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PART TYO-THE THEORY AND
PR A c T 1CE © F SOLYING PROBLE %S 1IN

INTER N AL B A L LI S T I C S
M “ (T H- élo RETLFICAL AND APPLIED
PYRODYNAMICS)
. ANTRODUCTION .
‘( - : - 'On the basis of the wideipread study of thé'phénome;azand

;ptocesées occurring -during a»&ischarge, internal ballistics must,
'eétab;15h,the laws relatingqéhe conditions of leoading to the
quantities depéndink upon them'@ cailea brillistic elements of
dischitge-and»nust furpish thg method of solving a large number
of p;;bleis encountered in practice.

The estabiishment of such laws, providing the medns for regulating .

- a discharge,,égnstitutes the general problem of internal ballistics.
‘The conditions of loading include the féllqving: the dimensions
[;(. . of t&e’povder chamber and tyose of'thg bore of the barrel, tﬁe wveight
of the latter, the arrangement of the rifling in the bore, the weight

'y and arrangement<of the projectile, ‘the pressure necessary to overcome

the inertia of tihe projectile, the weight of the charge, the make .

.

of powder, the physico-chemical and.ballist;é characteristics of

the powder, the characteristics of the expansion of gases,

S e e

The ballistic elements of a discharge include the path of she
projectile {, its velocity v, the pressure of the powder gases. p,'
their temperature T, all values varying with time, and also the

quantity of gastow formed at a given time. : .

-~a

In colving the above general problem of ipternal ballistics,

#O 530647

:/”’

one may distinguish two fundamental and most important problems of

\ .

pyrodynamics, and a series of special problems.
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The first *fundamental problem consists in determining by
.caTculation the change in gas pressure and the velocity of the
projectile An the barrel as a function of the path of the projectile
and of time, for given loading conditions. Together with -the
curves p, {-v, I‘P, t-v, t two most important lcading éhérdcter1Stics
of the gun are determined: the maximum gas pressﬁre(ph in ‘the bore,
and the muzzle velocity v, of th; projectile, i.e., the velocity
of the projectile a; the instant it leaves the barrel of the gun.
This problem may be called the direct problem of pyrodynamics.

For given conditions of loading it has a single solution - a

single pressure curve with maximum Ppr @ ringle velocity curve for
the projectile, t.ad a muzzle velocity v,.

By varying the conditions of loading, it is possible to
analyze the effect of these conditions on the variation of the gas
pressure and projectile velocity curves, i.e., it is possible to
solve a series of special problems related to the solution of the
direct problem.

" The second fundamental problem of pyrodynamics is the problem
0f the ballistic design of the gun; it consists in determining tre
design data of the barrel and conditions of loading necessary to
impart some definite initial (muzzle) velocity to.h projectile éf
a given caliber and weight. This velocity.is determined from the
tactical and technical requirements imposed up: = the éun to be

consiructed.,

In solving such a ﬁroblem, the maximum gas pressure is usually

The design data and conditions of loading insuring that a
F-15~-7327-RE | 453
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projectile of a given calibér and weight will attain the desired

‘vélocity, are obtained from the solution of the»aboVéjpxoblem. -Once
the conditions '0of loading are given, gas pressure and~pr6jeélile
velocity .curves are drawn as & fgnction of path and time, i.e.,
" the direct problem of internal ‘ballistics is solved for the selected
q type:of gun and charg

The ‘obtained curve p,tl is used by the engineers to calculate
the strength of the gun barrel and projectile shell, while the
curve p, t is used to design the carriage, the time fuzes and the
igniters. At the same'tlme; the necessary thickness and shape
of. ‘the powder which must .be prepared at the factory, are given,

Thus the further planning of the entire system of artillery
gnd:of the necessary ammunition depends to a considerable extent
upon the feasibility and rattbnality of the selected form of the
ballistic solution.

This is why the problewm of the ballistic design of guns: is
the principal applied problem of interior ballistics:

The problem of ballistic design is broader than the first problem;
it includes the latter as a final step and is in reality an inverse
problem of interior ballistics. It admits of numerous solutions,

. numerous combinations of gun design data and loading conditions under
* which a projectile of a given caliber and weight will attain the
required muzzle velocity.

Because of the indeterminate character of the soluéion, there

. arises the need of developing a definite method for»obtaining the
necessary answer in the shortest possible time, and for selecting
from among this nultiélicity of solutions the most efficient and

" desirable solution, satisfying the tactical and tochnical requirements
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imposeéd upon the gun tc be designeds

In this connection, special problems arise with regard to
findiné the most desirable sclution, and for obtaining a gun
of maximum power and r:nimum leﬁ§th or volume, the most suitabié
projectile, and the most desirable 1oading;conditiéns.

The solution of these special probleins permits in turn to
pose ‘the problem of the development of a general theory and
method of ballistic design which would take intokgccount the most
desirable solutions and tactical and technical requirements.

Besides the indicated: fundamental problems of internal
ballistics, there is also a series of special and secondary p;oblems
introduced below.

For a‘giVen»bore and a given projectile weight, calculate the
weight w of the projectile insuring a given muzzle velocity Vo

and the thickness 2e1 of powder giving the required maximum pressure

Ppy*

Because of the complexity of the phenomenon of' discharge, not

all of its details can be taken into account, even approximately;
some of these details must be neglected and can not be introduced
into the'mathematicai equations expressing the relations between the
separate processes occurring during a. discharge.

For this réason, the equations of internal ballistics give onlx
approximate values‘of P, v, l,\#, and t. But since in practice
these equations must give results agreeing with experimental d;ta,
it is pecessary, in order to insure this agreement, that the problem
be solved by selecting certain constant characteristics. When these

are substituted into the equations, they give values of p, and Va
F-TS~7327-RE 455
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for the gases and the projectile, respectively, which values cgrnespond
to the results of firiag tests.
The 'very manner in which the problem is posed indicatés that

the processes taking place during a'dischagge.are,not yet ail

‘known and analyzed. For this reascn one of the main problems of

internal ballistics, that must be eventually solved, is the exact

determination of constants, those of the gun powder in particular,

a® derived from its physical and chemical properties. The determination

T

of ‘the powder constants involves a more exact method of pressure
determination by experimental meahs, becatuse &ll the ballistic
characteristics (f, a, ul) are determined from the latter.

In addition to the broblems enumerated above, one should note
the problem of determining the variat?on in the maximum gas prgséure
and in the initial precjectile velocity under specific éhanges in
loading conditions, as veli 55 a series of other problenms.

The fundamental elements of a discharge -(, v, p, T, ¢ and
t - are interrelated By a series of equations expressing the
fundamental processes taking place during a discharge,. i.e.: the
burﬂing of the gun po&def'and the formation of gases, the trans-
formation of the thermal energy of the gases into the kinetic
energy of the system projectile - charge -'barQEIT"ZEB the movements
of sarts of this systenm.

The.nethods of solution of theoretical pyrodynamics must make,
it.possible to compute and establish thé dependence of gas pressure
and of the velocity of tQ;_proJectile on fhe path and the time it
takes the projectile to move through the gun Darrel, i.e.;\to
solve the fundamental direct problem of internal ballistios:

F-TS-7327~RE 456
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The mrihods of solving problens in pyrodynamics may be divided
into ?nalyticnl, numerical, empiricai and tabular methods,

,/Thc empirical methods were of .definite advantage, so long as
the theoretical concepts of internal balllstics had not been
sufficiently developed.

They were based on SOme.relatively simple empirical equations
expressing in a simplified form the experimentally obtained
1nterre1ations 04 the elempnts of a discharge. Tables were used
along with theseé equations, whicy tpbles offered the means for
computing very rapidly the elemenfg of the curves depicting gas
pressufe and projectile velocity.

The empirical methods were derived from the analysi§ of
exberiéental data obtained in firing weapons under different
conditions, with the characteristics and constants entering into
these expressions determined from the conditiong of the experimént.

The disadvantage of these methbds (formulas and tables) consists
in the fact that they f;il to take into account certain very important-
factors and conditions of loading, and that such methods may be
applied only under the conditious and within the limits established
for the given case.

The numbe? of~empirical equations and tables is very large;
prior to the .development of analytical solutions, they were of
primary value because of their simplicity. But the appearance of
exact thgoretical solutions, taking into account with sufficient
completeness the influéfice of most of the conditions of loading and
singularities of the processes occurring during a discharge, made
it possible to solve all the fundamental problems of pyrodynamics

by means of exact anifytical relations. As a result, many empirical

-
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"egquations and tables have lost their significance and are now used
only in certain auxiliary cases.

The analytical metbods are based on .a series of assump}ions
characterizing the conditions of powder burning and the motions
of the gases, projectile and gun; these assumptions are based chiefly
on experimental or theoretical data expressing the physical side
of the process of discharge.

iFor this reason, analytical methods of solution give a more
préfouna understanding of the real nz ure of the phenomenon than
.empirical wethods, and approach more <losely the essence of the
procerses taking place during a discharge.

In the analytical method the problem is reduce¢ to ther solution
and integration of differential equations of different types. This
solution can be obtained with greater accuracy (in which case the
resulting equations become more complex), or approximately (which

results in simpler relations). \

\
i

Solutions may be given for the more complex cases obtained in’
practice, and also for simplified, admittedly schematic cases, in which
case the analysis of the relationships is simplified. |

Solutions ﬁay be bzsed on the geometric and physical laws of
powder burning.

Tables of auxiliary values or functions, necessary to calculate \
certain intermediate values, are prepa}ed in order to expedite and |

simplify the computations involved in the solution of problens. !

1

\
\
\

}
equations are used along with the analytical methods.. The integration X

i

is usually performed by the method of finite differences or by \

Numerical methods of integrating a system of differential

expansion in Taylor's series., These methods are resorted to in
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especially difficult cases, when the value of one or several purameters
varies throughout the process of discharge and their variation does )
not permit to solve the problem anaiytically in finite form. This
happens, f&r exumple; when the Cross section of a barrel bore varies
. {tapered bore), or when the parameter 6 varies throughout the
discharge accompanied by a varying gas temperature or by a change
of the coefficient ¢ depicting to secondary work done in the process,
etc.
On the basis of analytical or numerical solutions, it is possible
to set up numerical tables of the fundamental elements (p, v, {, t)
for different loading conditions and some general constants. These

tables enable one to plot very rapidly the necessary curves p, { and

v, | or p, t and v, t with a minimum number of calculations. In so

doing, the process of solving the direct problem is greatly simplified

and expedited. These tables are usually set up for certain average
values of the constants (characteristics and shape of the powder),

although in practice one may encounter a series of regressions from

these average values. In that case it is necessary to introduce

appropriate corrections into the results cbtained.

Thus the ballistic tables for the solution of -direct problems
of pyrodynzmics are in reality analytical equaticns reduced to
numerical values in a series of concrete loading conditions.

However, the ballistic tables enable one to solve a series of
problems which cannot be solved directly by means of analytical
equations.

The basic difference between tabular values and analytical
equations is the following: because of their compleiity, the
analytical equations do not give 2 direct relationship between

F-TS-7327-RE 459
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pressure or velocity and path length, fof.example;.these,vuriablcs
are usually related through some auxiliary variable.

In tables, on the contrary, the basic elemeunts of discharge
are 1nterre1§ted‘direct1y: the pgpssﬁre, the projec&j}e velocity,
and the time of its travel throdéh the buarrel are given.in function
of the path traversed by the projectite; this simplifies considerably
the analysis and permits the deyeiopment of a special method for
solving problems which cannot be seolved by analytical means.

‘The development of the theory of ballistic design became
possible only with the introduction of tables for the solution of
internal ballistic problems.

For this reason the first tables prepared in our country by
Prof. N.F. Drozdov on the basis of his exact solution given in 1910,
are of great importance., These very tables simplified and expedited
the calculations involved in thé ballistic désigq.of weapoens, and
gave the engineqrs a reliable means of solving rapidly inverse

problems in pyrodynamics.

They also served as an example for a series of more detailed

tables compiled subsequently.
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) SECTION SIX = ANALYTICAL :
KETHODS OF SOLUTION OF THE :
DIRECT PROBLEM OF INTERKAL ‘

BALLISTICS.
BASIC ASSUMPT-IONS Y

When we examined the phenomenon of a discharge, we had pointed
out its extreme complexity and the fact that some of the factors
infiuencing the results were still insufficiently known. For this
reason, when solving thecretically the fundamental equation and
deriving the relations between the physico-chemical and mechanical
phenomena in a discharge, it is necessary to take recourse to certain
simplifications and schemes. -

The basic assumptions are as follows:

1) The burning of powder obeys the geometrical law of combustion.

2) The powder burns under an average pressure p.

3) The composition of the products of combustion does not change
during burning, nor during the adiabatic expansion of the gases (f .
and a are constant) after the powder is burned.

4) The rate of burning is proportional to the pressure:
u = u,p.

5) The auxiliary work dome is. proportional to the principal

vork of “he forward motion of the projectile, and is represented

by the coefficientcp. . .
6) Thé projectile starts moving when the pressure developed in

the chamber by the partial burning of the charge equals po, i.e.,

when the pressure is sufficient to force the driving hand completely

into the rifling of the bore; the gradual fércing of the band and the

¥

increasing resistance encountered by it are not taken into account.
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7) The work done 4n forcing the driving band is not accounted
for‘sepafately, nor the increasing veloc}ty of the projectile duriig
tﬁe graduai forcing of the band.

8) The expansicn of the barrel during the dis;harge, the
gascs escaping ‘through the clearance between the driving band and
the w&*is of the kun, and the air resistance are disregarded.

9) The cooling of the gases through heat transfer to the walls
of tﬂé barrel is not accounted for directly, and may be taken into

~

account;indirecfly (for example, by decreasing the force f = R’I‘1
or increasing & ~ 1/(A + BT, ).

10) The motion of the projectile is considered only until
it paéses the muzzle face.

11) The quantity O = (cp/cw) - 1 is taken as its average value,
constant ‘throughout the discharge.

The aséumptions enumerated above make ocur representation of

a discharge more schematic, and deviﬁte the phenomenon to a greater
or lesser’dégree from reality. For this reason the relations obtained
in the solution will express the physico-mechanical nature of the
discharge only with 5 certain degree of approximation. Thus the
values of the fundamental elements (maximum gas pressure Py» initial
or muzzle velocity v, of the projectile) obtained from these equations
lg{ not coincide with the values obtained experimentally. Nevertheless,
in order to solve practical problems, it is necessary to obtain
analytical data which would agree with experiment. For this reason
(yeeping in -mind the complexity or the discharge phenomenon, the
incomplete knowledge of its elements, and ihe disagreement between
our basic assumptions and reality) it is necessary to introduce

coefficients of "agreement with experiment'" into the constants obtained.

F-1S-7327-RE 462
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Such & method is widely used in various scientific laws

(hydrodynamics, aerodynamics, etc.) dealing with complex phenomena,

v e e NE

whose detalls cannot be fully analyzed. D

Eventually, as our knowledge is further developed, we will find

b}
ey

. it possible to render some of the assumptions with greater accuracy
and take into account some of the conditions not yet understcod.

As new experimental data is accumulated and new methods are applied,

I
1l

the deductions arrived at may be modified and even replaced by
{ 'others of a more complete anc exact nature.

In solving the fundamental equation of pyrodynamics, one shouild
strive to obtain the maximum possible mathematical accuracy. However,
in that case some of the expressions become excessively cumbersome,
so that even exact formulas will fail to repre;ent the true phenomena
| of a discharge; and for this reason certain simplifications may be

F“ C used with advantage in the process of solution.

A comparison of these simplified solutions with the exact ones
may show the extent of mathematical error involved with the use
of the same constants and conditions.

With an appropriate selection of constants, the somewhat
simplified solutions may also yield results approaching experimental

,t data as closely as those obtained by the use of more exact equations.

CHAPTER 1 - SOLUTION OF THE FUNDAMENTAL PROBLEM WHEN THE

PRESSURE TO OVERCOME THE PROJECTILE INERTIA IS KNOXN, AND WHEN
BURNING PROCEEDS ACCORDING TO THE GEOMETRIC LAW.

As we have shown above, the fundamental equation of pyrodynamics
J includes a large number of constants characterizing the projectile,

charge and powder which determine the conditTan of loading, and\the

'{ four variables,\y, v, | and p, which are called the elements of a shot.
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In order to establish the relation between the elements of a
shot, new ecquations are added to the fundamental equation, whic‘he

‘are the equations of powder burﬁingtand projectile metion; this
leads to- the appearance of a new variable, the time t, and to the

- 'tppearagée of quantity z when burning proceeds according to the
{ geometrical law, ' j

¥e obtain as a result the following system of equations:

The fundamental equation of pyrodynamics:

pé(l? + ) = fwy - %—q’mvz. 1)

The rate of powder burning:

de ,
um= i - ulP' (2)
v ;
( The law of generation (inflow) of gases: ;
¥ = Xz(1 + Az) =xz +rAz2, (3)

The law of motion of the projectile:

pPsS = ¢m g—%— (4)
or
( ps = @ mv g—%—. (5)

N ' v

The totality of these equations affords the solution of the

fundaimental mathematical problem: of determining the curves p,;

PSRN TEN
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and v, | and also p, t and v, t and of finding in particular the
maximum gas pressure bm and the muzzle velocity i“ of the projectile.
¥e first solve the problem for regressive powder shapes,

using the two-term formulas (X > 1, A< 0, i = Ql\fnd the assumptions
/ N

~

enumerated above. -

¥e shall solve the problem for all the pericds of a shot in

succession.
1. PﬁéLIMINABY PERIOD
Vhen establishing the relations for this period, we shall assume
the simplest form of the phenomenon: the instantaneous forcing of

the projectile -band into the rifling.

Fundamental assumption. If the force necessary to overcome the

resistance encountered.by the driving band of the projectile in
completely penetrating the rifling is rio, and the cross section
of the bore is s, the quantity Py = Iio/s will be calle& "the pressure
to overcome the inertia of the projectile" or fhe forcing pressure.
We shall assume that the projectiie is set in motion at the instant
the gas pressure attains the value Dg- ‘

Up to that moment the burning of the powder takes place in
a constant volume. For this reason tge preliminary period may be

called pyrostatic and one may-apply the already known equations of

pyrostatics.

In this period, besides the forcing pressure Por ve will be
interested in the portion of the charge ¢y burned at the instant the
projectile i~ set in motion, in the relative thickness of the powder
zq = eo/el, and in the relative surface area of the powder SO/S1 - 60.

