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ABSTRACT: 

A PROGRAM TO PLAY CHESS END GAMES 

by Barbara Jane Hubermar 

A program to play chess end games is described. The model 
used in the program is very close to the model assumed in 
chess books. Qnbedded in the model sire two predicates, 
better and worse, which contain the heuristics of play, 
di/ferent for each end game. The definitions of better and 
worse were obtained by progranmer translaticii from the 
chess books. 

The program model is shown to be a good one for chess end 
games by the success achieved for three end games. Also 
the model enables UP.  tc prove that the program can reach 
checkmate from any starting position.  Insights about 
translation from book problem solving methods into computer 
program heuristics are discussed; they are obtained by 
comparing the chess book methods with the definitions of 
better and worse, and by considering the difficulty en- 
countered by the programmer when doing the translation. 

The research reported here was supported in part by the Advanced 
Research Projects Agency of the Office of the Secretary of Defense 
(SD-I83). 
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CHAPTER 1 

INTRODUCTION 

This research is concerned with the process of translating book 

descriptions of problem solving methods into program heuristics. Many 

books have been written for the purpose of teaching how to perform some 

task. The task under discussion may be almost any kind of activity, 

including intellectual activities such as proving theorems in geometry 

or solving differential equations. People are able to learn from these 

books although the difficulty in learning varie.3 from task to task. 

Therefore we can consider the information in the books as sufficient 

for people. It would be convenient if the book information could be 

used by computer programs. We are interested in whether the information 

is sufficient for computers, and if not, then we want to know what kind 

of additional information is needed. 

The fact that book information is sufficient for people does not 

mean that it can be used directly. If the book describes an algorithm, 

then sometimes only memorization is required of the reader; for example, 

the method of finding truth values of sentences in propositional calculus 

by means of truth tables can be learned by memorization. Many tasks, 

however, require substantial .learning before the student can understand 

the book. The task of playing chess end games by computer provides a 

simple but not trivial area for this research. By chess end games we 

mean those games where the number of pieces on the board is small, but 



the number of moves to checkmate large:  for example. Two Bishops and 

King against King, or the various Pawn endings. Chess books give rules 

for these end games which are not algorithms but are supposed to be 

simple and complete enough that beginners at chess can learn to play 

the end games fairly easily. A certain amount of intelligence is 

required of the student, but still we expect to need only a minimal 

amount of additional information. In this study the programmer will do 

the translation. Since this translation from the chess books to the 

prograir i« not direct, as it would be in the case of truth tables, we 

expect to learn something from the translation process. 

Methods and Models 

Computer researchers are well aware by now of the fact that any 

task requiring intelligence can be profitably approached by distinguishing 

between models and methods. The model, which is a representation of the 

structure of the problem [Minsky, 196l] , determines the overall logic of 

the program. The methods are the heuristics which the program uses 

within this structure. For example, in the Logic Theory Machine 

[Newell, Shaw, and Simon, 1957], the model is a backwards tree and is 

represented by that part of the program called the "Executive Routine". 

Within this framework substitution, detachment and chaining methods are 

used; these are encodings of the way people apply the rules of inference 

in propositional calculus. 

Generally books are concerned only with teaching the methods which 

should be used to solve problems in the task area. The methods must be 

T.    See page 413 of Minsky [1961]. 
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applied within a structure which is assumed in the book but not generally 

defined explicitly. It is necessary to build a model of this structure 

in the computer before information about methods can be taken from the 

book. 

We expect that different models are required for different tasks. 

Very often the model is a backwards tree; the General Problem Solver 

[Newell and Simon, 19^1] is based upon this fact. However there are 

problems which would require a different model: for example, bidding 

in bridge. The closer the model used in the program is to the way that 

the author of the book thinks about the problem, the easier i4 /till  be 

to translate the methods of the book into heuristics for the program. 

Chess end games could be handled by the General Problem Solver; however 

in this research a model is used which is much closer to the abstract 

model assumed in the chess books. In this way we hope to eliminate 

making changes in the methods to account for a difference between the 

program's model and the abstract model assumed in the book. This means 

that any difficulty experience in translating the book methods into 

program heuristics can only be due to inadequacy in the method descriptions. 

Model and Methods for Chess End Games 

The model used for chess end games is a forcing tree. The program 

is supplied with two functions better and worse (containing the methods) 

which compare positions. From a given starting position p , in which 

the program has the move, it uses tree search to find positions q 

which are better than p . It will search until such a position q 



is found for every sequence of moves by the opposition.  An example of 

such a tree is given in Figure 1.1. The program will then make the 

moves dictated by the tree until it reaches a q at the end of a 

branch in the tree; ther. it recalcalates the tr*^ bo force positions 

better than q . This process continues until checkmate is reached. 

worse If used by the program to cut off branches of the tree which lead 

to disaster (stalemate, etc.), and also to prune the tree.  This model 

is desc-ibed in detail in Chapter 2. 

Tae forcing tree model will be used for all the different end 

games.  However each end game is played by different methods which will 

result in different definitions of better and worse.  This enables us 

to examine the problems of translation from methods to program heuristics 

several times and for games of varying degrees of difficulty, 

better and worse aie built up out of pattern recognition functions 

of positions which can be defined in a natural manner from information 

given in the chess books.  The methods, or rules, of play are defined 

in two ways in the books. First of all, written statements are made. 

For example, in the description of the Rook and King against King game in 

Capablanca [1935] we find: "The principle is to drive the opposing 

King to the last line on any side of the board" and then the student 

should "Keep his King as much as possible on the same rank, or...file, 

2 
as the opposing King".  The play of other gamrs (and in other books) 
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principle into a pattern recognition function of positions because the 

pattern is inherent in the principle. For example, to express the 
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Figure 1.1. Example of a Forcing tree. The program has the move in 
p| it must make a move leading to a position q judged better than p 
for every sequence of moves by the opposition. Each iteration of the 
progr-im >»ill produce a tree like this; several iterations will be re- 
quired to reach checkmate. 
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first principle quoted above we define 

f(x) ■ the opposition king is confined to an edge of the board in x , 

for x a position. Then we might decide a position q was better than 

position p if 

f(q) A -i f(p) 

because the principle is satisfied by making the moves leading from p 

to q , 

The chess books supplement the principles with examples of program 

play. The principles generally cover the gross features of the game 

derived from the examples of program play. Tne examples contain more or 

less complete information about methods of play; the difficulty comes 

in deciding what pattern features of the positions are important. 

Obviously, induction is required to make this decision, bach example 

is considered representative of a large class of positions and a general 

rule must be defined for that class. If the example is accompanied by 

principles, this simplifies the induction by providing clues to important 

features (see Figure J.l). The induction leads automatically to the 

kind of pattern recognition functions used in better and worse. 

Goals of the Research 
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process. We begin by stating two criteria wnicn will help us achieve 

this goal. First we would like to see If our model is a good one for 
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program is a good representation of the abstract model assumed by- 

chess books. We can support this hypothesis by successfully running 

the program on different end games. Furthermore, conditions can be 

given on better and worse which permit us to prove informally that the 

program works correctly. The proof depends heavily on the model and 

could not be given for a different model (for example the General 

Problem Solver mode]). 

Our second hypothesis is:  the information in the chess books is 

sufficient for the definitions of better and worse. The chess book in- 

formation will suffice for worse if all disastrous positions are 

described. For better much more information is needed; the books must 

give rules for recognizing progress frequently enough that the tree 

search between positions is reasonable. For example it is not enough 

to have rules recognizing only checkmate positions. 

Finally we turn our attention to the primary goal of studying the 

translation process. We assume that the two criteria are satisfied. 

First we consider how closely the definitions of better and worse 

correspond to the chess book methods, measuring the correspondence 

by comparing program play with the book examples. Also we consider 'he 

difficulty encountered in defining better and worse. 

Outline of the Thesis 

In Chapter 2, the overall organization will be described. A 

detailed definitIon of the uses oi better, worse, and tree search will 



be given; this constitutes the model which we use for chess end games. 

In Chapter 3 the form of the contents of functions better and worse 

will be discussed. These functions are different for each end game, 

since different methods are used for each game. However, the form 

given for better and worse is used in all end games.  Some rules eure 

given for better and worse which will enable us to prove that the 

program is correct in the sense of being able to achieve checkmate from 

a given starting position. 

Chapters ki   5, and 6 each describe the definitions of Detter and 

worse for a different end game. Rook and King against King is discussed 

in Chapter kt  two Bishops and King against King in Chapter 5, and 

Bishop, Knight and King against King in Chapter 6. These games are 

presented in order of difficulty. The rock end game is quite a 

simple one; two Bishops is a game of moderate difficulty, while the 

Bishop-Knight end game  is very difficult. The process of translating 

from the book information into pattern recognition functions will be 

described, and reasons will be given for the programming decisions. 

Examples of program play will be included for each game. 

Chapter 7 contains an informal proof of program correctness.  Phis 

proof is given after the various end games are described because it 

depends on the heuristics used for each game. 

Chapter 8 will contain an  evaluation of the better, worse format 

in tfvms of the two primary goals. Subjects covered will include 

program efficiency, a depcription of a way to f-^ve the program do 

some of the inductive learning, and extensions to other task areas. 
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In the following chapters, ordinary chess notations will be used 

[Capablanca, 1955].  The program is written in LISP [McCarthy, Abrams, 

Edwards, Hart and Levin, 19^5], and the reader is expected to have some 

knowledge of this language. Function definitions are given using notation 

and basic functions which are defined in Appendix A.  They are ouilt up 

of the connectives ■ (equivalence), 3 (implication), A (conjuction), 

v (disjunction), and -i (negation). These are used in the same way LISP 

(not ALGOL) uses them; i.e., if in p A q , p is evaluated and found 

to be false, then q is not evaluated. 
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CHAPTER 2 

PROGRAM ORGANIZATION 

Notati-jn 

Throughout th:.s thesis, certain conventions of notation will be 

used. As in the ordinary use in chess books, the white side is the 

winning side. The program will play white and a person black. The 

letter p , with possibly subscripts or superscripts, is used to 

represent a position with white (program) to move, and q , again with 

subscripts or superscripts, for positions with black to move. When the 

color of the move is unimportant, letters x , y , etc., with subscripts 

or superscripts will be used. 

In a position p , a certain set of white moves is legal according 

to the rules of chess. A legal move is made from p to produce a new 

position q with black to move. We will represent the connection 

between p and q by means of the relation H. . The statement 

pM^q is read:  q is a position which results from making one legal 

white move in p .  Similarly we write qMpP which means p is a | 

position which results from making one legal black move in q .  If 

pNi-q we say q is an immediate successor position of p , and 

similarly for qMpP .  If we say that q is an ultimate successor of 

p this means there exist p,,..., p  and q ,..., a  such that 

pMwq1 A q1MBp1 A ... A q^ A p^q . 

10 



The program is given as a starting position a position p with 

white to move.  In some end games, white can win only from certain 

legal positions with white to i^ove.  Let 

P = {p I P is a  legal position with white to move, and 

white can win from p) . 

The program must work correctly for any starting position p £ P ; 

we do not care what happens for p ^ P . 

As explained in Chapter 1, better and worse are used to compare 

positions.  They both have as an argument a pair of positions (p, q) . 

The first position is always a position with white to move; the second 

is always a position with bla' k to move, q is either an immediate or 

ultimate successor to p . 

The statement better(p, q) is (not) true is equivalent to saying 

q is (not) better than p , and similarly worse(p. q) is (not) true 

is equivalent to q is (not) worse than p .  Occasionally when 

discussing a tree search a statement like " q is a better position" 

will be made.  This means q is better than the p at the head of 

the tree,  better and wor^e will always be underlined; so will all 

other function names except those consisting of only one letter. 

Program Organization 

To start with, the program is given an initial position p £ P . 

It generates all positions q such that pMyq. • The order in which 

thee positions are generated is not important; let us refer to them 

11 
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as Q = {q ..., q ) .  For each q.  the program asks the question 

worae(p, q.) .  If q.  is worse than p then q.  is iramediately re- 

jected by the program.  If worse(pt q.) is false, then the program 

asks better(p, q.) •  If better(p, q. ) is true, the move which led 

to q.  is retrieved by the program and made at this point without any 

further analysis or examination of the remaining positions q.-,-,, • • •» CL   - 

Figure 2.1 is a flowchart of this part of the program. 

If all q.  have been examined ar.d none is found which is both 
i 

better and not worse than p , the program will resort to tree search. 

The work it has done so fax is really the first level of the tree search. 

A branch remains in the tree for each q.  which was not worse than p . 

Call this set Qu . 

During the tree search the first element of the argument pair of 

better and worse remains the initial position p . As explained pre- 

viously, the second element must be a position with black to move.  This 

means that in the tree search, the ends of the branches can't be evalu- 

ated after every move, since half of the moves result in positions with 

white to move.  Also it is convenient to have the depth in the tree equal 

to the number of white moves required to get to that point.  If a position 

q is said to be at depth n in the tree, this means that 2n-l moves 

are required to get to q ; of these n are white moves and n-1 are 

black moves. 

The basic premise of this method of play is that from p white is 

able to force a position q better than p . "Force" means that white 

must be able to answer every black move with an eventual better position; 

12 



enter with p,Q 

•<f IIOU(Q)? > y* -U    return Q 

no 

qt-car(Q) 

.M;dr(l)) 

 1  

yes 

no 

res 
-4    return q      j 

no 

QMq-Q') 

igure 2.1.    BW(p,Q) 

p € P    is a starting position 
Q,    is a  list of successor positions of    p  . 

BW  returns 
a  single  position    q  ;  this means    q    is j» tier and no1 

worse  than    p 
a  list of positions  (possibly empty)   cont-tinin^ sll 

positions which were not worse thyn    p  ;  laic Mam 
no member of    Q    is better -md not worse than    p • 
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conversely if any black raovj results in all positions worse than p , 

the position in which that black move was made must be discarded. 

The tree search is a breadth-first search. For each q. , the 
i ' 

program generates P. ■ {p. ,..., p.     } . Each p .  is the result of 
XIX X S , X j / 

1 

a legal black move in.  q.   ;   i.e.,     q.M^p        for    j  =  1,...,   s.   .    Then 

for each    P^^    the program generates    Qy • Uj^y»» l^g    1    where 

p. .Mj.q.. ..     for    k = 1,...,   s. .   .     The program then computes    BW(p,   Q. .) 

(see Figure 2.1);  that is    the    q. are compared with    p    in the same 
IJK 

way in which the q.  were compared with p previously.  In order for 

the move leading to q.  to be accepted by the program, for each p. . 
i i j 

there must exist a q. .,  such that worse(p, q. ., ) is false and 
ijk   ^ ^ijk' 

better(p, q. ., ) is true; that is,  BW(p, Q..) must return a single 

position for j = 1,..., s.  (i.e., for every black move q. .).  If 
■ i j 

this happens, then the move leading to q.  is made by the program with- 

out examining the other q.C^ . 

that all q. ., GQ. . are worse than p . This happens because in q. 
IJK  1J 1 

the black move leading to p..  is permitted, and white is not in a 

position to control the result.  In this case q.  is completely removed 

from the tree, just as if it had been worse than p in the first place. 

The move cu is eliminated in this way in Figure 2.2. 

If q.  is neither rejected nor accepted, then for one or more of 

the p. . , there exist several q. ..  such that worse(p, q. .. ) is 
iJ ijx      '     ijk 

false but    better(p,   q... )     is also false.     In this case.     BW(p.   0. .)  v   '     IJK.' ' ^^   ^1J ' 

returns the list of such    q..,    ;  this information is saved in    Q..    in 
IJK ij 

Ik 



number of 
moves 

This is 
set Q 

First 
tree 
com-    5 
parison 
depth 2 

Uecond 
tree 
com- 
parison 
depth 3 

2. 

3- 
k. 

5. 

Figure 2.2. Example of Forcinr; Tree. 

From position q^ . for the black move It ding to pgj , all white 
moves lead to positions worse than p . Therefore this branch is 
eliminated, pgi^ will not be examined. 

Positions which are better than p are marked with a B . A branch 
is accepted when every termination is marked B.  Note that even if 
a single position with white to move remains at a level, it is r.ot, 
necessarily better: e.g. , Qmn ■ This wouJd be true even on the very 
first lavel (set Q). 
No decision is made at depth 2. 
Now depth 5 is begun.  For q^ no decision is made and all informatioi 
is saved. 

The branch for q*  is examined next, and it is accepted since the end 
of every branch is marked with a B . One branch ends at depth 2; the 
others end at depth 3. The program will now make the move leading to 
q, .  It does not examine the remaining branches for q^,..., q^ . 
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case no q.  is accepted at this level. For example in Figure 2.2} we 

would have set Qj- ■ [<1121, Ij^J • 

If no q.  is accepted by the program at this level, the program 

extends the tree one more level every place where a decision wasn't 

made previously (where a list Q.. is saved). Every element q. ., £Q. . 
1J 1JK  1J 

produces several lists of positions Q.   , one for each immediate 

successor position p. .,   to q. .. .  Now BW(p, Q. ., ) is called. r       ^ijkm     ijk v^' ijkm' 

If it returns a single position for each immediate successor p. ., 

of q. ., , then q. .,  is accepted at depth 2 (just as before q. 

would have been accepted at depth l).  In this case the other members 

of Q.. are not considered. Also, as before, a branch can be rejected, 

either back to depth 2 (q.  ) or all the way back to depth 1 (q. ) . 
IJX 1 

If no decision is made at depth 3, the program goes down another 

level to depth k.     The  search is continued until a decision is made. 

Figure 2.2 is an example of a position which required a search of 

depth 3. No decision was made for q  at depth 5 so all the information 

in the figure would have been saved. For q, , only one black move 

p   remained to be answered and q    is accepted at this level. 

Therefore q, is accepted by the program at this point, and qj.,..., q^ 

are not examined. 

When the program has selected a branch of the tree, it remembers 

the tree, and will make the moves dictated by the tree for as long as 

it lasts. This is a very important point since it is the feature 

which enables the program to force a better position. 

Figures 2.5 to 2.6 eure flow charts of the program. Figure 2.J5 is 

the main program; the other three flow charts cover the tree search. 

16 



enter with starting 
position p 

TRE&-NIL 

Q^Mp^q*] 

Q^W(p,Q) 

no 

yes 

f     return Q \^ return Q V^-^checkmate 

no 

yes 

no 

yes 

no 

Qt-(move in TREE) 
TREE«-cclr(TREE) 

Figure 2.5. Main Program Flow. 
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'■nt.<:r with p;Q Q'^III. 

qf-car(Q) 

M»-MB(p,q)  ♦ 
yes 

yes 

no 
M^TB(p,q) 

yes 
TREE»-.:dr(M) 

Q'^M'O') 

[ return q j 

Q^dr(Q,) 

no 

yes 
■4 return NIT ) 

Figure 2.k. PXinction TS(p,Q) is the top level tree search function 
which starts the tree search going; calls the functions 
which follow the branches of the tree; returns the select- 
ed position and saves the branch in TREE if a decision 
is made; or starts again to extend the search one more 
level if no decision is made. 



enter with p,q 

no 

Mp'lqMgP'} 
P't-NII, 

p,«-car(P) 
•j Mq'lp'^q1} 

Q(-BW(p,Q) 

PMQ-P') 
P^dr(P) 

yes 
-•f   return NIL j 

yes 
-^return (YES'P'» 

Figure 2.5. Function MB(p,q),q is a single position. Three values are 
returned. 

(1) NIL means that some black move from q cannot be answered. 
(2) YES'P1 means that a better position is found for each black 

move from q, 
(5) P* means that for at least one black move no decisici has 

been made. 
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rnV-rwUh p,Q 
I.-t 

•     q«-car(Q) 

Q'^q-Q') 

Qi-edr(Q) 

Q'VNII, 

q,«-car(r!) 

M'-T?.(p,q') 

f y turn ft'jC- « 

Figure 2.6.     Function TB(p,Q).  Q is a list consisting of positions 
and of lists of positions.  If an element of Q is a single 
position, then it was found to be better at the previous level. 
If the element is a list of positions, these are the non-worse 
positions from the previous level. Q contains an element for 
each black move in the position immediately above in the tree. 

Function TB returns 
NIL - each member of a list of positions which is a element of 

Q is rejected in the search. 
YES'Q1 - all elements of Q are "or lead to better positions. 
Q' - some elements of Q do not lead to better positions. 

Q' contains the tree from Q, on down. 
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Tree Search Heuristics 

Two heuristics are used during tree search.  One helps to cut off 

redundant branches of the tree; the other helps the program find the 

better position faster. 

1. Redundant Branch Cut-Off 

Suppose we are down at a node at depth n in the tree. A history 

of the branch to this point is given by all the positions with black to 

move which the program has examined on the way to this node. There are 

n positions in this history, say q., q.. ■,..., q..      .  At this 

point, suppose it is time to expand the node at the end of the branch. 

For simplicity let q* = q. .     Now suppose that BW(p, Q *) 

returns a list of positions Q* .  The program checks the positions of 

the white pieces in each q.*-eQ* against the positions of the white 

pieces in q., q. .,..., q* , and if there is a match, q.* is 

eliminated. 

The reasoning behind this heuristic is as follows.  It is true that 

two positions in which the white pieces are in the same squares but the 

black king is in a different square may have very different patterns. 

However, in this case one position is a successor of the other, and 

intuitively, if the placement of the white pieces is good, we should 

have taken advantage of this originally and done something else from 

there. 

As far as the program is concerned, this heuristic has never 

caused it to miss a move it should have made.  Part of the reason for 

this is that the trees are quite short (no more than a depth of seven) 

and within that short a span the intuition is probably valid. At 
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least one quarter of the positions returned by    3W    are eliminated by 

this heuristic. 

2.     Killer Heuristic 

If in the tree a position    q. ., is found to be better and not 
1 JK,   •   a III "'   ' 

worse than p , the program finds out what the last white move, w , 

to q. .,     was, and it remembers this move.  Then every time afoer 
ijk...m    ' 

this, when it forms a set Q* to be used as an argument to BW , it 

checks to see if w was the last move made to form some q*eQ* .  If 

it was, then q* is made the first position in Q* , so that it will 

be examined first. 

The theory is that in a tree search the positions eure all similar, 

so a move which led to a better position at one point is likely to do 

so again. By putting the new position q* first we eliminate many 

comparisons if the theory holds. If the theory fails we have lost a 

little time. 

In these end games the theory holds very well.  If an examination 

is made of the final moves to the better  positions during a tree 

search, usually there are only one or two such moves. The time saved 

when the position put first is actually the one selected is large 

enough to more than compensate for the time spent in ordering the 

positions. 

Representation 

No attempt has been made to develop a sophisticated representation 

for these end games.  A position is represented by a list of the positions 

of the pieces. Moves are generated rather than stored.  Patterns are 
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discovered by functions. Some information is very time consuming to 

obtain in this way, for example the set of all squares which a piece 

can reach in two moves.  In general patterns of this type are not 

used, and the heuristics chosen for the end games reflect this. 
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CHAPTER 3 

DEFINITION OF BETTER AND WORSE 

As was explained in Chapter 1, each end game is played by different 

methods which we expect to result in different definitions of better 

and worse.  However the form of better and worse is independent of the 

particular end games.  In this chapter we will define the form, which 

will enable us to put a condition on the pattern recognition functions 

which make up better and worse. We will use this condition to prove that 

the program can reach checkmate from any starting position p € P . 

