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, P A ,T T-W 0 T H,,E -T If E 0 R .A N D

PR AC TI C E :0 F" S OL Y I N G, P R 0,B L .E MS..I oN

I ,N T E R'N-A L B A L L I S T I C S

(T H-OR E T I C A L A N D A P P L I E D
P, Y R 0 D Y N A k I , C S),

-INTRODUCTION

( 'On the 'basis of the widelpread study of the ,phenomena and

,processes occurring ,duritng a, discharge,, internal ballistics must.

establish the laws relating/xhe conditions of loading -to the

quantities depending upon them called br listic elements of

discharge-and ,must furnish the method' of solving a large number

of problems encountered in practice.

The establishment of such laws, providing the means for regulating,

a discharge, ,constitutes the general problem of internal ballistics.

'-he conditions of loading include the following: the dimensions

of the powder chamber and those of the bore of the barrel, the weight

of the latter, the arrangement of the rifling in the bore, the weight

and arrangement of the projectile, the pressure necessary to overcome

the inertia of the projectile, the weight of the charge, the make

of powder, the physico-chemical and .ballistic characteristics of

the powder, the characteristics of the expansion of gases.

The ballistic elements of a discharge include the path of the

projectile t, its velocity v, the pressure of the powder gases p,

the ir" temperature T, all values varying with time, and also the

quantity of gas w4,formed at a given time.

In oolving the above general problem of ipternal ballistics,

N, * one may distinguish two fundamental and most important problems of

r, pyrodynamics, and a series of special problems.
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The first "fundamental- problem consists in determining by

calculation the change in gas pressure and the velocity of the

projectile in, the barrel as a funct-ion of the path Of the projectile

ind of time, for given loading conditions. Together with the

curves p,'l-v, j-p, t-y., t two most important loading characteristics

of the gun are determined: the maximum gas pressture pi in- the bore,

and- the muzzle velocity vA of the projectile, i.e., the velocity

of the 'projectile at the instant it leaves the barrel of the gun.

This problem may be called the direct problem of pyrodynamics.

For given conditions of loading it has a single solution - a

single pressure curve with maximum pm,,a tingle velocity curve for

the projectile, *.ad a muzzle velocity v, .

By varying the conditions of loading, it is possible to

analyze the effect of these conditions on the variation of the gas

S( pressure and projectile velocity curves, i.e., it is possible to

solve a series of special problems related to the solution of the

direct problem.

The second fundamental problem of pyrodynamics is the problem

of the ballistic design of the gun; it consists in determining the

design data of the barrel and conditions of loading necessary to

impart some definite initial (muzzle) velocity to I projectile of

a given caliber and weight. This velocity.is determined from the

tactical and technical requirements imposed up. the gun to be

constructed.

In solving such A problem, the maximum gas pressure is usually

given.

The design data and conditions of loading insur.ng that a
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projectile of a- given calibdr and weight will attain the desired

velocity,. are Obtained from the solution of the above Problem. Once

the conditions .of loading are given, gas :pressure and projectile

velocity.curves are drawn as a function of path, and time, i.e.,,

'the direct problem of internal ballistics is solved foi- the selected

type o6f giup'ahd charge.

The obtained curve p, 1 is used by the engineers to calculate

the strength, of the gun barrel and projectile shell, while the

cur#e p, t is used to design the carriage,, the time fuzes and the

igniters. At the same time, the necessary thickness and shape

of, 'the powder which must .be prepared at the factory, are given.

Thus the further planning of the entire system of artillery

and: of the necessairy ammunition depends to a considerable extent

upon the feasibility and rationality of 'the selected form of the

V ballistic solution.

This is why the problem of the ballistic design of guns, is

K ' the principal applied problem of interior ballistics;

The problem of ballistic design is broader than the first problem;

it includes the latter as a final step and is in reality an inverse

problem of interior -ballistics. It admits of numerous solutions,

numerous combinations of gun design data and loading conditions under

which a projectile of a given caliber and weight will attain the

* required muzzle velocity.

Because of the indeterminate character of the solution, there
arises the need of developing a definite method for obtaining the

necessary answer in the shortent possible time, and for selecting

from among this multiplicity of solutions the most efficient and

desirable solution, satisfying the tactical and tachnical requirements
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imposed upon the- gun to be designed,.

In this connection, special .problems arise with regard to

finding the most desirable solution, and for obtaining a gun
J

of maximum power and ru;nimum lerigth or volume, the most suitabl, 1

projectile, and the most desirable loading-conditibns.

The solution of these special problems permits in turn to

pose 'the problem of the development of a general theory and

method of ballistic design which would take into account the most

desirable solutions and tactical and technical requirements.

Besides the indicated fundamental problems of internal

ballistics, there is also a series of special and secondary problems

introduced below.

For a given ,bore and a given projectile weight, calculate the

weight w of the projectile insuring a given muzzle velocity vA,

and the thickness 2e1 of powder giving the required maximum pressure

pm"

Because of the complexity of the phenomenon of' discharge, not

all of its details can be taken into account, even approximately;

some of these details must be neglected and can not be introduced

into the mathematical equations expressing the relations between the

separate processes occurring during a discharge.

For this reason, the equations of Internal ballistics give only

approximate values'of pi. v, , 4p, and t. But since in practice

these equations must give results agreeing with experimental data,

it is necessary, in order to insure this agreement, that the problem

be solved by selecting certain constant characteristics. When these

are substituted into the equations, they give values of pm and vA
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for Ith gases and- the projectile, respectively, which values correspond

to the results-of firing tests.

The'yery manner in which the problem is posed indicates that

the proCessesi taking place during a discharge are not yet alI

'known and-analyzed. For this reason one of the main problems of

Interfial, ballistics, that must be eventually solved, is the exact

determination of constantso those of the gun powder in particular,

as, derived from its physical and chemical properties. The determination

of the powder constants involves a more exact method of pressure

determination by experimental means, because all the ballistic

characteristics (f, a, u1 ) are 'determined from the latter.

In addition to the problems enumerated above, one should note

the problem of determining- the variation in the maximum gas pressure

and in the initial projectile velocity under specific changes in

loading conditions, as well as a series of other problems.

The fundamental elements of a discharge - I, v, p, T, * and

t - are interrelated by a series of equations expressing the

fundamental processes taking place during a discharge,. i.e.: the

burning of the gun powder'and the formation of gases, the trans-

formation of the- thermal energy of the gases into the kinetic

energy of the system projectile - charge -'barrel, and the movemehts

of parts of this system.

The methods of solutlon of theoretical pyrodynamics must make

it possible to compute and establish the dependence of gas pressure

( and of the velocity of the projectile on the path and the time it

takes the projectile to move through the gun barrel, i.e.. to

solve the fundamental direct problem of internal ballistios;
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The meaihods of solving problems in pyrodynamics may be divided

Into analytical, numerical, empirical and tabular methods.

The emirical methods were-of.definite advantage, so long as

the theoretical concepts of internal balllsttcs had not been

sufficiently developed.

They were based on some relatively simple empirical equa'tions

expressing in a Eimplified form the experimentally obtained

interrelations o th e eleut~e.ats of a discharge. Tables were used

along with these equations, which tables offered the means for

computing very rapidly the elements of the curves depicting gas

pressure and projectile velocity.

The empirical methods were derived from the analysis of

experimental data obtained in firing weapons under different

conditions, with the characteristics and constants entering into

these expressions determined from the conditions of the experiment.

The disadvantage of these methods (formulas and tables) consists

In the fact that they fail to take into account certain very important,

factors and conditions of loading, and that subh methods may be

applied only under the conditibus and within the limits established

for the given case.

The number of empirical equations and tables is very large;

prior to the.development of analytical solutions, they were of

primary value because of their simplicity. But the appearance of

exact theoretical solutions, taking into account with sufficient

completeness the influence of most of the conditions of loading and

singularities of the processes occurring during a discharge, made

it possible to solve all the fundamental problems of pyrodynamics

by means of exact analytical relations. As a result, many empirical
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equations and tables have lost their significance and are now used

Only in certain auxiliary cases.

The analytical methods are based on a series of assumptions

characterizing the conditions of powder burning and the motions

of the .gases, projectile and gun; these assumptions are based chiefly

on experimental or theoretical data expressing the physical side

of the process of discharge.

For this reason, analytical methods of solution give a more

profouna understanding of the real na Lre of the phenomenon than

,empirical methods, and approach more iclosely the essence of the

processes taking place during a discharge.

In the analytical method the problem is reduceC to the solution

and integration of differential equations of different types. This

solution can be obtained with greater accuracy (in which case the

resulting equations become more complex), or approximately (which

results in simpler relations).

Solutions may be given for the more complex cases obtained in

practice, and also for simplified, admittedly schematic cases, in which

case the analysis of the relationships is simplified.

Solutions may be based on the geometric and physical laws of

powder burning.

Tables of auxiliary values or functions, necessary to calculate

certain intermediate values, are prepared in order to expedite and

* .simplify the computations involved in the solution of problems.

Numerical methods of integrating a system" of differential

equations are used along with the analytical methods-... The integration

is usually performed by the method of finite differences or by

expansion in Taylor's series. These methods are resorted to in
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especially difficult cases, when the value of one or several paiameters

varies throughoult the process of discharge and their variation does

not permit to solve the problem analytically in finite form. This

happens, for example, when the cross section of a barrel bore varies

(tapered bore), or when the parameter 0 varies throughout the
discharge accompanied by a varying gas temperature or by a change

of the coefficient T depicting to secondary work done in the process,

etc.

On the basis of analytica-l or numerical solutiohs, it is possible

to set up numerical tables of the fundamental elements (p, v, 1, t)

-£for different loading conditions and some general constants. These

tables enable one to plot very rapidly the necessary curves p, I and

v, I or p, t and v, t with a minimum number of calculations. In so

doing, the process of solving the direct problem is greatly simplified

and expedited. These tables are usually set up for certain average

values of the constants (characteristics and shape of the powder),

although in practice one may encounter a series of regressions from

these average values. In that case it is necessary to introduce

appropriate corrections into the results obtained.

Thus the ballistic tables for the solution of-direct problems

of pyrodynamics are in reality analytical equations reduced to

numerical values in a series of concrete loading conditions.

However, the ballistic tables enable one to solve a series of

problems which cannot be solved directly by means of analytical

equations.

The basic difference between tabular values and analytical

equa'tions is the following: because of their complexity, the

analytical equations do not give a direct relationship between
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pressure or velocity And path length, foi example; these, variables

are usually related through some auxiliary variable.

In tables, on the contrary, the basic elements of discharge

are interrelated directly: the pressure, the projectile ve'locity,

and the time of its travel through the barrel are given.in function

( of the path traversed by the projectAle; this simplifies considerably

the analysis and permits the dejelopment of a special method for

solving problems which cannot be solved by analytical means.

The development of the theory of ballistic design became

possible only with the introduction of tables for the solution of

internal ballistic problems.

For this reason the first tables prepared in our country by

Prof. N.F. Drozdov on the basis of his. exact solution given in 1910,

are of great importance. These very tables simplified and expedited

the calculations involved in the ballistic design of weapons, and

gave the engineers a reliable means of solving rapidly inverse

problems in pyrodynamics.

They also served as an example for a series of more detailed

tab\\es compiled subsequently.

F 7 (
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S ECTION SIX ANALYT,I CA* L
M E T H 0 D S O F S 0 L U T I" O N O F T H E
DIRECT PROBLEM OF INTERNAL

B A L L I S T I C S.

BASIC ASSUMPTIONS

When we examined the phenomenon of a discharge, we had pointed

out its extreme complexity and the fact that some of the factors

influencing the results were still instufficiently known. For this

reason, when solving theoretically the fundamental equation and

deriving the relations between the physico-chemical and mechanical

phenomena in a discharge, it is necessary to take recourse to certain

simplifications and schemes.-

The basic assumptions are as follows:

1) The burning of powder obeys the geometrical law of combustion.

2) The powder burns under an average pressure p.

3) The composition of the products of combustion does not change

during burning, nor during, the adiabatic expansion of the gases (f

and a are constant) after the powder is burned.

4) The rate of burning is proportional to the pressure:

u -ulp.

5) The auxiliary work done is- proportional to the principal

work of ';he forward motion of the projectile, and is represented

by the coefficientcf.

6) The projectile starts moving when the pressure developed in

the chamber by the partial burning of the charge equals p0, i.e.,

when the pressure is sufficient to force-the driving hand completely

into the rifling of the bore; the gradual forcing of the band and the

increasing resistance encountered by it are not taken into account.
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7) The work done in forcing the driving band is not accounted

for separately, nor the increasing velocity of the projectile duriitg

the gradual forcing of the band.
JJ

8) The expansion of the .barrel during the discharge, the

gases escaping-through the clearance between the driving band and

the wqals of the gun, and the air resistance are disregarded.

,) The cooling of the gases through heat transfer to the walls

of tl barrel is no.t accounted for directly, and may be taken into

account indirectly (for example, by decreasing the force f - RT 1

or increasing G-- 1/(A + BTav . ) .

10) The motion of the projectile is considered only until

it passes the muzzle face.

11) The quantity 0- (c P/cw ) 1 is taken as its average value,

constant throughout the ischarge.

The assumptions enumerated above make our representation of

a discharge more schematic, and deviate the phenomenon to a greater

or lesser degree from reality. For this reason the relations obtained

in the solution-will express the physico-mechanical nature of the

discharge only with a certain degree of approximation. Thus the

values of the fundamental elements (maximum gas pressure p m initial

or muzzle velocity vA of the projectile) obtained from these equations

may not coincide with the values obtained experimentally. Nevertheless,

in order to solve practical problems, it is necessary to obtain

analytical data which would agree with experiment. For this reason

(keeping in-m.nd the complexity of the discharge phenomenon, the

incomplete knowledge of its elements, and the disagreement between

our basic assumptions and reality) it is necessary to introduce

coefficients of "agreement with experiment" into the constants obtained.
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Such a method is widely used in various scientific laws

(hydrodynamics, aerodynamics, etc.) dealing with complex phenomena,

whose details cznnot be fully analyzed.

Eventually, as our knowledge is further developed, we will find

it possible to-render some of the assumptions with greater accuracy

and take into account some of the conditiofis not yet understood.

As new experimental data is accumulated and new methods are applied,

the deductions arrived at may be modified a.nd even replaced by

others of a more complete and exact nature.

In solving the fundamental equation of pyrodynamics, one should

strive to obtain the maximum possible mathematical accuracy. However,

in that case some of the expressions become excessively cumbersome,

so that even exact formulas will fail to represent the true phenomena

of a discharge; and for this reason certain simplifications may be

used with advantage in the process of solution.

A comparison of these simplified solutions with the exact ones

may show the extent of mathematical error involved with the use

of the same constants and conditions.

With an appropriate selection of constants, the somewhat

simplified solutions may also yield results approaching experimental

data as closely as those obtained by the use of more exact equations.

CHAPTER 1 - SOLUTION OF THE FUNDAMENTAL PROBLEM WHEN THE

PRESSURE TO OVERCOME THE PROJECTILE INERTIA IS KNOWN, AND WHEN
BURNING PROCEEDS ACCORDING TO THE GEOMETRIC LAW.

