CS 106
A. 1. 65

A PROGRAM TO PLAY CHESS END GAMES

BY
BARBARA J. HUBERMAN

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457 | D &) C

TECHNICAL REPORT NO. CS 106 Stos - J
: Hims ‘J:r&’

AUGUST 19, 1968 :

=

COMPUTER‘ SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

1\ .l

BEST
AVAILABLE COPY

e o R enns A

Epe—t— A laabaakl)

T TT-—

e g b

STANFORD ARTIFICIAL INTELLIGENCE PROJECT August 19, 1968
MEMO AI-65

CS 106
A PROGRAM TO PLAY CHESS END GAMES

by Barbara Jane Hubermar

ABSTRACT: A program to plgy chess end games is described, The model
used in the program is very close to the model assumed in
chess books. Embedded in the model are two predicates,
better and worse, which contain the heuristics of play,
qirferent for each end game, The definitions of better and
worse were obtained by programmer translaticn from the
chess books.,

The program model is shown to be a good one for chess end
games by the succesa achieved for three end games. Also
the model enables us tc prove that the program can reach
checkmate from any starting position, Insights about
translation from book problem solving methods into computer
program heuristics are discussed; they are obtained by
comparing the chess book methods with the definitions of
better and worse, and by considering the difficulty en-

- countered by the programmer when doing the translation.

The research reported here was supported in part by the Advanced
?esearch Projects Agency of the Office of the Secretary of Defense
SD-183)

ACKNOWLEDGEMENTS

I would like to express deepest thanks to my thesis advisor,

Professor John McCarthy, for his many valuable suggestions and helpful
criticisms. Also I am grateful to Professor J. Feldman for his construc-
tive reading of the final version of the thesis, and to Prufessor R.
Reddy for his earlier reading and assistance.

In addition I am indebted to my colleague, Mr. John lennie, for
his critical evaluation of parts of this work, and to my cousin, Mrs.
Jill Custer, for her encouragement and careful reading.

I wish to express my appreciation to Mrs. Judy Muller for her
excellent typing and preparation of this report, and to Mrs. Dorothy
McGrath for her fine illustrations.

This work was supported by the Advanced Research Projects Agency

of the Office of the Secretary of Defense, (SD-183).

iii

TABLE OF CONTENTS

Chagter

1.

Introduction
Methods and Models
Model and Methods for Chess End Games
Goals of the Research
Outline of the Thesis .,
Program Orgenization b o o Al o o
Notation
Program Orgenization
Tree Search Heuristics
Representation . .,« . .
Definition of better and worse . . .
Formalization

Additions to better and worse

Rook and King Against King 5 0 0 0 O

Formal Definitions of better and worse

Additions to better and worse

Examples of Program Play
Evaluation of Program Play

Two Bishops and King against King . .

Stage 3 . .

Stage 40

Formal Definitions of better and worse

Changes to better and worse

iv

(o) WAN |

-1

10
10
11
21
22
2k
26

38
38
43
48
52

65
68
71
72

Table of Contents (cont'd,)

Chapter Page
Examples of Program Play « « « « « « « « 80

Evaluation of Program Play . . . v + v ¢ v « « « o o & . 86

6. Bishop, Knight and King against King 87
Stage Ottt et e e e e e e e e e e e e ... 8
BEREE DI S s o g o o A% G e b m mE e o .. 92
IR B . i . B de m o s e e e b s W e . . OB
PEagh P="1 ! B 8. D b - 98 9t L d e e 8 95
. B A A. c Lt . I8, LB, ORE L EB
DA B R e . WL L U g ke e e o e e s e .. MOB
B 6 .. . L. . i iie s e e e e e e s . 108
Formal Definitions of better and worse 118
Additions to better and worse 119
Examples of Program Play . . . + ¢« ¢« ¢« ¢ ¢ « o ¢ « & o . 131

fa Program Correchbn®aB . | . . . L . . ¢ . o« o « + s+ o « 140
8. Evaluations and Conclusions 150
Evaluation of the Forcing Tree Model , , 150
Correspondence of Program and Book Methods 155
Evaluation of the Translation Process 15
Extensions in Chess ¢ . « .+ . s .. ., 161
GURGIUBIGN®, . L . . & . 2 % u e e e e e e s e ... L6B
L TSI A YT T PP |

Bibliography L] [L] [[[. . [. [[[[e L] L] . . [e e e . . 167

ol e e

—_ = ==

m

[4
[

—

-

|

"

&l

1

[T

[.)

[]

ol e e e

1.1
24,11

2.2

2.4
2.5
2.6
O
o8
3.3
3.4
b1
4.2
4.3
4.4
b5
3.1
S.E
2.3
5.4
5.5
5.6
5.7
38

FIGURES

Figure Number

Example of a Forcing Tree . . + « « ¢« + & « &
Example of Forcing Tree

Main Program Flow B

Example from Capablance, pages 26-28 .
Steges in Figure 3.1 « ¢« « o« &
Listing of the Rules Introduced in Chapter 3
Example from Fine, paeges 1% and 15
Examples of Moves in Stage 2
Examples of Stage 3 +. « « v ¢« + « & &
Illustrations of Examples of Program Play . .
Example from Fine, pages 15-17

Examples of Quadrants + + ¢« « « &

Example from Capablanca, pages 29-30 ., . . .
Exemples of Stage 3 . . v ¢« ¢ ¢ ¢ o o o o o

Examples of Stage 4
vi

TP S I

15
17
18
19
20
25
30
36
37

29
4o

Ly
b7
50
7%
56
29
60
63
66
67
70

Figure Number

5.9
5. 10
Il
5.12
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.1}
6.15
8.1
8.2

Starting Positions for Examples of Program Play .

Program Organization for Doing Simple Learning

Figures (cont'd)

Illegal Positions |

Examples of Program Play

Examples of Head Quadrants

Examples for Stage 5

vii

Example from Fine, pages 18-20

Forbidden Knight Interference

Examples of Knight Interference |,

Example from Capablanca, pages 110 and 111

Tree Pruning Heuristics for Non-Head Quadrants

B

102
104
105
107
109
113
117
122
124
128
132
134
139

oy

= ¢t

.

[X3

L]

0 OO £33 | & = ==

= B =

I |

F“hﬂm* -~ - I~ —— N T B BT T

CHAPTER 1

INTRODUCTION

This research is concerned with the process of translating book
descriptions of problem solving methods into program heuristies. Many
books have been written for the purpose of teaching how to perform some
task, The task under discussion may be almost any kind of activity,
including intellectual activities such as proving theorems in geometry
or solving differential equations. People are able to learn from these
books although the difficulty in learning varies from task to task.
Therefore we can consider the information in the books as sufficient
for people. It would be convenient if the book information could be
used by computer programs. We are interested in whether the information
is sufficient for computers, and if not, then we want to know what kind
of additional information is needed.

The fact that book information is sufficient for people does not
mean that it can be used directly. If the book describes an algorithm,
then sometimes only memorization is required of the reader; for example,
the method of finding truth values of sentences in propositional calculus
by means of truth tables can be learned by memorization. Many tasks,
however, require substantial learning before the student can understand
the book. The task of playing chess end games by computer provides a
simple but not trivial area for this research. By chess end games we

mean those games where the number of pieces on the board is small, but

the number of moves to checkmate large: for example, Two Bishops and
King against King, or the various Pawn endings. Ch;;s books give rules
for these end games which are not algorithms but are supposed to be
simple and complete enough that beginners at chess can learn to play
the end games fairly easily. A certain amount of intelligence is
required of the student, but still we expect to need only a minimal
amount of additional information. 1In this study the programmer will do
the translation. Since this translation from the chess books to the

program is not direct, as it would be in the case of truth tables, we

expect to learn something from the translation process,

Methods and Models

Computer researchers are well aware by now of the fact that any

task requiring intelligence can be profitably approached by distinguishing

between models and methods. The mndel, which is a representation of the
7/

structure of the problem [Minsky, 1961]];determines the overall logic of

the program. The methods are the heuristics which the program uses

within this structure., For example, in the Logic Theory Machine

[Newell, Shaw, and Simon, 1957], the model is a backwards tree and is
represented by that part of the program called the "Executive Routine".
Within this framework substitution, detachment and chaining methods are
used; these are encodings of the way people apply the rules of inference
in propositional calculus.

Generally books are concerned only with teaching the methods which

should be used to solve problems in the task area. The methods must be

1. See page 415 of Minsky [1961].

L tl"

[2.

L& t-:

»
LT

.-;3

s |

r

U

r\

U

J

=

:[o b ‘

——

—l

& == B = f

=

applied within a structure which is sssumed in the book but not generally
defined explicitly. It is necessary to build a model of this structure
in the computer before informaﬁion about methods can be taken from the
book., |

We expect that different models are required for different tasks.,

Very often the model is a backwards tree; the General Problem Solver

[Newell and Simon, 1961] is based upon this fact. However there are
problems which would require g different model: for example, bidding
in bridge. The closer the model used in the program is to the way that
the author of the book thinks about the problem, the easier it will be
to translate the methods of the book into heuristics for the program,

Chess end games could be handled by the General Problem Solver; however

in this research a model is used which is much closer to the abstract
model assumed in the chess books., In this way we hope to eliminate
making changes in the methods to account for a difference between the
program's model and the abstract model assumed in the book, This means
that any difficulty experience in translating the book methods into

program heuristics can only be due to inadequacy in the method descriptions.

Model and Methods for Chess End Games

The model used for chess end games is a forcing tree. The program

is supplied with two functions better and worse (containing the methods)

which compare positions. From a given starting position p , in which
the program has the move, it uses tree search to find positions q

which are better than p . It will search until such a position q

| o =

-

is found for every sequence of moves by the opposition. An example of
such a tree is given in Figure 1.1. The program will then make the
moves dictated by the tree until it reaches a q at the end of a
branch in the tree; then it recalculates the tree to force positions
better than q . This process continues until checkmate is reached,
worse is used by the program to cut off branches of the tree which lead
to disaster (stalemate, etc.), and also to prune the tree., This model
is desc—ibed in detail in Chapter 2,

Tue forcing tree model will be used for all the different end
games, However each end game is played by different methods which will
result in different definitions of better and worse. Tiis enables us
to examine the problems of translation from methods to program heuristics
several times and for games of varying degrees of difficulty.

better and worse are built up out of pattern recognition functions

of positions which can be defined in a natural manner from information
given in the chess books. The methods, or rules, of play are defined

in two ways in the books. First of all, written statements are made,

For example, in the description of the Rook and King against King game in
Capablanca [1935] we find: "The principle is to drive the opposing

King to the last line on any side of the board" and then the student
should "Keep his King as much as possible on the same rank, or...file,

as the opposing King".2 The play of other games (and in other books)

is described by similar rules. It is not difficult to convert a
principle into a pattern recognition function of positions because the

pattern is inherent in the principle., For example, to express the

2. See pages 26 and 27 in Capablanca [1935])
L

s &= .=

3

==

-

= .3

-

'
!
q
J < q
\ a
q
Figure 1.1. Example of a Forcing tree. The program has the move in
p; it must make a move leading to a position q Judged better than p
t'or every sequence of moves by the opposition. Each iteration of the
program will produce a tree like this; several iterations will be re-
quired to reach checkmate.
L
|
|
i 4
5
!
4

first principle quoted above we define

f(x) = the opposition king is confined to an edge of the board in x ,

for x a position. Then we might decide a position q was better than
position p 1if

£(q) A - £(p)
because the principle is satisfied by making the moves leading from p
to q .

The chess books supplement the principles with examples of program
play. The principles generally cover the gross features of the game
and form a framework for viewing the play of the game. The majority of
moves are only partly derived from the principles; they are more directly
derived from the examples of program play. The examples contain more or
less complete information about methods of play; the difficulty comes
in deciding what pattern features of the positions are important.
Obviously, induction is required to make this decision. Each example
is considered representative of a large class of positions and a general
rule must be defined for that class., If the example is accompanied by

principles, this simplifies the induction by providing clues to important

‘features (see Figure 3.1). The induction leads automatically to the

kind of pattern recognition functions used in better and worse.

Goals of the Research

The primary goal oi the research is to study tne translaticn
process. We begin by stating two criteria wnich will nelp us achieve
this goal. First we would like to see if our model is a good one for

chess end gemes. Our first hypothesis is: the model used in the

L

[% }

r=s

= =

—t

i

&
L

i

[¥
Lo

—

=3

—l

=3

= U o

program is a good representation of the abstract model assumed by
chess books., We can support this hypothesis by successfully running
the program on different end games. Furthermore, conditions can be
given on better and worse which permit us to prove informally that the
program works correctly. The proof depends heavily on the model and
could not be given for a different model (for example the General

Problem Solver model).

Our second hypothesis is: the information in the chess books is

sufficient for the definitions of better and worse. The chess book in-

formation will suffice for worse if all disastrous positions are
described. For better much more information is needed; the books must
give rules for recognizing progress frequently enough that the tree
search between positions is reasonable. For example it is nof enough
to have rules recognizing only checkmate positions.

Finally we turn our attention to the primary goal of studying the
translation process. We assume that the two criteria are satisfied.
First we consider how closely the definitions of better and worse
corrvespoud to the chess book methods, measuring the correspondence
by comparing program play with the book examples, Also we consider the

difficulty encountered in defining better and worse.

Qutline of the Thesis

In Chapter 2, the overall organization will be described. A

detailed definition of the uses oi better, worse, and tree search will

be given; this constitutes the model which we use for chess end games,

In Chapter 3 the form of the contents of functions better and worse

will be discussed. These functions are different for each end game,
since different methods are used for each game. However, the form

given for better and worse is used in all end games. Some rules are

given for better and worse which will enable us to prove that the

program is correct in the sense of being able to achieve checkmate from
a given starting position.

Chapters 4, 5, and 6 each describe the definitions of better and
worse for a different end game. Rook and King against King is discussed
in Chapter 4, two Bishops and King against King in Chapter 5, and
Bishop, Knight and King against King in Chapter 6. These games are
presented in order of difficulty. The rook end game is quite a
simple one; two Bishops is a QQFe of moderate difficulty, while the
Bishop-Knight end game is very difficult. The process of translating
from the book information into pattern recognition functions will be
described, and reasons will be given for the programming decisions,
Examples of program play will be included for each game,

Chapter 7 contains an informal proof.of program correctness. This
proof is given after the various end games are described because it

depends on the heuristics used for each game.