These quantities, characterizing the end ¢f the preliminary
period, are simultaneously the initial values of the first period.
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’Le; us introduce ‘the fundamental equations for the preliminary .
. . peried.
) The idgniter 1s burned first and the pressure developed in the

chamber‘is‘pb, which may be computed by the following formulé:

pB -~ - - ¥ /(6)

where W, is the volume of the chamber; w/8 is the volume of the
charge proper; anﬁ fB’ Qpy Wp are, respectively, the force, co-
volume, and weight of the igniter. Under the usual'copditions of
iguition, “g?g,‘ay be neglected.

}u The charge proper will ignite when the pressure reaches Pg;

250 at this 'instant the pressure is determined by the general equation
E;ﬁ v ( of pyrostatics, which takes into account the effect of the igniter.
éj*' At the instant the driving band is forced in the rifling, a certain
é::; ' portion of the charge *0 vill have burned, and:

| " |

1 Po =Pyt ‘ ’ ) (7)
. 'o." % - "';','i‘*’o'

- § where

H .

1 2 ) -%—]' - 0 - -3]-'-.

o

»  ——

Inasmuch as the forcing pressure Po is known(*), we can determine

(*) pp varies between 250 and 400 kg/cm? for shells and between
300-500 kg/cm2 for bullets when the entire side surface is forced into
the rifling of the bore. -
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what part\yoAbf the charge will have been burned at the instant the

projectile is set in motion. Solving equation (7) for WO' we obtain:

11 1 1
“’o’*’n’(';*s') ekl

\PO o bl - — . (8)

If we may neglect the pressure of the igniter, because Py is
known only approximately, while Pp is small; we will obtain a

simpler expression for computation:

I S
A 3 .
Y - . (9)
.O f 1 ) .
-—f Q@ - —

‘, po 6

- -The quantity\yo mainly depends on 8 and varies, in general,

between 0.02 and 0.10.

If the amount *O of the burned portion of the powder is known,

and the law of powder burning is in the form:
. 2
Y =Xz(1l +Az) =z +R-Az",

we can determine the relative thickness 2, = eo/e1 of the powder

burned at the start of motion, and the relative surface area 6o°

-

(. We find Go from the following forwula:

\ / X
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and Zgs from the cquation GO - 1 + 2120:

2
- - 6% . -
. - so . | ; (60 : 1)(60 + 1) N 0 1 ) 2*0

0 2\ 2MG, + 1) 26, + 1) ©

¢ + l)x.

Since usually 60:=$l, the following approximation is correct:

Yo
L. AT e

¢ X
Besides these characteristics, we will also require the value

‘WO -~ the length of the free space in the chamber at the start of

motion. This reduced value is determined from one of the following

expressions:

1 W ‘ A
o [ Wy = e e S | m l] & — - —.—
s\ 0 3 &y z0 5 51*0

3.
i,
N -
18
18
i
-
-
i

where

2. FIRST PERIOD

( In deriving the fundamental relationships for ithe first period,

Prof. N.F. Drozdov was the first._to propoee the 1utioduction of

\
a ne¥ independent variable, x = z -~ zg (the relative' thickness of
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the powder burned after the projectile is set in motion).

-

At the instart the projectile is set in motion z = zg and
x = 0; at the ending of burning zx ~ 1 and xK -1 - Zq

Thus the limits of variation of the new argument are known in
advance. Let us express all four findamental elements,xy, v, |,
and p, as a function of this argument.

1. Relation = fy(x). Substituting z = z, t X in the formula

Yz )(kzz, we obtain:
q
¥ - Kz, +-xlz6 + (1 + 2xzg)x + a(kxz,

but

w2 . -
¥z0-+xkzo Yoi 1-&2120 G

0
Introducing, according to Drozdov, the additional designation

KGO = ky, we obtain the desired relation:

Y= ¥y + kx o+ ®hxZ, (10)
2. Relation v = fz(x). The velocity v enters into the equation

of motion:

dv
sp @m a"t—.

In order to eliminate p and t, we add the law governing the
rate of burning:
. 1p‘

dt
F-TS-7327-RE 469
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Multiplying these equaiions term by term and simplifying,

we obtain:

o~
.
P
£
R )
i
r
£,

s de se, sl
dv = - ~ 4z = —— dz.
/om €1 9EUy T~ 9w

o - o i T RO >

- i B oA e e e

a2 T s D bl 5 il o e o v pryae
3 g - . ~ e

{ Integrating from O to v and from zy to z:
L B —
; sl sl
2.1 X K
B V o™ e (Z -~ Z | T —" 11
i G- (11)

Prior to the end -of burning

pressure IK - ei/bl and the cross-sectional loading of the

sl 1 ’

: K g K

& v = —(1 -2 w = — (1 -~ 2z.). 2
¥ 4 K <pm( o) ® q:5 ( o) (12)
E; *( Consequently, the velécity of the projectile at the end of

i‘ - . .

h% burning can be computed in advance, if the impulse of the powder

;’ n T

|

projectile are known.

Inasmuch as the quantities ¢ and 1 - Zy vary relatively little,
E‘.
f; the velocity of the projectile at the end of burning of the powder

depends in the main on the ratio of the impulse IK to the cross-

sectional load q/s on the projecgile, and during burning, the velocity

jj of the projectile varies in proportion to x.

{5 . Equation (12) permits to compute v but it does not tell us

K’
fﬁ ( the point on the path the projectile at which the powder is burned,
- whether the speed Vk is properly chosen for the given gun, or

whether the powder is fully burned before the projectile leaves the

gur. For this reasdn, this equation alone is insufficieat, and it is
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necessary to find also the equation for the path traversed by the

”

projectile at the end of burning.

\

Equation (12) is plotted in fig. 133; it shows the curve v, | ‘/

and gives the value of VK’ but it does not show the position of

the projectile at the end of burning.

{»I’iﬁii)fl([()ﬁ&&l‘& LON DIHAVYHD

Fig. 133 - Path of the Projectile at the End of Powder Burning.

3. Relation { = 13(x). In order to determine the path of the

projectile, two equations must be Bsed: the fundamental equation

of pyrodynamics and the equation of motion of the projectile in

the form of elementary work:

2
- -2 o2 - AN,
psaw + D) fog - = quv fo [ ¢=— |

Vnp

psdl =cmvdv,

2
where np ™ 2fuoB m. (*)

¥e eliminate p by dividing the second equation by the first:

~—

(*) The Russian subscripts Np denote: path traversed inside a barrel.
Editor. ’

b
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?%;7 L e 7T O A I UL
5 dl - o m vdv
: [+ fw 2
¢ v
Y- =
. V2
P

Since v and Y are functions of x according to equations (10)
and (11), the right-hand side of this differential equation may be
represented as a function of x.

Designating this function by dF(x) and substituting for v and ¢

their expressions in x we obtain:

szlﬁ
5 2xdx
% “m
dF(x) = “;: _—
9 - 521i9m6 2
q)o + klx +Xlx - T———-X
¢°m22fw
2.2
] 8 IK . . ng!
fwen ‘
¢ 2.2
s IK e
fwym 2

2
The same group s Ig/fu¢m of constants and characteristics
appears in the numerator and the denominator. As suggested by Prof.
N.¥. Drozdov, it is represented by B and is called "the parameter

of the loading conditions” (Prof. N.F. Drozdov's parameter):
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The influence of this parameter will be established later.

.

Let us designate (also according to Drozdov):

Be .
Then
Bxdx
d!
L. +1 - 1 2° (13)
y Yo * klx - le

The expression obtained is the fundamental differential equation

for the path of the projectile as a function of x:. It is solved
differently by various authors.
If we place ocutside the parenthesis --B1 in the denominator of
1 the right side of the equation {(as suggested by Drozdov) in order
4 to obtain a polynoiial in descending powers of x, with the
coefficient of x2 equal to 1, we obtain:
. \
! dl B xdx ‘ xdx
L+1" "B SRl oL (13%
x° - B X - o~ \
1 By x
i \

A

e
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wvhere:

. } k q’
gl(X) w X - é‘?]:”x - "'——‘G.
1 By

Ly

Prof. N.F. Drozdov was the first to solve, this equation exactly,
y in 1903, by reducing it to the form of a linear equation of the

first orxder:

af B x B x
+ [= - s {
dx By El(x) B, ¥y (x) ¥
or
{ al

o + th - Qx’

where éx and Qx are functions of x.
The full solution of this equation is presented later.
A simpler, but approximate solution is obtained if we assume

It will be presented xater with the designation of the parameters;

Yav., ™ const.
with some of the auxiliary functions derived according to Prof.
Drozdov.

During burning of the powder at the start of the projectile's
( motion, {

and 11:

. varies within the limits of Ly

> v
> Lr 1

0
L?o
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where

{*-20{1-%;A’<'a--}>q»}.

\\
The rate of/éhange of I? inereases with A.

Assuming that L? o L* and integrating equation (13') we have:
av.
{ x
( ! B [ xdx
s +1 B 13 (x)f
0 Yav. 1 0 1

The integral of the right-hand side is obtained by decomposing
the integrand into the simplest fractions; it is a logarithmic
function of x which we shall temporarily designate by 1n Zx‘ The

left-hand side is integrated also:

(1 IV
3 By x
Yav.
whence:
. B
. B
[ =1 7. % - 1). 1
v, ) (14)

Thus the expression for the path ([ as a function of x is more
complex than the expressions for y and v.

Substituting into it x_ = 1 - Zy) ¥e can find the path lK at

K
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the end of powder burning. Comparing it with the full path (;

7/

traversed by the projectile within the bore, it is possible to

/

-

‘determine whether the thickness of the powder and the velocity Yk
of the projectile are correctly chosen for the given gun.

In computing {¢ we may use in the equation { -
ﬁv- \ya'l.

\ - [  ,1: -~ -g‘- -A ( - —%— )I?av;the expression Yav., = E%

The investigations of Prof. G.V. Oppokov in his book "O
TOCHNOSTI NEKOTORYKH'ANALITICHESKIKH SPOSOBOY RESHENIYA OSNOVNOI
ZADACHI VNUTRENNEI BALLISTIKI DLIA PERVOGO PERIODA" (Concerning
the Accuracy of Certain Analytical Methods of Solving the
Fundamental Problem of Internal ‘Ballistics for the First Period),
1932[h2;7 have shown the following. W¥hen the loading density is

. ( A= 0,5-0.7, formula (14) is very accurate for evaluating Py and Vot

h it A*av is not taken to have the same value for allthe vg}ggs X

from 0 to 1l - zy, and if a different value of | is taken for

Tay
every value of x, assuming either of the following values for l$
) av

in the formula: y ., = (¢ ~\Po)/2 (Oppokog} or ?av..' (wb + y)/2 )
(Serebryakov). a )
Inasmuch as~x 1s directly proportional to v / equation (11)_7,
equation (14) gives in fact the direct relation between the path {
and the projectile velocity v.
The expression for Zx presented below shows that this relation
is expressed by a rather complex function.

4. PRelation p = f4(x). The pressure ‘p is8 found from the

fundamental equation of pyrodynamics: -

P-TS-7327-RE 476

- - et e e cpfhagsene brpt i e dp bt et AN -

- Qw”““’ \_-"' w” Ja o,

A A e - o ne Rk A ST &

e s 4 mma R — — < R




T e J‘T‘.}".‘}'JM
e R ’
\

-

] v2
2
fw Vnp
p- —.
o+ 1
Yo
If the quantities ¢, v, and [ ave replaced in the right-hand side
by their expressions in function of x, then
B 2
_ 2 b- 5
fw Yo # Kjx - Byx tw ,
p - = - L - ’ (15)
s - B S Uy + 1
tly, 2y P1 -1
av.

where l? can be represented as a function of x as well.

Inasmuch as ¢, v, and l‘are,already determined, it is no
longer necessary in computing p to use equation (15) which is
expressed in terms of x, and the numerical values of ¢, v, l? R
and { can be substituted in the preceding equation.

By attributing to x different values within the limits of 0
to 1 - Z4» equations (10), (11), (14), and (15) permit one to
tind the values of all the elements ¢, v, [, and p of a shot entering
into the fundamental equation of pyrodynamics, and to plot a curve
showing the variation of p, v, ¢ as a function of [, i.e., the curves
p, { and v, [.

Consequently, the proposed problem concerning the solution of
tﬁe fundamental equation of pyrodynamics has been resolved, and the
relation between the elements has been fpdng.

»

Substituting the value of x = 1 -~ zblin'the above equations, we

K
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find all the elements vy Pgs and lx corresponding to the instant t?e
burning of the powder endés (¥ =~ Y). These values will be the initial
vilges in the second period.

Mote. The expression for the projectile velocity may be

repinced by the following:

2.2 2.2
V2 T 2. Ix® 2502 o W22
At —————— - Sntn— -~ o »
@2y 2fuem MO 2 Mip

whence,

VvV = Y Bex
Qp\/ 2 *

This expres;ion brings out the\effect of the limiting velocity
of the projectile and that of the parameter, ,of locading conditions, B.
Since in most guns B varies within parrow limits, it follows that
the velocity mainly depeads upon the‘potential f/e of the powder
and upon the relative weight w/q of the ciarge.

{ xdx/% ()
0

\

Determination of the function Zx e . In ordgr to
evaluate the integral
x x
XX . xdx
x) k \
0 El( x2 _ Bl x - ?0
1 31\
“"‘ \
\ p
\
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we decompose the integrand into the simplest fructions, finding the

roots of equation §;(x) =~:0 and introducing the designation:

Byv%e -~
b = 1+ 4 —— =V1+4y>1;
. k2
1
2
X = _El + K1 Yo - k1 1 + \//{ + 4 ?Eﬁg -
2B, 4,3% By 2By X2
1l
Ky
L g i *
281(1 b); (16)
'kl kl
Xy = ~=~—(1 4+ Db Xy = —=(1 - b 0;
1 281( ) %y 2Bl( ) L 0;

51(x) = (x - x;)(x - x5).
Let us write an equation to determine the numerators of the simplestl

fractions:

A A
x 1 + 9 :

B1(x) 4 . X} X - X,

Equating on both sides the coefficients of identical powers of x, we

find:
Al(x - x2) + Az(x ~- xl) - X;
whence,
x x
Al "o 1 2 A2 - 2 »
x2 -x x2 - X3
F-TS-~-7327~RE 479
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but.:

k

1
X, = Xy = = — b,

2 2 By

and; consequently: S~ _

: b -1

b+ 1 -

A = A =

1 2p T2 zb

¢
bil bzl b-1 b-1
_ 2b 2b b ~2b
X - X X - X x
= 1n 1 ( 2 - 1n (1 -2 - X - 1n Z,
-X \ "X2 1 X2
. . 1
{
where: - -
.. b+1 b+1
2b “ob
X X
R E 1-— ] . (17)
x5 Xy

Xy and Xy are expressed: by equations (16).

Substituting here these values of Xy and x5, we get:

btl b-1
. - - g X +- e I ; ¢ .
) X b+ 1 kl b -1 kl
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Inasmuch as the quantity b = \/1 + 481\1,'0,/1(% = /1 + 4%
7/ -

is itself a functiocn of the parameter Y - Blwosz, the function

Zx actually depends only upon two quantities: the constant x‘-

2 . a
- qu:o/kl and the variable 8 le,kl.

From these data it 1s possible to set up a table. Since the

-B/B
equation of the path contains the expression Zx / 1, the tables arve

set up for log Z;l to make their use more convenient.

The quantities entered (introduced) are Y and B.

x
It is not difficult to show by another method that f xdx
2 ¥1_ Yo
0 X' —~%x- -—
By B

\ .
= 1n Z, is a function of Y- Bi%o/kl and B = le/kl’ if the numerator
and denominator of the integrand are multiplied by B%/kf. Then,

X L xd - x B
f k) 1 BdB
InZ2_ =~ - .
x B 2 B By B§-s~x
: 1 1 170
0 | /x| - 7x-
X 1 X

fhis"éxpression actually shows that ln Z, is a function of Y
and B.

The table of the logarithms of the function (log Z;l) is

presented below (Table 1)}.
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Pfucedure for Using the Table.

Lr

For every problem we will have one value for the entry parameter

X - Bf#o/k and a series of values B = Bix,'ky, where x varies

T bt ihiing i i

between G and 1 -~ zo.

. S s o T EN w e g
it "'- . e . v S Dk B
&

g £ When determining log 2 l, write down the values from the -columns
5 containing the pearest smaller and larger tabular values of 3

. so- that the value of x obtained from the solution would fall between

them. The coefficient of interpolation will be the same along all
the horizontal rows. For this reason, it is iwore convenient to
interpolate first along the horizontal rows between which are contained

the values of P selected in the problem, and then to interpolate along

the columns (vertically) using the corresponding interpolation

coefficients B.

In order to reduce the number of vertical interpolations (except

l';- " such cases when log Z =1 4s used for computing the values ﬁ and B )

- it is more convenient to assign tabular values of B for the

e
0K, SR MY Xy Y
<

intermediate values of x and to perform only the horizontal interpolation

for G and then determine x by means of equation x = kIB/Bl'
3. DETERMINATION OF THE MAXIMUM PRESSURE GENERATED
BY THE POWDER GASES

The maximum gas pressure Py in the barrel is the most important

o e ‘ualmacire
L M pra, S RS, AR S S v, L5
.

e

ballistic characteristic of a gun. Its value depends on the chosen

' conditions of loading, and the obtainment of the desired value of Pm
gerves as a criterion or control for the proper selection of the
; g‘ ) wveight of the charge, the thickness of the powder, and other loading
f,* . couditions.

For this reason, it is sometimes important to be able to compute

the pressure P for the given loading conditions, without constructing

F-TS-7327-RE 483




the entire p, | pressure curve.

In order to achieve this, it is
necessary to derive first a formula for determining the value of
x

m

for which the gas pressure is maximun.

In this case the derivative dp/df or dp/dt must be equated
to zero.

The expression for the derivative was derived earlier

by differentiating the expression for p from the fundamental
equation of pyrodynamics.

R {f“’ LI (a 212l a+e }.
dl l‘?+1 s 1 ' 8/ £

Equating the expression in braces to zero, and substituting
for v and 6 their expressions in terms of x:

si
V = — X, 6—1+2lz-(=50+2)\x,
¢m

we obtain the possibility of determining X for which the pressure
is maximum:

(6, + 2Ax_)¢m | “\p
mlx 0 m 1+a_.§.).ﬂ;-(1+9)-0
5 Iy SlyXn ‘» |
\
o \
|

\

i
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X6, 4+ 2¥Ax 1\Pp
.9 L .1'+’a—-5--£l—- -1+8,
me f
k
B(1 +6) .

