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THE LATERAL BUCKLING OF A STRAIGHT OR
CURVED BEAN SUBJECTED TO PURE BENDING™

by

F. E. Vanslager?

Department of the Aerospace and Mechanical Engineering Sciences
University of California, San Diego
La Jolla, California

ABSTRACT

This paper presents 2 new analysis of the classical problem of
the lateral buckling under pure bending of a curved beam with circular
axig. Although a solution to this problem, and to the coiresponding
straight beam problem, is well-accepted in the literatire, the present
analysis gives buckling morments which are significantly different than
the-usually accepted results. The difference arises from an application
of new boundary conditions that are shown to be the only bounda.?y con-
.ditions consistent with the equilibrium of the buckled beam under a
pure bending moment. This.new analysis provides generally higher
bending moments. A short experimental program was performed, and

the results tend to confirm the new analysis.

* The results presented in this paper were obtained in the course of
research sponsored under Contract No. N00014-67-A-0109-0003
Task NR 064-496 by the Office of Naval Research, Washingtm, D.C.
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Nomenclature
.. ; . ., A arbitrai1y constants
1 : bk’ Bk arbitrary constants
“ ) .C torsional rigidity al “ut the centroidal axis
E Young's modulus
4 é Ix' IY second moment of the nrea about the x and y axes
k an eigenvalue of eq. (3) or+(23)
j:_'“ A an eigenvalue of eq. (3)
‘ L length o a straight beam
g M, M bending moment vector

M ,M ,M components of the bending moment vector

£ x "y s
,',(; b n an integer
», ) P, B, P‘L axial force
3 R mean radius
;
s coordinate along the centroidal axis
g u displacement in the x direction
b U . work of deformation
E: \4 displacement in the y direction
y: A potential energy
: W, W, work of external forces
x, x' coordinate in the radial direction
s '
Y, ¥ coordinate transverse to the beam
» o beam angle
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unit twist about the centroidal axis

an angle change

2 length change

change in radicvs of curvature

an arbitrarily small constant

curvature changes in the x and y directions
Poisson's ratio

deformed radius of curvature

angular displacement of the cross section
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1. INTRODUCTION

This paper is concerned with the well-known problem of the
Iateral buckling under pure bending of a straight beam or of a curved
beam with a circular axis. A sketch of a curved team of rectangular
cross section with mean radius R and opening angle « is shown in

Figure 1. It is assumed that the beam is loaded by moments M acting

a

A

Figure 1.

at s=0and s = ¢R and is otherwise unloaded. In order to have a con-
servative system, it is also assumed that the direction of the applied
moment vector does not change during the buckling process. When the
applied moment M reaches a critical value, the planar configuration
becomes unstable, and the beam begins to deform laterally. Section

. A-A shows the displacement of a typical cross section of the buckled




beam; the initial position is indicated by the dashed rectangle.
The classical solution to this problem, obtained by S. Timoshenko

and published in Bull. Polytech. Inst. Kiev in 190, is widely accepted,

viz [1], [2]¥, and, tc the author's knowledge, it has never bee;ldisputed.
In-the first part of the present paper, a different solution is obtained for
both the circularly curved beam and :che straight beam. The last part of
the paper describes an experimental verification of the new solutions as
opposed to the classical solutions. The discrepancy between £he two
solutions is shown to-be due to the boundary conditions prescribed on the
loaded ends s = 0 and s = qR. The only conditions that are consistent
withthe bagic equations [1] are shown to be those of zero geometric

constraint — i. e., "free edges', and the solution for these conditions is

detived in section 3 below.