First of all, in order for the program to work correctly it must 

have a sense of direction.  In the chess books this is achieved by an 

ordering of methods.  For example in the rook end game, first we drive 

the opponent's king to an edge and then we keep our king on the same 

file (rank) as his.  In the program, rules are represented by patterns 

of positions.  Therefore the ordering of the heuristics is converted 

into an ordering of patterns, and positions from the end game can be 

grouped into subsets according to this ordering. Then a position q 

will be better than position p if the subset containing q is higher 

in the order than the subset containing p . 

Recall that the program builds a forcing tree from a position p 

and then follows a branch of the tree (which branch is determined by the 

opponent's moves) until a position q at the end of the branch is 

reached.  This position q is better than p .  Now the opponent makes 

2k 



n 
The ending Rook and King against King. 
The principle is to drive the opposing King to the last line on any 

side of the board. _ 
In this position the power of the Rook is demonstrated by the first 

move, H-R?» which immediately confines the Black King to the last rank, 
and the mate is quickly accomplished by: 1 H-R7, K-Ktl; 2 K-Kt2. 

The combined action of King and Rook is needed to arrive at a posi- 
tion in which mate can be forced. The general principle for a beginner 

mm \ 
WWW     WiMn.  

DIAGRAM 20 

to follow is to keep his King as much as possible on the same rank, or, 
as in chis case, file, as the opposing King. 

Ivhen, in this case, the King has been brought to the sixth rank, it 
is better to place it, not on the same file, but on the one next to it 
towaruc the center. 

2...K-B1; 5 K-B3, K-Kl; 4 K-KU, K-Ql; 5 K-Q5, K-Bl; 6 K-Qf- 
Hot K—PC, because then the Black King will go back to Ql and it will 

take much longer to mate.  If now the King moves back to Ql, H-R8 mates 
at on.-e. 

■ ...K-Ktl; 7 R-QB7, K-Rl; 8 K-B6, K-Ktl; 9 K-Kt6, K-Rl; 10 H-H8 mate. 
It has taken exactly ten moves to mate from the original position. 

On move ^ Black could have played K—Kl, and, according to principle. 
White would have continued 6 K—Q6, K—Bl (the Black King will ultimately 
he forced to move in front of the White King and be mated by R-Rb)^ 
7 K-Kt, K-Ktl; 8 K-BO, K-Rl; 9 K-Ktu, K-Ktl; 10 ft-R8 mate. 

Figure 3.1. Example from Capablanca, pages 26-28. 
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a move, giving position p' . At this point the pjogram will build a 

forcing tree from p' .  It does this without memory of positions p 

and q .  If the program is co work correctly, it must be able to derive 

information about the state of the game from p' , and any q1  at the 

end of a branch of the forcing tree from p' must be Detter than p in 

addition to being better than p' .  If this is true then we say the 

program is playing consistently.  Consistency is accomplished by being 

careful about the selection of q in the first tree; however we must 

remember that only a moderate amount of tree search to q is permitted. 

In the followine; section we will have much more to say about better 

than worse.  This is not surprising, since for the program tu work 

correctly worse need only recognize disaster and not interfere with 

better.  Both of these conditions will be satisfied. 

Formalizntion 

The notion of a stage has been adopted to facilitate the program's 

sense of direction. The positions in an end game are divided into a 

number of different subsets called stages.  The stpges sure not necessarily 

disjoint; however all the positions in a stage share a common pattern. 

In general a stage contains both positions with white to move and 

positions with black to move. The stages must exhaust the universe of 

positions in the end game. Let 

Q = P U {q 1 3p(peP A p^q)} , 

for P the set ol all legal positions from which white can win. Every 

position x 6 Q must be in at least one stage. The stages are ordered, 

from the lowest (zero) stage containing stalemate positions and other 
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positions from which white cannot win, to the highest stage containing 

checkmate positions. The nth stage in the order is called stage n . 

For programming purposes we prefer to deal with disjoint subsets. 

If x £ Q , we define 

st(x) =0 if x t stage 0 . 

= max ({n | x e stage n ))     if x ^ stage 0 . 

The subsets [x | st(x) ■ n) can bft ordered by the value of st when 

applied to the elements of the subsets.  These subsets are used to give 

the program a sense of direction in a natural way by 

5.1 st(q)>st(p) D better(p,q) . 

Also we will have 

better(p,q) D st(q)> st(p) . 

The statement 

5.2 st(q)>st(p) ■ better(p,q) 

is not used because it would result in tree searches of immoderate 

length. 

5.1 is a partial definition of better, so we consider what condition 

is required to ensure that the program works consistently. Recall that 

we want to be able to deduce from the successors of q information 

about the state of the game at q . Suppose for now that 5.2 is the 

definition of better. Then the program can be forced to play consistently 

by the condition on stage definitions. 

5-5 Vp1 VqUMgP' z>st{p')>st{q)]   . 

5.5 says the stages must be defined in such a way that black can never 

force a return to a lower stage. This embodies the spirit of these 
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games; that is, that white is in complete control, and that the black 

moves are considered (by the program/student) only as part of the white 

strategy.  We need not worry about a black move strategy. 

There is no condition similar to 5.5 for white moves.  However 

5.^  Vp JqCp^q A st(q)> st(p) ) 

is often useful.  Intuitively it would seem that if some p had all 

successors at a lower stage, then p was evaluated incorrectly.  This 

is not always true, but if J.k  is not satisfied it is important to under- 

stand why. 

As far as worse is corcerned, we always have 

£t(q)=0 3 worse(p,q) 

which accomplishes branch termination and insures that worse recognizes 

disaster. We do not have 

st(q)<st(p) 3 worse(p,q) 

because sometimes the path that the program should follow involves this 

kind of situation. We will always have 

worse(p,q) 3 st(q)< st(p) , 

since worse may not interfere with better. 

To help explain the definitions given in this chapter, an example 

will be developed as we proceed.  It covers the play of part of the 

Rook and King against King end game, as explained in Capaolanca [19551; 

the text is given in Figure 5.1.  This example can be handled in five 

stages.  First we introduce pattern recognition functions f and g . 

For x a position, we have 

f(j.^ = {the black king is confined to a file (rank) edge in x) . 

Let edge(x) ^g the edge to which the black king is confined in x . 
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g(x) ■ {f(x) i\  (the white king is on the file (rank) two away from 

the file (rank) edge containing the black king and on a 

rank (file) closer to the center of the board than the 

black king)) . 

f(x) represents the first principle in Figure 5.1.  g(x) partly 

represents the second principle in Figure 5.1; it will be used to 

recognize white move 6. 

Now we can define the stages.  These definitions are built up out 

of basic functions and notation which are described in Appendix A. 

x € stogi 0 = {x is stalemate, or x is a position with Mack 

to move, and black can take a white piece in 

one move}, 

x £ stage 1 a {x cannot be assigned to any other stage}. 

x e stage 2 a {f(x) A de(wk .edge(x))>2}. 

x £ stage 5 ■ g(x). 

x £ stage 4 = {x is checkmate}. 

Figure 5.2 gives examples of some of these stages.  The opening position 

in Figure 5.1- is in stage 1. Note that every legal position (every 

position in set Q ) is in some stage, because of t.'ie definition of 

stage 1.  In every end game there will be a catch-all stage defined 

like stage 1. 

Now we must check that ^t satisfies 5.5.  If st(q) = 2 

or s_t(q) ■ 5 j then the black king can never move in such a way as to 

form a p with st(p)<2 .  This is because in q the black king is 

confined to an edge, and the white king is not blocking the rook since 

it is two or more files (ranks) away from the edge while the rook is 
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t(u„)   = i+. This  is the checkmate position. 

Figure 3-2.    Stages  in Figure 5»1< 
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only one away. The black king is not threatening to take the rook in n any q with £t(q)>0 , because in that case we would have £t(q)=0 . »* 

Rule 5.^ is also easy to satisfy. In stage 1 there is no 

difficulty.  In rUages 2 and 3, the rook will always be able to move to 

another square on the same file (rank) (for a file (rank) edge) and 

thus preserve the same stage. 

If we use 3.2 as our definition of better and define worse by 

worse(p,q) ■ _st(q)=0 , 

then only moves 1, 6 and  10 from the example in Figure 5.1 will be 

chosen by better.  Thus the tree searches eure fairly long, and also the 

tree is very wide.  This brings us to the remainder of the definitions 

of better and worse.  If we change the definition of better to 

3.5 better(p,q) ■ fst(q>st(p) V [ st(q)=st(p)=2 

A de(wkq,edge(q))<de(wkp,edge(p))]] 

51 

then moves 1, 2, 3, h)   5, 6, 10 will be recognized by better. This is 

a considerable improvement in the length of the tree search. 

What is happening here in stage 2 happens in the other end games 

as well. Tne stage itself is rather large, but the positions inside it 

can be put into subsets, just as the whole universe of positions Q was 

put into stages.  In fact, additional stages could be added, one for 

each of these new subsets. 

However, we must consider an interesting property of the stages 

as they are defined in this end game, and one that is worth preserving 

in other end games.  Recall that each stage is defined by a distinct 

pattern; in addition each stage is associated with its own heuristics. 
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Each stage has as its immediate goal the achievement of the next stage 

and its heuristics are directed toward that end. For example, in 

stage 2 we move the white king up toward the edge until stage 5 is 

reached; in stage 5 we force the black king toward a corner until check- 

mate is given. 

If new stages were added for all these subsets, this heuristic 

property would be lost.  While we may expect to use additional heuristics 

for two positions in the same subset of a stage, these heuristics are 

independent of the particular subset and can be used for all subsets 

within that stage.  So it makes sen;-e to handle these subsets differently 

from the stages. Therefore a Dev function has been added which is called 

a measure.  For each stage n , function m  is defined for all • n 

positions in stage n . m  is not meaningful for every stage; in 

that case we have 

m (x) = 0 Vx(x £ stage n) . 

Definition 5.5 implies the following measures 

mp(x) = de(wk ,edge )      Vx(x £  stage 2) . 

mAx)  ■ 0 Vx(x e stage i) , i = 0, 1, 3, ^ . 

Note that the smaller the measure, the better the position.  This is 

the opposite of stages.  Then the new (and complete) definition of 

better is 

5.6 better(p,q) ■ [st(q)>st(p) V 

Cst(q)=st(p) Am^(q)(q)<m^(q)(p)]) . 

For program consistency, 5.5 becomes 

5.7 Vp Vq{q Mgp 3 [st(p>st(q) V (st(p)=st(q) 

Amst(p)(p)^mst(q)^)J]J • 
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An addition is also made to give the complete definition of worse. 

We have 

5.8 worse(p,q) = {st(q)-0 V [st(p) = st(q) A mst^p)(p)<
n»st(p)(q) J] . 

We can use this strong definition because if we have two positions in 

the same stage we know better how to compare them than if they come 

from different stages.  We extend J.k  to 

5-9 Vp 3q {p f^q A (st(q)>st(p) V [st(q)=st(p) A 

mst(q)(cl)^st(p)^]^ • 

Like J.h,  5.9 is not necessary to the consistency of the program. 

So far in this example stages have been defined in the same way 

for positions with white and  black to move, excepting stage 0 and 

stage k  which only contain positions with black to move.  In general^ 

however, slightly different versions of the same pattern are used to 

recognize positions with white to move as part of a stage than eure 

used for positions with black to move. 

For example, 5.6 selects white moves 1, 2, 5, ky  5, 6, and 10 in 

Figure 3.1, but these are not the only moves it would select.  In 

general we are not too concerned if the program doesn't select the book 

move, because the program is looking for a better position and not a 

best move.  However in this case the program is playing differently 

from the book; it doesn't follow the second principle in Figure 5.1 

and white moves 2 through 5 are affected by this.  If we define 

x € stage 2 ■ (f*(x) A de(wk ,edge(x))>2} , 

where 

f'Cx) s {f(x) A (the two kings are on the same rank (file) in x)). 
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then we will violate 3.1.    For instance after move 1 in Figure 3.1, 

we have f(q) ; then the black king makes its move and we have 

if (p) . 

What is needed is to define stage 2 differently for positions with 

white and black to move. We will use 

x £ stage 2 ■ {f"(x) A de(wk , edge(x))>2l , 

where 

f,,(q) = f,(q) 

f"(p) - {f(p) A (the kings are on the same rank (file) or on 

adjacent ranks (files) in p)) . 

With this new definition of stage 2 the program will chose moves 2)  3, 

ll and 5 correctly independent of the order in which the moves are 

gei.erated. Another effect o.r the new definition is to put more 

positions in stage 1,  In reality stage 1 would be divided into two or 

more stages, but here we sure concerned only with the part of the end 

game covered in Figure 3.1. 

Additions to better and worse 

When functions are actually written for the play of end games, 

3.6 will be the form for better and 5.8 for worse. However, certain 

additions will have to be made to better and worse to make the program 

practical. These additions will be made in the following format. 

If the tree search is too long, then an addition to better is 

required. This will always have the form (for fixed n ) 

3.10 (stlp)=st(q)=n A ... ) . 
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We assume m (p)=m (q) since m (p)<m (q) would have been worse, and 

m (p)>m (q) would already have been better.  If the tree search is 
n    n   

too broad, an addition will be made to worse. This will always have 

the form (for fixed n ) 

3.11 {st(p)=n A [st(q)<n V (st(q)-n A mn(q)=mn(p))] A ...} . 

To be sure that the program will work consistently it is always 

necessary to extend 3.8 to cover additions 3.10> and 3.11 must not 

eliminate all former paths to better positions.  Program consistency 

must he considered separately for each addition. 

As an example of additions consider 3.6 and 5-8 as they apply to 

Figure 3.1.  The definition of better is sufficient for this end game, 

so no problem of consistency arises.  However the definition of worse 

needs to be enlarged.  After move 6 in Figure 3-1, a tree of depth k  is 

required to reach checkmate. Position p  in Figure 3.3 appears at 
1 

the head of this tree. At the first level alone, 12 white moves sure 

considered, and similar large numbers at further levels.  If worse is 

changed to 

worse(p.q) I {st(q)=0 V [st(q)=st(p) A m^, j(q)'mst^(p) ] 

V [st(p)=3 A st(q)<3 A (d (wk,r)>d (wk,r) 

V [st(q) / 3 A d(i(wk,r)>l])]} 

then only k  moves are  considered in p1 . In p2 , five out of nine 

moves remain; note that the desired move, wk-QKt6 gives q^ not in 

stage 3 (see Figure 3.3). This tree is still rather broad and other 

or different heuristics can be added to prune more. 
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8 m i ■ ».:...■...«.. 

1  ■ ■ A 

This  is the position after black move 6 
in Figure 3.1. 

"SC—IBM "H 

'//////,     //■;/! -//,,///, ///////i     This  is the position after black move 8 
%P'WM,,Jß      in Figure 3.1. 
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^2 

m m 9 9 
mt.    W,   W,   ym. 

yM   W'-   y/M   '/■'" 

■    «   ■    I 

m m  m m 

After white move 9; note that stCq^) ■ 1. 

Figure 3.3 
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Additions to the Formal Definitions of better and worse 

Additions to tK' er have the form 

5.10 (st(p)=st(q)=n A ... ) . 

Additions to worse have the form 

3.11 (st(p)=n A [st(q)<n V (st(q)=n A mn(q)=mn(p)) ] A ...) 

Figure 5.4 Listing of the Rules Introduced in Chapter 5. 
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Formal Definitions of better and worse 

5.6 better(p.q) ■ {st(q)>st(p) v 

[st(q)=st(P)  Am^(q)(q)<m^((i)(p)])   . 

5.8 worse(p.q)  =  {st(q)=0 V  [st(p)=st(q)  A m
st(p)(p)<«»st(p)(q) ])   • 

Conditions on Stages and Measures 

3.7 Vp Vq{q Mgp 9 [st(p>st(q) V (st(p)=st(q) 

Amst(p)^^st(q)^^]) • 

3.9 ^ 3q {p ^q A (st(q)>st(p) V [st(q) = st(p) A 

inst(q)(<l)^st(p)(p)])J ' JJ 

;: 

:: 

0 
D 
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CHAPTER k 

ROOK AND KING AGAINST KING 

Formal Definitions of better and worse 

The method of play chosen for this end game is taken primarily 

from Fine [19^?]. His description is given in Figure ^.1. The last 

few moves of the game are chosen by Capablanca's [1955.1 method 

illustrated by moves 8-10 in Figure J.l. 

Only one basic pattern, shown in position q,  in Figure 4.2, is 

required for this method of play. The ability of the rook to control 

ranks and files is utilized; as long as the black king is not in check 

it is held in some area of the board by the rook. Usually this area 

is a quadrant as shown in q, .  If the white king is not on the boundary 

of the area, the black king can escape only by attacking the rook. If 

the white king is outside of the area, as shown in q1 , it is able to 

protect the rook from such an attack if it is close enough. It can't 

be blocked from protecting the rook by the black king. 

If the pattern shown in q. holds in a position, this is 

recognized by function quad; 

quad(x) = (the rook confines the black king to an area of the 

board in x , and the white king is outside that area). 

quad describes the pattern occurring in almost all positions of 

Figure k.l.    For example quad holds after each of the first three black 

and white moves. If quad is satisfied by a position, we will refer to 
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Mating Position with 
the Rook. 

■//'/,  - r/M      vm 

This piece is not nearly as strong as the Queen and the mate is 
accordingly far more difficult. The Rook alone cannot drive the King to 
the edge of the board—it needs the assistance of 
its own monarch.  Since the Rook is much less 
powerful than the Queen, there is less danger of 
stalemate—this is the brighter side of the picture. 

In order to mate, the enemy King must ar;ain 
be driven to the edge of the board.  The mating 
position is then the same as the second one with 
the Queen.  Thus the problem here is essentially 
the same as that in the previous case, the chief 
difference being that the two preliminary steps 
(driving the enemy King back and bringing one's 
own King up) are carried out simultaneously. The 
only stalemate that should be watched for occurs 

■% ■ my \ 
m, m A, Ü 
^ m,y  mv  m.i/ M 
m,   W/.,  mk,   W/,,/ ^ li  11  H li 

m   WM   'm   w, w/% m  m m 

No. 
Black to Play is 

Stalemated. 
"288 

2 R-Q5, K-K5; 
files), K-K7; 

when the Black King is  in the corner. 
Starting from any position such as that 

shown here  in No.   2 we would then proceed  as 
follows:    1R-Q2 (confining the Black King  t u _. 
the right-hand side of the board),   1  ....   K-K6; 

5 K-B5,  K-K6; U R-QU  (now he has only three ranks and four 
5 K-Q5,  K-K6;  6 K-K5,  K-K7; 7 K-KU, K-b?;  8 R-QJ  (see dia- 

gram No.   2a),  K-fCr;  9 K-QU,  K-B7;   10 R-KJ,  K-Kt?;  11 K-KU,   K-B?;   12 K-B1+, 
K-Kt7;  13  R-K2chv   K-B8;  \\ K-B5,  K-KtB (diagram No.   2b);  15 K-Kt5,  K-B8; 
16 H-K8,  K-Kt8;  17 R-Kl mate. 

The final maneuver, ^Mch involves losing a tempo,  or mo/e,   should 
be remembered-it is  the key to this mate. 

No.   2b 

Position after 8 R-QJ. Position after lU 

  K-Kt8. 

Figure U.l. Example from Fine, pages lU and 15■ 
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We have quad(q ) and _scjuad(q  ) = 16. 

m mmmA 

.m m. m. m. 

8 « S ^ 

We still have quad(pp) but WP must move 
the rook or we will lose it.  The rook 
can move so that there will be a quad- 
rant, but the size will be larger. 

if m   11 Ji ■•a ■ i 
m m %. 

Here we have quadCp..)  and squad(p..)   = 20. 

We have    p^^NLq,   .    We do not want to accept 

q1     as better than    p..   . 

m, iLJiJL 
Here we have quad(x0) and squad(x^) = 'd.. 

Xp is in stage 5« 

Figure 4.2 
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this case the position q prior to the black move would be in stage 0. 

Rule 3.9 cannot be satisfied without putting additional conditions 

in the stage definition. For example, suppose in position q  the 

black king moved to Qfr    to attack the rook, forming p2 in 

Figure k.2.    The white king is not close enough to protect the rook; 

therefore we must move the rook away from the black king. It is simple 

to form a new quadrant; for example, any rook move on the fourth rank 

will do this. However every rook move which forms a quadrant forms 

one of a larger size. In general, the rook can always form a quadrant, 

but it may be larger than the present one. This violates rule 5.9. 

Note that it really would be incorrect for the program to a^ept 

a position like q.  as better thax^ for example, p,  in Figure k. '.. 

At position Pp , the best that white can do is to maintain the smallest 

possible quadrant. This will have size 20, the same as squad (p..). 

Therefore nothing has been gainea by making the move to q  and the 

burden of correct play has been pushed onto the tree search. 

hi 

0 
:: 

the area in question as a quadrsnt.  This pattern lends itself very 

naturally to a measure.  If we have quad(x), then squad(x) is the number 

of squares inside the quadrant. For example, in q  in Figure ^.2, 

squad(q.. ) = 16. 

If quad is to be used to determine a stage and squad is to be a 

measure in that stage, we must satisfy conditions .5.7 and 3.9 (see 

Figure 5.^). Condition 3.7 presents no problem since both quad and . 

squad depend only on the positions of the white pieces. The black n 

M 
king is uneble to escape from a quadrant except by taking the rook; in 

0 
0 
Q 

Q 

0 
D 
D 
0 
0 
0 
D 
D 
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D 

0 
D 
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Now the problem in position    q      came about only because the white 

king wm too far away from the rook to protect it from the black king's 

attack.    Therefore all that is needed to satisfy rule ^.9 is to 

insist that the white king protect the rook.    The condition of pro- 

tection is given by function goodquad 

goodquad(p)  ■  {£uad(p)  A d  (wk,r)<d  (bk,r)+l) 

goodquad(q) = fquad(q) A d (wk,r)<d (bk}r)) . 

Different definitions are given for p and q to insure that goodquad 

satisfies 5.7. (We remind the reader that definitions of basic functions 

and notation are given in Appendix A.) 

The use of goodquad for a stage and squad for a measure in that 

stage will inexorably force the black king toward a corner of the 

board. However, this process must stop when we reach a quadrant of 

size 2, since any snuller quadrant would be stalemate.  Therefore when 

squad = 2 we must move to a new steige. At this point we shift to the 

heuristics taken from Capablanca [1955]. U-    in Figure h.2  is an 

example of a position from this stage (stage 5). 