If the powder has a constant burning area A= 0, k, - X645 = 1

and

X = . (19)

It is seen from these equations that in order to determine X
it is necessary to know pp, but inasmuch as we do not know it, we

must find the real value of X by the method of successive,

0
approximations. First we assume a reference value p; ), substitute

it in equation (18) or (19), and compute the value of x&, following

wvhich we substitute the latter successively into all the fundamental

equations
B8
. 8l Bl
[ -—5 . - 2' » - 4
v - x; ¢ +0 + kyx + wAx®; | /? ‘w“(Zx 1);
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and find4$53 values of vé, (é, é, pé. if p; coincides with péo),
it is indeed the truec maximum pressure. However, if pj ¥ p£0),
then pé must again be substituted in (18) or (19) and a new i;
obtained; then the whole process is repeated and a new p; is obtained.
I1f x; is chosen correcgly, p; should not dififer from p; by more
than 10-20 kg/cm? (the accuracy of a slide rule).

It must be remembered that equaticens {(18) and (19) are used
for‘calculating X and can not be employed for calculating Pp.

¥hen carrying out the approximations, the following should be
kept in mind: the relation p, x is represented by a curve shown in
fig. 134, which varies slowly in the neighborhood of the maximum.

" The true value of Xp is not known, and we find by means of

equation; (18) and (19) cnly a cértain approximate value, which,
even upon substituting the value Py ™ 300 kg/cm2 for p in (19)
will give a value of xy differing from the real value by not
more than 10%. The value of Pp %11l then be sufficiently close
to the true value of Py and at the next approximation xp will
practically coincide with Xpe

¥hatever the gquantity of péo) assignéd in the first approximation,
wvhether smaller or larger than the real value of Py» the values of

pé and p; will be smaller in both cases than the real P+ In the

subsequent approximations the pressure values must increase, tending

tovard the real py, f.e., p < p <_P;?-.pm real’ regardless of the

0)

m Lecturer Belenky proved analytically that in successive
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approximations the quantity xé is monotonic increasing, tending
P o

toward Xn s the limit, while x; is monotonié¢ decreasing and tends

toward  the same limit x .

-

£
*

Fig. 134 - Determination of x, and Py (graph p, x).
This law must be used for controlling the accuracy of the
calculations.

Since the pressure varies slowly in the neighborhood of
1 the maximum, the p‘ obtained following the substitution of these
values of x' in the working equations will be very clese to the

real |

and the second approximation will be adequate to obtain

a value of P, Sufficieatly close to the real value,

Kaving found Xy we substitute 1t into (11) for v, (10) for ¥,
(14} for {

o » and (15) for Py, and obtain ine elements of the
‘projectile's motion, {.e., vn"?m’ [m, and Py at the instant of
greatest pressure. '

Expression (18) gives the analytical expression for x

at
vhich the gas pressure becomes maximum.

Can this equation always -
be used to determine the maximum pressure?

In most cases when the chosen loading conditions are normal,
this formula will give the right answer.

But there are cases when -
F~T8~7327-RE B
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it may yield a value Xn devoid of physical meaning. This occurs when:

Xm > XK;

X =1 - z, gorresponds to the instant when the burning of the powder

terminates, the instant when the inflow of gases ends. For this

reason this formula will give realistic results while Xp is smaller

than or at most is equal to xx(xm </xx).

¥hen X, < xK, we have a normal case: the maximum pressure is

reached before the end of burning. W¥hen x, =~ Xy, the maximum

pressure is reached at the end of burning. Finally, when X5 > Xy

we have the case of the so-called "unreal"” maximum, i.e., a purely

analytical case. In reality, when Xp > Xy the powder, burning

according to a definite law, stops burning on the upward branch
of the pressure curve, the flow of gases stops, following which

the pressure begins to drop, in spite of.the fact that the analytic

LY
maximum had not yet been reached. 1In fact, the maximum pressure

in this case will be the pressure pK at the end of burning.

TIEIDNA0OYIEY ION DINAVYD

Fig. 135 - Pressure Curve with Fig. 136 - The Maximum Pressure
Normal MHaximum. Coincides with the End of Burn-
ing.

A large value of x, may be obtained when the parameter of the loading
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conditions, B = sgcgfuﬁfuym is small; this happens wheon the powder

is thin,

GRAPHIC NOT REPRODUCIBLE

-

Fig. 137 -~ Unreal Maximunm, X > xx.

Such cases occur in practice when the firing is performed with

thin powders for special purposes.

The appearance of the pressure curve in these three cases is

shown in figs. 135, 136, 137.

At the end of the first period, we hLave:

b
|

-\ ° ) - = ‘ - &
¥ = b t'*’x [y = 1,0 - ety;
B

. Bl
xg = 1 - zp; Ix - Iav.K(ZxK - 1;

\
i B8
\fu ] - xi
sl \ 2
v L ¢ ‘p [ * .
K
K A K \ s(ll + IK)
\
\

The same values will bharacterize the start of thé second period -
| .
the period of adiabatic expansion of the gases.
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4. SECOND PERIOD
The second period, starting ai the end of burring of the charge
and ending when the base of the projectile passes the muzzle face

of the gun, constitutes a process of adiabatic expansion of the

AN

gases.

This period is comnsiderably simpler than the first, because the
vhole process is reduced to the expansiocn of gases without the
addition of energy and without heat losses.

In the second period q'- 1, the number of variables is reduced,
the independent variable is usually taken to be the path { of the
projectile, and equations expressing the pressure p and the velocity
v as a function of [ are derived.

The beginning of the second period is characterized by the

following data obtained at the end of the first period:

Ymlivevg I=lip=p

The fundamental equation of the second period is:

v2
ps(l1 + /) =t - %%cfmvz - fw |1 ~ |, (20)
. vi
P

where

2fu v2
©6m fip
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Since the gas temperature is lower in the second period than |
in the first,ti’should be made larger in the second period, but
most authors take an average valiue of 8 common to both periocds.

A: Derivation of the Expression for Pressure in the
T~ Secend Period

IEEENOWE

The equation for pressure is derived from the adiabatic

equation:
1490 1+6
pY - pxwx ’ (21)
%
where pyp and p are the gas pressures at the beginning of the second

period and at a given moment, respectively;

A~~'K and ¥ are the free volumes of the initial air space at the

same instants.

From equation (21), we have:

" Expanding the quantities ¥ and W, we obtain:
¥ =Wy - awt sl = sy + [);

¥We¥, -owst sl =s(ly +1{).

Substituting these values in the equation of p, we find:

. 1+ 6
: ' [y + [
) p - px Ml K ' - (22)
(3 +1
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At the yuzzlc face, we will have:

| , 1+6 ,
o mp | K /
X ; ‘
A {1:‘1;\

B. Derivation of the Expression for Velocity in
the Second Period, v = f5(() ;

Let us write the fundamental equatidn of pyrodyaamics for aﬁy
moment and for the beginning of the second pericd:
2
v
ps(l, + [) = fu {1l - —— |;

2
vﬂp

i "i \
pxs (-t 1 + tK) - fu (1 ~ ;2- R .
ip/

Dividing one equation by the other, term by term, and replacing

. the ratio p/pK from (22), we obtain: -
1 - v2
! ! (2] 3
1tk Vip
2)
11 + 1 vE
- gy
— . vnp
whence
9
11 + (K vi
V\«vn 1 =] s 1'-—*2-—. (23)
- NP t, + 1 v
A fip
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by its expression Vg ™ 7;;(1 -z.),

If we replace v 0

K

o B 4

e . 2
- =B —{ -z,

2 2.2, 2

vy 871 Y - 20)” o
2

n

P

*  and then
[, +1\e
8
vev, \/1-[ 2K 1-22a - 207 . (24)
P o+ 2

¥hen { - él’ we obtain an expression for the muzzle velocity Vol

o Lo+ 1\® '
SRV SV S b P LR R
® @ 4 + ( 2

(25)

This equation is of great importance for investigating the most
desirable solutions when‘designing guns:
Equations {(22) and (23) or (24) give the expressions for the
. g&«s pressure in the bore of the gun and for the projectile velocity
in the second period as a function of the projectile path [.
* Thus, on the basis of the assumptions made, the equations derived
above express the relation between the conditions of loading and
the ballistic elements of a gun.discharge in both the firset and
the second periods. They enable one, for given loading conditions,
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N to compute the projectile velocity and the gas pressure at different
‘ points of the projectile's motion in the bore of the gun, and to
2! determine the maximum pressure, the muzzle pressure, and the initial

(muzzle) velocity of the projectile.
Curves of p and v as a function of [ w111~usua11y have

the form shown in fig. 138.

GRAPHIC NOT REPRODUCIBLE
f:ﬂ -y \ aamae Ty ‘ ,‘1

Fig. 138 - Normal p, [ and w, | Curves.
1) Period I; 2) period II.

C. Equations for Calculating the Temperature of Powder
Gases.

Having solved the fundamental equation of pyrodynamics and
established the relation between the basic elements (p, v, [, and ¢)
and the new independent variable x, and, consequently, also the
relationship between these elements, an equation can be written for
determining the tempgrature of the powder gases at any given instant,
and, in particular, %t the ianstant the projectile leaves the bore
of the gun barrel. \

The temperature éf the gases flowing in the path of the projectile
determines whether thé discharge will be accompanied by a flash,
or.will be flashless, gecause gccording to the present concepts the

!
f£lash accompanying a shot is a process involving the burning of
\
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inflammable bydrogenr and carbon oxide gases making up about 50% k
of the entire gas mixture.

If the temperature of thesce gases is very high, the gases
will burst into flames when mixed with the oxygen in air, and

produce a flash accompanying the shot.

-~

In order to cobtain the desired equation, let us make use of 4
. the energy balance equation in which Ecw is replaced by R/B:
Rleup RTwy ; ‘vaz :
® e 2

-

Since RTl - f,

foy (; 1) eme?
9 Tl 2 ?
) i
or
. 3
T mé v« 1 v2
'F_... - - ‘e—f-— —— 1 - ““‘;' !—é“o (26)
1 2feo @ Vﬂp .
Xnowing v and ¢ from the first period, let us find 'I‘/T1 and ]
* then T. }
Inasmuch as ;
v 3
; sl :
'1" V & e Xyuw 3
] pm
Y=y + kyx R Ax%, ;
‘ ; F-TS-7327-RE ORI 2 B ;
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5212
B = ,
fogmnm
ve got
T _,.8% x> _ | _BS x?
T 2 2 2y°
1 ¥ (‘y0+klx+uk)

This equation shows that the variation in the temperature of the
gases depends uvwpon the conditions of loading (parameter B) and upon
the shape of the grain (coefficients ® and A).

At the end of burning (¥ = 1) wve will have:

Ty " BS

2
—E‘—; l - --2--(1 - Zo) 1 - ‘?I’Ko (27)

-~

In the second period ¥ = 1 and we obtain from equation {(26):

T 8 2
Tl 2fiw v
Np
where
{ V% = g-{.‘:.).
P ¢8m
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At the instant the projectile leaves the barrcl

2

: Tp, v

2§
_}mni-«r-l-ce,rA.
-~ \'4

fip

This value 'I:D‘/'T1 varies in artillery pieces between 0.65 and 0.75.
Comparing the value v from equation (28) with the values T/T

and TK/TI from equations (27) and (28), we obtain other expressions
for T/T_ :
r T/ :

0 e
— PR — e e 1 - —__.2 (1 - zo) ™ H

T T

1 l1 + 1 1 11 + !
T 2 Lo+ L\® v [t 4+ \®
'.i‘:- -~ [1 - B..#e..(l - zo) -—l-_.___g - TL -—1-—-_..3 ;

1 “ (1 + {m 1 11 + gy

Beo l, +1 6
TA- Tl 1l - -5—-(1 - 20)2 1 K .
(y + L,

This equation proves that the temperature of the gases at the

instant{ the base of the projectile passes the muzzle face depends

on:
1) the temperature T1 of the burning powder;
2) +the temperature of the gases at the end of burning:
- . Be 2
1""1‘1[1-—5—-(1—20) R
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this temperature decreases as B increases;

3) the ratio of free volumes (l1 + !K)/(l1 + é&)’ which
depends upen the path traversed by the projectile at the ¢nd of
burning and decreases as IK increases.

D. Equations for Calculating the Time of Motion of the
Projectile.

The time t does not appear directly in the solution of the
fundamental problem of pyrodynamics; one may compute and draw
the cur&es of the gas pressure p and the projectile velocity v
as a function of the projectile path [, and by this means solve
thke fundamental problem of internal ballistics, yielding the
design data of the gun (volume of powder chamber, length of
projectile path).

But in order to fully clarify the phenomena taking place during
a shot, it is also necesecary to kanow the variation of the basic
elements (p, v, |) as a function of the time t, particularly,
because some of the existing devices permit determining the path {,
the velocity v, and the gas pressure p as a function of the time ¢
(velocimeter, piezoelectric manometer). Hcreover, it is the
pressures curves as a function of time which must be known when
solving problems relating to the theory of gun mounts fuzes and
firing devices.

The tiﬁe of motion of the projectile im the barrel can be
obtained mosf simply if the curve of the velocity v as a function
of the path [ is available, and by using the following equation of
mechanics: \

[ 1

\‘ V = tii—l—u-
dt
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wvhence:

dtng;.l._..

If, having the curve v, |, we plot the curve 4%, [, then by

taking the integral:
t 1
j -gv-df:
0

¥e could determine the time of motion of the projectile along the
given path { . But inasmuch as at the lower limit, when [ = O,

v = 0, and the integrand 1/v becomes infinite (1/v = 1/0 = ),
it is impossible to perform the integration. Therefore, the

time t is divided into two parts, t' and t":

t -t + t", . (29)
where the first time interval ' - from the start of motiorn up to

2 point representing a small length of the path [' -~ is calculated
.approximately, and the second interval t", from [' to [ along the

path ~ is calculated by means of quadratic formulas:

{

" = f LTS
v

li

The first time interval t' is found from the equation:

t! [

1 ]
ave.

’
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where, in the first approximation:

0+ v'
9

av. 2

v'
)

\4
and v’ is the velocity of the projectile at time t' and the path

distance ['; coansequently:

t? -g-.t._'."

v?
the smaller the distance {', the greater will be the accuracy of
determining t.

Substituting t' and t" intc (105), we obtain the equation giving

the time of motion of the projectile in the bore in the form:

{
¢ - 20 f RS (30)
v! v
0

Inasmuch as the first interval of time for traversing the path {°',
as determined by (30), is very approximate, Prof. E.L. Bravin
proposed a more exact expression for computing the average velocity
of the projectile along the segment ot'. He assumed the acceleration,

rather than the velocity, to be lipnear along this segment (fig.

139):

dv s sa
- p= (p

+ kt
it - ¢m gm0 s

where k = (p' =~ po)/t’ is the angular coefficient of the straight liane
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P, p'sy & is a factor, smaller than unity, determ;ned {rom the
condition that the areaé bounded by the curve p, t and the straight
line PP, réplacing it along the seﬁment,ﬁ%' are equal. Y¥hen

determnining V;v/ in terms of v', the coefficient o is reduced.

. P' -p, \ .
dv = j?ég po + '--T'-—O t} dt. i
e S Lo oy . T :w "5?\‘? /
3

AIGIONAOYITY ION DIHIVED

Fig. 139 - Curve p, t Along the Initial Path Segment
(According to Bravin).

-

After integration, we obtain:
P' - p. .2
8 ot
o e (1 .
Y Pm (pOt * t! 2

Assuming that t =~ t', we find v', the velocity of the projectile
at the time t': '
¥
8 Po +P

t'] = 2 t'.
2 . qm 2

v' = 1550 pot' +

-

%

The average value of the projectile velocity along this

-segment is found from the followilng equation:
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L gt
t
S P - D
vioe vat = L 22 pt + ——20t2 gt -
av 1 ' )
Ct t' en 2t"
0 0
pot 2 p' - p 2p, + p'
- -EE -.}- 0 4 0] t'z - Sa. o t!
v 2 6 om 6

or, replacing 75% t' from the preceding equation by v', we obtairn:

2py * P' o
B rev————— .5.-,

v'
Y,
Py *+ P

The final expression for t' will be in the form:

' 31" Pt P
v' U
2p +

Pyt P

t! = . (31)

av.

This is the equation proposed by Prof. E.L. Bravin£_3;7.

Comparing it with the previous expressiop for t', we note that
the time t obtained by the first expression is shorter, and the
difference between them increases as the length of the segment [°
and the pressure p' iancrease. At the limit, when p' is reduced to

P the two expressions for t' become equal:

0’

¢ w 3L 2p9 20"
“V' 3p0 v"

If the relation p, t along the first segment is expressed by a

second-degree equation, the resulting equation will be more exact:
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Prof. Bravin also introduced equaﬁians for computing the time
irn segments measuring 0 to tm, td to t

K’ and tK'to %A:

¢ . 3{m Py + Py
n

.
14

] ‘2pgr+ Pm

(a)
3¢, - 1) +
YTt Sl ; (b)
2 4 vn(pm + 2pK) - \rx(?lpm1 + pk)
3, ~ L)py + 1)
oy - £ ug 2 . (c)
: Vx(px + 2EA) + Vp‘(sz + RR)

In order to compute t in the first period, the graph —, x
can be used also.

Indeed, x = z - 2z

o’

\

dx_ _ 92 1 de WP p

dt dt el dt el IK’ .
whencé

dx
dt IK —;—,
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by et i Dl edda s

N 4

- :
iy
x L
t =~ I Cl:i‘: (32)
K p 5
. 0 ‘i
The function under the integral sign does not become infinite when y ‘
P, > 0. :
¥hen calculating the total time of the shot,it is necessary to .
consider not only the time of motion of the projectile, but also - §
the burning time of the powder in the preliminary period before the .
start of this motion, which is computed by the following formula: 2
P,
to = 2,303 TO log 5 -
_ B
1
vhere = 13 R 1

= e./u,, and p_ is the pressure of the
T ’ 1Y B
0 1 - 8/8 Ig X

igniter gases.

The time lapse between the instant the firing pin strikes the

percussion cap and the end of burning of the-igniter is usually - ‘

not taken into zccount.

5. SAMPLE CALCULATION OF THE GAS PRESSURE CURVE
AND OF THE PROJECTILE VELOCITY BY THE [ ¥ETHOD

aV_.