As we have shown above, the fundamental equation of pyrodynamics

includes a large number of constants characterizing the projectile,

charge and powder which determine the conditions of loading, and the

four variables, 'f' v, and p, which are called the elements of a shot.
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Ifi order to establish the rel'ation between the e'lements of a

shot, now equations are added to the fundamental equation, which

are the equations of powder burniing and projectile motion,; this

leadis to the appearance of a new variable,, the 'time t, and to the

-appeara.,fe of quantity z when tburning proceeds according to -the

geometrical law.

We obtain as a result the following system of equations:

The fundamental, equation of pyrodynamics:

P6 U%1 +1 D f cf mv2.()
2

The rate of powder burning:

dt

( The law of generation (inflow) of gases:

'A - ( l + x z + ~KXZ 2 . (3)

The law of motion of the projectile:

PS -(?m d(4)

or

( dv(5

The totality of these equations affords the solution of the

fund.-mental mathematical problem: of determining the curves p
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and. v, and also p, t and v, t and of finding in particular the

maximum gas pressure Pm and the muzzle velocity v-, of the projectile.

We first solve the problem for regressive powder shapes,

using the two-term formulas (X,> 1, X ( 0, t= 0) and the assumptions
I

enumerated above.

We ,shall solve the problem for all the periods of a shot in

succession.

1. PRELIMINARY PERIOD

When establishing the relations for this period, we shall assume

the simplest form of the phenomenon: the instantaneous forcing of

the projedtile-band into the rifling.

Fundamental assumption. If the force necessary to overcome the

resistance encountered.by the driving band of the projectile in

completely penetrating the rifling is I0 , and the cross section

of the bore is s, the quantity-op0 P"o/S will be called "the pressure

to overcome the inertia of the projectile" or the forcing pressure.

We shall assume that the projectile is set in motion at tile instant

the gas pressure attains the value Po.

Up to that moment the burning of the powder takes place in

a constant volume. For this reason the preliminary period may be

called pyrostatic and one may-apply the already known equations of

pyrostatics.

In this period, besides the forcing pressure PO, we will be

interested in the portion of the charge 1Oe burned at the instant the

projectile i- set in motion, in the relative thickness of the powder

z - eo/el, and in the relative surface area of the powder So/S -0 O

These quantities, characterizing the end of the preliminary

period, are simultaneously the Initial values of the first period.
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Let us introduce the fundamental equationp for the preliminary

period.

The 'igniter is burned first and the pressure developed in the

chamber is P' which may be computed by the -following formula:

PB fB6)

Wo Ta

where is0 isthe volume of the chamber; w-/8 is the volume of the

charge proper; and fB' aB'"B are, respectively, the force, co-

volume, and weight of the igniter. Under the usual ,conditions of

Ignition, aBB may be neglected.

The charge proper will ignite when the pressure reaches pB;

at this'instant the pressure is determined by the general equation

( of pyrostatics, which takes into account the effect of the igniter.

At the instant the driving band is forced in the rifling, a certain

portion of the charge +0 will have burned, and:

P0  PB + (7)

where

1 1

"a

C - Inasmuch as the forcing ,pressure PO is known(,), we can. determine

(*) PO varies between 250 and 400 kg/cm2 for shells and between
300-500 kg/cm 2 for bullets when the entire side surface is forced into
the -ifling of the bore.
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what part 0-of the charge will have been burned at tho instant the

projectile is set in motion. Solving equation (7) for we obtain:

p°  p

(8)

f + (Po PB)(a S+
P0 '/

If we may neglect the pressure of the igniter, because p0 is

known only app=roximately, while pB is small; we will obtain, a

simpler expression for computation:

1 1

ST
0 . (9 )

f 1
PO

-The quantityo mainly depends on 1 and varies, in general,

between 0.02 and 0.10.

If the amount 4'0 of the burned portion of the powder is known,

and the law of powder burning is in the form:

-X z (I + kZ) -z + XXz ,

we can determine the relative thickness z0  e0 /e1 of the powder

burned at the start of motion, and the relative surface area 60*

We find G 0 from the following formula:

+ 4
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and z o , from the equation Go  1 +2Xz:

2

0 ~~ 1-)G+l ~ 2q1o0 1) ( + 1) 2Xo- 1 2+o
0 2Xk 2,(Go + 1) 2e 0 + 1) ( O + 1)K

Since usually %0 1, the following approximation is correct:

Besides these characteristics, we will also require the value

Iqpo - the length of the free space in the chamber at the start of

motion. This reduced value is determined from one of the following

expressions:

+ r-n to -0 !-1- - -0

(s 0 6 1

where

s 0s
0 S W0

2. FIRST PERIOD

( In deriving the fundamental relationships for 'he first period,

Prof. N.F. Drozdov was the first-to propose the introduction of

a new independent variable, x- z - z0 (the relative thickness of
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the powder burned after the projectile Is set in motion).

At the instant the projectile is set in motion z - z and

x - 0; at the ending of burning zK - 1 and x - 1 - z0.

Thus the limits of variation of the new argument are known in

advance. Let us express all four fundamental elements,*, v, ,

and p, as a function of this argument.

1. Relation - fI(x). Substituting z - 0 + x in the formula

-Az-' KXz 2 , we obtain:

- Kz 0 + Xz' + X(l + 2Xzo)x + x ,

but

YZo + Z '1'P; 1 + 2Xz 0 -G

Introducing, according to Drozdov, the additional designation

0 " we obtain the desired relation:

2
+ '0 + klx + Xx . (10)

2. Relation v - f2 (x). The velocity v enters into the equation

of motion:

dvsp - m -.

In order to eliminate p and t, we add the law governing the

rate of burning:

deU - U p.
dt

F-TS-7327-RE 469



Multiplying these equatJons term by term and simplifying,

we obtain:

dv s de se, sl K

dv -- d - d z.!mel CfmiM 1 ?m

Integrating from 0 to v and from z0 to Z:

SI, SlKv- -( - zO ) - -x. (11)

0 Cffl -

Prior to the end of burning

v- -sK(l _ z ) - (1 _z) (12)
Cem 0 'qUs 0

Consequently, the velocity of the projectile at the end of

burning can be computed in advance, if the impulse of the powder
b

pressure 1K - el/u, and the cross-sectional loading of the

projectile are known.

Inasmuch as the quantities c? and 1 - z0 vary relatively little,

the velocity of the projectile at the end of burning of the powder

depends in the main on the ratio of the impulse IK to the cross-

sectional load q/s on the projectile, and during burning, the velocity

of the projectile varies in proportion to x.

Equation (12) permits to compute VK, but it does not tell us

( the point on the path the projectile at which the powder is burned,

-- whether the speed vK is properly chosen for the given gun, or

whether the powder is fully burned before the projectile leaves the

gun. For this reason, this equation alone is insufficient, and it is
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necessary to find also the equation for the path traversed by the
-

projectile at the end of burning.

Equation (12) is plotted in fig. 133; it shows the curve v, t

and gives the value of vK but it does not show the position of

the projectile at the end of burning.

7'-

dl

Fig. 133 - Path of the Projectile at the End of Powder Burning.

3. Relation I- f (x). In order to determine the path of the
3

projectile, two equations must be used: the fundamental equation

of pyrodynamics and the equation of motion of the projectile in

the form of elementary.work:

ps(I+, 1) - (?",- -c-mv2 -- ( I2
lp/

psdl -cf mvdv,

2

where Vnp - 2f/ j9,m.(*)

We eliminate p by dividing the second equation by the first:
/

(*) The Russian subscripts'np denote: path traversed inside a barrel.
Editor.
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_di vdv

V2tip
-4 p

Since v and * are functions of x according to equations (10)

and (11). the right-hand side of this differential equation may be

represented as a function of x.

Designating this function by dF(x) and substituting Tor v and

their expressions in x we obtain:

82121K- xdx

d F ( x ) - _ _ 

c 2 m 2

fm
2 2

'VO + k x + X kx 2  sI"

2 2If m22f.

2 2

s ~ ~ I Kd

r K X jx2
4e0 + klx 2fwt m 2

The same group 2 12/fusm of constants and characteristics

appears in the numerator and the denominator. As suggested by Prof.

N.F. Drozdov, it is represented by B and is called "the parameter

of the loading conditions" (Prof. N.F. Drozdov's parameter):
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22 22
sI s C

B 2 ,s 2e1
Sf~-'m u~futvm

The influence of this parameter will be established later.

Let us designate (also according to Drozdov):

80 -XX- B1.
2

Then

dt Bxdx (13)
t +I 0 

+ kx- BX 2

The expression obtained is the fundamental differential equation

for the path of the projectile as a function of x. It is solved

differently by various authors.

If we place outside the parenthesis -B1 in the denominator of

the right side. of the equation (as suggested by Drozdov) in order

to obtain a polynomial in descending powers of x, with the

coefficient of x2 equal to 1, we obtain:

di B xdx B xdx (13')
+ B1 k1 B1  1 (x)'

X2  
8 10

BI  BI
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where:

2.k Y

Prof. N.F. Drozdov was the first to solvethis equation exactly,

in 1903, by reducing it to the form of a linear equation of the

first order:

d( +- B xT

dx B (x) BI -(X)

or

dl_ +Pt -Q
dx x X

where P and Q are functions of x.

The full solution of this equation is presented later.

A simpler, but approximate solution is obtained if we assume

lIjY -Vav. " const.

It will be presented later with the designation of the parameters,

with some of the auxiliary functions derived according to Prof.

Drozdov.

During burning of the powder at the start of the projectile's

( motion, varies within the limits oft and I:

0 >
I-S7> 7- 474
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I5

where

ir, -o  : " a I

The rate of-'change of . increases with .

Assuming tha and integrating equation (13') we have:
tav.

1 x

J df B xdx
+1 1 (x)

0 Itv. 0

The integral of the right-hand side is obtained by decomposing

the integrand into the simplest fractions; it is a logarithmic

function of x which we shall temporarily designate by In Z . The
x

left-hand side is integrated also:

_N BIn 1i + . B InZ
ZlxB1" / B

Yav.

whence:

B
B1

S (ZB - 1). (14)
RV.

Thus the expression for the path I as a function of x is more

complex than the expressions for 4e and v.

Substituting into it x -1- Zo, we can find the path 1 K at
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the end of powder burning. Comparing it with the full path 1A

//traversed by the projectile within the bore, it is possible to,

determine whether the thickness of the powder and the velocity vK -#

of the projelctile are correctly chosen for the given gun.

In computing I we may use in the equation t

av. ' a y.

Z0  I(a- the expression a "

The investigations of Prof. G.V. Oppokov in his book "0

TOCHNOSTI NEKOTORYKH ANALITICHESKIKH SPOSOBOV RESIIENIYA OSNOVNOI

ZADACHI VNUTRENh7EI BALLISTIKI DLIA PERVOGO PERIODA" (Concerning

the Accuracy of Certain Analytical Methods of Solving the

Fundamental Problem of Internal Ballistics for the First Period),

1932- 2-  have shown the following. When the loading density is

A-. 0.5-0.7, formula (14) is very accurate for evaluating p3 and v

if I is not taken to have the same value for all the values x
*av.

from 0 to 1 - z., and if a different value of ITav. is taken for

every value of x, assuhing either of the following values for I ay.

in the formula: 'yav. "' (- eo)/2 (Oppokov) or *av. (po + )/2

(Serebryakov).

Inasmuch as-x-i-s directly proportional to v f-equation (11)7,

equation (14) gives in fact the direct relation between the path I

and the projectile velocity v.

The expression for Z. presented below shows that this relation

is expressed by a rather complex function.

4. Relation p - f (x). The pressure-p is found from the
4,

fundamental equation of pyrodynamics:-

F-TS-7327-RE 476

r/



2 
*

v2

S +P sl I

If the quantities,*, v, and I are replaced in the rigbt-hand side

'by their expressions in function of x, then

Be 2

4,x0 .+ kx _x f2
p - - - -- ,(15)

/ av.

where I can be represented as a function of x as well.

Inasmuch as y, v, and 1 are, already determined, it is no

longer necessary in computing p to use equation (15) which is

expressed in terms 'of x, and the numerical values of %, v, P
.11

and I can be substituted in the preceding equation.

By attributing to x different values within the limits of 0

to 1 - zO , equations (10), (11), (14), and (15) permit one to

f.ind the values of all the elements 4, v, I, and p of a shot entering

into the fundamental equation of pyrodynamics, and to plot a curve

showing the variation of p, v, q as a function of I , i.e., the curves

p, I and v,l.

Consequently, the proposed problem concerning the solution of

the fundamental equation of pyrodynamics has been resolved, and the

relation between the elements has been found.

Substituting the value of XK~ 1 - 'In the above equations, we
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find 'al-i the elements VK PK and I corresponding to the instant the
K

burning'of the powder ends (T - 1). These values will be the initial

values in the second period.

Note. The expression for the projectile velocity may be

replaced by the following: 

2 x S 2 i 2BI 2e 21fw'2 BO 2 2.
22 2fw.'m (fl -p 2

whence,

V - 1, -x
02x

This expression brings out the effect of the limiting velocity

of the projectile and that of the parameter,of loading conditions, B.

Since in post guns B varies within narrow limits, it follows that

the velocity mainly depends upon the potential f/e of the powder

and upon the relative weight t/q of' the charge.

0
Xxdx/J 1 (x)

Determination of the function Z e 0 In order to
x

evaluate the integral

xx d

o -dX -xdx _--

(l l(x) 2 - ki

0 B 1 BB1 i
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we decompose the integrand into the simplest fr:ctions, finding the

roots of equation W(X) - :0 and introducing the designation:
]B

b am 1 + 4 B/'P0

2 2 -. (i + v/1> i
k2c

28i

2Bi -2  + T7 2Bi - 4-2
1 1

kk--- (1 ± b); (16)

k 1 1x1 - 2- (1 + b),X 1-b .O2Bl 2B1

Sl(x) - (x - x 1 )(x - X2).

Let us write an equation to determine the numerators of the simplest

fractions:

x Al A2x  - x+ x -2

Equating on both sides the coefficients of identical powers of x, we

find:

Al(x - x 2 ) + A2 (x - x1 ) X;

A1 + A2 - 1; -AlX 2 - A2 xI - 0,

whence,

xI  x2A- =, A 2 -"
1 A x - .0

x 2 1 2 1
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but:

k1

X2 -X " BI ,

and; consequently:

b+ 1 b-1A- - A- -
1 2b 2  2b

xx x
xdx b + C dx b- I dx

- + - - m

W~(x 2b f XX i  2b x - x2
0 0 0

'kil bl b-I b-I
2b 2b 2b 2b

In i _(X (, - in (1h (- -) -In Z,

x x

where:-

b+l b+1

,bx 2 b. (17)

x, and x2 are expressed •by equations (16).

Substituting.here these values of x1 and x2 , we get:

b+1 b-I

2 -b x)-? (1 ? 2 l B, x b
b +Ik -71 k4,0
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S2
Inasmuch as the quantity b - 1 + 4B3V ik2 v + 4

is itself a funct-ion of the parameter /k2- B1 '0 , the function

Zx actually depends only upon two quantities: the co'nstant "-

- B1 0/k2 and the variable - B1X'k 1 .

