multi-layer nets,"

although empirical algorithms have been used for designing

these in the literature, both for Pattern Recognition and

game-playing.

As has been indicated above, another major difficulty

with non-linear or piecewise linear discriminant functions

(and to the px sent author's mind these are the only functions

which have any promise of success) lies with the extremely

large number of coefficients to be stored. An equally important

consideration closely connected with this is the "generalizing

ability" of the discriminant functions formed from these co-

efficients. As was said in the beginning of Chapter IV, our

discussion has been limi.ted to learning and describing concepts

wihout any reference to the phenomenon of generalization.

Some %ttempts will be made towards discussing generalization in

the next section. The discussion will attempt to bring out the

importAnce of appropriate description languages and "features."

- - - -q*S,..... .,
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5. Generalization - "Concept Formation" and Languages

It has been seen in the previous section that con-

cept formation or feature extraction plays a very important

role in simplifying the expressions which describe a concept.

There has also been a belief that, somehow, extracting the

"correct" features makes subsequent learning easier. Also,

that once one is in possession of a correct set of features

(i.e., has formed the right concepts) one can genaralize from

the encountered tagged objects we] -nough to recognize latter

objects with a high degree of confidence based on the descrip-

tions formed by a learning program. In the absence of good

features, "rote learning" seems to be the or y possible learning

method and one cannct generalize well from a description learned

"by rote."

In what follows, a preliminary effort will be made to

give a rough mathematical framework to give meaning to the terms

used above and justification for the beliefs indicated.

The very existence of a possibility of generalization

indicates that the class of all concepts to be recognize1 (the

cla. described by question 4 in the previous section) is re-

stricted to a subset of the class of all concepts. To make

this point clear, it may not be necessary to take the mcst

general environment. It will suffice, as an example, to take

an Universe having a full fine structure family of input

properties having n properties in the family and values of

each property. The main concern here will be the richness of
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the clbss of concepts rather than the simplicity of their de-

scription: hence, non-input properties need not be considered.
n

There are m objects in this environment and hence,

2 possible concepts. Any time a specific object,

Plil n ... n Pni n -X, is known to belong to a specific (unknown)

concept, those concepts to which X does not belong are eliminated

from those under consideration, and the concept to be learned

2M_l
n1

is known to beLong to one of 2 possible concepts. In

general, whel. k I objects are presented to a learning algorithm

as belonging to a concept and k2 objects are presented as

belonging to the complement of a concept, then there are

n M-k -k 2
2 possible choices for the concept. This number, it will

be noticed, does not reduce to 1 (to "correct" learning) till

k + k2 = nm, (i.e., till every object in the Universe has been

presented).

A restriction of the class of concepts to be learned,

then, seems essential. Such restriction leads to :xtremely

fast convergence (exemplified, for instance, by the Pennypacker

Algorithm in the case of con junctive concepts). However, re-

sults of experiments (on the perceptron, for example, or even

what can foresee in the fu Are for the CSL or the Pennypacker

and Snediker Algorithms, indiscriminately applied) indicate

that ad hoc restrictions stand very little chance of "standing

up to reality." The restriction has to be learned, just as

the concepts themselves have to be learned.

. ........
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The last sentence has to be persued with some care.

It will be noticed that the learning of a concept consists of

the learning of the union of a class of objects. The learning

of a restriction, on the other hand, consists of the learning

of a class of concepts. Although the language of Section 6,

Chapter IV, is adequate for describing both sets and classes

of sets (so glibly, in fact, that unless a a is introduced

as an axiom, contradiction will result!) it is probablv pre-

mature to suggest that both the learnings go on in the same

language! Much better understanding of the "second level"

learning (learning of classes) will be needed before that.