The following data are given:

Barrel: 76 mm gun, 1936 model

B s CAT S T

ChaMber CRpaCity, wO 1n dmsaooootcﬂ.oooo'i.ico.oao.osolosls

Cross-sectional area ot the bore, including the
rifling grooves’ 8’ 1n dmz..000’....‘.‘.00.".....0.0'0‘4692

Path traversed by the projectile in the bore, 1 ’
in dm.l.'.0....‘..0..0..‘.."...‘l.......'..l.'.'.00933 91

Projectile:

Weight of projectile; q, inm kgeeoeviviernsnnrerrneeeseb.2
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Fo,‘cj ng pressure; po, in kg_{‘,cmzb € @ 2 % 0% 0PN S L Lt PO LG GE S 0300
Charge:
¥eight of charge, w, 3N KBuceeesesneeneroenonsensa .08

Powder coenstants:

Powder energy (force) f, in kg-dm/kg.....n......950,000
CO“VOlume, a, 1“ dma/tkg"a.coeu-oao:o»---acocob..aoo.gs
Density of the powder, 8, in kg/dmg...............,1.6

Burning rate, Uy, of the powder when p = 1, in
dm/sec:‘kg/dmzi.‘O.l.O.Q.....‘C.....O.‘.'..0..'..0‘.0.0000074

Dimensions of strip (thickness 2e1, in mm).l.......1.357

®\= -0.06
Polytropic index < S, B
L S P
FUNDAMENTAL EQUATIONS

A. Preliminary Period

0 X
0 £ 1 x(eo + 1)
——S— + a - n— o
Py ]
B. FPirst Period
sl

¥ - ﬁx; Y=g + kyx +¥Ax2Z;
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..
4

B B0 o

- - m— -~ ——-‘-—-x"

{"I‘? (Z - 1); p - 2 ;
}

] AV s I‘i’+€
/

] ' 82!2
kl -KGO; °T qu:m;
: {
d /
] B-g—:-xx; l\‘,-jla - ay; X
§

{aA \
. A L DU T
I\Vav' 1A -awav. ' a 5 s (a 3 ’

: b= lafz_ 2= (2 1)
0 a ) s |\ o 3

J FEW S TN

; { 2, is determined from the double-entry table:
kB T
’ By B
170 1
= and f = —x;
; 4 k2 ky
- 1
1
g |
n
rq kl
¥ | X = .
‘I m B(1 + )
3 - 2%\
& Pn
3 ) A
] 15
] { A C. Second Period
] ,
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glven data:

Lo B REFT ESI £

‘ /11 +IK -

p~F ’
k
\ iy +1

1

i o2 =) o -oms

2
Iy + 1. v
v evgo \/1 - !1 'zh 1 - —g-
y Viip
or
[+ [.\@®
Y= ¥ 1 -2 < 1-!}-94(1-20)2;
p 1, + 1 2

<
Poe |
L=
1
-spﬁ
Q{m
a j€

The calculation of the constants is effected first from the

D= 0.7128;

1 1 1 1
a 3 0.7128 1.6 :
¥ = - = 0.02429;
- 1 1 950000
-t A - I + 0.98 ~ 0.625
Py 30000
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4( 0. 05()6)0 02423
% \ 1+ 4 ——@0 - 0.9972;

1.06

: 2¥9,
zo " e (1, (2294 ;
x(eD + 1)

X =1 -2 =1~ 0.02294 = 0.97706;

0

kl - 3(50 = 1.06°0.9972 = 1.057;

ey 0.C0678
IK ~ > = 916.2;
vy 0.0000074

w 1 1.08

@ = 1.03 + & < = 1,03 4+ — . 1:°% . 1. 088;
3 q 3 8.2

sly 0.4692-916.2-98.1

- - 6253;
¢m 1.0886.2
, 1,515
!0 - - - 3.228;
8 0.4692

s21Z  0.46922.516.22.98.1
B - - - 2.617;
fogm  950000°1.08°1.088°6.2

Bo 2.617'002 B

B = — -¥A ™ e 4+ 0,06 » 0.3217; — =~ B,134;

1 2 2 By
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G o e b Wy

B,

L ¥

Vi i A s A A TR | TS e T e eaSt AT ey

. ' . l ,’ .
‘%ilﬁ(&e ”}emmwowua - -
o A :A

oo . ‘
—- = 3.228'0,7128:0.355 = 0.8168;
1

2) B § ‘
1 - P 10\790 ;
1.6/ _/

L \ 037i38

1 bK ‘§Bi*0,_ 0?3?L?-0.02429

: r

e
ky

- ;2 ~—~ = 0.006995;
1.057¢

1.057

Ry sewe o iar e T s gacy
e e S

B 47

e

B
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’- 2nd approx.

— —— % 0.3512;
2.617°1.2
> + 0.12 \

232000
1+ . 0.355

950000

1.057 .
S - 0.3517.

© O 2.617-1.2
—_— +0.12
236000 - _ T

l+ « 0.355

950000
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COMPUTATIONS FOR THE SECOND- PERIOD

SRR R R T

B3
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7
Cilculation 6f the constants of the 'second period:
7Tla 2950000°1.08-98.1 vi
WG i = 149300, 000; —= = 0.250;
A , P 1,088-0.2°6.2 vi
Jooe "‘ o " . - p
: . v ,
€ =1 - o= = 1<0.250 = 0.750.
'“’
> ' p
‘From the first period, lgl + (‘ = 18.384.
. o 2
px = 892 kg/cn®,
Table of the Elements of the Second Period |
‘Inftial ‘l‘_oi'nu'la; ' No. Operations - Muzzle 1
T . . , ‘ : .| Face g
f '1 sl‘ ""‘ ¢ ' zi
- 1 22.60 7.44. 33.91
0+t } 2 27 33-81 1
1.2 2 ™ 0.973 0.973 0.973 ;
- 892 18.384 . & ‘1 . . Ve . I
0.973 +l -
- .3 l+ 0 23.573 | 28.413-| 34.883
4 | ——= 0.7799 | 0.6471 0.5270
: 0, +1 o .
. { —
1.8920 | T.8110| -1.7218|
$ | log 7 < A ,
’ o ~0,1080 | -0.1890 | -0.2782
I ‘0.2 v2 (| -0-1208 | -0.2268 |. -0.3338]
vevw 1% {1l ==—2]= |6 1.2 log 3 _ E
{ P Vi T.&7u+ | 1.7732 | T.e662
P-TS-7327-RE 512 %
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! Table (Cont'd.)
«ff Inftial Formulas No. ( Operations ‘ j ¥uzzir
Q o i y L Fase
1= 12,220 \/1-0.750%" 7 ki C.7420 | 0.5932 | -0.4636
‘ 8 | p=pt? | 662 520 | 414
' (| -0.0216 | -0.0378 | ~0.0556
3 & 9 | 0.2 log 7y . i 0378 .
3 N I Y.9784 | T.9622 | T.9444
: _ 10 2 0.2 | o.9515 | 0.9166 | ©.8798
1 | 0.750%°°%2 | 0.7136 | 0.6874 | 0.6598
f l12 | 1-0.750%%-2 | o0.2864 | 0.3126 | 0.3402
2 113 | v in dm/sec | 6530 6822 | 7117 |
k The results of these calculations are shown in fig. 140 on p. 510
'. in the form of p(l) and v(l) curves.
, (
l (
d
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CHAPTER 2 = PROK. N.F. DROZDOV'S EXACT dEttions 1/ ,
(¥rittea by Prof., G.V. Oppokov)
The assumption
‘ , - ‘ ’
. v,
D made in the preceding chapter gives an approximate solution. Yet

the differential equation of the projectile path in the first period

Bx(i,6 + 1)
ol Y

— - - . ) (33)
“dx

can be integrated exactly.
Prof. N.F. Drozdov's. great contribution to the field of internal
ballistics lies in the very fact that he was the first to solve this

) equation exactly, without any additional assumptions or simplifications,

v
2
Y N

as had been done before him by all the other authors without

exception.

T
N
SINRIIES + B

Namely, if we introduce for convenience the following dééignation:

¥

i M= ._E.’.‘__.__, ' ) . (34)
i Y * BO 2 ’
N . *’— .—E-x
' .
¢ .
equation. (33) takes on the form:
-
d -
i} 4w - Ml (35)
dx L

) i . ek
—— W = n e n [ Y e s ey et et le Ll Ll ]
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When this differential equation of the first order is integrated,

‘the following relationship obtains:

jx ’ x

WA U amen s sawe s Dt o + S e otk

o'/ ' - - " Y )
A Mdx - -Mdx .
. x -
0 1 0
= e _ l\‘,a e Mdx. (36)
0 i g
s ¥ i ’9 :
[ : H
The integral-expongit of e 1n the right-hand side of equation s
’,‘ (36) is (see pp. 478-481) equal, as before, to: ¢
!1 S 3 g -,gi ﬁi
» | B Pep 1 >
| 1 Mdx = 5 - e = 1nZ . (37) ,
‘ . X T+6 - g2 |
) 0
j The main integral is: : -
| - Mox \ Max ’
| me s e - X x -
§ 0 0 ‘.
( Y - l*e Mdx = l*d(-e )
0 0
o . . :
Cod " ° Noting this peculiarity, the author integrates by parts:
f : X ) X ’
' . X
® . ] - J ldx x - s Mdx
. ! 0 0
oo ‘ Y= -l\ye + S e dl*,
0 0
[ | . ,
i !
o
o
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iy .
3 va“" N . . ] ‘ l 2.' l /l, ’

w;:};‘; N *’ -AYO + klx +RAX "- A - a*’

LE v
i 1

1 - PP w ( 1 )

s there 8 « — ('@ < — |},

o . s 8

g ' dl*‘,- -ak,dx - 2axAxdx,

b
.%‘ | .

B * whence

4 i nce

* B % B < B
B B, B By
!-- -l*z ”w - akl Z dx - 2agd Z  xdx. (38)
0

It is now possible to proceed in two ways: eliminate from the
equation either the first or the second integral in the right-

*  _ hand side. The author selected the second course.

Namely, it follows from (34) and (37) that:

o x

: Bxdx

{ ‘f ‘ S - - EE_ In 2

Yo * k,x - le 1 —
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2 or

xdx
—e = 1lnZ,
2 K Yo ~
X - rx - o— ’
) - >1 81 ,

9 whence

\ = " )
; 2 K Yo %

’ x - ¢+ el o e
BB

e 5% e O gy

P4

A

and, consequently

2
o
o
£
©
o.
3

2 .
XX = | X < =X =

-
[
-]
ot
N

dZ =

\-ﬂ
Nl’
|
o
Q.
]
[ |
|
~N
o
[
]
N
]
ll’
[
o
[}
| £
[~

B

N, N
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w
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N

B ;
— :

A et

Xdx @ =—
e B .

4§ B B :
§ . 2B, ‘;’ K, H?} i
- - - — y A xXdx + =—— A dx,

3 B B -
b . . o x ‘i,
3 because when x = 0, we will have: \ .
U . . -"‘: AP E i
- “‘ e B . 4
1 L 1 9 .

. z "Q*’ - 10

s -

We will find the desired integral from equation (38):

,.-.‘

* - - .‘W‘B L

e iy s gt 1 e o

x -
- zBl dx = X (B.x 2 K. )zBl
xdx = - = 3x - Exo- *0 +
0

~ - b 4 —_-' .
‘Vo ‘
H . o ‘ + +
i T © B+3B B+ 2B
. . . 1
\. o *
§ . ‘Now the obtained value of the integral must be substituted into
(38), noting that: '
) SRR k . ¥ 1 e 2
’ 39 B, B 2 ,
1 r-rs~7327 RE .. 818 el
| o | . i -
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and using Prof. N.F. Drozdov's :designations: 7

Y
[
4

o U "223;'} b = == +am )i ©
B + 2B, Y o Yo S

.i
I.;

1~ ay). (39)

i
[~}

s

B B
o\ B By
Y- =—X :Z, + loﬁyl =€ Z ¢x). (37)

O

Let us introducé the value of the integral from (37) and the

value of the integral found immediately above: . i
x v

x @ = I Mdx . : Q
4 0 h

Y - f I*e . Mdx
0

P T

into (36):

o o g o

B - B _B_ . P
K Bl N A Bl ) .
l=2 (,2 - aa (xy- Be xz), Z +

2 .
x B
' By
o *
Upon expanding the expression in bxiékéts and replacing
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? Ay
after the trarnsfer of lﬁ,tO»the left-hand side, we obtain: :
d +
i
-1 Dividing both sides by [, and moting that: .
8 £ ) yd )
2 s
\x-I . l - '“" - —A—
. rt- ~ ? hd f
7, A.T]‘, o o ; 61 .
. b
L, ' . i
} B e . .

- we obtain Drozdov s vell-known equation* ) {

x
,:' . T+ (pl«- < 5 Z dx)2 . - (40)
A :
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.The table for the last 1ntégral'v1th‘three entnies,iﬁ, r,lqnd,

‘B/Br, was prepared by Prof. D.A. Venttsel and is reproduced in the

% ¥ appendix.
j Table 2 - Computational Formulas Used in Drozdov's Exact
| — . Method
! X ‘ ' :
3 S K 4 1w, g 1. = fl_: v - ] i L] )
? 3 lq! 8 ’ ‘ “v“i‘ 14 ‘,o l’ s ’
. . w w 1 w 1 )
IZ i\
' / { -1, - H -é—‘ 5 7. - 0. ...4..., :
U Yo~ 'a T Moi Gy e L= =g %,‘
‘) i
S a
- 2. w em |, - ‘B_g_ - . \
|
|
i t
B C
B 1 Yo
‘ TV " e 7
‘ 28 A 1 : \
‘ 17T ey 265, °1 " _‘-t—)(l*'o * fati¥o)s
{
clkl - ﬁkl(l - ll) . ’-A_ —
8 14 ; 6 .
1 14C 1
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The equition given by Droidov for the iaii-ul pressure is:

| X
- - +h
™" s
- 1l
where
. BO
2
P Yu~ 7" Kk
h = 41:, . . and x, - ——,
B+ 2B x B B B + 2B
) | . B-i - f‘ 1l

b is a function of B and A for which & special table has been compiréd

and is presented below. This equatién enables one to avoid

approximations.
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- The equiations of the preceding table should be applied to the .
first period; the equatfons for the prelimipary and second periods
F / remain unchanged (Table 3). .
6. EXAMPLE OF CALCULATING THE GAS PRESSURE CURVE
AND. THE. PROJECTILE VELOCITY
BY PROF. N.F, DROZDOY'S METHOD
) The; folldving.dAta are given:
F\ . , Barrel: 76 mm gun, model 1936 : ;
ChaIlber CapaCj.vty, 'o'r iﬂ d;m,aeo«o'on‘om‘ ooooo e;ooonm..o.'o.l’osls
Cross-sectibnai area of the bore, including rifling, ‘
s, 1“ dmzcoovo.‘.o-o«ooooiooooooocoo‘o.oooo-oooo03.'05‘004692 X ;
Path traversed by projectile imnside the bore, {_,
1“'q.'......‘.l0.0'...0.0'0‘.0..0-.0...4..0....‘05060'0033.\91
Projectile
Weight of projectile, q, In Kkg..c.. vevrereonccncaces 6.2
Forcing pressure,. pg, in kg/cm?........,.....2u..... 300
R Charge
'eight of charge;w, 1“ kg..0.0..0...0.‘....14..“..0'0 10’08
} ) ‘Powﬁér constants
. Powder energy (force), f, in kg dm/Kg.......0ne.....950000 .
. Covolume, a, 1n d‘a/kglb.0..’..0........'..0.‘....0. Oe9§
3 Powder density, 8, in kg/dms...a..............“...., 1.6 S
. \
Burning rate of powder, Uy, when p = 1, in ?
dn/sec: kg//dmz.OQl"o...'."......' ...... 000.'!00'00000000074
Dimensions of strip (thickness 2e1 BM)eeeeecensecaeal, 357
. > _ R« 1,06
-z 7
- XX = 0.06
Polytropic 1ndex k'&..’..'tl.a....’0..0"-’...&."..01.2
[‘ )e-k‘1000..000....00‘.0'.000...‘..0..DC...O...002 ’
T . >
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BASIC COMPUTATICNAL FORMULAS Z
A. Preliminary Period
1.1 . .Z
b é . A o 2 ;
¥, = ———; 6 = v<+4-ﬁ¢; z e——T0 %
0 1 x 0.0 e, + 1) .
_I... +Q = = . 0 3
Po -
B. First Period
sl
x - - 20
M-S L R St ® Ax*;
B B ?
x — - a——
B B
A B8 2 clk 1 ’ i
A*‘l‘ A ‘1 -6—1' ( Y- —x ) + (bl' - —_181 Z dx)? -
0 i
2 \\
Be
¥- -7 X \\
p = 15 ’ ! (*)
Ap+ A {
\
where ) \
. 2 |\
51 B®
B = -—-—-K; B = — -X)\; \
fuym 1 .
kl -xso; al - ___Zﬁ-; \ 4
2 + 2B I \
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10 3 81“'

L]
L =2; A-
0 8

A
0

B )
B/B1
Z and J Z
1]

dB are determined from tables with the two entries:

»n 3
B+ 281
vhere
B8 o
c AC TR R
h o —2 .
B + 2B
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€. Second Period

, \ 148
Ay YA

- H ; ’ ¢

\a, +A

\- vﬂp

‘where

or

. A, + A\ 0
P

Ty = Eﬁ.(r - 20)2 H -

e Iy & :
Al'—l-a—ﬂ-SI"lvﬁA.

The computation of the constants is effected first from

the knovg data: . )

w _ 1.08
a W, 1.;15 " 07128
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1. .1

0.7128 1,6

-~ - = 0.02429;
950000

. +-0.98-0.625

30000

- .‘ ). - \/
60 \/1'4‘47\4}0 ‘1+

2y

x(;6~4 1)

4(-0.0566)0.02429
e . 0.9972

ladﬁj

2:0.02429
Zo

e = 0.02294;
1.06°1.9972

Xy =1 - z, - 1-0,0?294 = 0.97706;

Kk, = »6¢

1 0" 1,06:°0.9972 = 1.057;

e 0.00618

Yy  0.0000074

1.08

3 6.2

e -t

088;

N N

sly 0.4692-916.2°98.1

-
.

¥ L 1.088°6.2

D

$ .

¥

4 v
f

}

B

'

= 6253;

1.5815

= 3.228 dm;.
0.4682
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. 0.7128
- ——x-= 0.5545;
1.6

AR T L 3391
' :s'“‘;i . . . AA- ’ = 10 '51‘;

lo  3.228

4 N 2
B 4
E. ..
o 24 . .
E o .
% 2
-,

52‘;: - 0,46922.916.22.98.1
¥4 Bom oo o e
' fSem  950000-1.08-1.088-6.2

. . BE . 2,617°0.2
p B, = 5 - k= ————+0.06 = 0.3217;

> I, B+ 2B, = 2.617 + 2°0.3217 = 3.2604;

. LR

2“x 2' ("0006)\

A, W -

1 B +2B  2.617 +2.0.3217-

- -0.0368,

ld' AVO

.o

t ) * /
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e

P
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P
.
.
= A/»«--“.bm-m s A A e S e R e

- 2.617; -

EY

5

by, = = - (1 +a,) = 0.5545 - 0.7128:0.02429-0.355-0.9632 = 0.5486;
1 Ti 1 !