2. BASIC EQUATIONS
The linearized strain-displacement relations for the transverse

curvature xx, the in-plane curvature change xy, and the unit twist

are {13, (3],

2 2
.o _4dy -, du . 90,1 dv
* R " 3s? ’ xy IR ’ P = ds TR s (1a)

where u and v are linear displacement cemponents and ¢ is a

rotation as shown in Figure 1. The stress-strain relations are given by

M M. M_
= — - XL ..
Xx - EI y XIY - EI ’ ﬁ - C (lb)
X Yy

*

Numbers in brackets refer to references in the List of References.
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where Mx’ My’ and Ms are the components of the moment vector
M in the x, ¥, and s directions, Ix and Iy are the second’ moments
of the crogs section about the x and y axes, and ‘G ig the torsional
rigidity about the centroidal axis. The eguations of equilibrium [1] for

the buckled beam load¢d only by end moments M are

.
M(s) = Mp , Mfs) =M , M) = M3 . (2)

38

Substitution of L and B from eyg:ations {1b) and (2) into equations
(1a), and elimination of v betw#ew ths first and third ofieguations

(1a) gives the classical results

d° .
5 v ¥e =0 3)
where
EI
2 _ 1 X ( _ Gy
K = ELC (M R ) M-3z) - (4)

The general sonlutions of this equation can be written as

a + b .
@ 0° o

(o]

(5)

(pk ak gsin ks + bk cos ks

il

3. METHOD OF SOLUTION

a. Curved beam

The classical approach is to apply the ''simply supported"

boundary conditions that @ = 0 at s =0 and s = ¢R, which leads to

e e 7 »
B L €
IR L o P N

,»..v,
3 =



TR

- 3 » 1 - E—TL = . iZ oo 6
(pk = ak sin ks where k oR and n = 0, %1}, s {6)

or, alternatively, to apply the "built-in" boundary conditionsg thzt

dgok ,
e 0 at s = 0 and 8 = R, which leads to
= b, cos ks where k 2 2= and n= 0, &1, +2 (7)
(pk = kc -‘(’".R = U, ’ 2 e .

However, an inspection of equation (4) shows that both of these

solitions lead to a finite positive buckling moment for an infinitely

long beam, since equations (4), (6), and (7) show that k - 0

(M- C/R or EIx/R) as o - o, Another objection is that, as shé?»vn
by equations (3) and (4), the minimum buckling moment M = 0 occurs
when k = IE, and corresponds to a rigid body-\ro;a,tion about a dianieter®.
Therefore, since eguations (6) and (7) would give k = Il{' for ¢ = v and
n = 1, the buckli’iy.g;moment would change from a small negative value
to a small positive value as the beam angle ¢ passes through w. A
plot of the negative buckling moment vs. beam angle ® would, there-
fore, show a discontinuous jump to the next higher r'node at a = w. And,
finall;i, since the rigid body rotation solution with k = —é- should be in-
dependent of the angle ¢, and since equations (6) and {7) show that

k = —I-R occurs only for discrete values'of o, we conclude that equaiions
(6) and (7) are probably not the correct golutions to the psoblem.

What, then, is wrong with this classical approach? For an

* One could zqually well take k = L as the fundamental rigid body
rotation but this has some notational disadvantages.
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a2nswer we raust take 2 closer look at the statement of the problem. It
is simply the question of determiniag che magnitude of the equal and
oppositely directed end moments M, at which the beam begins to Iater-
ally deform in some unkrown:fashion. Equzation (3) is, therefore,
.derived by assuming that the deformed beam is in equilibrium with an
end moment M which moves with the beam, but whose direction
remains fixed in space. Since no geometric boundary ccenditions are
imglied in the derivation of equation (3), the ends are essentiélly freet,
and any solution of equation (3) is potentially a2 solution of the problem.
In general, however, arbitrary boundary conditions will give rise to
shearing forces on the boundaries which were not included in the deriv-
ation of equation (3). Therefore, additicnal principles must be invoked
in order to determine what are the correct boundary conditions for the
problem. It turns out that, since k = Ili is 2 solution to the problem,
it is. sufficient to require that the principle of stationary potential
energy be satisfied; 1i.e., in the vicinity of the true solution, tue woil
of deformation must be equal fo the work of the applied moment M.