For the present, it will be assumed that there exists

certain concepts which (even though one is not called upon to

learn them through tagged obiects) may be used in constructing

simple descriptions of concepts th-t are learned by tagged

objects. Second level learning (or "feature extraction" or

"concept formation") can thought of as consisting in the

recognition of the former concepts. In Section 4, and example

was given to indicate how this phenomenon may possibly be made

into an aigorithm. Very little research has gone in this
57

direction (extraction of masks, as done by Uhr, and
58

Niellson. are efforts in this direction, althougi they are

strongly biased in the direction of character recognition and

can fail (see, for instance, BOGART 59), when tried on more

ambitious projects.

It may be somewhat easier to express the thoughts and
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to reduce the cha..nce of misunderstanding if the above paragraph

is interpreted formally. This will be done in the next few

paragraphs. The reader is warned that the only reason for the

formalism here is precision. No deeper insight r:sults from

it immediately.

Let <LT,P,P> be a real envirv,-ment, where P is the

entire class of input properties. Let there also be given a

class F of specific modes of combination of sets to obtain new

sets (which modes may be operation.. like union and complementa-

tion or may be linear or non-linear threshold schemes). One

now defines an ordering 0(P,F) on the class C P of concepts. If

the concept C1 is lower [ an concept C2 in this order, then

has a simple- description than C2.

Given, a class of concepts C Q C P will be called

satisfactory for C, if every element of C ranks low in the

order O(P,F). If P is not satisfactory, then a set of concepts

C0 will be said to be concepts formed in view of C" if

U {(c, c) c c c ) is qatisfactory for C.

Evidently, the class C is "formed in view of C" in a

very trivial way. A good concept former would be expected to

form a class C0 in some "optimal" way which has not been defined

yet.

The restricted class of concepts to be considered

for -voidlng the difficulty of generalzation will Le the class N

which are easy to describe in terms of the lnquage available

afltr concept formation. The major point that ouqht to bu I.
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emphasized in this section is that restrictions based on the

assumption of" simplicity of description has an extremely strong

repurcussio-, on what one understands by the "generalizing

ability" of a learning algorithm.

"Generalizing ability" in thf- sense discussed before,

can at present be identified most closely w:!th the term,

"confidence level" as used in the fiel~d of statistical

hypothesis testing. Also, the slighit co'nfusion with respect

to the acceptable definition ot "concept form~ation" is reflected

remazkably well in the slight confusion that occurs in the use

of the word "degrees of freedom" in that field (the present

author is thankful to Professor Herbert Simon Of Carnegie "ilch.

for, pointiin this out).

Thii3 last fact c-- probably be brouqht out by an

example. Let the experiment consist of exhibiz-inq two-digit

decirr-al rep~rcsentat ions of -,he first 99 posItive integer,,

taggina some of the sepresentatiko-ns with 1 and the ot-hers, with

zero. iet all ele-ments of the set ;l,1, 1.3 15 27,33,35,47,49, 59)

be tagged with Iand let the , lemen-LB of :4, 14, lt, 3, 24, 32.38, 42,

%563, be tagged w-ith 0. TI the values ot t-e fizst and Second

diqits (de1-fine the only two properties of the environment, one

can ottainr the foll King continqencv table for a Ch>Suar

test
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Tagged with

0 1

1 0 2

2 2 0

Ending with 3 0 2

4 3 0

5 0 2

6 3 0

7 0 2

8 2 0

9 0 2

0 0 0

The contingency table yields a value of 27 for the

Chi-Square. This has a significance level (with the attendant

error arising from the small size of the sample and with a

degree of fredom 15) of 0.025 which may not be considered

significant. On the other hand, if evenness of a numeral is

considereu to be a property of the .nvironment one could get

the following contingency table

Tagged with

0 1

eve1i 10 0

second digit odd i 0 10

The x2 this time, for the s me hypothesis of uniform

distribution with tie degree of freedom 4 is 20. This value

(quite accurately this time) is significant to the level of

lcss than .001.