Chapter 8 will contain an evaluation of the better, worse format
in teims of the two primary goals., Subjects covered will include
program efficiency, a description of a way to have the program do

some of the inductive learning, and extensions to other task areas.

8

L

|

i
[

1

[

3

0| B =

=3l Somancad —— ——and pa— | ————y pa—— { Ty —

—d

| ——{

L v)

| el o

In the following chapters, ordinary chess notations will be used
[Capablanca, 1935]. The program is written in LISP [McCarthy, Abrams,
FEdwards, Hart and Levin, 1965], and the reader is expected to .have some
knowledge of this language. Function definitions are given using notation
and basic functions which are defined in Appendix A. They are built up
of the connectives = (equivalence), D (implication), A (conjuction),

v (disjunction), and — (negation). These are used in the same way LISP
(not ALGOL) uses them; i.e,, if in p Aq, p 1is evaluated and found

to be false, then q 1is not evaluated.

bed = e e ed e

L] ¥ |]
[] [S)

==

—1

=

CHAPTER 2

PROGRAM ORGANIZATION

Notation

Throughout this thesis, certain conventions of notation will be
used. As in the ordinary use in chess books, the white side is the
winning side. The program will play white and a person black. The
letter p , with possibly subscripts or superscripts, is used to
represent a pési@?on with white (program) to move, and 3 , again with
subscripts orrsdﬁérséripts, for positions with black to move. When the
color of the move.is unimportant, letters x , y , etc., with subscripts
or superscripts wiIl be used.

In a position » ,’a certain set of white moves is legal according
to the rules of chess. A legal move is made from p to produce a new
position q with black to move, We will represent the connection
between p and q by means of the relation Mw . The statement
prq is read: q is a position which results from meking one legal
white move in p . Similarly we write qMBp which means p is a
position which results from making one legal black move in q . If
prq we say q 1is an immediate successor position of p , and

similarly for qMBp . If we say that q 1is an ultimate successor of

p this means there exist Pyseees By and Qseeer 4 such that

pMqu o qlMBpl “i 550 0 anBpn & pnqu *

10

The program is given as a starting position a position p with
white to move. In some end games, white can win only from certain

legal positions with white to move. Let

P={p | P is a legal pcsition with white to move, and
vhite can win from p} .
The program must work correctly for any starting position p € P ;
we do not care what happens for p ¢ P .

As explained in Chapter 1, better and worse are used to compare
positions. They both have as an argument a pair of positions (p, a) .
The first position is always a position with white to move; the second
is always a position with black to move, q is either an immediate or
ultimate successor to p .

The statement better(p, q) is (not) true is equivalent to saying
q is (not) better than p , and cimilarly worse(p, q) is (not) true
is equivalent to q is (not) worse than p . Occasionally when
discussing a tree search a statement like " q is a better position"
will be made. This means q is EE&ESE than the p at the head of
the tree., better and worie will always be underlined; so will all

other function names except those consisting of only one letter.

Program Organization

| -

To start with, the program is given an initial position p € P.
It generates all positions q such that prq . The order in which

thece positions are generated is not important; let us refer to them

11

N D e ==

fed B e e

i

& e

l"*

1
I

4

-d

§

as Q = {ql,..., qn] . For each qi the program asks the question
worse(p, qi) . If q, is yorse than p then gq, is immediately re-
jected by the program. If worse(p, qi) is false, then the program

asks better(p, q;) . If better(p, q;) is true, the move which led

to 9 is retrieved by the program and made at this point without any
further analysis or examination of the remaining positions Qg ypoe s Q -
Figure 2.1 is a flowchart of this part of the program,

If all q; have been examined ar.d none is found which is both
better and not worse than p , the program will resort to tree search.
The work it has done so far is really the first level of the tree search,
A branch remains in the tree for each 9 which was not worse than p .
Call this set Q1 .

During the tree search the first element of the argument pair of

better and worse remains the initial position p . As explainud pre-

viously, the second element must be a position with black to move. This
means that in the tree search, the ends of the branches can't be evalu-
ated after every move, since half of the moves result in positions with
white to move, Also it is convenient to have the depth in the tree equal
to the number of white moves required to get to that point. If a position
q is said to be at depth n in the tree, this means that 2n-i moves
are required to get to q ; of these n are white moves and n-1 are
black moves,

The basic premise of this method of play is that from p white is

able to force a position q better than p . "“Force" means that white
must be able to answer every black move with an eventual better position; [
12

enter with p,Q Q'eNIL

v

cdr(Q) worse(p,q)

Q'{q°q")

“igure 2.1. BW(p,Q)

p € P is a starting position
Q 1is 8 list of successor positions of' p .
BW returns
a single position q ; this means g 1is bctter and not
worse than p
a list of positions (possibly empty) contsining w1l

positions which were not worse than p ; thie meun:

no member of Q 1is better and not worse than p .

13

=3

d | o |

o = Mg

&=

1 9

[s-

=

conversely if any black move results in all positions worse than p ,
the position in which thet black move was made must be discarded,

The tree search is a breadth-first search. For each q , the

}

program generates P, = {p;y,..., pisi} . Each Pij is the result of
a legal black move in. qi b e, qiMBpij fan BT .., s, . Then

for each pijepi the program generates Qij E {qijl""’ qijsij] Re

'piJquiJk for K= Ly, Si4 - The program then computes BW(p, Qij)

(see Figure 2.1); that is, the 9 &re compared with p in the same
way in which the q; were compared with p previously. In order for
the move leading to q:.L to be accepted by the program, for each pij
there must exist a % 5k such that worse(p, qijk) is false and

better(p,) 1is true; that is, BW(p, Qij) must return a single

9 5k
position for J = 1,..., s, (i.e., for every black move qij)' 0y
this happens, then the mcve leading to qi is made by the program with-
out examining the other qiEQ1 o

If BW(p, Qij) returns the null list for some Qij , this means

that all qukEQi are worse than p . This happens because in 9

J
the black move leading to pij is permitted, and white is not in a
position to control the result. In this case q is completely removed
from the tree, just as if it had been worse than p in the first place.
The move %, is eliminated in this way in Figure 2.2,

If qQ; is neither rejected nor accepted, then for one or more of
the p,y , there exist several gq,, such that worse(p, qijk) is

false hut better(p,) 1is also false. In this case, BW(p, Qij)

9 jk
returns the list of such qijk ; this information is saved in Qij in

L

——

SRS S e

. sl
L e
. Ry N

T

<

TTL

number of
moves \
\
\
\
This is & . JP
set Q &
&
o o] o vcvc/ 'm
)) i~
i 1
First E? E? o S P
tree = B B 'v:
com- 2
parison w w
depth 2
\N'u \N'U \)I'U N \JP [}
g§ g B B\ P .
W (=
{
iiecond M..Q U.D u’o \}F\,"o
tree g E, E BB IR
com - il P e
parison 5%
depth 3 jor o w o tn
Figure 2.2. Example of Forecing Tree.

1. From position qp , for the black move lending te Po3
Therefore this branch is

moves lead to positions worse than p .

eliminated.

necessarily bettier
first ievel (set Q

; €.8.» dml]1 -

poy Wwill not be examined.

o, Positions which are better than p are marked with a B .
is accepted when every termination is marked B.
a single position with white to move remains at a level, it is not

This would be true even on the very

3, No decision is made at depth 2.

4, Now depth 3 is begun.

is saved.
5. The branch for

of every branch is marked with a B .

, 811 white

Note that even if

For q; no decision is made and all informatio

is examined next, and it is accepted since ihe end

others end at depth 3.

15

One branch ends at depth 2; Lhe
The program will now make the move leading to
Q3 . It does not examine the remaining branches for Qyreeer Q -

TTT;

lcl,;

L

L S—

= .3

M

i |

!I

case no q, is accepted at this level, For example in Figure 2.2, we
would have set Q, = {q12l’ q122} .

If no q, is accepted by the program at this level, the program
extends the tree one more level every place where a decision wasn't
made previously (where a list Qij is saved). Every element qijkeqij
produces several lists of positions Qijkm , one for each immediate
successor position P4 jim to 95k Now BW(p, Qijkm) is called.

If it returns a single position for each immediate successor pijkm

of 9 3k » then 9 5k is accepted at depth 2 (just as before q,

would have been accepted at depth 1). In this case the other members
of Qij are not considered. Also, as before, a branch can be rejected,
either back to depth 2 (qijk) or all the way back to depth 1 (qi) .

If no decision is made at depth 3, the program goes down another
level to depth 4. The search is continued until a decision is made.
Figure 2.2 is an example of a posiiion which required a search of
depth 3. No decision was made for 9 at depth 3 so all the information
in the figure would have been saved. For q_3 , only one black move

remained to be answered and is accepted at this level,

900
is accepted by the program at this point, and Qpyooes Q

P32
Therefore q_3
are not examined,

When the program has selected a branch of the tree, it remembers
the tree, and will make the moves dictated by the tree for as long as
it lasts, This is a very important point since it is the feature
which enables the program to force a better position.

Figures 2.3 to 2,6 are flow charts of the program. Figure 2.3 is

the main program; the other three flow charts cover the tree search.

16

enter with starting

position p
TREE-NIL

Q{a*|pM a¥}

Y

Q-BW(p,Q)

return, pro-
gram error

@-Ts(p,Q)

Q(move in TREE)
TREE~cdr (TREE)

- -
Figure 2.3, Main Program Flow.
17

yes

)

r
s

= &3

I e I

-3

L4
[T

'I-J-—wz

|

o |

e

enter with p,Q = QeI

o aear(@

q a

MB(p,q) position M-TB(p,q)
] i
yes
no
[yes
TREF«~cdr (M)
o return q
Q'(—(M’Q')
Qcdr(Q)
no

Figure 2,4, Function TS(p,Q) is the top level tree search function
which starts the tree search going; calls the functions
which follow the branches of the tree; returns the select-
ed position and saves the branch in TREE if a decision
is made; or starts again to extend the search one more
level if no decision is made.

18

enter with p,q P{p’ |qMBp']

¢

P'NIL

p'ecar(P)

o{q'[p'Ma')
1

Q‘Bw(rpy Q)

null(Q)? — return NIL

no

P'{Q-P')
Pecdr(P)

— null(P)?

!)

Figure 2.5.
3
2)

(3)

411 members
of P' single
sositions .~

yes {return (ms-@

Function MB(p,q).q is a single position., Three values are

returned.,

NIL means that some black move from q cannot be answered.

YES*P' means that a better position is found for each black
move from q.

P' means that for at least one black move no decisiov. has
been made,

19

cnter with p,Q N
’l - Tt
- Q'NIL
.5 gecar(Q)

il
e 18 q
a
- L position

]
[e

-4

MMB(p,q') | M-T3(p,q")

rcturn Q!

return (YES+Q'

— @ () 'e{cdr(i1) « Q') e

Qu._(:':. Qu)

[

Figure 2.6. Function TB(p,Q). Q is a 1list consisting of positions
and of lists of positions. If an element of Q is a single
position, then it was found to be better at the previous level.
If the element is a 1list of positions, these are the non-worse
positions from the previous level. Q contains an element for
each black move in the position immediately above in the tree.

[

e

Function TB returns
NIL - each member of a list of positions which is a element of

Q 1is rejected in the search.
YES*Q' - all elements of Q are br lead to better positions.

Q' - some elements of Q do not lead to better positionms.
Q' contains the tree from Q on down.

e |

e o

e 2

20

Tree Search Heuristics

Two heuristics are used during tree search. One helps to cut off
redundant branches of the tree; the other helps the program find the
better position faster,

1. Redundant Branch Cut-Off

Suppose we are down at a node at depth n in the tree. A history
of the branch to this point is given by all the positions with black to
move which the program has examined on the way to this node. There are
n positions in this history, say qi, qij""’ qijk...m . At this
point, suppose it is time to expand the node at the end of the branch.
For simplicity let q* = sk ..m Now suppose that BW(p, Ql*)
returns a list of positions Q*¥ ., The program checks the positions of
the white pieces in each qi*€Q# against the positions of the white
pieces in Qs Gyq000es q* , and if there is a match, u* is
eliminated.

The reasoning behind this heuristic is as follows, It is true that
two positions in which the white pieces are in the same squares but the
black king is in a different square may have very different patterns.
However, in this case one position is a successor of the other, and
intuitively, if the placement of the white pieces is good, we should
have taken advantage of this originally and done something else from
there,

As far as the program is concerned, this heuristic has never
caused it to miss a move it should have made. Part of the reason for
this is that the treesare quite short (no more than a depth of seven)

and within that short a span the intuition is probably valid. At

21

s -9

(e]

< |

«d

b

[&)

= =Sl

2
W

1

&d

ol

N = G35

least one quarter of the positions returned by BW are eliminated by

this heuristic,
2. Killer Heuristic

If in the tree a position qijk n is found to be better and not

worse than p , the program finds out what the last white move, w ,

to qijk...m was, and it remembers this move. Then every time afier
this, when it forms a set Q* to be used as an argument to BW , it
checks to see if w was the last move made to form some q*cQ* , If
it was, then q* 1is made the first pesition in Q* , so that it will
be examined first.

The theory is that in a tree search the positions are all similar,
so a move which led to a better position at one point is likely to do
so again., By putting the new position g* first we eliminate many
comparisons if the theory holds. If the theory fails we have lost a
little time,

In these end gemes the theory holds very well, If an examination
is made of the final moves to the better positions during a tree
search, usually there are only one or two such moves. The time saved
when the position put first is actually the one selected is large

enough to more than compensate for the time spent in ordering the

positions.

Representation

No attempt has been made to develop a sophisticated representation
for these end games, A position is represented by a list of the positions

of the pieces. Moves are generated rather than stored. Patterns are

22

-
v

discovered by functions. Some information is very time consuming to
obtain in this way, for example the set of all squares which a piece
can reach in two moves., In general patterns of this type are not

used, and the heuristics chosen for the end games reflect this.

-y

[}

1

. d

[%]

- .
ed (L

/S 3

 —

e

B
U

CHAPTER 3
DEFINITION OF BETTER AND WORSE
As was explained in Chapter 1, each end game is played by different

methods which we expect to result in different definitions of better

and worse, However the form of better and worse is independent of the

particular end games. In this chapter we will define the form, which
will enable us to put a condition on the pattern recognition functions

which make up better and worse. We will use this condition to prove that

the program can reach checkmate from any starting position p € P .

