AD676 OI7

TO APPEAR IN THE JOURNAL
OF THE A.C.M,

A FORMAL DEDPUCTIVE PROBLEM-SOLVING SYSTEM
J. R. Quinlan and E, B. Hunt

This research was partially supported by the Nationali Science
Foundation. Grant No. NSF B7-1438R, to the University of
Washington, Earl Hunt, Principal Investigator, and partially
by the Air Force Office of Sci-ntific Research, Offi:e of
Aerospice Research, United States Air Force, under AFOSR Grant
No. AF-AFOSR-1311-67. Distribution of this document ia
valimited.

Computer Science Group
University of Washington -- Seattle
Technical leport No. 68-1-01
February 9, 1968

A PORIAL DEDUCTIVE PROALE -SOLVING SYSTRm

Jo P, Quinlen and B, B, 'me
The mitereity of Hashinztos

i troduction

1.1 iotivarion Computer programe whifch golva nroblenz have excited
considerable interest, Two lines of research have been followed. In ens,
deductive theorems are tranelated into statements ifu a firyt-ovder theory, and
8 first-order proof sousht. The vork of J. A. Robinacn (19) exermiifies this
approach. fAn sltermative procedure is to represeni g deductive probiom ag 2
7 sblem of finding permissible reuracing rules wwhich pernit ons $o o §fyom »
string of syrmbols describing the initisl state to a string of syrbels deseribine
the posl state. The "General Problem solver” (GPS) of ilewell, Shav anl Simen,
(7,8), sithouph not oririnally presented in these terms, is an exsnple of this
sort of progrem.

The internal eperation of the GPE-like thesren provers resembles tha
syntactic phase of a compiler, im that production rules avre app'ied te chanee
santences fron one form to another.

In this paper, 've shall present a forual descristion of & cless of
problen-solving proprams of the cormpiler-iite vaviety. It 111 specify a class
of recursive prosrams quite sirilar to “top-dorm’ compiler-conpilers. ‘'l sha!
then shov that there {8 a class of nroblems whiich such prorrams cannot solve.
Next ve describe a nodified structure vhich penerates move poverful proprame<,
These are non-recursive programs vhich destroy their sirilarity to a commiler-
compiler.

Our vork was oripinally motivated by descriptions of the GPS, and we

acknowladne our intellectual debt to .levell and his co-verkers. e have oroceeded

ia 2 soncvhat diffevent direction, novever, and our present systen should not be
cepavded as a formaliration of GPS. "¢ shall return te the point after presenting
ouy gysten, Progrons panevated within cur systen have been vritten in Alecl and
FORURAY TV, aid heve beon wsel to vsolv reasonably difficult rreoblems. Some

T 1

exranles i1l Lo puosented.

-

.2 Geresal Lomcilotiou: Utates 1re renresented by strines of

gymbols, Striups cbeyine certain rulcs for nernissitle sequences of symbols

are cplled strutiures, or vell formed expressiens. A state is alvays rentesented

by # giructuic. Structures may contain substructures. The sy lols of a string

rre dravm fron a infinite, countable set of symbols called -.. alphabet.
A transformation urites one well fo.ied expression into another. A
orcblen ie solved wh w a sequence of transformatfons is found that writes the

starting state IanZo the real state.

-

¢ Ir7initions
2.1 alphabet: The alphabet, A , {s an infinitc, countahlc set
of symbols formed by the union of a finite set T of terninal symbols and an

infinite, zovnisble cet V. of non-terminal svimbols,

2.2 Terminal Symbola: 7The set of terminal synbols T , is the union
eymingl Synbols v ~

of w fialse secs l‘i 21 tarminal sysbols of derree 1 . That is,
(a%d i
T = UTi,inO,“.g~l

vaere, 1f ¥ 45 the ermty set,

T rn T e {f 1f 1 .
N # 141

Lratiple: In elementrry aaccbra, T wvould censist of the set IO of bound

c, ctr.} , the set T, containine unary minus, and *he

varfalic sytbels {a, b, ¢ L

set EQ «f binary comectdves (4, -, x , /1 , ¢+)} .

2.3 lon-Terminal Symbols: The set UV consists of tie infinite

comnzble set of ayrbols {Vi , 4 » 0} , -hich denote free variables,

2.4 Terminal (l.ases: Let C= {C,4i=0, ...n =1} be s sct of

sats of terminal symbols, such thni

{i} all the : erents in Ci are of the sare deerese for all values

e

of 4, and

{i1) everv te..inal zymbol is in at least one Ci .

——

2.5 Structures (vell formed expressions): ell formed exmressions

are defined by the follouvin~ rules:
da3sal o voarlable symdol 1s a veii rorved Giapression.
2.5.2: A terminal symbol of desree n folloved oy m wvell formed
expressions is a well formed expression.

This is simply the prefix or "Polish” notation. It is obviously

isomorphic to a tree praph.

3. Relations between gtructures:

3.1 Torms describine strings and substrinss: Let g be a strinp

of symbols Sgs Oys B30 cces g0 oees 8,1 °

3.1.1: The lenpth of s (L(s)) 1is n .

3.1.2: The syrmbol s, 1is the symbol in nosition 1 of

N , Btarting

[

vith sy -
3.1.3: I1f s 1s a structure, s(i) {1s the vell form . expression
(substructure) bepin~inc vith symbol s

1
3.2 Concstenation: Let 52‘ and gg be strings. s is a

h

concatenation of gi and s 1f

a b s b

n-1* %00 812 o0 Sy
b

wh.re L(gf) = nand L(g_) = m. This is written

(2) 8 =g"5"

— _—

1) s = sg, s;, eee 8

3.5 Direct compoaents. ot ans structure s{i) , let "{(s(i)) =

s(1 + L{s(1}))) , i.e., the structurc bhrediately followine g{d) in s .

2
“(8f{1)) 1s the follouin~ structure of s(3Y | ~idlavly " (s(i)) is the

follouirg structure of the fellowine structure of ={d) . Let Sj—l be a symbol

of depree n . The direct compenents of Sy Are s{3) . s, ...,

o
Y

3,4 Equivaleunce. To styinps s and t are equivalent 1f L(s
W) . oand for wyery 1, 0 <1 <L(s) , elther

(a) s, =t¢, =V, for soie j , or
1

i i
\bj T ti t :k. for some It
3.5 ¢Substitution: The value of the function B(V,, u , s) {is

define? as the strine vhich resulis fron replacing each occurrence of the symbol

Vi in the strins s with the well formed cxpression u . The rule of

substitution states that a structure s may be replaced bv the structure

g{vi, u, 8) for any V, and anvy vell forme! expression u .
3.6 Specification: A strine 5 15 a speciffcation of a ctring
t (uritten s © t) {f there is o set of nairs {(vi , 31) +1=1,n} such

1 -

that the striups s and

(v By A Sres AP o) >
P(\inv 9:' :‘\in ‘, 35;1>, A GUNRE ‘,"?') ...))) are equivalerr.

Coument: In the deoenerate case, ecuivalence sne snecification apnly to

v

3.7 Correspondence: Given tvo strines = and o, the lorresnondence

relation € betuveen thelr sveobols 1o defiled gn folloors:

(ay 8. U g 8 corrcesronds to @)
(ay 8y Cry (85 F 0

if therve
(1)

{i4) 5 5 r

{111) s(]), =(k) are the it" direct
cormonents of Sj' » i res.oe. tively. 5

4, Revwriting rules and operators:

such that

4,1 jetalincuistic symbol ':=" : The metalinpuistic syrhol ':=
is defined to mean 'may be revritten as'. The statement g := s" {s internreted
as "structure 8 mnay be rewr.tten as structure g% '
>
4,2 Rewritine rules: Let Zi and r, be structures. The rule i
Y e r, {8 vewuritine rule " .
SN Y i !

P -

4.3 Application of rewritine rules:

a rewriting rule. The application of Ri t
(a) 1f s 1is not a specificatic
{(b) f s 1is a specification of
of substituticns which trans
8 t.e., s 1is eauivalent
Exworle: Suppose il. is + il,v;, = + Yz
”1(+a+bc) The reauired substitution
4 = (V. + b ¢ BV a
‘,(IL) _}4-(‘"’_{;" B) C ¥ (“1‘ s
is defined as the structure
R

4.4 Operators: An onarstor, .

reuritiong rule Ri

s a,plied to aubstructu

Let s be a gtructure, and "i
o s , uritten Ri(g) , 18 defined by

a of li R Ri(g) is undefined.

