
TO APPEAR IN THE JOURNAL

OF THE A.C.M.

0

A FORMAL DEDUCTIVE PROBLEM-SOLVING SYSTEM

J. R. Quinlan and E. B. Hunt

This research was partially supported by the National Science
Foundaton. Grant No. NSF B7-1438R, to the University of
Washington, Earl Hunt, Principal Investigator, and partially
by the Air Force Ofiice of Sci:ntific Research, Offi e of
Aerosp.ce Research, United States Air Force, under AFOSR Grant

No. AF-AFOSR-1311-67. Distribution of this document is
unlimited.

Computer Science Group
bniversity of Washington -- Seattle

Technical r.eport No. 68-1-01
February 9, 1968

A PMIAL DELAUXTIVE PRC3LE-*-SOL/VG SA

J R. WWiI=~ ad S. B. 1n

The Unks"It7 of Vfash*nxte

1.1 1:btivatian Comiputer programs Trt,Ich solve rtrblei hawa eJe

consul4rable interest. Two lines of research hav!- been folved lt ee,

doductive theorem are translated into satemients iu a firot-crde theary, ond

a first-order proof sou~ghL. The xiork of J. A. iobinscni (l1)) exerplifies this

app'roach. An alternative procedure is to r4-prezenz a dductive ro. as

r-i*lem of finding pernissible reiriuing rules -.,hieh parie-it owns to Mo from

string of symbole describing the Initial state to a string of sy:bals describin-

the goal state. The "General Problem solver" (GTS) of 1-rel Sw an,- Simo,

(7,B), althoug4 not orifInally preseuted in these tevu;,s is a~n example of thig

sort of program.

The Internal operation, of the CPS-like theoren~ proveTo resembleg the

syntactic phase of a co-mpiler, in that production rules are apr'Aed to chal&-0

sentences fron one formi to another.

In this paper, -e 3hall present ai for-.ial descrint-tin of P_ class of

problen.-solving proirans of the c -~evariety. It All s"ecify .a class

of recursive prog7rams quite sir'ilar to top-do~rnx coripiler-cornpilers. 'Ie siie*.

then shwi that there is a clas3 of orob1ltns iiIich such proi'rans cannot solve.

Next T!1e describe a iodified structuro 'rhich penerates move potierful rf

These are non-recursive prograns irhtich destroy t1iwir sirilarity to a

compiler.

Our itork wzas originally motivated by descriptlorns of Vie GPS, aind we

acknowledge our intellectual debt to .1evell arnd his co-yrhors. "e have proceded

2

-a so-lc17 't differunt dir ction, holwever, and our proasent Fvst~n should not be

rga:'ii as a fortnalL'-ation of CMS "o siiill return to the point after presentinc,

~~ ~ Programi. nze i, our I;ysteri 1,ave been 17ritten in Alol andi

tV ~ ~ I tz: o~ 1x:2 uet resoncil . difficult piroblev's. Some

1.s ce~:'7 Lci :. 'o-i: tat-s .ro representod by strin ,s of

~vbos.Stinc boyin,' cor~iiin rukz - for nernissil: le sequences of SYn.-bols

are cale trulzturco, or iull fum-ed texrressions. A state isj aiways represented

by a L,-uctu :z. Structures nay contain substructures. The sy-'ols of a string

;-re drxrwn fvr a infinite, countable set of synbols called .

,A transfomnation 'crites one well JL~cied expression into another. A

problei-1, ii solvrA wh -,- a sequence of tran~forrnations is found that iwrites the

startin2, stat:e 1i;o the r7oal state.

2.D' n4-1 s

2.1. Alphabet: The althabet, A , is an infinitc, countahL set

of s~vnbols fon.wad bv the union of a finite set T of terninal symbols and an

Wninite, blc et V. of non-torninal -w' bols.

,1,2 Terminal Syibol-q; Th c f ter-ial sviibols T ,i h no

of u~ fiaite T 1 i t'ri-iintil sy..ol f deeree i That is,

w~.rif (A i:; tiw ervty set,

T, T ~~jif i

:-,xamni In elcment:ory a~febra, T lroild consist of the set T of bound

var leR wvy ib o s in, b, c, ,the set T containini, unary inus, and ;i

jet 'A-2 A binay .-,cn- i ec t 1v {+ s 1+ tx

3

2.3 J'on-Termninal Symbols: The set V consists of the infinitc

eomtable set of syrrbols {V, . > 01 , ,ihc'i denote free variahles.

2.4 Terminal :C-.!ses: Let C 0,{C1, I ' 0 ... 1 } be a set of

sets of terminal syrbols, such O--

(W) all the raents i%' C1 are of tie sane depree for all values

of 1i , "d

(it) every te,.mnal symbol is in at least one C

2.5 Structures ;ell forted f,"ressons): .ell formed ex'ressions

are defined by the follo:in rules:

4~ *O~is~l ymb"1 is a o.L ~u:~~(~iO

2,5.2: A terminal symbol of degree n foll,ed rv a vell formed

expressions is a t!,ell formed expression.

This ia simply the prefix or "'olish" notation. It is obviously

isomorphic to a tree graph.

3. Relations between structures:

3.1 Terms descrfbjnv strines and substrin -9: Let s be a strinp,

of symbols g0U S 2 ...' s V... 'n-1 "

3.1.1: The lenrth of s (L(s)) is n

3.1.2: The sYnbol si is the 3yribol in nosition I of s , starting,
itth s,3

3.1.3: If 9 is a structure, sUi is the ,'ell forw expression

(substructure) begiIn- 4 ' vith symbol si

3.2 Crmcatenation: Let sa anu s be ntrints. s is a

concatenation of a and s if

a b
whre L(L) - ad L8 L .n. his is written

(2) a =
a sb

3,3 Direc t comporien.ts. 'r an! structur-. sM) let '(0)

s(i + L(s(i))) i.e., the structurr. oftLtc'fll''n-) in S

(s(i)) iq Cie follcvin7 .tructure of sM~ -it1;arty '' s(1)) if- tile

follouing structure of tlh2 follolwixw structurt- of M-(.) Lot s, be a symbol

of deh ree n, The direct coR7!p.! ents. of i' arE 7,D , ,(,T (sAiD

3.4 Equivalen~ce, T-o str~n,,s s- and t- aru equilr.-it if L(S:)=

at . n' fe -- vr I , 0 < i < L(s) ,either

(a) 1 t =V, for so; ie J ,or

kb) Si t i- k foL sone 1

3.5 Substitution: The value of tC.e function B(V1 u s'i

Aefine-& as the strin ihicli results fr-oyn replacinp, each occurrencco off the svm-b at

V in the strinrg s with the well formed expression u M Te rule of
i _

substitution states that a structure s may be replaced by the i~tructure

B(V u , s) for any V4 -and any well fone' expression u

3.6 Snecification: A -trin(is,. so(-cification of a stringr

t (written s t) if there ts -, et of- -,atr,. j(, ,n uch

that the stiess ank

Co siient: i, tlie ,--enerattc c q~e, e,,tivi h2ikcc ?nu s'leci ficat ton apotlv to

symbols.

3.7 C->rresiondenc#. Given ti~ ! ;triu<',; :id , jorsnnec

relation C bettucen thoir ;v'oLt'. cU i id w fol to---

Ca s n. (8 or rn -
0 0 0,

5

I' k f there exi-t -,uch that

'k suhta

(i) r! C

Uil) 9- ' ,

L,2IA)_ (k) are the it': tirect

cor'monent'l of si, , , re-.-,e,2ively.

4, RewritinR rules and operators:

4.1 ;etalin!uistLc symbol :=" The !etalin.uistic sy-hol

is defined to mean -mav be rewrritten as'. Thc statement s :- s" is intar,-reted

as "structure s uay be ret tten as structure 9A'

4.2 Rewritinf rules: Let i and r be structures. The rule

r is --- v tinp rule 7

4.3 A22lication of rEritin' rules: Let s be a structure, and

a rewriting rule. The application of Ri to s , Written " (s) , is defined by

(a) if s is not a specification of F1 I (s) is undefined.