First of all, in order for the program to work correctly it must
have a sense of direction. In the chess books this is achieved by an
ordering of methods. For example in the rook end game, first we drive
the opponent's king to an edge and then we keep our king on the same
file (rank) as his. In the program, rules are represented by patterns
of positions. Therefore the ordering of the heuristics is converted
into an ordering of patterns, and positions from the end game can be
grouped into subsets according to this ordering. Then a position gq
will be better than position p if the subset containing q is higher
in the order than the subset containing p .

Recall that the program builds a forcing tree from a position p
and then follows a branch of the tree (which branch is determined by the
opponent's moves) until a position q at the end of the branch is

reached, This position q 1is better than p . Now the opponent makes

2k

The ending Rook and King against King.

‘'he principle is to drive the opposing King to the last line on any
side of the board.

In this position the power of the Rook is demonstrated by the first
move, R-R7, which immediately confines the Black King to the last rank,
und the mate is quickly accomplished by: 1 R-R7, K-Ktl; 2 K-Kte2.

The combined action of King and Rook is needed to arrive at a posi-
tion in which mate can be forced. The general principle for a beginner

DIAGRAM 20

te Jollow is to keep his King as much as possible on the same rank, or,
ac in this case, file, as the opposing King.

When, in this case, the King has been brought to the sixth rank, it
is better to place it, not on the same file, but on the one next to it
towaruas the center.

2+.0.K-Bl; 3 K-B3, K=K1; 4 K=K&, K=Ql; 5 K-Q5, K—=Bl; 6 K—qb.

liot K-BG, because then the Black King will go back to Ql and it will
tuke much longer to mate. If now the King moves back to Ql, R—R8 mates
at once.

Os oo K=Ktl; 7 R-QB7, K-R1l; 8 K—BG, K-Ktl; 9 K-Kt6, K=R1l; 10 R-E8 mate.

It has taken exactly ten moves to mate from the original position.
On move 5 Rlack could have played K—Kl, and, according to principle,
White would bave continued 6 K=Q6, ¥=Bl (the Black King will ultimately
be lorced to move in front of the White King and be mated by R-R8);

7 K=kO, K=Ktl; 8 K-B6, K=R1l; 9 K-Kt6, K-Ktl; 10 R-R8 mate.

Figure 3.1. Example from Capablanca, pages 26-28.

25

_ = o 3

a move, giving position p' . At this point the program will build a
forcing tree from p' . It does this without memory of positions p
and q . If the program is tc work correctly, it must be able to derive

information about the state of the game from p' , and any q' at the
end of a branch of the forcing tree from p' must be better than p in
addition to being better than p' . If this is true then we say the
program is playing consistently. Consistency is accomplished by being
careful about the selection of q in the first tree; however we must
remember that only a moderate amount of tree search to q 1is permitted.
In the following section we will have much more to say about better
than worse. This is not surprising, since for the program to work
correctly worse need only recognize disaster and not interfere with

better, Both of these conditions will be satisfied,

Formalization

The notion of a stage has been adopted to facilitate the program's

sense of direction. The positions in an end game are divided into a

number of different subsets called stages. The steges are not necessarily

disjoint; however all the positions in a stage share a common pattern.
In general a stage contains both positions with white to move and
positions with black to move., The stages must exhaust the universe of
positions in the end game. Let

Q=P U {a | 3p(peP A pa)} ,
for P the set or all legal positionsfrom which white can win. Every
position x € Q must be in at least one stage. The stages are ordered,

from the lowest (zero) stage containing stalemate positions and other

26

-y

positions from which white cannct win, to the highest stage containing
checkmate positions. The nth stage in the order is called stage n .

For programming purposes we prefer to deal with disjoint subsets,
If x€ Q, we define

0 if x € stage O .

st(x)

max ({n | x € stagen }) if x ¢ stage O,
The subsets {x | st(x) = n} can be ordered by the value of st when
applied to the elements of the subsets., These subsets are used to give
the program a sense of direction in a natural way by
3.1 st(qPst(p) o better(p,q) .
Also we will have
better(p,q) > st(q)> stlp) .
The statement
3.2 st(q)pst(p) = better(p,q)
is not used because it would result in tree searches of immoderate
length,

3.1 is a partial definition of better, so we consider what condition
is required to ensure that the program works consistently, Recall that
we want to be able to deduce from the successors of q information
about the state of the game at q . Suppose for now that 3.2 is the
definition of better. Then the program can be forced to play consistently
by the condition on stage definitions,

3.3 ¥p' ValaMgp' o st(p')> st(a)] .
3.3 says the stages must be defined in such a way that black can never

force a return to a lower stage., This embodies the spirit of these

27

r

=
-

=

e =a =

=3 =

! 1
e d

(]

=S

et

e

games; that is, that white is in complete controi, and that the black
moves are considered (by the program/student) only as part of the white
strategy. We need not worry about a black move strategy.

There is no condition similar to 3.3 for white moves, However
3.4 vp sa(pMa A stla)> st(p))
is often useful. Intuitively it would seem that if some p had all
successors at a lower stage, then p was evaluated incorrectly. This
is not always true, but if 3.4 isnot satisfied it is important to under-

stand why.

As far as QQEEE is corcerned, we always have

st(q)=0 > worse(p,q)
which accomplishes branch termination and insures that worse recognizes
disaster. We do not have

st(q)<st(p) > worse(p,q)
because sometimes the path that the program should follow involves this
kind of situation. We will always have

worse(p,q) D st(q)< st(p) ,
since worse may not interfere with better.

To help explain the definitions given in this chapter, an example
will be developed as we proceed. It covers the play of part of the
Rook and King against King end game, as explained in Capablanca [19351];
the text is given in Figure 3.1. This example can be handled in five
stages. First we introduce pattern recognition functions f and g .
For x a position, we have

f(x) = {the black king is confined to a file (rank) edge in x} .]
Let sggs(X) be the edge to which the black king is confined in x .

28

et

=
e

g(x) = {f(x) ~ (the white king is on the file (rank) two away from
the file (rank) edge containing the black king and on a
rank (file) closer to the center of the board than the
black king)} .
f(x) represents the first principle in Figure 3.1. g(x) partly
represents the second principle in Figure 3.1; it will be used to
recognize white move 6,
Now we can define the stages. These definitions are built up out

of basic functions ard notation which are described in Appendix A.

x € stage O = {x 1is stalemate, or x is a position with rlack
to move, and black can take a white piece in
one move}.

x € stage 1 = {x canno% be assigned to any other stage}.

(1]

x € stage 2 = {f(x) A gg(wkx,gggg(x))>2},

x € stage 3 = g(x).

x € stage 4 = {x is checkmate].
Figure 3.2 gives examples of some of these stages. The opening position
in Figure 3.1 is in stage 1. Note that every legal position (ever,
position in set Q) is in some stage, because of tiie definition of
stage 1. In every end geame there will be a catch-all stage defined
like stage 1.

Now we must check that st satisfies 3.3. If st(q) =2
or §E(q) = 3 , then the black king can never move in such a way as to
form a p with st(p)<2 . This is because in q the black king is

confined to an edge, and the white king is not blocking the rook since

it is two or more files (ranks) away from the edge while the rook is

29

]

—_— = =3

Sd 4

H

EEa || =3

= ==

T
/’// /// //////'///
i ///, /// //
M 2 ///
// ////, W, ///
.4/, Wi //// m

'/

/////

,,,,,

T, %7
T

§E(x1) = 2, This is the position after white
move 4

,g_zz:/z’-!zpz” » @/,//

{ i;ﬁr‘f’f . W

Ty

« %/ ///,’/ = h

MZ ’/”////

%/,//}/ d {/// ////// /////
MQ %‘/ é%%

T

Wy s
. ‘i WY

ut(x) = 3. This is the position after white
move 6. lNote that x, is in both
stage 2 and stape 3.

n

—

dda

st(g.) = 4. This is the checkmate position.
=2 qj

£
N

Figure 3.2. Stages in Figure 3.1.

30

only one away. The black king is not threatening to take the rook in
any q with st(q)>0 , because in that case we would have st(q)=0 .
Rule 3.4 is also easy to satisfy. In stage 1 there is no
difficulty. In stages 2 and 3, the rook will always be able to move to
another square on the same file (rank) (for a file (rank) edge) and
thus preserve the same stage.
If we use 3.2 as our definition of better and define worse by
worse(p,q) = st(q)=0 ,
then only moves 1, 6 and 10 from the example in Figure 3.1 will be
chosen by better. Thus the tree searches are fairly long, and also the

tree is very wide, This brings us to the remainder of the definitions

of better and worse. If we change the definition of better to

3.5 better(p,q) = {st(q)P>st(p) v [st(q)=st(p)=2

A de(uk_, edge()de(uk , edge(p)))
then moves 1, 2, 3, 4, 5, 6, 10 will be recognized by better. This is
a considerable improvement in the length of the tree search.

What is happening here in stage 2 happens in the other end games
as well. Tne stage itself is rather large, but the positions inside it
can be put into subsets, just as the whole universe of positions Q was
put into stages. In fact, additional stages could be added, one for
each of these new subgets.

However, we must consider an interesting property of the stages
as they are defined in this end game, and one that is worth preserving
in other end games. Recall that each stage is defined by a distinct

pattern; in addition each stage is associated with its own heuristics.,

31

*y

7y

(4]

-4

-1

=y

-,

—1

=i

=

Each stage has as its immediate goal the achievement of the next stage
and its heuristics are directed toward that end. For example, in

stage 2 we move the white king up toward the edge until stage 3 is
reached; in stage 3 we force the black king toward a corner until check-
mate is given.

If new stages were added for all these subsets, this heuristic
property would be lost., While we may expect to use additional heuristics
for two positions in the same subset of a stage, these heuristics are
independent of the particular subset and can be used for all subsets
within that stage. So it makes sense to handle these subsets differently
from the stages. Therefore a new function has been added which is called
a measure, For each stage n , function m ~ is defined for all
positions in stage n ., mn is not meaningful for every stage; in
that case we have

mn(x) =0 vx(x € stage n) .

Definition 3.5 implies the following measures

m2(x) gg(wkx,edgex) vx(x € stage 2) .

n, (x)

0 ¥x(x € stage 1) , i =0, 1, 3, 4 ,
Note that the smaller the measure, the better tie position. This is
the opposite of stages. Then the new (and complete) definition of I
better is
3.6 better(p,q) = {st(qP>st(p) v
st =st Am <m g
[58(2)=58(p) A myy () (<m0 (0)]) |
For program consistency, 3.3 becomes
3.7 ¥p Va{a Mgp o [st(pP>st(a) v (st(p)=st(a)
A m <m)1} .
EE(p)(p)— EE(Q)(q))]]

32

An addition is alsoc made to give the complete definition of worse.

We have

3.8 worse(p,q) = {st(q)=0 v [st(p)=st(q) A mﬁ(p)(p)ﬂns_t(p)(q)]] :

We can use this strong definition because if we have two positions in

the same stage we know better how to compare them than if they come

from different stages. We extend 3.4 to

3.9 ¥p 3q {p Ma A (st(a)>st(p) v [st(a)=st(p) A
?Eg(q)(Q)meE(p)(P)])].

Like 3.&, 3.9 is not necessary to the consistency of the program,

So far in this example stages have been defined in the same way
for positions with white and black to move, excepting stage O and
stage 4 which only contain positions with black to move. In general,
however, slightly different versions of the same pattern ‘are used to
recognize positions with white to move as part of a stage than are
used for positicns with black to move.

For example, 3.6 selects white moves 1, 2, 3, 4, 5 6, and 10 in
Figure 3.1, but these are not the only moves it would select. In
general we are not too concevned if the program doesn't select the book
move, because the program is looking for a better position and not a
best move. However in this case the program is playing differently
from the book; it doesn't follow the second principle in Figure 3.1
and white moves 2 through 5 are affected by this. If we define

x € stage 2 = {£'(x) A gg(wkx,gggg(x))>2] ,
where

£f'(x) = {f(x) A (the two kings are on the same rank (file) in x)},

i

33

4

-
—

then we will violate 3.7. For instance after move 1 in Figure 3.1,
we have f'(q) ; then the black king makes its move and we have
- £'(p) .
What is needed is to define stage 2 differently for positions with
white and black to move, We will use
X € stage 2 = tf"(x) A gg(wkx, edge(x))>2} ,
where
£'(q) = £'(q)

f"(p) = {f(p) A (the kings are on the same rank (file) or on

adjacent ranks (files) in p)} .
With this new definition of stage 2 the program will chose moves 2, 3,
L4 and 5 correctly independent of the order in which the moves are
generated. Another effect of the new definition is to put more
posicions in stage 1. 1In reality stage 1 would be divided into two or
more stages, but here we are concerned only with the part of the end

game covered in Figure 3.1.

Additions to better and worse

When functions are actually written for the play of end games,
3.6 will be the form for better and 3.8 for worse. However, certain

additions will have to be made to better and worse to make the program

practical. These additions will be made in the following format.
If the tree search is too long, then an addition to better is

required. This will always have the form (for fixed n)

3.10 (st(p)=st(a)=n A ...).

We assume mn(p)=mn(q) since mh(p)<mn(q) would have been worse, and
mn(p)>mn(q) would already have been better, If the tree search is
too broad, an addition will be made to worse. This will always have —~

the form (for fixed n)

3.11 {st(p)=n A [st(a)<n v (st(a)=n Am (a)=m (p))] A ...} . 1
To be sure that the program will work consistently it is always

necessary to extend 3.8 to cover additions 3.10, and 3.1l must not

eliminate all former paths to better positions. Program consistency -

must be considered separately for each addition.

As an example of additions consider 3.6 and 3.8 as they apply to
Figure 3.1. The definition of better is sufficient for this end game,
so no problem of consistency arises. However the definition of worse)
needs to be enlarged, After move 6 in Figure 3.1, a tree of depth 4 is
required to reach checkmate, Position p1 in Figure 3.3 appears at
the head of this tree. At the first level alone, 12 white moves are
considered, and similar large numbers at further levels. If worse is
changed to

worse(p,q) = {st(q)=0 v [st(q)=st(p) A m,_t(p)(q)>ms_t(p)(p)l

v [st(p)=3 A st(q)<3 A (dq(wk,r»dp(wk,r)
v [st(a) # 3 A4 (wk,r>1])]]
then only 4 moves are considered in P - In Ps s five out of nine
moves remain; note that the desired move, wk-QKt6 gives q2 not in
stage 3 (see Figure 3,3). This tree is still rather broad and other

or different heuristics can be added to prune more.

