SAM-78-68-40

6136

i

USING A GAMMA SPECIROMETER

JOHN W. HARPER, Staff Sergeant, USAF JAMES F. GRESN, Master Sergeant, USAF DONALD F. LOGSDON, JR., Captain, USAF, BSC

USAF School of Aerospace Medicine Aerospace Medical Division (AFSC) Brooks Air Force Base, Texas

May 1963

SIMULTANEOUS DETERMINATION OF ³⁹Fe, ⁵¹Cr, AND ¹²⁵I, USING A GAMMA SPECTROMETER

JOHN W. HARPER, Staff Sergeant, USAF JAMES F. GREEN, Master Sergeant, USAF DONALD F. LOGSDON, JR., Cantain, USAF, BSC

FOREWORD

This report was prepared in the Internal Medicine Branch, under task No. 775506. The work was accomplished between October 1967 and January 1968, and the paper was submitted for publication on 31 January 1968.

The Auto-Gamma spectrometer, model 5000, used in the study was manufactured by the Packard Instrument Company, Downers Grove, Ill.

This report has been reviewed and is approved.

P.

GEORGE E. SCHAFER Colonel, USAF, MC Commander

ABIJTRACT

In scintillation spectrometry, there are methods for separating 59 Fe from 51 Cr activity, and 51 Cr from 125 I activity, but no standard method has been presented for the simultaneous measurement of 59 Fe, 51 Cr, and 125 I.

In this study, a well-type scintillation spectrometer and discriminator were used to determine the activity of these three isotopes in one sample. The procedure is based on the use of "contributory factors" which remain constant and can be used in the calculation of various blood parameters. The mixed sample was counted at each of three previously determined settings and corrected for background. Then, the net ⁵⁹Fe count equaled the total count at the ⁵⁹Fe setting; the net ⁵¹Cr count equaled 10% of the count at the ⁵⁹Fe setting subtracted from the count at the ⁵¹Cr setting; and the net ¹²⁵I count equaled the sum of 7.0% of the net ⁵⁹Fe count plus 7.0% of the net ⁵¹Cr count subtracted from the count at the ¹²⁵I setting. The method can be used to separate the activity of any group of three or more gamma-emitting isotopes if their energy peaks are well separated.

SIMULTANEOUS DETERMINATION OF 5°F0, 51Cr, AND 1251, USING A GAMMA SPECTROMETER

I. INTRODUCTION

In erythrokinetic studies, simultaneous measurements of several blood parameters are required. To measure all parameters, it is necessary to use three gamma-emitting radioisotopes-59Fe, 51Cr, and 175 I. Methods have been developed for separating ⁵⁹Fe and ⁵¹Cr activity in the same sample (1), and ^{\$1}Cr and ¹²⁵I in the same sample (2); however, no method has been devised for a sample containing ⁵⁰Fe, ⁶¹Cr, and ¹³⁵I. The peak gamma energies of these isotopes are well separated and suitable windows can be determined for measuring activity on the gamma spectrometer using appropriate discriminator settings. This report describes a standard procedure for simultaneous measurement of ⁵⁵Fe, ⁵¹Cr, and ¹²⁵I, using these windows and appropriate correction factors.

II. MATERIALS AND METHODS

Iron-59

The ferric chloride ⁵⁰Fe containing benzyl alcohol, 0.9%, as a preservative and NaOH or HCl as necessary for pH adjustment was used as a sterile solution. This solution had a specific activity of approximately 10 mc./mg., with approximately 30 μ c. of ¹⁹Fe per milliliter of solution. fron-59 has principal photopeaks of 1.10 Mev and 1.29 Mev and a physical halflife of 45 days.

Iodine-125

Iodine-125, buffered with sodium bicarbonate and containing 0.45% NaCl, was used as a sterile, pyrogen-free solution of radioiodinated human serum albumin. Benzyl alcohol, 0.9%, was present as a preservative. The solution had a specific activity of approximately 37.5 mc./mg. and approximately $10 \ \mu\text{c./ml.}$ of solution. ¹²⁶I has a principal photopeak of 35.4 kev gamma and a physical half-life of 60 days.

Chromium-51

Radiochromatic ^{\$1}Cr, containing sodium bicarbonate (1.0 mg./ml.) and NaOH or HCl for pH adjustment, was used as a sterile, buffered solution. This solution had a specific activity of approximately 42.7 mc./mg. and approximately 215 μ c./ml. of solution. ^{\$1}Cr has a principal photopeak of 0.320 Mev gamma and a physical half-life of 27.8 days.