I, , let Z be the senuence
forus Xi into a string cquivalent to

o 2(1 Then R {3) = Z(r,) . TR
re AR e Then Byte) = ATy

”l , and an attempt {s nade to form
se~uonce 7 can be definad by
I M + 4 h ¢, a0 T+ a4+ h o)
»l oo ‘1. P st
N
Yy o+ + b Coa
1) 4+ hcoa

15 apnlted to structure g uwiien

re s of Let Lk = L{s{1)),

s {4y

n = L({(s) . Then
(a) qii(g) is undefined 1f 3s(j) 1is not a specification of 11 .
(b) 911(5) " 80808y Ei(sgjz) Jsj+k 8 44k+l” " *On-1 otherwise.

4.5 Analysis of the effects of rewritinp rules: In order to apply rule

R1 to some structure s , one must find a substitution sequence Z which

satisfies 4.3(b). The result of appliying the rewriting rule will be the structure

sk = gjri) . For every symbol in g0 there will be a symbol or a structure in

s* which is a specification of it. Let (ri)j be the jth symbol in r, - 1f

(ri)j is a terminal symbol, then this symbol will appear in s* , and so one of the

symbols of s* {s therefore fixed. If (ri) is 2 non-i.erminal symbol, then the

3

corresponding structure of s* 1s defined only in terms of the symbols in g .

In analyzing rewriting rules, two tables can be constructed. One lists
the symbols of 8* whose identity is fixed regardless of the symbols in s , while
the second table lists the structures of g* which are defined in terms of a3 . (In

effect, this is what happens. Actually, the structures of L which are defined in

terms of structures of 11 are listed.)

Example: Consider the distributive law of alpgebra.

.t.’.‘.._V_LVZ 5!222. '_i!]__vzg v, .

ttThenever this rulé—zs applied, the first symbol of the resulting structure is always

"x' and the second always "+" . The structure bepinning at the third symbol will be

vhatever structure began at the symbol corresponding to V1 in the left hand string,

and similarly for the structures replacing 2 and 3 * The results of applying

a particular operator 211 to string s can be determined by examining s(j) to
fi. d wvhat the specifications of Vl, V2 , and V3 are in this case.

7

Comment: The tables defined by analyzing rewriting rules play the same role in

our formalism as do operaior-difference tables in the GPS (8).

3. Problems defined:

5.1 Difference sets: Let 8 and g be two strings. The difference

set of 8 and g, E(8,8), 1s defined by
E(s,g) = E*(s,g) ?EJQ,B), where
(a) A pair (8j’ k) is a member of E*(s,g) if
(1) ’k Cc gj
(2) gj is not a variable symbol

(3) s is not 8 specification of gj

(b) A pair (gj,, k') 18 a member of Ej(ghg) if, for some j,k
1) s c gj
(2) g, is a variable symbol

3
(3) (gjn k') € 8(19_3;(819 s(k), g))

Example: In comparing
g=x%Y

ab,

i+

- E(s,g) is fcrmed in the following steps.
(a) The onrly non-variable symbol in g is + . The corresponding
syobol in 8 is also + , hence E*(s,g) = # , the null se:.
(b) Symbol 8, is the variable symbol V1 . The corresponding symbol
in 8 is 8 . Making the substitution
B(g,» 8(1), 8) = g = + aa
we find Bl(s,g) = E(a,gl) .

(b.1) By comparison of corresponding symbols, the

only mismatch which occurs is at position 2, where g; =a,s, - b .

Therefore, |
Ex(s,8)) = ((a,2))
(b.2) String 51 contains no variable symbols, so
Ej(s, gl) =@ for all j , hence
B(s, g) = E*(s, g1 = EN(s,8) = {(a,2)}
(c) Now consider g, = Vl » the second variable symbol in g . By
repeating the above steps, except that we are now concerned with 8, instead of
g, » Ve find that
£’(s,8) = E(s,8°) = {(b,1))
(d) Combiaing the above steps
E(s,8) = {(a,2), (b,1)}
Comment: Difference sets between two strings are defined by syntactic considerations
only. An advantage of this is that we can use the same algorithm to generate
difference sets for any deductive system which fits our formalism. This provides
us with a very general theorem prover, which requires little guidance from the
persan using it. On the other hand, this definition does not include all differences
which a person might find between two strings.

5.2 Problems: Given two strings 8 and g , (the starting state and

the goal state, respectively) a problem is defined as the location of a sequence of
operator applications which demonstrate that 8 S g. Symbolically, a problem is

solved when an ordered set of operators {Oi j },a=1...n is found such that
a“a

0 (0(0 N (I .
injn in-lJn-l iaja ilJl(g)...)...)) 8

and

Tt -3 k] 1.9 n \/n e
5 is squivelent t¢ g . Unhen 3 ie produced , B{s , g) wiil
be empty.,
8-l
The step Qi 4 {s_ ") can be a mewber of the sequencz of steps in &
a-1 era
oroof only if s (js} is 3 specifization of [, ., In sectien 4.5 we noted

[S a

that the right hand string of a rewriting rule described .ts results. By the
above arguuent, we uow note that the left hand string establishes conditicns upon
a structure o which the rewrifimg rule can be applied. ‘'ihese conditions are
defined collectively by seying that the structure wust be a specification of tha
left hand string of the rule. If E{(s(4}, Ii} is empty, then tae operalion
Oijig) is defined. 1If the operation is not defined, but {f a requence of

operators can be found which " "mges . inte o string s® such that Qi (s*} is

3

defined, then that saguence may be applied to s , and the final operatoer, Oij ,

to s* . Finding the seguence leading from 8 to s8* is itself a prohiem, so
a rroblem contains within itself subproblems which can be attacked by the same
methods used to solve the original problem. The arpgument that this {s so is
independent of the methods used. Tt 1., simpl;, that if the subproblem {2 the

same type of problem as the original nioblem, and 2 rational approach was used

on the original problem, then why should the subproblem be handled differently?

6. Proof plans:

4.1 General: The first step in theorem proving in this formalism is
to search fInr an operator which, {f applicable, will remove elements from the
difrevence set E(s,p) . Once such an operator is found, the probiem ~f making 1t
applicable {s eatablished and, 1f possible, solved. The resulting sZring 1s then
examined to see if a solution has been achieved. If n.ut, the procedure is cepeated,

wmtil a solution is reached i until patience (represented by a parameter

10

established at run tiwe) is oxhausted, 1f this strategy is to be successful, we
must selact operators which generally remove more differences than they introducte,
Aleo, the subproblems of applying operators should be less Jifficult to solve

than the original problem. To achieve thesz goals, we raly heavily upen an
Yubbreviated" look-ghead method, which assumes that the problem of applying
operators at any one step can be sclved, and then ssks how much benefit will be

gained from their application.

6,2 Frinding & proof plan:

0
6.2,% Zerc-(rder QOperators: Let D™ = E{(®,g) be the set of

, 0
zero-erder differences. For .very (g ,k) la D , s difference between 3 and

3

2 would be eliminated if s, were to be rewritten as & specificgtion of gj .

This can only be done by rewriting some su_structure g(q) of @ which contains
8, &8 cne of 428 swvmbslc., By exemining the tables of symbol trans ormeticns,
the effects of appliying each rewriting rule st 2ach pesiticn in 8 can be detex-

mined, by substituting v, into 8 et the appropriate place. 1If the use of

—t—

Ri o 8(q) Wwill change 8, to a specification af gj, the operster Cli:1 is

ey

0
added to the szt F of zero-arder cperators. At this peint, no check has
been msde to determine whether Otig) is defined, L.e., te see whether 8(q)
is & specification of 11 .

6.2,2 First-order differences: In examining the secend table

aveve, suppose we fi:ud that some operator 0O will change sk to 8, but

1]

&, is not a aspecification of g Now, i€ 8 could be rewritten me that

y
it wag 2 specification ef gjk then Oiq could be used te remeve the difference

(gj, k) from.gg . wWe have thus discoverel a new interesting difference, namely

(33’ n) , and it would seem ressonable to tackle it in the weme way 28 we did

)) 1
the originel difference. To this end, (gj, n) is added to the szt D of firat-
order diffarences.

6.2.3 Higher-order cdifferences and operators: Aftsr g£ll the

members of‘go have been exawined, the 8et of zero-order operatere and first~
ordar differences will be complete. The eat Ql of first-order differences
is than examined, in exactly the same mzuner as QO was examined. This generates
two further zets, gl, the set of first-order opersters, and_gz, the set of
sacond-order differences. Repesting the same procedure sgain resulus in
‘DE '1&,22 . More generally given .gm , the setn(fu aud_@mnl can be generated.
The proceas continues until'gi is emply, oragP hias been generated, where g
i8 8 persmeter apecified externally. To avoid ‘ooping, an operator or difference
i3 uot added to ita appropriate set if it is slresdy a member of that or some
lower~-order set,
Comment: By using thia procedure we uave a definition of differences betwaan
ststes which is entirely syntactic. The user of s program need not specify any
specizl system specific routines for defining differences., The user can
leave the definition of differences completely under program coatrol by not
dafining claeses of terwinal symbols (e.g., by treating + and - as unique
symbols, ins._28d of including the clasa gdop. in the algebra example.}.