35

=R oD

d=

| B S B G I S

f/// /// ////

/// //% / This is the position after black move 6

// / in Figure 3.1.

I W, ///
//é%

f/////’%/%

i ///

Z %// /// // ,A 'i‘gi;i; r:h;i?sition after black move 8
1/ ///// ///// /v/,

/ "'f,
// %
_

Y '
/’/// " /

After white move 9; note that ﬁ(qe) =1,

36

Formal Definitions of better and worse

3.6 better(p,q) = {st(q)>st(p) v

[st(a)=st(p) Am_y y(a)m y(y(p)]} .

3.8 worse(P,Q) E {EE(Q)=0 v [EE(P)?EE(Q) A mst(p)(p)<mst(p)(Q)]} .

Conditions on Stages and Measures

3.7 ¥p Va{a Mgp > [st(pP>st(a) v (st(p)=st(q)

A mst(p)(p)smst(q)(Q))]} :

3.9 Yo 3¢ {p Ma A (st(a)>st(p) v [st(a)=st(p) A

mst(q)(Q)smgg(p)(p)])} .

Additions to the Formal Definitions of better and worse

Additions to betler have the form

3.10 (st(p)=st(a)=n A ...).

Additions to worse have the form

3.11 (st(p)=n A [st(a)<n v (st(a)=n Am (q)=m (p))] A ...) .

Figure 3.4 Listing of the Rules Introduced in Chapter 3.

37

L&
[

= ud OGumd =4

= =% oM

i}

CHAPTER &

ROOK AND KING AGAINST KING

Formal Definitions of better and worse

The method of play chosen for this end game is taken primarily
from Fine [19%2). His description is given in Figure 4.1, The last
few moves of the game are chosen by Capablanca's [1935] method
illustrated by moves 8-10 in Figure 3.1.

Only one basic pattern, shown in position 9 in Figure h.2, is
required for this method of play. The ability of the rook to control
ranks and files is utilized; as long as the black king is not in check

it is held in some area of the board by the rook. Usually this area

is a quadrant as shown in q - If the white king is not on the boundary

of the area, the black king cen escape only by attacking the rook, If
the white king is outside of the area, as shown in q, , it is able to
protect the rook from such an attack if it is close enough, It can't
be blocked from protecting the rook by the black king.

If the pattern shown in 9 holds in a position, this is
recognized by function quad:

quad(x) = (the rook confines the black king to an area of the

board in x , and the white king is outside that area).

quad describes the pattern occurring in almost all positions of
Figure 4.1. For example quad holds after each of the first three black

and white moves. If quad is satisfied by a position, we will refer to

35

e ——

ST AR AR v 4 -

This piece is not nearly as strong as the Queen and the mate is
accordingly far more difficult. The Rook alone cannot drive the King to
the edge of the board—it needs the assistance of
its own monarch. Since the Rook is much less Mating Position with
powerful than the Queen, there is less danger of the Rook.
stalemate—this is the brighter side of the picture. 4

In order to mate, the enemy King must again
be driven to the edge of the board. The mating
position is then the same as the second one with
the Queen. Thus the problem here is essentially
the same as that in the previous case, the chief
difference being that the two preliminary steps
(driving the enemy King back and bringing one's
own King up) are carried out simultaneously. The
only stalemate that should be watched for occurs

Black to Play is
Stalemated.

o

when the Black King is in the ccrner.

Starting from any position such as that
shown here in No. 2 we would then proceed as
follows: 1R—Q2 (confining the Black King Lo .
the rigzht-hand side of the board), 1 K-K6;
2 RQ5, ¥-K5; 3 K-BS, K—K6; 4 R—Q4 (now he has only three ranks and four
files), K=K7; 5 KQ5, K-K6; 6 K-K5, K~KT7; 7 K=K4, K=B7; 8 R-Q3 (see dia-
gram No. 2a), K=K7; 9 K-Q4, K-B7; 10 R=K3, K-Kt7; 11 K-K4, K-B7; 12 K-Bk4,
K-Kt7; 13 R=K2ch, K-B8; 14 K-B3, K-Kt8 (diagram No. 2b); 15 K-Kt3, K-R8;
16 R-K8, K=Kt8; 17 R-K1 mate.

The final maneuver, v:ich involves losing a tempo, or move, should
be remembered-it is the key t. this mate.

Position after 8 R-Q3. Position after 1k
‘T eeee K“Kta.

Figure 4.1, Example from Fine, pages 14 and 15.

39

e o OO

s

e DE o »
. - R O L) R
\ e s Boacd TNy ¥
Nl R

0

_)

3

| &=

P
&

e o

J

N

e £33 &=

////’ //
% /
/ // .
// ////, //j////

///////
. me /,,//

“u 9, 1
/////// //

Figure 4.2

We have guad(ql) and sguad(ql) = 16.

We still have gggg(pe) but we must move
the rook or we will loce it. The rook
can move so that there will be a quad-
rant, but the size will be larger.

Here we have guad(pl) and sguad(pl) = 20,
We have lewa + We do not want to accept
q, as better than Py -

Here we have guad(xe) and sguad(xe) = 2.

X5 is in stage 3.

Lo

the area in question as a quadrant, This pattern lends itself very
naturally to a measure, If we have quad(x), then squad(x) is the number

of squares inside the quadrant. For example, in 9 in Figure h.2,

¢t

squad(q,) = 16.
If quad is to be used to determine a stage and squad is to be a

measure in tﬁat stage, we must satisfy conditions 3.7 and 3.9 (see

Figure 3.4). Condition 3.7 presents no problem since both guad and

squad depend only on the positions of the white pieces. The black

king is uneble to escape from a quadrant except by teking the rook; in

this case the position q prior to the black move would be in stage O,
Rule 3.9 cannot be satisfied without putting additional conditions

in the stage definition., For example, suppose in position q1 the

black king moved to Q¢ to attack the rook, forming p, in

Figure 4.2, The white king is not close enough to protect the rook;

therefore we must move the rook away from the black king. It is simple

to form a new quadrant; for example, any rook move on the fourth renk

will do this. However every rook move which forms a quadrant forms

one of a larger size. In general, the rook can always form a quadrant,

but it may be larger than the present one. This violates rule 3.9.
Note that it really would be incorrect for the program to arrept

a position like g, as better than for example, p, in Figure L, 2,

At position Py » the best that white can do is to maintain the smallest

possible quadrant. This will have size 20, the same as ggggg(pl).

Therefore nothing has been gained by meking the move to q1 and the

burden of correct play has been pushed onto the tree search.

41

Now the problem in position q1 came about only because the white
king was too far away from the rook to protect it from the black king's
attack, Therefore all that is needed to satisfy rule 7,9 is to
insist that the white king protect the rook. The condition of pro-

tection is given by function goodquad

goodquad(p)

goodquad(q)
Different definitions are given for p and q to insure that goodquad

{quad(p) A dp(wk,r)gdp(bk,r)u]

{quad(q) A dp(wk,r)gdq(bk,r)] .

satisfies 3.7. (We remind the reader that definitions of basic functions
and notation are given in Appendix A.)

The use of goodquad for a stage and squad for a measure in that
stage will inexorably force the black king toward a corner of the
board. However, this process must stop when we reach a quadrant of
size 2, since any smaller quadrant would be stalemate, Therefore when
sSquad = 2 we must move to a new stage. At this point we shift to the

heuristics taken from Capablanca [1935]. i, in Figure 4,2 is an

2
example of a position from this stage (stage 3).

We give the formal definition of better and worse by defining the

stages and measures,

X € stage O = (x is stalemate or x is a position with black to
move and black can take the rook in one move).

X € stage 1 = x cannbt be assigned to any other stage.

x € stage 2 = {goodquad(x) A squad(x) > 2} .,
x € stage 3 = {goodquad(x) A squad(x) = 2}
x € stage 4 = x is checkmate.

Lo

i s

Oniy stage 2 has a meaningful measure, We have

m, (x)
mi(x) =0 ife .

squad(x) ¥x(x € stage 2) .

Additions to better and worse

We are now ready to consider how well the program plays using the

formal definition of better and worse., We need not worry about the

transition from stage 1 to stage 2, since the tree search is no greater
than depth 2. However, the depth of tree search in stafe 2 can be as
large as 8, although a depth of 3 is average; in stage 3 the;e is a
maximum depth of 5. Therefore, we must make additions to better.and
worse in stages 2 and 3.

In stage 2 both the length and the width of the tree must.be
reduced. Recall that we are striving to shrink the size of the quad-
rant. The rook alone is unable to do this; sometimes the white king
must be used to force the bleck king away from the rook. For example,

in Py in Figure 4.3 the white king must move onto the boundary of

the quadrant. Then on the next white move the rook can form a new

quadrant smaller than the present one (see position 1 in Figure 4.3),

In order for the white king to be useful, it must first be next to the
rook. Position 12 in Figure 4,3 is an example of a position in
which the white king must move up to the rook. We can recognize this
kind of move by adding to better

.1 st(p)=st(q)=2 A dq(wk,r)<dp(wk,r) i

k3

s =S C::j

-

v -4 Ty

=]

-
L

4

[=

— —d

-~

wd

—

==

o P T
' @z /,;

?/ // %
yww
. @///%
t}/é%'u'aaygyé%% /‘

Figure 4.3,

In this position obviously we wrat wk-Q5 or
WR-K5 L]

This is the position before move € in Fine
(Figure 3.1). Now we want to move the white
king ontc the boundary to force the black king
away from the rook. The move made in Fine is
wk=Kk; w+-KBLW is just as good.

The black king is forced to move away from
the rook (bk-KB7 in Fine), and then the rook
can form a smaller quadrant (r-Q3), giving q3 "

p*, taken from Figure 4.1 before white move 5,
is the start of the longest tree (depth 4).

Examples of Moves in Stage 2.

k.1 reduces the length of the trece search to a maximum of four, This
is a manageable length sp no further change need be made to better.

A tree search of depth thfee or four requires considerable
pruning to be practical. In the formal definition only rook moves
leading to larger quadrants and moves giving stage O are eliminated.

In p* in Figure 4.3, for cxample, seven white king moves and four
rook moves would be examined in the tree search. .This tree will be too
broad,

Note first of all that tree search will take place only when
dp(wk,r) = 1 , The strategy at this point is to move the white king
onto the boundary, which gives a position q in stage 1. Therefore
not all stage 1 positions q can be declared worse than p . However,
the rook can also move to form a stage 1 position, either by moving
so that in q there is no quadrant or the rook is not protected by the
white king, All these moves can be eliminated. 1In addition all white
king moves which result in dq(wk,r) > 1 can be eliminated. We add to
worse
b.2 st(p)=2 A [st(a)<@ v (st(a)=2 A my(p)=m;(q))]

A [dp(wk,r)=1]
A [dq(wk,r)>1 v (st(q)=1 A rp{rq)]

It is easy to see that these additions to better and worse are

correct. First we note that

(QMBP A E&ﬂQ)=?) o (st(p)=2 A ?gﬁ(p)(p) = mﬁ&(p)(Q)

* A do(vk, r) = dg(wk, r)) .

Therefore 3,7 can be extended to cover 4,1, As far as 3.9 is concerned,

the important thing is that the white king is always able to move to

45

]
3

-

= 8| &/ | .3

protect the rook and such a move will insure

dq(wk,r) < dp(wk,r) .

We note also that 4.1 can only be applied to finite number of times
(no more than 7) between applications of the formal definition of
better. 4,2 is correct because it does not interfere with k,1 or the
formal definition of better, even when a tree search is required to
force a smaller quadrant.

In stage 3, the maximum length of the tree sea.ch is five, so it
is not necessary to change better. However considerable tree pruning
will be needed to make the tree manageable.

The checkmate position is illustrated by q3 in Figure 3.2. Before
the checkmate can be given, the white king must be in the square in-
dicated in Q5 . Note d(wk,r) = 1 in the checkmate position. Now we
could have used dx(wk,r) as a measure in stage 3 but it leads to
considerable inaccuracy of play since only the indicated square, of
all the squares next to the rook square, is used for checkmate. We have
concentrated instead on tree pruning.

Although we do not use d(wk,r) as a measure, it is obvious that
we do not want to move the white king away from the rook. This one rule
will eliminate many king moves. However, the rook also contributes
many moves, some rook moves giving stage 2 positions and some stage 1.
The stage 2 moves can be eliminated, but sometimes a stage 1 rook move
is necessary. This case is illustrated by position 12 in Figure & k.
At this point the rook must make 2 "tempo" move. It must remain on the
QB file, so that the black king is forced to move into the corner.

However, there are six usable squares on that file. We can limit the

L6

E N

\‘l

No immediate successor position is better
than P;- Q¥ is a desired move

After r-QB6, we have q, in stage 1. bk-Rl
is the only legal move, and then we can get

checkmate. This rook move is needed for parity.

p*¥ 1is an example of the longest tree seurch,
and the depth of this tree is 5 moves. It
is quite narrow, however. After pruning, the
remaining white moves are r-Q7, r-K7, r-QB8
end wk=Q7.

Figure 4.4. Examples of Stage 3.

k7

-

1

8

= s .3

rook moves examined by insisting that the rook stay next to the white
king., In stage 3 we add to worse:
b3 st(p)=3 A [st(a)=2 v (st(a)=1 A d (uk,z)>1)

v (st(q)=3 A dq(wk,r)>l A dq(wk,r)zdp(wk,r))] .
4.3 is correct because again we have been careful not to eliminate all
paths to checkmate. Now the tree is narrow enough (o manage. In Py
for instance only four moves are left after pruning; ir. p* also four
moves are left., Since very few moves are available to the black king
the tree remains quite narrow.

Combining formulas 4.1, 4,2 and 4.3 with the formal definitions

of better and worse we have:

better(p,q) = {(st(q)>st(p))
v (st(q)=st(p) A mst(q)(q)<mst(q)(p))

v (st(p)=st(q)=2 A d_(wk,r)<d (uk,r))} .

1]

worse(p,q) = {st(q)=0 v (st(q)=st(p) A my, (p)<m y y(a))
v (st(p)=2 A [st(q)=1 v (st(q)=2 A m,(p)=m,(q))]
A dp(wk,r):l
A [dq(wk,r)>1 v (st(q)=1 A rp#rq)])
v (st(p)=3 A [st(a)=2 v (st(a)=1 A d (wk,r)>1)
v (st(q)=3 A dq(wk,r)>l
A dq(wk,r)zdp(wk,g))])] .