. k *
15 : ¢ = 3}4(1 + ay) = 1.057:0.355.0.7128-0.9632 = 0.2576;

v e+ nrmmgtee ——aa s cutm kL L o o PO

i an it s Ty

- R ——

#omme s wam

P e S




e - T Ry BRI e e s 5 St P e I = TR T e T Sl
i .
b,
1R cky  0.2576-1.057
44 — — ce w0, 8464;
B). 0.3217
y

0.3217°0.02429

: . . . é 4'
. 1

; A § 'x- 9 ‘ -
. ‘ x? 1.0572
g X

- 0.006995;

B 2:617 u
- > B - ‘8‘ 134‘;
By 0.3217

f-A = 950,000-0.7128 = 677,200.

( Computing xg

x B cmmi— h,‘ - (‘)

] where " _ . \
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COMPUTING THE SECOND ‘PERIOD
Computation of the constants of the second period:
2gtw  /2:98.5-950000-1.08 ‘ °
i i o — ~ = 12,220 dm/sec;
¢8q 1.088:0.2:6.2
[1 - B2 (- )% = 0.7502; ’
L
From the first period A, +Ay = 6.1028, p. - 832.6 kg/cmZ.
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The results of the calculations are presented graphically in
fig. 140.

ADDITIONAL NOTES FOR THE SOLUTION OF THE PROBLEM
OF INTERNAL BALLISTICS BY PROF, DROZDOV'S METHOD:

In the -equation for the ‘path derived by Prof. Drozdov:
) x B _B
X B B
AgtA =a, (¢~ B2} s (n — ¢y | 2‘1d )2 o
" A 1 5414 1‘ 2 ’ + & 1 1 x)4
’ 0

ot wm P B/B,
the fuaction Z, and the quaﬂtity;( z dx = Y g z dp are fTound
P 1 .
0- 0

in the tables from the entries:

B¢ B
10 and B = “Lox,

X} ky

For the sake of convenience all the calculations of log z'l
B B/B
and [ z ldﬁ are performed on another form for all values of x,

0
i.,e., for all combinations of B and Y

X‘- 0.006995; P = 0.060; B = 0.1070; P = 0.160; p = 0.220;

\
g, = 0.2973. ’
K B B/B) \
The values of log Z~! and of [ Z dB are written for every

0 1

combination of r and B, as shown in the form. Then the interpolation

factors !f and §y are determined from the following equatiops:

e \
3
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C - x x'n" for horizontal interpolation;
2! Yot1 ~ (n
' % B - Bn . .
At 3: Cp; = ~——imm—— for vertical interpolation.
' 'psnfl - Pa
; Z,i J )
¢ Example. Find log Z°1, 1f it is known that } - 0.006995; B = 0.2973,
" 2l These valués of ! and 3 are not found in the table of the logarithas
of function z"l, and we take the nearest values, i.e.: ,
{ = 0.006 and Y} = 0.008;
p=0.28 and B = 0.300,
t' and we find the values of log ‘z"1 for these combinations. We then
; . calculate C,r and: CB
Q= 0.4975.
. 3
g 0.006 0.006995 | 0.008
, F 16.28 0.1309 | 0.1295 0.1280 0.006995-0.006
- §Sa = 0.865 | : 1 S~ — -
e 0.2973 0.1397 ¥ 0.008-0.006
] - 0.4975
3 ! L4 ‘
, ‘ 0.300 0.1428 0.1413 0.1398 0.2973-0.28
: . 0.300-0.28
iy
z
i :
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We find:

log zz:)\- 0.1309 - 0.4975(0.1309 - 0.1280) = 0.1295;

/ ™~
log 2;;) = 0.1428 - 0.4975(0.1428 - 0.1398) = 0,1413.

-

Pinally we obtain: T

log 271 = 0.1295 + 0.865 (0.1413 = 0.1295) = 0.1397.
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DETERMINATION OF { 2 . df FROM THF TABLES )
o f
‘(APPENDIX 3) ‘
: : ’ { B/Bl ’
Prof. N.F. Drozdov reccmmends to calculate the quantity | Z dx :
. o0x
’ ) B/Bl
'by the trapezoid ruie.. In order to simplify ‘the calculations, Z dx 4
o — 0
may be found from the tablés ¢/ the function:
B =
1
Zz dp,
0
where
B = Brl"x:
\ 1
\
! } . whence |
1 i ‘\\
& \,
8 E . .
] x s
- | 31'
f i Consequently
'
2. x B B 2 _
.. r By K, (B .
|l Z dx = — | Z dB.
1 1 .
g 0 0
3 K 5
3 — B/By .
/ The tables of the function z d8 sre computed for B/B1 -
0
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-5 6, 7, 8, 9 .and 10.
In our problem the xétio B/Bi - 8.134, i.e., it is intermediate

)

between B/B1 - 8.0 and B/B1 = 9.0. This requirés an additional i

' B/By .
interpolation. Therefore the determination of 5 A df when B/B; =

B 0.
( B/B;

= 8.134 is reduced to the calculation of J Z ‘df from the tabdles,
0

first when B/B; = 8.0, then when B/B; = 9.0. Interpolating these

B B/B
values of the integrals along B/Bl’ we finally obtain [ Z / lag for

0
B/n1 = 8.134 and the given values of B.
It ;houldlbe remenbered when performing these calculations
that the interpolation of the intermediate integrals must ‘be

performed by the same procedure as that of the function log z-1
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CHAPTER 3 - SOLUTION OF THE PROBLEMS OF INTERIOR BALLISTICS
S 'FOR THE SIMPLEST CASES ‘

'1.  SOLUTION OF THE PROBLEM FOR THE CASE OF INSTAKTANEOUS b
BURNING OF THE POWDER '

The c6lloidal powders now used burn gradually, in parallel

3 ; layers, and when the web thickness is properly selected, permit

—1
o o > e
v
e A B B S s

" I ——— oo .
 nn i roes . i A o v

At

the regulation of the flow of gases during burning, so that the
naximum preésufe in the bore p, would not exceed a given value
(isually of the order of 2500-3500 kg/ca’).

The case of the instantaneous burning of the charge.is
apamalous and generally does not occur 4m practice. It can be
achieved in practice only under special éonditions, such as, for
examnple, when burning a2 charge of dry pyroxylin in powder form,
or of fine porous powder loaded very densely.

In that case, it the loading density were normal (A = 0.50-0.75),

the pressure prior to the projectile's displacement would reach a

= . maximum value of the order of severzl tens of thousands of atmospheres

‘(20,000 to 40,000 kg/cnz). The present ultiuate strength of gun

barrels is such that the walls of the barrel would burst when subjected

to such pressures. : )l

Nevertheless, the case of the instantaneous burning of a charge
is very interesting; its examination has an important meaning when
compared with gradual burning of powder because in so doing the

importance of slow burning and of the shape and dimensions .of the

povder grains become evident. Moreover, the pressure curve p, |

in the case of instantaneous bhurning becomes 2z sort of a "guide"

for the curves depicting slow burning. These p, { curves arrange

themselves with a certain regularity with respect to the instantaneous

¥-T8-7327-RE 543
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burning curves.
The amalytical solution of the problem is very simple in the
case of instantancous burning, because one of the four variables
. entering into the fundamental equation of pyrodynamics is transformed _
~ into a constantﬁzq'- 1). '
' Let the gun and the loading conditions be characterized as . i
. Zollows:

The chamber capacity is W the cross sectional area of the

0’

‘bore, including the rifling is s, the path of the projectile isl, ,

the weight of the charge is w, and the weight of the projectile is q.
The energy of the powder is f, and a is the covolume; the adiabatic
index is k = 1 + 8, and the secondary work done is taken into.
account by the coefficient ¢~ a + b %%a

¥hen ¢ = 1, the fundamental equation of pyrodynamics is:

i end of burning.
When the powder in the chamber 18 burned instantaneocusly the
maximum pressure is determined by means of the well known formula:

=3

F~T5-7327-RE 544
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Pé(fl + 1) = fw- %%¢mv2; (41)
the equation of the projectile motion 1is:
. psdl = ¢mvdy, (42)
- where [1 - (N, - aw)/s is the reduced length of the chamber at the ot
¥ _
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L3
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1
4
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P 3 e " sl (43)
l = ab 'o - QW 8’ 1

et

The projéctile will be set in motion whem the following initial

conditions obtain:

. 13
4

[=0; v=o0; LR U // .

Eliminating pressure p from equations (41) and (42), we obta.in

v 28 a function of [:
2
. temv
al - emvdv 1 2
(, +{ ' 8 \ L
X tw - -o-(pnvz fo - -e—qsnvz
. - 2 2
{
. We shall integrate this differential equation with the variables “
separad’ .; 1 |
’ )
Oouv?2 1
T = - —
ll + . 2 V2 )
‘ = “\1l - = » (44)
e np ;
whence .
l 0 ) ,
(' 72 - '%A l - 1 l » * ;\
- l1 + |
\
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‘where vﬁp = 2gfu/98q is the limiting velocity of the projectile:

A I‘ 8 ,
. vV -V \//1'- 1 . (45)
i oy L

Thislformuia:expreéses the velocity v of the projectile as a

function of its path [ ; the velocity increases when [ increases.

= nT
P

In order to detérmine the depercence of p on [ from (44) we

determine:

/1 8
fw - -ezf?mvz = fw

t,+1)

and include it into (41):

{
L { e
. ps(i1+1)-fu
= ' tl + 1
.
!
; Whence
t?ﬁ p 11 1+0 { 1+6
« .
But
ll . '1 N '0-(10-'
[1+[ ¥, +8l ¥, -awit sl
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18 the ratio between the free volumes in the initial air space
weasured at the start of motion and at the given instant. Comsequently,
formula (46) is the equation of the adiabatic curve starting wvith

the motion of the péojectile under the pressure»pi - fA/(1 - aa).

7 The change in tempcrature of the>g§ses dbing the work is

expressed by the following relationship for the adiabatic process:

Consequently,

"/ T
\ V- Vnp 1l - :I'T. (47)

‘\
If we divide the numerator and denominator in parentheses in.

x
formulas (45) and (47) by 1,» and designate l/l1 by y, we will get:

i

\

L 1

t v ey - —— (48)
\ p \/// (1 + y)e’

P=Pp

e, (49)
1 (x4 y)140
The quantity yxis the ratic of the relative projectilé path
\
to- the reduced length of the free volume in the chamber at the end
\
of burning, and is c&lled the "number of free volumes of gas
expansjion."
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Equations® (48) and (4%) show that under the givean loading
conditions (q,w, f, q, ¥,: ) the pressurc p and the velocity v
depend only upon the numbey y of free volumes of expans.un. The
greater y, the higher is. the projectile velocity and the smaller
the pressure; the greater the reduced length 11 of the {ree space
in the chamber, the greater will be the gas pressure for a given
projectile path. .Consequently, tie drop in pressuré as a function
of the projectile path will be slower in 2 large chamber than in
a small one.

It can be proved that the velocity of 'the projectile computed
by means of formula (48) for the case of instantaneous burning
will be always greater than the true velocity for the case of slow
burning, under the same charging conditions.

Indeed, the maximum work done by a powder charge « of energy
f in setting a projectile of mass m in motion, is determined by
the expression fw/@. This maximum work will be the same for both
medes of burning (instantaneous and gradual) and is expressed by
the areas under the curves sp as a function of [, when [ varies

between 0 and infinity. Consequently, in both cases the areas will

o
L fo
dl - —.
.jp :
0

be equal to:

In the case of instantaneous burning the curve p, [ starts
from the maximum pressure Pys thep varies according to the “
adiabatic law, decreasing continuously {(fig. 141, curve I). When
burning is gradual, the curve II of the pressure p, [ rises

F-TS~7327~RE 548
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gradually IrOm,pO, losing a portion of area A; and inasmuch as
%he total arca uader the curve p, | in the second case, limited

oy {= @ , must be the saue as the first, curve Il must necessarily

P« v

cross curve I during burning of the powder whén the pressure drops,
and then continues to rise. The excess area B betwecen the curves, %

{ when [ = ®is the limit, must be équal to A. But inasmuch as the

actual bore has a finite projectile path'&a, the portion .of the area

‘B on this finite length is always smaller than A, and consequently,

Zoe e

for a given path length, the work dome by the gases and the velocity
of the projectile will be always ‘smaller in the case 0of gradual

‘buraing than in the case of instantaneous burning.

3 Fig. 141 - Curves p,! and v,! Depicting the
K. Instantaneous Burning of Fowder.

dIIONA0EdTY LON DIHIVYD

The actual initial (muzzle) velocity of a projectile of a
‘medium-caliber gun, measur<ed experimentally, represents 80-90%
of the velocity computed by formula (45).
- i 1d ) Inasmuch as the work represented by the area under the curve
| ’:; {- p, | is larger in ‘the case of instantaneous burning than in gradual

burning, especially at the start of the wotion, the corresponding

velocity curve rises more steeply at first., Thereafter, because of

SR gl o
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the addition of the area B, the velocity increase becomes greater
in the case of gradual burning, and curve IT gradually begins to
approach curve I (sce fig. 141), tcné;ng at [ = 00 to the .common
limit vy NI

L 2. 'SOLUTION OF THE PROBLEM FOR A POWDER WITH A CONSTANT
: BURKING AREA, WHEN THE FORCING PRESSURE IS ABSENT.

AR AN

; R The solution of the problem of internal balljstics for

degressive powders in the presence of forcing~pr4g5ure results:

3 in equations which do not give an immediate relation betwe;h~v,

P, and [, and, therefore, exclude the possibility of an analytical

{ examination of the basic rélations. In order to obtain this
possibility, it is necessary to introduce certain simplifications

_into the initial data, namely:

. 1) Consider a powder having a constant burning area

| ( X = 1; A= 0; Y= z.

Y
— - - - S .
- -

2) Consider the forcing pressure to be negligible; assume
that the projectile is set in motion when the pressure equals the
pressure of the igniter gases, and that the burning of the charge

begins when the projectile is set in motion:
po"’ Py’ ""0- 0.

3) Assume that a =« 1/8.
) ¥Yhen these assumptions are made, the solution of the fundamental
- system of equations is greatly simplified.

The first assumption correspoads to the burning of long tubular

- F~TS~7327-RE 550 -
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powder; the second corrésponds to p}ojectiles with pre-cut bands;
the third assumption simplifies the solution and permits determining
the qualitative efrect of the loading conditions.

‘Under the assumptions made, the preliminary period does not

exigt. The motion of the projectile -begins under the following

conditions:

Inasmuch - as a = 1/5,

IA-I* -1 - [, - ad).

The law governing burning of powder, ¢ = f(z) will be

expressed by the formula:

Y= i=x, ' (50)

and  may be taken as the independent variable. Then the cquation

of the projectile velocity will take on the form:

8]
v- '@Fé**"’ (51)

The fundamental equation of pyrodynamics is:

Polly +1) = tuy - Som? = 1o (¢~ 24P

The equation of the elementary work done is:

F-TS-7327-RE 551
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psdl = mvdv =

BS
: dl _ Bdy _ 2 Ty
tl + 1 - ] ‘
. _ B8 _ BS
1 2 ¥ 1 > ¥
Integrating, we get:
' _ 2
1 ; B8 L)
1 4+ —— =41 - =—
[1 ’( Q‘V ?
whence,
( [ 1 ]
{ = { 3 -11.
“ (1 - EQ_‘{))'G
2
L. ..

\ 1
! 2 1 1
‘ B8 | ° s |’
\  + y)2
\‘\
\ .
F-TS-7327-RE \ 552
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the differential equation of the projectile path will be:

g A RS

8 ]

(52)

(53)

(54)




&nd inxsmuch as

sl
VYV = ..—-5\?,
‘fm
v e )2 (55)
‘ QSIK -%-
(1 +y)

These equations give the direct dependence 0of v and ¢ on the
path of the projectile [, or y = l/[l.
Let ys write the pressure equation, taking into account the

igniter pressure:

Igrg . fpp  In%B.
o~ - N

W

)
_ XBWB + ?y—n‘? - -—-2-4me2

s(l1 + 1)

. (56)

Let us designate the relative energy of the igniter gases by:

fBu

‘B
Lw - XB.

Carrying fw outside the parentheses in (56) and replacing v according
to (52), we obtain:

F~T8-7327~-RE . 553
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N

Xg Y
“g-,l
1 -*-A:2

(1 +y)
- (57)

where p; = fu/sly = £4/(1 - ab) is the maximum pressure developed

by the burning of the entire charge within the space of the chamber

when the density of the loading is A ~ i

B8 1 J

l - > L) 5 °n the basis of equation (52). E
5

(1 +y)

Substituting e d by its expression in (54), we obtain the pressure

ey

‘p as 8 function of the path of the projectile: :

3

X ] 1

B 2 1

P=p - + Py == | 1 - . {58)
. 11+y 1p8 9

The quantity

- Xg _ fgm _ Ps,0 - p
114y sliQ+y 143 B |

represents the pressure developed by the igniter gases in the

variable space of the bore. At the start of motion y =~ O, Pg ~ Pg o
’

a8 the projectile moves forward and y increases, Pg decreases () + y)

»*

times, and may be neglected when compared with the pressure dg&é}ﬂqp_e‘q by thc‘
- F-T8~7327~RE 554 e as
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'/gaaes o? the powder -charge.

At the beginning of motion, y = 0, the second ternt is equal to
zero (equation 58); p = pB,o' Asﬂthe pfgjectile moves and y 12%§i273§,
.the factor in the brackets increases, while the factor (1 + y)
decreases.

' The maximum pressure Py will occur at some value:ym.

Let us designate: '

/

~.

: 1 1 - (1+%— ) , -(1+6) 1
F(y) =} 1 < " :‘,1 ™ (1 +y) - (1 + y) . §
-_— 14 —=— , :
A+w2la+y 2 |
- o
Differentiating F(y) with respect to y, and egquating the 1
derivative to zero, we: find: ‘ ;
2 - :
1+8\8 —— - ;
1+y = ~ = F,(8) = const. : (59) b
1+ &
2
-/ when 8= 0.2; Fy(8) = 2.387 7
whence, ‘
. 4
=L (7@ 217« -ad)/F 0) -17. (60) ;

Substituting (59) in (58), (54§ and (55), we obtain the expressions

for all the elements of motion at the instant p = Ppax.