II

Ther is ittl in-301.-

There is little in the theory of sampling itself to

indicate which of the two contingency tables should actually

be used for testing significance. It appears that to interpret

the phenomenon indicated above inside statistics, the latter

may have to be enriched by considerations of the available

description language. The suggestion made some paragraphs back

regarding restricting the generalizable concepts to easily

descriLable concepts was based on the observation that in any

contingency table, the cells are always chosen to be the ones

most easily describable.

The number of rows in the contingency table is large

if the concept being tested involves the union of a large number

of simply describable concepts. This will explain the statement

in Chapter IV, Section 1 that the "size" of the connective "or"

seems to be larger than that of other usual connectives.

It must be pointed out that even when a concept is

described as an union of simply describable concepts, generali-

zation is not impossible. In the first contingency table above,

for instance, if the entries in each cell were doubled, one

could consider the table as a significance indicator for the

hypothesis, "All numerals ending in 2, 4 6 and 8 are tagged

with I." only more observations wou. be needed. If it turns

out that the structure of the environment and of the language

are such that too many observations are not possible in each

cell, generalization is impossible without a change in language.

One can think, for instance, of the concept of "even integer6,"
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described as a piecewise linearly separable concept where the

only known feature of an integer is its value. Generalization

would be impos-ible on the basis of observing the two tagged

sets mentioned a,-'e. On the other hand, if one used the

digits in the binary representation of the numeral as features,

the concept of even numbers would be linearly separable and,

hence, easily generalizable.

A learning and concept forming algorithm, starting

from a fine structure family of properties, could learn concepts

by some technique in which the class of learnable concepts is

not restricted. If the concepts learned by it are not simply

describable (and if the extremely unfortunate situation discussed

in the previous paragraph does not occur), then the learned

concepts need a large number of tagged objects to establish

their significance. Onca t1-ese are established, concepts may

be formed to simplify the description of every concept learned.

Attempts are then made to learn later concepts within the re-

striction imposed by the newly formed concepts. In the environ-

ment which follows a restriction dictated by these newly formed

concepts, generalizition of the learned concepts will be easier:

otherwise the class of formed concepts would be modified.

It is the author's belief that the development of

this kind of algorithms is essential if Pattern Recognition is

to become a viable branch of Artificial Intelligence - indeed,

if Artificial Intelligence ever has to become a viable field.

So far the discussions have been carried out with
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the background of non-numerical description languages and

recognition techniques. In the case of techniques based on

the assumption that the objects are vectors of n real numbers,

analogous discussions remain valid. It may be worthwhile to

limit discussions to polynomial discrimir:-t functions. (It may

be repeated here that initial restriction of learnable classes

to "linearly separable" or 'distributed normally" impose con-

ditions on the initial measurements which are extremely ill-

understood). That is, let C be such that x c c = o 1 P(x)

where

n n
P(x)= + E a. x° + VE a. x. x

0 i = 1 3 ' i, j = 1 1) 1 3

. ..... + aZE ... ..a x.t x ... x
iJk ... t i. k " t

+ ".. + " " 12x x" ... x .1 ... on 1 1C n-

It will be assumed that if an element is chosen from

the concept C, the probability that a specific x is chosen is

f(x,c); similarly the probability of x to be chosen when an

element is chosen from c is given as f(x,c). It will be noted

that in Baysian techniques of Pattern Recognition, it is the

parameters of f that are estimated. However, since the "a"s of

the above polynomial are functions of these parameters (note

that f(xc) = o if P(x) > o) it will be assumed that the

estimation of the "a"s is the matter in issue.

LUt now k1 vectors (y1  y 2 .. y) be presented to

2 %
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the learning algorithm tagged with 1 and k2 vectors

(zI 072 ,..o, z ) are presented tagged with 0. On the basis

of these vectors the algorithm estimates coeffic.ents b°

b, [b b 3 (of course, in any practical

case, many of the higher degree coefficienots will be zero.)