Instrument

The Auto-Gamma spectrometer used in the study had a 3- by 3-in. well-type NaI scintillation crystal. The well dimensions were $2^{1}/_{32}$ in. by $2\frac{1}{8}$ in. The photomultiplier tube multiplied incident photon energies to the 11 dynode. The instrument has been calibrated for fullscale energy of 1.0 Mev at a gain setting of 40%. Additional calibrations were made for settings of 0.5 Mev, 2.0 Mev, and 4.0 Mev with gains of 80%, 20%, and 10%, respectively.

Working solutions

Working solutions of the ^{\$1}Cr, ^{\$9}Fe, and ¹³⁸I were made by diluting quantities of the isotopes with sufficient sterile saline so that 0.5 ml. of solution yielded radioactivity of

approximately 10,000 counts per minute when counted for one minute at the respective window settings. One-half ml. of each isotopic working solution was put into separate counting tubes and sufficient saline added to raise the volume to 1.5 ml. Mixtures consisting of equal volumes (0.5 ml.) of the **Fe and *1Cr working solutions, the ⁵⁶Fe and ¹²⁵I working solutions, and the ^{\$1}Cr and ¹²⁸I working solutions were then put into counting tubes. Sterile saline (0.5 ml.) was added to each tube, bringing the total volume to 1.5 ml. Equal volumes (0.5 ml.) of each of the three working solutions were put into one counting tube. giving this mixed sample a total of 1.5 ml. There were, at this point, seven samples: 59Fe alone; ⁵¹Cr alone; ¹³⁵I alone; ⁵⁹Fe and ⁵¹Cr mixed; ⁵⁰Fe and ¹²⁵l mixed; ⁵¹Cr and ¹²⁵I mixed; and ⁵⁹Fe, ⁵¹Cr, and ¹²⁵I, mixed.

Settings for samples

The spectrums of the ⁵⁹Fe. ⁵¹Cr. and ¹²⁵I samples were plotted by use of the Auto-Gamma spectrometer to determine the exact energy peak of each sample. The settings for the ⁵⁹Fe sample were: coarse gain set at 2 (0.2 Mev) fine gain at 3.5, and a window setting of 2%. With the discriminator setting at zero, 'a one-minute count was made. The discriminator setting was then set at 20 and another one-minute count taken. This procedure was repeated until, raising the discriminator setting by increments of 20, the one-minute counts reached a peak, then began decreasing until negligible. The same procedure was followed using the ^{\$1}Cr sample and the ¹³⁵I sample with changes being made in the instrument dial settings. The settings for ⁵¹Cr were as follows: coarse gain of two (0-2 Mev) fine gain of 2.8, and a discriminator setting of 20 kev. The discriminator setting was raised by increments of 10. The dial settings for the 125I sample were as follows: coarse gain of 8 (0 to 0.5 Mev), fine gain of 7.0, and a window setting of 2%. The discriminator setting was raised by increments of 10. The results of the one-minute counts were then plotted with the counts per minute as the ordinate and the instrument discriminator settings as the abscissa (fig. 1).

III. RESULTS

Determination of contribution factors

The seven isotope samples were counted for one minute at the ⁵⁹Fe setting, the ⁵¹Cr setting, and the ¹²⁵I settings with all counts being corrected for background. The results of these counts appear in table I.

It is observed that with the ⁵⁹Fe sample, approximately 10% of the count at the ⁵⁹Fe setting appeared at the ⁵¹Cr setting and 7.5% of the count appeared at the ¹²⁵I setting. When the ⁵¹Cr sample was counted, no count appeared at the ⁵⁹Fe setting, but 7% of the count at the ⁵¹Cr setting appeared at the ¹²⁵I setting. It may also be observed that when the ¹²⁵I sample was counted, no count appeared at the ⁵⁹Fe or ⁵¹Cr settings. From these observations, contribution factors were derived, as shown in table II.

Separation of isotope activity

Mixed sample of iron-59 and chromium-51. The sample was counted at both the ⁵⁰Fe and ⁵¹Cr settings and corrected for background. The net ⁵⁰Fe count equaled the total count at the ⁵⁰Fe setting. The net ⁵¹Cr count equaled 10% of the count at the ⁵⁰Fe setting subtracted from the total count at the ⁵¹Cr setting.

Mixed sample of iron-59 and iodine-125: The sample was counted at both the ⁵⁹Fe and ¹²⁵I peak and corrected for background. The net ⁵⁹Fe count equaled the total count at the ⁵⁹ Fe settings. The net ¹²⁵I count equaled 7.5% of the count at the ⁵⁹Fe settings subtracted from the total count at the ¹²⁵I settings.

Mixed sample of chromium-51 and iodine-125. The sample was counted at both the 51 Cr and 125 I settings and corrected for background. The net 51 Cr count equaled the total count at 51 Cr settings. The net 125 I count equaled 7% of the count at the 51 Cr setting subtracted from the total count at the ${}^{1:6}$ I setting.