A truly genersl general theorem prover would specifv the value of

p ioternally, thus deciding to go tc great depths in exploring prowising solutions

while abandoning unpremiging lines o6f approach rapidly. To- do this, one would

12

have to have seme way of determining the probability that a pavtisular line of
attack w3a going to result im a successful solution, We do not at this time have
a spenific proposal which we care to defend. As a practical metter, our opszating
program can accept an initial value of p and then, if that does not wosk,
increase p and tzy the problem again.

!
6.3 Ordering »>f cperators: let P be the set of sets {gf} '

E=0...p. P contains all the i{nformation avallabie frow which operators can

—_—

be sclected as likely candidates for the Innerwmoat operator, s in the proof

Gizfi
expressed in 5.2. The relevant {nformation consists of the nurber and level of
differences which generated each operator, tic complexity of the operator (obtained
by examining ite rewriting rule), and the number of corvectione vreguired before the
operator can be applied (cbtained by comparing itz rewriting rule to the relevant
substructure s(1) of 8 } . Let F(P) be defined as a function which orders

the set of operators {013} , which appear as members of pairs in the sets

{Ph} . For brevity, we will write F for the ordered set of operators. F 18
interpreted as an orderinp, from “puobably wost useful” o "probably least useful”,
of operators which may lead to the next step in 2 proof.

Comment: In a specific program, the definition of F(P) is crucial. In
describing the structure of a class of theorem provers, it is sufficient to assert
that F(P) exists and that it orders operators. An advantape of the formalization
is that it makes clear ways in which two programs could differ and still fall
within the s»-2 class of prograus. For instancn, it is conceivable that in

different problem areas (e.p., triponometry as opposed to the predicate calculus)

different algorithms for F(P) would be aspropriate. Ia our own work we have

experimented with several algorithms. The results of thege studies will be

recprted elsevhere.

7. Proccdures for solving problems:

7.1 General: Using tha above definitions, we now present ¢wo
procedures for problem-solving. The first is s recursive procedure, in the
"Algol" sense that a class of algorithms are specified which call themselves
a3 subroutines. This procedure has a2 sStructure very similar to that of a
top-downr complier-compiler. Ue then show that there exist problems which
cannot be : oclved by any slporithm in the class. Next wue described &
modifiad, non-recursive procedure which descrihes the structure of sur current
working programs. Henceforth this will be referred to (for histerle ressons
only) as the "Fortran Deductive System", or FDS, algorithm. We show that
problems which previously escaped solution using the recursive procedure can
be captured by the FDS algovithm.

7.2 The recursive procedure: Given the problexn of rewriting &8

as a specification of g , and two externally specified parameters r and p,
proceed as follows:
(1) Set k=0 ,63%kesg , ptmg . (The varisble k will be
used to simulate the level of recursion of the problem-solwving
procedure).
(2) Set k=k+ 1. If k > r, thew po to step (7} ,
otherwise go to steo (3} .

1
(3) Determine 20 = E(gk, gf) , then P (sectio= 6) , and set

- F(P) . If Qp # @ so0 .0 step {(f); otherwise assert that

the probl~m EF , gk is solved, set k=k , k= 0 and go tv
step (4) .

k k . i
(4) Set k=k+1. If g =g ther go to step {(5) ,

AN

otherwisc retumm to step (4) .

) I

14

{5) Set ko k~1. If k=0, assert that the main problewr

is solwed, aad quit. Otherwise, find the operator O which

iJ
senerated the goal gK , set gk.“l = Oij(ﬁk) » &k+1 = ﬁk sy P=DT
and go te step (3} .
(6 1If }ik' » ; then go to step (7) , othcrwise go to step (8) .

£7) The problem gk . _gk cannnt be solved. If k =1, then

assert total failure and quit; otherwise set k=k -1 . If
. k+ :

g}(# gk X , then set p=p+ 1. Go to step () .

: 3
{8} ZRemnve tho first operator from 7 ; call it O

14
if Oij(_s}:) is defined, sect gk+1 = Oij(g) , gkﬂ u gk and

go to step (2} . Otherwise, .. p > 0 , go to step (9) else

return to step (6) .

(9) The subgoal of applying Oi is to be established. Let

h]
£(1) be & function whose value is {a,8} , where sk“) is the
ath direct component of e . Initially, sel “gk"l to the

B

string 11 , then execute the following steps in sequence:
(9.1) If 4§ =0, go to atep (9.5).
(9.2) Let £(j) be {a,8} . Set j1=8.

(9.3) Let the degree of symbol ﬁ be n , and

let)(n mean "any symbol of degr~e 1 .

Form the string u =X V

e 2! 1’_1+2

v wH v where 1 1s

(+o-1 & v1+<x+1 T Ti4n

defined as the hipghest index of a free

variable in gk+1 . Set gk+1 to u .

PR

Wy g o«

15

(©.4) Return to step (9.1) .

(9.3$ Set p=p -1, sk+l - §F , and go to step (2) .

Gomment: Atcer steps (9.1)

to step (2), gk+l will be a structure with the following properties:

(9.5) have been executed and control} returns

(a) The syrhol sk in Eﬁ. will correspond to the symbol markirp

3
k+1
the start of the structure Xi in g .

(b) The first symbol of every other structure in EF will

correspond to a free variable symbol 2 gk+l . Thus, if sk(j) is 2
specificetion of Xi , g&+l is guaranteed o be a specification »f gk+1 .

If the procedure finds a volution, 1% will produce oune using not
more than r levels of recursion. At no state will it "look ahead' wore
than » subproblems to xee if an opevator may be applied. Irterestingly,
increasing the valves of r and p beyrnd the minimum values needed to find
any proof haxdiy ever results in finding a more divect proof. This is because
th. increased parameters will permit an extension of the set T to more
operators, and unless the ordeving within F 1s pe.fect, there is always .;;;f
a chance that an operator which leads to no proof, or to & true but awkward ;{%;
proof. will be tried befc.-e an operator which leads to a direct proof. Some

examples of this phenomonon arc piven {n (9).

Comment on programming: e have presented a non-recursive method of storage

2)location by manipulating the pointer k .nd indexinp s, 5 and F . In
g programaing language which permits dynaaic storage allocation, the codinp
problew is much simpler.

7.3 A class of problems not handied by the recursive procedure:

Starting with an oriprinal »rebicn gi .

5, suppose that the subproblem

16
2 2 - ?
S_» B_ 1s generated, as in step (9) of 7.2. Any rewriting of s’ into a
structur. which is8 a specification of gf_ ic a4 solution to the subproblem,

, *
Let us suppose that two such solutions exist rouidting In structures s and

i
8- . DBy hypothesis, the reuriting rules given covld penerate either of them.
A particular ordering function, however, vill uncover onc of them fi{rst. Let
®
this bc s . Upon finding <his rewriting, gi will be defined as
3 3

~ad control will be passed to step (2) at which point the problem s, g~

1s attempted. Agsu..e that this problem cannot be solved. Control will be

returned to step (v) of 7.2. At this point, if 011 was the lars . operator on
11 ‘ .

F, F_ will now be empty anu falluve will be asserted. TFailure will also

be asserted, although soumewhat later, 1f the operaters tollowing Uij on

1 .
F~ do .ot produce steps whicsh iead to a proof.
3 ; . i
Supposv, howvewver, that rhe step ”13(§~) was an {irreplaceable
)
step in the proof. By hypouhesis, the rovriting rules oxist such that s

b

can be vewritten as s, but in the tormulatlor described In 7.2, this
step will never be reached sivee once s is found, as “1' will be
N }

A) \ 1
removued fror Fooo On the other baond, not revoving operaters from FO
would result 1o loopin-., Un bricf, anv sclution to a acharoblem s assumed
unique.