From these data it is possible to set up a table. Since the

equation of the path contains the expression Z-B/ B l, the tables are

set up for log Zx 1 to make their use more convenient.

XX
The quantities entered (introduced) are Iand ~

X

It is not difficult to show by another method that xdx

2 k1  To
0 X - __

- lnZ x is a function of (- 2 and - B x/k1 , if the numerator

and denominator of the integrand are multiplied by B2/2 Then,

B1  BI
Xk1xd- k -- PdPIn Z. -W _

i1 '2 B1  )l0
x

This expression actually shows that In Zx is a function of

and P.

The table of the logarithms of the function (log Z-) is

presented below (Table 1).
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Procedure for Using the Table.

For every problem we will have one value for the entry pal'ameter

SBljo/k 2 and a series of values BlX,'kI, where x varies

between 0 and 1 - z O .

When determining log Z- 1, write down the values from the 'columns
x

containing the nearest smaller and larger tabular values of
so that the value of obtained from the solution would fall between

them. The coefficient of interpolation will be the same along all

the horizontal rows. For this reason, it is more convenient to

interpolate first along the horizontal rows between which are contained

the values of P selected in the problem, and then to interpolate along

the columns (vertically) using the corresponding interpolation

coefficients 1.

In order to reduce the number of vertical interpolations (except

* such cases when log Z-1 is used for computing the values 0 and

it is more convenient to assign tabular values of f for the
intermediate values of x and to perform only the horizontal interpolation

for ., and then determine x by means of equation x - k P/B1 ,

3. DETERMINATION OF THE MAXIMUM PRESSURE GENERATED
BY THE POWDER GASES

The maximum gas pressure pm in the barrel is the most important

ballistic characteristic of a gun. Its value depends on the chosen
conditions of loading, and the obtainment of the desired value of p.

serves as a criterion or control for the proper selection of the

weight of the charge, the thickness of the powder, and other loading

conditions.

For this reason, it is sometimes important to be able to compute

the.pressure p. for the given loading conditions, without constructing
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the entire p, pressure curve. In order to achieve this, it is

necessary to derive first a formula for determining the value of

x for which the gas pressure is maximum.m

In this case the derivative dp,'dl or dp/dt must be equated

to zero. The expression for the derivative was derived earlier

by differentiating the expression for p from the fundamental

equation of pyrodynamics.

- .1 .1-tL- ( _ l, (d- v - - +o-))

Equating the expression in braces to zero, and substituting

for v and G their expressions in terms of x:

sI
- x, G 1+ 2Xz G" + 2Xx,

we obtain the possibility of determining xm for which the pressure

is maximum:

~,(G0 + 2Xx )j
- - - (1+0)- 0
s I si x

K K m

or
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XG + 2Y'Xx (a - -

Bx m  f

Bx( (18)
B(I + 0 )

-20,

I+ a f

If the powder has a constant burning area A- 0, k1 - KG0  1

and

S +(1 +8)

It is seen from these equations that in order to determine x.

it is necessary to know pm, but inasmuch as we do not know it, we

must find the real value of xm by the method of successive.

approximations. First we assume a reference value p(O) substitute

it in equation (18) or (19), and compute the value of x; following

which we substitute the latter successively into' all the fundamental

equations

sIK x;+ klx + JrXx 2 ; (-'l (7x -1);
v - - 0v.
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V2 p

fP
s +

and find t he values of v; , 4, P'. If p' coincides with p(O),

it is indeed the true maximum pressure. However, if p ' (0)

then p; must again be substituted in (18) or (19) and a new xc

obtained; then the whole process is repeated and a new pm is obtained.

If x" is chosen correctly, p" should not differ from p' by moreIf X schsncretyPm PM"

than 10-20 kg/cm 2 (the accuracy of a slide rule).

It must be remembered that equations (18) and (19) are used

for calculating x. and can not be employed for calculating pm.

When carrying out the approximations, the following should be

kept in mind: the relation p, x is represented by a curve shown in

fig. 134, which varies slowly in the neighborhood of the maximum.

The true value of xm Is not known and we find by means of

equations (18) and (19) only a certain approximate value, which,

even upon substituting the value p0 . 300 kg/cm2 for pm in (19)

will give a V;,lue of x differing from the real value by not

more than 10%. The value of pm' will then be sufficiently close

to the true value of p., and at the next approximation x will

practically coincide with xm .

Whatever the quantity of p(O) assigned in the first approximation,

whether smaller or larger than the real value of p., the values of

pM and p" will be smaller in both cases than the real pm. In the

subsequent approximations the pressure values must increase, tending

toward the real pm, i.e., pm K P" p -Pr regardles of the- real, eadeb-o h

value of () Lecturer Belenky proved aualyti-cally that in successive
u M
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apProximations the quantity x, is monotonic increasing, tending
toward xm as the limit, while x" is monotonic decreasing and tendsr * xm

toward' the same limit x /

0ci

/
t#

IW

Fig. 134 - Determination of x3 and p3 (graph p, x).
This law must be used for controlling the accuracy of the

calculations.

Since the pressure varies slowly in the neighborhood of
the maximum, the p, obtained following the substitution of these
values of x' in the working equations will be very close to the
real pm, and the second approximation will be adequate to obtain

a value of p" sufficiently close to the real value.M
Having found x., we substitute it into (11) for v, (10) for p,

... (14) for I, and (15) for pm, and obtain tne elements of the
projectile's motion, i.e., vm, K m , and p at the instant of

greatest pressure.
Expression (18) gives the analytical expression for x atN

which the gas pressure becomes maximum. Can this equation always

be used to determine the maximum pressure?

In'most cases when the chosen loading conditions are normal,
this 'formula will give the right answer. But there are cases when-

I8
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it may yield a value xm devoid of physical meaning. This occurs when:

x m > xK;

x K 1 - z0 corresponds to the instant when the burning" of the powderK0

terminates, the instant when the ini'low of gases ends. For this

reason this formula will give realistic results while xm is smaller

than or at most is equal to xK(xm x )
KK

When x < XK., we have a normal case: the maximum pressure is

reached before the end of burning. When xm - XK, the maximum

pressure is reached at the end of burning. Finally, when xm > XK,

we have the case of the so-called "unreal" maximum, i.e., a purely

analytical case. In reality, when xm > x. , the powder, burning

according to a definite law, stops burning on the upward branch

of the pressure curve, the flow of gases stops, following which

the pressure begins to drop, in spite of the fact that the analytic

maximum had not yet been reached. In fact, the maximum pressure

in this case will be the pressure pK at the end of burning.
0

- 0 }

Fig. 135-Pressure Curve with Fig. 136 - The Maximum Pressure
Normal Maximum. Coincides with the End of Burn-

ing.

A large value of x. may be obtained when the parameter of the loading
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conditions, B - s2e 2u~fm is small; this 'hanppens when the powder

is thin,

GRAPHIC NOT REPRODUCI3LE

'Fig. 137 - Unreal Maximum, xX > XK .

Such cases occur in practice when the firing is performed with

thin powders fbr special purposes.

The appearance of the pressure curve in these three cases is

shown in figs. 135, 136, 137.

At the end of the first period, we have:

- F SK -I1; -X 1kI 0(1 - u)
*K 0

B

XK 1 - z 0 ; iK lav. K(ZxK - 1);

( BO 2

- 2 K

K f m " Ks(Q 1  + 1K)

The same values will pharacterize the start of the second period -

the period of adiabatic expansion of the gases.

F-TS-7327-RE 489



fii

4. SECOND PERIOD

The second period, starting at the end of burning of the charge

and ending when the base of the projectile passes the muzzle face

of the gun, constitutes a process of adiabatic expansion of the

gases.

This period is considerably simpler than the first, because the

whole process is reduced to the expansion of gases without the

addition of energy and without heat losses.

In the second period - 1, the number of variables is reduced,

the independent variable is usually taken to be the path I of the

projectile, and equations expressing the pressure p and the velocity

v as a function of I are derived.

The beginning of the second period is characterized by the

following data obtained at the end of the first period:

- 1; v - V; I- I ; p - P; - 1; T - TK

The fundamental equation of the second period is:

ps(U1 + 1)- f.) -2 mv 2 - fW =1 - , (20)

(I vnp,

where

2fw 2
TOm fp
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Since the gas temperature is lower in the second period than

in the first, E should be made larger in the second period-, but

most authors take an average value of 0 common to both periods.

A. Derivation of the Expression for Pressure in the
- Second Period

j fp fp -j
The equation for pressure is derived from the adiabatic

equation:

1+0 1+9
PW p , (21)

where PK and p are the gas pressures at the beginning of the second

period and at a given moment, respectively;

--WK and W are the free volumes of the initial air space at the

same instants.

From equation (21), we have:

• \1+8.

K
P " PK

Expanding the quantities WK and W, we obtain:

W N V0  aw + slK - si + td;

W ) 0 - aw+ st -S(l +

Substituting these values in the equation of p, we find:

1+9

(11 + '
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At the muzzle face, we will have:

1+0( + !K

iti

B. Derivation of the Expression for Velocity in

the Second Perio d, v - f 2 (1)

Let us write the fundamental equation of pyrodynamics for ayi

moment and for the beginning of the second period:

ps(t1 + 1) f" (I V )

Vfp -

Dividing one equation by the other, term by term, and replacing

* the ratio P/P from (22), we obtain:

2

I P

K Ip

VopP

whence

(23
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If we replace v by its expression v SICK ZIfw ~pac K K M

V,2 S21 2 (1 z0 ) 2 t e m .°Be 2K~ K B-= - z0)2 2 2

22. 2fti 2

and then

1 +  K B
V( - z)2 (24)

np \/1

When I - f , we obtain an expression for the muzzle velocity v.:

2g f Be _ .SvA - l 1J~l~ 2 o)
VA6 q 1 +  2

J (25)

This equation is of great importance for investigating the most

desirable solutions when designing guns.

Equations (22) and (23) or (24) give the expressions for the

ga's pressure in the bore of the gun and for the projectile velocity

in the second period as a function of the projectile path 1.

Thus, on the basis of the assumptions made, the equations derived

above express the relation between the conditions of loading and

the ballistic elements of a gun discharge in both the first and

the second periods. They enable one, for given loading conditions,
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to compute the projectile velocity and the gas pressure at different

points of the projectile's motion In the bore of the gun, and to

Y determine the maximum pressure, the muzzle pressure, and the initial

(muzzle) velocity of the projectile.

Curves of p and v as a function of t will usually have

the form shown in fig.- 138.

GRAPHIC NOT REPRODUCIBLE

....... 2

Fig. 138 - Normal p, t and -v, 1 Curves.

1) Period I; 2) period II.

C. Equations for Calculating the Temperature of Powder

Gases.

Having solved the fundamental equation of pyrodynamics and

established the relation between the basic elements (p, v, (, and %V)

and the new independent variable x, and, consequently, also the

relationship between these elements, an equation can be written for

determining the temperature of the powder gases at any given instant,

and, in particular, at the instant the projectile leaves the bore

of the gun barrel.

The temperature of the gases flowing in the path of the projectile

determines whether the discharge will be accompanied by a flash,

or.-wll be flashless, because according to the present concepts the

flash accompanying a shot is a process involving the burning of
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inflammable hydrogen and carbon oxide gases making up about 50

of the entire gas mixture.

It the temperature of these gases is very high, the gases

will burst into flames when mixed with the oxygen in air, and

produce a flash accompanying the shot.

In order to obtain the desired equation, let us make use of

. the energy balance equation in which Ec is replaced by R/O:
w4

RTI'"Y RTw 2

2

Since RT 1 - f,

1 - T, "
T ~mv2

or

T (?me v2  1 v2
- 1 _ 1v(26)

2fw V2
np

Knowing v and ' from the first period, let us find T/T1 and

" then T.

Inasmuch as

-t o + klx + X Xx2
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then, bearing in mind that:

2 2s I K

B on - -- x,

ftm

we get

T B 2  B X2

T2 2 (VO + klx + Ax2)

This equation shows that the variation in the temperature of the

gases depends upon the conditions of loading (parameter B) and upon

the shape of the grain (coefficients X and X).

At the end of burning ( 1V 1) we will have:

T K  BO 2

- 1 ---- (1- z0 ) - 1 r (27)
T1  2

In the second period 1 and we obtain from equation (26):

T 1 TmO 2v 2

... - I (28)T 1  2fw v 2

np

where

2 2fw
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At the instant the projectile leaves the barrel

2
TA V--.- -7 - I -r .

This value TA/TI varies in artillery pieces between 0.65 and 0.75.

Comparing the value v from equation (28) with the values TiT

and TK/Tl from equations (27) and (28), we obtain other expressions

for T/T :

T _. 0 Z ) 2] TK  + IK
T1 + 0 T-1

TA 1 Be .o21( + 0 T/ 1+
TA - 1 I -Ze -- )+

T 2l 0 T

AA

This equation proves that the temperature of the gases at the

instan't the base of the projectile passes the muzzle face depends

on:

1) the temperature T of the burning powder;

2) the temperature of the gases at the end of burning:

- - -( 2
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this tempt-rature decreases as B increases;

3) the ratio of free volumes (I1 + I )W(l + which

depends upon the path traversed by the projectile at the end of

burning and decreases as IK increases.

D. Equations for Calculating the Time of Motion of the

Projectile.

The time t does not appear directly in the solution of the

fundamental problem of pyrodynamics; one may compute and draw

the curves of the gas pressure p and the prbjectile velocity v

as a function of the projectile path l, and by this means solve

the fundamental problem of internal ballistics, yielding the

design data of the gun (volume of powder chamber, length of

projectile path).

But in order to fully clarify the phenomena taking place during

a shot, it is also necessary to know the variation of the basic

elements (p, v, I) as a function of the time t, particularly,

because some of the existing devices permit determining the path 1

the velocity v, and the gas pressure p as a function of the time t

(velocimeter, piezoelectric manometer). Moreover, it is the

pressures curves as a function of time which must be known when

solving problems relating to the theory of gun mounts fuzes and

firing devices.

The time of motion of the projectile in the barrel can be

obtained most simply if the curve of the velocity v as a function

of the path ( is available, and by using the following equation of

mechanics:

~Vm dt
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whence :

dt d'

Ihaving th cuv , we plot tecurve then by

tifg the rveth v
taking the integral:

0

We could determine the time of motion of the projectile along the

given path I. But inasmuch as at the lower limit, when - ,

v - 0, and the integrand I/v becomes infinite (1/v - 1/0 -oo),

it is impossible to perform the integration. Therefore, the

time t is divided into two parts, t' and t':

t - t' + t", (29)

where the first time interval t' - from the start of motion up to

a point representing a small length of the path I'. - is calculated

.approximately, and the second interval t", from I' to l along the

path - is calculated by means of quadratic formulas:

f V

The first time interval t' is found from the equation:

to
VI
ave
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where in the first approximation:

Ovv'
0 + VI

VV

av. 2 2

and v' is the velocity of the projectile at time t' and the path,

distance 1'; consequently:

21'

V
9

the smaller the distance ', the greater will be the accuracy of

determining t.