We give the formal definition of better and worse by defining the 

stages and measures. 

x £  stage 0 = (x is stalemate or x is a position with black to 

move and black can take the rook in one move). 

x £  stage 1 = x cannot be assigned to any other stage. 

x £  stage 2 ■ fgoodquad(x) A squad(x) > 2) . 

x £  stage 5 - fgooüquaQ(x) A squad(x) = 2) . 

x 6 stage 4 = x is checkmate . 

k2 



Only stage 2 has a meaningful measure. We have 

nu(x) = squad(x) Vx(x € stage 2) 

m.(x) ■ 0 
i 

Additions to better and worse 

W2 . 

We are now ready to consider how well the program plays using the 

formal definition of better and worse. We need not worry about the 

transition from stage 1 to stage 2, since the tree search is no greater 

than depth 2. However, the depth of tree search in stafee 2 can be as 

large as 8, although a depth of 5 is average; in stage 5 there is a 

maximum depth of 5. Therefore, we must make additions to better.and 

worse in stages 2 and J. 

In stage 2 both the length and the width of the tree must,be 

reduced. Recall that we axe striving to shrink the size of the quad- 

rant. The rook alone is unable to do this; sometimes the white king 

must be used to force the black king away from the rook. For example, 

in Pp in Figure k.J  the white king must move onto the boundary of 

the quadrant. Then on the next white move thi^ rook can form a new 

quadrant smaller than the present one (see position q, in Figure ^.5). 

In order for the white king to be useful, it must first be next to the 

rook. Position p..  in Figure k.J>  is an example of a position in 

which the white king must move up to the rook. We can recognize this 

kind of move by adding to better 

h.l    st(p)=st(q)=2 A dq(wk,r)<dp(wk,r) . 
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a m m m 1 B ■ k i m mm 
In this position obviously we w? nt wk-Q5 or 
wk-K5. 

L«  i g u m 
B  Ä  1 

|     '^     | Sä#H m   m   1 B B HI | 

IP  PWJ  ■ ■  fl ■ ■ i 

This is the position before move 6 in Fine 
(Figure 3.1) • Now we want to move the white 
king onto the boundary to force the black king 
away frcti the rook. The move made in Fine is 
wk-KU; wy-KB^ is Just as good. 

The black king is forced to move away from 
the rook (bk-KB7 in Fine), and then the rook 
can form a smaller quadrant (r-Q3), giving q. 

VrrW- '///////.    'M!;,    Wm m ■ m '" 
p*, taken from Figure k.l    before white move 5» 
is the start of the longest tree (depth k) . 

Figure ^.3. Examples of Moves in Stage 2. 
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k'.l  reduces the length of the tr^e search to a maximum of four. This 

is a manageable length so no further change need be made to better. 

A tree search of depth three or four requires considerable 

pruning to be practical. In the formal definition only rook moves 

leading to larger quadrants and moves giving stage 0 are eliminated. 

In p* in Figure ^.3, foi example, seven white king moves and four 

rook moves would be examined in the tree search. This tree will be too 

broad. 

Note first of all that tree search will take place only when 

d (wkjr) = 1 .  The strategy at this point is to move the white king 

king moves which result in d (wk,r) > 1 can be eliminated. We add to 

worse 

k.2    st(p)=2 A [st(q)<2 V (st(q)- 2 A m2(p)=m2(q)) ] 

A [d (wk,r)=l] p  ' 

:: 

:: 

:; 

D 
B 

onto the boundary, wh.ch gives a position q in stage 1. Therefore 

not all stage 1 positions q can be declared worse than p . However, 

the rook can also move to form a stage 1 position, either by moving 

so that in q there is no quadrant or the rook is not protected by the 

white king. All these moves can be eliminated. In addition all white 

A [dq(wk,r>l V (st(q)=l A ry^)] 

It is easy to see that these additions to better and worse are 

correct. First we note that 

(qMgP A st(q)=2) 3 (st(p)=2 A ^(^W ■ "^(p)^ 

A dp(wkJ r) = da(wk, r)) . 

Therefore 5.7 can be extended to co/er k.l.    As far as 5-9 is concerned, 

the important thing is that the white king is always able to move to 
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protect the rook and such a move will insure 

d (wk.r) < d (wk.r) . 

We note also that k.l  can only be applied to finite number of times 

(no more than 7) between applications of the formal definition of 

better, k.2  is correct because it does not interfere with ^.1 or the 

formal definition of better, even when a tree search is required to 

force a smaller quadrant. 

In stage 3, the maximum length of the tree sea. ch is five, so it 

is not necessary to change better. However considerable tree pruning 

will be needed to make the tree manageable. 

The checkmate position is illustrated by q,  in Figure 5.2.  Before 

the checkmate can be given, the white king must be in the square in- 

dicated in q* .  Note d(wk,r) = 1 in the checkmate position.  Now we 

could have used d (wk,r) as a measure in stage 3 but it leads to 

considerable inaccuracy of play since only the indicated square, of 

all the squares next to the rook square, is used for checkmate. We have 

concentrated instead on tree pruning. 

Although we do not use d(wk,r) as a measure, it is obvious that 

we do not want to move the white king away from the rook. This one rule 

will eliminate many king moves. However, the rook also contributes 

many moves, some rook moves giving stage 2 positions and  some stage 1. 

The stage 2 moves can be eliminated, but sometimes a stage 1 rook move 

is necessary. This case is illustrated by position p  in Figure k.h. 

At this point the rook must make a "tempo" move.  It must remain on the 

QB file, so that the black king is forced to move into the corner. 

However, there are six usable squares on that file. We can limit the 

'■* I-' '■ 
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No  inmedia*.'? puccessor position is better 
than p,. ^16 is a desired move 

After    r-CiB6,  we have    q,     in stage  1.    bk-Pl 
is the only legal move,  and then we can get 
checkmate.    This rook move  is needed  lor parity. 

p*    is an example of the longest tree search, 
and the depth of this tree is    5    moves.    It 
is quite narrow,  however.    After pruning,  the 
remaining white moves are r-Q7,   r-K7,   r-Q38 
and wk-Q?. 

Figure U.U.    Examples of Stage J. 
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rook moves examined by insisting that the rook stay next to the white 

king.  In stage 3 we add to worse; 

1+.5 st(p)=3 A [st(q)=2 v (tt(q)»l A d (wk,r)>l) 

V (st(q)=5 A d^wk^XL A d(i(wkJ r)>dp(wk,r)) ] , 

4.5 is correct because again we have been careful not to eliminate all 

paths to checkmate.  Now the tree is narrow enough to manage.  In p 

for instance only four moves are left after pruning; in p* also four 

moves are left.  Since very few moves are available to the black king 

the tree remains quite narrow. 

Combining formulas h.l)  k.2  and 4.3 with the formal definitions 

of better and worse we have: 

better(p.q) ■ {(st(q)>st(p)) 

V (st(q)=st(p^ Am^(q)(q)<m^((i}(p)) 

V (st(p)=st(q)=2 A dq(wk,r)<dp(wk,r))) . 

worse(p,q) ■ {st(qj=0 V (st(q)=3t(p) A mst(p)(p)<inst(q)(cl)) 

V (st(p)=2 A [st(q) = l V (st(q)=2 A m^p^m^q)) ] 

A d (wk,r)=l 
,        pv  ' ' 

A [d (wk,r)>l V (st(q)=l A r /r )]) q  '      —       p' q 

V (st(p)=5 A [st(q)=2 V (st(q)=l A d (wk,r)>l) 

V (st(q)=5 A d (wk,r)>l 

A d^w^r^dpCw^r))])) . 

These are the functions actually used in the program. 

Examples of Program Play 

In order to prove that the program works we must give examples of 

program play. The first example is taken from Figure 4.1. The program 
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is started at the second move because it would make r -QR5 as its first 

move.  The reason for this difference will be discussed later. 

The opening position is p  in Figure U.5. We have: 

1. r -Q8 p,  is a stage 1 position, there- 

fore the first stage 2 position 

generated is better. 

The program has lost one move. 

bk .K5 

2. r-tf bk -K6 

3. wk-Q6 bk .K5 

k. wk-K6 bk .K6 

5. wk-K5 bk -B6 

6. r -Ql+ 

bk -K7 

7. wk-KU bk -B7 

8. r .QJ bk-K7 

Now we have squad = 16.  The white 

moves 5 to 6 are chosen by a tree 

search. 

This is the same position as the 

book's after move 8.  White moves 

7 and 8 are chosen in a tree 

search. 

9. wk-(^        bk .B7 

10. f -K5        bk -Kt? The tree has depth 3, but this 

branch (mo/es 9 and 10) is only 

depth 2. 

11. wk-KU        bk -B7 
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The opening position for the example   is  in 
stage  1. 
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The position after book move 13. 
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v. 

The rook and white king are in the position 
after move 15 by the program. 

Figure k,^.    Illustrations of Examples of Program Play. 
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[ 

12. wk-B^ 

13. r-S5 

bk .ft? 

bk -R? 

Ik.    r-Kt3 

Moves 9-12 eure the same as the 

book's, but now we differ. 

We are now m stage 3; see 

Figure 3.1 at move 7. 

bk-R8 

15. wk-B3 bk-R7 

16. wk-B2 bk-R8 

17. r-R3 mate 

The program is playing very similarly to the book up to move 15. 

It choses a better and not the best position at move 1, and then must 

work hard to catch up to the book,  it is in a better position after 

move 6 than the book is after move k  and is able to regain two moves. 

At move 13 the book makes a move using a different strategy. Instead 

of shrinking the quadrant it puts the king in check (see q^    in 

Figure 4.5).  If the black king goes to any square but B8 the book 

gives mate in two or three moves, but for the move to B8, four moves 

are required. The program's move also requires four more moves to 

checkmate, so it is really just as good as the book move. 

Position p2 in Figure 4.5 is the starting position for this next 

example, p  is the position which results if in the previous example 

we have 

13.  ...        bk-Kt8 

Ik,    wk-Kt3      bk-RB 
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15. r -B2 r-Bl is checkmate, but r-B2 is 

generated first and also gives a 

better (stage 5) position. 

bk-Kt8 

16. r -B^ bk-R3 

17. r -Bl Checkmate 

However, the order of moves can also be correct.  If 

15.  ... bk-R8 

1^. r -B2 and two moves to checkmate.  r-Kt5 

also gives a better position, but 

four moves would have been required 

to mate. 

The numbering of the program moves is one less then it should be 

üince the program started at book move two. This means the program 

never recovered the move it lost at its first move. 

Evaluation of Program Play 

Now we can see that the program plays similarly to the books. 

More important, it is using the same heuristics as the book's in most 

cases.  For example, the use of squad as a measure exactly models Fine's 

book when it is concerned with cutting down the number of ranks and 

files available to the black king (see the comment after move k  in 

Figure 4.1).  Also both the program and the book use the white king 

to protect the rook and to force the black king away from the rook so 

a smaller quadrant can be formed. 
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n 
The differences in program ano book play that do occur illustrate 

features of program play.  These will be dijcussed in detail in 

Chapter 7> only a list will be given here. 

1. The goodness of program play is dependent on the order of move 

generation (illustrated by the last two game examples), 

2. The program will accept a move which gives a better position at 

depth 1 even if an advantage would be gained by waiting until depth 2 

to evaluate, ihis is the reason that the program will not make book 

move 1. 

5. The program uses a single main heuristic inside a stage; it will 

not switch heuristics until it reaches a new stage. This is the reason 

the program will not make cook move 13. 

None of these features causes the program any serious difficulty.  In 

fact, the program plays this end game very well.  If it can do as well 

on other end games, we will be very satisfied with it. 
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CHAPTER 5 

TWO BISHOPS AMD KING AGAINST KING 

This end game, while not difficult, is considerably harder to play 

than the Rook end game, and the increase in difficulty is mirrored in 

the program. The final definitions of better and worse are quite 

complicated. As in the Rook game, the method of play used is a com- 

posite of Fine [19^] and Capablanca [1935].  Figure 5.1 is the example 

from Fine; Capablanca's method is given in Figure 5.6. Again Fine's 

method is used to guide the first part of the game, while Capablanca's 

is used in the final stages. 

Two basic patterns are sufficient for the entire end game. The 

first, as in the Rook end game, is concerned with confining the black 

king to an area of the board. Unlike the rook, a bishop does not hold 

an uncrossable line.  However when two bishops are on adjacent diagonals 

they together do hold such a line. Position x  in Figure 5.2 illus- 

trates this; the black king is confined to approximately half the 

board. When the bishops are also on adjacent squares, the space avail- 

able to the black king is even smaller, approximately a quarter of the 

board.  This is shown in positions x2 and x  in Figure 5.2.  In 

addition when the two bishops are on euijacent squares they may protect 

each other, as in x- .  If not, as in x, , then only one bishop is 

open to attack, and there is only one square inside the area from which 

the black king can attack it. Therefore it is fairly easy for the 
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In the previous cases it has always been sufficient to drive the 
King to the edge of the board. Here, however, it is essential to have 
the enemy King in a corner, for though mating positions in the center 
are possible they cannot be forced. Any corner will do (unlike the 
case with Bishop and Knight). 

No. 5 

be allowed to escape), 
K-Kt8; 18 B-B3, K-R7; 
22 9*j$  (tempo move), 

Beginning with any arbitrary position (.^ee 
diagram No. 5) the first task is to reduce the 
mobility of the Black King. Thus 1 B-B5, K-K6; 
2 &-B6, K-Q5.  Now that the Bishops are as well 
placed as possible the King must come up. 
3 K-Kth,  K-Q6; k  B-K5, K-K6; 5 K-B4, K-Q7; 6 B- 
q^l K-K7; 7 K-B3; K-BB (see diagram No. 3a); 
8 B-B3, K-K8; 9 &-Kt2, K-K7; 10 B-B5 (a tempo 
move: White cannot approach directly and loses 
a move to compel Black to retreat), K—K8; 11 K— 
03, K—Q8 (see diagram No. 3b). From this point 
on the rest is quite simple: by successively 
cutting off the squares to the right of Black hi- 
is compelled to play into the corner.  12 B~Ktk, 
K-B8; 13 B-KB3, K-Kt7; 1*1 B-Ql (the King must not 

K-B8; 15 WAi K-Kt8; 16 K-Q2, K-Kt7; 17 K-Ql, 
19 K-B2, K-R6; 20 B-Kt5, K-R7; 21 B-Kt4, K-^8; 
K-R7; 23 B-BUch, K-R8; 2k  B-B3 mate. 

No. 3a« Position after 
Black's 7th Move. 

No. 3b. Position after 
Black's 11th Move. 

Figure 5«1«  Example from Fine, p. 15-17«  This method serves as a guide 
for the first part of the game. 
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When the two bishops are on adjacent diagonals 
they confine the black king to approximately 
half the board. 

If in addition they are on adjacent squares 
they confine the black king to approximately 
a quarter of the board.  In Xp they also 
protect each other. 

However, the white bishop is open to attack 
in x r 

Figure 5.2.    Examples of Quadrants. 
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pre gram to f^'Hluate the danger of attack and decide how to prevent 

it. For this reason, together with the advantage of confining the black 

king to a small area, the program uses this configuration as its sole 

pattern.  In Fine, this pattern is combined with the one where the two 

bishops are simply on adjacent diagonals.  Capablanca does not describe 

the middle part of this end game; however the part he describes is a 

continuation of this method (see Figure 5.6). 

Now when the bishops are side by side they keep the black king in 

approximately a quarter of the board, so this area will be called a 

quadrant.  Such an area will be recognized by function quad(x) .  In 

order for the black king to be confined to an area it must either be 

inside the area or else possibly on the inner diagonal of the boundary 

c 
n 
D 
D 
o 
D 

o 
of the area.  For example, in x  in Figure 5.2, squares QR2, QJCt?, 

ffi.  K2 and KB1 may be acceptable positions for the black king, in 

addition to the inside squares.  We have 

quad(x) = {the black king is inside the area formed by the two 

adjacent bishops, or it is on the inner diagonal of 

the boundary of the area). 

Note that the position of the white king is not considered in quad. 

It is easy to define a size for a quadrant. The area in which 

the black king is controlled by the bishops has the shape of a triangle, 

and an  edge of the board forms the side of the triangle opposite the 

two bishops.  Call this edge,  edge(x) .  Then 

squad(x) ■ d£(kb edge(x))-de(qb , edge(x)) . 

Thus squad(xg) = 8 and squad(x.,) - 7 .  (For definitions of basic 

functions and notation, refer to Appendix A.) 
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The fact that we intend to use Capablanca's method for the last 

part of the game puts a restriction on the quadrants the program uses 

in this stage (stage 2). Position x  in Figure 5.5 is an example of 

the start of Capablanca's method.  Note that the quadrant in x  contains 

a corner.  Now if we decrease the size of the quadrant indiscriminately 

we may end up with the black king confined to a small area not contain- 

ing a corner, as in x? in Figure 5.3.  Then we would have to use an 

intermediate heuristic to achieve x, .  Rather than do this we force 

x  to occur directly by only using quadrants containing corners. 

Function hascorner(x) is true if the quadrant in x contains a 

corner.  This constraint makes it more difficult for the program to 

force a smaller quadrant, since often only one of the two immediately 

smaller quadrants contains a corner.  Position p in Figure 5.5 is ^ 

example. 

We now must consider whether quad and squad will satisfy conditions 

5.7 and 5.9.  For condition 5.7 we define 

spec(x) ■ (some successor of the black king in x is not 

I*) inside the quadrant}. 

Then for a quadrant to be accepted in q , spec(q} must be false.  For 

example,  q  in Figure J.fc will be rightfully rejected by this condition; 

after the black king moves to KB7 no white move can force it back into 

the area. Requiring that spec(q) be false insures that the black king 

must move inside the quadrant, and any p with the black king inside 

the quadrant y 111 be accepted.  Therefore rule 5.7 is satisfied. 

Condition 3.9 presents more difficulty.  First we must reject positions 

like p  in Figure 5.^.  In p2 , only qb-Q6 will form a quadrant, but 
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The quadrant in    p    has a comer.    However, 
oT the two ways of forming a  smaller quadrant, 
only one,    qb-QB5,   produces  a quadrant with 
a comer. 

Figure 5»3. 
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The black king can move to KB?, giving Pp , 

and no white move can contain the black king 
in a quadrant of size 8. 

The white bishop has just moved from QB6 
(squad = 9). Now squad(q,) = 8. The black 
king is controlled by the white king and must 
move inside the quadrant. 

Figure 5.,+ . 
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the one in x,  in Figure 5.2.  A position x with a pattern like x 
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this quadrant has size 9.  If Po is considered to have a quadrant, 

then that quadrant would have size 8. Therefore, if in p the black 

king is on the boundary of the area, we insist that spec(p) be false 

if the quadrant is to be accepted. 

We have now eliminated any possibility of direct black escape from 

the quadrant.  However, we must consider whether white may be forced to 

give up an advantage because of a black threat.  Now black can  only 

threaten a bishop, and in a position like x^ in Figure 5.2 the bishops 

protect each other. Therefore we need only worry about a quadrant like 

can easily be recognized because squad(x) is odd.  If this is true, 

the quadrant is called a head quadrant, and head(x) is the square 

containing the bishop closest to the black king. This bishop is referred 

to as the head bishop. 

In the Rook end game we solved a similar problem by always insisting 

that the white king be close to the vulnerable piece.  Here things are 

not so simple. In the Rook game the white king could assist in shrinking 

the quadrant from a square next to the rook, but in this end game the 

white king may have to move away from 'Am  uead bishop in order to be of 

n 
use. For example in q, in Fig•••"', j.k  the king's bishop has just moved 

from QB6; prior to this move the queen's bishop on black square QB5 was 

the head bishop, and the white king is four away from this bishop. 

If in a head quadrant we can make a move into a smaller non-head 

quadrant we have cancelled any threat the black king was making.  If 

either bishop could move to make a smaller quadrant, then if 
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d(bk , head(q)) > 3 we would always be sure of forming the non-head 

quadrant in time. However, because of the corner condition, usually 

only one bishop move is permitted.  In this case the white king is the 

only sure means of defending the head bishop. However, if at any point 

we know we can form a smaller quadrant in time, we will take advantage 

of that fact. 

It is difficult to be sure that the white king can protect the 

head bishop.  In q.  in Figure 5.5 we have 

d(wkq , head(q )) = d(bkq , headCq,)) , but even so the white king 

cannot protect the head bishop. Therefore in q we expect the condition 

d(wk , head(q)) < d(bk , head(q)) 

and in p 

5.1 d(wk , head(p)) < d(bk , head(p)) . 

However these conditions are not even sufficient. Position p, in 

Figure 5.5 is an example, p,, satisfies 5.1 but a bishop will have to 

move to form a larger quadrant because every white king move leaves 

the head bishop unprotected. This condition can be recognized in the 

position from which black moved to form p  (position q*    in 

Figure 5.5). Note that the white king position shown in q- and p 

is just one of many which are bad. The bad squares are: KKt3, KKtU, 

QB.5, OB'S Kü6, and Q^. Also all squares more than two away from the 

head bishop are bad. The remaining squares are good:  they arc KKt5, 

KKtb, KKt?, KB5, KB?, K7, Q5, Q7, 065, 006, and QB7. 

One final case remains to be considered, and it is illustrated by 

position q,  in Figure 5.5. We have d(bk- , head(qi )) = 2 and 
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d- (wk, qb) = 5 = d_ (bk, qb). However the 
41 qi 

white king is unable to prevent the attack 
on the head bishop since it will be blocked 
by the black king. 

Figure 5.5. 
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trouble is thao this is a very common occurrence, and if we do not make 

the exception the program will essentially play from one non-head quad- 

rant to another with only tree search in between. This makes the trees 

too long. Even so some perfectly safe positions will be rejected. n 
Let us formalize the conditions discussed in the preceding 

paragraphs. A function bade is defined to recognize the situations 

occurring in positions q^ and p  of Figure 5.5. For q , bade 

is concerned with all positions with d(bk , head(q)) = 2 , Thus the 

case of the black king in check is handled in bade also. We have 

safe(q) ■ {(squad(q) is even) V [d(bk ,head(q))^2 A -i badc(q)] V 

[d(bk ,head(q))>2 A d(wk,head(q))<d(bk,head(q))]) . 

Note that q with d(wk ,head(q))=d(bk ,head(q))=l will satisfy safe. 

In p , bade handles all positions with d(bk <head(p))=l .  We have 

D 

1 

i 

i & 

a(wk , head(q )) = 5 , but the white king is still able to protect the 

head bishop. This is because the black king is in check, so it is 

unable to use the direct attacKing path (it needs two moves to attack). 

The fact that the black king is in check but there is a quadrant, means 

either the white king is guarding the boundary or the boundary is next 

to em edge of, the board. If the white king is guarding the boundary of 

the area, wc know that it cannot be prevented from protecting the head 

bishop.  If the boundary is next to an edge, white will have no dif- 

ficulty in forming a smaller quadrant, since we then know that either 

bishop move will form a smaller quadrant containing a corner. So, if 

the black king is in check in q , and d(bk , head(q)) = 2 , we accept 

q as long as d(wk , head(q)) < 3 .  The reason for going to all this 



safe(p) ■ [ (squad(p)  is even) V (d(bk ,head(p))=l A -i badc(p)) v 

(d(bk ,head(p))>l A d(wk ,head(p))<d(bk ,h-ead(p)))] . fl 

Now we can define the recognizer for stage 2: 

goodquad(p) ■ fquad(p) A hascorner(p) A safe(p)) 

goodquad(q) ■ {quad(q) A -i spec(q) A hascorner(q) A safe(q)) . 

goodquad and squad satisfy 3-7 and 3.9. 