The "b"s are functions of the variables G71 'Y2  'and
. 1

-- 3, which have probability distribut~ons f(y,c) and
2

f(Z,C) respectively. Hence, each b will have a probability

distribution and need not be equal to the "a"s unless kI and

k2 be extremely large. However, if the learning procedure is

any good, the distribution of each b will be centered around

the corresponding a.

in the language of the theory of small samplesi each

coefficient b is an estimator of the corresponding a. While in

the past workers in the field have been generally satisfied if

the estimates are unbiased, for discussion of generalization,

the efficiency of these estimators must be known. The efficiency

will be given by the estimation procedure and the distribution

f(x,c). However, in the general case, the following discussion

is germaine.

In any good estimation technique each "b" will have

the corresp-nding "a" as mean and will have some variance 6

which will decrease with increasing k1 and k2. However, the

rate of convergence can be seen to be seriously restricted by

the number of "b"s being estimated.
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n.e nnber of degrees of freedom is not + k2 but

is reduced by the number of parameters being estimated. As a

result, the number of observations nc.z-pd for generalizac.i n

become larger, the larger the number of parameters estiamted

(i.e., the more complex the discriminant function is). The

reduction of the number of parameters is only possible by

using carefully chosen measurements for ti. components of the

vector. Even though the input properties look "naturally

numerical' that is no indication that the natural choice is

reflected in any way on the restriction to the concepts being

learned.

An example may make the point clear. Consider the

concept (4,5,8 in the environment indicated in Figure 1.1.

Denoting the "natural" property "number of borders" by x and

"number of figures" by y, this concept is represented by the

set of vectors [(2,1), (2,?), (3,2)]. The reader may convince

himself that this set is not linearly separable. However, if

new features z and w are defined as follows

= 2 if x = 3, y = 1

z = 1 if x = 2, y = 2

z = y otherwise

w = 2 if x = 3, y = I

Y, = 3 if x = 2, y = 2

w = x otherwise

the concept appeais as the set of vectors (2,1), (3,1), (3,2))

which is separated by the linear polynomial w - z A . veryL2:22~2Z22 ___



unnatural numerical measure turns out to be the useful one as

far as simplicity of expression is concerned.

An alternative mode of feature extraction may be

indicated by pointing out that the "features" z and w may well

have been looked upon as functions of x and y which rendered

the concept separable. The form. of the function z(x,y) is

seen to be quite complicated. Hence, if a non-linear discrii-

inating function has to be constructed by replacing z and w by

complex non-linear functions of x and y in w - z - ai

semblance of si 'plicity would be lost. However, if one is

faced with a large number of highly complex discriminants for

a iarge number of concepts in an environment of n dimensional

vectors (xI ,x2 ....x n) and discovers a set of transformations

Yi = Yi (xl ... sX)( i s r.)(x 1  n

such that the original discriminants are "imple functions of

the yi . one may consider the y's as the significant feature,

of the environment and use them for subsequent learning and

generalization.

In the absence of good measurer ats (good "features"

in the general case) concept formation is an essential adjunct

to Pattern Recognition, no matter how sophisticated may be the

mod,-% of combination of the basic predicates. As has been said

before, past experience has shown that threshold gates are in

no way more effective than Boolean gates, if the features are

not good. On the other hand, recent work has shown that with
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good features, quite economical swit2'-ling circuits (with a very

manageable number of gates) suff.'Lce for recognition. 60
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6. Learning Games by Generalization - Imiportance of Descriion

Languages

It was shown in Section 9 of Chapter III that the

sets [WO acted as adcquate approximations to the evaluations

of ary Tic-Tac-Toe-like game. It might be noticed that all the

basic predicates involved in the description of the sets (W)

are the same as those involved in the description of Tic-Tac-

Toe-like games. Hence, the Universes and fine structure

families of properties needed for describing the rules of the

games are adequate for the description of the (W;). However,

if in addition to the basic predicates one also used the derived

predicates # (A) - i and (3n)((n,A) £ s & (n,B) e Cs), then

the description of the [Wi] becomec much simpler.

However, one important point was not made adequately

in the previous discussion: that learning descriptions of the

[w!) as combinations of predicates of the above form leads to

correct generalization with very little data.