Substituting t' and t" into (105), we obtain the equation giving

the time of motion of the projectile in the bore in the form:

t + 2-dt. (30)
-- V ! fo0

Inasmuch as the first interval of time for traversing the path f',

as determined by (30), is very approximate, Prof. E.L. Bravin

proposed a more exact expression for computing the average velocity

of the projectile along the segment ot'. He assumed the acceleration,

rather than the velocity, to be linear along this segment (fig.

139):

dv s sadt s p  
+ kt),

where k - (p' - p0 )/t' is the angular coefficient of the straight line

F-TS-7327-RE 500



p p,' a is a factor, smaller than unity, determined from the
9

condition that the areas bounded by the curve p, t and the straight

line p1P2 replacing it along the segMent-Ot' are equal. When

determining v' in terms of -v', the coefficient a is reduced.
av.

dv - PO+ "' t dt.
P/ °

ee

Fig. 139 - Curve p, t Along the Initial Path Segment

(According to Bravin).

After integration, we obtain:

'- -a p ot  + 1 - .
M P tr 2

Assumiig that t t', we find v', the velocity of the projectile

at the time t':

V m ..- a(P2t' + 2) 2-'

The average value of the projectill velocity along this

-segment is found from the following equation:
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t t

av ti ' Vdt to f POt  2t Ot2 dt-

0 0

/ ' 2  p, pa1 Po t  - PO 2Po + p ,
sa I' sa" V'

CfM t' 2 6 (fM 6

or, replacing sf_ t' from the preceding equation by v', we obtain:

t9D

-2p 0 +' P T

VaIV Po + p 3

The final expression for t' will be in the form:

L' 31' Po + p'
t'Ia - M -.- - (31)

A V ' 2p0 + p,

This is the equation proposed by Prof. E.L. Bravin-3 _7.

Comparing it with the previous expression for t', we note that

the time t obtained by the first expression is shorter, and the

difference between them increases as the length of the segment ('

and the pressure p' increase. At the limit, when p' is reduced to

Po, the two expressions for t' become equal:

3 2 Po 21'

v1 3po v1

If the relation p, t along the first segment is expressed by a

second-degree equation, the resulting equation will be more exact:
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4* "P 0 + p

t
o 4' 2 0 + p'
2 V1 5P 0 +pt

Prof. Bravin also introduced equations for computing the time

in segments measuring 0 to tm, ta to t., and t -to t

3t PO + Pm31
tMn '-- - 0 (a)t m -s'A2 + Pm

t -t - 3(1 K - 1 m)(pm + PK)  (b)
k v MV(Pm + 2pK) . K(2pM + p)

3(I - K)(PK +. PA)
t - tk ( c)
A VK(pK 2 PA ) + VA (2PK PA) (

(k

01

In Order to compute t in the first period, the graph x

can be used also.

Indeed, x - z - z0

eulp 

dt dt e1  dt eK'

whence

dt I
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x4

dx

t- I (32)

j 0

The function under the integral sign does not become infinite when

-"PO >  0.
0.

When calculating the total time of the shot,it is necessary to

consider not only the time of motion of the projectile, but also -

the burning time of the powder in the preliminary period before the

start of this motion, which is computed by the following formula:

p
t -2.303 0 log 0-30 o p B

1 f4
wh1 e re I /Ul, and pB is the pressure of the_ 'I he e - " 1 - / 'K BK" e

igniter gases.

The time lapse between the instant the firing pin strikes the

percussion cap and the end of burning of the-igniter is usually

not taken into aiccount.

5. SAMPLE CALCULATION OF THE GAS PRESSURE CURVE
AND OF THE PROJECTILE VELOCITY BY THE 1 METHOD

Tav..

The following data are given:

Barrel: 76 mm gun, 1936 model

3Chamber capacity, W0 in dm ........ ......

Cross-sectional area of the bore, including the
• rifling grooves, s, in dm2 ..................... 0,4692

Path traversed by the projectile in the bore, 1A,
in dm ................................................ 33.91

Projectile,:

Weight of projectile, q, in kg........................6.2
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I

Forcing pressure$ pO, in kg/cm 2... ................ 300

Charge:

Weight of-charge, w. in kg .......................... 1.08

Powder constants:

Powder energy (force) f, in kg-dm/kg ............ 950,000

Co-volume, a, in di3/kg ........................... 0.98

Density of the powder, S, in kg/dm3 ................ 1.6

Burning rate, Ul, of the powder when p - 1, iai
dm/sec :kg/dm 2 ...................................... 0. 0000074

Dimensions of strip (thickness 2e., in mm) ......... 1.357

9 - 1.06'

MX.- -0.06

Polytropic index k ......................... ........ 1.2

6 - k - 1 ............. ....... .. 0.2

FUNDAMENTAL EQUATIONS

A. Preliminary Period

1
& T 2 %v0 q o

+0 0 1 + 4 q O ,  z 0 -+ a- 0

PO 8.. .

B.. First Period

V "--x; "'"'-oo + klx + HXx2; -
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B

(Z x  
I); p2

212
SI

kB - 60; - ;

Ba- --XX?; I, d/ -

2

"ay -ala .;a!9 .. . -

I~a-a

Z is determined from the double-entry table:

BI4' 0  B1

r"xx
B10and B -

x a
xm B(l + e)

Pm '
1+-

C. Second Period
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+1
p I K

or4

e B

v- v I (1 x_+_'\ r 1 - -B-( - 0)21;

2g_

y m 2 _

The calculation of the constants is effected f'irst from the

given data:

- 0 . 7128 ;

1 1. 1 1

t * T 0.7128 1.6
-. O.,- 0.02429;

o f 95000

--- +a--- ---- +0.98 -0.625

or~o
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4(-U.0566)0.02429
G 0 +4 %/o - 0.9972;

1.06

- 0.02294;(co +1!)
0

XK - I - z - 1 - 0.02294 - 0.97706;
0|

k AG - 1.06-0.9972 - 1.057;

el 0.00678

u 1  0.0000074

I ,I 1.08 108
1.03 + " 1.03 + 1. 08 1.088;

3 q 3 6.2

SIX 0.4692916.298.1 6
a- - 6253;

1.088"6.2

w 0 .515 3.228;
10 . .. .3 2s0.4692

s212 0.46922_916.22.98.1

B .-- . 2.617;
fw m 9500001.081.0886.2

Be 2.6170.2
B- - -2- + 0.06.- 0.3217; B . 134;
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IO'I
1o

a - -- 3.228"07128"0.355 - 0.8168;

0 \~ iJ~ I\0.7128 .6 Y

B 0 ,'321-7• O . 02429,

r 0----.0.242 0.006995;
AT 1,05t21

1.057
- __ - -_' - 0.3,512;

S(O +0) 2.6171.2
2, + 0.12

6 + PIL 232000
l1 + - =- 0.355

50060

i.057
-- - "_______________ - 0.3517.

a 2nd approx. 2i617-1.2 +
+ 0.12

1 + - •0.355
95000

( 5
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C6WUAIN FO ..- COb PR6

tielaSL of, -tecfitns-fth, eod ei

2950000'l'3080,l - 0.250.

p L.088-,0.2-6,2 v 2

"m Cl- - -. 250 -'0.750.

YAP

Ftrom 'thep first period, I - 18.384.

-892 ,kg/cu2 .

Table of the Elements of the-Second Period_____

,Iiitial 'Formu~las No. Operations Muzzle
____ ,Face~

1-M-P 22.60 27.44- 33.91

(18.'34+ 12 2, 0.973 0.973 0.973,'

.892(073+ _ __

,3 1+ 11 23.573 28.413- 34.883

11 + K - ~ 0.7799 0.6471 0,.5270

d -0 1080 -0.1890 -0.2782I2 -0.1296 -0.2268 --0.3338
og V2 T.~p 1.7732 T.6662
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Table (Cont'd.) '

Initial Formuias No. Operations

12,220 /10.7501 0 ,2 7 ' 2  0.7420 0.5932 ___

8 p 662 529 414L , 00.0216 !0.0378 -0.05569 0. tog" T.9784 T..2 [9444

10 102 0.9515 0.9166 0,.8798-

11 0'.750 0 '2 0.7136 0.6874 0.6598,

12 1-0.7501 0 2  0-2864- 0.3126 0.3402

13 v in dn/sec 6530 6822 rill7

The results of these calculations are shown in fig,. 140 on p. 510

in the form of p([) and v() curves.
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CHAPTER 2' PROF N.F. DROZDOV'S EXACT 1ETfOL1

(Written by Prof. G.V. Oppokov)

The assumption

made in the preceding chapter gives an approximate solutiQn,6 Yet

the differential equation of the projectile, path in the first period,

Dx(i[ + 1.)
BN

-l _ _ _ _ _(33)

di(

BO2

can be integrated exactly.

Prof. N.F. Drozdov's. great contribution to the field of internal

ballistics lies in the very fact that he was the first to solve this

j equation exactly, without any additional assumptions or simplifications,

an had been done before him by all the other authors without

exception.

Namely, if we introduce for convenience the following designation:

X Bx (34)

- 2

'e2

equation (33) takes on the form:

d -MI Ml(35)
dx
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When this differential equation of thet first order' is integrated,

the -following relationship obtains:

Mdx Aft-'Mdx. - d" !

0 0
l-e e Mdx. (36)

(36), is (see pp. 478-461) equal, as .before, to:

Odx - " 1 -- n (37)
0 0

The main integral Is:x x
Mdx Mdx

X dx - (I
Y -e Mdx -d(-e )

0 0

Noting this peculiarity, the author integrates by parts:

x A

lfdx x Mdxf -f
Y--[e0 0J t e e di,

0 0
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or, (/see' equa.tioh (37)_7:

tyo

2

di . -akldx - 2ax akxdx,

whence

B B

y- -z +'I - akf Z dx -2aX Z xdx. (38)

0.

It is now possible to proceed in two ways: eliminate. from the

equation either the .first or the second integral in the right-

hand Side. The author selected the second course.

Namely, it follows from (34) and (37) that:

B Dxdx B
f -+ + k-x 8 xin Z

0B 1
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or,

x( xdx lZ

. 1~ B1

xdx

2 to

and, consequently
U/2 kdx dZ

-BI

0 1'

ml. 4 (x4" - B-1 - Z .

19
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Integrating by parts:

B X
28 1 k

Z'-i x --i + dxL-

00

0

Ito will f Ind the desired Integral from e~to 3)

x

Z xdx- (B x -k 1Ax- 0)52021

B.

*0 + ) Z adx.

+ 2B 3 +28'

V ow the obtained value of the integral must be substituted into

* (38),R noting that:

x2 LX - x
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and using Prof. N.F. Drozdov' s designations:

;a a 1  a- 9)

B1 't TO c3

Then finally-we have:

B B , B

[+ol c W J dx). (37)

0

Let us introduce the value of the. integral from (37) and the

value of the integral found immediately above:

x JMdx
j- 0 Mdx

0

into (36):

1z Z' +

B
I f -5

+ [ 0 (b 1 -c 1  Z dx).

0

Upon expanding the expression in brackets and repl'cing
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after -*he, transfeOr of Ito, the, left-hand side, we obtain:

0 7

01

we obtain Drozdov's well-known equation:

!0 2

+ 1 )b Z dx)Z -(40)

0

In this equation we have:
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X,4
BI

Z B x Z d.

0 0

The table for the last integral'vith 'three entries, . , and.

w/B, *as 'prepared by Prof. D.A. Venttsel-and' is reproduced in the "-

appendix. "

Table 2 - Computational Formulas Used in Drozdov's Exact,
Method"

it + 2!! " -ma; a -V ma
3 q K K0 K 3

f a;&i

( -- A f" ; fx x;'

2S ""

B + 1 2 B 2

Bl' k'

a - 2*i-X b+ aa10Y

elk1  akl(l -a I ) A

al IoC ;" !"1
Di 10c
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=< S '•

a +

i , B T I I

m1,

The equition given by Drodov for the maximum pressure is:

• " B + 2B8

where

c C K 2 an

- and x*-
8x + 2 B + 2B

(b I dx)Z 1
1

0

b Is a function of B and h for which a special table has been compiled

and is presented below. This equation enables one to avoid

approxiaations.
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I

The equations of the preceding table should be applied to the

first period; the equations for the preliminary, and second periods

/ remain unchanged (Table 3).

6. EXAMPLE OF CALCULATING THE GAS PRESSURE CURVE
AND, THE, PROJECTILE VELOCITY

BY PROF. N.F. DROZDOV"S METHOD

Th following data are given:

, Barrel: 76 mm gun, model 1936

Chamber capaci-ty, W in d . . 1.515

Cross-sectiOnal area of the bore, including rifling,
, in dm2.. 0....... . o ............. .0.4692

Path traversed by projectile inside the bore, IA.
in d ......... ............... .... .... .. ..... ............ 33.91
Projectile

Weight of projectile, q, inkg.... . ................. 6.2

2
Forcing pressure,. po, in kg/cm2 ..................... 300

Charge

Weight of charge, W, in kg ........... ... 1.08

Powder constants

Powder energy (force), f, in kg~dm/kg ................ 950000

Covolume, a, in dm3 /kg... ........................... 0.98

Powder density, 8, in kg/dm 3 ..................... 1.6

Burning rate of powder, ul, when p - 1, in

dm/sec: kg/dm ......................... ... .... 0.0000074

Dimensions of strip (thickness 2e 1m) .............. 1.357

X - 1.06

- - o.o6

Polytropic index k ......... .. ................ ........ 1.2

0- k - 1..... ..................... ............ 0.2
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BASIC COMPUTATIONAL FORMULASj . A., Prellminairy Period

2i'o ,I

BV irst Period

.K *o ... k x X X +

B B

cB k f BI
~,~a1 ~.k2)l Z 1  dx)Z

0

B* 2
2

p (*)

where

s212 Be

B -B - - ;tw~a 1 2

2xX
k G; a

0; 2 + 2B
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bl0 T 0 1 0(1 + a ,),; c - a- ( - y) ; .

1 0"
I+B

B + o2B+a 1)1 C

1.B8 x2

1 _1
0 810*

Z nd z dP are determine, from tables with the two etis

00

-- 7 5

k

B+2B h

where

h Cl 2__ _ _ _ _ _

B + 2B xB

0
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C. Second Periiod

)

AV 2

np A +Vnp

'where

or

2 0
A + A - .