7.4 an example af the olsser Tone foiloving oxample 1liustrates
both the procedure ci 7.2 ant the flov doseribod in 7.3,

The prebler ares is a greatly reduced subset of aleebra. Lot

the vocabulary consist of

N

L

(1) The terminal symbols X anu O , of
depree 0O , and + of depree 2.
{2) Free variables V¥ a3 necessary.
1
{3) The terminal classes Cl = {+] , C2 =

{1 and C. = {Q)

: 3

The set R 1s the three rewriting rules

R, 12 +0V, = ¥

Y 21 1

BoE ety

™ (3= -~ Y

s rh Lt
The {initial problem is

s=+X0,g=X
e 1 1 , 0
Sctiang s wd o to these strings, step (3) of 7.2 penerates D =
{(X, 0)} , from which we cer Ei - {O1 O} . Stace Uy A(# X 0) {is noc

defined, we generate the subproblem

2 . 2
s_o=+x XU, 5 =320V

The subprohlem penerates the set of zoro order differences,

0 2

. [(o . i o 1 o Cinee o 5
D {{c,n, v, 2)} , and F_ {Ug’g' Yy ol Since :.”(gﬂj is
defined, th= new problem

darosxs S arov

3 3 N
ie generated. s_ 1is now a aspecification of g~ , o by repeatine gtep (4)
set k to 1 and, aftur —sing 01 6 M 93 , continue vith
Lt (3.
2
.Sz'i;fg‘."::_ =
2 1 2 1

Now & =8 and g =~ g ; the probles—solvine procedure is cauvght in a

“

locp. ihis situation {s detected, the problem sz, gi is failed, and the

system returns to the situation

18

1 1 1
k=1, s =+X0,g =X,F =9

from which step (7) of .2 asserts failure,

7.5 The nou-recursive modification: There were two solutions

- 2
‘ to the problem s , and the program accented the wrong one. I~ the

44
S oL

modification, the fully recursive structure {s abandoned, allowing the
ﬁ program to try a subproblem a second time 1{f neccssary.
This is done by not 'reprrtine back' when a subproblem is solved,
but rather bringing forward the previous poal. Specificelly, if while

congsideri~g problem gi, gi , the operatort OaB zeneratos the subgroblem

+1 . +
E} L ii . gi*l , and this is solved by finding a structure 31 3 which is

+ + +
a spec.ficat’on of 31 L gi 1 , then the new subproblem 3% .

) + +

YUig (g1 j) ; gi). gi is established. Trom {ts index, this is seen tc be
+4- +4-1 4

3 subproblem of gi 3-1 . &i ! . {In the case gi 1 = gi , success s

i : , i+ i+
asserted.) UNote that {f the particular subprobiem s s y B 3 turns out

. 144-1 {+9-1
to be unsatisfactory, a ~ew soiution will he sought fer 3 - ~, g -

Te achieve this, change step (5) of 7.2

. K 1 . ,)
(3Y If g = ¢, asserd that the main problem is scolved and

quit. vtherwise, et k= k¥ - 1 . VFind the cperator
. n N R
D, which penerated ¢, set s = D (s Y,
' Ly - - iy =
N . ;
N] . . ; .
o g\ ,peop 1, ko2 -1 and po te sten (2)

Corment: Clearly, this destrovs the rucursive nature ot the aleorithm, since

{t pvermits hiph level subproblems to have access to low level peals.

7.6 The example problem revisited: Ghe modified procedure solves

the {llustration prebiem as follows:

BT nts o rrtraven. -

The Jewzlopment 1s identical to 7.4 throuph the first occurrence

3 3 2
of the problem s , g . Following its solution, instead of returning to g:, &3,

we have

3 3

s =~+x0.,3g

3 1 3 1
Agein we note s” = s £ = g : 80 a return is made to the situation

¥-2s§,2'119,32"+n‘5 L-{O:}’O}.

Since 03 0 (gz) is defined, ve get the new problem ~::
¥
3 . 3 p

- X

|>¢

|®
|
|4
St
t
[
+

g} is a specification of gJ . and so by step {(5) we have
PR TNCIE I SN

3 , i .

Now, 8 18 o specification ef g~ , and since g = ¢ the orieinal

problen is solved.

0+ X = x, hardly a

Comment: The modified prncedure has proven that
result of great surprise. And {t did it with only one falsc start!

"Obvlously”, one would svoid the need for claborate procedural arrancements] 7:
of this sorr {f the corvect cperaror was tricd firsc. If an algerithm for
doing this were known, the act of aroving theorems would be triviai. The

mod{fied pro~edure safeguards one acaiast less than perfoct orderings of

operators.

8. Discovery of solutions ro problers: Ve ghall noe define the class of N

probless which our mod{ficd sysetem can sclve. ¥or this purpose, we ahall
asaume that the parsmeters vt and p are unbounded, as iimiting these :corves

mirely to increase the vffictency of the avates,

20

n
8.1 Notation: Let Y O1 j denote the sequence of operations
a™R aa
defined by
n
Y oij (!_) = 0 (0 (8)-..)) .

¢...0
a®m a a O 13n=

This compound operator will be used only where each operation in the

n
sequence is defined. If Y O1 j (s) 1s a specification of some structure
a=m a o

£ » then the ordered set {Oiuja, a= m, n} 1s a soluticn to the problem
s , 8 » Finally, let G(Oij(g)) denote the "try to apply 013 to 8" .
The generation of an appropriate gosl structure was defined in 7.4.9 .

8.2 Difference-discoverable solutions: In general a problem has
many possible solutions. These can be dichotonized by ssking the following

question: At each step gF ’ g} in the solution, can wvhat to do next be

discovered by analysis of only g} and E(gF, g?)? Formally, we call a

ihja
discoverable" if

solution # = {0 , a= m,n } to the problem s , g "difference-

8.2.1 85S¢ ﬁnd =@ , or

8.2.2 there exists an 01 j contained inn A P such that the
B8
solutions {0, y ro=m, B-1} to s, G(O, 3 (s)) ::d
a’e B B8
{o ,anB8 +1, n)to Y O (s) , g are both difforence-discoverablc.
i3 = i3 =
a” o a*m g a

Comment: P 1is constructed in such a way that it will ccutain every operator

which reduces D , and hence may be instrumental in reducing 22 . Thus,

ois Jg
13,

application of O

€ P implies that an attempt will be made to forr 0, j () . If
88
is also a member of = , then this attempt and t! - subsequent

g3

will, 1f made, lead to the first ; steps of «

being discovered. (The attenpt may not be made if the Bth step of v s
veached in aome other way.)
fxample: In underatanding this definition, it is illuminatine to consider an

example of 3 solution which 1s r | diffsrence-discoverable. Let HMINUS denote

unery minus, and define the revritinpg rules
Rkﬁ 3 MIKUS » Xl Yg. = X EE_S;NSS zl

Uonatder the problem

s = MINUS xab, g=xalIEED

which hes the solution

. n o1
T 90
QS : E(g,g) = (x, 00} , B= ™) =wnnp . Siace 3835, the
only O for 8.2.24s O . Thus the solution ~ to s , g 1is
fg.g 1,0
differen~c-discoverabie if and only 1{f the solution n* = {0. |} to s ,

21
X) %R = "X = { O { Y 4 -
8 C(Ol,0(§)' and n 9 to s 01'0(2,1,§), , g ave difference

.dscoverable. Bu’ s $ g* anl 7% # @ , so the solution 7* to 3§ , g®

is not difference discoverable; thus, ncither {s the solution v to s, g .

The result could be predicted from the intuirzive concept of difference-
0

EY]

o)

discoverability piven in the bepinaing of this secrion. Initially,

{{(£,0)} . The niy way to remove this difference is to use Rl . Howuver,

the fact that 0, p must he used to switch a and b belorc removing this
?

difference cannot be detected by the procedures piven in section 6.2,

8.3 Problem-solving scope of the system: Any difference-discoverable

solution to a problem can be foun' by the FUS algorithm. Since we ghall

te talking sbout the system finding - particular sclution, we add (temp-
nrarily)} an extra switch, or "demon” to the <ysterm. This =iii ciheck any
solutior found, and if it is not ™ =r.iived one, will discard it and keep
ilooking.

tet g , g be s problem with the required difference-discoverable

solution v = { 1,n } . Our proof will be by induction on =n ,

Oiaja PrT R
the number of steps in the required solution.
In the case n = 0 , the theorem is trivial; g S g and since
7 is difference-discoverable, =g by 3.2.1, The required ovoof will
be detected by step (3) of 7.2,

Agsume then, that any difference-discoverable golution of less than

n steps ~«n be found. Since n * 0 , v 4% @ , and s0 there must be an

9, ., » Y 28 < n which satisfies 8.2.2, That is, the required soclutione
ko= (D g o 1.8 -1} to s, G(O1] (s)) and W% = {01 gro- 8+ 1, n}
3%a’a 3-8 a~a
to Y O (s) , g are diflerence-discoverable. Since these are both of
aw) iuja -

1 steps, thev can bo discovered. The demon guarantees that eventually all
difference-discoverable solutions, and hence m , wiil be discovered.
Comment: To see vhy this proof does not apply to the recursive formulation,
add the same demon. Now suppose that the first solution found to s ,

G(0, (s)) is not n* . Vhen fallurce 1s finallyv asserted on the other

teldg

problem, vill be removed from P , and ro further solutioun sought

4]

1q3
B-E

to the first subproblem. Thus, the discoverv of n" cannot be guarantced,

so neither can discovery of n

If a problem has at least onc difference-discoverable sclution, &

scelution will be found. The particular one found will depend on the ovdering

23

function F(T) . Empirically, ve have found that problems without at least
one difference~discoverable sclution are rare. Only onc such preblem has
been found in our study of over one thousand problems from diverse areas of
rmathematics. Thue, we feel that this limitation is not overly restrictive.