The point is probably best illustrated by an example.

Consider any plane (horizontal, vertical or diagonal) in the

cubic board with three cells assigned to X and the rest by A,

as shown in Figure 5.?ka). For convenience, the cell Assigned

to A have len shown empty. That any configuration in qubic

which contains a plane like this and it is the players mcve is

in W can be easily seen by the persual of Figure 5.2(b). Here

each Xi represents the i-- move of the player and each Yi that

of the opponent. That this is also a member of K i seen bv6.
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a persual of Figure 5.'(c) -nd the accompanying intersection

matrix (which can be seen to be merely an alternative represen-

tation of a weighted graph). The intersection nodes here have

been numbered to bring out the reason for K. and W' being the

same set.

Tt will be noted that the intersection matrix of

Figure 5.2(c) also describes other members of K6 ' Some of

t-hese are shown in Figure 5.3. Also any position equivalent

to one of these under the multifarious synmetries of the qubic
61

board, would have the same matrix. Also, a plane with some

extra Y's (for instance, with one between Y2 and X4 in Figure

5.2) would have identical descriptions. So would a configuration

which have the same intersection matrix but with some of the

lines in a different plane (and all their symmetrical equivalents).

This mode of description (the intersection matrix is merely a

convenient representation of the statement forms discussed

before) is thus, more powerful than storing specific p:-sitions

and considering the symmetries of the board. This latter method

has been a favorite in the field and both Citrenbaum and

Koffman have been erroneousl" criticized for not using this less

efficient method which is applicable only to Qubic. The number

of symmetries in games like Bridg-it and Go-Moku are far fewer

but the description shown here remains equally general.

This is also a convenient place to point out that if

in Figure 5.2 there was an extra Y between YI and Y3 the

resulting position could have the same connection matrix but
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woulc not be a member of W6 . This indicates how some members

of U W! are not members of U W..

Koffman's learning program is designed to learn

d:scriptions of [W) when their elements occur in the course

of a play of the game. Here generalization is very much

facilitated by an analysis of the actual course of a game.

The program carries out the a2_-ysis as folljws.

The first game is played at random by the program

till it is defeated (or accidentally wins). The winning move

is now removed and t,.- file uncovered by the process is stored

in the trivial matrix as a description of W . From then on,

no win against the program is possible with a single threat.

When the machine is defeated (or acci'dentally wins) by a 'fork,"

removal of the winning move reveals a 1;csition whose description

was already available in memory. At this point the previous

move is remnoved, and the line uncovered together with its inter-

section with the lines satisfying the previous description is

stored as a new matrix. Now the program blocks all forks and

initiates ts own forks when possible. Learning continues inj subsequent defeats and accidental wins by deeper forks in a

similar fashion. Successive previous moves are removed till

no match is found with previous descriptions. The last move

removed is then ane'lysed to re,_ al the alternative threat that

was blocked. '&he lines of this threat and that of the previous

one, together with their intersection pattern, is then stcred

i i a new matrix.

!I
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It ought to be pointed out that in the absence of this

kind of analysis descriptions of the (W)} could be learned as

conjunctions of statements from a large number of examples by

some algorithm analogous to Pennypacker's. However, the above

analysis leads to a more iaiid learning. As a result,

Koffman's program needs to play only about 12 games before it

defeats its opponent 50% of the time in Qubic and Go-Moku and

wins in Bridg-it every time it plays first.

-- ------
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9. A,.proximation to Strategies in Tic-Tac-Toe-Like Games

Tic-Tac-Toe-like games have alrePady been discussed in

Section 5. In the present section certain subsets (Wi ) of S

(the set of situations) will be discussed which contain the

sets [Wi] although they do not coincide with the sets [Wid.

In what follows, the definitions for W' w-ll be introduced.
1

It. will be shown i Chapter V that descri ticns of [Wi are

much easier to learn than those of [ .3 The significance of

this learning will be clarified in Chapter V.