Ai -t - C6

The computation of the constants is effected first from

the known data:

A- -1.08 - 0.7128;
No  1.515
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'0.7128 1.6
' ,+ . 950000 0.02429;

---- -* + 0. 98'-0. 625
po950000

60 - (-0.0566,,,0+42 , 0.9972
1.06

2*0. 2 0'. 02429
z - 0.02294;

0 + 1) 1.06"1.9972

x 1 - z - 1-0.02294 - 0.97706;

k- - 1.06"0.9972 - 1.057;

e 1 0.0 0678
1K " =1 - 916.2;

U1  0.0000074

1 " 1 1.08
= 1.03 +- - - 1.03 + - -- 1.088;

3 q 3 V.2

slK 0.4692.916.2"98.1
--- - ____- 6253;

1.088"6.2

W0  1.515
- 3.228 dam-

0 T 0.4692
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'A A-0.7128

'A 33.91
, 3.228 10.51;

I "-2'0.46922"916.2 .98.1
- K_ _ _ _ _ _ _ _ 2.,617t;

S 950000.1,.081.0886.2

/90 2.617-0.2
/ 3 --- - + 0.06,- 0.3217;

B 3 + 2B -2.617 + 2-0.3217 - 3.2604;
11

2-st 2.(-0.06)'
al,- ._ - -0.0368,

3 + 2B1  2.617 + 2.0.3217.

bl " "-0- "r(1 + a)' -,0.5545- 0.7128"0.02429"0.355-0.9632 " 0.5486;

k
1 - (+ a1 ) - 1.057"0.355-0.7128.0.9632 - 0.2576;
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k '0 02576 1. 057

0.3217 - - w 0'.8464;

r Bi~'o 0.3217*0.02429 0009;
k2  1.0512

-2*617

- - 8.134;J
'0.3217

fA -950,000-0,.7128 -6,77,'200.

Computing X,.

B+2B1

where
-BO 2

B- B+2B x B B
1(b -c 1  zB dx)Z

0 -
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COMPUTING THE SECOND PERIOD

Computation of the constants of the second period:

2gfw 98.;.-950 1.08-- _-:. . .... - - 12,220 dm/sec;

;.088.0.2.6.2

S- -(1 - io)2] 0.7502;

From the first period Al +AK - 6.1028, PK " 832.6 kg/cm2 .

F
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The results of the calculations are presented graphically in

fig. 140.

ADDITIONAL NOTES FOR Til SOLUTION OF THE PROBLEM
OF INTERNAL BALLISTICS BY PROF. DROZDOV'S METHOD

in the -equat-on for the path derived by Prof. Drozdov:

B B

A - + (b 1 - c Z' dx)Z

0

/ B/Bj i B/ B

the function- Z and the quantity f Z dx - - Z d13 are, lound

SO" 0
in the tables from the entries:

_1L and 0 !_x.
ki ki

For the sake of convenience all the calculations of log Zf z /Bzd

and B are performed on another form for all values of x,

0
i,e., for all combinations of 0 and

- 0.006995; P - 0.060; Pm " 0.1070; P - 0.160; 0 - 0.220;

- 0.2973.P B/B1
The values of log Z 1 and of Z dP are written for every

0
combination of r and P, as shown in the form. Then the interpolation

factors C and C are determined from the following equations:
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S r - for horizontal interpolation;,

Tfn+1 -Itn

- --...... for vertical interpolation.

! ampe-. -Find log Z 1, if it is known that -. 0 0 0 6 9 9 5 ; - 0.2973.

These values of and P are not found. in the table, of the logarithms

of funCtion Z- , and we take the nearest values, i.e."

- 0.006 and - 0.008;

S0.28 and - 0.300,

and we find the values of log Z for these combinations. We then

calculate Cand<

- 0.4975

0.006 0.006995 0.008

0.28 0.1309 0.1295 0.1280 0. 006995-0.006

- 0.2973 0.1397 0.0080.006

- 0.4975
0.300 0.1428 0.1413 0.1398 0.2973-0.28

0 293 2 0.865
4 0.300-0.28
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We find:-

fo -1

logZ - 0.1,09 - 0.4975(0.1309 - 0-.1280) - 0.1295;
//

log Z.2) 0.1428 - 0.49175(0.1428 0.1398) 0.1413.

Fiuaily we obtain:,

log Z-1  0.1295 + 0.865 (0.1413 0.1295) - 0.1397.
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DETERMINATION OF Z dO FROM TIF TABLES

0(-APPENWIX 3) x
rof. .. Drozdov recommends to calculate the quantity Z 1B

Prof ox

'by the trapezoid, rule.. In order to simplify -the calculations, ZB dx
"0

may be found from the tables eY the function:

?B

Z d ,

0

.where

B1

wbence

Consequently

Z dx- Z dP

0 0

B/B1

The tables of the function Z dp are computed for B/B 1

0
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" 5, 67, 8, 9 and 1b.

In our problem the ratio B/B1 - 8.134, i.e., it is intermediate

between B/B1 --. and B/B 9.0. This requires an additional

interpolation. Therefore the determination of Adp when B/B1 -

0,
II

" B/B1
- 8.134 is reduced to the calculation of z dP from the tables,

0

first when B/B1 - 8.0P then when B/BI - 9.0. Interpolating these

values of the integrals along B/81, we finally obtain 3 zB/Bldg for

0

B/B1 - 8.134 and the given values of .

It should be remembered when, performing these calculations

that the interpolation of the intermediate integrals must ,be

performed by the same procedure As that of the function log Z-1 .
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CHAPTER 3 - SOLUTION OF THE PROBLEVS OF INTERIOR BALLISTICS

FOR THESIMPLEST CASES

1. SOLUTION' OF THE PROBLEM FOR THE CASE OF INSTANTANEOUS

BURNING OF THE POWDER

The colloidal powders now used burn gradually, in parallelI f layers, and when the web thickness is properly selected, permit

the regulation of the flow of gases during burning, so that the

maximum pressure in the bore p5 would not exceed a given value

(usually of the order of 2500-3500 kg/cm2).

The case of the instantaneous burning of the charge is

anamalous and generally does not occur in practice. It can be

achieved in Practice only under special conditions, such as, for

examplli, when burning a charge of dry pyroxylin in powder form,

or of fine porous powder loaded very densely.

In that case, if the loading density were normal (A- 0.50-0.75),

the pressure prior to the projectile's displacement would reach a

maximum value of the order of several tens of thousands of atmospheres

(20,000 to 40,000 kg/cm 2 ). The present ultiraate strength of gun
barrels is such that the walls of the barrel would burst when subjected

to such pressures.

Nevertheless, the case of the instantaneous burning of a charge

is very interesting; its examination has an important meaning when

*compared with gradual burning of powder because in so doing the

importance of slow burning and of the shape and dimensions of the

powder grains become evident. Moreover, the pressure curve pJ

( in the case of instantaneous burning becomes a sort of a "guide"

for the curves depicting slow burning. These p, f curves arrange

themselves with a certain regularity with respect to the instantaneous
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burning cuives.

The analytical solution of the problehi is very simple in the

case of instantp.icous burning, -because one of the four variables

entering into the fundamental equation of pyrodynamics is transformed

/ into a constant ('" 1).

Let the gun and the loading conditions be characterized, as

foliows:

The chamber capacity is WO, the cross sectional area of the

bore, includIng the rifling is s, the path of the projectile is 1.A'

the weight of the charge is ., and the weight of the projectile is q.

The energy of the powder is f, and a is the covolume; the adiabatic

index is k - 1 +8, and the secondary work done is taken into.

account by the coefficient T- a + b ,.
q

When '- 1, the fundamental equation of pyrodynamics is:

ps'( + f) -"1w- 2 (41)
1 2-

the equation of the projectile motion is:

psdi - cmvdv, (42)

where (W - i)/n is the reduced length of the chamber at the

end of burning.

When the powder in the chamber is burned instantaneously the

maximum pressure is determined by means of the well known formula:
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p (43)

0

The projectile will be set in motion when the following initial

onditlons obtain:

1-0; v -0; 'p- Pl"

Eliminating pressure p from equations (41) and (42), we obtain

Vas a function of I':

d,
d - 9cvdv 1 2

0 2 8 2i,.- ,vfWz.- euY

* We hall integrate this differential equation with the variables.

meparab" ' 1 !i

'1 +1*v

" ( /44)

whence

" 2 = v 1 "--

2 "
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where v 2gfw/ Oq is -the limiting, veloci.ty 6f the projec-tile:

Vnp .np
I l +

This formula expresses the velocity v of the projectile as a

function of its path 1 ; the veloci-ty increases when I increases.

In order to determine the dependence of p on ' from (44) we

determine:

0 2 __

L .1~

and include it into (41):

PS(t I +1) -f

Whence

1+9+

P pl (46)

I ButLi 1 __ 1 _ W0 - a'

+ I + W - a+ +sl
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'is the ratio 'be-tween the ffee volumes in, the initiad -air space

meaksured -at the start of' notion and- at the give iistant. Consequently ,

formula (46) is the equation of the adiabitic curve starting with

the notion of the projectile under the pressurep p- fA/(l - aA).

The change, in temperature of the gases doing the work is

( exoressed by the following relationship for the adiabatic process-,.

T nt)

Consequently,

Vn1 1  1- T (4)

If we divide the numerator and denominator In parentheses in.

formulas (45) and (47) by land designate byyw wl gt

v- v~ 1(48)

p p 1 1 )e

P + pll (49)

The quantity y, is the ratio of the relative projectile path

to the reduced leng~h of the free volume in the chamber at the end

- of burning, and is ciklled the "number of. free volumes of gas

expansion." '
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Equations'(48) and (49) show that under the given loading

conditions (q, I. t, a, W O s) the pressure p and the velocity v

depend only upon the number y of free volumes of expansion. The

greater y, the higher is. the projectile velocity and the smaller

the pressure; the greater thei reduced length 11 of the free space

in the chamber, the greater will be the gas pressure for a given

projectile path. Consequently, the drop in pressure as a function

of the projectile path will be slower in a large chamber than in

a small one.

It can be proved that the velocity of the projectile computed

by means of formula (48) for the case of instantaneous burning

will be always greater than the true velocity for the case of slow

burning, under the same charging conditions.

Indeed, the maximum work done by-a .powder charge w of energy

f in setting a projectile of mass m in motion, is determined by

the expression fw/@. This maximum work will be the same for both

modes of burning (instantaneous and gradual) and is expressed by

the areas under the curves sp as a function of'(, when I varies

between 0 and in'finity. Consequently, in both cases the areas will

be equal to:

f Jpdl 
f

0

In the case of instantaneous burning the curve p, j starts

from the maximum pressure p,, then varies according to the

adiabatic law, decreasing continuously (fig. 141, curve I). When

b burning is gradual, the curve II of the pressure p. rises
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gradually from p0 , losing a portion of area A; and inasmuch as

the total area under the curve p, I in the second case, limited

by t- w, must be the Saue as the first, curve I must necessaril-y

cross curve I during burning of the powder when the pressure drops,

and then continuesto rise.- The excess area B between the curves,

when, = - is the limit, -must be equal to A. But inasmuch as the

actual bore has a finite projectile patthl'A the portion .of the area

B on this finite length Is always smaller than A, and consequently,

for a given path length, the work done by the gases and the velocity

of the projectile wilIl be always smaller in the case of gradual

burning than in the case of instantaneous burning.

, p

Fig. 141 -Curves p,1 and v, Depicting the

Instantaneous Burning of Powder.

The actual initial (muzzle) velocity of a projectile of a

'medium-caliber gun, meaiur.d experimentally, represents 80-90%

of the velocity computed by formula (45).

Inasmuch as the work represented by the area under the curve

p, 1 in larger in'the case of instantaneous burning than in gradual

burning, especially at the gftart of the motion, the corresponding

velocity curve rises more steeply at first. Thereafter, because of
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the addition. of the area ,' the velocity increase becomes greater

in the case of gradual burning,, and curre II gradually, begins to
/

approach curve I (see fig. 141), teni'ng at / - oo to the common

limit yfp

2. 'SOLUTION OF THE PROBLEM FOR A POWDER WITH A CONSTANT
BURNING AREA, WHEN ThE FORCING PtKESSURE IS ABSENT.

The solution of the problem of internal ball~stics for

degressive powders in the presence of forcing prlssure results*

in equations which do not give a'n immediate relation between v,

p, and 1, and,"therefore,exclud the possibility of an analytical

examination of the basic relations. In order to obtain this

possibility, it is necessary to introduce certain simplifications

into the initial data, namely:

1') Consider a powder having a constant burning area

x- 1; -o; je- z.

2) Consider the forcing pressure to be negligible; assume

that the projectile is set in motion when the pressure equals the

pressure of the igniter gases, and that the burning of the charge

begins when the projectile is set in-motion:

PO m PB; 40 .

3) Assume that a - 1/6.

When these assumptions are made, the solution of the fundamental(
system of equations is greatly simplified.

The first assumption corresponds to the burnihg of long tubular

F-TS-7327-RE 550

S.- /- -l-
/m



powder; thie second corresponds to projectiles with pre-cut bands;

the third assumptAon simplifies the solution and permits determining

the qualitative efiCect of the loading conditions.

'Under the assumptions made, the preliminary period does not

exist., The motion of the projectile begins under the following

conditions:

VO "p PB0 O; z 0 O; 0-;O v- .

0 0

Inasmuch as a - 1/6,

1 A~ 4  ml lo(1- ca).

The law governing burning of powder, - f(z) will be

(" expressed by the formula:

'(n x, (50),

and 4 may be taken as the independent variable. Then the equation

of the projectile velocity will take on the form:

sIK

(51)

The fundamental equation of pyrodynamics is:

2 /
ps(f 1 +1) f W 2(m fW B2

The equation of the elementary work done is:
F-TS-7327-RE 551
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s 2 2 

psdt - cfmvdv - K

the differential equation of the projectile path wi.1l 'be:

___ 4 - .2

I +1 0

2 2

Integrating, we get:

1 + i (52)

whence,

2 1. (53)

Designating, as in the case of instantaneous burning,

II

we obtain from equation (52):

2,(-+ .- 1 J (54)
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and inasmuch as

v - - - i- 1 j (55)

(1 + y)2

These equations give the direct dependence of v and * on the

path of the projectile t, or y i/I

LeL us write the pressure equation, taking into account the

igniter pressure:

P BB fBwB fBaB
- W0 - a slt

S 2fBWB + fw* - -TTMV
p B B fm . (56)

s(l + 1)

Let us designate the relative energy of the igniter gases by:

BB

Carrying 'fi outside the parentheses in (56) and replacing v according

to (52), we obtain:
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__ _ _ __ _ _×B if
P " Pl. XB + Pl + "

-s +1 ( +y) I + y
(+ y) -

(57)

where p, fy/sll - fA/,(l - c&) is the maximum pressure developed

by the burning of the entire charge within the space of the chamber

when the oensity of the loading isA;

BO 1
1 - - on the basis of equation (52).

2
( + y) 2

Substituting * by its expression in (54), we obtain the pressure

p as a function, of the path of the projectile:

P P + Pl 1 (58)

+y 1 Be1 1+ 

The quantity

XB IBBPB
p1+y S (l + y) 1+ y

(

represents the pressure developed by the igniter gases in the

variable space of the bore. At the start of motion y - 0, p P

as the projectile moves forward and y increases, PB decreases (1 + y)

times, and may be neglected when compared with the pressure developed by the
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gases of the powder-charge.I
A't the beg-inning of motion, y - 0, the second term is equal to

zero (equation 58); p - p, As the p/ojectile moves and y increases,
B(1+/2)

the factor in -the brackets increases, while the factor (1 + y)-

decreases.