(b) if s is a specification of I let Z. be the geiuence

of substitutions which transforts I into a strinc- qivalent to

_ i.e., s I' ecuivalent te (X) . 'Men is) 1(r)

Ex-ale: Suppose is + n V + V an'! .zn attempt is ade to formm- 1 - i- 2 1 '

" (+ a + b c) The reaufred ;ubst itutfon s7,u,',cc can he dofined, v
I :z(:)U 1 (v ., . + 10 C , :(VA .:' _. +- ' :I - ° ..: + a- + C)

is defined ag the structure

Z(r) B.' + c ± , .(V , a , r,). 4- + c a

4.4 Operators: An onerator, i- apni leO to structure s !en

rmiritiag rule P a, plied to su'strucrturc s(of L_. t

6

n L(s) . Then

(a) O a(s) is undefined if sj) is not a specification of

(b) 0ii(s) - S0Sl 0 sj_ 1 Ri(s_ 1) "sj+k sj+k+. . .s n _1 otherwise.

4.5 Analysis of the effects of rewriting rules: In order to apply rule

R to some structure s , one musL find a substitution sequence Z which

satisfies 4.3(b). The result of applying the rewriting rule will be the structure

s= Z(r1) . For every symbol in ri , there will be a symbol or a structure in

s* which is a specification of it. Let (r) be the Ith symbol in .r1 . If

(r)j is a terminal symbol, then this symbol will appear in s* , and so one of the

symbols of s* is therefore fixed. If (ri) is r non-Lerminal symbol, then the

corresponding structure of s* is defined only in terms of the symbols in s

In analyzing rewriting rules, two tables can be constructed. One lists

the symbols of s* whose identity is fixed regardless of the symbols in a , while

the second table lists the structures of s* which are defined in terms of a . (In

effect, this is what happens. Actually, the structures of r i which are defined in

terms of structures of . are listed.)

Example: Cevsider the distributive law of algebra.

+xV V xV 3 V2 := x+ VI V3 V2
1 '2 - 3 -

W.nhenever this rule is applied, the first symbol of the resulting structure is always

"x" and the second always "+" . The structure beginning at the third symbol will be

tihatever structure began at the symbol corresponding to V1 in the left hand string,

and similarly for the structures replacing V2 and V3 . The results of applying

a particilar operator 0 to string I can be determined by examining s U to

fj.d what the specifications of V1 9 V2 , and V3 are in this case.

7

Coiet The tables defined by analyzing rewriting rules play the same role in

our formalism as do operator-difference tables in the CPS (8).

5. Problem defined:

5.1 Difference sets: Let s and.& be two strings. The difference

&et of a and g, E(B,g&), is defined by

E =,S E*(B,.S) Yj Ej(,) where

(a) A pair (gj, k) is a member of E*(s,&) if

(1) a kC g

(2) g~ isI not a variable symbol

(3) a k is not a specificatio. ofg

(b) A pair (g j,, k') is a member of Ej(s,.&) if, for some J,k

(1) a k C g

(2) gj to a variable symbol

M1iA in comparing

em + ab,

E(_B,a) is ft.-med in the following steps.

(a) The orly non-variable symbol in & is + The corresponding

symbol in a is also + , hence E*(s,g) - 0 , the null se -

(b) Symbol g, is the variable symbol V,. 7he corresponding symbol

in a is a . Hiking the substitution

1
Bg s(l), g) - g 0 aa

we find E I(sag) - E(sfg 1)

(b.1) By comparison of corresponding symbols, the

8

only mismatch which occurs is at position 2, where g2 - a , a = b

Therefore,

E*(s,g) - {(a,2) 1
1

(b.2) String _ contains no variable symbols, so

E (s, g) = for all j , hence

E(s, g) = E,(s, gl) = E (s,g) = {(a,2)}

(c) Now consider g2 = VI , the second variable symbol in g . By

repeating the above steps, except that we are now concerned with g2 instead of

gl , we find that

E 2(s,g) - E(s,g 2) - {(bl)}

(d) Combining the above steps

E(s,g) = {(a,2), (b,l)}

Comment: Difference sets between two strings are defined by syntactic considerations

only. An advantage of this is that we can use the same algorithm to generate

difference sets for any deductive system which fits our formalism. This provides

us with a very general theorem prover, which requires little guidance from the

person using it. On the other hand, this definition does not include all differences

which a person might find between two strings.

5.2 Problems: Given two strings a and £ (the starting state and

the goal state, respectively) a problem is def.ned as the location of a sequence of

operator applications which demonstrate that a S . Symbolically, a problem is

solved when an ordered set of operators {0 1 ia , a l...n is found such that

in O(O) ' ' ')* ')) n- a.

and

Is equivalent to n en is produced , , .) wil

be empty,

The step 0 1 (sa i) can be a rwnber of the sequence of steps in a

proof cnly if sa-I Qa)ais a specification of J In section 4.5 wp noted

that the ripfht hand string of a rewriting rule desrO.bed Lts results. By the

above irg,.,nt, we now note that the left hand string establishes condltions upon

a structure Lo whizh the rewriting rule can be applied. 1hese c nditions are

defined collectively by saying that the structure must be a specification of th

left hand string of the rule. If E(I_ i is empty, then the operation

0 is defined. If the overation is nt defined, but If a sequence of

operators can be found which '-nges Inte . string s* such that 0 ij(S*) is

defined, then that sequence may be applied to s , and the final operator, ,

to s* . Finding the sequence leading from s to 9* Is itself a problem, so

a problem contains within itself subproblems which can be attacked by the same

methods used to solve the original problem. The argument that this 1a so is

independent of the methods used. 7t i-, simply. that if the subproblem i tht

sawe type of problem an the original n-oblem, and a raional approach was used

on the original problem, then why should the subproblem be handled differently?

6. Proof Plans:

.I General: The first step in theorem proving In this formallsm is

to search Inr an operator which, if applicable, will remove elements from the

difference set E(s,A) Once such an operator is found, the probiem cf making it

applicable is established and, if possible, solved. The resulting string is then

exained to see if a solution has been achieved. If nAt, the procedure Is repeaLed,

tmtil a solution is reached Gi until patience (represented by a parameter

10

established at run time) is exhausted. If this strategy is to be successful, we

must select operators which generally renove more differences than they introduce.

Aleo, the subproblems of applying operators should b less difficult to solve

than the origiinal problem. To achieve these goals, we rely heavily upon an

I"abbreviatee" look-ahead method, which assumes that the problem of applying

operators at any one step can be solved, and then isks how much benefit will be

gained from their application.

6,2 Finding a proof plan:

6.2.1 lero-Order Oeratora: Let B EZ) be the set of

0
zero-order differences. For very (gjk) in D , 3 difference between s and

would be eliminated if s were to be rewritten as - specification of g

Thii can only be done by rewriting some sustructure of a which contains

s as rne of i:9 symbaic. By examining the tables of symbol trans ormations,

the effects of applying each rewriting rule at each p~sition in s can be deter-

mined, by substituting ri into a at the appropriate place, if the use of

i on . i ll change ak to a specfiation of g the o ~erar 0 is

0
added to the sit P of zero-order cperators. At this point, no check haa

been mode to determine whether 0 iq () is defined, i.e., to see whether A_2

is a specification of "

6.2.2 First-order differences: In examining the second table

above, suppose we find that some operator 0 will change a LO 8 n but
ij k n

is not a specification of g Now if a could be rewritten so that
tn

it vas a specification of g then 0 could be used to remove the difference
iq

0
k) from D .we have thos discovere2 a new interesting difference, namely

(g , n) and it would seem reasonable to tackle it in the oame way *4 we did
4 I

the original difference. To this end, (ga. n) is added to the set D of first-

order difference*.

6.2.3 Higher-order differences andoerators: After all the

members of D have been examined, the set of eo-order operators qnd first-

order differences will be complete. The cet DI of first-order differences

is then examined, in exactly the same mar ner as D was examined. This Senerates
21

two further set$, , the oet of first-nrder operators, and D", the set of

soccnd-order differences. Repeating the same procedure asain results in
j 3 - 2 m dr eeal ie r h ~s.u djm.

generally given D , the seta.Z fd can be generated.