In evaluating the potential energy for the beam, we will assume

that IY is very large in comparison to Ix and C. The work of defor-

matiorn U will then be given by

EIx aR c oR
U:——z——j nx"’ds+-2-j p2ds
0 0

or, by using equations {1) and (2),
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U= | ¢2ds+--9——“I:R(%f)ads . (8)

% ‘0 2(1 --1;%-{-)2

The werk of the applied moment can be split into two parts. The first
part is the work due to the 'shortening' (or "lengthening") 6, which

causes an angle change ¥ approximately given by

(& )‘"’ as

Since the applied moment stays constant during the buckling process,

¢R

y 2.1
R 2R 0

‘this part of the work of the applied moment will be simply given by My.
By using the relationship between v and ¢ obtained from equations (1)

and (2), the work due to the 'shortening' can be written as

R =i R apy?
W, = My = 2R ’Mcﬁ’)ajo ‘(ds)ds ‘ )

The second part of the work of the applied moment comes from the

- "rotation'' of the ends due to the apparent opening or closing of the

ring. This rotation is equal to the integral along the length of the
beam of the curvature changes (in the original plane) caused by the
buckling. The projection of the bending curvature on the original

plane contributes to this curvature change an amount

o _ Mg
X.x sm(p ~ Xx(p = EI

The last expression has been obtained from equations (1) and {(2). In

addition, due to the swinging of the cross section through an arc ¢,

g,

sial o




there is a small change in curvature of amount

1 A _ Rfcosg-1) o

1 _ - ~ -
p - -~ TR

1 1

R "R R-A "R R3
Integrating these ¢ ~rvature changes along the length of the beam to get
the total angle change and multiplying by the applied moment M, we
get that the work W, due to the ''rotation" of the ends is given by

oR

/M M s
W, = (EIx- ZR)JO, p-ds . (10)

Subtracting W_ and W2 from the work of deformation U, we find,

after some rearrangement, that the potential energy V can he written

as
E1 - aR 2
o e B e e

Using the definition of'k given by equation {4), this can also be
written as

v o= . ._ME.E_ [kz IaR,pzds - JVOZR (%39 ’ ds:i . (12)

2(M - F) 0 0

In this form it can be readily seen that the Euler-Lagrange equation
corresponding to the minimization of the potential energy V is the
equilibrium equation (3). This is as it.should be, indicating that the
potential energy has been correctly derived.

We can now apply the principle of stationary potential energy.

We take a varied state in the form




o = ot €0, (13)
wﬁerc O is the assumed "true' solutionto equation (3) under the applied
moinent determined by k from equation (4), ? is the !''true'' sélution
of equation (3) with k replaced by 4, and € is an arbitrarily small
constant. Substituting (13) into (12)-and requiring that the potential

energy be stationary at the true solution @0 We obtain

C

M~.= o, % aR d d
) 2( R) BV‘(Q) _ ka fU»R ¢ ds _ j\ ( (pk\( (p,c)ds - 0
MC de d P by ds ds '

€-0 0 0
(14)
We now take another varied state in the form

0" = gy * Ty (15)

where now the applied moment is determined by 4, and thé roles of
Py and (pL have been reversed. Then, requiring the potential energy

to be stationary at the true solution <pL, we obtain

2 M--cZ ook oR R do do
- (MC 3 aggg* : o szg Py de - IO (F5)(F)e= =0

(16)

Thus, if k® # 4%, we obtain from equations (14) and (16)

oR

jo PPy ds = 0

‘ (17)
aR do do
J, (@NF)e -0

0

These orthogonality relations between the eigenvectors are analogous.

otk nhiitn e, e v ey, b
.
‘




to the orthogonality relations for the buckling of a straight beam under
an axial force (see the Appendix). By integrating equations (17) by
parts and using equation(3), one can obtain the natural homogeneous

boundary conditions on the @, - These are

Px ds ]0 - !
and (18)
de, _aR
k
2 ds] =0
0

The orthogonality conditions are sufficient to determine the
eigenvalues k uniquely when it is remembered that the rigid body
rotation solution must be an allov;/ed solution t6 the problem. In order
to emphasize that k = ili is a solution of this buckling problem, we

will rewrite equations (5) in terms of odd and even parts, with this

rigid body rotation solution explicitly included as follows:

s o\
(po"Ao(R- 2)+Bo ’
® =A57'-§-_-a—>+Bcos(i-g) (19)
1 1 \R 2 1 R 2 !