It would be nice if there werz some way to logk at a nroblem and
say that it does, or does not, have a difference-discoverable solution.

Thig 18 & chimera. Difference-discoverahility {s a prep.rty of solutions,
not of problems. To atate in advance that a problem does or does not have a
differenca~discoveragble soluticn requires that one make an asserticn about
the form of a selution before he knows what the solutiom is,

Another way of looking at this 1s to say that we are dealing with
an algorithm wh :h is not complete - eince it will not always prove a true
theoren. This is in contrast to theorem provers based on the resclution
principle, for which completeness can be proven (10G). Should we be
interested in incomplewc theorem proving methode? The answer depends on
thelr pragmatic utility. Is the cxpensge of possible failure offset by an
ability to handle some problems very well? The following section addresses

this point.

9. Examplys
9.1 General: We will now show, by illustration, where th~ FDS
a2lgorithm does or does not perform well. The alporithm is quite effective if
the theorem has a proof in which each line is derived by application of a
rule of inference to the line derived immediately before it. This wiil be
referred to as the ""line by line property.” The algorithm is much less

suited, anc indeed, appears clumsv, if the '"natural" proof (to a human) depends

or the convergence of two or more cinali= of inference. Because many very
difficult proofs are of the latter tvype, and becsuse we have used very
simple examplee, it may appear at first that the algorir™m is sultable only
for trivial problems. This is not so, as a line by line proof may involve
steps which are difficult to find, and our zimple exanples were chosen
solely for esse of exposition. Several of the following illustrative
prevlens are quite difficult for people. As appropriate, we shall cite
st-tistics.

Within cach example, a program fitting the FDS algorithm (i.e.,
behaving as we have specified except tha. a specific ordering rule was stated
to define F(P)}) was pglven an initial set cf rewriting rules, then a series
of problems. FEach time a problem was sclved, {except in pattern identification)
the appropriate theorem was added fo the 1list of rewriting rules avallable for
subsequent problems.

9.2 Elementary algebra: Elementary algebra 1s 4 syatem in which

most proofs have the lfne by line nroperty, and hence the algorithm works
well. This §s {llustrated in Tables 1 and 2, vhich summarize the result of
an experiment with school alpebra problems. Table 1 states a set ot axlors
and problems involving aleebraic manipulation of plus and birary minus. In
Table 2 manipulatinns ¢f zero and unary minus are defined.

"Everyone kunows' these theorems are true, but it is ~urprisingly
hard to prove them., The rewriting rules and problems one to thirteen of
Table 1 were presented to {ifteen University of Uashington undergraduates
enro. ' in introductory psychology. Although hirh school algebra is a

requirement for admission to the University, and «. :ntary statistics

SN ittt e 1w

taught as part of this course, the students did gulte poorly. They
averaged two and & half solutions in half an hour. The best pr_blem
e#olver produced only seven proofs.

Some cf these problems are not trivial for people who have had
considerable formal mathemstical trainine. In particular, cons.der
problem 7 of Table 1. Ve nave, informaiiy, prescnted this probliem to about
a dozen graduate students or Ph.D.'s in !lathematics, Engineering, and
Computer Science, allowing fror tem to forty-five minutes te work on it.
Only a few people solved the problem. The festest sclution .utained, &
different proof from that found >y F0S, was found in ten minutes by an
undergraduate, who subsequently was elected to Phi Beta Kappa in
Methewmatica for other reasons.

9.3 Sanderscr al ebra: '"Sanderson alpebra" is an alpet-a

developed by Dr. J. Sanderson to describe simple flow charts, such as might
occur in microprogramming, {12). Proving that two well formed expressions
are equivalent in thils algebra proves that the flow charts they describe
are computationally equivalent. Table 3 ligts the twenty-six "axioms', or
equivalences, which Sanderson proved by shouing that all possible inputs

to the corresponding circuit. gave equivalent outputs. He then proved

the fifteen theorems listed as problems in the table., The thcorems have
&lso been proven by the DS, with the times listed.

This example 1llustrares the strong '"non-reflectivity" of the FDS
algorithm. The algorithm must begin with th~ starting state, and then
rewrite to the goal state, wiwore a human theorem prover mipht reverse the
procass. This is {llustrated in Tablec 3, problems 13 and 14. These are

reflexive verajons of each other, yet by a time to solution criterion, one

26

problem is 500 times harder than the other! 1In practice, the FDS algorithi.
ought to be supplemented by a pre-processor which decided that f{f ™:="

was reflective In the deductive system being handled, and the prohlem was
of the form "a := b" , Lt would be easier to prove ‘b := a". DBut how is
thiz decision to be made?

Eipght Univ .rsity of 'ashington Junior or Senior majors in
Hathematics spent three hours each attempting to prove the problemwms of
Table 3. The system was prescntcd to them with reflectivity of ":="
assumed, so that if anything, they Lad an easier task than did the ¥DS
program. (There are then seven problems.,) The average student obtained

two solutions. Only one student solved all problems in eighty minu es.

9.3 Pattern identification: Our next example involves parsing

strings in a phrase structure grammar. This example vas chosen to show
the resewselance of the FDS algorithm to compilation. In addition, this
example iilustvates the application of the alrorithm to a slisht extension
of the theorem proving problem. Instead of beinp asked to find a sequence
of transformations which change the starcin~ state into the goal state,
the propran 1s asked to detect to which of several classes of strings a
particular well formed expression belon-s.

Two dimensional line dravine-s nf buildings provide the subject
uatter. For easc of ¢xposition, think of "houses' and 'churches.” Proco-
type houses and churche are shown in Fipure 1. Gilven a set of basic
patterns, complex two dimensional variations of thesc patterns can be
constructed by specifying a set of connectives (e.p., "on top of”) and a

phrase structure grammar whose rules determine the variation of patterns

vy

Bt

27

which fall into a particular class, {4, S). A typical set of rules are
given in (4) . These are simiiar to the rules used in this application,
with the following excepiion. Let {Bi} , 1= 1l...n, be the set of n
prototypes, in this casc the n basic patterns representing different

types of "house' or 'caurch'. The rewriting rules contain n rules of
the form

Bi := PATTERN
where "PATTERN" ia a special constant that only appears in rewriting ruies
on the ripht hand side of the above n specisl rules and in the rule
PATTERN . PATTERN := PATTERN . If the problem A := PATTERN {is pre-cnted,
where A is any well formed expression, if the program solves this problem,
it will have [irst rewritten A as some collection of the {Bi} then made
the trivial last steps of rewritting to PATTERN., If the Bi each
represeni one of the basic types cf patterns, then the weil formed expression
(complex picture) A will have been classif’ed as a particular type of
pattern.

Figure 2 shows two basic patterns and c:e o. ti2 corpound palterns
which have been classified as examples of each type. In this c¢xample there
are eight basic patterus, and 26 problems vere attemptes. Proofs in this
applicetion are quite direct, and arc obtained {n a. average time of six

s2conds.

9.5 Propositional celculus: The previous illustrations have been

of theorem proving in systems which have the line by Jirne projerty. More
specifically, esch system has axioms of the form X {i= equivalent to Y ,
with the added assumption that within an expression any subexpressior may be

replacc?’ by one of its equivalent expressions. Ue will now pive a: ecxample

28

v. how poorly the FDS aleorithm performs 1f {t 4s asked to prove theorcms
in a system which does not have this property. The svsten 1s the
propesitional calculus. The folloving axioms are true statements, but not

statements of equivalences.

fa .- b =~) (a = b)) = (@ »)

(2n _caa) 0 {0 h &) o ob)
To hegin an FDS computation at all, these weve expressed by three rewriting
rules of the form

x := x,(a - (b _ a))
topether wvith the rule of inference

(x,a), (a = b) = x,b .,
The first set of rules say, ia effect, that any expression may he rewritten
as iteelf and an axiomatic statement. The sccond 1s a rewriting torm of
modus ponens. In ten minutes the system was uunable to prove that 5 < a8 ,
is a true statement. The reason is that in anv system vhere one sten is
required for cach substirution, this 1s an cxtremely long pioof. Also,
the stavting state provides very little clue as te where teo bepin., This is
seen by examining the rewricine rale form of tue problem

x = N, a D &

The alosrithem is appropriate tor many rewritine problems which
appeat to be like the nrapositionnl calculus, Hhut are in fact nroblens of
{nfervence. 2 svsteratic exanivation of the problerm scctic:s ¢f Suppes and
1i1l's Intreductory lonic for the Schools (14), uncovercd no problems which,

in priaciple, could not be solved Bv the FUS vethod. In some cases wve Jdid

29

not care to expend the necessary computing time on hard examples. Table &
illustrates system performance on problems Suppes and Hill used tn illustrate

inferences by modus tollens, modus porens, and double negation. Our

observation was that most of the applications of logic in this grade school
book were :o the use of logic to draw irnferences, rather than to prove
theorems,

9.6 A puzzle: This example is a version of a well known logic
puzzle. Most pecple find it hard the first time they see ic.