The process continues until Di ir empzy, or PP has been generated, where _v

is a parameter specified externally. To avoid 'ooping, an operator or difference

Is uot added to ita appropriate set if it is already a member of that or some

lower-order set,

Coment: By using this procedure we nave a definition of differences between

states whtch is entirely syntaetic. The ujer of a program neee not specify any

apecial system specific routines for defining differences,. The user can

leave the definition of differences completely under program control by not

defining classes of terminal symbols (e.g., by treating + and - as unique

symbols, ins,ad of including the class dp. in the algebra example.).

A truly general general theorem prover would specify the value of

z internally, thus deciding to go te great depths in enploring promising solutions

wbile abandoning unpromising lines 6f approach rapidly. To do this, ono would

2.2

fhave to have scne way of determining the probability that a part'W.lar line of
attack was going to result in a successfu solut cm. We do not at thia time have

a speific proposal which we care to defend. Ax a practical matter, our operating

program can accept an initial value of p and then, if that does not work,

increase p and try the problem again.

6.3 Ordering if ojerators: Let P be the set of sets J

h 0 .. p , P contains all the information available from which operators can

be selected as likely candidates for the innermost operator, 0i1 , in the proof

expressed in 5.2. The relevant information consists oi the nw-+er and level of

differences which generated each operator, tue complexity of the operator (obtained

by examining its rewriting rule), and the nuier of corrections required before the

operator can be applied (obtained by compa-ing it5 rewriting rule to the relevant

substructure sjf of a) Let F(P) be defined as a function Which orders

the set of operators {O , which appear as members of pairs in the sets

Phikor brevity, we will write F. for the ordered set of operatore. F is

Interpreted as an ordering, from "probably most useful" to "probably least useful",

of operators which may lead to the next step in s proof.

Comment: In a specific program, the definition uf F(P) is crucial. In

describing the structure of a class of theorem provers, it is sufficient to assert

that F(P) exists and that it orders operators. An advantage of the formalization

is that it makes clear ways in which two programs could differ and still fall

within the spi class of prograias. For instancr., it is conreivable that in

disferent problem areas (e.g., trigonometry as opposed to the predicate calculus)

different algorithms for F(L) would be apropriate. ta our own work we have

experimented with several algorithms. The resnlts of these studies will be

rn, prted elsewhere.

13

7. Procedures for solvinA problemq:

7.1 General: Using the above definitiona, we now present two

procedures for problem-solving. The first is a recursive procedure, iLn the

jAlgol" sense that a class of algorithms are specified which call thenelves

as subroutines. This procedure has P structure very similar to that of a

top-down compiler-compiler. We then show that there exist problem whi.Ch

cannot be .olved by any algorithm in the class. Next we described v.

modified, non-recursive procedure which describes the structure of our current

working programs. Henceforth this will be referred to (for historic reasons

only) as the "Fortran Deductive System", or FDS, algorithm. We show that

problems which previously escaped solution using the recursive procedure can

be captured by the FDS algorithm.

7.2 The recursive procedure: Given the problem of rewriting s

as a specification of g and two externally specified parameters r and p,

proceed as follows:

(1) Set - 0 -s _ " (The variable k will be

used to simulate the level of recursion of the problem-solving

procedure).

(2) Set k - k + I Jf k > r , the go to step (7)

otherwise go to step (3) .
(3) Determine D - E(s ,k) , then P (sectio 6) and set

Fk - F(P) If D0 ;o .o step (6); otherwise assert that
k k

the probm sk , g is solved, setE - k , k - 0 and go to

step (4)

k
(4) Set k - k + 1 If g -yP then po zo step (5)

otherwise return to step (4)

-

14

(5) ,et k.- k - 1 . If k - 0 , assert that the main problem

is solved, W.d quit. Otherwise, find the operator 0ij which

k k+1 R k+l k
generated the goal g , set s = 0 ij) ,a - z , P- -

and go to step i2)

(6) If Fk CV ' then gu to step (7) , otherwise go to step (8)
k k

(7) The problem s , k cannot be solved. If k - 1 , then

assert total failure and quit; otherw-ise set k k - I . If

k k+1
Ja , E , " hen set p= p+ I . Go to step (6)

(8 Remove th-- first operator from 7 ; call it Oij

k k+1 k k+1 k
If 0 j(sk) is defined, set s 0 (ijs) I R . and

go to step (2) . Otherwise, --- L > 0 , go to step (9) else

return to step (6)

(9) The ss;,ogoal of applying Oij is to be established. Let

k
f(j_) be & function whose value is {(,P} , where sjj) is the

ath direct component of s Ititially, se$'2 to the

string X then execute the following steps in sequence:

(9.1) If i-- 0 , go to step (9.5).

(9.2) Let f(j) be {a,_} . Set jMO.
k

(9,3) Let the degree of symbol k be n , and

let X n ean "any symbol of degr-e n"

Form the string u - X V-- nV+1 V1+2"'
i-lk+l 1-4l 1-

V I+a -ak+V .i+a+ .. V where I is

defined as the highest index of a free

k+l k+l
variable in Set to u

f

15

(9.4) Return t o step (9.1)

(9.5)
Set £ p - 1 , s - s , and go to step (2).

p

W
.

k+k

QjLnt.: After steps (9.1) (9.5) have been executed and control returns

to stop (2), g k will be a structure with the following properties:

(a) The symbol __ in S will correspond to the symbol marking

the start of the structure X in k+l

i

(b) The first symbol of every other structure in s will

correspond to a free variable symbol > . Thus, if b (J) is a.k+1

k+l

specificetlon of Xi , a is guaranteed to be a specification 'f g

If the procedure fiods a uolution, i will produce oae u ing not

more than r levels of recursion. At no state will it "lonk ahead" utore

than - subproblems to see if an operator may be applied. Irterestingly,

increm.irg tho values of r and p beyred the minimum values needed to find

any proof hardly ever results in finding a more direct proof. Th1is is because

th. increased parameters will permit an extension of the set I to more

operators, and unlris-4 te ordering within F is pefect, there is always

a chance that an operator which leads to no ptoof, or to & true but awkward

proof, will be tried befc.-e an operator which leads to a direct proof. Some

examples of this phenomenon are g ivon in (9).

Comment on programnin,&: ,e have prsented a non-re-ursive method of storage

a)location by manInu! at inp the pointer k , nd indexing s, j and F . In

a prcgramiirg lanfguage which Permits dyna.ic storage alloc&tion., the coding

probleta is much simpler.

7.3 A class of prcblems riot handled by the recursive prccedure:

1 1

Strigwt noiia rb 1,si's htteshrbe

16

2 2s_, 9_ is generated, as in step (9) of 7.2. Any rewriting of s . into a

2
structut which is a specification of r_ 2is a solution to the subproblem.

Let us suppose that two ,3ilrh solutions exist rz .ting in structures s and

#s' . By hypothesis, the rewriting, rules -iven covtld generate either: of them.

A particular ordering function, however, !rill uncover one of them first. Let

this be s Upon findLg this rew riting, s will be defined as

3
3 = 0 (s A

3 3

•ind control will be passed to stp (2) at which xoint the problem s 3 3

is attempted. Asst..- that this problem cannot be solved. Control will be

returned to step ()) of 7,2. At this point, if 0 i_ was the la- 2 operator en

F_, Fl will now be empty anu failure will be asserted. Failure uili also

be asserted, although soewhat later, if the operators tollowin 0 q on

F do iot produce stcps whlzh le.ad to a proof.

Supposc ho'e ,er th'l:t t'he ;tcp 0 (s) v'as an irrcplaceable

utcp in thc proof. Bv hypothes:; , the rCl".ritinl, rules; xist such that s

can be retr-ttecn as 5; , 1u1c i tht, tornulat ior dccrlbed In 7.2, this

step will. never be r('ache2 si nt: once i:; found, as 01 will be

removed fr- Y On tl ther hrn), not reOxving' operators f ror F1

x0'oLd re ;0 ~Ain oo i , il\ 1', "e on r ? ai 9-.--lm crS1tm I N- umd

unique.