. aR aR
<pk-Aks1nk(s- > >+Bkcosk(s- 2)

When the orthogonality conditions (17) are applied to equations (19),

one obtains, after some manipulation,




. R
(- 1) a1 4) &
(AlAk+ B Bk) . T - (A Ak - BlBk) k+L = 0,
"R R
sin (k —%{-)%B sin (k+-—-) aR
- = 0,
(AlAk + B1 Bk) . T + (AlAk Bl Bk) o 1
"R R
(20)
aR
sin (k -4) EZB sin (k +4) 5~ >
(AAk+BB) v (ALA-BB) ey = 0,
X . aR
sin (k -L)%‘I"' sin (k+L)T
(ALAk+ BLBk) ] + (ALA - B B ) T L = 0.

The solutions (19) that satisfy (20) and have real ¢oefficients are of

the form

0 = Ak [sink(s - ) + cosk )] (21)

where the eigenvalues are given by

n= 0, 1, £2, £3, ... . (22)

Whichever sign is used in equation (21), it must be used for all of the
eigenfunctions in order for them to be mutually orthogonal. At the
isolated points where o is a multiple of w, the coefficients Ak and
Bk can be assigned in an arbitrary manner. ‘However, since we are
concerned here with the behavior of a real beam, these isolated points
are of no particular importance.

Figure 2 shows a plot of the three lowest eigenvalues from
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/ e
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II
°1 1
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Figure 2. The three lowest eigenvalues of equation (3) vs.

beam angle a.
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equation (22) vs. b2am angle - For comparison purposes one of thg
classical curves from equation (6) or (7) is also includéd. The ordinate
of this graph is shown positive dewnwards in order to emphasize that
values of kR less than 1 correspond to a positive (closing) moment
and values of kR greater than 1l to a negative {(opening) moment. * It
can be seen that the classical curve causes the moment to change sign
and is asymptotic to a positive value, while the new curves are asymp-
totic to kR =1 which cezresponds to zero. buckling moment. The small
rectangles on this figure refer to experimental results which will be
discussed below.

These uniquely determined values of k are next used to deter-
mine the value of the buckling moment M from equation (4). Hov-vever,
since equation (4) is quadratic in M, extraneous solutions may be en-
countered. To guard against these extraneous solutions, we note that the
upper curve in Figure 2 should only give rise to positive moments and
the lower curve to negative moments. In addition, the magnitude of the
buckling moment should monotonically decrease with increasing o. This
arises from the fact that a curved beam can buckle into the true buckled
shape of a shorter curved beam, with the remaining portion having only
a rigid body displacement. This "unbent" portion will not change either

the potential energy or the boundary conditions; thus the longer beam

3
-

This behavior would have been reversed had k = -%K_ been chosen
as the fundamental rigid body rotation.
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could’buckle ai the same buckling moment as the shorter beam.

Applying these considerations to the buckling moments obtained
from Figure 2 and equation (4), one obtains a typical buckling moment
curve as shown in Figure 3. The discontinuity in the positive buckling
moment curve arises from the fact that it is composed of portions of
two different curves. The lower curve passes thru zeroat ¢ = m and
increases until it reaches a maximum at o = 2w. The upper curve would
begin increasing for ¢ greater than 2w; thus the decreasing moment
requirement results in a discontinuity at « = 2w, where the buckling

El
C . .
moment decreases from M = <— to M = ___x_. However, this discon-

R R

tinuity is only of theoretical interest, since any real curved beam must
necessarily have « less'than 27 by some small amount. In passing,
it should be noted that these buckling moment curves are the minimum
possible for lateral buckling of a curved beam. The addition of any
lateral restraints on the ends of the beanr: can only serve to increase the
buckling moments.