■; 

;: 

Stage 3 

As explained previously the condition hascorner is used to insure 

that stage 2 will eventually fit in with Capablanca's method for the 

end of the game. The example from Capablanca is given in Figure 5.6; 

position x,  in Figure 5.3 satisfies uhe same pattern as Capablanca's 

position after white move 3. This is the point at which stage 3 should 

start because now we will use different heuristics.  If goodquad(x) , 

then squad(x)>6 indicates stage 2, while squad(x)=5 or 6 gives 

stage 3. If squad(x)<5 we alle^ the program to use tree search to 

arrive at the larger quadrant of stage 3- 

Position p..  in Figure 5.7 is the position in Capablanca after 

white move 3. Capablanca's strategy for this part of the game is to 

move the white king up into one of the squares marked XI, X2, or Y , 

or the square occupied by the black king.  For the program, this has 

been simplified. Only the squares marked XI and X2 are used as 

goal squares for the white king. When sqiiad=6 , XI is the goal 

square. When squad=5 , either XI or X2 is allowed; one of these 

will be covered by a bishop.  Since with squad=5 we have a head 

n quadrant, this is used only as a back-up for squad=6 .  It is needed U 
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Now we come to two Bishops and King against King. 
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Since the Black King is in the corner, White can play 1 B-Q3, 
K-Kt2; 2 B-KKt5, K-B2; 3 B-B5, and already the Black King is confined 
to a few squares. If the Black King, in the original position, had 
been in the center of the board, or away from the last row. White should 
have advanced his King, and then, with the aid of his Bishops, restrict- 
ed the Black King's movements to as few squares as possible. 

tfo might now continue: 3...K—Kt2; \  K—B2,  In this ending the Black 
Kin^; must not only be driven to the edge of the board, but he must also 
b' forced into a corner, and, before a mate can be given, the White King 
must be brought to the sixth rank and, at the same time, in one of the 
l^st two files; in this case either KR6, KKt£, KB7, KB8, and as KR6 and 
KKT^' are the nearest squares, it is to either of these squares that the 
King ought to go. U...K-B2; 5 K-KtJ, K-Kt2; 6 K-RU, K-B2; 7 K-R5, K-Kt2; 
3 B-Kt6, K-Ktl; 9 K-R6, K-Bl. White must now mark time and move one of 
the Birhopt-, so as to force the Black King to go back; 10 B-R5, K-Ktl; 
11 B-"K7, Kill. Now the White Bishop must take up a position from which 
it cen give check next move along the White diagonal, when the Black King 
moves back to Ktl. 12 B-KKt^, K-Ktl; IJ B-K6ch, K-^l; U B-B6 mate. 

-igure 5«6. Example from Capablance, page 29-30. The program plays 
almost exactly the same from White move U on. 
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in a position like p2 in Figure 5.7; the king's bishop moves to KKt6 

which is really a tempo move (position Qg in Figure 5.7). 

The obvious measure for stage 5 is some kind of distance function 

measuring the number of moves required for the white king to reach the 

goal square. This function must take account of obstructions (the 

bishops) and tempo move-. The follov^ng function works well.  First we 

define, for position x in stage 5, functions sql(x) and sq2(x) . 

Fql(x) contains the i,oa.l  square like X  in p, , and sq2(x) the other 

goal square Xp .  We use as a measure 

max (d(wkx,scil(x)),d(wkx,s(j2(x))) . 

This function has a minimum value of 1; it will bring the white king up 

to sql and sq2 , but will not select the ■ ,4"ual goal square.  When 

a goal square is achieved, we will be in stage k. 

We must consider the problem of satisfying conditions 5.7 and 5.9. 

If fioodquad holds we obviously have no problem, since no new difficulty 

has been added. Actually goodquad is stronger than needed, since no 

objection is raised now to moving from squad=5 to squad=6 .  But 

there is no particular reason to remove this condition, and it tends 

to prevent foolish bishop moves. 

Stage k 

Once the white king has actually moved into the goal square, the 

position is in stage ^.  (Since st selects the highest stage there 

n 
is no conflict.) Three factors, recognized by function end2 , are 

used to determine stage k.    One is the position of the white king in a 

goal square.  In addition the black king must be confined to the edge 
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succl(x) = succ(x) U bk if the black kiiig is not in check 
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opposite the white king. This condition will always be satisfied if 

we are coming from stage 3 and the white king is in the appropriate 

goal square.  If squad=6 and the white king is in sq2 , usually the 

condition is not satisfied. Position q  in Figure 5.8 is an example. 

For the white king as shown, in sql(q ), we have stage ^. If the wh '■e 

king were in sq2(q )=KR6 , the black king would be able to escape from 

the edge (to KB2), so we would not have stage k.    The third factor is 

concerned with the distance of the black king and all its legal successors 

from the corner closest to the white king. Let succ(x) be the set of 

all successors to the black king in x . Let 

D 
D 
0 
0 

D 

m x . 

= succ(x) otherwise. 

Let c(x) be the corner closest to the white king in x . Then let 

dedge(x) = max({d(r,c(x))|r€succl(x))) 

and dedge(x)<3  is the condition used for stage h. 

The reason for the choice of three as a limit comes from the fact 

that this is the highest value which the ordinary entry through stage 5 

will satisfy. Sometimes a starting position, like p_ in Figure 5.8, 

will have the white king in position and the black king confined to the 

edge, but farther than three squareu from the corner. Either a long 

tree search or different heuristics would be required to handle such a 

position if we called it stage h.    This is not worthwhile for such a 

special case. 
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Figure 5.8. Examples of Stage **. 
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The heuristic for this stage is to use the bishops to force the 

black king into the corner.  Checkmate can only be given in or next to 

a corner in this game, dedge can be used to express this heuristic 

and is the measure for jtage h. 

Again we must worry about satisfying conditions 3-7 and 3.9» The 

difficulty arises from non-standard entries into stage ^.  Consider 

first q^ in Figure 5.8.  All conditions for stage k  seem  to be satis- 

fied, but when the black king moves to Kl (position p  in Figure 5.8) 

we no longer have a stage k  position. To avoid such trouble we add 

condition 

dcond(q) = {dedge(q)<d(bk ,c(q)) V 

(goodquad(q) A c; < squaJ( q) < 6)} . 

dcona^j) ■ i bad^ >tj) 

This condition says that the black king is forced to move closer to the 

corner; we only insist upon this when the entry is not. from stage 3. 

Condition dcond is sufficient to satisfy both rules 3.7 and 3.9, 

since there is no way in which the black king can force white to 

abandon stage h.    Since the black king cannot be in check in p , we 

know that if a bishop is preventing its escape from an edge, that bichop 

mu::t b3 bearing on the edge. Unless a bishop is blocked by the white 

king, as in p,  in Figure 5.8 (satisfying v&dk   ), white can maintain 

stage h.    If the white king is preventing the black king from escaping, 

the bishops have sufficient mobility to k^ep the advantage. 

Formal Definitiono of better and worse 

Here ere the definitions of the stages. 
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x € stage 0 = [x is stalemate or x is a position with black to 

move and black can take a piece in one move}, 

x € stage 1 H {x is not in any other stage). 

x £ stage 2 ■ fgoodquad(x) A squad(x) > 6). 

x £ stage 3 s fa,3odquad(x) A 5< squad(x) < 6 }. 

x £ stage k  ■ [end2(x) A dcond(x)}. 

x £  stage 5 = {x is checkmate). 

The measures are 

nuCx) = squad(x) x £  stage 2 

m (x) ■ max(d(wk , sql(x)),d(wk ,sq2(x)))    x £ stage 3 

in, (x) ■ dedge(x) x £  stage k 

m.(x) = 0   im  0,1,5, x £  stage i 

An explanation is needed about the definition of stage 0.  There 

are positions p with white to move which are successors of some 

q € Q , but p ^ P   They are all like position p2 in Figure 5.9 

which is a successor of position q  in Figure 5.9.  It is not 

necessary to recognize q  as a member of stage 0 however.  Since 

position q  is a stage 1 position, and since no position with white 

to nnve is in stage 0,  q  will never be accepted by better.  Therefore 

the program will work correctly with the present definition of stage 0. 

t 
Changes to better and worse 

Now that we have given the formal definitions of better and worse, 

we consider what changes are needed to make the program practical. At 

present a tree of at most depth 5 is required to move from stage 1 to 

stage 2. This tree is very wide, but since it occurs at most once in 

a game no changes have been made to stage 1 heuristics. 
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In stage 2, very long tree searches may be needed, up to a 

maximum of depth 8. The worst cases occur in non-head quadrants. 

Frequently in such positions, tree search to a new non-head quadrant 

is required because of the difficulty in being certain a head quadrant 

is safe. For example, in position p  in Figure 5.10 a tree of depth 5 

is required to force a better position; in p2 the tree has depth 7. 

We will discuss heuristics for non-head quadrants first. 

Obviously we would like to cut down on both the length and breadth 

of the tree search. Unfortunately it is very difficult to define 

heuristics to add to better which will work in all long trees.  In 

position p , the moves wk-QB5 and wk-Q36 are equally good moves, and 

either would be selected at depth 5.  Both moves enable the white king 

to guard the boundary of the quadrant.  The move wk-QB6 satisfies 

5.2 d (wk,bk)<d (wk,bk) A dmin(q)<dmin(p) 

where 

dmin(x) - min(dx(wk,kb),dx(wk,qb)), 

while wk-Qß5 does not. When 5.2 is added to better it will cut the 

tree search in p..  (starting at level 2 of the original tree) to i+; 

in p2 nothing is gained.  In r.any positions, however, considerable 

reduction in tree search is gained by this heuristic, and the maximum 

tree depth is cut to 7 (position p2).  5.2 satisfies 3.7 because dmin 

depends only on the positions of the white pieces, dmin also insures 

that 5.2 will be applied only a finite number of times (no more than 

five). 

Now rule 5.2 will obviously fail if 
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1. d (wk.bk) = 2 , or 

2. dinin(p) = 1 . 

If these patterns hold in p , we must turn to tree pruning to make the 

tree manageable. First, all moves leading to positions without quad- 

rants can be eliminated by rejecting q satisfying 

badquad(q) ■ [-i quad(q) V spec(q) V -i hascorner(q) V 

[ (squad(q) is odd) A d(bk ,head(q))=g A badc(q) ]} . 

Bishop moves leading to larger quadrants are already eliminated; in 

addition badquad eliminates some bishop moves leading to smaller 

quadrants.  Few bishop moves are left; these are the ones which hope- 

fully will lead to either a legal head quadrant or a small non-head quad- 

rant in one more move. 

badquad applies only to bishop moves; king moves must also be 

eliminated.  First we reject all king moves such that 

5.3 d (nkjbkyxy^bk) . 

We would also like to reject moves with 

dj.iin(q)>dmin(p) 

because although p.2 is not a measure, since it is a predicate instead 

of a function with integer values, it would be nice to use it like a 

measure. However this condition is too strict; in p, in Figure 5.10 

for example, the move wk-QB6 must be permitted. The condition is 

changed to 

5.^ dmin(q)>? A dmin(q)>dmin(p) 

which works because when dmin(q)>2 we have almost no chance of forming 

a better position with a head quadrant farther down in the tree, so it is 

much harder to terminate the search. 
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When d (wkJbk)>2 it is not always possible to move the white king 

n 
up to the black king.  This is illustrated in p,  in Figure 5.10.  In 

p,  the white king is needed on the side of the quadrant toward the 

center of the board.  If he goes there via KKt^, a tree of depth 8 will 

be required to force better positions, while if he goes via KJ the tree 

5.6 dniin(q)>l A (d (wk,bk)>d (wk,bk) 

V [d (wk,bk)=d (wk,bk) A d (wk,bk>2]) . 
*% r y 
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terminates at depth 6.  In this case we have d (wk,bk)=d (wkjbk) and 

dnin(q)=l . We define 

5.5 d (wk,bk)=d (wk,bk) A d (wk,bk)>2 A dmin(q)>l 

as our final heuristic for rejecting king moves in non-head quadrants. 

In head quadrants there is usually less difficulty in forcing a 

better position since a non-head quadrant is automatically safe.  In 

general the tree searches are  not as long as for head quadrants before 

the addition of 5.2; a depth less them four is average. Position p. 

in Figure 5.11 is em example; this position may occur after the tree 

search from position p,  in Figure 5.10.  A tree of depth 2 is required 

and the first move should be any white king move but wk-K5 or wk-K6, 

The heuristic added to better for non-head quadrants does not apply and 

this is true in general for head quadrants.  Since the trees are of 

manageable length no changes have been made to better. 

Slightly different heuristics are used for tree pruning for head 

quadrants than for non-head quadrants,  badquad is replaced by the 

stronger condition that only legal stage 2 positions are permitted for 

q . This rule eliminates king as well as bishop moves. Other king 

moves Eire rejected by 
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Figure 5.11.    Examples of Head Quadrants. 
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In head quadrants it may actually be necessary to move the white king 

away from the black king. This is shown in position Pp in Figure 5.11. 

It is essential to move the white king to QB5 at this point; the move 

is similar to the one made in p, in Figure 5.10. A tree of depth 5 

is needed from p„ . The correct move is permitted since dmin(q)=l • 

Summing up the additional heuristics in stage 2} we add to better 

5.7 st(p)=st(q)=2 A (squad(p) is even) A d (wk,bk)<d (wkjbk) 

A dmin(q)<dmin(p) 

We add to worse 

5.8 st(p)=2 A [(st(q)=l A [(squad(p) is odd) V badquad(q)]) 

V   (st(q) 2 Am2(p)-m2(q) A cutk(p,q))] 

where 

cutk(p,q) = {[ (squad(q) is even) A(d^(wk,bk)>d (wk5bk) 
'■i P 

V [d (wk,bk)=d (wk}bk,>  A dmin(q)>l 

A d (wk,bk)>2] 

V [dmin(q)>2 A dmin(q)>dmin(p) ]) ] v 

[ (squad(p)  is odd) A dmin(q)>l A 

(d  (wk,bk)>d (wk,bk) 
H P 

V [d (wk,bk)=d (wk,bk) A d (wk,bk)>2])]} 

combines the king move heuristics 5.3, 5.^, 5.5, and 5.6. 

In stage 5, the formal definitions work very well. Considerable 

tree pruning can be gained by adding to worse 

5.9 st(p)=5 A st(q)<5 , 

which will not eliminate all paths to better positions. The tree 

searches have a maximum length of 5, and with the addition of 5,8, a 

width of no more than three moves at any level. 
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In stage k  we are also doing fine as far aj tree length is concerned 

since the tree will only have a depth of 2. We add 

5.10  st(p)=^ A sj:(q)<4 A -i end2(q) 

to worse; even with 5.9 the tree is quite wide but this is not serious 

since it is so short. 

Combining 5.7, 5.8, 5.9 and 5.10 with the formal definitions of 

better and worse we have 

better (p. ft) ■ {st(q)>st(p) v [st(q)=st(p) A mst(p)((l)<rast(p)(p)^ 

V [st(p)=st(q)=2 A (squad(p) is even) A 

d (wk,bk)<d (wk,bk) A dmin(q)<dmin(p)]} . 

worsc(p.q) ■ {st(q)=0 V [st(q)=st(p) A mst(p) (p)<mst(p)(
<l) ^ 

V [st(p)=2 A 

([st(q)=l A ((squad(p) is odd) V badquad(q))] 

V [st(q)=2 A in2(p)=m2(q) A cutk(p, q) ]) ] 

V [itCp)-? A st(q)<5] 

V [st(p)=4 A st(q)<l+ A -| end2(q) ]} . 

These eure the functions used by the program. 

Examples of Program Play 

Our first example will illustrate how the program plays the last 

part of the game.  We will start with the position occurring after 

black move 3 in Capablanca's example (Figure 5.6).  This position is 

the same as p  in Figure 5.7 except that the black king is in KKt2. 

The program would not make the same first moves as are given in 

Capablanca because a search of depth 5 has been made while the program 

will use a depth 2 tree.  We have 
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4. wk-Qß 

bk.KB2 

5. wk-K3 bk-KKt2 

6. wk-KBi* bk-KB2 

7. wk-KKtl+ 

Dk-KKtl 

8. wk-KR5 

bk-KKt2 

9. kb-KKt6 bk-KKtl 

10. wk-KR6 

bk-KBl 

11. qb-KB6 
■ 

bk-KKtl 

12. qb-K? 

bk-KRl 

bk-KKtl 

bk-KRl 

This move gives nL(q)<iiL(p)> 

but it is not as good as the book 

move wk-KB2. 

We have lost one move. 

Moves 7 and 8 are found by a tree 

search of depth 2. 

Again by a tree search of depth 2. 

Again a tree of depth 2. The 

program's move 11 is just as good 

as the book's move 10 (it is a tempo 

move). 

15. kb-KB5 

Ik.    kb-K6 ch. 

15. qb-KB6 mate. 

This example shows that the program plays the last part of the game 

very well.  Its only mistake is move k  and this is not serious. 
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Our next example la taken from Fine (Figure 5.1). Our starting 

position, p  in Figure 5.12, occurs after black move if. The program 

will make different initial moves than the book because of the order of 

move generation (position p2  in Figure 5.12 would result).  We have 

J. wk-QKt6 This move is not nearl: as good as 

the book move or wk-QKt5.  Move 

generation is at fault again. 

bk-Qjö 

h.    kb-Q5 We are now playing differently 

from the book. 

bk-K6 

5. wk-QB7 bk-Q5 

6. wk-QB6 bk-K6 

7. wk-Q? 

bk-(i5 

B. wk-K6 bk-K6 

9. wk-K5 bk-KB7 

10. wk-KB^ bk-KKtß 

n. wk-KKt5 

We need the king on the other side 

of the quadrant. 

Condition dcond prevents the program 

from accepting the position at this 

point (q in Figure 5.12) as better. 

bk-KB8 

12.  qb-QD5 Moves 5-12 are found by a tree 

search of depth 8. The black moves 

are on the longest branch. 
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The program arrives at p  after two moves 

I'rom the initial position in Figure %1, 

4^,  occurs after program move 11; end2(ri, ) 

is true but (lcond(q^) is false, which prevents 

the program from accepting ^  at better. 

Figure 5.12,  Examples of Program Play. 
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bk-K? 

13. wk-KBU bk-Q6 

1^. wk-KB5 bk-QB6 

15. vk-Kh bk-Q? 

16. kb-QB^ 

bk-K8 

17. wk-K3 bk-Q8 

18. qb-QKt4 

bk-Q37 

19. wk-^f bk-QB8 

20. wk-QB5 bk-Q8 

Moves 15 through 16 form a branch 

of length 4  in a tree of depth 6. 

l8.    qb-QKt4 We are now in stage 5. 

n 
21.     wk-QKt3 

Move 21 gives a stage k  position, and the play from this point on is 

essentially identical to the first example. Five more moves are 

required to mate. This means that the program uses 2k  moves to reach 

checkmate from p  in Figure 5.12, while the book uses 22.  Therefore 

the program is playing quite well in spite of the interference caused 

by bad move generation. The moves selected for black vary from ones 

which present white with maximum difficulty (for example, black 

moves k  through 11) to medium difficulty (black moves 12 through 15). 

Similar kinds of black moves are given in the book. The program would 

require about 28 moves to reach checkmate from p2 , so for the entire 

example, it uses six more moves than the book. 

The only place where the program is likely to have difficulty in 

this example is with the tree of depth 8 (moves 5 through 12). 

a 



Fortunately this tree is very narrow. Since the position «t the 

beginning of the tree has a head quadrant, most black moves allow 

white to form a better position immediately. Ther« is one other main 

branch in the tree (wk-QJJ5); this branch would terminate at depth 9. 

This tree provides an  illustration of the necessity of allowing the 

white king to move away from the Mack king. Generally trees from 

head quadrants are short (for example, moves 1? and 18); the one 

exception occurs when the presence of the white king is required on 

the other side of the quadrant, as in this tree. 

One last example is given to illustrate some remarks made about 

non-head quadrftnts. We begin with position p^ in Figure 5.10. 

1. wk-K3 The white king is taking the 

shortest route to the other side 

of the quadrant. 

bk-K5 

2. wk-(^ hk-Qß 

3. wk-Q5 bk-QBl 

h. vk-qßS bk-Ql 

5. kb-KB5 We have not yet reached a better 

position becauce the white king is 

too far awaj/ from the head bishop. 

bk-K2 

6. wk-Q5 

Now we have reached a better position. At move 6, qb-KKt5 would give 

a smaller non-head quadrant, but unfortunately this move was not 

generated soon enough. 
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Evaluation of Program Play 

The program is playing adequately, and the comments made at the 

end of Chapter h  can be applied to this game also. We merely note 

that a second-best move in this game hurts the program more.  Since 

the game is harder, more precision is required for good play. 

The program play is very close to book play in the last part of 

the game. This is not true in the first part. However, the method 

used in the first part was suggested by the book and works well. 
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CHAPTER 6 

BISHOP, KNIGHT AND KING AGAINST KING 

:: 

: 

i 

This end game is one of the most difficult of the classical 

endings. When it is discussed in the chess books, it is broken into 

two main parts. The first part of the game consists in forcing the 

black king to an edge.  Since the mate can only be given in (or next to) 

a corner of the sejne color as the bishop (the black corner in this 

discussion since we will assume that white has the queen's bishop), we 

expect to finish the first part with the black king in the corner of 

opposite color to the bishop (the white corner). Then the second part 

ccnöists in forcing the black king down the edge to the corner where 

mate can be given. 

While the method of play used by the program in the second part of 

the game agrees exactly with the books, in the first part we are forced 

to provide our own heuristics. There are  two reasons for this. First, 

the books only give a limited example of this part of the game; the 

program must be able to handle all black king moves, not just those that 

are most likely.  And although books do make some attempt to explain how 

to play, the procedures described are too local in nature to be ustd 

directly. Figure 6.1 is taken from Fine [19^]; the two patterns 

described are quite powerful, and in his example very convenientjly the 

white pieces axe in a position to make constructive use of them. However 

these patterns are useful in general only when embedded in some global 

heuristic. 
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In order to drive the enemy King back to the edge of the board 
White must make use of two typical positions (see diagram No. 5)«  In 
the first - ^»A - all the points leading towards the center >ire inac- 
Lvssible to the Black King and he cannot maintain the status quo; he 
must retreat. In the second - 5B - the two pieces are cooperating 
beautifully.  Black's King can do nothing better than mark time and 
as soon as the White King comes up he will have to give way. The 
important feature in No. 5B is that the two pieces are diagonally 
adjacent to one another, for it is because of tnis fact that they 
cover so many squares. 

starting from some arbitrary F1osition such as No. 6 the most 
effective continuation would 1 Kt-B5 (No. 5B), K-Q3; 2 B-B6 (No. 5A), 
KHC; 5 K-B5, K-K2; k  K-Q5, K-Bl.  Black is well advised to go to the 

No. 5. Driving the Black 
King back. No. 