These are the functions actually used in the program.

Examples of Program Play

In order to prove that the program works we must give examples of

program play., The first example is taken from Figure 4.1. The program

48

N 7

L

is started at the second move because it would maker -QR5 as its first

move,

9.

10.

11.

The reason for this difference will be discussed later,

The opening position is Py in Figure 4.5, We have:

r -Q8

r-Q5
wk-Q6
wk-K6

wk-K5

wk-Kb4

wk-Q4

r -K3

wk-Kb

bk -K5
bk -X6
bk -K5
bk -K6

bk -B6

bk -K7
bk -B7
bk -K7

bk -B7
bk -Kt7

bk -B7

)

Py is a stage 1 position, there-
fore the first stage 2 position

generated is better.

The program has lost one move.

Now we have squad = 16. The white
moves 3 to 6 are chosen by a tree

search,

This is the same position as the
book's after move 8, White moves
7 and 8 are chosen in a tree

search,

The tree has depth 3, but this
branch (moves 9 and 10) is only

depth 2.

ry

l = 1

ey
e g

& S &

-

= 2

4 2
[)

/47

.

/

' m

7

éﬁ

i //

’//
' 497 é%y /4/// The opening position for the example is in
//////////*‘ e

b, Ul ,///
o

stage 1.

y ﬁ’// /'7
Z //,

I’y
éV ég%%%’!ﬁfﬁ

/////////// /w / The posi*ion after book move 13.
7

The rook and white king are in the position
after move 13 by the program.

Figure L4.5. Illustrations of Examples of Program Play.

50

e R S Y . P — e

—F

13, r -B3 Moves 9-12 are the same as the

book's, but now we differ.

bk -R7
., r-Kt3 We are now in stage 3; see
Figure 3.1 at move 7.
bk -R8
15. wk-B3 bk -RT
16, wk-B2 bk -R8

17. r -R3 mate

The program is playing very similarly to the book up to move 13,
It choses a better and not the best position at move 1, and then must
work hard to catch up to the book. it is in a better position after
move 6 than the book is after move 4 and is able to regain two moves,
At move 13 the book makes a move using a different strategy. Instead
of shrinking the quadrant it puts the king in check (see D) in
Figure 4.5). 1If the black king goes to any square but B8 the book
gives mate in two or three moves, but for the move to B8, four moves
are required, The program's move also requires four more moves to
checkmate, so it is really just as good as the book move.

Position

example, P, is the position which results if in the previous example

we have
. ... bk -Kt8
14, wk-Kt3 bk -R8

51

Py in Figure 4.5 is the starting position for this next

Y

¥
-

N S8 T

rl

o -

Lmens |

Lﬁ—AJ

E
, .

15, r -B2 “* p-Bl is checkmate, but y -B2 is
generated first and also gives a
better (stage 3) position.

bk-Kt8

16, r -B4 bi-73

17. r -Bl Checkmate,

However, the order of moves can also be correct. If

13, ... bk-R8

%, r -B2 and two moves to chéckmate. r-Kt3
also gives a better position, but
four moves would have been required
to mate,

The numbering of the program moves is one less then it should be
since the program started at book move two. This means the program

never recovered the move it lost at its first move.

Evaluation of Program Play

Now we can see that the program plays similarly to the books.
More important, it is using the same heuristics as the book's in most
cases, For example, the use of squad as a measure exactly models Fine's
book when it is concerned with cutting down the number of ranks and
Tiles available to the black king (see the comment after move L4 in
Figure 4.1). Also both the program and the book use the white king
to protect the rook and to force the black king away from the rook so

a smaller quadrant can be formed.

52

-

The differences in program and book play that do occur illustrate
features of program play. These will be discussed in detail in
Chapter T7; only a list will be given here,

1. The goodness of program play is dependent on the order of move
generation (illustrated by the last two game examples).

2. The program will accept a move which gives a better position at
depth 1 even if an advantage would be gaiped by waiting until depth 2
to evaluate, ‘inis is the reason that the program will not make book
move 1,

5. The program uses a single main heuristic inside a stage; it will
not switchi heuristics until it reaches a new stage. This is the reason

the program will not make vook move 13,

None of these features causes the program any serious difficulty. 1In
fact, the program plays this end game very well., If it can do as well

on other end games, we will be very satisfied with it.

>3

e

u

o Ras

i oe |

CHAPTER 5

TWO BISHOPS AND KING AGAINST KING

This end game, while not difficult, is considerably harder to play
than the Rook end game, and the increase in difficulty is mirrored in
the program. The final definitions of better and worse are quite
complicated. As in the Rook game, the method of play used is a com-
posite of Fine [1944] and Capablanca [1935]. Figure 5.1 is the example
from Fine; Capablanca's method is given in Figure 5.6. Again Fine's
method is used to guide the first part of the game, while Capablance's
is used in the final stages.

Two basic patterns are sufficieat for the entire end game. The
first, as in the Rook end game, is concerned with confining the black
king to an area of the board. Unlike the rook, a bishop does not hold
an uncrossable line, However when two bishops are on adjacent diagonals
they together do hold such a line. Position Xy in Figure 5.2 illus-
trates this; the black king is confined to approximately half the
board. When the bishops are also on adjacent squares, the space avail-
able to the black king is even smaller, approximately a quarter of the

board. This is shown in positions X5 and x, in Figure 5.2, 1In

>
addition when the two bishops are on e&djacent squares they may protect
each other, as in X5 . If not, as in x3 , then only one bishop is

open to attack, and there is only one square inside the area from which

the black king can attack it. Therefore it is fairly easy for the

Sk

AniRTASENRESN. T i

In the previous cases it has always been sufficient to drive the
King to the edge of the board. Here, however, it is essential to have
the enemy King in & corner, for though mating positions in the center
are possible they cennot be forced. Any corner will do (unlike the
case with Bishop and Knight).

Beginning with any arbitrary position (iee
diagram No. 3) the first task is to reduce the
mobility of the Black King. Thus 1 B-B3, K—K6;
2 B-B6, K-Q5. Now that the Bishops are as well
placed as possible the King must come up.

3 K-Kt4, K-Q6; 4 B-¥5, K-Kb; 5 K-B4, K—Q7; 6 B~
Qh, K-K7; 7 ¥-B3, K-B8 (see diagram No. 3a);

8 B-B3, K-K8; 9 B-Kt2, K-K7; 10 B-B5 (a tempo
move: White cannot approach directly and loses
a move to compel Black to retreat), K=K8; 11 K-
Q5, K-Q8 {see diagram No. 3b). From this point
on the rest is quite simple: by successively
cutting o.f the squares to the right of Black he
is compelled to play into the corner. 12 B-Kth,
K-B8; 13 B-KB3, K=Kt7; 14 B-Ql (the King must not
be alluwed to escape), K-B8; 15 B-R4, K=Kt8; 16 k@2, K-Kt7; 17 K-Ql,
K=Kt8; 18 B-B3, K-R7; 19 K-B2, K-R6; 20 B-Kt5, K-R7; 21 B-Kth, K-R8;

22 B—Q3 (tempo move), K-R7; 23 B-Bich, K-R8; 24 B-B3 mate.

No. 3

No. %a. Position after No. 3b. Position after
Black's 7th Move. Black's 1lth Move.

Figure 5.1. Example from Fine, p. 15-17. This method serves as a guide
for the first part of the game.

55

«d

[]

— -
e

3

= =

ey

pr——.,
| YR mnd

= B 3

]

!—-

[|

n

/ N

h, & //
. / 7
///ﬂ/ //////

// /// / ///
'f/

/‘/

o
z/'f//'%//// u

A%V /u/ 0 /Q7 4¢7
W
% /////

M
f // T /
////// ////

//

////////
e

ng' ZZZ ﬁ;? /

When the two bishops are on adjacent diagonals
they confine the black king to approximately
half the board.

If in addition they are on adjacent squares
they confine the black king to epproximately
a quarter of the board. In X5 they also
protect each other.

However, the white bishop is open to attack
in x

5

Figure 5.2. Examples of Quadrants.

T s

. A Al e i s s e b iy

prcgram to evaluate the danger of attack and decide how to prevent

‘it, For this reason, together with the advantage of confining the black

king to a small area, the program uses this configuration as its sole
pattern. In Fine, this pattern is combined with the one where the two
bishops are simply on adjacent diagonals, Capablanca does not describe
the middle part of this end game; however the part he describes is a
continuation of this method (see Figure 5.6).

Now when the bishops are side by side they keep the black king in
approximately a quarter of the board, so this area will be called a
quadrant. Such an area will be recognized by function gquad(x) . 1In
order for the black king to be confined to an area it must either be
inside the area or else possibly on the inner diagonal of the boundary
of the area. For example, in x3 in Figure 5.2, squares QR2, QKt3,
Q3, K2 and KBl may be acceptable positions for the black king, in
addition to the inside squares, We have

quad(x) = {the black king is inside the area formed by the two

adjacent bishops, or it is on the inner diagonal of
the boundary of the area}.
Note that the position of the white king is not considered in gquad.

It is easy to define a size for a quadrant. The area in which
the black king is controlled by the bishops has the shape of a triangle,
and an edge of the board forms the side of the triangle opposite the
two bishops. Call this edge, edge(x) . Then

squad(x) = de(kb,,edge(x))+de(qb , edge(x)) .

Thus ESEEQ(XQ) =8 and ESEEQ(X3) = 7 . (For definitions of basic

functions and notation, refer to Appendix A.)

o

B O B 0

| L
e

The fact that we intend to use Capablenca's method for the last
part of the game puts a restriction on the quadrants the program uses
in this stage (stage 2). Position X, in Figure 5.3 is an example of

the start of Capeblanca's method. Note that the quadrant in Xy contains
a corner., Now if we decrease the size of the quadrant indiscriminately
we may end up with the black king confined to a small area not contain-
ing a corner, as in X, in Figure 5.3. Then we would have to use an
intermediate heuristic to achieve Xq . Rather than do this we force

X, to occur directly by only using quadrants containing corners.

1
Function hascorner(x) is true if the quadrant in x contains a
corner. This constraint mekes it more difficult for the program to
force a smaller quadrant, since often only one of the two immediately
smaller quadrants contains a corner. Position p in Figure 5.3 is an

example,

We now must consider whether quad and squad will satisfy conditions

3.7 and 3.9. For condition 3.7 we define

spec(x) = {some successor of the black king in x is not
inside the quadrant}.

Then for a quadrant to be accepted in q , spec(q) must be false, For
example, Q in Figure 5.4 will be rightfully rejected by this condition;
after the black king moves to KB7 no white move can force it back into
the area. Requiring that ERSE(Q) be false insures that the black king
must move inside the quadrant, and any p with the black king inside
the quadrant vill be accepted. Therefore rule 3.7 is satisfied.
Condition 3,9 presents more difficulty. First we must reject positions

like in Figure 5.4, 1In p, , only qb-Q6 will form a quadrant, but

Pp
58 ;

e et LA |

'///
. /
/// '//

"%
%/f///

w f

The quadrant in p has a corner. However,
ol the two ways of forming & smeller quadrant,

/// only one, qb-QB5, produces a quadrant with

% a corner.
, % %%ﬂ,

/ Figure 5.3.

59

N

L4

1 58]

()

==

a = =1 =3

L

*
-

= 5=

]

.
-

//

7 /// W
///////

A,

"

. 7 '////
/é///

Z

’///////

W
/%////

/
%/////

2 Y
////&i ///////

.

m,

My/?f

The black king can move to KB7, giving p2 ’

and no white move can contain the black king
in a quadrant of size 8.

The white bishop has just moved from QB6

(squad =9). Now sgquad(q,) = 8. The black
King 1s controlled by the White king and must

move inside the quadrant.

Figure 5.k,

60

S ————— S S——

U
1 -

— = _umoep

1 this quadrant has size 9. If Py is considered to have a quadrant,
then that quadrant would have size 8, Therefore, if in p the black
king is on the boundary of the area, we insist that EEEE(p) be false
if the quadrant is to be accepted.

We have now eliminated any possibility of direct black escape from
the quadrant. However, we must consider whether white may be forced to
give up an advantage because of a black threat. Now black can only
threaten a bishop, and in a position like X5 in Figure 5.2 the bishops
protect each other. Therefore we need only worry about a quadrant like
the one in x5 in Figure 5.2, A position x with a pattern like x5
can easily be recognized because squad(x) is odd. If this is true,
the quadrant is called a head quadrant, and _rl_e_a_d(x) is the square
containing the bishop closest to the black king., This bishop is referred

to as the head bishop.

In the Rook end game we solved a similar problem by always insisting
that the white king be close to the vulnerable piece. Here things are
not so simple. In the Rook game the white king could assist in shrinking
the quadrant from a square next to the rook, but in this end game the

white king may have to move away from “ihe liead bishop in order to be of

T

use. For example in q_5 in Fig:re 5.4 the king's bishop has Just moved
from QB6; prior to this move the queen's bishop on black square QBS was
the head bishop, and the white king is four away from this bishop.

If in a head quadrant we can make a move into a smaller non-head
quadrant we have cancelled any threat the black king was making., If

either bishop could move to meke a smaller quadrant, then if

61

b]

==

&

=y &

[

| =

d(bkq, head(q)) > 3 we would always be sure of forming the non-head
quadrant in time. However, because of the corner condition, usually
only one bishop move is permitted, 1In this case the white king is the
only sure means of defending the head bishop. However, if at any point
we know we can form a smaller quadrant in time, we will take advantage
of that fact.

It is difficult to be sure that the white king can protect the
head bishop. 1In q in Figure 5.5 we have
d(wkql, gggg(ql)) = d(bkql, Qggg(ql)) , but even so the white king
cannot protect the head bishop. Therefore in gq we expect the condition

d(uk , head(q)) < d(bk , head(q))
and in p
5.1 d(wk , head(p)) < d(bk , head(p)) .
However these conditions are not even sufficient. Position p3 in
Figure 5.5 is an example, p3 satisfies 5.1 but a bishop will have to
move to form a larger quadrant because every white king move leaves
the head bishop unprotected. This condition can be recognized in the
position from which black moved to form p3 (position 9, in
Figure 5.5). Note that the white king position shown in P and p3
is Just one of many which are bad. The bad squares are: KKt3, KKth,
QB3, QB4+, KB6, and Q6. Also all squares more than two away from the
head bishop are bad. The remaining squares are good: they are KKt5,
KKt6, KKt7, KBS, KB7, K7, Q5, Q7, QB5, QB6, and QB7.