It is perhaps helpful to plot the eigenfunctions given by equation
(21) in order to show the types of conditions that result at the ends of
the beam. Figure 4 is such a plot for the case of buckling under a
negative moment. Various values of & are represented between the
limiting cases of ¢ » 0 and @ - 2w. Figures 5 and 6 present the

same information for buckling under a positive moment and for a rigid

body rotation about a diameter. In these plots it is helpful to remember

. 13
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that k represents the number of full sine waves that would occur if

the beam angle were 2w. These curves were obtained by using the plus
sign in equation (21); use of the minus sign would essentially interchange
the ends. Since ¢ can be related to v by equations (1) and (2), these
curves also represent the deflection of the beam centerline tc within an
arbitrary rigid body motion. Note that, as would be expected, the eigen-
functions approach the same shape for positive or negative buckling as
the beam angle approaches zero. Also, the lowest classical shape, for
eithér positive or negative bending moments, would simply be half of a
sine wave regardless of the value of ¢.

b. Straight beam

One can obtain the buckling moment for a straight beam of length
L by taking the limit of the curved beam equation (22) as R -~ » and
s 2nmw R . s .
oR = L. This gives k = I which is twice the accepted classical
value [4]. Because of this disagreement, it is necessary to present

the analysis although it is similar to that for the curved beam.

The equations for the straight beam can be readily obtained

from equations (1) and (2) by omitting those terms which contain -11-{- .
In this manner one obtains
@ 2
a-s-;e + Ko = 0 (23)
where
2
3 _ M
K= grc¢ - (24)
x
18
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The solutions to (23) can be written in the form

L
-=) +
Ao(s 2) Bo !

0, ~
(25)
. L
O F Aksmk(s --é-) + Bk cos k(s -E) s
where 1, is the length of the beam. The potential energy V is then
derived in the same manner as before and results in
L L 2
Mg 2 C do
S T + - - .
1) P95t 3 J (ds ) ds (26)
X0 0

It can be readily seen that the Euler-Lagrange equation of this functional
is the egquilibrium equation (23). Application of the principle of station-

ary potential energy again leads to the orthogonality conditions

L?¢k¢Lds =0
rL d(pk d(p{/ &0
J (N (F) e =0

We note that, for the straight beam, the trivial solution ?, is the

solution which must be an allowed solution to the problem. Therefore,
an application of the orthogonality conditions to the solutions (25)

results, after some manipulation, in

. kL
AoAk sin 5= = o , (28a)
1 . kL. L kL . kL
ZAOAk (k sin 5= - 5 cos == ) + ZBOBk sin 5= = o , (28b)

19
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b e oam = - G —— e ¢ s, ——

L
sin (k -4) 5 sin (k +4) 2

(ALAk+ BBe) TxTz - (ALAk - BB ) Twv g = 0. (28¢)
) sin (k - L)% sin (k+4)2
AP BB) T (ALAk - BB ) Twrr = 0 - (28d)

The only solution to the system (28) which has zero potential energy

for the trivial solution (po, is

Py * Bo ’
(29)
L L
_ . qo L2y 44 =
D Ak sin ki 2) Bk cos k(s 2)
where
2nw
k=—1j— , n= 0, x£1, £2, ... . (30)

Note that since the Ak and Bk are arbitrary, equations (29) and (30)
contain the limit of equations (21) and (22) (as R » » and aR - L)

as a special case.

4, EXPERIMENTAL RESULTS

In order to verify the trend of the results given by equations
(22) and (30), a short experimental program was undertaken. Since
there is a relatively wide disagreement between these results and the
classical values, the intent of the experiment was not to provide a
rigorous proof of the new results but rather to be of sufficient accuracy

to show the disagreement with the classical results.
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Before the buckling moment of a curved beam has been reached,