, m m fä m 
f/i mm m 

WM    W, t m. m. u 
m « ■ i 

fc « » « 

mumm, 

i m m m ■ ■ ■ i 
m m mm. 

..rong corner, for that is the only way in which he can hold out for 
• ;. appreciable time.  5 IHDSi IMCi2j 6 Kt-K5, K-Bl; 7 K-Br",, K-Ktl; 
6 Kt-Kt.', K-R2; ')  BHa5 . K-KJ; 10 B-Kt8 and now we have position No. \ 
since the fact that Black will be chased along the file rather than 
along the rank makes no difference. 

No.   1; 

fa m m m 
ft ft, it. fä*A it. m±'mm 

WM.    1 i. ■ » ■ 
i 'm, kft VA

l 'ft ft, f/t fft n, mm m 

Figure o.l. Example from Fine, pages 18-20. 
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Stage 0 

Stage 0 as usual contains the various illegal positions which in 

this end game ccopr' ic quite a luxge c     It contai)  ^^Jitions in which 

the black king can take a piece in two moves as well as the usual loss 

in one move.  Since immediate loss or stalemate is obvious we concen- 

trate on describing the other kind of stage 0 position. 

In order to be sure that we discover all illegal positions we 

consider how such positions might occur. First, suppose the black king 

can attack only one of the bishop and knight. Since the bishop has so 

much mobility, it will be able to escape the black king unless its path 

is blocked by the knight. Therefore the knight is also under attack, 

and this case will be discussed later.  The knight does not have as much 

mobility as the bishop and in fact is open to attack if it is in a 

corner.  Examples sure shown in q  and q2 of Figure 6.2.  To avoid 

having to recognize positions like q  and q2 (and distinguish them 

from similar positions in which white is able to protect the knight) we 

assign all positions in which the knight is in the corner to .".tage 1, 

which in this game proceeds the catch-all stage. This insures that the 

program will move the knight out of a corner if it is in one in a starting 

position, and will never accept such a position as better. 

It is also possible for the black king to attack the knight and 

bishop at the same time. The attack must come in one move or white 

will be able to avoid it. We have 

d (kt,qb)<2 A d (bk,qb)<2 A d (bk,kt)<2 . 

(The reader should refer to Appendix A for definitions of basic functions 

and notation.) We also assume that neither the knight nor the bishop is 

^9 
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After bk-KKt2, white will be unable to 
avoid losing the knight. 

After bk-QKt2, white will be unüble to 
avoid losing the knight. 

After bk—Q4, white will be unable to 
avoid loss of a piece. 

After bk—Q^, white will be unable to 
avoid loss of a piece. 

Figure 6.2.  Examples of positions in which black can take a piece in 
two moves. Positions q, and q. are in stage 0, but q 
and qp are in stage 1. 
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susceptible to being taken immediately. If d (qb}kt)=? , there la only 

one configuration of knight and bishop which permits such an attack. It 

is illustrated in q, in Figure 6.2.  If the black king instead were 

on Kk)  K5 or Qß5 he could also move to attack both pieces.  In q, the 

knight is on a white square, and consequently is bearing on a black 

square. This means that it is not able to move to protect the bishop, 

and also the bishop caru :possibly move to protect it.  Since the black 

-| king will threaten both the bishop and the knight, it is not possible to 

simply move a piece out of danger. Therefoie, the white king is white's 

only means of defense.  If the white king is next to either piece the 
«I 

loss can be avoided.  Also, if the white king can come to the aid of 

the knight no loss will occur since the knight protects the bishop. 

So we will lose a piece if 

d (wk,qb)>l A d (wk,kt)>2 . 

If d (kt,qb)=l we have several cases to consider. First we have 

positions like q^ in Figure 6.2 in which the knight is on a white 

square. The black king could also be on ft5 or QB3 and be able to move 

to attack the pieces.  Such a position is similar to the previous case, 

but in q,  the knight does not protect the bishop, so the white king 

must be able to move to protect both pieces if loss is to be avoided. 

Therefore 

d (wk,qb)>2 v d (wk,kt>2 

implies a piece will certainly be lost.  In addition, even if this 

condition is not satisfied white may still lose a piece since the move 

black makes to attack may block the white protecting move. This would 

happen in q.  if the white king were on Q36. 
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with an attack n a piece.  Position q, in Figure 6.3 is en example. 

There is no danger that this position would be chosen by better in some 

later stage. Therefore it is not necessary to recognize it. 

qs  ^  q' 

D 
Positions q..  and q^ of Figure 6.3 are examples of d (kt,qb)=l 

with the knight on a black square.  In such positions the bishop is pro- 

tecting the knight.  If the bishop were not on an edge, it would be able 

to retreat from the black attack and continue to protect the knight.  If 

in q,  or q^ we had d (wk,qb)=l , then the white king would prevent 

the black king from moving into the attacking square. Also not all the 

squares two away from the bishop are forbidden to the black king; for 

example in q.. only from squares Q6, K6, and KB6 can the black king 

force the loss of a white piece. As usual, we do not worry about 

d (wk,qb)>2 since we will handle that through stage 1. All of the 
q 
various cases of positions two black moves away from the loss of a 

piece will be recognized by function badpos(q) . 

In the positions shown in Figure 6.S^ and also in q..  and cu in 

Figure 6.^ the black king causes difficulty for white by attacking 

pieces.  It is also possible for black to combine a threat of stalemate 

: 

Stage 1 

As mentioned during the discussion of stage 0, stage 1 is inserted 

before the catch-all stage because this is a way of using simple test^ 

to avoid a lot of pattern recognition. Stage 1 contains all positions 

with the knight in a corner and also all positions where 
LJ 

d (wk,qb)>d (bk,qb)+l 

D 
D 

da(wk,qb)>da(bk,qb) 
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If the black king moves to K7, white will 
lose either the knight or the bishop. 
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If the black king moves to KKtl, then white 
will lose the bishop. 

After the black king moves to KKtl, white 
will either lose the bishop or give u 
stalemate. 

: 

i 

Figure 60. More examples of positions in which black can force a draw 
in two moves.  Position q and q^ are in stage 0; position q, would never 
be accepted as better, so we need not worry about recognizing it. 
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provided such positions are not already in stapie 0. All of these 

conditions are recognized by function sta^el. 

There are many positions p which are not in stage 1 but all of 

whose successors are.  In such a p the black king is attacking the 

knight and white must move the knight away to protect it.  It may then 

happen that the black king is closer to the bishop than the white king.is, 

giving a q in stage 1. We will not worry about recognizing either p 

or a q which preceeds this p because the strategy in the later 

stages is equipped to handle such a p . Therefore p remains in the 

stage it should be in (generally stage 2)} and  we do not break rule 

5.7 although we do violate rule 5.9. 

of the board".  One result cf following this rule is that the program 

dcent(x) = min (d(wk ,sq)) ,  S -- [$, Q5, Kk)  K5} 
sqeS      X 

There is no difficulty in showing that rule 5.7 holds for dcent. 

since this function depends only on the position of the white pieces. 

We do expect to break rule 5.9 occasionally by having all successors to 

5. Page 109. 

• 

Stage 2 

Since stage 1 has other uses, stage 2 is the catch-all stage whose 

presence is recognized by the absence of all other stages. Position 6 

in Figure 5.1 is in stage 2. A measure will be given for this stage. 

This measure is based on the statement in Capablanca [1955] which says 

that we should begin this end game "by advancing the king to the center 

ö 
will move wk-QB6 or wK-QB5 in position 6 in Figure 6.1. There are four 

squares in the center of the board; they are Q^, Q5, Khf  K5. So we 

define as our measure for stage 2 the function 

:: 
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some p be in stage 1.  To use dcent as a measure in worse, we must be 

sure that it is never necessary to move the white king away from the 

center of the board.  Although the black king can move into a position 

p which would be in stage 0 if it were a position with black to move, 

white will always be able to avoid stage 0 without moving the white king 

away from the center.  Since this p is in stage 2, we know that the 

knight is not in a corner, and d (wk,qb)<d (bk,qb)+l . An example of 

such a position is given in p.  in Figure 6.k.    We will avoid the loss 

of a piece by moving the white king to K^ and then the knight to KB3. 

p  is representative of such stage 2 positions; if it is not possible 

to move the knight immediately, there will be a king move which will 

enable us to move the knight and protect the bishop on the next move. 

This king move will generally give a position q in jtage 1; the point 

is, it is not necessary to allow the white king to mcve away from the 

center (such a move would probably give a stage 2 position). Therefore 

we can use dcent as a measure. 

Stage 3 

The positions in steige J have a definite pattern dependent on 

recognizing that the black king is contained in a certain area of the 

board. A size ■ can be assigned to this area and as usual we will 

attempt to shrink s .  However s cannot be used as a measure.  It can 

be used like a measure in better; that is 

st(p)=st(q)=5 A s(p)>s(q) 

will mean that q is better than p . But s cannot be used in worse 

because in a few cases this part of worse 
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The black king is inside areas of size 5 and 6« 

Figure b.k. 
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st(p)=st(q)=5 A s(p)<s(q) 

would eliminate the only inove(3) which the program must make to proceed 

_ correctly. When this happens, it is because the pattern recognition on 

** q is not sufficient to define the real value of s(q) .  Since such 

violations occur infrequently it is of course possible to add pattern 

recognition to assign the proper value to the offending q .  However 

this approach is not taken. First of all, the pattern recognition would 

have to be extremely detailed to define s(q) correctly and it is not 

worthwhile to do all this analysis.  As long as s(q) is never smaller 

than it should be we can be sure the program will not accept q for the 
t 

wrong reasons.  Also s satisfies rule 5.7; once a q has been accepted, 

we know that for any p which follows from it by one black move, 

p. either p is in a higher stage than q or if p is in stage 3 then 

s(p)<s(q) .  Therefore the program will be able to proceed consistently 

even if s(p)  is larger than it should be. 

Second is the fact that throughout stage 5 we are liable to break 

rule 3.9, generally by having all successors to a  p in stage 3 in a 

., lower Suage, and when worse is occasionally incorrect this is only a 

special case of the overall problem.  As explained in Chapter 3, rule 3.9 

is useful but not necessary, and in this end game the amount of pattern 

recognition required to satisfy rule 3-9 is not worthwhile. 
- 

Briefly, the reason for the violation of rule 3.9 is the following. 

In the preceding games the black king could escape from an area in at 

most one way, but in this game the black king will be able to escape 

from the area defined for stage 3 in many different ways.  Some of these 

will force a larger area and so must be prevented, but the majority will 
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put black in a poor position from which he must retreat or white will be 

able to ultimately ''confine" the black king to a smaller area of the 

board,  ''Confine" is put in quotes here because of course the same kind 

of escape may be available to black in the smaller area.  White should 

take advantage of such moves; the problem is that the smaller area may 

not be recognized right away, and in the meantime we may break rule 5.9. 

First let us see what kind of area we can use to define stage 5. 

We must partition the board glooally or we might not be consistent in 

our evaluation of successive positions (satisfy rule 5-1).     Therefore, 

the bishop must be the primary piece involved in defining the area, 

since it is the only white piece which can hold a line through the 

entire board.  In this game we will deal with halves rather than quarters 

of the board. For any bishop position there are two diagonals, and each 

diagonal defines areas on both its sides. Therefore there are four 

different areas to consider.  (if the bishop is in a corner there are 

only three.) 

We assign a size to each area in a very simple way. An area is a 

right triangle in shape with the hypotenense the bishop diagonal. It 

may be necessary to extend the board to complete the triangle. The 

other two sides are edges of the board; call them edgel(x) and edge2(x) 

Then the size of the area is 

6.1 de(qbx,edSel(x))+de(qbx,edgeS(x)) , 

for de as defined in Appendix A.  x..  in Figure 6.4 provides an illus- 

tration of areas. For the bishop diagonal as drawn, the area above the 

diagonal has size 5, and tne area below has size 9. The other diagonal 
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defines areas of sizes 6 and 8. In sta&e 3 we are only interested in 

areas of size less than or equal to 6. 

So far we have only discussed how to assign a size to an area. We 

have not said which area is used to represent a position. Making this 

decision is a complicated procedure.  As explained before, the black king 

will have many points of escape from an area in this game. We do not 

want to block all escapes but only those which would force a larger aose WJ 

area. However we must satisfy rule 3.7. To accomplish this we insist 

that an area in q holds if all J>he successors of the black king are 

in it, while in p we recognize the area if it contains the black king. 

Then we can be sure that after one black move the program will be able 

to see the same area which it used as the basis for accepting q , 

Now suppose the black k^ng is placed on the board. The black king 

is necessarily inside one area, and sometimes inside two.  For example, 

in Xp in Figure 6.hf  the black king is in an area of size 5 and an 

area of size 6.  We must decide which of these areas to use.  Obviously 

we want (l) to assign the smaller area if possible and (2) to be sure 

the black king cannot escape from the assigned area i-to a larger one. 

We have already stated that the black king cannot escape in one move in 

q ; however it may be able to escape in two moves in q and consequently 

in one move in p . Since it is difficult to calculate whether the knight 

can be brought into position to block an  escape, we rely mainly on the 

white king. 

The way we decide about an area is as follows. First we use the 

position of the black king relative to the bishop to propose an area. 
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inside(p,a) = location(bk ,a)>0 

The definition of inside for q insures that the black king must move 

inside the area, and this will then be recognized by inside for p . 

100 

This condition is different for positions p and q .  To do this we 

define a function which selects areas: 

area(x,C) = (the area on the board whose right angle is corner C). 

For any area a , c(a) produces the corner which is the right angle 

.of a .  Now we define 

dc(sq,a)=de(sq, fileedge(c(a)))+de(sq,rankedge(c(a))) 

where sq is some square on the board, and fileedge and rankedge 

produce the appropriate rank and  file containing c(a) . Then 

3JLze(x,a)=dc(qb ,a) 

is the correct definition of the size of the area and  agrees with 6.1. 

This function dc is basic to the kind of area with which we are  concerned 

because it has the same value for any square on a diagonal parallel to 

the boundary of the area. We can also use it to determine where a 

square sq is with respect to an area a by 

locat>iori(x, sqta)=3ize(x,a)-dc(sq, a) . 

If location(x,sq, a) is positive then sq is inside a ; if it is 

zero sq is on the boundary of a and  if it is negative sq is 

outside a .  location is also used to tell how far the diagonal con- 

taining the square is from the boundary. 

Let sv:c(x) be the set of squares to which the black king can 

legally move in x .  Now we can define for area a 

11 inside(q,a)  ■ [ location(bk ,a)> 0 A 

Vr(re_£ucc(q) 3 location(r, a)>0) ] 

. 

; 
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Once an area has satisfied inside we are ready to make further 

tests on the positions of the white king and bishop.  First we insist 

that the bishop be placed toward the center of the boundary of the area. 

Recall that any bishop position on the boundary of a given area will 

produce the sane value for size.  The condition is 

bpos(x,a) ■ [d(qbx,c(a))<(size(x,a)-2)]  . 

The reason for this condition is that when the bishop is placed toward 

the center of the boundary it is easier for white to form a smaller area 

II 
and also to control the black king if he tries to escape.     If 

size(x,a)<^  ,  no squares would satisfy bpos and in fact areas of size 

less than h are not used. n 
If the bishop is in an acceptable position, the program will examine 

the position of the white king and its relationship to the bishop and 

black king. First the white king must be outside the area, i.e.. 

location(x,wk ,a)<0 . 

Also we always have 

6.2 d (wk,qb)<2 

and the white king must be close enough to the bishop to protect it; 

otherwise we would be in stage 1. The final condition on the white 

king position is 

k£Os(x,a) ■ (d(wk ,c(a))<size(x,a)) 

which says that the white king must be fairly centrally located. These 

conditions are illustrated in Figure 6.5. In x.  and x^ all possible 

squares satisfying kpos and location will also satisfy 6.2, but some 

squareo may  be eliminated in x^- .  Summing up all the conditions 

stated so far, we have 
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figure 0.5.     Legal squares for the bishop are marked    B;     for 
the white king they are marked    K. 
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safe(x,a) = {inside(x,a) A location(x,wk ,a)<0 A 

bpos(x,a) Ak£Os(x,a) ^ d (wk,bb)<2) . 

These conditions eu:e correct as far as they go, but we have not 

paid any attention to the knight. Actually we want to use the knight 

to help force a smaller area, but when the knight is not being used it 

possibly will be a hindrance. There are three ways in which the knight 

can interfere; it can block the white king or bishop, or it can force 

white to lose a move by being open to black attack. Examples of the 

three different types of interference are shown in Figure 6.6. All of 

these examples could arise as the result of one black move from a 

position q which has an area satisfying safe.  None of the kinds of 

knight interference shown in Figure 6.6 is bad since white can always 

either maintain the same area or find a smaller one very shortly. 

Therefore there is no reason to forbid the kind of interference shown 

in these three positions. 

We do want to forbid certain kinds of knight interference however. 

We use the same guiding principal for eliminating knight positions as 

we have all along; we cannot allow the black king to force a larger area. 

There are two kinds of bad knight positions. These are shown in q, 

and q2 in Figure 6.7.  In both cases the black king will be able to 

attack the knight in one move and thus escape toward the center of the 

board. Even so white has no trouble controlling the escape when the 

bishop satisfies 

d(qbx,c(a))< size(x,a)-3 , 

because this insures that the white king will be able to block the 

escape (since in q it is protecting the bishop). The patterns shown 
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The knight is blocking the white king. 

The knight is blocking the bishop. 

The knight is being attacked. 

Figure 6.b. Examples of Knight Interference. 
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Figure 6.7.    Forbidden Knight Interference. 
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in q..  and q^    are the only bad ones in q (with minor variations) 

and are recognized by 

badXt(q.a) s {d (kt,qb)-3 A d (bk,qb)=l A d (bk,kt)=2 
H, H ^A 

d(qb .c(a))> si2e(q.a)-3 A location(q,kt ,a)=2 

V location (q,bk ,&)=<)  A location (a. let ,«)-»5)) . 

More pattern recognition is required in p because we must be prepared 

for bad initial positions as well as results of one move from a q 

satisfying badkt .  Position p, and    p.  arc examples.  Both these 

positions canno* possibly have come in one black move from a position in 

which the area of the appropriate size was recognized. We have 

badkt(p,a) = floseknie^' (p) A locatio:.(p.bk ,a) = 1 

A location(p,kt f 
  '  p- 

A[(d (wk,bk)=3 A d(bk .c(a))=3) v p  p p' 

(d (w^bk)-^ A d(bk ,c(a))^ A 

locationfpjWk ,a)=-'')]) 

There remains one more knight condition to define. This case occurs 

only in areas of size k)  and is illustrated by q  and p  in Figure 6.8. 

In p2 the black king is able to escape from the area because the only 

move to block the escape, wk-K6, gives stalemate,  p  is a successor 

to q .  We recognize this pattern by 

badi+(p,a) ■ {size(p,a)=U A location(p,kt ,a)=3 

A location(p,bk ,a)=l A d (bk,kt)=3) 

badU(q,a) ■ (size(qta)- A location(q,kt ,a)=3 

A d(bk(i)c(a))=2) . 

Now we can give a complete description of the conditions which an 

area must satisfy to be acceptable. We combine safe, badkt and h&dk into 
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x, is an example of a stage 4 position. 

Figure 6.8. 
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Position x, in Figure 6.8 is in stage k.    The black king is 

Stage ^ 

Stage 5 controls the forcing of the black king down the edge of the 

board toward the corner where mate can be g'ven. The play of the 

pieces in this stage must be very precise. The program follows closely 

the example from Capablanca [1955] given in Figure 6.9; it is interesting 

108 

goodarea(x,a) = (aafe(x.a) A-i badkt(x,a) A -i bad4(x<a)) . 

It is possible that more than one area in a position will satisfy 

goodarea.  s will be the size of the smallest such area. Let C be 

a set containing the four corners of the board. Then we have 

s(x) = min((size(x,a) | 3 c(ceC A a=area(x,c) A goodarea(x,a))) (J (15)) . 

If no good area exists in x.s(x)-lb and x is in stage 2: otherwise 

s(x)<15 and x is in stage 3. 

n 
Stage k 

This stage is designed to be intermediate between stages 3 and 5. 

It is possible for the program to move into stage 5 (or even stage C) 

directly. However, if black plays the best defense he will move towara 

the white corner and in that case the program will need stage k  for at 

least two moves. 

:: 

• 

D confined to the edge and completely controlled by the bishop and king. 

Function revcornpos(x) recognizes the pattern of these three pieces. 

Obviously revecrnpos satisflei 5.7 and 3.9. 

It is the position of the knight which determines that stage 4 

rather than stage 5 holds. The bishop and king maintain control of the 

black king until the knight is in a position for stage 5. D 

B 
D 



•i 

Ä    Ä    tM    7m Wm   wm   '/m   wm ■ ■ ■ ■ 

L/JAV 

The second and last part will consist in 
driving the Black King now from (^R8 to QRl or 
KR8 in order to mate him. QRl will be the 
(juickest in this position 

10. Kt-Kt6ch K-R2 
11. B-B7 K-R5 
12. B-Kt8 K-RU 
15. Kt-Q5 K-R5 

I give as text, and whic 
cause it is more methodi 
these endings, by using 

Black tries to make for KR1 with his King. 
White has two ways to prevent that, one by 
1^ B-K5, K-Kt6; 15 Kt-K3, and the other which 

h I consider better for the student to learn, Le- 
cal and more in accord with the spirit of all 
the King as much as possible. 

15. 
16. 

K-B5i 
Kt-Ktif 
B-BU 

K-Kt6 
K-B6 
K-KtC 

17- 
IB. 

B-K5 
K-B4 

K-R5 
K-RU 

19. 
20. 
21. 
22. 

B-B7ch 
Kt-Q5 
B-Kt6 
Kt^Kt2ch 

K-R5 
K-R6 
K-R5 
K-R6 

25. 
21+. 

K-B5 
K-B2 

K-R7 
;• -1,6 

25. 
26. 
2?. 
28. 

B-B5ch 
Kt-Q5 
B-Kt4 
Kt-Blch 

K-R7 
K-R8 
K-R7 
K-R8 

29. B-B5 mate 

It will be seen that the ending is rather laborious. There are two out- 
standing features:  the close following by the King, and the controlling 
of the squares of opposite color to the Bishop by the combined action of 
the Knight and King.  The student would do well to exercise himself 
methodically in this ending, as it gives a very good idea of the actual 
power of the pieces, and it requires foresight in order to accomplish the 
mate within the fifty moves which are granted by the rules. 

Figure 6.y. Example from Cap'tblanca, pages 110 and 111. 
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n to note that this example is almost identical to the description of 

this part of the end game in all the other chessbooks we have examined. 