3 d ,(J
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the parameter B.

(;
- o 320 ———
p‘ ' B ?

reic

F-TS-7327-RE

et e L s

¥hen 8 = 0.20, F,(8) = 0.3200.

2+9
8 o
p - - —— < - oy
(| B 9[2u+m) 1+86
: . 2+6
| o\ %
o RS U )
’ B 149 \1+9
3

™
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parameters at the instant of maximum pressure.

Py

———

B

and to 1 -~ @A, When A increases, {, decreases.

F _{8).

2

between the elements of motion and several characteristics and

Thus the path lm
is directly proportional to the reduced length of the chamber 10

The pressure Pn

determined-by Nobel's equation; p, is inversely proportional to

—[3 .'An - 1,387(1 - ab).

{61)-

(62)

{63)

Equations (60} (61), (62) and (63) give the direct relationship

is directly proportional to the pressure p1 of instantaneous burning, .

Prof. Drozdov's parameter B. ¥, is also inversely proportional to

e e e

S ediag e L asias

o
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The equations are very simple and accessible to analysis.

At the end of burning, ¢ = 1.

» ilx _
V""-;;;; ‘ (64)
» .
.1 .
. 1+ y - —3 H (65)
(1 -Be_ e
2
2+6
e
P BS
,Px - = 1‘ ry - Pll l - —— . (66)
1‘+r2- : 2
(1 + yx)
2 .
( ’ ?n the second period we find the following relationships:
\ 148 140
I ll+ix p(1‘+yx
Y “\1+y
\ _
Substituting for Pk and. 1 + yK their expressions from (65) and
!
(66), we find:
) . P 1
D - 1 (67)
| P (1 + y)1+8
1 - B&
’ 2
{
o This is the equation of an adiabatic curve with initial ordinate
BG\

A =5); the latter increases with B, i.e., with the thickness
F-TS-7327~RE 557
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of " the powder.

e oo, it ns g PR
2 ey
3, - L

From the general equation for the projectile velocity, we have:

L

1 +y 6 [ ’ /
V =™ Vn }1 - {2 -————*—K——- 1‘ - .Begg. - -
P 1l +y : \ 2
%
R ) 1 1 > ’
“ Vop 1 - B (63)

s 8"
l - — 1 +
2,( y)

The Temperature of Powder Gases. :
In the case of instantaneous burning we had: ‘ 'i
T - - g - -——-—-————a, (69) <J
1\ fy #! (1 +y)
{
When burning is gradual:
§
SN U AP A 2 1
T 2 2
1 ¥ Yiip an
‘ Substituting the values of ¢, v from (51) and (55) and v?‘p
- 2fw/¢8m, we get: ) ' |
3
T 81y 0om 21w 1 '
LI S 1 -
. T m ZIwQSIK e
' (1+y 2
;’,
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or *

T o e T ‘ ‘ 7 (70)
{1 + y) )

A comparison of (69) with (70) ngl‘shav that in the expression
for relative gas temperature for gradual burning of a powder with
a constant area, the value of the exponent is one-half of that
of instantaneous burning. Consequently, the temperature drop in the
.case of gradual burning proceeds almost at halft the rate of
instan{aneous burning, because the ‘work done in traversing a given
path is considerably smaller.

The expression for the tempersature T/'r1 may be written as a

function of ¢ only:

2,2 2
v ¥ v
LR NS SN e SRS R L '
Tl 1 7 1 v2 b ¢ 1 3 ¥, (71)
Y fip ftp

i.e., the temperature of the gases inside the barrel duripg burning
of powder with constant area is a linear decreasing function of .

At the end of burning (y = 1)

[UFVURSE—————E

The thicker the powder, the larger is_B, and the lower is the

tempersture T

In the second period, from expression (68):
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11
N D g b e, G

»
- 2 3]
v 1 . ;
1 v 1 - 5 (1 + y)

Y
”

' ’ é 4
5 :
- B6 1 + ype\® T . )
: I UL Y (a3 S @)
TL | 2 1+ ¥ 1 Tk :

R RIN T

These relatively simple equations enable one to perform an

b

My

! analysis 6f the variation of the elements of a shot (p, v, ¢, T)

as a function ¢f y -~ the relative path of the projectile -~ and to

R AP,

establish 2 series of relatiors and properties of the variation

2

curves of these elements.

1
| ’ e ) .
o

.
b ;
L . 2
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CHAPTER 4 -~ ANALYSIS OF THE BASIC RELATIONS FOR THE
‘ - SIMFLEST CASE )

K B 3

1
:(*"'1’ "o"°'°'7)

1. ANALYSIS OF THE FUNDAMENTAL CURVES p, v, T, V.
An snalysis of the equations~obtained,and of the curves represented
by them, shows that thgy represent certain- simple combinations of two
types of curves (fig. 142):'
a) ‘Tvo polytropic curves with exponents k = 1 + 9 and k' = 1 +6/2,
starting from the poimt (jl, 0), first dropping steeply and then more
gradually;

o —— -

b) Two curves analogous to the polytropic curves but with
exponents smaller than unity (k -~ 1 =8 and k' - 1 = 6/2) also starting
from point (1, 0) and descending much more slcwly with the convex

side directed downward.

Fig. 142 - Basic Types of Curves for the Simplest Case.

i HII0Nq0YdTd LON DIHAVED

Indeed;, in the case of instantaneous burning:
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X - ..;_..1;___;.8..; (69)
T a+p

in the case of gradual burning:

T 1 - (70)
T —
(1 +y) 2
2 1 ‘ 2 T \
[ R - - 1_.___:, - [}
Y B9 1 8 B® [ T }’ (54")
(1+y)2
Yoo /B8 oo /2 ;. 1 -
Yip 2 Be 8
(1 +y)2

2 T 1, . '
“\/fa?_[“ﬁ“]' (5

P ht (57")

\ ,
F+T5-7327-RE 562
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- - . i 0 . - - . (66')
Py 1+
(1 + yx) 2 . ;
/'/
In the second period: :
1 ]
il ’ ! X (67"
N ] . - - - ;
1] 1 = -
2 j :
]
T 1 1
- ] (72)
3! T 1-B g4y
1 2
~' ‘ 4 :F
1 | . . |
. il VAR Bl . (88') ‘
3 > v“p‘ TI . T k”—. k7

el s

Each 9! these equations contains one of the polytropics indicated

above in the form of a variable component,

The curves Ezm, y for instantaneous and gradual burning are

[ -

.expressed directly in the first period by curves with exponents 8

2 a )

and 8/2, according to equaticns (69) and (70).
The ordinates of the curves ¢ (54') and v (55') are obtained
{> from the ordinates of the curveswATVTl - ]l - T/T1 {(fig. 142), measured
from the borizontal 1-1, multiplied by the coefficients 2/B9 and 2f0/1,0s,

raspectively, and laid off upwards along the abscissa from the origin
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of coordinates to Vg wkich corresponds to the end of burning (fig.

143). The curves y, y and ;X—, y are inverted with reoespect to the
i

curves 3%%, ya

The ordinates of the relative pressure curve (57') are obtained

by multiplying the ordinates of the q:Curvg,(54') by those of the
’ 148,/2
auxiliary pelytropic curve y = 1/(1 + y) . This same polytropic

curve ls the geometrical locus of the pressure Px/pl at the end of

burning, expressed as a function of y (66). gg

ges

et

Q

2z

Q

-3

8

)

!

&

Fig. 143 - Curves vy and v/vnp in the First Period. E;
It is séen from equation {66) that when B (powder thickness)
increases, Px decreases, while Yk increases é"according to 65)_7.
The curves of the second period elements start to the right

of the abscissa yg; the curve T/'I‘1 represents the curve T/Tl - f/(i'¥ﬁy

of instantaneous burning, multiplied by the quantity 1/(1 - B§/2)>1, "
which means that the graduzl burning curve is higher than the
instantaneous burning‘curve, the difference in height increasing
with the parameter B, i.e., the difference being greater for thicker
powders,

From equation (60) it is seen that the maximunm pressure is

independent of the parameter B, of the thickness of the powder, and
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of the %efght cf the projectile. For a givenA, the length:lm is.
proportional to the leéngth I of the chamber; whén A ihcreases the
‘maximum 4s shifted toward pﬂe start .of motion.

/  The ¥éal maximum pressure / equation (61)_7 is proportional

to the maximum pressure in the case of instantancous buraing, .

P = 1A/ -:qp);.énd'is inversely proportional to ihe‘parameter B,
or to: the powder density -squared. When /the énérgy of the .powder,
entering in the exégeséions,fbr t’he‘p,res,sui'e,p1 an the denominator
B, is changed, the maximum pressure varies»propoféionally to the

energy of the powder 'squared, and to the weight of the projectile,

»
’,

8213g
B~ , »
futfq
and
e p- : foem -
1 fa
B 1 - aa 521%

-

¥hen B increases, -hnd v, decrease also Zféquatioaé (62) and (63)_7.

"The adiabatic pxessure curve in the case of instantaneous burning,
1+0

p/Py = 1/(1 +y) , actsas "guide".for the adiabatic curves of
the second period when .the powder burns gradually. The ordinates
of these curves are obtained by:multiplying the ordinates of the
first curve by 1/(1 - B8/2) > 1 /Tequation (67).7. The thicker
the powder, the larger is B, the larger is this value, and the
hkgher will the adiabatic curve of the second period lie above the
F-TS-7327-RE 565 o
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¥ , . .
? adiabitic curve of instantancous burniug. The ratio of the ordinates
‘ hi

of these adiabatics for the same valuc of y (or 1) is constant

and eéqual to 1/(1 - B#/2) = const.

In ‘the casé of instantaneous burning and in thé secénd period,

1 the projectile velocity is pnoportiogal‘to the squafefgoot—of ‘the

‘ X temperature drop, rather than to the first power of this factor,

o, as is the case for the first period. i
( For a given charging éensity'and during the burning of the
powder, the projectile velocity in a given section does not depend

upon the weight of the projectile. Indeed, from ecuation (55)

. . . !
C2fw | 1 -
i Vv - ,'1" S
! . . Ixes Ny
+y)

L AR ST W e

s

it is seen that for a given value of y = 1/10(1 - aa) and for one

and the same powder (f, a, Ix) the projectile velocity is independent

of the weight q of the projectile. The same may be said of the

temperature of the gases / according to formula (70)_/.
If, all pther conditions being éqﬁal, we vary only q which
enters into parameter ‘B, the pressure p and ¢ from equations (54)
) and (56) and the maximum pressure Pp and *m increases in proportion
with q, while the location of the maximum and of the value vn'éoes not :
change. - _ - . ' S
r Consequently, the velocity curves coincide point by peint

when superimposed on each other(®), and only when the projectile

i,

(*) The result obtained (when a = 1/8) can be confirmed by comparing it

with the GAU tables (6rdnance tables), compiled for py = 300, @ = 1, and
t ] 1.06.
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s heavier will' the velocity Ve / from equatien (64);?»be attained

éarlier.

AIFIONAOYIHT LON DIHIVID

'Fig. 144 - Ballistic Curves for the Simplest Case.

The fact that the velocity of the projectile does not vary

‘with its weight may be used to verify the complete 5urning of the
powder in the gun. if & gun using the same charge and type of
powder is used to fire two projectiles oi different weights and
the velocity remains unchanged, it is proof that the combustion
of the powder was incomplete in both cases.
. Pigure 144 illustrates the basic curves of the elements of
a shot {y, v, T, p) as a function-of { or 'y for the cases of
instantaneous and gradual burning of the powder.

All the curveé on the graph a}e marked with the number of
the equation they represent.
There are .two basic points on the ordinate axis, ore is at -1,

- F-TS~7327~RE 567
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E . and the other at-1/(1 - 'B8/2).

The two pressure polytropic curves with exporents k and k',

- and the two "polytropics" of temperature, with exponents 8 for

f ’ the first point; thz ordinate at ¥ =~ -1 is :a common asymptote for

( -2a1l of these curves.

‘The curves p/p1 (67') and T/T1 {(72) for the second-gperiod,

? issue. .from the .second point, whose ordinate is 1/(1 - B8/2). These
j' curves are real only to the right of the ordinates/gx/p1 and Tx/rl -] -
: - B8/2 with abscissa Y

Both of these curves lie above the corresponding curves for
' 1nstahta§eousibprn1ng, the ratio between the two sets being constant
; | and equal to 1/(1 - B8/2) >'1., The horizontal line whosé ordinate
: equals unity is the origin for the curves p/pl(l) and T/Tl (69)
and (70), the terminal point for w and v/vK (54'), and ;s an

-~ N.*‘

f ) asymptote for v/vnp for'both‘iﬁstantaneous and gradual 'burning of

powder.

The curvesy, y and ;ﬁ-, y in the first period are similar to

the curve AT/T which is measured from the. horizontal along the

WIS

or.ingte equal to unity,

o e ey,

The curve p/p1 for gradual burning is obtained by multiplying

the ordinapgs q@ curve w(54') and of tﬁe adiabatic curve 2 with the

TUTTI L

exponent k' = 1 + 6/2.
2. THE CONDITIONS FOR MAINTAINING THE MAXIMUM PRESSURE CONSTANT.

! y This question is very important in the ballistic design of

guns, because the conditiorn. generally imposed is that pp must not

exceed a certain given value. For this reason the designer must
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knov~hp§ to vary the londinﬁnéondigiOns in order to keep the
‘maximim pressure cdﬁslant.
:‘Tﬁg relations derived above permit one to establish the
’:aialyiiéal conditions under which the ﬁaximﬁé preSSGrezpn ¥ill
remain constant ‘when the weight of the charge or its density are

varied 4n a’given'gunv

Indeed,

4.3 F_(8)tuweq. .
' 2 (61°)

Pa " B F218) = 1 - ad s212g

B €

For a given type of powder (f;, @, u;) and a given projectile
weight q, p, can be changed by varying either A or I, = 91/“1f If A

is increased simultaneously with 2éj or I can be kept constant.

| PIQ
The condition of the constancy of the pressure is'obtained im: the
forn: 7

pz(e) fa

P, = — —— = const,
n B 4 . aa

Le us group together the constants:

[ ot
8(7; - u) - ~3;F2(8) = const.

Pesignating:

4 ——
5:—12(0) - a, -z const,
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we -obtain the conditicn for maintaining ph'édhstdnt:

i1 4 ' ’ £
= - a)‘-fgn = const. (74)

‘In the case when a ¥ }/8, whenu{b = 0 and ¥« 1, the condition

P, " const. has an analogous form:

!

j

B I ;L_~~ const.
- ‘Q /8 .

Knowing qhiand given}b, one may find. the quantity B insuring
the obtainment of the given}ph; and, knowing B, one may find the
corresponding value of 2e, or Ilm '
Condition (74) shows that in order to keep py constant when A

is increased, it is necessary to increase the th;ckt’xessﬁe1 ol

o e e e

increasing the weight w of the charge together with the increase
of A.

From the condition (74) of the constancy of the maximum
pressure for.a giveau gun, projectile ahd powder of definite physico-
chemical properties (f, a, §, uy), a direct relation may be
established between the weight w of the charge, the thickness 2e

1
of the powdér or its pressure impulse IK’ and the reduced length

of the free space in the chamber at the end of burning:

|

=

/

: . .
;= (- 0a) - ?%“(1 ~ap) = -éwy
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Indéed, 'substituting the value of B in (74} and replacing A in

*ihefdehoilnatbr‘by‘b/l, wve obtain:

w212% (Y - G 2,2
B 1N, (1 - aa) ] 810 )

. fogme  1%m

-

’ %xahspgslng qil the constants te the right side, and designating
them by K,» ¥e obtain:

¥, tafem 1RO

K l - -
L1 2 S— - K (75)

Py

Computing first K, from the loading conditions by the following

‘equation:

F,(8) 1 2n . \
K = :

n. p.sz) . ‘

and calculati ¢ the value w of the charge necessary to insure a given

initial (muzzle) velocity YA, we can determine the full pressure

iypulse Iy = e,/uy

V.S :
1 - . (76)
- \/Wo -aw .

PN

This equation shows that ir order that the pressure in a given
gun remain constant when the weight of the charge is increased, the

full pressure impulse IK or the thickness 2e1 0i L& powder must be
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increased at a somewhat ‘higher rate than the weight of the charge.

Let us apply equation {76} to calculate the powder thickness
for a 76 mm gur, 1902 model.

The conditiens of loading are:

’,

¥, = 1.654; 5 = 0.4693; w= 0.930; q = 6.5; f = 9-10°, @ = 1;

uy = 7.5:107% %= 1.08; 6=-0.2; p_ = 2320-102.

0.32-92.1010.1.08-0.0663

0.46932.2.32.10°
- \/36.4:10% = §03;
e VK, 603:0.930 603+0.930

I = - - - = 660 kg-sec/dm2;
K vy V¥, -~ aw  /1.654-0.930 0.85

ey = 2u,Ty = 2:7.5-1076:660 = 0.0099 dm ~ 0.95 mm =1 ma(*).

¥e have obtained the thickness of strip or tubular powder of

grade SP which was used in this gun, and developed a velocity v, =

(*) This thickness of tubular powder corresponds to the grade
7/7, while the thickness of 1.28 mm corresponds to grade 9/7.

<]
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Indced, substituting the value of B in (74) and replacing A in

the denomipator by w/¥, we obtain:

821§WQ(1 - aa) s_-zxiwl

fugme fuztfm

a. _

Transpcsing all the constants to the right side, and designating
thex by Kl, we obtain:

2 . 2

J it | 2 _f¢em L°F,(B)em .

K1 = - 2 - Ky. (75)
s2 2

8

- Computing first K, from the loading corditions by the following

r~ equation:

‘ "F,(8)1%m e e
Ky = ———
.

and calculating the value w of the charge necessary to insure a given
initial (muzzle) velocity V,, We can determine the full pressure

iypulse Iy = el/hl

i U VRS ‘

i e T T IK i (76)
.s F '0 - QW .
“§ﬂ (“j ‘This equation shows that in order that the pressure in a given

T g

gun remain constant when the weight of the charge is 1ncfeased, the
2 | "~ - full pressure impulse I, or the thickness 2e1 of the powder must be
' F-TS-7327-RE 571
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increased at a somewhat higher rate than the weight of the charge.
b

L * us apply equation (76) to calculate the powder thickness

\
e e~

e

for a 76 mm gun, 1902 model.