Mixed sample of iron-59, chromium-51, and iodine-125. The sample was counted at the

FIGURE 1

Results of one-minute counts of isotope samples using a gamma spectrometer.

TA	BL	E	1
----	----	---	---

Sample	Setting for **Fe	Setting for ^{\$1} Cr	Setting for 1251 756		
5ºFe	10,059	978			
⁶¹ Cr	0	11,456	820		
1281	0	0	7,986		
**Fe and *1Cr	10,171	12,587	1,566		
**Fe and 135I	9,980	954	8,818		
51Cr and 125I	7	11,291	8,658		
59Fe, 51Cr, 1851 10,061 12,283		12,283	9,387		

Net counts at selected settings for three isotopes

Sample	Setting for ⁵⁹ Fe	Setting for ⁵¹ Cr	Setting for 125I		
3 • Fe	100%	10%	7.5%		
^{B1} Cr	0%	100%	7.0%		
1251	0%	0%	100%		

Contribution factor at selected settings for three isotopes

⁵⁹Fe setting, ⁵¹Cr setting, and ¹²⁵I setting and corrected for background. The net ⁵⁹Fe count equaled the total count at the ⁵⁹Fe setting. The net ⁵¹Cr count equaled 10% of the count at the ⁵²Fe setting subtracted from the count at the ⁵¹Cr setting. The net ¹²⁵I count equaled the sum of 7.5% of the net ⁵⁹Fe count plus 7.0% of the net ⁵¹Cr count subtracted from the count at the ¹²⁵I setting.

IV. DISCUSSION

One method commonly used to separate ⁵⁹Fe and ⁵¹Cr is the "Z" factor method. This method is based on the principle that the amount of radiation due to ⁵⁹Fe at the iron peak is directly proportional to the amount of radiation due to ⁵⁹Fe at the chromium peak. The "Z" factor is determined by dividing the number of counts due to radiation from the iron standard, at the ⁵¹Cr peak, by the number of counts at the ⁵⁹Fe peak. The counts at the input peak are then multiplied by this factor and this product is subtracted from the counts at the ⁵¹Cr peak to give the net counts due to ⁵¹Cr.

We have expanded on the "Z" factor concept to make possible the separation of ⁵⁹Fe, ⁵¹Cr, and ¹²⁵I. As a first step in this process, contribution factors for ⁵⁹Fe/⁵¹Cr, ⁵⁹Fe/¹²⁵I, and ⁵¹Cr/¹²⁵I are determined. Using the ⁵⁹Fe/⁵¹Cr factor, the ⁵¹Cr activity is determined. Using the ⁵⁹Fe/⁵¹Cr factor and the ⁵¹Cr/¹²⁵I factor, the ¹²⁶I activity is determined. This method can be used to separate any group of three or more gamma-emitting isotope3 if their energy peaks are well separated.

REFERENCES

- Protocol for the study of erythrokinetics by simultaneous Fe⁵⁹ and Cr⁵¹ measurements. Omaha, Nebr.: VA Hospital, 1965.
- Shires, T., J. Williams, and F. Brown. Simultaneous measurements of plasma volume, extracellular fluid volume, and red blood cell mass in man utilizing I¹³¹, S³⁵O₄, and Cr⁵¹. J. Lab. Clin. Med. 55:776 (1960).

Unclassified

ROL DATA - R & D		
nnotation must be entered when the overall report is classified)		
24. REPORT SECURITY CLASSIFICATION		
Unclassified		
76. GROUP		
AND 1251, USING A GAMMA SPECTROMETER		
C		
74. FOTAL NO. OF PAGES 75. NO. OF REFS		
4 2		
Se, ORIGINATOR'S REPORT NUMBER(S)		
SAM-TR-68-40		
95. OTHER REPORT NO(5) (Any other numbers that may be easigned		
this report)		
public release and sale; its distribution		
12. SPONSORING MILITARY ACTIVITY		
USAF School of Aerospace Medicine		
Aerospace Medical Division (AFSC)		
Brooks Air Force Base, Texas		
are methods for separating 59Fe from 51Cr it no standard method has been presented for Cr, and 125I. Ation spectrometer and discriminator were hree isotopes in one sample. The procedure cors" which remain constant and can be used meters. The mixed sample was counted at ings and corrected for background. Then, it at the 59Fe setting; the net 51Cr count ing subtracted from the count at the 51Cr the sum of 7.5% of the net 59Fe count plus on the count at the 125I setting. The method upy group of three or more gamma-emitting separated.		

Unclose unity Classification

14. KEY WORDS	LINK A		LINK		LINK C	
		WT	ROLE	₩T	ROLE WT	
Radiology Erythrokinetics Radioisotopes, simultaneous measurement of Scintillation spectrometry Gamma-emitting radioisotopes						
Iron-59 isotope Iodine-125 isotope Chromium-51 isotope						

t