During the play of this part of the game the white pieces must 

keep the black king close to the edge, and at the same time must force 

it toward the black corner.  To simplify the pattern recognition, we 

limit the definitions, only recognizing enough positions to make the 

stage playable.  Stage I? will not contain all the positions occurring 

after white moves in Figure 6,9. As in stage 5, we will violate rule 

3.9, but in this stage we can define a usable measure. 

First of all we look for an edge e which satisfies the following 

predicates.  Let blc(e) be the black corner on edge e . Then we have 

6.5 de(bk ,e)=0 . 

6.^ de(wk ,e)=2 A (3< dc(wk ,blc(e))<7) . 

D 
D 

6.5 de(qbx,e)^2 v d(qbx,blc(e)>d(wkx]lblc(e))) , 

Rule 6.5 says that the black king must be on the edge. Rule 6.k says 

that the white king must be on the .Tile/rank two away from the edge 

and also limits its position on that file or rank. For example if e 

is the QRfile, then the white king must be on the QBfile in one of the 

following squares: Qß2, QB5, QB^, Q35, QB6, Rule 6.5 prevents the 

bishop from interfering with the movement of the white king down this 

file. 

It is relatively easy to use the bishop and white king correctly 

in this game; the knight is a more difficult piece to control. For 

example the knight is the only piece which can be used to deny the black 

king a white square on the edge.  If it is used to deny the black king a 

Q 
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black square on edge it piobably will not be available for its correct 

use when it is needed. We adopt the following stringent condition: 

6.6 (onblack(kt ) A de(kt ,e)=l) v (-1 onblack(kt ) A de(kt ,e)=5) . 

Function cnblack(sq) is true if the square sq is black. 6.6 allows 

the knight to bear only on white squares on the edge, and only on black 

squares on the file/rank next to the edge.  One result of this is that 

we will be sure the white king is actually being used (once functions 

conf and el are defined) since it is the only piece which can bear on 

white squares in the file/rank next to 'vhe edge. Let function 

eposs(xte) be true if rules 6.5 through 6.6 are satisfied. 

In addition to rule 6.6, we also must be sure that the knight is 

close enough to the black king to be used effectively. First we must 

define a new distance function fr(,iql,sq2) which equals the difference 

in files between sql and sq2 plus the difference in ranks between 

sql and sq2 . For example ix p in Figure 6.10, fr {bk,kt)=4 . 

Then we have, for edge e 

ktpos(p.e) = ([onblack(kt ) A fr (bk,kt)<2] v 

[-1 onblack(kt ) A fr (bk,kt)<5]} 

ktpos(q.e) = ([onblack(kt ) A d (wk,kt)<d (bk,kt) 

A d(bk ,blc(e))-^<d(kt ,blc(e))<d(bk ,blc(e))+l] 

V [-1 onblack(kt ) A fr (bk,kt)=5]) . 

This condition, for the knight on a black square, prevents the knight 

from denying white edge squares to the black king from a position above 

the black king, because in that case the knight could not be used on 

the next move to keep the black king confined to the edge.  The part 
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of ktpos which se^rs d (wk,kt)<d (bk,kt) prevents the bishop from 

being used when the white king should be. 

So far we have defined the relationships between the white pieces, 

but we have not said exactly how they should control the black king. 

There are two parts to this control.  First the black king must be 

prevented from escaping from the edge.  A small escape may occur, as 

in black moves lk-l6  in Figure 6.9, but we must be sure no larger 

escape is possible.  For succ(x) the set containing the legal succes- 

sors of the black king in x , we have 

conf(p.e) s Vr[resucc(p) 3 (de(r,e)=0 v fr(bk ,r)=2)3 

cunf(q,e) = Vr[r€succ(q) ■Dde(rJe)=0] . 

conf is only concerned with the squares labeled XI, X2 and X5 in p,. 

in Figure 6.10.  In q both squares are denied to the black king in 

p only X2 is denied. 

The control of squares XJ, Xh)  X5 and X6 is measured by 

function el .  The function determines the amount of control the white 

pieces have on the black king from above.  To define el , we need 

function bears(x,X) which is true if the white pieces in x bear on 

square X , or if X is not on the board.  In the following definition 

XN stands for a function with arguments  (position,edge,N) which 

produces the appropriate square, or NIL if the square is off the board. 

onblack(NIL)=NIL .  The following definition assumes that conf is 

satisfied.  We have 
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el(p0 ,QRfile) = 0 and dedge(p„) = U. 
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Figure 6.10. Examples for Stage 5. 
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el(p,e)  = 0    if    [bears(p,X4) A (onblack(X5) V bears(p,X5)) ]   . 

■ 1    if    [-, bears(pjXM  n bears(ptX3) 

A bears(p,x6) A (bears(p,X5) V onblack.(X5)) ]  . 

n 
=  2    if    [-, bears(p,xU)  A bear£(p,X5)  A -i bears(p,X6) 

A (bearp(p,X5) V onblack(X5)) ] . 

= 3 otherwise. 

el(q,e)=0 if [ bears (q, X4) ] . 

■ 1 if [-1 bears(q,XU) A bears(q,X6) 

A (orblack(X3) V bears(q,X5))] . 

= 2 if [bears(q,X5) A -\ bears(q^) 

A -7 bears(q.x6)] . 

= 3 otherwise. 

el(x,e)<3 means sufficient control from above exists in x .  Combining 

this with conf, we have in q that the black king must be confined to 

the edge.  In p it cannot escape the edge into X2 , the square next 

to its present position; rule 3-9, may be violated at this point.  If 

it can escape above, the escape square must be black. This is necessary 

to accomodate a position like the one in Figure 6.9 after blacx move 18. 

A white square off the edge is not permitted to the black king, even in 

two moves.  Only the white king can control such a square.  Values of 

el are given in Figure 6.10 for positions p  and p^ . 

Finally there are tvo positions p which satisfy all the conditionr 

given so far, but cannot be handled bi the ordinary rules. They are 

illustrated by p, and p in Figure 6.10. The problem is one of 

parity; if identical positions to p, and p, occurred farther down 

on the same edge, the bishop would be able to make a move while 
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continuing to bear on the same edge square. We recognize p, and p, 

by badedge(p,e) , and badedge(q,e) ■ false for all q . 

ONow we can give a complete definition of a good edge.  Let E be 

a set containing the four edges of the board.  Then we have 

edge(x) = e   if [e£E A eposs(x,e) A ktpos(x,e) A conf(x,e) 

Ael(x}e)<3 A -i badedge(xte)] . 

= NIL if no such e exists. 

A position x is in stage 5 if edge(x) is not null. 

Next we define a measure for stage 5. This is an indicator of how 

much access the black king has to the white corner. For p we can use 
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d(bk ,blc(edge(p)))+el(p,edge(p)) . For q we must make some adjust- 

ments in this formula. We define 

adiCqje) = -1 if [el(q,e)=0 A 

(the black king is in check in q)] • 

= +1 if [ei(q,e)=2 A onblack(bk ) A -i onblack(kt )] . 

■ 0  otherwise. 

acy_(p,e) = 0 

Then wc have 

dedge(x)=d(bk , edge(x)) +el(x.edge(x))+adj(x,edge(x)) 

and dedge is a measure for stage 5. For example in p  in Figure 6.10, 

edge(p1)= QRfile and dedge(p)=5 . Only kt-QKt4 will give a q in 

stage 5, and dedge(q)-^ . Therefore this q will be accepted by 

better. For either black king move in this q , we will get a p with 

dedge(p)=4 . p2 in Figure 6.10 is one of these successors. In p^ , 

wk-QB5 and qb-K5 give positions in stage 5 with dedT:e=4 ; however 

qb-QB7 will give dedge=3 . 
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It is not difficult to show that edge and dedge satisfy rule 5.7. 

For edge, the only condition which presents any difficulty is el and 

the value of el determines dedge.  We must consider cases.  If 

el(q,e)=0 , then the black king must move toward the black corner, 

giving el(p,e)=0 or 1 , depending on whether the black king was in 

check in q .  In either case dedge(p) = dedge(q) .  If el(q,e)=l 

and the black king moves down the edge then there is no problem and 

el(p,e)=2 ; if the black king moves away from the black corner, we have 

a position like Pp in Figure 6.10, with el(p,e)-0 . There is no 

danger that a white square off the edge and above is available to the 

black king in p , because this iu expressly forbidden in q .  Again 

we have dedge(p)-dedge(q) .  If el(q,e)=2 , we must have a position 

like q  or q^    in Figure 6.11.  The black king can move down only 

in q , and we will obviously get el(p,e)-2 and dedge(p)<dedge(q) ; 

if the black king moves up in q we will get el(p,e)=:l or 2 

depending on adj(q) .  In q , with adj(q )^1 , we get el(p,e)=2 , 

while in q^ , with adj_(q2)=0 , we get el(p,e)=l .  In either case 

dedge(q)=dedge(p) . Therefore all of rule 3-7 is satisfied. 

We cannot hope to satisfy rule 5.9 because sometimes a p will 

have all successors in a lower stage.  For example this occurs after 

black move 15 in Figure 6.9. As explained before, this is not critical 

to the working of the program. The reason we can use dedge as a 

measure in this stage is because there is no error in the evaluation 

of dedge, and if dedge(q)>dedge(p) , there really has been a loss of 

control. 

116 

0 
n 

Q 

■ 

D 
II 
0 

11 
Q 

0 
a 



:: 

:: 

■ 

:: 

D 

■j 

war. « 

mm mm m m m m i mm u , 
«...   v/M 

^^&^ 

VmVm „M m,,'m.. fm 

m 'm'm id. A m, ■ ■ ■ 
j mm. ■'§„. 

■ ■ a, « 
■    «AM. 

WA 
f« »« %^        W, if, g » a 

PU 

"■fea 

el(q  ,QRfile) = 2 and ded£e(q  ) = 5. 

^.(^»QRfile) = 2 and dedceCgJ - k. 

For stage 6, the bishop must be in a square 
marked X , and the black king in a square 
marked Y; the white king must be as shown. 
The position of the knight is not important. 

kt-QBl+ preserves the area and protects the 
bishop. However, d (wk,qb) > d (bk,qb), 
so q is in stage 1. 

Figure 6.11. 
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Stage 6 

Stage 6 is similar to stage h  in that the white king and bishop 

control the black king, while the knight is maneuvered into position 

for the next stage (checkmate).  Position x  in Figure 6.11 is an 

example of a stage 6 position.  The relative positions of the white 

king and bishop and the black king are recognized by cornerpos(x) , 

Obviously, cornerpos satisfies 5.7 and 5.9. 

Formal Definitions of better and wurse 

Now we can give the definitions of stages and measures.  The 

stages are 

x € stage 0 = ((x is a position with black to move) A 

[(x is stalemate) V (the black king can take a piece 
» 

in one move in x) V badpos(x)]). 

x £ stage 1 ■ stagei (x) . 

x e stage 2 ■ (-i stagel(x) A s(x) = 15} . 

x € stage 5 ■ H stagei(x) A s(x) < 15) . 

x £ stage h m  revcornpos(x) . 

x € stage 5 ■ edge.'A ) 

x £ stage 6 ■ cornerpos(x) 

x £ stage 7 = x is checkmate. 

The measures are 

m2(x) ■ dcent(x) x£ ^tage 2. 

mAx) = dedge(x) x € stage 5. 

i.U) = 0 x e stage i, i = 0, 1, 5, k4  6, 7 

D 
D 

D 
D 
D 
] 

Q 

Q 

a 



: 

: 

:: 

■; 

: 

■ 

.: 

:: 

:: 

] 
] 
:i 

] 
Q 

] 

Addition;: to better and worse 

The formal definition of better is grossly inadequate only in 

stage 3.  In the other stages additions may be needed in worse. No 

changes will be made in stage 1 since it is very short. 

In stage 2 when dcent(p)>C we ordinarily expect a tree search 

of no more than depth 2.  If the tree search is longer, this will mean 

we are moving the knight out of danger and so the tree will be quite 

narrow.  When dcent(p)=0 the tree may be deeper, sii ce several moves 

may be required to establish s(q)<l? . We can eliminate many bishop 

moves by 

6.7  st(p)=2 A st(q)<2 A qb^qb  A d (wk,qb)>2 A (dcent(p)=0 V st(q)=2) 

6.7 is defined for all values of dcent(p) because when dcent(p)>0 , 

we sure not interested in bishop moves except to protect the bishop. 

There will always be time to make these protective moves without 

violating 6.7 because if there were not, we would be in stage 1. 

Stage 3 may require more than 20 moves. We immediately add to 

better 

6.8 st(p)=st(q)^5 A s(q)<s(p) 

because as previously noted the difficulty with s as a measure 

involves worse (it violates rule .3.9 but satisfies rule 5.7 which is 

the critical one for better).  However even with 6.8, more than ten 

moves may be needed to force a smaller area.  Both the length and the 

breadth of the tree search must be decreased.  In the following dis- 

cussion ar(s(x)) gives the area for which s is the size. 

We can eliminate many moves by adding to worse 
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6.9  {st(p)=3 A st(q)<3 

A (d (wk}qb)>2 V [st(q)=l A -i ktspec(p, q) ]) ) 

where 

ktspec(p,q)= {d (kt,qb)=:l A location(p,kt Jar(s(p)j)=0 

A losebishop(p; A d (wk,kt)=l A fr (wk3qb)=3 

A wk -wk A qb -qb A -i onblack(kt )} . 
p  q  H p H q     v  q^ 

ktspec recognizes a position like p,  in Figure 6,11.  All moves but 

kt-QB^ will be rejected at depth 1 since either we would have a q in 

stage 0}   or d (wk,qb)>2 .  The last three requirements of ktspec 

eliminate moves farther down in the tree. 

6.9 does not provide sufficient pruning to permit the program to 

handle a tree of depth 10. We can shorten the tree by considering how 

the program must move to force a smaller are?..  It does this by co- 

ordinating the action of the three nieces. We recognize certain of the 

patterns involved by means of function v defined for x in sta^e J, 

We have 

v(x) - 1 if -1 ktvl(x) 

= 3 if ktvl(x) A -i ktv2(x) 

= 5 if ktvl(x) A ktv2(x) 

where 

ktvl(x) ■ (location(x.kt ,ar(s(x)))=-2 

A d(ktx,c(ar(s(x))))=s(x)) 

ktv2(x) ■ ([s(x)=^ A d (wk,kt>l] 

V [s(x)>4 A dx(qb,kt)=5 A dx(wk,kt)=5 

A dx(wk,qb)=l]) . 
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I 
I 
a Figure 6.12 gives examples of v=5 and v=5 , for s=5 .  We can use 

v by adding to better 

6.10  st(p)=st(q)=5 A s(q)=s(p) A v(q)>v(p) . 

6.10 cuts down the depth of tree search in almost all cases to a 

maximum of 6. This maximum is exceeded when the black king is able to 

escape from the area in p .  This escape will either result in a 

smaller area, or will quickly be blocked. In the latter case, the moves 

used to block the escape must be added to the moves required to increase 

0 
D 
D 

D 
ö 
0 
0 
] 

the value of    v .    Position    p,     in Figure 6.12 is an example:   a tree 
5 

of depth 8 is required. We can reduce this as follows.  We define 

function poss(p) which is true if the nlack king can escape in one 

move from p . Then 

6.11 st(pj=st(q)=3 A s(p)=s(q) A poss(p) A ktposs(p,q) 

can be added to better. Function ktposs handles a position like p. 

in Figure 6.12. If the program simply accepted any q in stage 3 

with the same size area, then it would accept one with the knight still 

on the boundary of the area, so the whole tree would have to be repeated. 

ktposs will reject such a q . 

The addition of 6.11 to better insures a maximum depth of 6 for 

trees in stage 5. Considerable pruning will be needed before the 

program con handle these trees.  As an aid to pruning we introduce 

function si for positions q in stage 2.  sl(q) is the size of the 

smallest area a in w^ich 

6.12 inside(q,a) A-i badkt(q,a) A -i bad4(q,a) 

holds.  sl(q)=l5 if no area in q satisfies 6.12.  If s(q)=15 and 
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sCp,) = 5, v(p ) = J, The knißht is guard- 

ing part of the boundary of the area, which 

frees the king so it can force a smaller area. 

S(P2) = 5, v(p2) = 5. The king must do the 

forcing on the part of the boundary away 

from the knight. 

s(p_) = 5 and v(p,) ■ 1. White must move 

the knight (to QBU) and the black king OM 

escape to QKt6,  poss(p ) is true.  If the 

king were in K6, it would be unaDle to later 

block the escape and the position would be 

in stage 2. 

s(p, ) = 5 and vCp^) - 1 and poss(p^).  If 

after wk-Q5 and bk-QKt5, then wk-^, the 

resulting q will be rejected by ktposs. 

Figure 6.12. 
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sl(q)<6 , this means either bpos or kpos failed for the area.  One 

possibility is that sl(q)=5 (bpos cannot be satisfied in this case). 

When st(q)=2 , we look at s_l(q) .  If £l(q)<s(p) either white 

is blocking an escape by forcing a smaller area, in which case 

sl(q)=s(p)-l . or white is trying to make a smaller area by moving the 

bishop toward the corner, giving sl(q)=s(p)-2 .  Often such a move is 

wasted because the black king will easily escape.  When s(p)=4 we 

eliminate both kinds of moves; in addition we reject the second kind 

when sl(q)=3 unless v(p)=5 (in this case it is an interim move to 

stage h).    We also eliminate positions with unlikely king locations. 

We reject all positions satisfying 

badsmall(p,q) = (s(p)=4 V ls(p)=sl(q)+2 A 

([sl(q)=3 A v(p)<5]  V location(p,wkq,ar(s(p)))A 

v4(Tft ,e(jorU(p)))>3)l] . 

We divide the remainder of the discussion of s_t(p)=5 into two 

parts: v(p)=l and v(p)>l . For v(p)>l , we can be very concise in 

our description of bad moves. When v(p)=5 we refuse all moves such 

that 

6.13  (s(q)=s(p) A v(q) = l) V (st(q)=2 A sl(q>s(p)) . n ,   -      _ 
We permit s_t(q)=2 only if sl(q)=s(p) .  This occurs when the white 

king has moved into the area to try to force a smaller area without the 

aid of the knight.  Position p  in Figure 6.15 is an  example of a 

place where such a move should be made. Again this kind of move will 

often be wasted since the black king can easily escape. We reject all 

such q satisfying 
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wk-QB6 is the best move, and on the next 

move, qb-QB? will give stage h. 

When v(p) = 5, it is time to move the white 
king inside the area to the square indicated 
in p2. s(p ) = 15, but sl(p?) = 5. 

s(p_) = I» and v(p_) = 5. The knight moves 
5 5 

to Q5; on the next move, it may go to iZJ 

giving q^. 

IflCqi) = h  and sl(qr) =15« We are almost 

in stage 5, but need to move the bishop. 

Figure 6.13. 
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t.rysmall(p,q) ■  (qb ^qb    V location(p,wk    ar(s(p)))/l 

V [d  (wk,bk)=s(p)-3 A (d (wk}qb)>l 

V location(p,bk , ar(s(p)))< -.(p)-!) ] 

v d  (wk,bk>s(p)-^ V [d (wkJbk)=s(p)-4 
q q 

A location(pjbk  ,ar(s(p)))<s(p)-21}   . 
q 

For example, if in p  the black king were in QRJ, the white move wk-Qp6 

would be rejected by trysmall. 

When v(p)=5 , the tree is fairly long, up to depth 6. First, we 

introduce a rule similar to 6.13.  q will be worse than p if 

6.14  (s(q) = s(p) A v(q)=3) V (st(q)=2 A sl(q>s(p)) . 

We can decide what other moves to reject by considering how the 

program should play.  We want to move the white king inside the area tc 

form a position like p« in Figure 6.15, The knight is protecting the 

boundary of the area, so we need not worry that the black king will 

escape when we do this.  Sometimes it will be necessary to move the 

knight before the king move can be made.  This knight move is a tempo 

move; it must satisfy 

ktmove(p,q) = {kt =kt V [d (wk>bk)=2 A 

(s(p)>U A location(p,kt ,ar(s(p)))=-l 

A d(kto,c(ar(s(p))))^s(p)-2) V 

(s(p)=4 A location(p,kt ,ar(s(p)))=0 

V [location(p,kt ,ar(s(p)))=-3 A 

d(ktq,c(ar(s(p))))=l^]}  . 

When s(p)>U , only one knight move is permitted.  In pp this is the 

move kt-Q5. When s(p)=4 an additional knight move must be allowed 

owing to the peculiarities of stage 5.  Positions p, and q.  in 
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iqb Jqb     A UUb    qb  )>1 V d  (wk,bk>2 V bpos(q,ar(s(P))) ])   . 

badkmove(p,q<lo) ■ {lo<-l V lOl V [lo<l A (d  (wk,bk>2 

V qb j^qb    V  [lo=-l A wk j^wk   ])J)   . 
P     q Pr    q ' 

V kt =kt    V -t ktmove(p,q)]) 

badkmove(p, q, location(p, wk ,ar(s(p))))j)) 
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D 

Figure 6.13 ars examples. One result of the second knight move is 

thato.l^ must be amended so that a position like q, will not be 

rejected (_sl(a ^^O .  Instead of 6.lk  we have 

((s(q) = s(p) A v(q)=3) V (st(q)=2 A sl(q>s(p) 

A [s(p>4 V kt =kt V -n ktmove(p,q)l )} . 

In addition to the knight^ the bishop makes a tempo move,  p« in 

Figure 6.13 is em example.  However we can limit the number of bishop 

moves allowed by refusing those satisfying 

0 

Finally we can  reject many king moves (and an occasional bishop move) 

by 

D 
0 

where 

lo=location(p,wk ,ar(s(p))) . 

We combine all these conditions for v(p)>l , excepting s(q)<s(p) or 

sl(q)<s(p) in 

check3b(p,q) ■ {(st(q)=2 A sl(q>s(p) A [s(p>4 v v(p)<5 

Q 

D 
V (v(p)=3 A [st(q)=3 A v(q)=l] 

V [st(q)=2 A _sl(q)=s(p) A trymove(p.q) ]) 

V (v(p)=5 A [st(q)=3 V sl(q)=s(p)] 

A [i ktmove(p.q) V (st(q)=3 A v(q)=3) V 

D 
D 

When v(p)=l white does not have much control. All knight moves 

must be permitted except those giving stage 0 or stage 1. When 
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s(q)=s(p) , we limit the number of moves somewhat by 

s(q)=s(p) A d («i^bk^Cvk .fck ) . 

st(q)=2 or s(q)>s(p) is only permissible when the black king is 

able to escape from the area in p .  Position p  in Figure 6.1^ is 

an example.  Then q is an intermediate position on a branch of the 

tree leading either to a smaller area or the same area under better 

control. We can limit moves by 

(-1 poss(p) V -i kpos(q,ar(s(p))) V d (wk,bk)>d (wk,bk) 

V location(p,wk >ar(s(p)))>-l) . 