It will be recalled that a Tic-Tac-Toe-like game is

completely specified by a set N of cells and two subsets, G and

N6, of 2 , called the winning and losing files. Given a game

<N,G,2> one can define a reduced game <N,G,0>, with the same

set of cells and wirning files, but no losirq files. The

evaluations of KN,Gf,> will be denoted by W1 } and those of

<N,G,.0> by {W'i. Similarly, the situations to which (n,X) or

(nY) are applicable will be denoted by S nx ) and S(n Y) as

before for <N,C,0 > and by S n,X) and S(n,Y) for < N,C0,>.

The following theorem indicates how the sets 4W'

act as approximations to W..

Th-,-'-em 3.22: If s c W. then s c w'..

Proof: If s W. then there is an n N s uch tat

9 C Sn X) ar.d s= (nX) (s) c W However, s S(,X) ii-iplLes

that s e S-L, 13 tX)( x s (IV)i and s(n) =. Since L is

empty in <N,I O>, this so mle3 that e k S Also,• alo imlie thats (n,X)
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-11
S1=(n,X)(s) e W, implies that sllIX) 

= A for some A CL and

if no B C B, sl(Y) Q B. Again since B is empty in cNG,0>,

this implies (n,x)(s) e W for <N,Q,0> also. Hence, W1  Wj.

The theorem is thus true for i = 1.

Let the theorem be true for i = k. Let s c Wk+l. if

k
s U U W. , there is nothing to prove. Otherwise recall that

j . 1 3

there exists an n e N such that s c S(nX) and for each n' such

k k
that (n,X)(s) e S,,y), (n',Y ((n,X)(s)) c [j W J w'.j~l j=l

Since S(n,X) D S(n,X) as poved before and since Sn',y) S(ny )

can be proved similarly, this implies that s e W +. This proves

the theorem.

In what follows, elements of ,C W! will be given an1

alternative description which will be easier to test than the

exhaustive trial ivicated by the definitions in Section o used

so far. For this, the following ideas will have to be intro-

duced.

Let a and . be two arbitrary sets, let C a x 3 and

let # be a function mapping te range of the relation C Lnto

integers. Then the pair <C: > will he called a weiqhted graph

on a and .I
Given a situation s ;r a Tic-Tac-*Toe--like qame, let

C ,#fS > be the weighted graph on N and (A defince- -s follows:

(i) (n,A) C" if and only if t(n) = n A .mn-A

-Y s

* 4o

44
* . . .. . ...2. . . . . . . . .. . . .
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(ii) # (A) = IA 0 s (A) Iis
The ideas involved here may perhaps be illustrated

by reference to Figure 3.6, showing some situations in a 3 x 3

Tic-Tac-Toe game. If the cells are called 1 to 9 in the usual

order then the set of all files are (1,2,3), (4,5,6), (7,8,9),

(1,4,7),(2,5,8),(3,6,9),(1,5,9) and (3,5,7). Calling these

a to h respectively, the weighted graph of the board shown in

Figure 3.6(a) is

C = (7,c), (7,h), (2,e), (3,h), (3,g), (6, f), (8, e), (8,c) 3
#(c) =  2; # (e) = 2; #(f) = 2; #(h) = 2.

C and # are represented in Figure 3.6(b) in a graphical form.

For an understanding of what follows it would be

worthwhile to indicate what happens to the graph <Cs As > as

the situation changes as a result of applying controls and

distrubances ("moves" and "countermoves"). Two steps of change

are indicated in Figures 3.6 (c) (d), (e) and (f). The effects

indicated in these pictures can be formalised as follows:

For each element n of a, let Xn and Y be two func-

tions from weighted graphs to weighted graphs define-I as follows:

X (<C,#>) = <C',#'>~n

where C' = f(a - inJ) x r'! C

and #' (A) #(A) if (n,A) , C

*(A) - 1 if (n,A) C

Yn (<C, <C1

where C' F r(a - nJ) x (n - C(n)), C
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#' (A) #(A) for all elements of the range of C'.