Fi-

] The conditions of loading are:

E

K

A

4 ’ W, = 1.654; s = 0.4693; @= 0.930; q = 6.5; { = $-10°, a = 1;
3 E M

_:' uy = 7.5:107°; P~ 1.08; 6=0.2; p_-= 2320-102,

i

Z _
Fo(8) 1 @n 0.32-92.1010.1,08-0.0663

52pg 0.46932.2.32.10°

= \/36.4-10%4 = 603;

e VK w 603:0.930 603-0.930
I, - -1

K u V¥, - aw  /1.654-0.930 0.85

~ 660 kg:sec/dm?;

> 2ey = 2u 1y = 2:7.5:107%:660 = 0.0099 dm = 0.95 mm =1 mm(*).’

} ¥e have obtained the thickness of strip or tubular powder of

1 grade SP which was used in this gun, and developed 2 velocity v, =

= —

(*) This thickness of tubular powder corresponds to the grade
7/7, while the thickness of 1.28 mm corresponds to grade 8/7.

' N
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[ SBS‘m/sec when the charge w was 0.930 kg.
'The same gun may be fired with & charge w = 1.08 kg and a
weioéity bf/;O =~ 620 m/sec .can be obtained at the same p. .
Find from equation (75) the thickness of the powder in this
case.

Inasmuch as VK, reméins the same as in the first case;

e

605-1.08  603-1.08
- - — -- 860,

Io ™ < .
K2 1.654-1.08 = 0.757

the thickness of tubular .powder for the same uy will be

/

‘2e1 - 2-7.5-10"6'860‘- 0.0129 dot = 1.29 mm,

and this is the thickness of our previous powder 042.

The ratio
o —. v~ e W I - -
mx—g-g—e;ov-l.sz—g—u
Ixg1 660

Calculations show that-the.equations derived from approximate
relations ‘'yield results which are close to experimental data, and

- may be used to calculate the variation in the powder thickness °

concomitant with variations in the charge, if the maximum pressure

is kept the same.

Dy ¥,
Tt o S e
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3. THE POSITION OF MAXIMUM PRESSURE p, IN THE BORE OF THE GUN,
OR THE PATH {_ TRAVERSED BY THE PROJECTILE AT THE INSTANT
OF MAXIMUM PRESSURE.
ol L[F (8) - 1;7 - Ib(l;' aa)/F (8) - 1 /. (17)

For a ‘given loading density in a gun employing a given type of
powder, the maximum pressure p_ is developed at the same distance
from the starting point of {he projectile (l'.l = const.), regardless ..
of the powder thickness and the projectile weight. That is, the
path traversed by the projectile up to the instant of maximum
pressure does not depend on the powder thickness 2e1 nor on
the weight q of the projectile. |

In a given gun Qﬂo, s, lo) using a given type of powder (f,

@, uy, 6 ) the position (ln) of maximum pressure depends only on
the density of the charge. The larger o, the smaller will be
(1 - aad) and the nearer to the starting péint of mntion will be
Pui*).

Equation (77) shows that under the condition of constancy of
the maximum pressure Py when A is increased with the sim;lxaneous
increase of B and of the powder thickness 2e,, the maximum p, shifts
towvard the origin of the projectile motion. Because the parameter

B increases thereby, then, on the basis of formula (62):

{*) This conclusion is also confirmed by,the GAU tables for the
case of p, = 300 kg/cm2, ®w= 1.06, and a ¥ 1/§.
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*ﬂ, -J—«—-‘i—_‘—.
B B(1 +86)

the portion of the charge burned at the instant of mixjuum pressure
decreases. ‘/1 T
4. END OF BURNING AND PATH (e TRAVERSED' BY PROJECTILE
IN THE BORE OF THE GPNo

The location of the projectile at tue end of burning i$ determined

bj«equation (65), while the ‘correspornding pressure Py is found
from equation (66).
From (65) we get:

The equition shows that for a given -loacing density 4, the
- quantity Ix increases with the increase of parameter B, i.e., mainly

with the increase in powder thickness. When the weight of the
projgctile~1s diminished while A remains the -same, the path traversed
by the projectile at the end of burning is shifted toward the
muzzle face.

Equation (66) shows that tor & given loading density the values
of Py at the end of burning, vhen B is varied (i.e,, when the powder
thickness and the projectile weight are varied) lie on the curve p, y

whose equation is:

OV
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1
P =p . - . (66) -
K 1 1+ %% ' ] /
a + yx) , ¢
’ 3
!
’ 4
. This curve is of the same type as the adiabatic curve for f
‘v ] £
i instantanéous burning whose exponent is however 1 + 0/2. This j
' ;
: curve is known as the prussure curve of completely burned powder. o
The above statements are clarified by the graph of fig. 145. ‘
% The curves &, 6, 8 and 1 depict the pressure variation during
the burning of powders of different thicknesses when A is the same.
m B >
s g N
i ¥ L7 wrwr P T R T R =
SR . b e Aq g "
A . t : ST : 2
: . o
,’ . P'i
' w
S
a
| Fig. 145 - Pressure Curves for Different Powder Thicknesses. .
. a = thick powder; ¢ = normal powder; é = thin
! . . powder; 1= very thin powder.
‘ ( 2...75- curve Pyr Yii l1... 0 - curve p, y for
| inelantaneous burning. ~
. ?
F-TS-7327-RE . - 578 .
3 L ) B . e e oa . — PV Y (Y amad I - g W W e trinm S -
ﬁ.
k*ﬂw Y R RO IRIE s o N JIr < A owen e i o ez b




, p
L? - 1 Curve 2. - "K - r—— 1) .

Pl (1 +y)r 2 Py 1,1
1 ( y) . | Qa4+ yx)_\:_

They are disposed in such & way that their maxima are on the

sane ordinate at & distance Yn from the origin. The énd of

‘burniﬁg occurs =t a distance vhich is. governed by the powder
thickness, the distance being the greater the.thicker the powder
(yxa > ’Ké > ); the pressure values at the end -of burning

E increase s the powder thickness decreases (pxa ( p‘6.< pxs) The
points corresponding to the end of byrning lie on curve .2-2
calculated from-equation (66) /when 6= 0.2, 1 + 6/2 = 1.1 7.

Curve 1-1 corresponds to the adiabatic'variatiog of the pressure

2t instantaneous powder Surning (1 +8 = 1.2).

(- The dispdgition of curves 1-1 and 2-2 shows that the pressure

curves for gradual burning (a, ¢, 8, t ) intersect the curve 1-1

‘depicting instantaneous burning. ?he second .period curves for the

cases a, ¢,-4, and 1, which are not represented on the diagram,

¢ . 2 T o N
: . A o St A e VAT N ST T, e et
[ O ok L e g e PN WY
N

are all disposed below the curve 2-2 and above the curve 1-1.

At the same time, since for the given powder pl/(l - B8/2) = const.,
the nature of the pressure change p in the second period depends upon
] the variation of the variable factor 1/(1 + y)1+8, the latter
varying &s in the case of instantazneous burning, i.e., along the

‘. adiabatic curve with initial pressure

( it :
*

1
L - — e .
Py =Py > Py
. 1 - Be
A z
,ﬁéwﬁk . -
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¥hen the powder thickness is decreased, B and pi decrease

;; aiso, and inasmuch as the adiabitic curves with thé same exponent

1 + 8 do not cross, thé adiabatics in the sécond period are

disposed. the lower, ‘the thinmer the powder, i.e., inversely

A

to the disposition of the pressure curves in the first period.

PR

{ If we compare the expressions for pressure in the second
;i ' " period and at instantanreous burning, keeping the value of y the

same, we will get the following:

T A BT el

In the case of gradual burning in the second period

T N

P = p ! ' - ;
r 1 , <y 146 ¢
: ( ) §2_>. (L +y) !
¥ 2 5
in the case of instantaneous burning l i
\ 5
. ) 1 |
p' = Py - ] :
a + ’)1+9 . | :
or |
o ”" 1 Ay
i . P = const,
ri p'
1 - 22‘ .
2 :
( i.e., when the loading density is the same, the ratio of the pressure

1

in the second period to the pressure at instantaneous bﬁrniﬂg remains

\
constant for any path length of the projectile (greater than,lx). This
j . F-TS-7327-RE 578
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ratio decreaQes vhen B decreases and ‘the projectile weight increases.
Ihe“giaﬁhs'nnduegugtiqns presented ab&ve for the siQp}eé{ éase
(e, Qb -0, a» 1/3) ﬁérgit one ‘to estimate'Qiréctly the
‘ippeaiinge and the form:of the basic relations betweén the ballistié
elénents pg_g‘shoi; They depict the location .and magnitude of
hax;nun~pr§$§ure!,its dependénce on. the loading conditions (A, B)

the position of the projectile at thé end of burning and the

gas pressure developed thereby, the condition of maintaining the !
. ‘maximum pressure constant when the weight of the charge and the
powder thickness are varied, and the independence of the curve ¥l T
in the first period of the weight of the projectile.
‘Such simple relations are ‘not obtained for the more complex

cases (x ¥ 1, *B*f 0, a ¥ 1/8). 1In such a case it becomes 5
nééessary to analyze the effect of the individual elements by
computing ‘a series of variations or by using the data found in

bzllistic tables.
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1o CHAPTER 5 - A SURVEY OF CERTAIN OIHER METHODS OF SOLUTION

(Written by Pref. G.V. :Oppokov)
1. A YVARIATION OF PROF. G.V. OPPOKOV'S SOLUTION

In order to 1ntegrat€/eguation (13), Chapter 1, (p. 473):

-’

k ‘Bxdx :
1. T (78)
- l»*‘ ~ '*’0 +_k1x - le

it is convenient to apply the usual method of classical mathematical
analysis = the method of substitution, namely, ‘of temporarily

introducing into the process a new variable, , so that:

l - g + a Eg‘ 52 ‘I ’

. .

where a 1is the difference between the leéngths of the free volumes

(19)

of the chamber at the start and end of burning:

a =] -11-_‘:‘0-l,' (80)

When this substitution of variables is effected in the new

TR SO NN

equation, it will become presently apparent that "the last term"
“does not contain in the denominator the dif}erence:
i . . 2
.3 qb + klx - le .

This obviates the need for matheiatical transformations in the

course of integration for the purpose of replacing the obtained
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imtegral by other, more simple ones. .

Indeed, it follows from equation (79) that:

» 7
a4t
o= ax t Beax,

2

because. ,A‘ 18 a constant in every concrete case. Moreover:
. 4 4-: - - - 2 '
’l‘i{ N l& ay + [=1, 2y, + kyx +xhx”) 4+ L.

Substituting in the above the value of [ frow (79):

. - ) 2-9.. 2 - 2
(*+ =8 +a 5% alyy + kX + ®Ax<)
or
2
”l*+ -8 ~a(\-\f0+k1x-81x ). -
We shall substitute into the differential equation (78) the
obtained values of dl/dx and (l‘i’+ 0: .
d¢ Bx . _— 9. " '
! ‘c.‘ a-;-‘ + »Beax~ = * . - 4 2 "/"-( - a(?O + ‘klx - le )"‘7.
25 I : Yo ¥ KX - By¥
E§ We now remove the brackets &nd effect the necessary simplifications:
2E .
3 _; L T Bx
g5 ( %—-—-—: + Bfax = =7 C - Bax.
v .' VO + klx - le .
5 “';" -l . .
e ¥-TS-7327-RE 581
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Grouping the verms:

dt¢ Bx

roalie — 5 = -Ba(l +8)x. .
Yo klx - le

b

The common integral of this linear differential equation of

th# first order including the lasi term can be represented in the

fdlloving form:

S. Bxdx , f Bxdx
Yo+k,x-B,x2 Yo+k,x-B;x2
C =6 ZTCI - Ba(l +6) J e xdx;7, (81)

where e is the base of natural logarithms, and Cy-is still an arbitrary

cunstant.

We must introduce into the ahalysis Prof. Drozdov's function:

“. j’ Bxdx
+kyx~B, x< _ B
Yotkyx-B; B

e, - 7

Then the partiai integral of the last égquation with respect to
the derivative df/dx will be:

-2
B,

x
Cez [Cy -Ba(l +8) gz xdx_/.
0

. 7
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¥e shall now return to the desired path { of the projectile,

and -after sybstituting the obtained value of T, get:

. B B
R | £ 1 B8 _2
e { =2 [Cl - Ba(l +6)$Z, xdx 7 + a - X -lN
A
* Let us determine now the constant C’1 from the initial conditions,
2t which:
. B x
By
[=0; x=0; Z -1;‘§Zidx~0.
1]
We have from the latter equation for the path of the projectile:
| e
O = -
( 1(C, +0) +0 =1, |
: \
whence \\
€y =1, -
\
|
Thus the desired path of the projectile is defined by ithe
following expression:
B
B x 5
e o1 2 xdx 7+ a B0a2 | (82)
( [ =2 [lA-aB(1+6) xdx_7+ a ——x* -1,. ‘
0
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2. PARTICULARS OF PROF. I.P. GRAYE'S SOLUTION
This method of sclution was developed by Prof. 1.P. Grave in
order to perfect Bianchi's methed, which was ‘the first variant
(in time) of the 1* method. In Bianchi's original equations the

av.
effect of the variation of ZW’ is discounted and in integrating

av.

he considers the'quantitylﬁlas a certain incompletely determined
constant. Bianchi divides the curve p, [ into three segments,

for which instead of 1’* he takes IA, IA - %a and Zl’ respectively,

which corresponds to the following conditions:

¥ - 0; ¥ = 0.5; ¢ - 1.
av. av. av.
But in this case the curves p, | and v, | are not swpooth; they
have angular points corresponding to the beginning of the second arnd
i third segments.

In order to take into account the effect of the variation of i*
and obtain smooth p,{ and v, I' curves, Prof. I.P. Grave, in
integrating the equation for the path of the projectile, considers IY
as a variable, defined by the average value of its derivative with

respect to . This average value of the derivative must be negative,

because l*,decreases during the burning of the powder. Consequently:

dl

w - -
a =k
(' vhence, after integration, we obtain:
[, =1 -k{. ' (83)
LA
F~TS~7327-RE 584
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At the end of burning (when ¥ ~ 1), we obtdain from the above

é :

'. ,—/ e

é 1 ( from which the constant k is determined:

:: 4 4 l - l ( - l

1 ¥ 1 W, 1 {

k- 0 a0 K (84)
: K 1 1

1f we substitute the value of f* obtained from equation (83) into
the differential equation (78) for the projectile path, we will get:

dl . BX(l*O - kil + ()
dx : ’

Integrating this equation:

L4 .x
.o 1, 1*0 +(1 - k) Bxdx
( 1-k ( -
\ - *0 0 Y - Eg—xz
2
A
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and, consequently, the following must obtain: . i

X

—(1~k)é% . ! ;

(1 -Jk) | = l*oz .

Using a second timé equation (83), we obtain the following

equation from the above:

B
~{1-k)
B

- -1l,-
1 ¥, Ly (85)

A certain difficulty arises from the fact-that in order to
apply equatien (85).it is necessary to know the constant k, for
which, in turn, it is necessary to know [x/[1 / see equation (84) 7;
but the path [K of the projectile at the end of the period is
unknown beforehand.

In order to overcome this diffgculty, a nomograph is given .
[‘see 1.P. Grave, "VNUTRENNYAYA BALLISTIKA" (Internal Bal}istics),
Pyrodyramics, No. 1, p. 58_7 which enables‘one to determine the
ratio lx/l1 if . T

! é(x,) - '
¥ x 1 -
0 ang —& o Banz - 2.303 B 10g 220
ty Hoo o By By K
are known.
S—

Having found from the conditions of loading:

P L L LY

y -
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-

we can determine lx/l1 from this graph; this will enable us to
calculate k from cquation (84).

1f it is necessary to find k nore accurately, the obtained
value of k may be rendered mor¢ exact by successive approximations.
The value k

1
is found in the second approximation, and a new value k2 is then

found from the graph is substituted into (85), Ixo/ll
10
determined from (84) representing a second approximation, .and so on,

until two consecutive values of [y/(, coinciding with the required

degree of accuracy are obtained.
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CHAPTER. V1 = SOLUTION OF THE FUNDAMENTAL PROBLEM OF INTERNAL
" BALLISTICS ON THE BASIS -OF THE PHYSICAL LAW OF BURNING

{M.Ye. Serebriakov's Method)
'
As was. shows in Part I of this text, the .actual burning of
powders deviates from the geometric law under the influence of a

number of factors. An analysis obtained by the aid of the progressivity

eurvgs‘fﬁ q:andf?, t has shown that certain anomalies actually occur

)Jéven du#ing the burning of powders of simple shapes: non-instantaneous

1gnitioh,‘acce1erated burning of the outsidé layers (ballooning),
gfc, The burning law cannot b; established at all on the basis of
the geometric law for adulterated adé porous powders used in pistol
cartridges.

The actual buruing law can be established only by burning powder
in a test bomb at different loading densities and by obtaining pressure-
time curves reflecklng all the deviations and peculiarities of a given
sample. R : ‘

t
- The variation in the intensity of gas formation [T and 1 = g pdt

as & function of ¢y and t can ‘be established from the obtained p, t
curve. ’
t

Both graphs[F, w and g pdt, ¢ in conjunction with the fundamental
p, t curve obtained from the bomb test enable us to solve the
fundamental problem of pyrodynamics, i.e., to compute the gas-pressure
and projectile velocity variation curves under conditions of actual
burning of powder in the bore of a gun;

R ’

These graphs also enable us to éstablish the individual behavior

of peowder lots of different grades occasionally differing considerably
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as to their properties, which behavior could not be disclos.d by any
kethod other than by bomb tests. '

There have been #ctual cases where powder lots of the same
lgiade<lnd'the,same manufacturer having identical chemical composition
and -dimensions produced a difference of 6-8% in the charging weights ‘
_when fired at the samg‘values of v, and pmax'

‘Bomb tests had shown that the burning rate u, of these powders

1
varied as much as 15-20%:. This variation could not have been disclosed
by any other means except the bomb test.

The fundameatal problew cf internal ballistics for adulterated
or porous powders can be sulved in exactly the same manner only on
the basis of the experimental (physical) law of burning.

We are presenting beio' the method of solving the fundamental
problem on the basis of the physical law of burning, when the burning
rate law is u = u;p, which corresponds to the coincidence of the curves
I, yor j pdt, ¢ at various loading densities.

The basic sssumption made here is that both in a bomb at different
loading densities A and in a weapon with a variable space in the .case
of a continuously decreasing loading density, the value of f’pdt
is a single-valued function of ¢ only, and does not depend on the
loading density. This condition, which has been proved by bomb
tests at different loading densities, is being extrapolated in the

given case for considerably higher values of O in a weapon.