The maximum pressure p- will occur at some value Ym

Let us designate: /

,,F [ .(Y) 1+Y_ 2Y
F(~ - . ~-~-~] (~y 2I m"(l + y) -(+..)-(l +y)

1+ y)2J (+Y) 2

Differentiating F(y) with respect to y, and equating the

derivative to zero, we find:tI
2

0+

( + YX ) FI(8) - const. (59)

2

/-hen - 0.2; Fi(O) - 2.387_7

whence,

-" ( -FI(8) -17- 0(1 - a )Z'Fl(0) - 17. (60)
0

Substituting (59) in (58), (54) and (55), we obtain the expressions

for all the elements of motion at the instant p - max.
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2+0

J I
P 2++

2+6
Pi 1 + 2- pl F(B

B 1 +8 1+l)

When, 0 0.20p F)2(0) (6.3200.

1 (62)
B(I +B)

, - (63)81 1 +0

Equations (60 (61), (62) and (63) give the direct relationship

between the elements of motion and several characteristics and

parameters at the instant of maximum pressure. Thus the path IM

is directly proportional to the reduced length of the chamber to

and to' 1 - MA. When A increases, 1m decreases. The pressure p.

is directly proportional to the pressure p1 of instantaneous burning,.

determined-by Nobel's equation; p. is inversely proportional to

Prof. Drozdov's parameter B. *m is also inversely proportional to

the parameter B.

( When 0-0.2Z:

Pl I
p 0.320 pA - 1.387(1 -a).
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The equations ate very simple and accessible to analysis.

iAt the end of bu.-ning, -.

611

vK (64)

1*+ p 1  ....

(l .[.. p ' ;(65)

A2

2+0i
P,1 8 pl1.( Be 166)-P" K i+ a -2 -

(x+ YK)

\n the second period we find the following relationships:

1+8 1+0
P " K l 1 + 1 PK1+ y "

PM p~p M -K

Substituting for PK and 1 + yK their expressions from (65) and

(66), w' find:

Pl

'P + (67)

(f
221

This s the equation of an adiabatic curve with initial ordinate
pl/(1 - ?-- ; the latter increases with B, i.e., with the thickness

2
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of'the powder

Fiom the general equation for the projectile velocity, we have:-

I + Y K 0 ( B)

V1

v -vfp i + y 2 --

p : ) .1)

The Temperature of Powder Gases.

In the case of instantaneous burning we had:

( 1 ) (69)

When burning is gradual:

T -V 1v 2

fip rip

Substituting the values of,. v from (51) and (55) and v2 -

f2fw/e, we get:

-T SlK ,p~r 2f,., I- i ,
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or

T1T, - _" (70)

( +y)2

A comparison of (69) with (70) will ,show that in the expression

for relative gas temperature for gradual burning of a powder with

a constant area, the value of the exponent is one-half of that

of instantaneous burning. Consequently, the temperature drop in the

case ,of gradual burning proceeds almost at half the rate of

Instantaneous burning, because the work done in traversing a. given

path is considerably smaller.

The expression for the temperature T/T1 may be written as a

function of 4 only.

2 2 2
T 1 (K) BeM' Ir - .-- _% . 1 - _+,1 (71)

I.e., the temperature of the gases inside the barrel during burning

of powder with constant area is a linear decreasing function of .

At the end of burning (j' 1)

T[

TI 2

The thicker the powder, the larger is-,B and the lower is the

temperature TV

In the second period, from expression (68):
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T v 2  1 1
'T1V2. 1-.( + y)(

/ np 2

or

T " B-- L+ Y 1 1 TK73

These relatively simple equations enable one to perform an

analysis of'the variation of the elements of a shot (p, v, +, T)

as a function-of y - the relative path of the projectile - and to

establish a series of relations and properties"of the variation

curves of these elements.

5

j (
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CHAPTER 4 - ANALYSIS OF THE BASIC RELATIONS FOR TiE

SIMPLEST CASE

t/

.1. ANALYSIS OF THE FUNDAMENTAL CURVES p, v, T,I.

An analysis. of the equationsobtalined, and of the curves represented

by then, shows that they represent certain-simple combina:tibns of' two

types of curves '(fig. 142):

a) Tvo polytropic curves with- exponents k - 1 + 0 and k' - '1 + 0/2,,

starting Arom the point (i, 0), first dropping steeply and, then more

gradually;

b) Two curves analogous to the polytropic curves but with

exponents, smaller than unity (k - 1 - 0 and-k' - 1 - 9/2) also starting

from point (1, 0) and descending much more slowi) with the convex

side directed downward.

-V-4

.U

( Fig. 142 - Basic Types of Curves for the Simplest Case.

Indeed, in the case of instantaneous burning:
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T (
T (1+ y)ew

in the case of gradual burning:

T1
Ti e_ (70)

(1 + y) 2

2_ 1- [1 T (4)

(1 +y)2 B

vnp " -o
(i+ y)2

1(55')

2'( +1+y)2Ti

1 ( 1+
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PK1
*• - 8+ (66')

22

/
In the second period:

((

.. . .. ; (67')

1 B'O I (ly

2

1 172)

2

'-- -(68')

vnp Ti

Each of these equations contains one of the polytropics indicated

above-in the form of a variable component.

The curves - y for instantaneous and gradual burning are

-expressed directly in the first period by curves with exponents 0

and 0/2, according to equations (69) and (70).
4

The ordinates of the curves *(54') and v (55') are obtained

from the ordinates of the curves AT/T1 - 1 - T/T I (fig. 142), measured

from the horizontal 1-1, multiplied. by the coefficients 2/Bb and 2fW/IKeS,

respectively, and laid off upwards along the abscissa from the origin
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of coordinates to yK which corresponds to the end of burning (fig.

143). The curves y, y and -,, y are inverted with respect to the

curves AT- y.vp

The ordinates of the relative pressure curve (57') are obtained

by multiplying the ordinates of the %V curve (54') by -those of the
1+9/2

auxiliary polytropic curve y - 1/(I + y) . This same polytropic

curve is the geometrical locus of the pressure piPl at the end of

burning, expressed as a function of y (66).

ci

Fig.. 143 Curves and v/v in the First Period.

It is seen from equation (66) that whcn B (powder thickness)

increases, PK decreases, while YK increases /-according to 45)7.

The curves of the second period elements start to the right

of the abscissa yK; the curve T/T, represents the curve T/T1 -

of instantaneous burning, multiplied by the quantity 1/0l - B0/2)>I,'

which means that the gradual burning curve is higher than the

instantaneous burning curve, the difference in height increasing

with the parameter B, i.e., the difference being greater for thicker

powders.

From equition (60) it is seen that the maximum pressure is

independent of the parameter B, of the thickness of the powder, and
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of the weieght of the projectile. For a givenA, the length 1 isM

proportional: to the length J0 of the chamber; When -S Increases the
'0

-maximum is shlfted toward $ve start of motion.

-The real maximum pressure -equation (6-1) is proportional

to the maximum pressure in the case of instantaneou& burning,

P 1 " fa/(i -at), and is inversely propoxitional to the parameter B,

or to the powder density squared. Whenthe energy of' the _powder,

entertig in the expressions, for the pressure p,1 and the -denominator

B, is changed, the maximum pressure Varies proportionally to the

energy of the powder squared, and to the weight of the rojectil'e,

because

82:2 "
sIlg

and

aaS
P3 -" j- F2 (e) -F 2(9) - s1--K

When B increases, ,V and v. decrease also Cequations (62) and (63)_7.

The adiabatic pressure curve in the case of instantaneous burning,
1+0

p/p 1 - 1/(1 + y) ,. acts as"guide".for the adiabatic curves of

the second period when .the powder burns gradually. The ordinates

of these curves are obtained by multiplying the ordinates of the

( first curve by 1/(! - BO/2) > 1 Z equation (6T77. The thicker

the powder, the larger is B, the larger is this value, and the

higher will the adiabatic curve of the second period lie above the
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adiabatic curve of instantaneous burrAsg. The ratio'of the ordinates

of these adiAbatics for ,thL same value of y (or i) is Constant

and equal" to 1/(i - BS/2) - const.

In the case of instantaneous burning and in the sec6nd period,

the pro~ecttkle Velocity is proportional to the square root of 'the

temperature drop, rather than to the fi-rst power of this factor,

as is the case for the first period.

%or a given charging densi-ty and during the burning of the

powder, the projectile velocity, in a given section does not depend

upon the weight of the projectile. Indeed, from equation (55)

2fw[

"" it is seen that for a given value of y - l/loll - ca ) and for one

and the same powder (f, ci, 'K) the projectile velocity is independent

of the weight q of the projectile. The same may be said of the

temperature of tbe gases _/'according to formula (70)_7.

If, all other conditions being equal, we vary-only q which

enters into parameter 'B, the pressure p and fl from equations (54)

and (56) and the maximum pressure P,1 and increases in proportion

with q, while the location of the maximum and of the value v 5 does no.t

~change.

Consequently, the velocity curves coincide point by point

: when superimposed on each other(*), and only when the projectile-~

(*) The result obtained (when a - I/ ) can be confirmed by comparing it
' with the GAU tables (ordnance tables), compiled for P0 - 300, a - 1, and

a -61.06.
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is heavier will- the velocity v /_-from equation (64)_7 be att.,ined
K-

earlier.

A'I

0

Fig. 144 - Ball-istic Curves for the Simplest Case.

The fact that the velocity of the projectile does not vary

with its weight may be used to verify the complete burning of the

powder in the gun. if a gun using the same charge and type of

powder is used to fire two projectiles of different weights and

the velocity remains unchanged, it is proof that the combustion

of' the ,powder was incomplete in both cases.

Figure 144 illustrates the basic curves of the elements of

a shot (*,, v, T,, p),as a function- of I or y for the cases of

Instantaaeous and gradual burning of the powder.

All the curves on the graph are marked with the number of

the equation they represent.

There are .two basic points on the ordinate axis, one is at -1,
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and the other at-l/(l -Z0/2).

The two pressure polytropic curves with exponents k-and k',

and the two "polytropics" of temperature, with exponents 0 for

instantaneous burning (69), and 0/2 for gradual burning 0) issue from

the. first point; th' ordinate at y -1 is a common asymptote for,

-al1 of these curves.

The curves p/p 1 (67V') and T/T (72) for the second-reriod,

i'ssue. from the second, point, whose ordinate is 1/(1 -BV/2). These

curves are. real only to the right of the ordinates 'pK/pl and T/TI 1 -

B0/2 with abscissa yK"

Both of these curves lie above the corresponding curves for

instantaneous burning, the 'ratio between the two sets being constant

and equal to l/(i - B9/2) >I. The horizontal line whose ordinate

equals unity is the origin for the curves p/pl(1) and T/T I (69)

and (70), the terminal- point for * and v/v (54'), and is an

asymptote for v/vnp for both instantaneous and gradual ,burning 61

powder.

The curves j, y and -, y in the first period are similar to
Vnp

the curve AT/T'which is measured from the. horizontal along the.

O6,ilnate equal to unity.

The curve p/p 1 for gradual burning is obtained by multiplying

the ordinates of curve *( 5 4 ') and of the adiabatic curve 2 with the

exponent k' 1+ 0/2.
2. THE CONDITIONS FOR MAINTAINING THE MAXIMUM PRESSURE CONSTANT.

This question is very important in the ballistic design of

guns, because the condition, generally imposed is that pm must not

exceed a certain given value. For this reason the designer must
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know, -how to vary the loadini conditions in order to keep the

-maximurm pressure constant.

"The relations derived, above permit one to establish the

-analytica1 conditions under which the maximum pressure- P will

remain constant when, the weight of the charge or its, density are

C varied- in a given gun.

Indeed,

2 ' - " 2( g " (61')

For a given type of" powder (fI a, u1 ) and ar given projectile

weight q, P* can be changed by varying either A or I- e/u 1. If A

is increased simultaneously wTth, 2e1 or I[D P3 can be kept constant.

The condition of the constancy of phe ,pressure iii obtained in, the

form:

F 2(8) fA
fl le)- -const.

Pat 'B - aA

Le us group together the constants:

B) - 8) const.

Designating:

j--F (0) - a3  const," PS 2
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we obtain the condition for maintaining pi conilstant:

SB( -raL " a "const. (74)

'In the case when a 1/6, whent " 0 and 1, the condition
-0

p - const. has an analogous forsw:

B - - const ,

Knowing am and given b, one may find the quantity B insuring

the obtainment of the given pmi and, knowing B, one may find the

corresponding value of 2e1 or I.

Condition (7'4) shows that in order to kbep p. constant when a

( is increased, it is necessary to increase the thickness 2e of

the powder in order 'to offset the decrease of B obtained from

increasing the weight w of the charge together with the increase

of A.

From, the condition (74) of. the constancy of the maximum

pressure for.a gives, gun, projectile and powder of definite physico-

chemical properties (f,. a, , Ul), a direct relation may be

established between the weight w of the charge, the thickness 2e

of the powder or its pressure impulse IK, and the reduced length

of the free space: in the chamber at the end of burning:

0 1 0 aA) - S
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Indeed, ,subst-ituting the value of Bin (74) Ind rept:a ing k n

Athe, denominator 'by- L/W, we obtaini:

(i~

'Transposing all the constants to the right side,,and designating

then by Xa1 we obtain:

12W
11 1 f~m IF?

Is!- - (75)

Computing first K from the loading conditions by the following

F2 (8)f

and calculati C the va~lue "of the charge necessary to insure a given

Initial (muzzle) velocity A'we can determine the full pressure

impulse 1[ -lU

(76)

C unThis equation shows that in order that the pressure in a given
gnremain constant when the weight of the charge is Ancre-sed, the

full pressure impulse I x or the thickness 2e~ oZ 'A' powder must be
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increased at a somewhat'higher rate than the weight of the charge.

Let us apply equation (76) to calculate the powder thickness

for a 76 mm gur, 1902 model.

The conditions of, loading are:

V0  1.654; s 0.4693; '- 0.930; q 6.5; f - 9.10, a - 1;

7.5"106; 1.08; 0,- 0.2; p " 2320.102.

F2e~wm 0.2.2.1016-X.08-0.0663

s~ps 06.46932.2.32.105

- 36.4;104 -.603;

e1  Vi'.- 603-0.930 603"0.-930
IK .. * - , - 0 - 660 kg.sec/dm2 ;U I V'W0  V1, .65 4- 0 5 930 0.85

2e,- 2ulK - 2.7.5.10-6.660 - 0.0099 dm 0.99 mm 1 am(*).

We have obtained the thickness of strip or tubular powder of

grade SP which was used'in this gun, and developed a velocity vA -

(*) This thickness of tubular powder corresponds to the grade
7/7, while the thickness of 1.28 mm corresponds to grade 9/7.
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lindeed, substituting the value of B in (74) and replacing 6 in

the denominator by wi/W, we obtain:

s IWO(l - a) 2 a

f Wf

Transposing all the constants to the right "&ide, and designating

them by KT, we obtain,:

In.2
m af f22 F (()

Computing first K. from the loading conditions by the following

- equation:

2

pm 2

and calculating the value - of the charge necessary to insure a given,

initial (muzzle) velocity vA, we can determine the full pressure

impulse I- el/u

jK~ - 4(76)

VW0

'This equation shows that in order that the pressure in a given

gun remain constant when the weight of the charge is increased, the

full pressure impulse IK or the thickness 2eI of the powder must be
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increasetl at a somewhat higher ra-te than the ueight of the charge.