One final case remains to be considered, and it is illustrated by J

position gq in Figure 5.5. We have d(bkqh, head(qh)) =2 and }

62 :

dql(wk,qb) =3 =d, (bk,qb). However the
1

white king is unable to prevent the attack
on the head bishop since it will be blocked
by the black king.

[=4

3

!

&
L

l

e
[)

d<qub, ngg(q%)) = 3, but the white king is still able to protect the
head bishop. This is because the black king is in check, so it is
unable to use the direct attacking path (it needs two moves to attack).
The fact that the black king is in check but there is a quadrant, means
either the white king is guarding the boundary or the boundary is next
to an edge of the board. If the white king is guarding the boundary of
the area. we know that it cannot be prevented from protecting the head
bishop. 1If the boundary is next to an edge, white will have no dif-
ficulty in forming a smaller quadrant, since we then know that either
bishop move will form a smaller quadrant containing a corner. So, if
the black king is in check in q , and d(bkq, head(q)) = 2 , we accept
q as long as d(wkq, head(q)) < 3 . The reason for going to all this
trouble is that this is a very common occurrence, and if we do not make
the exception the program will essentially play from one non-head Jjuad-
rant to another with only tree search in between. This makes the trees
too long. Even so some perfectly safe positions will be rejected.

Let us formalize the conditions discussed in the preceding
paragraphs. A function badc is defined to recognize the situations
occurring in positions gq, and Ps of Figure 5.5. For gq , badc
is concerned with all positions with d(bkq, head(q)) = 2 . Thus the
case of the black king in check is handled in badc also. We have

safe(q) = {(squad(q) is even) v [d(bkq,h_eeiq(q))=2 A - badc(q)] v

[a(ok ,head(a))>2 A d(uk,head(q))<d(bk, head(q)) 1} .
Note that q with d(wkq,p_egg(q))=d(bkq,hLaq(q))=1 will satisfy safe.

In p , badc handles all positions with d(bkp,head(p)):l . We have

64

safe(p) = [(squad(p) 1is even) v (d(bkp,h_e!ag(p))ﬂ A - bade(p)) v
(d(vk ,head(p))>1 A d(wk ,head(p))<d(bk ,hzad(p)))] .

Now we can define the recognizer for stage 2:]

goodquad(p) = {quad(p) A hascorner(p) A safe(p)]}

goodquad(q)
goodquad and squad satisfy 3.7 and 3.9.

{quad(q) A = spec(q) A hascorner(q) A safe(q))} .

L)

Stage 3

As explained previously the condition hascorner is uszd to insure

Ll
H

that stage 2 will eventually fit in with Capablanca's method for the
end of the game, The example from Capablanca is given in Figure 5.6; &4

position x, in Figure 5.3 satisfies the same pattern as Capablanca's i1

il

position after white move 3, - This is the point at which stage 3 should

start because now we will use different heuristics, If gggggggg(x) 5

then squad(x)>6 indicates stage 2, while squad(x)=5 or 6 gives

stage 3. If ESEEQ(X)<5 we allow the program to use tree search to .

arrive at the larger quadrant of stage 3. 1
Position Py in Figure 5.7 is the position in Capablanca after

white move 5., Capablanca's strategy for this part of the game is to

move the white king up into one of the squares marked X1, X2, or Y ,

or the square occupied by the black king. For the progrem, this has

been simplified. Only the sguares marked Xl and X2 are used as

goal squares for the white king. When squad=6 , X1 is the goal

square. When squad=5 , either X1 or X2 is allowed; one of these 1

will be covered by a bishop. Since with squad=5 we have a head

quadrant, this is used only as a back-up for squad=6 . It is needed t

= I

"!

ad

i

‘C:IL_.:__.-

Now we come to two Bishops and King against King.

Since the Black King is in the corner, White can play 1 B-Q3,
K=Kt2; 2 B-KKt5, K=B2; 3 B~B5, and already the Black King is confined
to a few squares. If the Black King, in the original position, had
been in the center of the board, or away from the last row, White should
have advanced his King, and then, with the aid of his Bishops, restrict-
d the Black King's movements to as few squares as possible.

We might now continue: 3...K=Kt2; 4 K=B2. In this ending the Black
Kinz must not only be driven to the edge of the board, but he mist also
be forced intu a corner, and, before a mate can be given, the White King
rust be brought to the sixth rank and, at the same time, in one of the
last two files; in this case either KR6, KKt6, KB7, KB8, and as KR6 and
KKT/ are the nearest squares, it is to either of these squares that the
King ought to go. h4...K=B2; 5 K=Xt3, K-Kt2; 6 K-R4, K=B2; 7 K-R5, K—Kt2;
8 B=Kt6, K=Ktl; 9 K-R6, K—Bl. White must now mark time and move one of
the Bishope, so as to force the Black King to go back; 10 B=R5, K—Ktl;
11 BK7, K*1l. Now the White Bishop must take up a position from which
it cen give check next move along the White diagonal, when the Black King
moves back to Ktl., 12 P—KKtlk, K—Ktl; 13 B—K6ch, K-Rl; 14 B—B6 mate.

Figure 5.6. Example from Capablance, page 29-30, The program plays
almost exactly the same from White move 4 on. '

66

——
[
e I

P,
o

Figure 5.7.

67

Examples of Stage 3.

Y

(¥

u

Neumm—

= 3

in a position like Ps in Figure 5.7; the king's bishop moves to KKt6
which is really a tempo move (position q, in Figure Bg).

The obvious measure for stage 3 is some kind of distance function
measuring the number of moves required for the white king to reach the
goal square. This function must take account of obstructions (the
bishops) and tempo move.. The follow.ng function works well, First we
define, for position x in stage 3, functions sql(x) and sg2(x) .
£q1(x) contains the goal square like X, in p, , and 5g2(x) the other
goal square X2 . We use as a measure

max (d(kaxiﬂl(x)),d(ka:Eﬂg(x))) .

This function has a minimum value of 1; it will bring the white king up
to sql and sqg2 , but will not select the actual goal square. When
& goal square is achieved, we will be in stage L,

We must consider the problem of satisfying conditions 3.7 and 3.9.
If goodquad holds we obviously have no problem, since no new difficulty
has been added. Actually goodquad is stronger than needed, since no
objection is raised now to moving from squad=5 to squad=6 . But
there is no particular reason to remove this condition, and it tends

to prevent foolish bishop moves.

Stage 4

Once the white king has actually moved into the goal square, the
position is in stage 4. (Since st selects the highest stage there
is no conflict.) Three factors, recognized by function end2 , are
used to determine stage 4. One is the position of the white king in a

goal square. In addition the black king must be confined to the edge

68

opposite the white king. This condition will always be satisfied if

vwe are coming from stage 5> and the white king is in the appropriate

goal square. If squad=6 and the white king is in sg2 , usually the
condition is not satisfied, Position ql in Figure 5.8 is an example,
For the white king as shown, in Egl(ql), we have stage 4. If the wh ‘e
king were in Egg(ql)=KR6 , the black king would be able to escape from
the edge (to KB2), so we would not have stage 4. The third factor is
concerned with the distance of the black king and all its legal successors
from the corner closest to the white king. Let succ(x) be the set of

all successors to the black king in x , Let

succl(x) = succ(x) U bk if the black king is not in check
dmi B,
= succ(x) otherwise.

Let c(x) be the corner closest to the white king in x . Then let
dedge(x) = max({d(r,c(x))|r€succi(x)})
and dedge(x)<3 is the condition used for stage L.
The reason for the choice of three as a limit ccmes from the fact
that this is the highest value which the ordinary entry through stage 3

will satisfy. Sometimes a starving position, like in Figure 5.8,

*
will have the white king in position and the black king confined to the
edge, but farther than three squares from the corner. Either a long

tree search or different heuristics would be required to handle such a

position if we called it stage 4. This is not worthwhile for such a

special case.

69

‘—-—d“ -_J - J

c=a

Py

w@
// 1 L ! %
/ 7z

Figure 5.8.

Examples of Stage 4.

70

The heuristic for this stage is to use the bishops to force the
black king into the corner. Checkmate can only be given in or next to
a corner in this game. dedge can be used to express this heuristic
and is the measure for stage 4.

Again we must worry about satisfying conditions 3.7 and 3.9, The
difficulty arises from non-standard entries into stage 4. Consider
first %, in Figure 5.8. All conditions for stage 4 seem to be satis-
fied, but when the black king moves to K1 (position Py in Figure 5.8)
we no longer have a stage 4 position. To avoid such trouble we add
condition

deond(a) = {dedge(q)<d(bk ,c(a)) v

(goodquad(q) A 5 < squad(q) < 6)}.

n

deond(p) = - badi(p)

This condition says that the black king is forced to move closer to the
corner; we only insist upon this when the entry is not from stage 3.
Condition dcond 1is sufficient to satisfy both rules 3.7 and 3.9,

since there is no way in which the black king can force white to
abandon stage 4, Since the black king cannot be in check in p , we
know that if a bishop is preventing its escape from an edge. that bishop
must b2 bearing on the edge. Unless a bishop is blocked by the white
king, as in P, in Figure 5.8 (satisfying bad4), white can maintain
stage 4, If the white king is preventing the black king from escaping,

the bishops have sufficient mobility to keep the advantage.

Formal Definitions of better and worse

Here ere the definitions of the stages.

11

x € stage 0 = {x 1is stalemate or x is a pésition with black to

move and black can take a piece in one move}.

x € stage 1 = {x is not in any other stage}.
x € stage 2 = {goodquad(x) A squad(x) > 6}.

x € stage 3 = {goodquad(x) A 5< squad(x) < 6 }.
x € stage 4 = {end2(x) A dcond(x)}.

x € stage 5 = {x is checkmate].

The measures are

m2(x) = squad(x) X € stage 2

m,(x) = max(d(wk_,sql(x)),d(wk_,sq2(x))) X € stage 3
3 oy «* 28E

mh(x) = dedge(x) X € stage 4

m(x) = 0 i=0,1,5, x € stage i

An explanation is needed about the definition of stage O, There
are positijons p with white to move which are successors of some
Q€ Q, but pg P. They are all like position P, in Figure 5.9
which is a successor of position a4y in Figure 5.9. It is not
necessary to recognize ql as a member of stage O however. Since
position 9 is a stage 1 position, and since no position with white
to move is in stage O, ql will never be accepted by better. Therefore

the program will work correctly with the present definition of stage O.

Changes to better an& worse

Now that we have given the formal definitions of better and worse,

we consider what changes are needed to make the program practical. At
present a tree of at most depth 3 is required to move from stage 1 to

stage 2. This tree is very wide, but since it occurs at most once in

a game no changes have been made to stage 1 heuristics,

e

pkilcoiiade cas
SR

p

n

h

.‘_’ Z’W //// %j‘% 7,
lf/ - "
,/ /4% /@

Figure 5.9. Illegal Positions.

73 (‘

—

In stage 2, very long tree searches may be needed, up to a
maximum of depth 8. The worst cases occur in non-head quadrants.
Frequently in such positions, tree search to a new non-head quadrant

is required because of the difficulty in being certain a head quadrant
is safe. Tor example, in position P, in Figure 5.10 a tree of depth 5
is required to force a better positionj in P the tree has depth 7.

We will discuss heuristics for non-head quadrants first,

Obviously we would like to cut down on both the length and breadth
of the treze search., Unfortunately it is very difficult to define
heuristics to add to better which will work in all long trees., 1In
position P > the moves wk-QBS and wk-QB6 are equally good moves, and

either would be selected at depth 5. Both moves enable the white king

to guard the boundsry of the quadrant, The move wk-QB6 satisfies

5.2 dq(wk,bk)<dp(wk,bk) A dmin(q)<dmin(p)
where

dmin(x) = min(dx(wk,kb),dx(wk,qb)),
while wk-QB5 does not. When 5.2 is added to better it will cut the
tree search in Py (starting at level 2 of the original tree) to k;
in p, nothing is gained. In many positions, however, considerable
reduction in tree search is gained by this heuristic, and the maximum
tree depth is cut to 7 (position p2). 5.2 satisfies 3.7 because dmin
depends only on the positions of the white pieces. dmin also insures
that 5.2 will be applied only a finite number of times (no more than
five),

Now rule 5.2 will obviously fail if

Th

1

/
/// // 7
W, // '/
,/, / "/// ,,

Py

TN

///’2/%/;
: ’//// // BB

N

I'igure 5.10, Tree Pruning Heuristics for Non-Head Quadrants.

75

e e s

BTl g Wit . 7 OB W

s OT

1, dp(wk,bk) =2
2, dmin(p) =1
If these patterns hold in p , we must turn to tree pruning to make the
tree manageable, First, all moves leading to positions without quad-
rants can be eliminated by rejecting q satisfying

badquad(g) = {- quad(q) Vv spec(q) vV — hascorner(q) v

[(squad(a) is odd) A d(bk ,head(q))=e A bade(q)]} -

Bishop moves leading to larger quadrants are already eliminated; in
addition badquad eliminates some bishop moves leading to smaller
guadrants, Few bishop moves are left; these are the ones which hope-
fully will lead tc either a legal head gquadrant or a small non-head quad-
rant in one more move,

badquad applies only to bishop moves; king moves must also be
eliminated. First we reject all king moves such that
5.3 dq(wk,bk)>dp(wk,bk) .
We would also like to reject moves with

drin(q)>dmin(p)

tecause although 5.2 is not a measure, since it is a predicate instead

of a function with integer values, it would be nice to use it like a
meusure, However this condition is too stricti in p3 in Figure 5.10
for example, the move wk-QB6 must be permitted. The condition is
changed to

5.4 dmin(q)>2 A dmin(q)>dmin(p)

which works because when dmin(q)>2 we have almost no chance of forming
a better position with a head quadrant farther down in the tree, so it is

much harder to terminate the search.