1. DERIVATION OF BASIC RELATIONSHIPS AS APPLIED TO THE
PHYSICAL LAW OF BURNING.

The solution is based on applying the pressure curve obtained
from bomb tests to the computation of curves depicting the gas
pressure and velecity of the projectile in a weapon.
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As the projectile moves through the bore and the initial

.

S v RPUZget Y v L L

air space becomes larger, the pressure will depend:on the current -

value of the loading density A-uuy&b + SO,

We shall introduce the following designations:

A1 - loaéing density of powder in teést bomb;

S~

Ao - initial loading density in weapon.

P and T - gas pressure and time corresponding to the given value

p and t

of ¢ at constant loading density A., at which the bomb

1’
test was conducted and at whick the curve P, was
obtained;

gas pressure and time corresponding to the same value
of ¢ when A is variable, which condition applies to

a given disposition of the projectile in the bore of

the barrel.

We shall designate the cprreéponding integral values as follows:

»

o

(=%

~
]

o

v

Q

<
]

—
~

[

} In bomb . ' b) In weapon

4 : v

S S pdt =~ i

0 0

¥ - Yo

g PdT = 1, Sr pdt = 1,
c

1l 1

5 J pdt = 1x.

0 0

I i8 obtained from a table or graph as a function of ¢ or T,

on the basis of bomb tests.
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Inasmuch as the pressure impulse does not depend on A, we
7 .
will have thé equalities )
| ‘ ] /
) f&pdt - J PdY or i ~ 1 {86)
0 0
:and, correspondingly,
10 - 10;. IK - ix.
Differentiating (86), we get:
pdt = Pd<T. ) (87)

Here dY - an elementary time lapse during which the portion of

- change W burned up to a given instant under pressure P will receive
the increment dy when the powder is burned in a constant volume at
a loading density:bl;
dt - time lapse during which the 'same portion w of the burned
-powder will receive the same increment dy when the powéer
) 1s’bufned in {he é;n barrel at pressure p ;t loading
density & determined by the current disposition of }he
. projectile in the bore of the barrel: ’
f: A - b .
- Wt sl
,
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We shall consider henceforth the value of ¢ as the independent

variable.

P - '-1-&3“!"”
.“ -v:lo«:o m; ALY

2. DETERMINING THE PROJECTILE VELOCITY AS THE FUNCTION OF ¢
On the basis of the impulse theorem
emdv = spdt.

Integrating from the start of motion:

¥
enV = § j pdt = s(i - ij),

VO ’

vhere\¥0 is the portion of the charge burned in the gun at the start

of motion:

-5, Determining v:
- ]

or on fhe basis (86)
ty
s
- = PAT = — (I - . '
= j ?m( 1) (89)
.’ . WO

4
The values of I and IO for ¥ and qb are known from the bomb
test, sﬁ?n is known from the gun data. Thus the velocity of the

projectile is determined from equation (89) as the function of v.

At the end of burning when =~ 1
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law of burning, the value of 1

The value of the impulse I, =

K

1

M MR AR

1

>

.

(Physical law of burning)

593

\

thickness of the powder but to the maximum thickness, which may

-

+
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Fig. 146 -~ Pressure Impulse of Tubular Powder

(s0)

In contrast to the analogous formula in the case of the geometric

corresponds not to the average

’

considerably exceed the average thickness of powders having a variable
thickness. A diagram of the pressure impulse of tabular powder
usually obtained in bomb tests is offered in fig. 146.

e avo/u corresponds to the
burning of powder of average thickness; the value of Ix >'I1

corresponds to the burning of the thickest element of the charge.

F1410Nq0YdTY LON DIHAVYD

Therefore  also vx in the case of actual powder burning assumeg
a considerably'greater value than ir the case of the geometric law,
. i
{
but ia that case the projectile will also traverse a considerably

longer path at the end of powder buraning, so that:

g

{Geometric law of burning)

\

B e — A e B o B Mt oS AP U i W bt g S Wt

R R i L T SR SRR

[ L R

e kA RAVRSA oAb areme - - e

4
#




o
L
-

atke

S 7 N T A s W o S

3. DETERMINING THE PATH OF THE PROJEéTILE AS A FUNCTION OF v

In the method’outlined the relatijon bctweén { and'w is established
by means of the auxiliary function L, @ determined from the same bomb
test at a loading density‘AI, by the additional analysis of the
test curve P, x. And if the value of the pressure impulse I,
dpeé not depend on the choice of Al, then the function L, W depends
on the value of Al chosen at the test.

As we shall see later, the function L has the dimensionality
of the path and a definite physical meaning.

Ye will have from eguation (88):
dl = vdt = =>-(4 - ig)dt,
@m

where (1 - i) is a function of y.
Upon integrating, the path of the projectile will be determined

by the formula

W
[~ 5. J (1 - iy)dt. (91)

Here the element dt COrresbonds to the element dy when the bowder
is burned under ccnditions ¢f variable volume (space) and depends on
the value of pressure p at any given instant which is still uynknown.

¥We can obtain an expression from the bomb test analogous to

expression (91):
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L* ' S (1 - 1)dt = -—-‘jf‘pufdx “ == . G. (82)
Yo © | ¢ m
/
Yo
.//'

The value of L - function of Wy - is obtained by the second

¥
integration of curve S Pder with respect to vt and by multiplying

same by the coefficiezé s/qm..

1t [ is the path traversed by the projectile at the instant
" the portion ¢y of the charge is burned, then L is the path the
projectile would have traversed if the pressure behind it developed
according to the same law as ir a2 bomb with a constant loading
densitylal, at the instant the same portion of the charge v is
burned.

L has a Jefinite phys;cal.meaning. For example, it is obtained
in practice in a bomb of considerable capacity with a free piston.
Thus in a bomb él—capacity WO = 300 cm3 the piston displacement (with
thhe piston usually having a cross-sectional area of s = 1 cmz) is
about 3 cm. The change in volume amounts to only 1%, and hence the
piston is displaced by a pressure which increases in almost a constant
volume. |

The value of L &s & function ¢ is found from the bomb test using
the proéedure given in the table below.

It is necessary to establish the relation between | and L,
and hence between | and ¢, because L is function of y.

Di!ferentiaéing equations (91) and (92) and taking their ratio
and'reducing, we get:
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al = pp S _ (53) !

i

From equation (87) -

o,

t
1

4

Xod <
PN TN o, Py

- B (84)
P

o,

T TR
T e
-~

whereas the ratio P,/p is replaced by the ratio of the free volumes

‘; on the basis of the equation of state:
i
? .. RTywyy 181y i fy 0

' (y) a :

i A 1--31-A1(a-.%)q -%:.—%-- a--}-u{

o

vb .o The expréssion in the denominator represents the free specific
! . gas volume at loading density Al.

‘§ ° An analogous expression will obtalin also in the formula for p.
A Ye shall replace them with average values, because the last term

j is small in comparison with th» first two, and, moreover, the ratios
; of the free volumes will ‘enter hem all.

; a+ =

52 w - W I-ﬁl—A a--:-l—‘ -~ W 1l - sb -

. Yav. 0 5 1 5 Yav, 0 2 1

1
0‘5’-3- —

where Q' = .
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¥e shall introduce the designations:

2 2
’ 1 -0 = a -.}.... - 0! = a
1 Ay 0
Then
b 4
p - -.i.-;'
23
. b RTwy _ IAO"( T } fy T 5
{ v + sl ‘ (M1 RS!
- sJ"a\v' 1 - a'd, $ —— & A e
3 * 0 l 0 1A
. - 0 0°0
;i
: "3 - 1y T
¢\
2, l + 7 :
r 020%0
. Eg *
? : but
4 .
: 1] taa, = 1 (1-a'sa) w1 -1 .
i ( ’ 0 9 0 0 0 Yav. ¢
: .
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Yor a gradually burned powder

F. 9
o e
- a 2 2
L A T _/ 39 ]
T ¥ -a'w+ sl : {
%0 T Ty5, ~
0°0
- 1
_e—.
L \2
1 4 =
lc

The ratio P/p, following substitution of the proper expressions

and simplification, will take on the fornm:

12
a
) AR I SO L . (95)
‘P a; \ le

Upon incorporating this expression in (94) and then in (93),

we get:
k!
2 t
dt =~db 2 {14+ — ) , where k' =1 + 2,
2, le 2

'

¢

|
|

- Dividing the variables and integrating:

|
|

[ v
dl g
Ve o 5 ydL.
1 + —— ‘
0~ ‘e Yo
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<3
B
4
g
R - 12 Y
¥

. * 2
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?
1
g
¥
:
- i
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e

4

Desigﬁatfng 1 + i/?c - x,.we get in the left sidoge

-

$

*

where

but
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and in the right side
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t Y
C

L'O' = B'LY

»
Y

00
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2
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(96)

T

L b P S i e O *
A e e — e W - .
- e e e e




N Siel i e

N

and
‘ 1
B! & e e e, (97)
2 w
.__1_. -
s ~ . &
Solving (96) for |, we get:
1
la lc : -1 {. (98)

%
_r Y
(1 BLYO)

As in the soclution of the problem of internal ballistics by
the average 1Y method, the value lc ~ average for the entire hLurning

‘process - can be replaced in this formula by the current value |

. av.
by means ¢f the usual formula:
LU Y
{ -l |1-2 afa-2l0o |, (99)
Yay. O 8 8 2
and then
) 1
[ IW 5 = 1‘ (100)
- av. L
i Y (2]
(1 - B L*O) . _
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Formula (100) gives the path ! as a function of Yy by means

of the auxiliary function L: » detormined in bomb. tests at loading
- G R
density A = Al, which function refleets (depicts)‘}he true burning

law.
V4

.Comparing this formula with the analogous formuia used in the

zethod fo solution in which l?- l? > we will note ‘that in pla?e

~B/B av.
of Prof. Drozdov's function Zx / 1 formula {190) contains the fynction
2/ : /
(1 -B'Ly) + For the cdse where ¥ =1, A= o0, .
0 .
B - 2
B, ) .

Therefore the expression ih parentheses (1 - B’L: ) has replaced
0

in this sclution the function Zx in the ‘case of the geometric law
of burning.
Formulas (89) and (100) enable us %o calculate and plot the

projectile velocity curve as a function of path l.

Pressure p is found from the fundamental equation of pyrodynamics:

2

Lwy ~ % $nv

p~ . : (101)

s({ + 1)

Y

wherein the variable quantities as the y functions are already known.

To detern%ne the maximum pressure pn and the corresponding value

Vy» e differentiate the equation (101) with respect to t:

.
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}
d fw :
.p - P Fll+(a- «l: 2~ (L +0)v |,
dt { o+ 1 5 37 1
¢ L
wvhereby v = S/em(I - I,) (89) and " are given in the fable as a
s N function of y.
. . .
j r Equating the expression in braces to zero and replacing v
by its expression in (89), we get:
1) Pm - 5
— l 4+« =} —|~-(1 +48) ~—(1 - -0
whence
’ foym _ P
.. I~ Iy~ ————— [1+ a-%—-—‘;.r. (102)
B n s2(1 + ) 1 n
ﬁ ) Denoting the factor ofl"‘ by D, we get:
‘ I‘ -1 =D- [,
The value of y_ is found as the point of intersection of curves
. 1 - I0 and D - [T as a function of .
The point of intersection gives the values of (In - Io),wi and
N
: ( The diagram in fig. 147 clarifies the above.
It is not difficult to see that if I, - I, and Fm are replaced
by theoretical expressions in terms of z and xJon the basis of
¥-TS-7327~RE 602
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the geometric law, we will obtain the usual relationship. for x .

Al the end of burning when ¥ = 1, we will have:

-
v T m—— (I - 1 )‘;
L :

e
(1 - B'L' )
v2
1 - K
fo V%p
P"' p .
l1 + ‘x

| 1+0
| I+ ¢
'p~op | X ; (103)
\ { + [
; 1l
2
U+ 1\° v
Vv, 1 - K 1 - K, (104)
p o+ 1 v
1l ﬂp
\
|
\
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GRAPHIC NOT REPRODUCIBLE

Fig. 147 -~ Determining\yn for Maximum Pressure.

4. GRAPHICAL CLARIFICATION OF THE METHOD OF SOLUTION
In order to solve the problem on the basis.of the physical law
of burning, it is first necessary to perform éhe ballistic analysis
of the given powder. To do so, bomb tests are conducted at two

loading densities A, and A2, the ballistic characteristics -

1
propellent force of powder f and covolume Q- - are determined, aad
also the test characteristic of the iniensity of gas formation [T,y

and the impulse of pressure increase S Pdt = 1 (fig. 148).

: 0
Knowing the loading conditions of the weapon, we determiue
A1
B, K3
ﬁb - ; from graph I, ¥ we find the corresponding value
I+<1 !
Po . 3
?b e
of Io - .S PdT, and upon subtracting this value of IO from all the
]
values of I, obtain the dependence of I - IO on W and T (fig. 149).
Integrating numerically the curve I -~ IO,‘t with respect to v, we
Y * .
find the integral S (I - Io)dt as a function of ¥.
Yo
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i introducing the designatiocn:

¥

b 4
Y o n~ . -
G*O J' Ipd’tdt S (1 - 1.)dt.

T~ YO
- ‘i’o

Multiplying I - 1, and G: by s/%m, we get
0.

ve 2 - 1,); (89)
(fll
8 8 b 4
LY = — GY = — [ (I - I, )dt. (92)
'fo Pm Y0 Pm 0
PR — YO

- b ———— o o Oy

.. for all the loading densities. The function L: » being a function of .

v does not depend cmA(A1 or Az) and is a function of w only

depends at the same time on A, because the time element d1 during

which a definite portion of charge dy is burned decreases with the

increase of A.

Fo Indeed, from the equality
. f . dy
3 pdt
S ¢
' j {' it follows that
dr= g.‘f_, -
rp
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where
/.
] > fayvw - f%&*
s 1-a's
1 1
]l - — - d = —
| 5 4 ( 3 ) Y
E
g b]
i i /
a8 { and hence dv varies inversely with the change of Al‘ i

/

® For this reason the curves Gz and L: as a function of § will
; 0 0
also be disposed the lower the greater Al when testing the powder .

4
’ in a bomb (see fig. 149).
b

< ail
13 A
Rey
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E
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\ ] Fig. 148 - Basic Curves . Fig. 149 - Auxiliary Curves
My and I, ¢, for Determining the Elements
of a Shot.

The  arrangement of & table for analyzing bomb tests as a means

of obtaining all the auxiliary functions is presentéd below; this

table serves to clarify the graphs in figs. 148 and 149,
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¥e shall construct, :rccording to equations (89) and (92) for

the same values of w, a curve showling the dependence of v on L when
A-Al / fig. 150, curve v, L(Al)*7' 1{ the test were analyzed

for 52 > 8y» the relationship v, L(AZ) would obtain, which relationship
curve has a larger slope angle and in which the shorter path «f the
projectile: Lx(az) (_LK(Al) corresponds to the end of powder

burning. Both curves have a smaller curvature than the true v,i

curve of the velocities of the projectile in the bore.

It we were to extrapolate the function L:b for the initial
loading density AO in the gun, we would have obtained curve v, L(AG)
(150), which at the start of motion has a common point of tangency
with the true v,! curve. The latter is obtained when A decreases

continuously, and as y and v increase curve v, (heavy dotted line)

gradually goes over {rom curve v, L(Ao) to curves corresponding to

ever smaller A, which family of curves includes also curves v, L(Az)

This transition is the one given by the fundamental formula

(100):
2
-l /(-BLY) ® _17

wav.

together with formula (89):
\
i
ve2(1-1).
pm 0

y
\

The difference between the method of solving the fundamental

problem outlined above and other such methods lies in the fact that

4
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in deriving the dependence of I.on~y, use is made not of the ;
fundamental equation ol pyrodynamics, but, rather, of the equation
of the state of powder gases for different positions of the
projectile in the bore of the barrel,

In solving this problem use is made of the gas pressure curve
P, 1 obtained from bomb tests, which expresses the true burning law
with all the deviations from the geometric law.

An analogous result can be obtained only by the numerical

integration of Taylor's series or from finite differences.

TTEIONACHITY LON OIHJIVHD

Fig. 150 - Relation Between Auxiliary Curves v, L and.'
Actual Curve v, [ .

The method outlined here permits the solution of the problem

also in the case of the geometric law, by assuming thc following

theoretical relationship for [, y:

Xe X 1 4 4-"-~y—-—1-\/x2+4xw.
4 Ix

Ix Ik )

Therefore, this method is a more general one than the methods

based on the geometric law of burning. (*)

(*) For a more detalled explanation see: Serebriakov, M.Ye. "FIZICHESKY

ZAXON GORENIA VO YNUTRENNEY BALLISTIKE" (The Physical Law of Burning in
Internal Ballistics). “OBORONGIZ" (State Publishers of Defense Literature)

19840.

P-TS5-7327-RE 609

. =
-y

L TYS A1 T30 QU TYUN SQy AVSPLY iy Vo

“ - -

[T FRER R
1




.

5. ANALYSIS OF THE OBTAINED CURVES p, { AND v, { .

Anzlysis of curves p, | and v, [ obtained on the basis of the

physical law of burning indicates that:

gwt'm' P \Sa Al e o 1 o A
)
P

- 3
. . ]
i 3
g, s
.1

f
¥ L .
il " - P
' - ¥ ';‘ g . - -
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Fig. 151 - Curves p, [ and v,{ Obtained on the Basis of the
Physical and Geometric Laws of Burning.

2.3.7%. = physical law of burning.
.3.%., = ge;metric law of burning.

1) Due to ballooning - accelerated burning of outer layers -
the maximum pressure is attained earlier, and the pressuré curve l1s
disposed higher at the start than in the case of the geometric law;

2) The beginning and the first half of the velocity curve v, |
obtained on the basis of the physical law, are disposed above the
corresponding v, | curve in the case of the geometric law of burning;
the curves merge at the end;

3) The same value of Puax. is obtained at a smaller propellant
force of powder than ir the case of the geometric law;

4} Due to after-burning of the thicker elements of the chargeu,
F-TS~7327-RE : 6190
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T ¢ at the end of burning, the transition of the pressure curve

]
|
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the end of burning is transposed nearer the muzzle face, and the
rd .

velocity vK exceeds the theoretical value for the average powder
thickness; ’/

-

'5) Due té6 the gradual decrease of the intensity of gas formation

from the first peried to the second proceeds without 4 jump and

'foerms no turning points on the curve, as it does in ﬂhe case of the
geometric law, - ‘
The graph in fig. 151 clarifies the above.
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