Trhere are two protagonists, Ed and Al, each of whom either always
¢lls the truvh or always lies. A philosopher approaches the pair and
esks _f the library is to the East ov West. Ed mutters something unintel-
ligible, and Al states clearly, "Ed says east, but he's a liar." Where
is the librarv?

FDS uses the notation

FDS Expression Meaning
SAYS (A/B) A makes statement 3

AVIS TTLE A 1% 2 truthteller (1.e., honest citizend
A.IS.LIAR A is a liar (i.e. gauyster)

A M. A impiles B

A.EQ.B L iz equivalent to B

DIRN A divection, i.e. ei1fher vast or west

£ 0'8 A may be vewritisn as B

(AXAND.B A and R

and the rewriting rules:

SAYS(A/B) = (AL LS. TTLRHLEQ. B
A IS.LIAR o WOT (ALULIS . TTLR:
NOT (EAST . EST

NOT{WESTY = EAST

(A.EQ.B) AND.WOT {B) = DATA.is. 30T (A
Aby.B = 3.EQ.A

CEQ. (B.EO.C) = (A.EC.3) EC.C

CEQ. NOT{B) = NOT {A.EQ.B)

2

>

The problem was presented as

SAYS (AL/SAYS (ED/EAST)) . SAYS (AL/(ED.IS.LIAR)) := DATA.IM.DIRN

The program produced the following proof in 14 seconds.

(SAYS (AL/SAYS (ED/EAST)) AND. SAYS (AL/ED.IS.LIAR)))
(((AL.IS.TTLR).EQ.SAYS(ED/EAST))AHD.SAYS(AL/(ED.IS.LIAR)))
(((AL.IS.TTLR).EQ.SAYS(ED/EAST))AND. ((AL.IS.TTLR).EQ. (ED.IS.LIAR)))
(((AL.IS.TTLR).EQ.SAYS(ED/EAST))AHD.((AL.IS.TTLR).EQ.NOT(ED.IS.TTLR)))
(((AL.IS.TTLR).EQ.SAYS(ED/EAST))AND.NOT ((AL.IS.TTLR) .EQ. (ED.IS.TTLR)))
(((AL.IS.TTLR).EQ.((ED.IS.TTLR).EQ.EAST))AND.NOT((AL.IS.TTLR).EQ.(ED.IS.TTLR)))
(C((AL.1S.TTLR) .EQ. (ED.IS.TTLR)) .EQ. EAST)AND.NOT((AL.IS.TTLR) .EQ. (ED.IS.TTLR)))
((EAST.EQ. ((AL.IS.TTLR).EQ. (ED.IS.TTLR)))ARD.NOT((AL.IS.TTLR) .EQ. (ED.IS.TTLR)))
(DATA.IM.NOT(EAST))

(DATA.IM,WEST)

This example illustrates a use of classes of terminal symbols. The symbol
DIRN is a member of the constaat class {DIRN, EAST, WEST}. Therefore, the

last line in the proof is a specification of the goal state DATA.IM.DIRN ,

but is not identical to it.

9.7 Inequalities: The final example is the solution of introductory

problem in thc calculus of inequalities. Inequalities present an Interesting
area of mathematics in which to study theorem proving, since inequalities
proofs frequently depend upon combinations of arguments from algebra and

from mathematical logic. Therefore, in order to do inequalities the program
must have available rewriting rules from the more basic fieclds. Typically
only a few rules will be used in any one proof, but since their identity

cannot be known before startine on a problem, all must be available. The

Ve GY et gt e o

e

u

31

presence .f many rules will creatly incrcane the probability of thoe nroeram's
starting down fruitless paths. Thig gensideration applies to hoth state to
state theorem provers and to the resolution principle peograms (19). There-
fore, inequalities provide tests of the extent to which the peneration of
difference sets will nrovide a framevork to test the -electivity of the
program.

Ia this examnle the FDS progpram used the simple orderinp procedure
of determiningy the probable usefulness of a rewriting rule by a weirhted sur
of (a) the number of conditions on the string required bv the rewritine rule,
{.e., the complexity of the left hand side, and (b) the number of these
conditions satisfied by the current state string., The aystenm was inltialized
by loading rewrfting rules based on alpebra and the prcpositional calculus,
including definitions of "implies"”, "conjunction”, and "equivalance”, and
the saxiows defining permissible algebraic manipulations with +, -, /, and x .
in addition, avout one hundred previouslv proved theorems in both areas were
loaded as rewriting vulos. Tabl~ 5 liars the definitions of fnequallities
and the theorems nroven,

The procf of the followine theore: ig {llustrative. It was
cbtalined at a flme at which the syster had te seleet rewri{tines from o sel
of 134 rules. The onroblem i3 to show that

REAL (A) - REAL (B) = ({&> B} 7 (A = 1)) T (R > &)
in a iegal revriting., The preof s

REAL (A) . REAL (B} RPAL {a - B)

cm ({(A = 8)Y 2 0) Y ({r - oEY o= o)) T O (NEC{A-B)a.
tx (A=)) 0 (A = O By)

e (E(A=20) LA = XY T (R » A

= ({A >RY 3 {& s 3Y} T (B » &

32

The proof was produced in two minutes and thirty three seconds.
Twenty three structures were considered and six used in the proof. Most of
the time was spent establishing the order in which operators were to be
applied. As can be seen, a nood orderiny was achieved.

9.8 Summary of the examples: These examples have bcen taken from

about one thousand theorem proving problems which have been solved by
different programs fitting within the framework of the FDS algorithm. The
performance of a particular propram on a given problem will depend upon the

parameters used to limit its search and upon the rule which it uses to

determine the sequence in which operators will be tried. The programs are
relat;vely ingensitive to parameter changes, but highly sensitive to the
effect of different ordering rules. An interesting question, which we are
now exploring, is whether or not it is possible to write a program which
develons its own ordering rules.

The FDS algorithm has not produced any proofs of theorems which
would be considered 'deep" by a pure mathomatician. On zhe other hand, it
more than holds its own with upper division undergraduat2s, providing
that the proofs which it 1s trying to discover have the Iline by line property.
This is ro mean accomplishment, piven the current state of artificial

intellipgence rescarch. It seems falr to sav that FDS nroprams nrove theorems

as well as the better currently available chess-nlaying propsrarms play chess,
(3), but that it does not rrove theorems as well as checkers playing programs

play checkers (11).

10, Comparisons ana Conclusions:

10,2 mparison Lo GPS: As we have indicated, the FDS is an

intsilentual descendant oy the GPS. [7,8). Both proprams cre theorem provais

afate ¢ a

which solve problems by sutressive vewnitinps, ‘rom a starting

poal state,

There ave two najov d1 Jevencoes hetweern the CPS and FLS proprams.

The most obvivus, znd mosy rivial, is “hat the GPS 4ir a list processing

ile DS ¢ oeyams are written in FORTRAM without

o orgprem written du VLAV, w

3

the use of embedded list nrocessing features. This is solelv a technolosiceal

advence, as undoubfedly the GPFon could be duplicated in this way. lYaving a

macnine efficient program b~s permitted us te study propram perforrance ow "y

=

a rush wider vange of problums than would have been the case had we wsed an

{nterpretive lanpuage.

The more interssting difference 18 in how the programs definc

difrercnces between ztates and use them to select operators. ‘The OPS user

mast provide a wable called tic "Operator-difference table”, and a set of

IS

gubrroutines reprerenting - orators and Jdifferences. Thesa define the

differenneg vhich the progran oan netice arnd the revrlidng rules to be

conciderad 1n reducing ecach ol fference. The FDS, on :le cther hand, rcenevates

1ts own egquivalent of 4177 ant operator-diitference tables by analysis

of rewriting vules. A FDS propram vill not rmenerate all the "differences”
which a human nisht ssze between two states, ss we showed in s-ction 8. On
the other tand, ¥US provides a completely slrorithnic thesrem nroviag

procedure once the axiomatic system has been defined to the prowram, widle
in $PS there 15 ome mors slep at v

irtervene, {0), The auestion

ich theoren prover is better
unan3werable ong, since the two procadures meke a different divizien of iabor
etwecn man a2od compurer ot the theorar proviap task.