RSV

the stress distribution is simply that of the well-known plane stress
problem of the pure bending of 2 curved beam [5]. Therefore it was
decided to make the test specimens of a photoelastic material in order
to have visual proof that the loading was giving the correct theoretical

stress distribution before buckling has occurred. The specimens were

e 4 B e e e A Bs ey e

therefore cut from photoelastic material PS-2B, and were circular

ring sectors of 5" O.D., 23" I.D., and .081" thick. The specimens
were then epoxy bonded to metal strips which were hinged at the center
of the circular ring sector. Figure 7 shows an unstressed full ring test
.specimen in the transmission polariscope with dark field illumination.
In this case the metal strip was actually a strap hinge; in other tests
it was found necessary to use metal strips bolted to a hinge, so that the
center of rotation could be adjusted until the axisymmetric plane stress
solution was obtained upon opening or closing the hinge. Figure 8 shows
the same specimen after pulling upward on the top of the strap hinge to
give a measured opening moment of -16.0 in-1b. It can be seen that the
correct axisymmetric stress distribution has been obtained except, of
course, in the immediate vicinity of the bonded ends. The first dark
fringe is just at the inside radius of the specimen. For this geometry
and material, each dark fringe corresponds to a principle stress differ-
ence of approximately 970 psi.

Figure 9 shows the same specimen at incipient buckling, and

21




Figure 7.

Stress free full ring test specimen in the transmission
polariscope with dark field illumination.

Figure 8.

Full ring specimen with an opening moment of -16.0
in-1b. The stress optical coefficient is 970 psi/fringe.
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Figure 9. Specimen at incipient buckling with an opening moment

Figure 10.

of approximately -20.6 in-Ib.

Post-buckled specimen with an opening moment of -20.8
in-1b. The dark radial bands are inflection points.
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Figure 10 shows the post-buckled specimen with an opening moment of
-20.8 in-1b. The four radial dark bands in Figure 10 were experiment-
ally seen to correspond to the inflection points where ¢ = 0. This post-
buckled shape is, therefore, in fairly good agreement with the topmost
theoretical curve shown in Figure 4. Note thatthe classical post-buckled
shape of equation (6) would have no inflection points and the classical
shape of equation (7) would have either one or two inflection points, de-
pending on the boundary conditions. The strap hinge arrangement was
intended to be loose enough laterally, so that the ends would behave like
the "free" edges required by equation (3). However, it is possible that
St. Venant's principle applies to this problem, since it was observed
that a small deflection of the ends did not seem tu contribute tothe lateral
buckling, in contrast to the problem of buckling under an axial force.
Figures 11 and 12 show the pre- and post-buckled stress dis-
tributions for a three-quarter ring specimen which buckled under an
opening moment of -27.7 in-lb. The three inflection points in Figure 12
can be seen to be in reasonable agreement with the second theoretical
curve of Figure 4. Figures 13 and 14 show the same information for a
half ring specimen which buckled at -41.8 in-lb. Some difficulty was
encountered in maintaining the plane stress solution for this specimen,
and any slight departure from the plane stress solution caused a con-
siderable reduction in the buckling moment. In addition, the lateral

restraints had to be maintained so loosely that the buckling process
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Figure 11. Three-quarter ring specimen with an opening
. moment of -24.6 in-Ib.

. Figure 12. Post-buckled specimen with an opening moment of -28.8
in-lb. The specimen buckled at -27.7 in-lb.
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Half ring specimen with an opening moment
of -21.9 in-lb..

Post-buckled specimen which buckled at an

opening moment of -41.8 in-Ib.

26

g ey

[

%




TR

P

itself caused a considerable change in the strcss distributinn. Con-
sequently, the buckled shape in Figure 14 is only in rough agresment
with the third theoretical curve of Figure 4.

Data was also obtained for buckling under a ciosing moment.
However, because of a shortage of photoelastic material, the larger
specimens were simply cut down to make the shorter specimens; and,
due to an unfortunate oversight, no data was obtained on the approxi-
mately full ring specimen. The three-quarter ring specimen, however,
is shown in Figures 15 and 16 for pre- and post-buckling under a closing
moment. The absence of an inflection point is in agreement with the
second theoretical curve of Figure 5. Figure 17 shows the half ring
specimen with a closing moment of approximately 49 in-1b. A slight
increase in this moment appeared to cause the specimen to simultan-
eously buckle and fracture. Because of this tensile strength limitation,
no data on shorter specimens was obtained.

The experimentally obtained buckling moments were used to
calculate values of k for these five specimens. These values are
indicated by the small squares on Figure 2. In addition, the buckling
moments themselves are shown on Figure 3. The amount of agreement
bevf.ween the data points and the theoretical curves should be considered
fortuituous, since there were uncertainties in both the experimental
procedure and the material properties of the specimens.