We combine conditions for v(p)=l excepting s(q)<s(p) or 

sl(q)<s(p) in 

check5a(p,q) = {(st(q)-5 A s(q)=rs(p) A d (wkJbk)>d (wk,bk)) 

V (st(q)=2 A sl(q)=s(p) A trysmall(p,q)) 

V ([(st(q)=5 A s(q>s(p)) V (st(q)=2 A sl(q)>s(p)) ] 

A [s(p)=4 V qb ^qb V -i poss(p) 
IT H 

V -i kpos(q,ar(s(p))) V d (wk}bk)>d (wkjbkj 

V location(p,wk ,ar(s(p)))>-!])) . 

The heuristics for p in stage 3 in worse are 

checkMp.q) ■ {st(q)<3 A [d (wk,qb)>2 v 

(st(q) = l A -i ktspec(p, q)) V 

(st(q)=2 A sl(q)<s(p) A badsmall(p,q)) V 

([(st(q)=5 A s(q)>s(p)) V (st(q)=2 A sl(q)>s(p)) ] 

A [(v(p)>5 A check5b(p,q)) V 

(v(p)=l A check^a(p,q))])]) . 

In better we add 6.8, 6.10 and 6.11. 
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sCp-,) ■ 5> but when wk-Q5 we will have 

s(q) = 6 . We permit this move. 

d (wk, bk) < d (wk, bk) and poss^.,). 
q  '      Pi ■  ! 

This position is at the head of the major 

tree search in stage 5(depth 7). kt-Q5 is 

the only move on the first level. 

This position occurs down in the tree 

from pp, after 2 white and 2 black mcv« 

kt-QKtU is the only move permitted. 

Figure 6.1^. 
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In stage h  ordinarily a tree of depth 2 will be required to reach 

stage 5 because we expect to enter stage h  from stage 3 with the knight 

appropriately placed for s=5 .  However we may occasionally have 

stage U in a starting position or enter it from s=5 before the knight 

is put in position.  Ir such a case a tree search of up to depth 5 may 

occur.  Since the whole point of stage k  is that the wnite king and 

bishop can control the black king without moving, allowing white to 

bring the knight into play, we can easily reduce the breadth of the 

tree search by adding to worse: 

st_(p)=U A st(q)<4 

Then trees in stage k  will be almost all knight moves. 

In stage 5 tree searches are very short except for the one black 

attempt to escape from the edge (moves lk-l6  in Figure 6.9), when a 

tree of depth 7 is required.  p? in Figure 6.1^ is the position at 

the head of the tree. We first of all eliminate all positions q with 

st^{q)jl:2  .  Before proceeding further we must be able to recognize the 

edge e even in positions where the black king is not on an edge. 

We look for q in stage 2 such that, for e=edge(p) 

kcond(q,e) ■ (eposs(q,e) A [de(bk ,e)=0 A el(q,e)<5 

0 
0 
0 
0 
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0 
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D 
a 
o 
■j 

A d(bk ,bk(e))<3 A kGonda(q,e)] 

V [ii£ibk,e)>0 A d(bk )blc{e))<2 A kcondb(q,e) ] ) 

where 

kconda(q.e) ■ frn(bk,kt)<5 A (onblaGk(bk ) V fr^w^bk)«^) 

and 

kcondb(q.e) = {d^wk,bk)<3 A([de(bk ,e)=l A 

Vr(r€succ(q) 3 [d[e(r,e)<2 v f*(wk ,r)=2])] 

V [de(bk ,e)=2 A Vr(resucc(q) =) de(r,e)=l) ])}    . 
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These conditions insure that the white pieces remain in the proper 

locations for stage 5.  In addition, they are so stringent that they 

often prevent the many bishop moves (the bishop is the least constrained 

piece in stage 5) simply because one of the other pieces has to move. 

Positions p„ and p  in Figure 6.1U are examples.  In p2 , only 

kt-Q5 will be permitted and in p, only kt-QJCt^.  In fact the effect 

of these rules is to reduce the tree to almost one branch. Occasionally 

a few bishop moves will be considered but they axe down in the tree 

where they do not do much harm. Since the tree has only one branch we 

could decide on many of the moves without tree search.  However handling 

them through tree search enables the program to avoid extra pattern 

recognition of the positions with white to move which would result 

from such positions. Summing up these rules, we add to worse 

;st(p) = 5 A st(q)<5 A (st(q)^2 v -! kcond(q,edge(p)))) . 

Stage 6 is similar to stage k}   and we immediately add to worse 

st(p)=6 A st(q)<6 . 

However this may permit four bishop movis at every level in addition to 

all the knight moves, and although usually the tree is only of depth 5 

or h}   it may be longer. We must allow one bishop move for parity, but 

we eliminate all others by insisting that they satisfy 

bcorner(p.q) s (d (qb,wk)<5 

Cdp(qb,wk)=2 A dq(qb,wk)=:5)i . 

Combining the formal definitions of better and worse with the 

various additions we have 
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bütter(p.q)  ■   (£t(p)<st(q)  V   [3t(p)-£t(q)  A    '".^p) (q)<m
st(p) (?) ] 

V  [st(p)=3  A  (3(q)<s(p) V 

[s(q)=s(p)  A (v(q>v(p) v possCp)) ]) ]} 

worse(p. g)    ■  (st(q)=0 V  (st(p) = st(q)  A m
st(p)((l)>m

ut(p)(p)) 

[st(q)< st(p)  A 

((st(p)=2 A qb /qb    A d (wk,qb)>2 A [dcent(p)=ü v st(q)=2] ) 

V (st(p) = 5  A [d^w^qb^ V   (St(qj = i  A -, kt 3gec(p, q)) 

V  (st{q)>l  A check5(p,q))]) 

V (st(:?)=4  A 3t(q)<U) 

V (st(p)=5 A st(q)<5 A 

[st(q)^2 V n kcond(q.edge(p))]) 

V (st(p)=6 A [st(q)<6 V -i bcorner(p,q) ]) ", !} . 

These functions are equivalent to the definitions used by the program. 

Exampicü of Program Play 

Our first example starts with position p,  in"Figure 6.15. 

st(p1)=2 and m2(p1)=5 . 

1. wk-Qß bk-K2 

2. wk-QB3 bk-K5 

3. wk-Ql+ 

bk-Q^ 

h. qb-KBU  ch. bk-QW 

5. qb-K5 bk-Qp 

6. wk-Q5 

We now have    1112=0  . 

New we are in stage 5 with an area 
of size 6. Moves kt   5 and 6 are 
selected by tree search. 

bk-KS 
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p is in ste^e 2, and dcent(p ) = 3. 

p_ is in stage 2 and dcent(p ) ■ 2. 

|L is in stage 2 and dcervt(p_) - 5. However 
5   5 
all immediate successors of p_ are in stage 

5 
0 or 1. 

Figure 6.15.    Startinc Positions for Example of Program Play. 
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7. kt-KR5 

8. kt-KB2 

9. wk-K6 

10. lb.Q(5 

bk-KBif 

11. kt-KXt4 

12. kt-KB6 

15. wk-Q5 

14. wk-QBl+ 

15. qb-QB5 ch. 

16. wk-QlCt5 

17. cb-QKt1* 

bk-Ki 

bk-(il 

bk-QBl 

bk-QKt2 

bk-QfCt5 

bk-QP5 

bk-QJCtJ 

bk-QKt2 

bk-QB2 

bk-QKt2 

LJ 

18. qb-QR5 

bk-QP2 

r*i 19. wk-QB6 bk-QR3 

20. qb-QP7 

■ 
bk-QP2 

.) 21. kt-Q7 bk-QRl 

Now v«5 . We have skipped over 
v»3 . 

Moves 9 and 10 are selected by a 
tree search of depth 2. Now w«s have 
an area of size 5. 

Nov» V»? . 

Now v=5 . Moves 13, 1^ and L9 are 
selected by a tree of depth 3. 

This is the bishop move allowed 
for tempo. 

Now we have sl=3 . 

N^w we are in stage h.    Moves 16 
through 20 eure selected by a tree 
of depth h. 
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22. kt-ga6 eh. 

51. qb-Qf* 

bk-QR2 

bk-Q]R6 

bk-QP5 

We are in the same position as 
Figure 6.9 after white move 10. 

25. qb-Q!5 

bk-QP3 

A tempo move. 

21+. qb-QKt8 

bk-QBJ+ 

mc=5  . 

25. kt-Q5 bk-QP5 

26. wk-QB5 bk-QR6 

27. kt-Qja^ bk-QKt? 

28. qb-KBU bk-QKt8 

29. wk-Qß^ bk-i^t? 

50. qb.K5 This is the o 
starting at move 25 where more than 
one white move is considered. 

Now we have reached the end of the 
branch of the tree (of depth 7) and 

52. qb-^Ct6 

bk-Qp6 

m5=5 . 

55. kt-Q5 bk-QR5 

5^. kt-qjCt2 ch. 

bk-QR6 

in5=2 . 

55. wk-QB5 bk-QR? 

56. wk-(ÄB2 bk-Qp6 

15^ 
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57. qb-QB5 eh. m5=l . Moves 55, 56 and 57 
are selected by a tree of 
depth 5. 

bk-QR7      This move gives a p in stage 6. 

58. kt-9 bk-QR8 

59. qb-QKt4 A tempo move. 

bk-QB7 

59. kt-QBl ch. bk-QpB 

kO.     qb-QB5 mate. 

The program plays the last part of the game (from move 22  on) 

identically to Figure 6.9 5 different black moves have been selected 

to give some variety.  In the first part of the game the program play 

is dull but steady.  As usual, the program sometimes does not make the 

best move. About four moves are wasted in this way. The black moves 

are selected to give the program a maximum amount of trouble. The 

starting position p  is the one given in Capablanca [1935]. 

Capablanca only uses nine white moves for the first part (compared with 

21 program moves); however his black king moves are more cooperative 

than the ones selected in this example. 

Our next example is taken from Fine (Figure 6.1).  We start from 

p- in Figure 6.15 which is the same as the starting position in 

Figure 6.1 after adjustments have been made for the fact that the 

program has the queen's rather than the king's bishop. Again we start 

in stage 2. We have 

1. wk-QB^ bk-K5 

2. qb-Q(S bk-KBl* 

Page 109. 
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5.  wk-Qf^ 

bk-KKt5 

k. vk-Kk 

bk-KKtU 

5. kt-QB7 bk-KR5 

6. kt-Q5 bk-KKt5 

7. kt-QKt6 

Now ^2=0    but actually we are in 
stage 3 with an «urea of size 6. 

This move gives a p with 
poss(p) true. 

White blocks the escape, so the 
position is accepted by better. 

Now v=3 . 

bk-KB2 

D 

8. qb-K5 

bk-KKt3 

Now    v=5 . 

n 

9. wk-KB»! bk-KR5 rj 

10. wk-KB5 bk-K R2 

11. qb-KB6 Now we are in an area of size k. n 

bk-KKtl 

12. kt.QB8 bk-KR2 • Q 
15. kt-Q(5 Now    v=5 . 1 

bk-KR3 

Ik. kt-KU 

bk-KRl+ 

This ic the first allowable knight 
move. n 

0 
i 

15. kt-KKt5 This is the second knight move. 
We have    sl(q)=15  . 

bk-KR5 

16. qb-K5 Now we are in stage 5,  and   m,.^  . 
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There is no point in continuing the example since the program will play 

the same as in example 1, Ten more moves are required to mate. As 

expected, the program plays differently from Fine.  The moves for black 

are chosen to illustrate how the program reaches stage 5 through areas 

of size 6 and k.    When this path is chosen, stage 5 is short and check- 

mate is reached quickly. 

We will now give two short examples to illustrate special cases 

in the first part of the game. The next example shows how the program 

handles a temporary escape from an area. We begin at position p,  in 

Figure 6.12.  st^p, )=3 , s(p, )=5 , and poss(p, ) is true. We have 

1. wk-q5 bk-QKt5 

2. kt-K^ bk-Q}Ct6 

5. wk-Ql+ bk-QB7 

k. qb-QjaU 

bk-Qß 

5. wk-Q5 bk-QB8 

6. qb-QB3 

Now sl(q)=l+ , 

Now we are in an area of size h. 

If at any time the black king had returned to the area of size 5, he 

would have been trapped there and that branch would have terminated. 

Our final example shows what happens when we must cope with a 

stage 2 position complicated by the locations. We start at p, in 

Figure 6.15. p, is in stage 2 but all o2  its immediate successors 

are  in stage 0 or stage 1. 
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1.     kt-KB5 

2.     qb-KB6 

wk-KKt5 

k.    kt-KKt? ch. 

5.     wk-KB5 

6.     wk-KBli 

7.     wk-KU 

bk-KKtl 

bk-KB2 

bk-K5 

bk-Q? 

bk-Qf+ 

bk-QBl+ 

bk-ftB5 

wk-KKt6 would give    inp(q)<nu(p) 
and    dq(wk)qb)<dq(bk,qb)    but this 
positicn  is conectly recognized 
as a member of stage 0.    We have 
q    in stage 1. 

We are  m sta^e 2t  but 

Now we can accept    q    as better 
since    m2(q)<Jn2(p)  . 

The knight was blocking the path 
of the king. 

Now    m2(q)=l 

The black king is blocking the 
white king move into the center. 

Now nu(q)=0 

Now we are in stage 5- 8.  qb-^ 

The program manages nicely. 

This last exjnple indicates that the program should be able to 

reach checkmate from any starting position within the 50 move limit. 

Stages 5 and 6 together never require more them 19 moves, and the first 

example of program play gives a close to maximum number of moves through 

stage 5. Since this example ends similarly to the first example after 
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move 6, this means the program still has a margin of 8 moves to take 

care of any complications which arise. 

The remarks about the previous end games are also valid here. 

However, the mediocre (better but not best) program moves are not so 

frequent in this game. This is because the difficulty of winning 

forces more exactness in program play. The difficulty of this game 

al'■o provides a good test of the program. The fact that the program 

can win, using the fairly simple patterns which provide the outline of 

the play, indicates that the forcing tree model used for the program is 

a good une. Also the program play is identical to the book's when 

sufficient information is available. 
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CHAPTER 7 

PROGRAM CORRECTNESS 

Now that the definitions of better and worse have been given for 

the various end games, we can consider the question of program correct- 

ness.  We will say that the program plays an end game correctly if we 

can prove that it will reach checkmate from any legal starting position 

pGP .  To prove, given the position p€P, that the program will actually 

win from p , we must show 

1. The program can force positions q which are better than p . 

2. This process need only be repeated a finite number of times before 

checkmate is reached. 

First we must introduce some notation, 

Defn.  prog-, (p) = {q | q is at the end of a branch of the tree from 

p which is produced by the program) . 

If an immediate successor q of p is better than p , then prog, (p) 

will contain the single element q .  If the program is unable to force 

better positions from p , we would have £rog1 (p)=NIL , which means 

either that all branches are rejected or that the program does not 

terminate (in 50 moves).  The first statement can therefore be written: 

Theorem 1. Vp[ p£P z> -\ null (prog.. (p)) ] . 

Proof. This theorem must be proved separately for the different stages 

and measures within each end game.  It is sufficient to show that an 
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acceptable path exists; -we will not know for certain what prog (p) 

contains but we will know that it is not empty since the program uses 

a breadth first search. 

We give a proof here for positions in stage 2 of the Rook end 

game.  Recall tha stage 2 is defined by 

x € stage 2 ■ (güüdquad(x) A squad(x)>2) . 

The measure in stage 2 is 

ra (x) ■ squad(x)     Vx(x€stage 2) , 

better for stage 2 is defined by 

(st(p)=2 A (st(q>2 v 

:3t_(q)=st(p) A (m^q^Cp) v dq(wk,r)<dp(wk,r))])) , 

and worse by 

(st(p)=2 A ([st(q)=2 A m2(q)>m2(p) 1 V 

[(st(q) = l V [st(q)=2 A m^q^m^p) ]) Adr(wk,r) = l 

A (d(i(wk,r>l V [3t(q) = l A r^rj)l)l . 

We divide the proof into two peirts depending on d (wkjr) . 

1. d (wk,r)>l .  Then there exists a q with d (wk,r)<d fwk.r) . 
P q     P 

q will have the same quadrant as p , and since p satisfies 

d (wk,r)<d (bk,r)+l , we can  be sure that d (wkjO^d (bk,r) . 

Tins q will be better than p , and pro^. (p)=lq*) . 

(q* is not necessarily equal to q.) 

2. d (wk,r)=l . There are two cases to consider. Let p^p or a 

successor of some q down in the tree from p . 

a. There is a rook move leading to a position q (in stage 2 or 5) 

with a smaller quadrant.  Such a position q will be better than 

p , and so we know the tree terminates. We are always in case 2a 
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if dpl(bk,r>2 . 

b.  No such rook move exists. 

i.  d 1(bk,r)=l and we are not in 2a. Then we make one pi »  J ' 

of the king moves such that d (wkjr)^! and fr (bkjWk)^ 

for fr as defined in Appendix A. A move like this alwcys 

exists and is not worse;  fr (wkjbk)«^ insures that after 

the black king moves we will be in 2a or 2bii, which means 

the tree will terminate in one or two more moves, 

ii.  d .(bk,r)=2 A fr .(bk.wkUU and we are not in 2a.  This p I \    5  '         p I ^    J 

is the place whexe the white king moves onto the boundary 

of the quadrant. Then after the black king moves we are 

in case 2a with .just one move to terminate the tree. 

iii.  d 1(bk.r)=2 A fr 1(bk,wk)-5 and we are not in 2a.  We make p' v '     —p'  '  ' 

a white king move such that d (wk,r)=l , and after the 

blajk king moves we eure in case 2bi or 2a (at most three 

more moves to terminate the search). 

Obviously such proofs are very tedious and we will not attempt to give 

them for the other stages. The method of proof remains the same^ and 

sketches of such proof have been given in th« various chapters. 

Although the example chosen for the proof of the previous theorem 

was given using the practical definition of better, for the rest of 

this discussion we will use the formal definition of better.  We will 

discuss the extension of the theorems to the practical definition after 

they have been proved. 

First we must prove that rule 3.7 holds. 

Ik2 



Theorem 2.  Vq VpCqNLp O [st(p)>st(q) v 

(st(p)=st(q) A mst(p)^
P^st(p)^q^^ ' 

Proof.  Again we must prove this for the different stages and measures. 

In fact we have proved it informally in the chapters covering the end 

games. The reason it is possible to prove this is that stages and 

measures depend almo?t entirely upon the position of the white pieces. 

When a rule is made about the position of the black king it is stated 

in q and  in p in such a way that if it holds in q , it will hold 

in all immediate successors p of q . 

We have purposely given informal proofs for Theorems 1 and 2 because 

the detail required for a formal proof is excessive and uninstructive. 

It is necessary in these theorems to give separate proofs for jach stage 

of each end game. The proof given for Theorem 1 is correct for stage 2 

of the Rook end game, and serves as an example of how such proofs should 

proceed, both for Theorem 1 and Theorem 2, although the proofs for 

Theorem 2 are simpler. 

prog (p) produces only one step of the program. To handle the 

entire program we make the following definition 

Defn.  For i>l , 

prog^pHq | Bp'q'(q,e£rogi_1{p) A q'^p
1 A qejarog^'))) . 

Please note that the i in prog.(p) does not generally stand for 

the ith move from p ; it stands for the ith iteration of the 

program. A new iteration is not begun until the tree (possibly of 

depth l) from the previous program entry is exhausted. 

m 

n 
D 
D 
D 
D 

D 
0 
11 

Q 

0 

Q 

C 
0 

0 



: 

: 

: 

: 

D 
D 
n 
D 

Now we can formalize the second statement. 

Theorem 3.     Vp[p€P 3 3K VN(N>K Z> null(progN(p)))]   . 

Proof.     P    is associated with some end game,   and let us suppose this 

game has    n    stages.    For each stage    i ,   let    k.    be the number of 

different values which the measure    m.     assumes.     We know    k.>l    for 
i i- 

all i .  (k. must be finite; this is true for all the measures which 

have been defined.) Let 

n 

K =  SI)  (ki) • 
i=l 

K is the number of different categories into which positions in the 

end game can be put, not counting stage 0. We refer to each category 

as a level, tnd we define a function le , which gives the level of a 

position as fellows. 

D(l) le(x) = l H tst(x) = l Am (x)=max(m (y))) , for S={y | st(^)=l) . 
yes 

(2) Assume we have defined the set of positions x for which 

Le(x)=i .  If this set is empty, then so is level i+1 . Other- 

ri wise, we define the set lor which L_^x)=i+1 as follows. Let 

x be a position such that le(x)=i . 

If i=K , then x is a checkmate position and the i+1 level 

is empty. 

IJ Otherwise st(x)<n .  If m . , .(x)>min(m . N(y)) , for 
st(x)x  yes st(y)w" ' 

S = (y | st(y)=st(x)} , we have 

le(z)=i+l = {st(z) = st(A) A mst^(z)=max(mst^xj(y))) , 

D 

D 

I 
Q 

D 

yes 

for S = (y | Ej:(y)=st(x) ^ 
m
st(x)(y)<mst(x)(

x)) 

IM 



Otherwise we have 

le(z)=i+l I  (st(z) = st(x)+l A nist^(z)=max(mst^(y))) 

for    S =  (y  |  st(y)=st(z))  . 

For completeness we define 

le(x)=0 ■ st(x)=0  . 

The  levels have the same order as. we would like the program to follow; 

we know    0< le(x)<K ,   for all    xeQ .     Recall    Q=P U  {q|3p(peP A pNUq)} 

We have the following lemmas. 

Lemma 1.     Vpq{(qeQ A qNLp) 3 le(p)> i£(;l))   • 

Proof.    This follows inmediately from Theorem 2. 

Lenma 2.     Vpq{(peP A qeprog-^p)) D ]Le(q)>le(p))   . 

Proof.     Since    q€prog1(p)  ,   we know    better(p}q)     is true.    Therefore, 

le(q>le(p)  . 

Now,   for    p€P    and    K>K ,   let us assume there exists a    qCprog.^p)   . 

We unravel the meaning of this: 

q€progH(p) o 

3p1q1(qie£ro£N_1(p)  A ||l^ A qe£ro£1(p1)) 

rn 

■ 

}, 

" 

un to follow; 
.- 

0 
D 
0 

I! 
0 

3p1q1...PN.1qN.1(qN.ie£rogl(p) A «i^M^j A... A qe£ro£l(p1)) 

We select the appropriate    p,,  q.,...,  PN i)  q«, ■,   ,   and apply our 

lemmas to get 

^(Vl^—^p)  A M^N-l^ Ü^N-1^  A...A le(q>le(p1)  . 
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Each time we have le(q. )>le(p. ,) we can write le(q. )> le(p. ^ )+l 
— i — i+i. —",— i •— "- i+i 

since le is an integer function.  So we have 

Therefore le(qN_2)> le(p)+2 A le(pN_2)> 1£(P)
+2
 • 

leCqj^)^ le(p2)+l A ^(pj^)^ ^(q^^) . 

This gives le(p )> le(p)+N-l and since _le(q)> le(p1)+l , we have 

le(q)> le(p)+N > le(p)+K > K+?, , 

but this is impossible since le(x)< K for all x€Q .  Therefore 

progN(p) is empty. 