The later versions of CFS (1,2} have iatroduced a new gort of poal,
“Select the elerent of the set S which best Fulfilis criterion C ." This
method of defining a coul 1s ouite diffcvent fron the definitions wused in
¥DS, as "best’ {implies an ordering of objects on the basis of their relative
posaession of sowe property. Thare is no wav of representinyg such a poal
in the FD3 structure. It appesars from the examples «~lven in (2} that this
goal is guite useful, on sore nrocleic, but that these problems are some-
what outside the ficld of (heorer proving.

10.2 The resclurica nrincinie: The Resolution FPrinciple (10) is

a quite different, and very powvcrful, annrecach to thecrem proving. There

are three steps in uslnn this prineiple. First, one must represent the
relevant ares of mathematics as a set eof clauses in the first order nredicate
calculus in disjunctive normal form, f.e. as a set of statements of the

form (A or B or Not(C)) . 1In addition to representing thc premises of a
theorem this way, the negation of the conclusion is als.. so represented,

Using the single rule of infe.cence that 1f (A or not (B)) and (B or ()

35

are true, then the clauvse (A oz C) may ke inferred, a resolution principle
pngram attemprs to prove that the nepaticn of the conciusion is inconsistent
with the nremises,

This technique 1s very well suited te the discovery of proofs which
do not have the line-by~ifine preoperty. "o have already shown that this fg
precisely the pcint at which the FDS does poorly. "o suspect that there arTe
situations in which the converse i. true. One of the prenlems with tne
resclution principle method of theorem proving ia that the number of inferrved
clauses multiplies rapldly. A wvaricty of stratepics have been su, pested for
cerrecting this problem, and some have had notable sucecess (13, 15). Still,
we guspect that it will remain a problem. This is particularly so if the
bagic axloms of the system in which one 1s working are such that they are
clumsy to state in the first order predicate calculus. Ve offer the Sanderson
algebra 23 an axample of such & system, Rased or these considerations, we
offer the following conjecture, in the hopes that evidence wilil soon be
publighed.

"If proofs in an area of wmathematics typically depend upon inferences
from a larpe number of previously proven theorems or axioms, and 1f these
proofs avre likely to display the line-by-line property, thc state-to-goal
method ef theorew proving, as exhibited by FDS or GPS, will be more practical.
To the extent that proofs denend upon the convergence of several lines of
reasoning. and can de chtained by reference to a relatively small number of

previcoualy stated results, the resolution principle will be the more practical

technique of theorem proving."

36

Another contrast between tie FDS zlporithm and the resolution
principle ralses auite ancther question. The resclution principle tends to
procuce proofs which are certainly valid, (i.e., their validity is provable},
but which are hard or impossible for a nerson to couprechend., Line-by-line
proofs arc easy to follow. Is this a real question? Robinson (10) correctly
states that a theoren is nroven if it is alrorithmically decideable that
its procf is correct, rcopardless of who connrehends the proof. In some cases,
however, the point of obtainine the proof is not to make the assertion but to
understand the reasoning which leads to it. If this is the case, the proof
rmust be intelligible.

10.3 Summary: A procedurc for mechanical problem solving has
been presented. Cowmputer proprams based upon this method have proven a larpe
number of simple theorems, and appear to be able to operate at the level of
a university underpraduate mathematics student. Illustrations of solutions
were piven, and the method contrasted to that of the Gencral Problem Solver

and the Resolution Primriple.

REFERENCES

1. Exmet, G. and Sewell, A. Some issues of representation in a General
Problem Solver. Proc. Spring Joint Computer Conf., 1967, AFIPS 30.

2. FErust, G. and Newell, A. Generality and GPS., Carnesie-Mellon University,
Department of Computer Science Technical Report, 1967,

3. Greenblatt, R., Eastiake, D, and Crocker, 8. The Greenblatt chess
program. Froc. Fall Joint Computer Conf. 1967, AFIPS 31, 801-810.

4, Ledley, R. Progratming and utiiizacion of dipgital computers.
New York; McGraw-Hill, 1962,

5. Miasky, M. Steps toward artificial intellipence. In Feipgenbaum, E.
and Pridman, J. (Editors), Cormuters and Thousht, New York;
Heoraw~HL11, 1583,

6. Newell, A. and Ernst, G. The search for gemerality. Proc. IFIPS
Congresc. 1965, 17-24,

7. Hewell, A., Shaw, J.C., and Simon, H. Report on a peneral problen
solving progranm for a computer. Proc. International Confercnce on
Information Processing. Parig; UNESCO licase, 1959,

8. Newell, A. snd Simon, H.A. GPS, A program that simulates humsr thought.
In Feipenbaum, E. and Feldman, J. (Editors), Computers and Thoupht,
New York; McGraw-Hill, 1963.

9, Qu alan, J.R. A FORTRAI IV gereral purpose deductive program, Uorking
paper 106, Uestern Msnagement Science Institute, University of
California, Los Angelex, 1966,

10. Robinson, J.A. A machine oriented lopic based on the vesolution
principle. J. AQI. 19065, 12, 23-41.

11. Samuel, A.L. Some studies in nachine learning using the pame of
checkers. In Feipenbaum, E. and Feldmam, J. (Editors) Computers and
Thought, New York; !'cGraw~liill, 1963,

12, Sandcrson, J. Theory of sroeramming languages. Ph.D. Thesis,
University of Adelaide, 1906.

13. Slagle, J. Automatic theorem provine with renunable and semantic
resolution. J. ACM, 1767, 14, 687-697.

14. Suppes, P, and 11411, S. Introductory Loeic for the Schools. Jew York;

Random Houvsae, 1962,

15.

16.

REFERENCES

Wos, L., Carson, D. and Pobinson, G. The unit preference stratesy in
theoren proving. Proc. Fzall Joint Computer Conf., 1965, AFIPS 26,
615-621. T

WUos, L., Carson, D., Robiamscn, 0., and Shalla, 7., The concepi of
demwdulation in theorco provimp., J. lu. 1067, M40 DG,

FOOTNCTES

1. This research was partially suppcrted by the National Science Foundation,
' Grant No. NSF B7-1438R, to the University of Washingtorn, Earl Hunt,

Principal Investigator, and partially by the Air Force Office of
Scientific Research,Office of Aerospace Research, United States
Air Force, under AFOSK Grant Ho. AF-AFOSR-1311-87. Distribution of
this document is unlimited.

2. The exact correspondence is difficult to establish, since inscfar as
we know, no rigorous definition of the algorithms oi the General Problem
Solve: have ever been published. The earlier informal descriptions
of GPS (7,8) indicate that the program may have used the recursive
method of problem generation defined in section 7.7. A later
paper (11) and technical repoit {12) suggest that the fnal version
of GPS used something much like the improved, non-recursive procedure

of section 7.5.

b B

1 A4+R t= R
72 A+(8+C)
3 (A+B)=~H

s we &

A

THEOREM

(A+RI+C 3= A+ (H+C)
(A=B)+ = A

A 3= (A=8)+B

A+(B=C) 3= (A+b)=C
(A=H)+C 3 A+((C=B)
(A=C)=(R=C) = A"H
CA+C)=(H+C) 1= A=B
A+(R=C) 1= (A=C)I+H
(A+R)=C 1= A+(H=C)

QA NN EWN)

TARLE 1
MANIPULATTON OF + AND =

REWRITING RULES

4 A 33 (A+R)=R
CA+B)Y+C Y (A=R)+C = (A+C)=R
A 6 (A+B)=C = (A=C)+R
THEOREMS
SECNNDS THEOREM SECUNDS
S 10 (A=R)=(t= (A=C)=R 8
0 11 A=(B+C) 3 (n=~b)=C 8
0 12 A+(R=C) t= A=(C=H) é
1 13 A=(B=C) = A+(C=B) 7
5 14 (A=R)+C t= A=(B=(C) 5
215 15 A=(R=C) t= (A=B)+C 4
169 16 A=(R=C) t3 (A+C)=H 6
7 17 (A=R)e(C t= A=(B+() 7
q 18 (A+R)=C t= A=(C=8) 1

TARy F 2
MANTPULATINN OF UNARY MINUS (*NDG™) AN))