76

When dp(wk,bk)>2 it is not always possible to move the white king
up to the black king. This is illustrated in P, in Figure 5.10. 1In
P, the white king is needed on the side of the gquadrant toward the
center of the board. If he goes there via KKth, a tree of depth 8 will
be required to force better positions, while if he goes via K3 the tree
terminates at depth 6. In this case we have dp(wk,bk):dq(wk,bk) and
dmin(q)=1 . We define °
=S dp(wk,bk):dq(wk,bk) A dp(wk,bk)>2 A dmin(q)>1
as our final heuristic for rejecting king moves in non-head quadrants.

In head quadrants there is usually less difficulty in forcing a
better position since a non-head quadrant is automatically safe. In
general the tree searches are not as long as for head quadrants before
the addition of 5.2; a depth less than four is average. Position 12%
in Figure 5.11 is an example; this position may occur after the tree
search from position Py in Figure 5.10. A tree of depth 2 is required
and the first move should be any white king move but wk-K5 or wk-K6.
The heuristic added to better for non-head quadrants does not apply and
this is true in general for head quadrants., Since the trees are of
manageable length no changes have been made to better.

Slightly different heuristics are used for tree pruning for head
quadrants than for non-head quadrants. badquad is replaced by the
stronger condition that oniy legal stage 2 positions are permitted for
q . This rule eliminates king as well as bishop moves. Other king
moves are rejected by
5.6 dmin(gq)>1 A (dq(wk,bk)>dp(wk,bk)

v [dq(wk,bk):dp(wk,bk) A dp(wk,bk)>2]) .

17 {

T ——

- -
Roger e e

-d

S

N
~////&.’//

' /// N
"
/////9////

e

7

7//// //////// /y//
{4}/1//// ///

5 W
//

/
47

h,, ’///
A,

/ ,'
".Ié,// /’/{7 / y

Figure 5.11. Fxamples of Head Quadrants.

78

) S

In head quadrants it may actually be necessary to move the white king

away from the black king. This is shown in position Py in Figure 5.11.

It is essential to move the white king to QB3 at this point; the move
is similar to the one made in Py in Figure 5.10. A tree of depth 5
is needed from p, . The correct move is permitted since dmin(q)=1 .
Summing up the additional heuristics in stage 2, we add to better
5.7 st(p)=st(q)=2 A (squad(p) is even) A dq(wk,bk)<dp(wk,bk)
A dmin(q)<dmin(p) .
We add to worse
5.8 st(p)=2 A [(st(a)=1 A [(squad(p) is odd) v badquad(q)])
v (st(a) 2 Amy(p)=m,(a) A cutk(p,q))]
where
cutk(p,q) = {{(squad(q) is even) /\(dq(wk,bk)>dp(wk,bk)
v [dq(wk,bk)=dp(wk,bk) A dmin(q)>1
A dp(wk,bk)>2]

v [dmin(q)>2 A dmin(q)>dmin(p)])] v

[(squad(p) is odd) A dmin(q)>1 A
(a_(wk,bk)>d_(wk,bk)
4 p

Y [dp(wk,bk):_dq(wk,bk) A dp(wk,bk)>2])]}

combines the king move heuristics 5.3, 5.4, 5.5, and 5.6.
In stage 3, the formal definitions work very well, Considerable

tree pruning can be gained by adding to worse
5.9 st(p)=3 A st(q)<3 ,
which will not eliminate all paths to better positions. The tree
searches have a maximum length of 3, and with the addition of 5.8, a

width of no more than three moves at any level.

79

In stage 4 we are also doing fine as far as tree length is concerned

since the tree will only have a depth of 2. We add
5.10 st(p)=4 A st(q)<4 A — end2(q)
to worse; even with 5.9 the tree is quite wide but this is not serious

since it is so short.

Combining 5.7, 5.8, 5.9 and 5.10 with the formal definitions of

better and worse we have

better(p,q) = {st(a)>st(p) v [st(q)=st(p) A mst(p)(q)<mst(p)(p)]

V [st(p)=st(q)=2 A (squad(p) is even) A

dq(wk,bk)<dp(wk,bk) A dmin(q)<dmin(p)l} .
worse(p,q) = {st(q)=0 v [st(q)=st(p) A mﬁ(p)(p)@ﬁ(p)(q)]
v [st(p)=2 A
([st(a)=1 A ((squad(p) is odd) v badquad(q))]
v [st(a)=2 A my(p)=my(q) A cutk(p,q)])]
v [st(p)=3 A st(q)<3]
v [st(p)=k A st(q)H A end2(q)l} .

These are the functions used by the program,

Examples of Program Play

Qur first example will illustrate how the program plays the last
part of the game., We will start with the position occurring after
black move 3 in Capablanca's example {Figure 5.6). This position is
the same as Py in Figure 5.7 except that the black king is in KKt2.
The program would not make the same first moves as are given in
Capablanca tecause a search of depth 3 has been made while the program

will use a depth 2 tree. We have

80

—— S
.
B e i i

b, wk-@ This move gives m3(q)<m3(p),

but it is not as good as the book

move wk-KB2,
bk-XB2
5. wk-XK3 bk-KKt2
6. wk-KBh4 bk-KB2
7. wk-KKth We have lost one move.
bk-KKt1
8., wk-KR5 Moves 7 and 8 are found by a tree
search of depth 2,
bk-KKt2
9. kb-KKt6 bk-KKt1
10. wk-KR6 Again by a tree search of depth 2,
bk-KB1
11. qb-KB6 bk-KKt1
12, gb-K7 Again a tree of depth 2., The
program's move 11 is just as good
as the book's move 10 (it is a tempo
move),
bk-KR1
13. kb-KB5 bk-KKt1l
4. kb-K6 ch. bk-KR1

15. qb-KB6 mate,
This examplc shows that the program plays the last part of the game

very well, Its only mistake is move 4 and this is not serious.

81

[=

Our next example is taken from Fine (Figure 5.1). Our starting

position,

in Figure 5.12, occurs after black move 2, The program

will make different initial moves than the book because of the order of

move generation (position p, in Figure 5.12 would result). We have

3.

10,

11,

2,

wk-QKt6

kb-Q5

wk-QBT
wk-QB6
wk-Q7

wk-K6
wk-K5
wk-KBY4

wk-KKt3

qb-QB5

bk-Q6

bk-K6
bk-Q5

bk-K6

bk-Q5
o

bk-K6

bk-KB7

bk-KKt 8

bk-KB8

This move is not nearly as good as
the book move or wk-QKt5. Move

generation is at fault again.

We are now playing differently

from the book,

We need the king on the other side

of the quadrant,

Condition dcond prevents the program
from accepting the position at this

point (q5 in Figure 5.12) as better.

Moves 5-12 are found by a tree
search of depth 8, The black moves

are on the longest branch.,

82

i i e e
P

Position Py is the start of the second
example of program play.

7
// ‘
J
P, % //// ’,//Z / The program arrives at P, after two moves

'///// w // trom the initial positionin Figure 5.1,
4, / .

7 /
LN R

9, occurs after program move 11; nd2(q5)

is true but dcond(q5) is false, which prevents

/ %/;« i

v’/’}‘ ’/ %//V " l:

/// /// //Aﬂl
44 ///// 7

%/// /,//// ,;

the program from accepting as better,

(15

Figure 5.12, Examples of Program Play.

33 D

13.
L,
15.
16.

17.
18.

19,
20.

21,

wk-KB4
wk=-KB3
wk-Kk

kb- QB4

wk-K3

qb-QKth

wk=Qlt
wk-QB3
wk=-QKt3

bk-K7
bk-Q6
bk-QB6
bk-Q7
Moves 13 through 16 form a branch
of length 4k in a tree of depth 6.
bk-K8
bk-Q8
We are now in stage 3,
bk-QBT
bk-QB8
bk-Q8

Move 21 gives a stage 4 position, and the play from this point on is

essentially identical to the first example. Five more moves are

required to mate,

This means that the program uses 24k moves to reach

checkmate from p, in Figure 5.12, while the book uses 22. Therefore

the program is playing quite well in spite of the interference caused

by bad move generation. The moves selected for black vary from ones

which present white with maximum difficulty (for example, black

moves I through 11) to medium difficulty (black moves 12 through 15). ’

Similar kinds of black moves are given in the book. The program would

require about 28 moves to reach checkmate from p, , SO for the entire

example, it uses six more moves than the book.

this example is with the tree of depth 8 (moves 5 through 12).

The only place where the program is likely to have difficulty in §

84 |

Fortunately this tree is very narrow. Since the position at the
beginning of the tree has a head quadrant, most btlack moves allow
white to form a better position immediately. There is one other main
branch in the tree (wk-QB5); this branch would terminate at depth 9,
This tree provides an illustration of the necessity of allowing the
white king to move away from the black king. fienerally trees from
head quadrants are sbort (for example, moves 17 and 18); the one
exception occurs when the presence of the white king is required on
the other side of the quadrant, as in this tree,

One last example is given to illustrate some remarks made abcut
non-head quadrunts. We begin with position pj in Figure 5.10.
1, wk-K3 The white king is taking the

shortest route to the other side

of the quadrant.

bk-K>
2, wk-Q4 bk-Q@
3. wk-Q5 bk-QBl
b, wk-QB6 bk-Q1
5. kb-KB5 We have nob yet reached a better
position becauce the white king is
too far away from the head bishop,
bk-K2

-

b, wk-Q5
Now we have reached & better position. At move 6, gqb-KKt5 would give
a smaller non-head quadrant, but unfortunately this move was not

generated soon enough,

85

1

"

|

Evaluation of Program Play

The program is playing adequately, and the comments made at the
end of Chapter &4 can be applied to this game also, We merely note
that a second-best move in this game hurts the program more. Since
the game is harder, more precisicn is required for good play.

The program play is very close to book play in the last part of
the game. This is not true in the first part. However, the method

used in the first part was suggested by the book and works well,

e J

"o]

ad

T?

CHAPTER 6

BISHOP, KNIGHT AND KING AGAINST KING

This end game is one of the most difficult of the classical
endings., When it is discussed in the chess books, it is broken into
two main parts. The first part of the game consists in forcing the
black king to an edge. Since the mate can only be given in (or next to)
a corner of the seme color as the bishop (the black corner in this
discussion since we will assume that white has the queen's bishop), we
expect to finish the first part with the black king in the corner of
opposite color to the bishop (the white corner). Then the second part
censists in forcing the black king down the edge to the corner where
mate can be given,

While the method of play used by the program in the second part of
the game agrees exactly with the books, in the first part we are forced
to provide our own heuristics. There are two reasons for this. First,
the books only give a limited example of this part of the game; the
program must be able to handle all black king moves, not just those that
are most likely. And although books do make some attempt to explain how
to play, the procedures described are too local in nature to be used
directly. Figure 6.1 is taken from Fine [1944]; the two patterns
described are quite powerful, and in his example very conveniently the
white pieces are in a position to make constructive use of them. However
these patterns are useful in general only when embedded in some global

heuristic,

87

ik

Rt

In order to drive the enemy King back to the edge of the board
White must make use of two typical positions (see diagram No. 5). 1In
the first - 5A - all the points leading towards the center snre inac-
cessible to the Black King and he cannot maintain the status quo; he
must retreat. In the second - 5B - the two pieces are cooperating
beautifully. Black's King can do nothing better than mark time and
as soon as the White King comes up he will have to give way. The
important feature in No. 5B is that the two pieces are diagonally
adjacent to one another, for it is because of tnis fact that they
cover SO many squares.

Starting from some urbitrary position such as No. 6 the most
effective continuation would 1 Kt-B3 (No. 5B), K=Q3; 2 B-B6 (No. 5A),
K-K?; 3 K-B5, K-K2; 4 K=Q5, K~Bl. Black is well advised to go to the

flcs 5. Driving the Black
King Back.

/'717

///
,

/ﬂ %VW

i
///,//////47/

:rong corner, for that is the only way in which he can hold out for
any appreciable time. 5 K=KG, K=Kt2; &6 Kt—=K5, K-Bl; 7 K=B5, K—Ktl;

8 Kt—Kt{, K=R2; 9 B—Q5, K=R3; 10 B~Kt8 and now we have position No. &4
since the fact that Black will be chased along the file rather than
along the rank makes no difference.

Figure 6.1. Example from Fine, pages 18-20.

88

|
1

frrd d e e e

o oed

4

| SR

Stage]

Stage O as usual contains the various illegal positions which in
thics end game compr’ quite a large . ontalr posivions in which
the black king can take a piece in two moves as well as the usual loss
in one move. Since immediate loss or stalemate is obvious we concen-
trate on describing the other kind of stage O position.

In order to ke sure that we discover all illegal positions we
consider how such positions might occur. First, suppose the black king
can attack only one of the bishop and knight. Since the bishop has so
much mobility, it will be able to escape the black king unless its path
is blocked by the knight. Therefore the knight is also under attack,
and this case will be discussed later. The knight does not have as much
mobility as the bishop and in fact is open to ettack if it is in a
corner, Examples are shown in 9 and Q, of Figure 6.2. To avoid
having to recognize positions like ql and 9, (and distinguish them
from similar positions in which white is able to protect the knight) we
assign all positions in which the knight is in the corner to .tage 1,
which in this game proceeds the catch-all stage. This insures that the
program w%}l move the knight out of a corner if it is in one in a starting
position, and will never accept such a position as better.

It is also possible for the black king to attack the knight and
bishop at the same time. The attack must come in one move or white
will be able to avoid it. We have

dq(kt,qb)_<_2 A dq(bk,qb)_<_2 A dq(bk,kt)_<_2 .

(The reader should refer to Appendix A for definitions of basic functions
and notation.,) We also assume that neither the knight nor the bishop is

89

After bk—KKt2, white will be unable to
avoid losing the knight.

After bk—-QKt2, white will be unable to
avoid losing the knight.

a3 After bk—-QL, white will be unable to
avoid loss of a piece.
q), After bk—Ql, white will be unable to

avoid loss of a piece.

Figure 6.2. Examples of positions in which black can take a piece in

two moves. Positions q, and q, are in stage O, but g
d 3 4 1
and q, are in stage 1.