Theorem 3.23: In any Tic-Tac-Toe-like game and any

situation a

<C (n,X) Is) # (nX) (s) >  Xn (<Cs '#s > )

<C~nY (s) ' #(n,Y)(s) # (n Y<Cs )#s > )

whenever the left-hand sides are defined.

Proof Let (n,X)(s) be defined, i.e., let s E S(nX ).

Then s(n) = A. If (n,X)(s) = s1 , then sl(n) = X and for all

m E N, m n implies s(n) = s(n). Hence, (re,A) e C if and

only if (m,A) £ C and m O n. Also, for any A in the domain of

1 -1
C, , IA n si(A)I = JA n s-lA)l unless n C A, i.e., if-1S4)IA A sS-(AI i Ti

(n,A) C C, in which case JA 1s -I S (l - 1. This

proves the first part of the thcorem. The proof of the second

-rt is left to the reader.

For an alternat ve description of the sets tW'} one
i

t'3 to define the following class fJ of sets of weighted

graphs.

A weighted graph <C,#> belongs to J if and only if

there is an A in the range of C such that 4(A) = 1.

K is defined for i > i as follows:

Let <C',#'> be any graph which is a member of U J

n i

and such that for all n it is true that Y (C',#') c j..

Let C1 ,C 2 . . . . . C n  be the set of all subgraphs of C' such

.... ... ... ... ... . ..... .. n



-168-

that for each p(l p n > (C ,#p) is a member of J J.
q p j 1

(. is the restriction #' to the range of C p). Let

(A 1 ,A2  .. A ) be a set of elements in the range of C' such

that there is at least one A (1 % q i m) in the range of each

C p - P i). Let n be any element of a not in the domain of

IC'. Let <C",#"> be constructed as follows:

C" = C' U (nf(n,A1)n,A 2... (n,Am)

#"(A) = #'(A) + 1 if A = A (I q m)

#' (A) otherwise.

A weighted graph belongs to Ji if and only if it
i+l

i
does not belong to U J but has <C",#"> above as a subgraph.~j=l J

Theorem 3.24: If a graph <C,*> belongs to Ji+l there

exists an n in the domaih of C such that for all n,~i

Yn' (Xn (<C, 4>)) j J

Proof- By definition of. , <C,4> has no subgraphr ro__fBdeiionoJ1+1

belon-inq to j J.. Also, there is a graph <C',4'-> and a

subgraph 0Ci*"' -c C,*- such that <C, '" is constructed

from <C',4'- as described in the definition of J Let n
i+l"

be a member of .t which occurs in C" but not in C'. From con-

struction of <C",i"- it is evident that

X (c", " <C' *'-.
n

Since (C",#") is ,a ou~ .a: f <C ,::,<C',6'-- is a subgraph
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of X (<C,#>). Since for all n', Y (<C',#'>) C Un n:1

and <C',#'> is a subgrapn of X (<C,#>), for all n',
n

i
Yn, (Xn<c,#>) C U J.
n n j 1

Theorem 3.25: For any Tic-Tac-Toe-like game, s e W

if -nd only if is-1(X)I = !s- (Y)(, s- (x) A A for any A c

and <Cs  P ,s> C Jk"

Proof: Let k = I.

If <Cs #S > C Jl I then there exists an A C ] such
1 -1

th-' is- (A) n A[ = 1 and s (Y) !2 A = ,e., for all cells

in A except one s(m) = X, and for one cell n c A, sn) = A.

Since I s - (X)I = Is - (Y)l and s- (X ) 9 A for any A' E C,

a E S Also, if (n,X)(s) = sI , then s, (1 = X and(n,) x)
s(m) = s(m) = X for all cells of A. Thus s 1 (X) A and
1

(n,X)(s) - W. Hence, s Wj.