7. a ", 1 K 2 o lc__f t!t ci s li fo i Ix"n;g example "llc ustrates

both the procedure c-! .2 anI ti, f ax d, scri 1 i' 7.3.

The pr-bie: are o is a gr,.atl; reduced subLS et of al,-ebra. Lk t

the vocabulary consist of

17

(1) 1. e terminal symbols X antA' 0 , of

degree 0 , and + of degree 2.

(2) Free variables V as necessary.

(3) The terminal classes C1 { C2

{ ind C. - {0}

The set R is the three rewriting riles

R +0V :- V

R2 V :- + 0 V
2 - 1 - - I

+ v v 'a- 4.
-12 V,) 21

The initial problem is

, S -d __ to these strings, step (3) of 7.2 generates -

{(X, 0)} , from which we qeu F t (0 ' Siace 6 (+ X 0) is not

defined, we generate the subproblem

2 2
s - + X 0 i_ = 0 v

The subpro lem generates the set of 7L.ro ordcr dIfferences,

0 .2 _(
D ((,l), (V 2)) , and F (02,0 3, ' (s'*) is

1' 3,0

defined, thi- new problem

3s . + 0 + ° , "+ 0 V1

3 3
is generated. s is now a 3pecificatlon of Q ,o by rcpeatin, step (4)

3
set k to 1 and, after ".sing 01, !11 s , continue with

2 2

2 1 2 1
Now a - sI and &2 - ; t b Iroblern-solvin: procedure is caught in a

2 2
loop. 'his bituaion; is detected, the problem s, is failed, and the

system returns to the situation

1 i 1

k - 1 , s + X 0 X , F

from which step (7) of ".2 asserts failure.

7.5 The nor,-recursive modification: There were two solutions

~2 2
to the problem s, _ , and the program acceptcA the wrong one. I- the

wodification, the fully recursive structure is abandoned, allowinp. the

program to try. a subproblem a second time if necessary.

This is done-, by n.ot "rep- sting back" when a subproblem is solved,

bt rather bringing forward the previous goal. Specifically, if while

I iconsider'-7g problem s_, y, the operator 0 generats the sub roblem
+e o i0l +

+ - p, , and this is solved by finding a structure P which is

f f i+j ai+l +j
a spec.ficat"n of . 9 - , then the new subproblem s

i+J 1+1 .i
(si) , - is established. Prom its index, thig is seen to be

i+J-l i+j-l i-l I
_ , subproble-r-, of s (In the case - _ , success is

asserted.) Note that if the particular subproblem s turns out

to be unsatisfactory, a -e'w solution zifll be sought for - R

To achieve this, changci step (5) of 7.2

k 1
(2) If ",:i , a's't t .it thc mii i problen is solved ind

quit . the~s., '" k .Find the cr.erator

: ' k}i genevrate I, so't ' =

" p. , , - 1 .snJ 5'o to ste (2)

Co7-ent: Clearly, this d,.stro\'1 it. r, cursivo lature of t1, all-ortthm, since

it .ermits hisg level subproblen's to vc accesz; to low Levl .04lq.

7.6 The exArmpI problem revisited: ihe nodified procedure solves

th- illustration preblem -is fo ,lows:

The d -wlopment is identical to 7.4 through the first occurrence
3 3 2

of the problein s, g . Following its solution, instead of returning to s 2 2

we have

3 3s_ - + O × , - ×

3 1 3 1
Again we note s I 2, - ; so a return is made to the situation

2 2 . 2 .
k- 2, -+X0 , +_V - {O 3,0

2
Since 03, 0 (s 2) is defined, g*'e get the new problem

3 3
- + , V + 0 V

3 3
8 is a specification of F , and so by step (5) we have

3 -"

3 3 3 1
Now, _ is i specifiration of , and since y , ' the original

problem is solved.

Co nt: The modified pr-cedure has proven that 0 + X x , hardl a

result of great surprise. Aid it did it " 4ith only one ials, start'

"Obviously7, one VoIh-1 avoid the need fic. elaborate procedural arrar,-e.,ets

of this sort if the correct perator ;as trid rlrir. If an algorithm for

doing this were known, the act of nrovin-, theor-L would he trivla>. Ve

modified pro-edure safeguards one asaiuist It's than Perfct orderinV of

o~,trato rs.

8, Discovera of solutions t,,prob!m-: shal 1. .. ' :'eftn the clas of

problem which our rodifivd system can solve, :or thtq ipoe, we !hal1

asasue, that the parameter-. r and , ar unnound ed, as limiting thee crvq

mrelv to increase the efficiency of the ivstert.

20

n
8.1 Notation: Let Y 01 j denote the sequence of operations

a-n a a
defined by

Y (a)- O0 (0 . 0
OMM~ n n nln-1 i

This compound operator will be used only where each operation in the
n

sequence is defined. If Y 0 (a) is a specification of some structure
a-m a

* then the ordered set {O 0 a- m, n) is a solution to the problem

A , a • Finally, let G(O1 j(s)) denote the "try to apply 0j to 9"

The generation of an appropriate goal structure was defined in 7.4.9 .

8.2 Difference-discoverable solutions: In general a problem has

many possible solutions. These can be dichotonized by esking the following
quetio: A eah sep k k

question: At each step k in the solution, can what to do next be

discovered by analysis of only a kand E(s k , k)? Formally, we call a

solution : - (0 " a- m,n } to the problem s , . "difference-

discoverable" if

8.2.1 s Ss and w- 0 , or

8.2.2 there exists an 0 contained in, i P such that the

solutions (0 , a - m , -i to s , G(O (s)) td
a5 5

(01 0 a a + 1, n) to Y 0 (s) are both diffirence-discoverabln.
a auom a

Comment: P is constructed in such a wtay that it will cr-tain every operator

0
which reduces D , and hence may be instrumental in reduing RD . Thus,

0% S P implies that an attempt will be made to for 0 0jo (S) . If

0 tjo is also a member of r , then this attempt and t subsequent

application of 0 .ja will, if made, lead to the first ; steps of 7r

being discovered. (The attempt nay not be made if the 6th stet of r is

reached in aone other way.)

a mple.: In underrtanding this definition, it is illuwlnatin- to consider an

example of a solution which is r- difference-discoverable. Let MINUI denote

unary rdnus, and define the rewriting rules

It xIHbUS xV V '= v V MINUS V1

S 1 2 2 -

Con..Idcr the problem

a MiNUS x a b, = x a > tINU. b

which has the solution

Ita ic 2,1 ,0 1

DO i E(s,g) - ((x, 0,') P n 1 s n P Since s $, the
1.0

only 0 for 8.2.2 is 0 . Thus the solution w to s , g is

differen'e-discoverabie if and only if the solution r* s (0. to s

* - (01,0 (s)) and n** s 0 to s** , 01(02, 1 (g are difference-

Ascoverable. Bu' s S g* an- 7, # 0 , so the solution T1* to s

is not difference discoverable; thus, neither is the solution n to S, £

The result could be predicted from the intui'Ave concept of difference-

0
discoverability given in the begtnning of this section. Initially, D

{(T,0)ht .T nLy way to rem)ve this difference ir, to use R However,

the fact that 0 2, must ho used to s;witch a and b before removing this

difference cannot be detected by the procedures riven in sect!on 6.2.

8.3 Problem-solvg sce of the system: Any difference-discoverable

solution to a problem can be foun' by the FDS algorithm. Since we shall

22

Stalking about th system finding particular solution, we add (telvp-

orarily) an extra switch, or "4e-,nl to the -.Ystem. This ull zi;eck any

solution found, and if it is not - one, will discard it and keep

looking.

Lee 6 be a problem iwith the required difference-d!,coverable

aoiution 'r { , a - l,n } . Our proof will be by induction on n
a ct

the number of steps in the required solution.

In the case n - 0 , the theorem is trivial; a S & and since

1T is difference-discoverable, n by 3.2.1. The required proof will

be detected by step (3) of 7.2.

tssume then, that any difference-discoverable solution of less than

n steps ' n be found. Since n 1 0 , n 0 , and so there must be an

0 4, i < n__ 1 hich satisfies 8.2.2. That is, the required solutions
8 J 8

,* cA 1.8 - 11 to s O G(O1 ()) and n** - (O a 0 8 + 1, n)

to Y 0 (s) , are difference-discoverahle. Since these are both of

n steps, they can be discover'i. The demon guarantees that eventually all

difference-discoverable solutions, and hence v , will be discovered.