Theorew 3 insures that the program will never get into a loop.  It 

jays that k. , in addition to being the number of values the measure m, 
i ' i 

assumes in stage i, is also a bound on the number of times the program 

can produce better positions in stage i as it moves along from a starting 

position to checkmate.  The proof of Theorem 3 depends entirely upon 

Theorem 2 and the definition of better (Lemmas 1 and 2). 

We use this theorem as follows. Consider how the set prog (p) 

is formed. There are two parts to the definition.  One part looks like 

q.€prog1(p. .) ; the other is a statement like q.M p. .  Now Theorem 1 

says that the statement q.eprogfp. ,) is always true provided 
.i •*  i+i 

p  GP . We know this for the original p .  nowever we must show 

U6 
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Theorem h.     Vp*[3pq(p€P A q€£ro£ (p) A qM^p*) 3 p*tP] . 

Proof.  This proof is the same for all end games and it produces a 

condition on the definition of stages.  If we assume the premise for 

some p* , then we know le(p*)>2 } since le(p)>l . This means that 

all non-winning positions which can be produced from a winning position 

must be below the second level. In all three of the games discussed 

the second level is in stage 2. The only questionable game is the 

Bishop-Knight; we are confident that there is no peP , st(p)=l , 

which produces p* , st(p*)=2 , but p^P, in this end game. 

By Theorems 1 and k  we can be sure that the chain leading to 

Prüg«j(p) does not fail because a set prog (p.  ) is ?mpty. There- 

fore it must fail in the other statement , q.M^p. . This can only 

happen if some q. has no successors. But if q. has no successors 

it is either stalemate or checkmate. In this case it cannot be stalemate 

since we know it is better than some p ; therefore it must be checkmate. 

So Theorem 5 means that less than K uses of prog  are required to 

reach checkmate for any p€P , Therefore we can say 

Theorem.  Vp(ptP 3 the program will force checkmate from p ). 

Before leaving the subject of correctness we muat dlacuai the 

extension of these theorems to the practical definitiona of betttr and 

worse. Theorem k  is the only one which is unaffected by the additions. 

We consider Theorems 1, 2 and J. 

We first realize that Theorem I is not affected by the •ddltioni 

to better. This theorem is really a statement of existence and if the 
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program terminates sooner than expected this does not affect the proof. 

Theorem 1 is affected,howeve^ by the additions to worse. We must be 

sure that worse does not now eliminate the path which is followed for 

the proof of Theorem 1.  When we used the -formal definitions of better 

and worse there was no danger of this sort because worse hardly 

eliminated anything.  Recall the formal definition of worse 

worse(p.q) = [st(q)=0 V (st(p) = st(q) A mst(p)(p)
<ni

st(p; («l)) ^ • 

Since all positions in stage 0 were disastrous, only the second part 

of the rule could affect the eventual finding of better positions. 

This problem was considered carefully as the stages and measures were 

defined for each end game, and  only if we were sure the program would 

work correctly was a function allowed to be a .aeasure. The proof of 

Theorem 1 is based upon this fact.  Similar care must be exercised when 

additions are made to worse. This problem is considered in Chapters k} 

5 and 6, when the additions to worse are described. 

Theorem 2 is the statement uf rule 5.7, and must be extended to 

cover each addition to better. This extension wa6 discussed as the 

additions were made, but we will consider it again here. Theorem 5 is 

affected by the additions because we must redefine K . We discuss 

both theorems at the same time. 

In the Rook .nd game only one addition is made to the formal 

definition of better; this is 

st(p)=st(q)=2 A m2(p)=m2(q) A d^wk^Kd^w^r) . 

As was mentioned in Chapter kl  this use of d is like a measure. 

Since only the position of white pieces is involved we can be sure 

that the evaluation of a successor of q using d will give the same 
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value as q ; therefore the correctness of this addition depends on the 

correctness of stage 2 and its measure. In Theorem 5, we must use a 

different value for K by replacing kp with k * , where 

kp*=7,k , since d (wk,r) can have at most 7 different values. 

In the Bishop-Knight end game we need only worry about stage 3. 

As was mentioned in Chapter 6, s satisfies 5.7, and k,-5 . v also 

is nearly a measure and 5.7 can be extended to cover it since it depends 

only on the position of the white pieces, v leads us to give a value 

of k *=9 . 

In the Pwo-Bishops end game, we added a function which is not 

like a measure since it is not integer-valued. This is the rule used 

for non-head quadrants in stage 2: 

st(p)=st(q)=2 A squad(p)=squad(q) A (squad(p) is even) 

A d (wk,bk)<d (wk,bk) A dmin(q)<dmin(p) . 

This rule is acceptable because of the use of dmin which is a function 

of white pieces only. Therefore we know that 

qMnP o dmin(p)=dmin(q) . 

Also the rule can be applied no more than six times since dmin(x)<6 

for all x with st^x)^ . dmin could be used as a measure by itself. 

We can think of the other part of the rule, 

(squad(p) is even) A d (\;k>bk)<d (wk,bk) 

as a modifisr on dmin. It does not affect the extension of Theorems 2 

and 5. 
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CHAPTER 8 

EVALUATIONS AND CONCLUSIONS 

Evaluation of the Forcing Tree Model 

We consider first the forcing tree model selected for the program. 

This model has proved to be a good one for our purposes. The end games 

described have all led to fairly simple pattern descriptions.  Also, we 

have been able to prove that the program can reach checkmate from a 

given starting position. This proof depends heavily on the model, which 

is represented by functions prog  and prog . 

As far as the quality of program play is concerned, the program plays 

all of the end games discussed in quite a reasonable manner. The main 

objection which can be made '  *  t the program does not always play as well 

as it might.  Sometimes when there is a perfectly obvious move which 

produces a portion much better than the present one, the program will 

select another move which is not as good. 

Such play is a natural consequence of a method which looks for a 

good move rather than the best move.  And obviously, the moie heuristics 

the program has the more likely It is that the best move will not be 

selected. For example if only checkmate positions were recognized by 

better the best move would always be selected. However this approach 

is not practical because the tree search is too large.  In general 

there is this trade-off between goodness of play and length of tree 

search. 
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There are  several fairly simple ways of making the program play 

more efficiently.  First of all we could improve program play by having 

it search for the best move, rather than just settling for a good one. 

This is easy to implement when examining insnediate successors q of 

some position p . We would simply let Q be the list containing all 

q which were better and not worse than p .  Then after all successors 

of p had been examined, if Q were not empty we would compar«5 the 

members of Q with each other, using a function similar to the formal 

definition of better.  The formal definition could not be used because 

tree search because the choice of one branch over another is not so 

151 

n 
n 
D 
n 
n 
D it expects a position with white to move as its first argument. However 

function 

1.1 bettera(Q.Q') = fstfa')>st(a) v m^^fa'km^^o^ 1 U 

could easily be defined to compare two positions with black to move. 

4 i 

We convert the formal definition of better rather than the actual 

n one for two reasons.  First of all, there is so little difference between 
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two positions, both successors of the same position p with the same 

stage and measure, that it is not worth the extra work to distinguish 

between them. However even if we wanted to, it is not always possible 

to convert the actual value of better into a rule like 8.1, because 

sometimes some information about p is used to assign a value to q 

in this definition.  For example, in Two-Bishops we use the fact that 

p is non-head quadrant to decide about q .  This decision really 

depends on the fact that p is a predecessor of q and cannot be 

converted into a comparison of two positions with black to move. 

It is not simple to extend this method of program improvement to 
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clear-cut.  In a tree search it is not usually a matter of deciding 

which particular q to put at the end of the branch, although this 

would improve the program somewhat.  It is more important to decide 

between several branches all of which terminate at the same depth. 

For example, suppose one branch of a tree almost always leads to a 

much better position than the original p , except in one or two places 

which are only slightly better, while another branch is neither as 

good nor as poor as the first.  It is difficult to say which branch 

should be chosen. 

The main thing wrong with this method, even if we do not consider 

the problem of choosing between branches of a tree, is the fact that it 

would greatly increase program run time. After all, the killer heuristic, 

discussed in Chapter 2, introduces playing inefficiency but is used 

because the time saved is more important. This method of searching for 

the best move would waste more time than is s'.ved by the killer 

heuristic (and also it is incompatible with the killer heuristic). 

A way of improving program play which is not so time consuming is 

the following, which compensates for the inefficiency in play intro- 

duced by using extra heuristics to avoid tree search.  We could replace 

better with a hierarchy of functions which will be referred to as 

versions of better. For example, version 1 would recognize gross 

difierences between p and q (for instance, only changes in stage); 

version 2 would recognize smaller differences and  so on.  Then all non- 

worse successors q of some position p would be examined using 

version 1 of better; if none were selected they would be examined by 

15? 



Version 2;  and so on. This would be faster than the previous method 

because the tests in each version of better would be very short, and as 

soon as a q was selected, all testing would stop.  A gain in efficiency 

would be made even if just two versions were used; one would be the 

formal definition of better wht.le the other would bt the additions 

which make the program practical.  However three versions would be 

required to get the most out of the nethod, because we would always 

prefer a change in stage to a tnange in measure. 

Another way in which program efficiency could be improved would be 

by paying attention to the order of move generation. This has already 

been done to some extent; for example in the Rook end game, rook moves 

are examined before king moves, so that a smaller quadrant will be 

formed if por^ble. On the other hand, in the BU.iop-Knighfc game, 

knight moves are examined first so that for example in position p1 

in Figure 8.1, kt-KB2 will be selected (s(q)=--6 , v(q)=5) , although 

UJ-Q6 would give s(q)=5 .  Even if the only ordering done is to 

decide what piece's moves to examine first, some gain in efficiency 

can be obtained. More gain in efficiency can be made by considering 

the ordering of moves for each piece. For example if the rook moves 

farthest away from the rook were generated f^.rst, then in p2 in 

Figure 8.1. we would select either r-K5 or r-QB5 giving a quadrant 

of size 10 or 12. If moves «ire generated in the opposite way, r-Q5 

or r-QFk    would be selected giving a quadrant of size  15 or 16. 

Improving program play by changing the move ordering does not 

increase the playing time (provided the killer heuristic is allowed to 
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Correspondence of Program and Book Methods 

Now we consider how closely t.ie definitions of better and  worse 

correspond to the methods described in the chess books. When the 

information in the books is reasonably complete, we would like the 

program to play similarly to the books. We feel this goal has been 

achieved. The only place where the information about play is very 

inadequate is the first part of the Bishop-Knight game (actually stage 5), 

In all other parts the information is adequate, and generally there is 

no question that the program plays the same as the books. 

The one exception is stage 2 of the ''wo-Bishops game. The lack of 

correspondence here comes from the fact that sometimes the book chooses 

a move by a different heuristic even though th~ stage his not changed. 

The reason the book does this is probably to show the student that more 

than one kind of method can be applied. In other stages and other games, 

the number of moves chosen by a different heuristic is very small and so 
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stand).  However, many times the move ordering will be wrong for the 

particular situation. The board is symmetric in many ways in tl ese 

games, and so it is often possible to think of two positions p which 

require opposite move ordering if the best position q is to be 

generated first.  Position p2 in Figure 8.1 is an example.  Although 

we can order the mov-^s so that a quadrant of size 10 or 12 will be 

selected instead of one of size 15 or 16, there is no way to order the 

moves so that we can be sure that the quadrant of size 10 will be 

selected in both Pp and all positions which are equivalent to pp 

with respect to the synmetry of the board. 
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does not worry us. It is perfectly reasonable to limit the program to 

one kind of heuristic for each stage, and this is what is done in Two- 

Bishops, 

Another kind of difference between program and book moves is that 

sometimes the book looks ahead one move (or more) even though it could 

make a decision immediately. There is no reason to attempt to model 

this. It does not happen consistently, and does not indicate any 

essential change in methods. 

Evaluation of the Translation Process 

We have shown that the forcing tree model allows the program to 

produce winning play for three end games, one of which is very difficult. 

Further there is a fairly close correspondence between book and program 

play. We take this as proof that thf model is a good representation of 

the abstract model assumed by chess players. Now we turn our attention 

to the difficulty encountered in translating from the books into the 

definitions of better and worse. 

An examination of Chapters ky  5 and 6 will suffice to convince 

us that this translation process is surprisingly difficult. Sometimes 

we are hampered by a lack of book information, but even when there is 

plenty of information we still encounter difficulty. The reason for 

this is that the induction required of the student is more extensive 

them we expected. For example, in the last part of the Bishop-Knight 

ga^ie (stage 5) the chess books give an almost complete example of play. 

However it is very difficult to decide which features should be used to 

represent the pattern. 
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Now if we divide the translation process into simple versus 

difficult tasks we find the following.  It is simple to decide roughly 

what the stages are, and what kind of heuristic each requires. This 

information is often stated in the books. It is difficult to give the 

exact definition of the stages and measures, and generally it is even 

more difficult to define the additions to better and worse which make 

observe that all the heuristics used in better and worse consist of 
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them practical.  So we ask the question:  can we use the computer to 

help with the translation? 

One way in which the amount of work might be lessened is the 

following, which helps with some of the difficult tasks. First we 

f] 

fl complicated predicates built up out of simpler predicates joined by 

propositional calculus connectives. Many of the simpler predicates 

are useful in all the different games, for example functions d and dje . 

Others are not so widespread but are still basic to the structure of the 

end game; for example function location in the Bishop-Knight game is a 

natural function for measuring distances from diagonals. 

Next we observe that defining the heuristics for an end game is 

done in two separate parts. First we give the definitions of the stages 

and measures, which are taken from ehe chess books whenever possible. 

When the game is well defined the process of arriving at the stages and 

measures, while sometimes tedious, can be guided by the books. 

After the formal definitions of better and worse «ire complete we 

turn our attention to the practicality of the method. At this point 

the chess books are not so useful; painstaking examination c^ the paths 
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which the program should and should not follow is the importart thing. 

The rules arrived at sire built up out of the distance functions and 

pieces of the definitions of stages and measures. So it is entirely 

feasible that this part of the definition of heuristics can be done by 

the program. 

The f .lowing method assumes that stages and measures have been 

defined. The program has available to it the definitions and can get at 

parts of them. It can generate many other functions, in particular the 

distance functions, and also tests like wk =wk . Whenver it has to 
' p q 

do a tree search at some p , then for all q at the top of a branch of 

the tree, it generates a description of q which is the conjunction of 

the values of all the functions it has at its disposal. When the tree 

search terminates it notes which pattern describes the successful 

branch and which patterns describe branches which failed. Then the next 

time it encounters a position p' like p it will accept a successor 

q' of p' which fits a previously successful pattern.  If it still has 

to do a tree search, it will reject all successors of p' which fit a 

failure pattern. Since q' may actually be in a lower stage than p' , 

the program must remember, when it accepts q'  in this way, to use p1 

as the first argument of better (rather than p" such that q'f^p") 

until it finally reaches a q which is accepted by better.  A flow 

chart of this process is given in Figure 8.2. 

The tree search required to implement this method will be very 

lengthy at first, but will decrease in time. The more simple functions 

the program has to work with, the longer it will take to converge on a 

useful pattern. On the other hand, if the program has too few simple 
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functions it may make errors in the sense of being unable to distinguish 

between two positions q and q1 , one of which is at the head of a 

shortest branch, while the other is rejected as leading to worse positions. 

This method has been implemented for the Rook end game in an abridged 

form. The program was given the formal definitions of better and worse, 

plus the following functions (2-valued or J-valued; f : g has the 

3 values < , = , and >): 

£uad(q) 

squad(p) = squad(q) (if -i quad(p) V -i quad(q) , the 

value is undefined. This function is 

useful only in stage 5, since squad 

is a measure in stage 2.) 

dp(wk,r) : d^wk.r) 

d (wk,ük) : d (wk,bk) 

d (bk,r) : d (bk,r) 

fr (wk,r) : fr (wk.r) —p* ' '  —qx > ' 

fTpCwk.bk) : fr^w^bk) 

d^w^r) : i (M^r) . 

These functions were given to it; it did not derive them. In addition 

the program needed a way of classifying positions p so it would know 

when its new functions should be used.  To classify p , the program 

used 

st(p) (only stages 1, 2, 3 apply) 

d (wk,r)=l . 

Thus the program had a maximum of six classifications. 
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The program used a "complete" tree search, which means that when it 

discovered a good branch of the tree at some depth n , it continued the 

t.ree search for the rest of depth n to see if any other branches were 

also good at that depth. The program was run on a series of 5^ positions 

requiring tree search; it was able to make moves immediately for 16 of 

them, including 7 out of the last 10. 

The moves which the program discovered were not always the same as 

the moves which the practical version of better would find. For exanple 

it learned to make the moves satisfying 

d (wk,r>l A d (wk,r)<d (wk,r) , 

but it also learned to move the white king onto the boundary of the quadrant 

so that a smaller quadrant could be formed on the next move. Theoretically, 

of course, it should be possible to make every move without tree search. 

In ract, this method is quite good at extending the definitions of 

better but does not develop much of a definition of worse. Note also 

that this method produces a hierarchy of versions of better, as was 

discussed in the first part of this chapter, so program play remains 

quite efficient. 

Extensions in Chess 

To illustrate the fact that the program is useful, we discuss how 

it could be extended to cover a larger set of end games. Up to now, 

chess programs have not been concerned with these games. The program 

of Baylor and Simon [1966] could not be used to play chess end games. 

It deals with mating combinations; these are the chess problems, in 
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which there are many pieces on the board and only a few moves to check- 

mate. The more general programs (for example, Greenblatl/s program 

[Greenblatt and Crocker, 19^7]) are written to play the middle game. 

The end games are ignored since they are played differently from both 

the middle game and each other. Therefore, if enough end games could 

be handled by the program, it would be a useful addition to a more 

general program like Greenblatt's. 

The success of the program has convinced us that it can be applied 

to other end games. All that is required is the conviction of chess 

players that the particular end game can be won from all but certain 

defined positions. If a position truly can be won, this means there 

must be features of the position which express this fact. The notion 

of better, using stages and measures, provides a good framework for 

gathering and using these features. 

There are two main problems to consider when extending the program. 

First, it would seem that the method is not suitable to games in which 

black has many moves. If black has a few pawnr that is all right, but 

as soon as black has a major piece, there would be too many black 

moves to do the tree search which the method requires. However, the 

number of moves is more apparent than real because usually most black 

moves would be disastrous. One way to take advantage of this fact 

would be to modify the program to evaluate positions in the tree search 

after black moves as well as after white moves. After black moves, the 

program would look for positions which lead to a better position in one 

white move (there is no reason why this could not be recognized at 

this point). After white moves possibly only worse would be used, 
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since we would know better could not be satisfied or we would not have 

searched so far. With this change, which is not a major one, many 

games would become amenable to the method; for exampJe King and Queen 

against King and Rook. 

A more serious problem is the fact that the heuristics are different 

for each end game and this means that better and worse must be redefined. 

However, if the induction method described in the previous section 

could be used, we could extend the program without too much difficulty 

to other end games. For example we could easily include King and 

Queen against King and the various Pawn end games. 

In addition, ./e can use the program to handle o-.her games without 

giving new definitions of better and worse. These are end geies which 

include some solved end game as a subset. For example, suppose we had 

essentially the Bishop-Knight end game, but black had a pawn and white 

an extra bishop. Then the program could afford to sacrifice a bishop 

to take the pawn. It would recognize this fact by obtaining at tho 

end of a tree search, which should be fairly short, a position q in 

the Bishop-Knight game such that st(q) > 2. 

Therefore the program can be extended to cover a fairly large 

set of end games. This means that translating from book methods into 

program heuristics can produce a useful program, at least in this task 

area. 

Conclusions 

The principhi goal of this research was to study the process of 

the translation of book problem solving methoda into comp I - program 
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heuristics. We chose the task area of chess end games for this work. 

To isolate the translation process, we distinguished between the model 

which chess books use for these games, and the methods which are applied 

to particular end games. We decided to represent the model as closely 

as possible, so that the translation process vould be contained mainly 

in the representation of book methods by program heuristics. 

The forcing tree model chosen for the program has proved to be a 

good representation of the abstract book model. As a consequence of 

the closeness of the representation, we are able to express the methods 

in fairly simple patterns, and in addition we can prove that the program 

will r^ach checkmate from a giver starting position.  The value of the 

proof comes from the condition (rule 5.7) which it forces us to state. 

The condition gives us a way of evaluating functions proposed for 

defining better and worse, which is simpler than trying to think only 

in terms of sequences of moves, and more likely to be correct. This 

advantage supports our arguments that the program model should be as 

close as possible to the abstract model assumed in the book. The first 

hypothesis should therefore be considered when future efforts in 

translation of book information are made. 

Now we turn our attention to the translation process itself. 

The main result is that we now see how much induction is required. 

Induction is a form of learning which we would like to understand 

better. The example in the preceding section of this chapter leads 

us to believe that the field of chess end games is a good one in which 

to study induction. It may be possible to develop a program which 
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will do most of the work of translating, and research can profitably be 

done in this direction. 

We would also like to extend this translation process to other 

fields of study. A field which presents itself is integration. When 

integration is taught in a mathematics text, examples are f:ven showing 

how the rules should be applied. It seems reasonable that inductive 

learning is going on here; some pattern in the original expression 

suggests the application of a certain transformation- The learning is 

probably less involved than in chess end games. In Slagle's [1965] 

program he has simply done all the work ahead of time. It would be 

interesting tc see what could be done by trying to use the book more 

directly. 
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APPENDIX A 

DESCRIPTION OF NOTATION AND DEFINITIONS 

OF BASIC FUNCTIONS 

1. The following abbreviations are used to represent pieces. 

bk black king 

wk white king 

r rook 

qb queen1s bishop 

kb king's bishop 

kt knight 

2. For x a position, and n the name of a piece, 

n = the square which piece n occupies in x . 

3. Function d(Xl,X2) equals the number of king moves required to 

move a piece from square XI to square X2 . 

h.    Function de(X,e) equals the minimum number of king moves required 

to move a piece from square X to a square on the edge of the 

board e . 

5. Function fr(Xl,X2) equals the difference in files between squares 

XI and X2 , plus the difference in ranks. 

6. f (nl,n2)  is used as an abbreviation of f(nl .n2 ) when the 
xx  '  ' v x'  x' 

squares containing pieces nl and n2 are to be selected from 

the same position x . 
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II. SMTOACT 

A program to play chess end games is described. The model used in the program 
is very close to the model assumed in chess books. Qnbedded in the model are two 
predicates, better and worse, which contain the heuristics of play, different for 
each end game. The definitions of better and worse were obtained by programmer 
translation from the chess books. 

The program model is shown to be a good one for chess end games by the success 
achieved for three end games. Also the model enables us to prove that the 
program can reach checkmate from any starting position. Insights about transla- 
tion from book problem solving methods into computer program heuristics are 
discussed; they are obtained by comparing the chess book methods with the defin- 
itiona of better and worse, and by considering the difficulty encountered by the 
progranmer when doing the translation. 
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