REWRTTING AULE>

| A+l 12 He+A 19 (A+3VY=7 tx A4 (==()
2 A+(0+C) 13 (A+48)+C 14 (A=d)=(13 (A=()~§
3 (A+B)=8 $t3x 4 17 A=(R+C) 3= (a=g)=C
4 A 13 {A+d) 3 {8 A+ (A3=C) 13 A=(C=~4)
5 (4=g3)+C 12 (A+{)=3 19 A=(H3=C) = A+({°3)
& (atdi=C 1=z (A=C)H+1 20 (A=H)Y+C iz A=(R=l)
7 (A+9)+:C t3 A+(B+C) 21 A=(3=C) = (A=R)+C
R (A=R)+B 1= A 22 A={(3=C) 132 (A+)=1
3 A 'tz (A=5)+4R 23 (A=Y=l 1z A=(R3:()
12 A+(B=C) s {A+g)=C 24 (AenBY=C iz A=((=3)
: 11 (A=B)+C 1z A+((C=R) 295 A+0 1= A
12 (A=C)=(B=C} 13 A=y 249 A=(0 1=z 3
13 (4+0)=(B+C) 1= A=R 27 NEG(A) 1= QO=4
. 13 2%(n5=C) 4z (A=C)+R 23 gea iz 37504)
THEJRENMS
THEQRE~ SETMNNGS THF RT3 SLCINGS
1 L 1= A0 5 7T A#NnEG(A)Y tz iwn 3
2 A 1x A=D A A AenNEQ(RY 13 Aex o
3 A=A 13 21 FONESCAYANE (Y taxooflaen) 120
4§ 0 a3 A=~} 4 10 NEGCA)=<NFA(AY t38T5(2ey) q7
S A+NEGUA) 17 U 9 TL ONEGINDS(A)) 13 A 12
6 0 58 AenEGLA) 58

TABLE 3
SANDERSON ALGEBRA

REWRITING RULES

1 CA¢BY+C 33 A+(B+C) 14 (A/BY+C 1= (A+C)/7(B+C)
2 A#(B+C) 3= (A+4B)+C 15 (A/BY/C 1= A/C
3 I+A 1= A 16 A/C ts (A/B)/C
G A t= l+A 17 A/7(R/C) 3= A/C
5 A+l 12 A 18 A/C 13 A/(B/C)
6§ A 1= A+l 19 SIGCA) 8= CA+SIGCA))/]
7 2+48 3= 7 20 C(A+SIGCA))/I 3= SIGCA)
q A+2 t=z 27 21 SI1gCA/R) &= SIG(A)
3 7 1= A+l 22 SIGCA) t= SIGCA/8)
10 2 t= I+A 23 SIGCAYI+R/C 3z SIGCA)+C
1y 171 1= 1 24 SIGCA)Y+C 13 SIGCA)Y+B/C
12 1 3= [/1 25 SIGCI) t= 2/1
13 (A+C)/7(B+C) t= (A/B)I+C 26 2/1 t3 SIG(T)
THEOQREMS
THEJREM SECONDS THEQREM SECONDS
1 A/A t= A 1 9 SIGCA)Y/I t= SIGCA) 13
2 A 3= A/A 2 10 SIGcA) t= SIGgcary/st 11
3 ((A/B)+C)/D t3 CA#CI/D 2 11 SIGCA)Y+SIAG(B) &= SIGCA) 35
4 AZ((B/C)+)) 313 A/(C+D) 7 12 S1GCA) 2 SIGCAY+SIG(B) 596
S (A+B)/C 113 CCA/D)+8)7¢C 10 13 S1GCa)/S516(8) 1= SIGCA) 2
& A/(B+C) t= A/C(D/B)I+C) 21 14 SIGCA)Y t= SIGCA)/SIGCR)Y 1334
7 SI1G(2) 1= Z2/1 t 15 SIGCSIGCA)Y) t3 SIG(A) 108
8 2/1 33 S1G(2) 1

PP

TABLE 4
mROPOSITIONAL CALCULUS

REVRITING RULES

1. PQ = QP Lo 0 (Pe20) a=

2. Pe(Q*R) := (P-Q) D 5. - =7
3. Pe(P->Q) = O €. P

THEORE!'S

THEOREM
. (S=>Q)*R =¥ ~8§

. B+(—A->-B) = A

1

1

2

3. ~B+(A->B) - (~A->C)
4. —~_+(B=>C) = {~B->~ph) = A
5.

(P=>~Q) Q- {~P->{R*S))

i
el

:= P

)

SEC

A NN

TABLE 5
INEQUALITIES

REWRITING RULES

1. A>B := (A-B)> 0 8. (A-B)=0 := A=B
2. (A-B)>0 := A>B 9. A=B := (A-B)=0
3. A>0 := 0> NEG(A) 10. (&0)-(B>0) := (A+B)O
4. 0> NEG(A) := A>0 11. (&0)-(>0) := (AxB)O
5. A IS REAL := (A>0) i (A=0) | (NEG(A) > 0)
6. (A IS REAL)*(B IS REAL) :- (A-B) IS REAL
7. (A IS REAL)-(B IS REAL) := (A+B) IS REAL

IN ADDITION, 123 AXIOMS OF LOGIC AND ARITHMETIC WERE GIVEN.

THEOREMS

THEOREM SECS THEOREM SECS
1. 0X := NEG(A)>O0 10 . 5. (A-BY>0 := 0>(B-A) 32
2. NEG(A)>0 := O>A 10 6. O>(B-A) := (A-B»O 50
3. 0>(A-B) := BR>A 55 7. NEG(A-B)O := BXA 15
4. ANB := 0>(B-A) 163 §. BYA := NEG (A-B)>0 11

9. (A IS REAL)-(B IS REAL) := ((A-E)0); ((A-B)=0)| (NEG(A-B)>0) 10

10. (A IS REAL)*(B IS REAL) := (A>B)|(A=B);(B>A) 143

: ; . A . . .o s R P et e mma D g T in T AR W T I
kA dek Sl wh rmt e S e E:..;..\«fieii%s.t.:.cr;mm . Ve e . - B . .

e) T T
T P
e m . |
- e _,

TEAN TYRE

, \\\

BRSIC PRT

~_ i =
o N ! @
R e v
X \ , -
A \\ / ./ w o
4 ! T
\ / 4 o (e g
1 \ /
' \ o
/ l / = W
o : |
| I % [|
, 7 Lo {o |
e b L
\ / o
{ ; "
N, \ _. m w,DOv o \.._ H
, \ ! ; 1
/ \ —_—— N h 4
. N&l o
|
I
h
™ e - - v - W
R ot @y o ko, st . . . et . — N ,—

Seconty Clers.ficaticn
MG

DOCUMENT CONTROL DATA-R&D

_— s P
2aturtty clasaification of 1itle, body ci mastrect &nd indexing onnotation must N ntered vihan the overa!l reyor te clacs)iles)

DRIGINATING ACT:vIT> (Corporaie 2uthor)

University
1

< IR

:
Seattle, washinuton

Be. FPEFORT SCCUM Y CLAYDFICATION

Unclsasified

3k GCAROUP

- -

REESCXT TITLE

A FORMAL DEDUCTIVE PROBLEM-SOLVING SYSTENW

Scientific Interim

CEITRIPYIVE NOTER (Typo o!f ragor! and inciue:ive detas:

i AUTWORIY, Titai nama, middie inliie!l, 1ag! name)

J. R. Quinlen snd E. B. Huat

REFPORYT DATK

Ta. TCTaL NC. OF PAGES b NG OF REFS

CPROUECT MO L nwa 4—7’77?*@/

. Y 2
6»;"1‘7\‘)9//’

d: j‘\/a_? J _:/:)

February 5, 1968 3¢ 16
LOWNTRACT DR GRANT NO #d. CRIGIRAYQR'S REPORT “uMBERS)
AF-AFOSR-1311-67 $8-1-01

*h OTHER REPQRT NO(S: (Any olhdr numde;a tha! may be aaaigned

AF0oSR 68-0825

DIITRIBUTION ITATEMENT

1.

™. {5 document hes been approved {or pudlic

rolease and sale; its distrilbation is unlimited.

SUPPLEMENTARY NCTE

ceemmeee TECH OTHER

12 3PONSOMING WMIL:TADY AZTIVITY

Air Yorce Office of Sclemtif{c Research
Office of Aeroepace Research e

United Statesg Air Force &.<&ﬁL53)

ABDETRACT

is given.

prograsming details,

A formal deseription of & generalized theorem proving computer progream
The progream has been written in Fort.w IV, but this description
is concerned with logical flow and definitionse of the algorivam, rather than
Exsaples of performance of the progrsm are given, using
several fields of mathematice for illustrative purpnses.

Dl "t 1473

. GRS A SR T T R e e et

Security Cluw o iLation

Secusrlty C xseification

KIY woRADs

4
LINK A Link B

LINK

oL E

wT ROLE w T

RQLUE

Computer

Program

Thecrex proving
Hathemetice

Artificisl Intelligence
Reuriatic Prograssming

Y LS AR T

Secunty Classification

© o o A 2

g i B 4 g e

i
<
E