Comment: To see khy this proof does not apply to the recursive formulation,

add the same demon. Now suppose thit the first solution found to s.

G(0. (s)) is not v 1hn faliuro is finallv asserted on the other

1problem, 0 will be removed from 11 , and no further solution sought

to the first subproblem. Thus, the discoverv of Ti* cannot be guaranteed,

so neither can discovery of r

If a problem has at least one differ. nce-discoverable -olution, a

solution will be found. The particular one found wl1 derc.,d on the ordering

23

function F(P) Empirically, wie have found that problems without at least

one difference-discoverable sclution are rare. Only one such problem has

been found in our study of over one thousand problems from diverse areas of

mathematics. Thus, we feel that this linitation is not overly restrictive.

It would be nice if there were some way to look at a problem and

say that it does, or does iiat, have a difference-discoverable solution.

This is a chimera. Difference-discoverability is a prop.rty of solutions,

not of problems. To state in advance that a problem does or does not have a

difference-discoverable solution requires that one make an assertion about

the form of a solution before he knows what the solution is.

Anotherway of looking at this is to say that we are dealing with

an algorithm wh !h is not complete - since it will not always prove a true

theorem. This is in contrast to theorem provers based on the resolution

principle, for which completeness can be proven (10). Should we be

interested in incompleLe theorem provinp methods? The answer depends on

their pragmatic utility. Is the expense ef possible failure offset by an

billty to handle some problems very well? The following section addresses

this point.

9. Emasp

9.1 General- We will now show, by illustration, where t1- FDS

algorithm does or does not perform well. The algorithm is quite effective if

the theorem has a proof in which each line is derived by application of a

rule of inference to the line derived immediately before it. This will be

referred te as the "line by line2 property." The algorithm is much less

suited, an. indeed, ippears clumsy, if the "natural" proof (to a human) depends

I _ _ _ _ _ _ ____._ _ _ _ _

F

24

on the convergence of two or more chai.,, of inference. Because many very

difficult proofs are of the latter type, and because we have used very

simple examples, it may appear at first that the algori,-m is suitable only

for trivial probleus. This is not so, as a line by line proof may involve

steps which are difficult to find, and czr simple exar"T es were chosen

solely for ease of exposition. Several of the following illustrative

prc Aema are quite difficult for people. As appropriate, we shall cite

st-"tistics.

Within each example, a program fit:tig tho ?DS algorithm (1.e.,

behaving as we have specified except tha. a specific ordering rule was stated

to define F(P)) was given an initial set of rewriting rules, then a series

of problems. Each time a problem was solved, (except in pattern identification)

the appropriate theorem was added to the list of rewriting rules available for

subsequent problems.

9.2 Elementary algebra: Elementary algebra is a system in which

most proofs have the l!ne by line property, and hence the algorithm works

well. This Is illustrated in Tables I and 2, ,hich summarize the result of

an experiment with school algebra problems. Table I states a set ot axiocis

and probleTrLs involving al ebraic manipulation of plus and binary minus. in

Table 2 manipulations cf zero and unary minus are defined.

Everyone knows" these theorems are true, but it is mrprisingly

hard to provc them. The rewriting rules and problems one to thirteen of

Table 1 were presented to fifteen University of lasshington undergraduates

enro.. in introductory psychology. Although hi~h school algebra is a

requirement for admission to the University, and 2ntary statistics

25

taught as part of this course, the students did ciute poorly. They

averaged two and a half solutions in half an hour. The best pr-blem

aolver produced only seven proofs.

Some of these problems are not trivial for people who have had

considerable formal mathematical trainin;-. In particular, consider

problem 7 of Table 1. We have, informally, presented this problem to about

a dozen graduate students or Ph.D.s in U.athematics, Engineering, and

Computer Science, allowing fror- ten to forty-five minutes to work on it.

Only a few people solved the problem. The fastest solution ,t'ained, a

different proof from that found 'y FS, was found in ten minutes by an

undergraduate, who subsequently was elected to Phi Beta Kappa in

Mathematics for other reasons.

9.3 Sandersor al ebra: "Sanderson algebra" is an alget-a

developed by Dr. J. Sanderson to 3escribe simple flow charts, such as might

occur in microprogramming, (12). Proving that two well formed expressions

are equivalent in this algebra proves that the flow charts they describe

are computationally equivalent. Table 3 lists the twenty-six "axioms", or

equivalences, which Sandernon proved by sot-7inp that all possible inputs

to the corresponding circutt, gave equivalent outputs. fie then proved

the fifteen theorems listed as problems in the table. The theorems have

also been proven by the IMS, 'ith the times listed.

This example Illustrates the strong "non-reflectivity" of the FDS

algorithm. The algorithm must begin with th- atarting state, and then

rewrite to the goal state, wt.ere a human theorem prover might reverse the

process. This is illustrated fn Table 3, problems 13 and 14. These are

reflexive versions of each other, yet by a time to solution criterion, one

26

problem is 500 times harder than the other! In practice, the FDS algorth..

ought to be supplemented by a pre-processor which decided that if ":-"

was reflective In .hc deductive system being handled, and the problem was

of the form "'a := b" , it would be easier to prove "b := a". But how Is

this decision to be made?

Eight Uni,. :sity of Jashington Junior or Senior majors in

Mlathematics spent three hours each attempting to prove the problems of

Table 3. The system was presunted to them with reflectivity of ":-"

assumed, so that if anything, they uiad an easier t-ask than did the FDS

program. (There are then seven problems.) The average student obtained

two solutions. Only one student solved all problems in eighty minL RS.

9.3 Pattern identification: Our next example involves parsing

strings In a phrase structure grammar. This example was chosen to show

the reserielance of the FDS algorithm to compilation. In addition, this

example illustrites the application of the alorithm to a slight extension

of the theorem proving problem. Instead of being asked to find a sequence

of transformations which change the starcin9 state into the goal stat.,

the program is asked to detect to which of several classes of strings a

particular well formed expression hon2.

DTo dimensional line drauyin-s Of buildtngs provide the subject

,itter. For eas, of exposition, think of "houses" and "churches." Proto-

type houses and churcht arc shokwn in Fil'urc 1. Civen a set of basic

patterns, complex two dimensional variations of these patterns can be

constructed by specifying a set of connectives (e.g., "on top of") and a

phrase structure grammar whose rules determine the variation of patterns

!5

27

which fall into a particular class, (4, 5). A typical set of rules arc

given in (4) . These are similar to the rules used in this application,

with the following exception. Let (B i , i= I.. .n , be the set of n

prototypes, in this case the n basic patterns representing different

types of "house" or ',.urch". The rewriting rules contain n rules of

the form

B := PATTEMN

where "PATTERPN" is a special constant that only appears in rewriting rules

on the right hand side of the above n special rules and in the rule

PATTERN . PATTERN :- PATTERN . If the problem A :- PATTERN is pr>'cnted,

where A is any well formed expression, if the program solves this problem,

it will have :'rst rewritten A as sormie collection of the {B i then made

the trivial last steps of rewritting to PATTERN. If the B. each

represenL one of the basic types cf patterns, then the weil formed expression

(complex p'cture) A will have been classified as a particular type of

pattern.

Figure 2 shows two basic patterns and c e t:w-. co-;-euad 'aotc-ns

which have been classified as exarples of each type. In this example there

are eight basic patterns, and 26 problems ,'ce attempte. Proofs in this

application are quite direct, and nrc obtined in a. average tim of six

se.conds.