L ; us apply equation (76) to calculate the powder thickness

for a 76 mm gun, 1902 model.

The conditions of loading are:

WO - 1.654; s - 0.4693; '- 0.930; q - 6.5; f - 9.10 5 , a., 1;

u - 7.5-10-6; 9o- 1.08; 8- 0.2; pm = 2320-102.

2
F2(e)f2 e 0.32-9 2 .101 0 -. 08-0.0663

elm/J- 603"0.930 603"0.930 2.e 1 ....- m660 kg:sec/dm 2

K ul  V/W0 - w V1.654-0.930 0.85

2e1 - 2Ul K - 2.7.5-106.660 - 0.0099 dm- 0.99 mm 1 mm(*).*

We have obtained the thickness of strip or tubular powder of

grade SP which was used in this gun, and developed a velocity vA

( This thickness of tubular powder corresponds to the grade
7/7, while the thickness of 1.28 mm corresponds to grade 9/7.
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1 -588 m/sec when the charge w was 0.930 kg.

The same gun may be fired with a charge , - 1.08 kg and a

veloCity or/v0  620 m/sec ,can be obtained at the same p..

Find from equation (75) the thickness of- the powder in this

case.

( Inasmuch as VIC remains the same as in the first case,

60.31.408 603.1.08
I K2 ___-860,

-K2 /I.54-l. 08 0.757

the thickness of tubular .powder for the same u1 will be

2e1 - 2.7.5-10- 6 .860 - 0.0129 dm - 1.29 mm,

and this is the thickness of our previous owder C4 2 '

The ratio

I IK2 860 9

. . .- . 1. 3" .
IKI 660 7

Calculations show that-the equations derived from approximate

relations yield results which are close to experimental data, and

.may be used to calculate the variation in the powder thickness "

concomitant with variations in the charge, if the maximum pressure

is kept'the same.
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3. TIHE POSITION OF MAXIMUM PRESSURE Plh I'N THE BORE OF THE GUN,

OR TILE PATH I TRAVERSED BY TIE PROJECTILE AT T11h INSTANT
M

OF MAXIMUM PRESSURE.

m-" (I -F 1 (e) - 13-" (l -at)FF (0) -17. (77)

For a given loading density in a gun-employing a given type of

powder, the maximum pressure p. is developed at the same distance

from the starting point of the projectile (1 , const.), regardlessm

of the powder thickness and the projectile weight. That is, the

path traversed by the projectile up to the instant of maximum

pressure does not depend on the powder thickness 2e I nor on

the weight q of the projectile.

In a given gun (WO. S, l0 ) using a given type of powder (f,

a, ul, 0) the position (I ) of maximum pressure depends only on
m

the density of the charge. The larger ,, the smaller will be

(I - aA) and the nearer to the starting point of motion will be

Equation (77) shows that under the condition of constancy of

the maximum pressure pm, when A is increased with the simultaneous

increase of B and of the ,powder thickness 2el, the maximum pm shifts

toward the origin of the projectile motion. Because the parameter

B increases thereby, then, on the basis of formula (62):

( (*) This conclusion is also confirmed by the GAU tables for the
case of pO - 300 kg/cm2 , a- 1.06, and a I i/S.
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m B( + .)

the portion of the charge burned at the instant of maxiaum pressure

decreases.

4. END OF BURN'ING AND PATH K TRAVERSED BY PJECTILE
( IN TH' SORE OF THE dtW.

The 'location, of the projectile at the end of burning is determined

by equation (65), while the corresponding pressure pK is found

fromequation (66).

From (65) we get:

K 0

C2

The equation shows that for a given loading density 4, the

quantity lK increases with the increase of parameter B, i.e., mainly

with the increase in powder thickness. When the weight of the

projectile -is diminished while A remains the-same, the path traversed

by the projectile at the end of burning is shifted toward the

muzzle face.

Equation (66) shows that for a given loading density the values

of PK at the end of burning, when B is varied (i.e,, when the powder

thickness and the projectile weight are varied) lie on the curve p, y

C whose equation is:
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P' 1 (66)-

This curve is of the same type as the adiabatic curve for

instantafidous burning whose exponent is however 1 + 812 . Th'is

curve is 'known as the prussgure curve of completely burned powder.

The above statements are clarified by the graph of fig. 145t.

Tecurves, a, 6,. 8 and 't depict the- pressure variation duing

the burning of powders of different thicknesses when A is the same.

IV %N-

0.

Fig. 145 -Pressure Curves for Different Powder Thicknesses.

a -thick powder; 6-normal powder; 6-thin
powder; 2- very thin powder.

( 2...A- curve pK~'1. - curve p, y for

inc~antaneous burning.
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j CurieI -. L.- 1 Pj.,
iui(1 +1 Curve 2. - P K ( +

The7 ire disposed'in such .a.way that their maxima are on the

sae ordinate at a distance y from the origin. The end of

'burni g occurs at a distance which is: governed by the powder

thickness, the distance being the greater the. thicker the powder

K > K6 > Y the pressure values at the end-of burning

increase as the powder thickness decreases (pa < K6 P The

points corresponding to the end of burning lie on curve 2-2

calculated from equation (66) /-when 9- 0.2, 1 + 8/2 -1.1_7.

Curve 1-1 corresponds to the adiabatic 'variation of the pressure

at instantaneous powder burning (1 +8 - 1.2).

(_ The disposition of.curves 1-1 and 2-2 shows that the pressure

curves for gradual burning (a, 6, , t ) intersect the curve 1-1

depicting instantaneous burning. The second period curves for the

cases a, •, a, and I; which are not represented on the diagram,

are all disposed below the curve 2-2 and above the curve 1-1.

At the same time, since for the given powder p/(l - Be/?) - const.

the nature of the pressure change p in the second period depends upon

the variation of the variable factor 1/(1 + y) , the latter

varying as in the case of instantaneous burning, i.e., along the

adiabatic curve with initial pressure
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When the-powder thickness is decreased, B and pl decrease

also, aid. inasmuch as the adiabatic curves with the same exponent

I + 0 do not cross, the adiabatics in the second period are

disposed the lower, the thinner the powder, i.e., inversely

to the disposition of the pressure curves in the first period.

( If we compare the' expressions for pressure -in the second

period and at instantaneous burning, keeping the value of y the

same, ,we will get the following:

In the case of gradual burning in the second period,

1 1

(I" B:) I+Y~~

Bej

in the case of instantaneous burning

1

p 1  l+e(I + y)

I-1

or

p 1 I const,

p 1 Be

2

i.e., when the loading density is the same, the ratio of the pressure

in the second period to the pressure atinstartaneous burning remains

constant for any path length of the projectile (greater than, K ). This
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ratio decreases whenB decreases and-the projectile weight increases. I
The graphs-and. equ ions presented above for the simplest case

Oua,' l. 0,, a -1/8) permit one 'to estivmate-directly the

aippearance and the form of the basic relations beiween the'bailistic

elements of, a -shot. They, depict thO location anfd magnitude of

( maximum pressure, Its depenfdence on the loading conditions (N, B)

the position of the projectile at the- end of burning and'the

gas ~pressure developed thepreby, the condition of maintaining the

makimum- pressujre constant when the weight of the charge and the

powder thickness are varied, and the independence of the curve y, J

in the first period of 'the weight: of the projectile.

'Such simple relations are,,not obtained for the more complex

cases (X~~l~* 0, z :&.In such a case it becomes

necessary to analyze the effect of the individual elements by

(computing a series of variations or by using the data found in

ballistic tables.
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CHAPTER '5 - A SURVEY OF CERTAIN OTHER METHODS OF SOLUTION

(Written by Prof. G.V. OppOkov)

1. A VARIATION OF PROF. G.V. OPPOKOV'S SOLUTION

In order to 'integrate equation (13), Ckapter 1, (p. 473):

dt 'Bxax

-d--. t -(8)t I 0 - kl x - lx2

it is convenient to apply the usual method of classical mathematical I

analysis the method ol substitution, namely, 'of temporarily

introducing into the process -a new variable, , so that:

+a Be x2 -(s, (79)

I I -
where a is the difference between the lengths of the free volumes

of the chamber at the stiart and end of burning:

a (80)

When this substitution of variables is effected in the new

equation, it will become presently apparent that "the last term"

does not contain in tie denominator the difference:

TO + klx - BIX2 .

(
This obviates the need for mathematical transformations in the

* course of integration for the purpose of replacing the obtained
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ihftegral by other, more simple ohes.

Indeed, it follows from equation (79) that:

" + eeax,
dx dx

because, t .is a constant in every concrete case. Moreover:

&% + l- a(* + k x +Kx?) +

Substituting in the above the value of [ from" (79):

, - + 8 Lx B-20 kxxXx2)

or

-2'I+(t - + kl -Blx).

We shall substitute into the differential equation (78) the

obtained values of dl/dx and (I + 1):

Bx
r.- + ,BOax-- - - 12'

We now remove the brackets ,ind effect the necessary simplifications:

41

--d- + Beax - D - Bax.
dx 0 + klx  B X 2.
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Groupiyig the erms:

t

V/ d Bx+B -Ba(l + O)x.dx B x2l -B

1?

The common integral of this linear differential equation of

thl first order including the la5it term can be represented in the

following form:

S Bxdx ( Bxdx

1*0+k~~ Ij 0+~ XB1xI -B 1X2

-e Fe -B a(l + O) e xdx_7, (81)

where e is the base of natural logarithms, and C1 is still an arbitrary

C-qnstanf'.

We must introduce into the analysis Prof. Drozdov's function:

Bxdx
*o+k 1 x-B 12 B

e. - Z

Then the partial integral of the last dquation with respect to

the derivative d5/dx will be:

B B
x -

z cc, Ba(l+) 5 Z xdx_7.

* / 0
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We shall1 now return to the desired Path Iof the projectile,

anid after substituting the obtained value of C,, get:

B'

1-C 1 a( d BO X2
2

Let us determine now the constant C from the initial conditions,

*A which,:

BI

0- ; - 0; Z -1;' {Zdx 0.

0

We have from the latter equation for the path of the projectile:

C 0- 1(C + 0) + 0-1
1

whence

Cl

Thus the desired path of the projectile is defined by '\the

following expression:

B'' B

Iiz [ aB(l ef Z~ xcix_7+ a ~.x2 .. ~(82)

0
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2. PARTICULARS OF PROF. I.P. GRAVE"S SOLUTION

This method of slutton was developed by Prof. I.P. Grave in

order to perfect Bianchi's method, which was the first variant

(in time) of the 2 method. In Bianchi's original equations theav.

effect of the variation of I is discounted and in integrating
T 'av.

he considers the ,quantity[ as a certain incompletely determined

constant. Bianchi divides the curve p, [ into three segments,

for which instead of IT he takes 1 , - L a and 1, respectively,2

which corresponds to the following conditions:

* -0; *0. 5; ' ~1.
av. av. av.

But in this case the curves p, I and v, I are not smooth; they

have angular points corresponding to the beginning of the second and

third segments.

In order to take into account the effect of the variation of I

and obtain smooth p, [ and -v, I- curves, Prof. I.P. Grave, in

integrating the equation for the path of the projectile, considers IT

as a variable, defined by the average value of its derivative with

respect to I. This average value of the derivative must be negative,

because Idecreases during the burning of the powder. Consequently:

di

( whence, after integration, we obtain:

Ito -ki. (83)
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At the end of burning (when 1 - 1), we obtain from the, above

o K

from which the constant k is determined:

-0 0 1 1 (84)

If we substitute the value of i obtained from equation (83) into

the differential equation (78) for the projectile path, we will get:

Bx(1 40O- k1 + 1)

dx
B2

whence, after separating the variables, we have:

dt Bxdx

IIO +(I - k)l Be X2

2

Integrating, this equation:

x

in t# 0 +(- k)1 Bxdx

0 UX
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and, consequently, the following must obtaitv.

0~~ k) to-k *0

Using a second time equation (83), we obtain the following

equation from the above:

-(1-k) B
1

to0 z  -(85)

A certain difficulty arises from the fact that in order to

apply equation (85) it is necessary to know the constant k, for

( which, in turn, it is necessary to know I / Fsee equation (84)_7;

but the path t of the projectile at the end of the period is

unknown beforehand.

In order to overcome this difficolty, a nomograph is given.

Fsee I.P. Grave, "VNUTRENNYAYA BALLISTIKA" (Internal Ballistics),

Pyrodynamics, No. 1, p. 58_7 which enables one to determine the

ratio 1K/Il if

0 and K(X) B -1
-- ln Z - 2.303 g-1

11 H.X B K B1

4 are known.
Having found from the conditions of loading:
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and 2.303 B log

we can determine iK/l1 from this graph; this will enable us to

calculate k from equation (84).

If it is necessary to find k ,,iore accurately, the obtained

value of k may be rendered mort exact by successive approximations.

The value k found from the graph is substituted into (85), 1K9/ 1

is found in the second approximation, and a new value k2 is then

determined from (84) representing a second approximation, .and so on,

until two consecutive values of 1K/l i coinciding with the required

degree of accuracy are obtained.

.

IA
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CHAPTER Vi -SOLUTION OF T FUNDAMENTAL PROBLEi OF 1NTERNAL
IBALLISTIoN THE BASIS OF THE PHYSICA LAW OF BURNING

(M.Ye. Serebriakov's Method)'

As was shown in Par't I of this text, the'actual burning of

powders deviates from the geometric law under the influence of a

number of factors. An analysis obtained by the aid of the progre'sivity

.curves r, +-and rl, t has shown that certain anomalies actually occur

/even during the burning of powders of Simple shapes: non-instantaneous

ignition, -accelerated burning of the outside layers (ballooning),

etc. The burning law cannot be established at all on the basis of

the geometric law for adulterated and porous powders used in pistol

cartridges.

The actual buring lau can be established only by burning powder

in a test bomb at different loading densities and by obtaining pressure-

time curves reflecting all the deviations and peculiarities of a given

sample.

1 " -The variation in the intensity of gas formation r and I - pdt

0

as a function of 4A and t can'be established from the obtained p, t

curve.
t

Both graphs F, 4 and 5 pdt.flhin conjunction with the fundamental

0
pp t curve obtained from the bomb test enable us to soive the

fundamental problem of pyrodynamics, i.e., to compute the gas-pressure

and projectile velocity variation curves under conditions of actual

burning of powder in the bore of a gun.

These graphs also enable us to establish the individual behavior

of powder lots of different grades occasionally differing considerably
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as to their properties,, which behavior could not be disclos,.J by any

method other than by bomb tests.

There have been actual cases where powder lots of the same

grade and the same manufacturer having Identical chemical composition

and dimensions produced ,a difference of 6-8% in the charging weights

when fired at the same values of v. and Pmax"

Bomb tests had shown that the burning rate u l'of, these powders

varied as much as 15-20%i This variation could not have been disclosed

by any other means except the .bomb test.

The fundameatal problevi cf internal ballistics for adulterated

or porous powders can be solved in exactly the same manner only on

the basis of the explriiental (physical) law of burning.

We are presenting below the method of solving the fundamental

problem on the basis of the physical law of burning, when the burning

rate law is u - ulp, which corresponds to the coincidence of the curves

I, %V or J pdt, at various loading densities.