Let now s e W' , so that there exists an n C N such
-1

that (n,X)(s) e W, Let (n,X)(s) = s Now sI (x)

s- (X' j [n]. Since s1 C W, tnere is an A - C such that

a-(X) [n) A. However, since s f W, s (X) ,X A. Hence,

n c A and for all m t A such that m # n, s(m) = X. Hence,
# s(A) = 1. and s c Jl"

i Let now the theorem be true for k ,i. Let

<C ,4 > t J Then by Theorem 3. 24 there exists an n such

that for al n'

Yn' n (<CS s )) j
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i1 1-
However, since s / W and Is (X) = Is (Y)I, and

from the proof of Theorem 3.25 of <C ,# > as a member of Ji+lS S

there is an n c N such that s(n) = A, s e S(n,X ) and hence,

(n,x) (s) is defined. Also, whenever (n' ,Y) ((n,X) (s)) is

defined, one has by Theorem 3.24

<C (n' ,Y)(n,X)(s)) (n' ,Y)((n,X) (s)) >

i
Yn'(Xn'C )) i .n nS'S j = 1 1

hence, there exists an n such that s c S(nX) and for all n'

such that (n,X) (s) t S(n J ,

i
(n',Y)((n,X)(s)) t J W.

Hence,

s t: W .

Let now s Wi. Then, there exists an n such that

s C S(n,X ) and for ill n' such that (n,X) (s) c S(ny)

i
(n' , Y) ((n, X) (J ) } W

: 1

and hence,

i

Y " >)) K.
n' n (C s S I

Since Y X (<C S  S e)) is a subgraph or v <C , by

definition of Yn' X (<C S >) has subraphs -- ' k

K .Also, none of , >Ck . > are subgraphs of
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KCS # s>, since <CS f# S> U K.i by induction hypotheses.

Hence, n must occur in the domain of each of these subgraphs.

So <C5 # > has a subgraph which is obtained from i<C #>
sk'

by the -onstruction shown in the definition of K+i Hence,

s E K.

The reason for introducing the above theorems is t'ne

fact that t-he only predicates needed for the recognition ofl

members of J K. are the values of 4 for the different files

i

and (in view of the construction of K-,+i fArom K.) the

fact that s(n) = A for some cell n common t~o a number of fi~

Given a situation s c I'X,',Aj> i. ., an assignment of X, Y and

N on the cells, the search for files with qiven values f

ind having certain cells in s- (N) in common between ,Iles

much more ilirected than the exhaustive mini-m3X searche -

indicated by the delfinition of ,W-l

Vic diffi-culty with the de scrip', i-n or

the K. ., h-ever, lies in th-~ fact that the w' v,;t

W....... does not coi-~c ide with t . Hnct' the K rit

approx imat ions to W. The reason t or t s 1 s t'>, i ie i

of Theorem 3..2 2 is niot true. C)n C 'a sn ~r

that elements Wi may be elements )f L In is

member of S cr'beca"S; "L, is empt:Yi .

An example of this w'ill be uilven in Chaptk r 'v, et o

Howe-er, because tedi fferc. nee bet,.ween anw
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W1
!w lies mainly becalise of the emptyness of L , a state in

W. can be te.ted for membership in J W. by a somewhat well-

directed search also. A method for doing this has been pointed
62

out by Citrenbaum.
Another very i ,oortant reason for using the Ki} as

anproximations to the 'W.} is that the (iK}, being obtainable

from a specific mode of combination of statements of the form
S(A) = i and (--n)((n,A) ; CS  & (nB) c C ), lead3 to easy

S ' S

generalizations from examples. A learning program based on such

generalization was developed by Koffman,6 9 and will be discussed

in Section 6 of Chapter V. The descriptions learned by this

program is utilized by a game-playing program to make very deep

forcing moves during the play cf any Tkc-Tac-Toe-like game.

In this sense, the program is game-independent within this

class of games. Given any game <N,(.,8> it plays the game

tegally and, on the bAsis of its experiencr- in:prove:. it.- gaie

- often to defeat its opponeent.
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