9.5 Propositional calculus: V.T, orvious illustrations have been

of theorem proving in systems which have the line by line proj.erty. More

specifically, each system has axioms of the form X is equivalent to Y

with the added assumption that within an expression any subexpressior M.av be

replace: by one of its equivalent exprecsions. 1.e will now give a example

28

o- how poorly the FDS al,'.rithn performs if it is asked to prove theorems

in a system which does not hav this property. The svstei is the

propositional calculus. Thec folloultyg ixi(.)rs are true statements, but not

statements of equivalences.

a (h a)

(a (b c)) ((- b) (a -. c))

(-h ,ta) a) --- a) b)

To begin an FDS computotion at all, taese were expressed by three rewriting

rules of the form

x :- x,(a -(_ a))

together with the rule of inference

(x,a), (a Z 4i) := x,b

The first set of rules say, ia effcct, that any expression may ho rewritten

as itself and an axiomatic statement. The sucond is a rewriting tort of

oidus ponens. In ten minutes the system was u:ialle to prove that 3 -o a

is a true statement. The reason is that in any ;vster , !here one sten is

required for each .aubst' urion, thi" Is an extremely long piuof. Also,

the starting itate prf'vidos very little clue as to 1,There to be .in. This is

eon by exam~ninp. the rewritini ril, fom of tue problem

Sx : >,a 7 a

Thm a .. ith-" Is appropriate l or manV re,:r ti prob 1ev h.,i i ch

appear to he likt the , r po it ionl- calculuv. ,ut are in fact vrobler's of

inference. ,' te:,at .c E,'xanle-at inn of the probllem ,cti. e:f Sup"'s and

hill's Introductorv Lo%-ic T ;r th.,_ ;choosl (14), uncovered no Troblem- Th ,,hi o,

in principle, COU! TOt b soiv' '.v t1-;' FP, ethoA. In soee casv>- kie id

29

not care to expend the necessary computing time on hard examples. Table 4

illustrate8 system performance on problems Suppes and Hill used to illustrate

inferences by modus tollens, modus Zoens, and douhle negation. Our

obsprvation was that most of the applications of logic in this grade school

book were ;o the use of logic to draw inferences, rather than to prove

theorems.

9.6 A puzzle: This example is a version of a well Known logic

puzzle. Most people fitud it hard the first time they see it.

There are two protagonists, Ed and Al, each of whom either always

-ells the truc:h or always lies. A philosopher approaches the pair and

easks if the library is to the East -Dr West. Ed mutters something unintcl-

ligible, and Al states clearly, "Ed says east, but he's a liar." Where

is the library?

FDS uses th0 notation

FDS EpessionR Meanin

SAYS (A/B) A makes statement B
A.S.T TL C is : truthtei'er (i.e. ,.,---est citizen)
A.IS. I Ak A is i liar (i.e. ,,nster)

A. M.B A ilplie, B
A.EQ.B A it equivalent to B
DIRN A ditrection, i.e. either cast or west

Thbe rcWrit-' s
(A AIND. - A irJ

and the rewritin. rules

SAYS (A/B) (A .< I TL .3

A.IS.LIAR 1,4r1 (A.lS.TTILR

NOT(E.AST) F ,S
N\JT (W.ES T) .FAqT
(A.EQ.B) ANn (B) PON. " ..

A L .B :- 3 n.A
A.EQ, (B.EO.C (., B ,.

A.EQ. NOTO) "NT (A.(,.B)

I.q

30

The problem was presented as

SAYS (AL/SAYS (ED/EAST)) . SAYS (AL/(ED.IS.LIAR)) :- DATA.IM.DIRN

The program produced the following proof in 14 seconds.

(SAYS (AL/SAYS (ED/EAST))AND. SAYS (AL/ED. IS. LIAR)))

(((AL.IS.TrLR).EQ.SAYS(ED/rAST))A!D.SAYS(AL/(ED.IS.LIAR)))

(((AL.IS.TTLR).EQ.SAYS(ED/EAST))At!D. ((AL.IS.TTLR).EQ. (ED.IS.LIAR)))

(((AL.IS.TTLR).EQ.SAYS (ED/EAST))AIP. ((AL.IS.TTLR).EQ.NOT(ED.IS.TTLR)))

(((AL.IS.TTLR).EQ.SAYS(ED/EAST))AND.IOT((AL.IS.TTLR).EQo(ED.IS. TTLR)))

((AL. IS. TTLR). EQ. ((ED. IS. TTLR). EQ. EAST))AND. NOT (AL. IS. TTLR). EQ. (ED. IS. TTLR)))

((((AL.IS.TTLR). EQ. (ED. IS.TTLR)).EQ.EAST)AND.NOT((AL.IS.TTLR).EQ. (ED. IS.TTLR)))

((EAST.EQ. ((AL.IS.TTLR).EQ. (ED.IS.TTLR)))AND.NOT((AL.IS.TTLR) .EQ. (ED. IS.TTLR)))

(DATA. IM.NOT(EAST)).

(DATA. IM.WEST)

This example illustrates a use of classes of terminal symbols. The symbol

DIRN is a meuaber of the consta.at class {DIM4, EAST, WEST). Therefore, the

last line in the proof is a specification of the goal state DATA.IM.DIRN ,

but is not identical to it.

9.7 Inequalities: The final example is the solution of introductory

problem in the calculus of inequalities. Inequalities present an Interesting

area of mathematics in which to study theorem proving, since inequalities

proofs frequently depend upon combinations of arguments from algebra and

from mathematical logic. Therefore, in order to do inequalities the program

must have available rewriting rules from the more basic fields. Typically

only a few rules will be used in any one proof, but since their identity

cannot be known before startin- on a problem, all must be available. The

31:

presence A many rules will .reatly increa.'ie the pro.-abilltv of th rro('ram's

starting down fruitle qs paths. This ecitsideration applies to both state to

state theorem provers and to the resoiution principle L,,ograa- (15). There-

fore, inequalities provide tests of the extent to which the generat4on of

difference sets will nrovidc a frarnevork to test the -iectivity of the

program.

In this examnle the FDS prograt: used the simple orderin procedure

of determining Lhe probable uefulness of a rteriting rule by a weinhted sur

of (a) the number of conditions on the string required bv tho. re%:ritinrn rule,

iLe., the complexity of the left hand side, and (b) the numbe_ r of these

conditions satisfied by the current state string. Tie system was inItialized

by loading rewriting rules based on ilgebra and the prcpositionsl calculus,

inc1uding definitions of "implies". "conjunction", and Iequvalanc., and

the axiorm defining perrissible alebraic manipulations with +, -, I, and x

in aldition, AvouL one handred previougiv proved theorer-s in both areas were

loaded as rewritinp rui. Tabl-, 5 lists the lefinitions cf ineeualitlies

and the theorems -:)ven.

The proof of the follm.ino, theore-: is i.lu~trativc. It was

obtained at a time at which tv syster had to select rwritin-.g fre-- ase,

of 134 rules. -he problem in to qhow tiiat

REAL (A) - EZAL (B) :- ((s (A 7)?(

is a legal rcwrittin . llhc rrotf i

REAL. (A) ,EAI. () .- :A L , B)(A

(.((- p),) , (A - -V))

S0

I/
32

The proof was produced in two nLdnutes and thirty three seconds.

Twenty three structures were considered and six used in the proof. Most of

the time was spent establishing the order in which operators were to be

applied. As can be seen, a good orderinj was achieved.

9.8 Summary of the examples: These examples have been taken from

about one thousand theorem proving problems which have been solved by

different programs fitting within the framework of the FDS algorithm. The

performance of a particular propram on a given problem will depend upon the

parameters used to limit its search and upon the rule which it uses to

determine the sequence in which operators will be tried. The programs are

relatively insensitive to parameter changes, but highly sensitive to the

effect of different ordering rules. An interesting question, which we are

now exploring, is whether or not it is possible to write a program which

develops its oxm ordering rules.

The FDS algorithm has not produced any proofs of theorems which

Would be considered "deep" by a pure mathematician. On the other hand, it

more than holds its om With upper division undergraduates, providing

that the proofs which it is trying to discover have the line by line property.

This is no mean accomplishment, piven the current state of artificial

intelligence research. It seems fair to say that FrS rograms prove theorems

as well as the better currently available chess-nlaying proraris play chess,

(3), but that it does not p.rove theorems as well as checkers playing progranS

play checkers (11).