The basic assumption made here is that both in a bomb at different

loading densities A and in a weapon with a variable space in the case

of a continuously decreasing loading density, the value of f pdt

is a single-valued function of 4# only, and does not depend on the

loading density. This condition, which has been proved by bomb

tests at different loading densities, is being extrapolated in the

given case for considerably higher values of , in a weapon.

1. DERIVATION OF BASIC RELATIONSHIPS AS APPLIED TO THE
PHYSICAL LAW OF BURNING.

The solution is based on applying the pressure curve obtained

from bomb tests to the computation of curves depicting the gas

pressure and velocity of the projectile in a weapon.
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As the projectile moves through the bore and the initial

air space becomes larger, -the pressure will depend :on the current

value of the loading density L o- + si),

We shall introduce the following designations:
/

loading dens3.y of' powder in test bomb,;1

&- initial loading density in weapon.

P and T - gas pressure, and time corresponding to the given value

of y at constant loading density a,, at which the bomb

test was conducted and at which the curve P,1 was

obtained;

p and t - gas pressure and time corresponding to' the same value

of 4, when A is, variable, which condition applies to

a given disposition of the projectile in the bore of

the barrel.

We shall designate the corresponding integral values as follows:

a) In bomb b) In weapon

SPd( - I pdt - i

0 0

Pdt - 1 0  pdt - 10
0

00

0[0

I is obtained from a table or graph as a function of MV or ',

on the basis of bomb tests.
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Inasmuch as the pressure impulse does not depend on A, we

wilihave the-equalities

f dt - or i I (86Y

0 0

and, correspondingly,

1I0  1 0; . I K  'Kt .
/

Differentiating (86), we get-

pdt - Pd%. (87)

Here di - an elementary time lapse during which the portion of

change * burned up to a given instant under pressure P will receive

the increment d, when the powder is burned in a constant volume at

a loading density A1

dt - time lapse du'ning which the-same portion %V of the burned

.powder will receive the same increment d- when the powder
o

is burned in the gun barrel at pressure p at loading

density 6 determined by the current disposition of the

projectile in the bore of the barrel:

W0 + st
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We shall consider henceforth the value of as the independet

variable.

2.. DETERMINING THE PROJECTILE VELOCITY AS THE FUNCTION OF

On the basis of the impulse theorem

cpmdv - spdt.

Integrating from the start of motion:

Cmv- s pdt - s(i -O). ,

*0

where .0 is the portion of the charge burned in the gun at the start

of motion:

11
- 0

0  a

Determining v:

v -(88)
0

or on the basis (86)

hs vl ue of )

The values of I and I for 4 and *0 are known from the bomb
0 0

test, s/fa is known from the gun data. Thus the velocity of the

projectile is determined from equation (89) as the function of'y.

At the end of burning when %V- 1
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0

V - (90)

In contrast to the analogous formula in the case of the geometric: law of burning, the Value of I corresponds not to the average

thickness of the powder but to the maximum thickness, which may

considerably exceed the average thickness of powders having a variable

thickness. A diagram of the pressure impulse of tabular powder

usually obtained in bomb tests is offered in fig. 146.

The value of the impulse 1 , eI avo/u corresponds to 'the

burning of powder of average thickness; the value of IK >.I 1

corresponds to the burning of the thickest element of the charge.

,M4

Fig. 146-- Pressure Impulse of Tubular Powder

Therbfore also v in the case of actual powder burning assumes

a considerably greater value than in the case of the geometric law,

but in that case the projectile will also traverse a considerably

longer path at the end of powder burning, so that:

EK tK

(Physical law of burning) (Geome tric law of burning)
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3. DETERMINING TilE PATH OF THE PROJECTILE AS A FUNCTION OF y

In the method outlined the relation between { and f is established

by means of the auxiliary function L, 4p determined from the same bomb

test at a loading density-1 , by the additional analysis of the

test curve P,.. And if, the value of the pressure impulse I,wj-

does not depend on the choice of A1 , then the function L, depends

on the value of A chosen at the test.1

As we shall see later, the function L has the dimensionality

of the path and a definite physical meaning.

We will have from equation (88):

di vdt " ---(i - i)dt.

where (i - i O ) is a function of4j.

Upon integrating, the path of the projectile will be determined

by the formula

L- - (t - o)dt. (1

T0

Here the element dt Corresponds to the element dt when the powder

is burned under conditions of varia-ble volume (space) and depends on

the value of pressure p at any given instant which is still u.nknown.

We can obtain an expression from the bomb test analogous to

expression (91):
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L - I- d PzPd - - G. (92)
veo m Mm

"0

The value of L -. function of tV - is obtained by the second

integration of c ;,rve :Pd% with respect to c and by multiplying

--1

same by the coefficien? s/Im..

1f is the path traversed by the projectile at the instant

the portion 1+ of the charge is burned, then L is the path the

projectile would have traversed if the pressure behind it developed

according to the same law as in a bomb with a constant loading

densityA, at the instant the same portion of the charge is

burned.

t. L has a definite physical meaning. For example, it is obtained

in practice in a bomb of considerable capacity with a free piston.

* 3
Thus in a bomb of capacity W0) 300 cm the piston displacement (with

the piston usually having a cross-sectional area of s 
2 cm 2) is

about 3 cm. The change in volume amounts to only 1%, and hence the

piston is displaced by a pressure which increases in almost a constant

volume.

The value of L as a function T is found from the bomb test using

the procedure given in the table below.

It is necessary to establish the relation between I and L,

f and hence between I and T, because L is function of 4,.

Differentiating equations (91) and (92) and taking their ratio

and reducing, we get:
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di DL -t. (9.
di

From equation (87)

dt P.. .. ,(4)

dI

whereas the ratio P/p is replaced by the ratio of the free volumes

on the basis of the equa-tion of state:

RTII f lA fT

" I a I -_ _ _ _ _ _-_ _

Al\6 a(a >

The expression in the denominator represents the free specific

gas volume at loading density a l -

An analogous expression will obtain also in the formula for p.

We shall replace the.m with average values, because the last term

is small in comparison with th first two, and, moreover, the ratios

of the free volumes will:'enter hem all.

W . W(l -W 0 " W0 2 A

Ja +

where aI -
2
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We shall introduce the designations:

a + a - + a - '

i---- ' - a a-a.A1 A0

Then

a1

RTwV0 T f 4 T

tTi T

RaV. + '+o a -
10 0 IA

1* T

a( + 
T

but

1 ,0 ao a to(1 -0'%( - -
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For a gradually burned powder

W a+ 2 a

T 0 0

ID

2<

The ratio P/p, following substitution of the proper expressions

and simplification, will take on the form:

ao3• l* + (- 95)

Upon incorporating this expression in (94) and then in (93),

we get:

k'

aR e
dl -dL- + , where k' I +-.Ri 2

Dividing the variables and integrating:

£ 2 dL.

+ t 1' 1

0 (l+ 4+,
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Designating 1 + I/I " x, we get in the left sido?

C

k'

0 o -- I-2

aid in the right side

ao

We then obtain:

1 , a 0 L .BL
1---~ 0 7 RO -L* B-10 962 ai ,0 TO (96)
x 2 c

where

1 at

Ao

Bt • 0 m 1
2 a! tc  1___-2O l _ao 0 I"

-1 - a'

but

-'0 0
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and

B' (97)
2

1 a~'

Solving (96) for [, we get:

1 c 1 ii (98)

(I B'L'v ) e
T€o

As in the solution of the problem of internal ballistics by
the average I method, the value Ic - average for the entire burning

"' "process - can be. replaced in this formula by the current value
veav.

by means of the usual formula:

[ - 2 '(99)
'R'a. 2

and then

i m  I _ -ii(100)
L Io
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Formula (100) gkves the path 1 as a function of %V by means
of the auxiliary function L' 0  determined in bomb tests at loadingdensity-A - &V which function reflects (depicts) yhce true burning

law.

.Comparing this formula with the analogous formula used in the
method fo solution in which I - 1 , we will note that in pla e

of Prof. Drozdov's function Zf ormula (100) contains the function

-2/e .1
(1 -B*L*o) . For the case where X- I, X- 0,

B 2
B1  "

Therefore the expression in parentheses (1'- B'L*o) has replaced
in this solution the function Z in the case of the geometric law

x: of burning.

Formulas (89) and (100) enable us to calculate and plot the

projectile velocity curve as a function of path 1.
Pressure p is found from the fundamental equation of pyrodynamics:

2
f T- -Cf mv2

P " , (101)

wherein the variable quantities as the ' functions are already known.

To determine the maximum pressure p and the corresponding value

C ''m' we differentiate the equation (101) with respect to t:
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ana - - [I+ ap+

dt + S f)v

whereby v - S/ m(I - ! ) (89) and P are given in thetable as a

function of j"

Equatling the expression in braces to zero and replacing v,

by its expression in (89), we get:

-Sr (1 1 0

whence

I I + a - ) m (102)0 s2(l + o)f

Denoting the factor ofF by D, we get:
M

Im - I D r3 "
30

The value of is found as the point of intersection of curves

I -I and D • r as a function of "

The point of intersection gives the values of (I - I 0 ),4 m and

The diagram in fig. 147 clarifies the above.

It is not difficult .to see that if Im - I0 and Fm are replaced

by theoretical expressions in terms of z and YcJon the basis of
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the geometric law, we will obtain, the usual relationship for x

At the end of burning when - , we will have:.

v

(V - BL, );

IK C " K 0

t

2

2

SW v

1K

The usual formulas apply to the second period:

' 1 + 0
+~

P K(Px L g (103)

v! V t I +

A - 1 (104)+l v
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GRPinC NOT REPRODUCIBLE

Fig. 147 - Determining M for Maximum Pressure.

4. GRAPHICAL CLARIFICATION OF TlEMETHOD OF SOLUTION

In order to solve the problem on the basis-of the physical law

of burning, it is first necessary to perform the ballistic analysis

of the given powder. To do so, bomb tests are conducted at two

loading densities A and A 2, the ballistic characteristics -
1 2

propellent force of powder f and covolume a-- are determined, and

also the test characteristic of the intensity of gas formation ,

and the impulse of pressure increase PdT - I (fig. 148).

0
Knowing the loading conditions of the weapon, we determine

1 1..T - T

O- f ; from graph I, % we find the corresponding value

P0

of I - PdT, and upon subtracting this value of I0 from all the

0

values of I, obtain the dependence. of I - I on %V and T (fig. 149).

Integrating numerically the curve I - I0 , T with respect to T, we

find the integral S (I - I0)4'( as a function ofy.

*0
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Introducing the designation:

G4 jJPdldxr (I - 1o)dt.

V0 -f f 0

1!1

Multiplying I - I and GO by .s/Tm, we get
0

CfE

S
L*1  -T -(I -I )d%. (92)
'0, Cf a 0 ? 0

'V'Q

v does not depend on &(a or A ) and is a function of 'V only

for all the loading densities. The function 0, being a function of '.

depends at the same time onA, because the time element di during

which a definite portion of charge d y is burned decreases with the

increase of A.

Indeed, from the equality

Pdx

f- it follows that

dTd -

rp
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where

f-

and hence di varies inversely with the change of A1 .

For this reason the curves G0 and L* as a function of t, will 
10 *0

also be disposed the lower the greater A when testing the powder

in a bomb (see fig. 149).

0

Fig. 148 -Basic Curves Fig. 149 -Auxiliary Curves
, and I, T. for Determining the Elements

of a Shot.

Thearrangement offa table for analyzing bomb tests as a means

of obtaining all the auxiliary functions is presented below; this

table serves to clarify the graphs in figs. 148 and 149.

F
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-9JWe shall construct, r.ccordinig to equations (89) and (92) for

the same values of T, a curve showing the dependence of v on L when

, Z1-fig. 150, curve v, L(A )- 7. If the test were analyzed

for b2 
> A, the relationship v, L(A) would obtain, which relationship

curve has a larger slope angle and in which the shorter path of the

' < projectile: LK(a ) <.LK(a ) corresponds to the end of powder

burning. Both curves have a smaller curvature than the true vl

curve of the velocities of the projectile in the bore.

If we were to extrapolate the function L"' for the initial
10

loading density 0 in the gun, we would have obtained curve v, L(,O )

(150), which at the start of motion has a common Doint of tangency

with the true v,t curve. The latter is obtained when A decreases

continuously, and as - and v increase curve v, 1 (heavy dotted line)

gradually goes over from curve v, L(d 0 ) to curves corresponding to

ever smaller &, which family of curves includes also curves v, L(a2)

and v, L(A

This transition is the one given by the fundamental formula

(100) :
2

( av B'L* o7

together with formula (89):

v - - -(I - I0).
V~ 0

The difference between the method of solving the fundamental

problem outlined above and other such methods lies in the fact that
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in deriving the dependence of I on-, use is made not of the

fundamental equation of pyrodynamics, but, rather, of the equation

of the state of powder gases for different positions of the

projectile in the bore of the barrel.

In solving this problem use is made of the gas pressure curve

P, c obta'ined from bomb tests, which expresses the true burning law

with all the deviations from the geometric law.

An analogous result can be obtained only by the numerical

integration of Taylor's series or from finite differences.

tv

z
4

Fig. 150'- Relation Between Auxiliary Curves v, L and

Actual Curve v, .

The method outlined here permits the solution of the problem

also in the case of the geometric law, by assuming thc .following

theoretical relationship for r, :

r- X-. 2-K d4 - " - + 4xkf

1 4 7K IK 2

Therefore, this method is a more general one than the methods

based on the geometric law of burning. (*)

(*) For a more detailed explanation see: Serebriakov, W.Ye. "FIZICHESKY
ZAKON GORENIA VO VNUTRENNEY BALLISTIKE" (The Physical Law of Burning in
Internal Ballistics). "O3ORONGIZ" (State Publishers of Defense Literature)
1940.
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5. ANALYSIS OF TILE OBTAINED CURVES p, I AND v, I

Analysis of curves p. I pnd v, I obtained on the basis of the

physical law of burning indicates that:

Cr. 0

Fig. 151 - Curves p, I and v, [ Obtained on the Basis of the
Physical and Geometric Laws of Burning.

4 . 3. ?. - physical law of burning.
4

,. 3. . geometric law of burning.

1) Due to ballooning - accelerated burning of outer layers -

the maximum pressure is attained earlier, and the pressure curve is

disposed higher at the start than in the case of the geometric law;

2) The beginning and the first half of the velocity curve v, [

obtained on the basis of the physical law, are disposed above the

corresponding v, t curve in the case of the geometric law of burning;

the curves merge at the end;

3) The same value of pmax. is obtained at a smaller propellant

force of powder than in the case of the geometric law;

4) Due to after-burning of the thicker elements of the charge,
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the end of burning is transposed nearer the muzzle .face, and the

velocity vK exceeds the theoretical value for the average powder

thickness; I
'5) Due t6 the gradual decrease of the intensity of gas formation

4 F, y at the end of burning, the transition of, the pressure curve

from the first ,period to the second proceeds without al jump and

forms no turning points on the curve, as it does in 9e case of the

geometric law.

The graph In fig. 151 clarifies the above.
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