Figures 18 and 19 show the pre- and post-buckled stress
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Figure 15.

Three-quarter ring specimen with a closing
moment of +26.0 in-1b.

Figure 16. Post-buckled specimen with a closing
moment of +28.0 in-1b.

l48

——

P

"




e

>

B35S

oy 3 >

3

AT TN R et v

CREEIEESEP I AR LN

Bl s o

e i oo

hiad

’" fallet A=t

Figure 17.

Half ring specimen immediately before failure with
a closing moment of +49.0 in-1b.
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Figure 18. Straight beam s
applied moment

Pecimen with a calculated
of 20.0 in-1b.
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distributions for an initially straight beam of the same material. The
beam dimensions were 73" long by 0.8" high and .081" thick. The

specimen was epoxy bonded to long transverse metal strips; the right
hand strip was clamped to the testing apparatus and the left hand strip

remained free. The bending moment was then applied by hand with care

being taken to obtain the plane stress solution before buckling had occured.

The ap,lied bending moment was, therefore, calculated from the observed
stress pattern, using the dimensions of the beam and the stress optical
coefficient of the material.

The specimen remained straight above the classical buckling
moment and had & tendency to return to the straight form when a very
small buckle was manually introduced. The specimen finally buckled
when the calculated applied moment reached a value of 20 in-lb, which
is almost exactly twice the lowest classical value for these dimensions;
this is in agreement with equation (30). Note the similarity of the
buckled shape of Figure 19 to the bottommost theoretical curve of either
Figure 4 or Figure R. This is possibly due to the fact that “he straight

beam is actually significantly curved before buckling finally occurs.

5. SUMMARY

The basic differential equation for the lateral buckling of a beam
subjected to pure bending is derived under the assumption that there are
no lateral forces acting on the ends of the beam. Therefore, the

classical approach of assigning relatively arbitrary boundary conditions
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will, in general, violate this assumption, ard there will be shearing
forces on the boundaries which were not included in the differential
equation. In contrast, the method presented in this paper insures that
the principle of stationary potential energy (i. e., virtual work) is satis-
fied and the resulting orthogonality conditions lead to a unique set of
boundary conditions. The experimental data agrees with these new
results rather than the classical results — in magnitude of the buckling

moment, as well as in the post-buckled shape of the beam.
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APPENDIX

1. Orthogonality Relationchips for a Straight Beam Subjected to an
Axial Force.

For an initially straight beam subjected to an axial force P
whose direction of action remains fixed in space, the equilibrium

equation for the deflection v of the beam is

atv v
EX Y + Pgs-é- = 0 . (1)

Since the force P 1is the only agent doing work on the bear, the
potential energy expression for the beam, in the case of an inextensible

centerline, is given by

EI

2

1.
VvV =
0

(e -2 Ve - @

We now consider that we have a complete set of solutions v, to

k

cquation {1) which satisfy the same natural boundary conditions
giving rise to {1) and (2); i.e., either the moment or the slope

is zero on the boundaries, and, either the shear or the displacement
is zero on the boundaries. We now apply the principle of stationary
potential energy at the eigenstates v, and v,. Taking a varied state

k £

about the true state Vi in the form v* = Vi + € VL’ we obtain from

equation (2),

? 2
BV(v*} o El jL<d Vk (d v&>ds Pk L dvk <de)d )
= = 5 .3 W 3.2 - e - s.
e ¢ =0 2 0 ds ds 2 0 ds ds
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Taking a varied state about the true state V‘& in the form v** = v L+ € Vk’

we obtain
L . L d&v v P, 1L dv dv

- R k k

et | oL B NG - 2 G e w
€ =G Z 0 ds ds 2 0 ds ds

Therefore, if Rfc # PL , we obtain from equations (3) and (4) the

following oz;tho‘frbnali'ty relations for the eigenfunctions:

2 P
L, d&°v dv%

I (ds:)<dsa)ds= o,

0
L dv dv
) (yan
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