10. Cojartson1s ann Conclu iOns'

l.0, rrs toPS: As ':e ! nv. indicaIted, tie IFDS is in

*ntetlectual descendant or' the GPS. i8 e. Beth progrvams rf theorem roer

which soalve otroblems by succest;ixctuit: ;rom a startinto stIate to a

goal state.

Mhere are. two naljor l eccvewe thc CPS and P05 proetram5.

The most Thvious-, cand TnL-,_ :rivl'al. s mt th-e CP'S IE a list processixy'

v agram Written iti LPL-V, w !,' DS)-,ans arc- written in FORTRAN' without

the us-,! of embedded list process ing features. Thiis is solaly a techno'logi-caL_

advnince, as undoubtedly th ,:C could beduplicated in ti way. llaving, a

17 ~machine efficient program h-'s permitted us to study prograt" perform'anIce 0'.;1

a ruc', wider range .)f problins than tiould have beein the casC had We usCOd anY

interpretive language.

The more inteix-sting difference is in, how the programs define

dtfterenices between .tates and use them to select operators, ilie "IS user

mmst. provide a ',,able cal.led Itvc "Operator-dlifference table", and 7isac. of

s ub r o uit i nes r eo)re-,en t ing -r at or: a7-nd6. dif f eren c es . Thes'2 de in the

dlfferenrcs kwic h tlhe proram c not>:,c nd tuze re-trlLinpr rules to "be

cc)vnridered v'A redur"ine eAch ciCcec.The FmS ,on ' e ether hiand, genieratesL

el

3 4

its o;-% equivalent of difK;::rcnces jic d operator-dilference tables by analys

of rewriting rules. A FDS program vill nnt -L-nerate all the "differences"

:hich a hunan nitht see between two state-, as we showed in s-ction 8. On

the other hand, FuS provides a S!-'?!7teiy s!7orithr:ic theorem nrov!n

orocedure once the axiomrVtic SvSc' ha's been defined to the nrograin, wiiile

in CPS there is one mc.re step at -bich hunan ingenutty or lack of i, can

irtervene, ,6), The q-estLon lh tieorern pro .r is better?" is an

unan3werablein:c slnce the two pr-c, dureq make a different division cf labor

*.et- ecn man a!ld comnputr r- r h. tieo' v .

The later versions o f C' (I, 2 have introduced a new sort of goal,

* elect the elerent of the set S ,.hic b-'st fulfills criterion C " This

method of defining a foal is nuite difif,-rent from the definitions Used in

FDS, as "best" inplies an ordering of objects oni the basis of their relative

possession of solse p-operty. There is no ;ay of representing such a -oal

in the FDS structure. It appears from the examples -iven in (2) that this

Foal is quite useful, on so: nroLlenc, but that these problems are some-

what outside the fil of Zheore provinf.

1.0.2 The resolution .rincinle: The Rcsolution Principle (10) is

a quite different, and very powcrful, innroach to theorer., proving. There

are three steps in usin-, this principle, First, one must represent the

rklevant area of mathuv:atics as a set of clauses in the first order predicate

calculs in disjunctive normal form, i.e. as a set of statenents of the

form (A or 8 or Not(C)) . In addition to representing the premises of a

theorem this way, the negation of the conclusion is als- so represented.

Using the single rule of infeLence that if (A or not (B)) and (B or C)

35

are true, then the clauae (A or C) m-ay be inferred, a resolution principle

program attempts to prove that the negation of the conclusion is inconsistent

with the premises.

This technique is very 7ml suited to the discovery of proofs which

do not have the line--by-iine property. -c have already shownm that this is

precisely the pcint at which the FDS does poorly. ',To suspect that there are

situations in which the converse i., true. One of the proOlems with the

resolution principle method of theorem proving is that the number of inferred

clauses multiplies rapidly, A variety of strategies have been su,,gested for

correcting this problem, and some have had notable success (13, 15). Still,

we suspect that it will remain a problem. This is particularly so if the

basic axioms of the system in whifl one is working are such that they are

clumsy to state in the first order predicate calculus. We offer the Sanderson

algebra as an axample of such a system. Based or these considerations, !.1e

offer the following conjecture, in the hopes that evidence will soon be

published.

"If proofs in an area of mathematics typlcally depend upon inferences

from a large number of previously proven theorems or axioms, and if these

proofs are likely to display t.e line-,bv-line property, the state-to-goal

method of theoreu:, proving, as exhibited by FDS or GPS, will be more practical.

To the extent that proofs denend upon the convergence of several lines of

reasoning . and can be cbtained by reference to a relatively small number of

previously stated results, the resolution principle will be the more practical

technique of theorem proving."

*

36

Another contrast between ti.e FDS al orithn and the resolution

principle raises quite anorher qestion. The resolution principle tends to

produce proofs which are certainly valid, (i.e., their validity is provable),

but 7ich are hard or inpossible for a person to cor:prehend. Line-by-line

proofs are easy to follow. Is this a real question? Robinson (10) correctly

states that a theorem is oroven if it is alorithmically decideable that

its proof is correct, rogardless of xho conirehends the proof. In some cases,

houever, the point of obtaininc the proof is not to make the assertion buc to

understand the reasoning which leads to it. If this is the case, the proof

must be intelligible.

10.3 Su~nary: A procedure for mechanical probler solving has

been presented. Conputer programs based upon this method have proven a large

number of simple theorems, and appear to be able to operate at the level of

a university undergraduate mathematics student. Illustrations of solutions

were given, and the method contrasted to that of the General Problem Solver

and the Resolution Prin-iple.

-

REFERENCES

1. Erxst, G. and Vnewell, A. Some issues of representation in a General

Problem Solver. Proc. Sying Joint Co-muter Conf., 1967, AFIPS 30.

2. Ernst, G. and Nevell, A. Generality and GPS. Carne'ie-Mellon University,

Department of Computer Science Technical R.eport, 1967.

3. Greenblatt, R., Eastlake, D. and Crocker, S. The Greenblatt chess

program. Froc. Fall Joint Computer Conf. 1967, AFIPS 31, 801-810.

4. Ledley, R. Pro ainfi And utiliza~ion of digital computers.

New York; McGraw-Hill, 1962.

5. Minsky, M. Steps toward artificial intelligence. In Feigenbaum, E.

and Pe1dman, J. (Editors), Co, iuter s and Tho t, New York;

6. Newell, A. and Ernst, G. The search for generality. Proc. IFIPS
, 1965, 17-24.

7. Newell, A., Shaw, J.Co, and Siron, H. Report on a general problen

solving program for a computer. Proc. International Conference on

Information Procesin. Paris; UNESCO loase, 1959,

8. Newell, A. and Simon, H.A. GPS, A program that sinulates humar thought.

In Feigenbaum, E. and Feldman, J. (Editors), ComUters arjd Thought,
New York; McGraw-Hill, 1963.

9. Q-i"lan, J.R. A FORTRA IV gereral purpose deductive progran. Tlorkinp

paper 106, Vestern Management Science Institute, University of

California, Los Aligeles, 1966.

10. Robinson, J.A. A machine oriented lo;gic based on the resolution

principle. 3. ACI. 1965, 12, 23-41.

11. Samuel, A.L. Some studies in riachine learning using the game of

checkers. In Feigenbaum, E. and Feldman, J. (Editors) Computers and

Thourht, New York; 'IcGraw- ,ill, 1963.

12. Sanderson, J. Theory of pro-rnininp languages. Ph.D. Thesis,

University of Adelaide, 1966.

13. Slagle, J. Automatic theorem proving with renumable and semantle

resolution. J. ACM, 1967, 14, 687-697.

14. Suppes, P. and lill, S. Introductory Logic for the Schools. lew York;

Random House, 1962.

REFERENCES

15. Wos, L., Carson, D. and Poifnson, G. Ttie unit preferen~ce stratefry in
theoren proving,. Proc. Fall Joint oTmnt tr Cont., 1965, AFIPS 26,
615-621.

16. Wosi, L., Carscn, D., RnbinsEn, , and Shrilla, T ,The concepz of

der.aduiation in tlhear ~ provin,-,. J.! ,!4 .,'

IWA

FOOTNOTES

1. This research was partially supported by the National Science Foundation,

Grant No. NSF B7-1438R, to the University of Washington, Earl Hunt,

Principal Investigator, and partially by the Air Force Office of

Scientific Research,Office of Aerospace Research, United States

Air Force, under AFOSR Grant No. AF-AFOSR--1311-67. Distribution of

this document i.s unlimited.

2. The exact correspondence is difficult to establish, since insofar a -

we know, no rigorous definition of the algorithms of the General Problem

Solvei have ever been published. The earlier informal desc~riptions

of CPS (7,8) indicate that the programr may have used the re' uraive

method of problem generation defined in section 7.'. A later

paper (11) and technical repo~t (12) suggest that the f-'nal version

of CPS used something much like the improved, non-recursive procedure~

of section 7.5.

TARLE I
mANTPUlD~t~TfJN OF + mmS

REWRITING MILES

I A+H :=,R+A '4 A in (A+R)'R

2 A+(B+C) :~(A+Ffl+C 5 (A'FI)+C :z CA+C)-S

3 (A+iH)H : A 6 CA+S)inC :2 (A-C)4'P

THEOREMS

Tf4EIWEm sLCnNDS THELWEM SECONDS

1 CA+R)+C t= A+(H+C) 5 10 (A-R)-t . (A-C)-P 8

2 (AHB)+P A 0 11 A-(B+C) 3AB- 8

3 A t= CA-tl)+H3 0 12 A*(PRC) in A-CC-H) 6

4 A+(H-C) 3= A410)C 1 13 A-CR-C) := A+(C-B) 7

5 (A-H)+C 3A+((:-b) 5 14 (A-P).C in A-CR-C) 5

6 CA-C)-(R-C) 1= A-H 215 15 AC(PC) :. CA-B)+C 4

7 (A+C)U4H+C) := A-14 169 16 A-CR-C) in CA+C)-E4 6

8 A+U3-C) 3 A-C)+H 7 17 (A-P)-C I= A-CR+L) 7

9 (A.M)-C =AW(I-C) 4 18 (A.R)-C in A-CC-H) 1

TA~i F 2

NF~~ITNGPULES

A A+ t I: H+A A~ (+~

SA +3 (A3+ 3 +A~- C= A 6 +C C

31 (AH8)C 3 A(CR 25 A-(+O

5 (A+- +C I I: A ~ 7 1 ~ (:: A C i

6 8~ C A C + 9 ? 0~ +N

I A - R A8 A 22 A-\ (4 -C A C)--4
2 A :a (A--o 23 A f() -H
3 AA(-C Is k'A 21 C 24(At)4N ~-i

It: A-A -B+ I= A+1CP N2i()~ :%V A-g :=7

6Ac -S c C. 27 NEG(L3()-

I.JRv

TABLE 3
$ANDERSON ALGEBRA

REWRITING RULES

I (A4+8)+C :A4(B+C) 14 (A/9)+C 22 (AC)/(B+C)

2 A4C.B+C) 23(A+B).C 15 (A/8)/C s A/C
3l.A I= 16 A/C 2n (A/B)/C
4 2IA 17 A/(9/C) Ix A/C

5 A+I :a A 18 A/C is A/(B/C)

6 A 82 A+I 19 S!GCA) t: (A4SIG(A))/I

F Z+A Is 1 20 CA.SIG(A))/lIs2 STG(A)

3 A+l I= Z 21 SIG(A/13) Ix SIG(A)

? Z ::A.Z 22 SIGMS 12 SIGCA/8)

10 Z 3: lA 23 SIG(A)+V'C Is SIG(A)4C

It1I/I :: 1 24 SIGCA)+C is SIG(A)+8/C

12 1 :2 1/I 25 SIGMI is 1/I

13 (A+C)/CB+C) Ic (A/S)4C 26 Z/1 in SIGCT)

THEOREMS

THE'JRE' SECONDS THEOREM ~ SECONDS

1 A/A I= A 1 9 SIG(A)/I to SIG(A) 13

2 A is A/A 2 10 Slil(A) Is SIG(A)/l i

3 ((A/6).C)/O Ix (A+C)/O 2 11 SIG(A)+Stl3) I= SIV(A) 36

4 A/C(B/C)+J)) Is A/(C+D) 2 12 Slk'(A) Is SIG(A).S!GI3) 596

5 (A.B)/C 12 ((A/D)+B)/C 10 13 SIGCA)/SIGC(3) I= SIGCA) 2

6 A/U3,C) t: A/CCO)/f)+C) 21 14 SIGCA) Is 5l'A)/SI(CR) 1334

7 SIG(Z) 2: 1/1 1 15 SIG(rIGC4)) 12 SIC,3(A) 10g

8 1 :3 SIG(Z) I

TAILE 4

' 2,COPOITIC)NAL CALCULU '

PI'II, N RULES

1. P. Q Q- -P

3. P (P->~ 6. p --

I THEORE" S

THEOREM SEC

I (S ->r2iP,

2. (-A - B) A1

3. -B (A- >B) I'-A ->C) c 2

4. (B- >C) (-B-).-,- T) A2

5. (P->-Q)Q-P-(5)

TABLE 5

INEQUALITIES

REWRITING RULES

i. A> B := (A-B)> 0 3. (A-B)=O : A-B

2. (A-B)>O := A> B 9. A-B := (A-B)=O

3. A> 0 : 0> NEG(A) 10. (A>O).(B>O) :- (A+B)>O

4. 0> NEG(A) A> 0 1I. (A>O)'(.'O) : (AxB)>O

5. A IS REAL : (A>O) i (A=O) I (NEG(A)>0)

6. (A IS REAL)'(B IS REAL) :- (A-B) IS REAL

7. (A IS REAL).(B IS REAL) : (A+B) IS REAL

IN ADDITION, 123 AXIOMS OF LOGIC AND ARITHMETIC WERE GIVEN.

THEOREMS

THEOREM SECS THEOREM SECS

1. O>A := NEG(A)>0 10 , 5. (A-B)>O : O>(B-A) 32

2. NEG(A)>O O>A 10 6. 0>(B-A) : (A-B)>O 50

3. O>(A-B) := B>A 55 7. NEG(A-B)>O :- B>A 15

4. A>B := O>(B-A) 163 8. B>A := NEG (A-B)>O 11

9. (A IS REAL)-(B IS REAL) := ((A-B)X))I((A-B)0)I (NEG(A-B)>0) 10

10. (A IS REAL)'(B IS REAL) : (A>B)I(A=B);(B>A) 143

1

i

F I
* I

k I

-- 2

Tt'~U 2W T~-4F 8931C PPTiF~N ~

L~.

R~ F'RTTHN

I

DC UE;NT CONTROL DATA - 7 D 7

9, ... i v -Lyo1 a s-,i tn rncls i iled

PS 1-e) Warsi ton\

A FOMAL DRDUCTIVE PROBI&M SOLVING SYSTiK

4 0O1C~tP',V1[AOTZ /7T pa off*vof! and inciue:- d.'t

Sci entif iC r t ri_

J. R. Quinlan and E. B. Hunt

Z % 7 'eT 'AK. OF PA 5 17b, No OF PtF

February 9, 1968 _ _ _ 39
I A O Q. 0 No oA-o" -RPO T 4uM." -

AF-AFOSR.-1311-67 68--01
b. C' N o

8-2
0~ T . L i tY~ P RoT (05; (Any ot~hr nib,a ~ may be s*;.

I J-A-FOR C8 825
I.-is dmmcc:nt has been appro

release ,nd ssle ; iti di tri'tion is ulimited.

5P'- T A AY N C T E - - NS IN IL

I Air Force Office of Scientific Research
-------- 7/ "5) 7-/C/- Office of Aerospace Reeearcb.

United State& Air Force

A formal dedcription of a generalized theorem proving computer program
is given. The program has been written in Fortn IV, but this description

is concerned with logical flow and definftiinr of the algorit.=, rather then

programing details. Exaples of performance of the program are given, using
several fields of mathemiatcs for illustrative purrnmes.

S DD " 1_4_73

D1' 7e1473 ___C___

4 K A L N L K

Theorem prov~ing I

Artificial Intelligence II

Hersi Ilar~n