90

L~ o e~ = W%

bod ed wed ed GOm0

Sl

-d

il

&

=

susceptible to being taken immediately. If dq(qb,kt)=2 , there s only
one configuration of knight and bishop which permits such an attack. It
is illustrated in q,5 in Figure 6.2, 1If the black king instead were
on Kh, K5 or QB5 he could also move to attack both pieces. 1In q3 the
knight is on a white square, and consequently is bearing on a black
square. This means that it is not able to move to protect the bishop,
and also the bishop camu L possibly move to protect it. Since the black
king will threaten both the bishop and the knight, it is not possible to
simply move a piece out of danger. Therefore, the white king is white's
only means of defense., If the white king is next to either piece the
loss can be avoided. Also, if the white king can come to the aid of
the knight no loss will occur since the knight protects the bishop.
So we will lose a piece if

dq(wk,qb)>l A dq(wk,kt)>2 .

if dq(kt,qb):l we have several cases to consider. First we have
positions like q, in Figure 6.2 in which the knight is on a white
square. The black king could also be on Q3 or QB3 and be able to move
to attack the pieces. Such a position is similar to the previous case,
but in q, the knight does not protect the bishop, so the white king
must be able to move to protect both pieces if loss is to be avoided.
Therefore

dq(wk, qb)>2 v dq(wk,kt)>2
implies a piece will certainly be lost. In addition, even if this
condition is not satisfied white may still lose a piece since the move
black makes to attack may block the white protecting move. This would
happen in g, if the white king were on QB6.

91

Positions q, and q, of Figure 6.3 are examples of dq(kt,qb)=l
with the knight on a black square. In such positions the bishop is pro-
tecting the knight. If the bishop were not on an edge, it would be able q
to retreat from the black attack and continue to protect the knight. If
in q, or q2 we had dq(wk,qb)=l , then the white king would prevent
the black king from moving into the attackirg square. Also not all the
squares two away from the bishop are forbidden to the black king; for
example in q, only from squares Q6, K6, and KB6 can the black king
force the loss of a white piece. As usual, we do not worry about
dq(wk,qb)>2 since we will handle that through stage 1. All of the
various cases of positions two black moves away from the loss of a
piece will be recognized by function badpos(q) .

In the positions shown in Figure 6.2 and also in q, and q, in
Figure 6.3 the black king causes difficulty for white by attacking
pieces. It is also possible for black to combine a threat of stalemate
with an attack n a piece. Position q3 in Figure 6.3 is &n example.
There is no danger that this position would be chosen by better in some

later stage. Therefore it is not necessary to recognize it.

Stage 1

As mentioned during the discussion of stage O, stage 1 is inserted
before the catch-all stage because this is a way of using simple test:c
to avoid a lot of pattern recognition. Stage 1 contains all positions
with the knight in a corner and also all positions where

dp(wk,qb)>dp(bk,qb)+l

dq(Wksqb)Xq(bk:qb) i

=i

et

- ’ 2l [, (]
P oy, o

-

)

T T
////////

s

qy 7 // ///
W, ////// //’%
/ /ﬁj///j/ ///
W W
/////// /;////
a4 %7 //%74%/%z;6/47,
%% -
13 V/ ///
? ,///////
Figure 6.3.

in two moves.

If the black king moves to K7, white will
lose either the knight or the bishop.

If the black king moves to KKtl, then white
will lose the bishop.

After the black king moves to KKtl, white
will either lose the bishop or give a
stalemate.

More examples of p051tlons in which black can force a draw
Position q, and qg are in stage O; position q, would never

be accepted as better, so we need not worry about recognlzing it.

93

BT ——

provided such positions are not already in stage O. All of these
conditions are recognized by function stagel,.

There are many positions p which are not in stage 1 but all of
whose successors are. In such a p the black king is gttacking the
knight and white must move the knight away to protect it. It may then
happen that the black king is closer to the bishop than the white king. is,
giving a q in stage 1. We will not worry about recognizing either p
or a q which preceeds this p because the strategy in the late;
stages is equipped to handle such a p . Therefore p remains in the
stage it should be in (generally stage 2), and we do not break rule

3.7 although we do violate rule 3.9,

Stage 2

Since stage 1 has other uses, stage 2 is the catch-all stage whose
presence is recognized by the absence of all cther stages. Position 6
in Figure 5.1 is in stage 2. A measure will be given for this stage,
This measure is based on the statement in Capablanca [1935] whizh says
that we should begin this end game "by advancing the king to the center
of the board".3 One result of following this rule is that the program
will move wk-QB6 or wk-QBS in position 6 in Figure 6.1, There are four
squares in the center of the board; they are Q4, Q5, K&, K5. So we

define as our measure for stage 2 the function

dcent(x) = mirsl (d(ka)SQ)) y S= {Qh, o, Kl&, ‘(5]
sq€
‘there is no difficulty in showing that rule 3.7 holds for dcent,
since this function depends only on the position of the white pieces,

We do expect to break rule 3.9 occasionally by having all successors to

3. Page 109.
qL

some p be in stage 1. To use dcent as a measure in worse, we must be
sure that it is never necessary to move the white king away from the
center of the board. Although the black king can move into a position

p which would be in stage O if it were a position with black to move,
white will always be able to avoid stage O without moving the white king
away from the center, Since this p 1is in stage 2, we know that the
knight is not in a corner, and dp(wk,qb)Sdp(bk,qb)+l . An example of
such a position is given in 1 in Figure 6.4. We will avoid the loss
of a piece by moving the white king to K4 and then the knight to KB3.

Py is representative of such stage 2 positions; if it is not possible
to move the knight immediately, there will be a king mcve which will
enable us to move the knight and protect the bishop on the next move.
This king move will generally give a position q in stage 1; the point
is, it is not necessary to allow the white king to muve away from the

center (such a move would probably give a stage 2 position). Therefore

we can use dcent as a measure,

Stage 3

The positions in stage 3 have a definite pattern dependent on
recognizing that the black king is contained in a certain area of the
board. A size =5 can be assigned to this area and as usual we will
attempt to shrink s ., However s cannot be used as a measure, It cen
be used like a measure in better; that is

st(p)=st(a)=3 A s(p)>s(aq)
will mean that q 1is better than p . But s cannot be used in worse

because in a few cases this part of worse

95 ’

L > 1
S

Py in is stage 2, and dcent\pl) = Q. There-

fore wk=KB4, the only move giving a stage 2
position, will be rejected since dcent(q) = 1.
However, wk=K4, which gives a stage 1 nosition,
will permit kt—KB3 on the next move, thus
avoiding the loss of a piece.

One corner of the board corresponds to the
right angle of the area triangle. The size
of that area is marked at the corner.

The black king is inside areas of size 5 and 0.

Figure 60 L"o

g —— PR

—

= |

-3

M

st(p)=st(q)=3 A s(p)<s(q)
would eliminate the only move(s) which the program must make to proceed
correctly, When this happens, it is because the pattern recognition on
q is not sufficient tc define the real value of s(q) . Since such
violations occur infrequently it is of course possible to add pattern
recognition to assign the proper value to the offending q . However
this approach is not taken. First of all, the pattern recognition would
have to be extremely detailed to define s(q) correctly and it is not
worthwhile to do all this analysis. As long as s(q) is never smaller
than it should be we can be sure the program will not accept q for the
wrong reasons, Also s satisfies rule 5.7; once a q has been accepted,
we know that for any p which follows from it by one black move,
either p 1is in a higher stage than q or if p 1is in stage 3 then
s(p)<s(q) . Therefore the program will be able to proceed consistently
even if s(p) is larger than it should be,

Second is the fact that throughout stage 3 we are liable to break
rule 3,9, generally by having all successors to a p in stage 3 in a
lower stage, and when worse is occasionally incorrect this is only a
special case of the overall problem., As explained in Chapter 3, rule 3.9
is useful but not necessary, and in this end game the amount of pattern
recognition required to satisfy rule 3.9 is not worthwhile.

Briefly, the reason for the violation of rule 3.9 is the following.
In the preceding games the black king could escape from an area in at
most one way, but in this game the black king will be able to escape
from the area defined for stage 3 in many different ways. Some of these

will force a larger area and so must be prevented, but the majority will

97

=

put black in a poor position from which he must retreat or white will be
able to ultimately "confine" the btlack king to a smaller area of the
board. 'Confine" is put in quotes here because of course the same kind
of escape may be available to black in the smaller area. White should
take advantage of such moves; the problem is that the smaller area mav
not be recognized right away, and in the meantime we may break rule 3.9.
First let us see what kind of area we can use to define stage 3.
We must partition the board globally or we might not be consistent in
our evaluation of successive positions (satisfy rule 3.7). Therefore,
the bishop must be the primary piece involved in defining the area,

since it 1s the only white piece which can hold a line through the

entire board. In this game we will deal with halves rather than quarters

of the board. For any bishop position there are two diagonals, and each
diagonal defines areas on both its sides, Therefore there are four
different areas to consider. (If the bishop is in a corner there are
only three.)

We assign a size to each area in a very simple way. An area is a
right triangle in shape with the hypotenense the bishop diagonal. It

may be necessary to extend the board to complete the triangle. The

other two sides are edges of the board; call them edgel(x) and edge2(x) .

Then the size of the area is

6.1 gg(qu,edgel(x))fgg(qu,edge2(x)) R

for de as defined in Appendix A. x, in Figure 6.4 provides an illus-

i
tration of areas. For the bishop diagonal as drawn, the area above the

diagonal has size 5, and the area below has size 9. The other diagonal

98

e

o

defines areas of sizes 6 and 8. In stage 3 we are only interested in
areas of size less than or equal to 6,

So far we have only discussed how to assign a size to an area, We
have not said which area is used to represent a position. Making this
decision is a complicated procedure. As explained before, the black king
will have many points of escape from an area in this game. We do not
want to block all escapes but only thgse which would force a larger
area. However we must satisfy rule 3.7. /To accomplish this we insist
that an area in q holds if a{i/tﬁé successors of the black king are
in it, while in p we recognize the area if it contains the black king.
Then we can be sure that after one black move the program will be able
to see the same area which it used as the basis for accepting q .

Now suppose the black k.ing is placed on the board. The black king
is necessarily inside one area, and sometimes inside two. For example,
in x, in Figure 6.4, the black king is in an area of size 5 and an
area of size 6., We must decide which of these areas to use. Obviously
we want (1) to assign the smaller area if possible and (2) to be sure
the black king cannot escape from the assigned area into a larger one.

We have already stated that the black king cannot escape in one move in

q ; however it may be able to escape in two moves in q and consequently
in one move in p . Since it is difficult to calculate whether the knight
can be brought into position to block an escape, we rely mainly on the
wvhite king.

The way we decide about an area is as follows, First we use the

position of the black king relative to the bishop to propose an area.

99

This condition is different for positions p and q . To do this we
define a function which selects areas: B
area(x,C) = (the area on the board whose right angle is corner C).
For any area a , c(a) produces the corner which is the right angle
§°f a . Now we define
dc(sq,a)=de(sq,fileedge(c(a)))+de(sq,rankedge(c(a)))
where sq 1s some square on the board, and fileedge and rankedge
produce the appropriate rank and file containing c(a) . Then
size(x,a)=dc(qb_,a)
is the correct definition of the size of the area and agrees with 6.1,
This function dc is basic to the kind of area with which we are concerned
because it has the same value for any square on a diagonal parallel to
the boundary of the area, We can also use it to determine where a
square sq 1is with respect to an area a by
locatdon(x,sq,a)=size(x,a)-dc(sq,a) .
If location(x,sq,a) is positive then sq 1is inside a j; if it is
zero sq 1is on the boundary of a and if it is negative sq 1is
outside a . location is also used to tell how far the diagonal con-
taining the square is from the boundary.

Let suce(x) be the set of squares to which the black king can

legally move in x . Now we can define for area a

inside(q,a) = [location(bkq,a)z 0 A
vr(r€succ(q) D location(r,a)>0)]
inside(p,a) = location(bkp,a)>0

The definition of inside for q insures that the black king must move

inside the area, and this will then be recognized by inside for p .

.

100

Once an area has satisfied inside we are ready to make further
tests on the positinns of the white king and bishop. First we insist
that the bishop be placed toward the center of the boundary of the area.
Recall that any bishop position on the boundary of a given area will

produce the same value for size. The condition is

bpos(x,a) = [d(qb,,c(a))<(size(x,a)-2)]

The reason for this condition is that when the bishop is placed toward
the center of the boundary it is easier for white to form a smaller area
and also to control the black king if he tries to escape. If
size(x,a)<t , no squares would satisfy bpos and in fact areas of size
less than 4 are not used.

If the bishop is in an acceptable position, the program will examine
the position of the white king and its relationship to the bishop and
black king, First the white king must be outside the area, i.e.,

location(x,wkx,a)<0 .

Also we always have

6.2 dx(wk,qb)§2

and the white king must be close enough to the bishop to protect it;
otherwise we would be in stage 1. The final corndition on the white
king position is

kpos(x,a) = (a(vk_,c(a))<size(x,a)) | .
which says that the white king must be fairly centrally located., These
conditions are illustrated in Figure 6.5. In X, and x5 all possible
squares satisfying kpos and location will also satisfy 6.2, but some
squares may be eliminated in Xg - Summing up all the conditions

stated so far, we have

101

/ //// //%///

1 n/ :,
24 /// 0 I/ g

///// //“

4
/ /% A

{,/r/ /// ///’

A ///,
44/ p

,,,' r//”"///

Z 4 /

9 %’// //, z,,A, %
- //I/’

¢/,

Figure 6.5. Legal squares for the bishop are marked B ;3 for
the white king they are marked K.
102
e ——— e — T

7

:1 "J

uk—-ﬁab—-—‘

safe(x,a) = {inside(x,a) A location(x,wk ,a)<0 A
bpos(x,a) A kpos(x,a) A d_(wk,bb)<2} .

These conditions are correct as far as they go, but we have not
paid any attention to the knight. Actually we want to use the knight
to help force a smaller area, but when the knight is not being used it
possibly will be a hindrance., There are three ways in which the knight
can interfere: it can block the white king or bishop, or it can force
white to lose a move by being open to black attack. Examples of the
three different types of interference are shown in Figure 6,6, All of
these cxamples could arise as the result of one black move from a
position q which has an area satisfying safe. None of the kinds of
knight interference shown in Figure 6.6 is bad since white can always
either maintain the same area or find a smaller one very shortly.
Therefore there is no reason to forbid the kind of interference shown
in these three positions,

We do want to forbid certain kinds of knight interference however.
We use the same guiding principal for eliminating knight positions as
we have all along; we cannot allow the black king to force a larger area,
There are two kinds of bad knight positions. These are shown in 9
and % in Figure 6,7. In both cases the black king will be able to
attack the knight in one move and thus escape toward the center of the
board, Even so white has no trouble controlling the escape when the
bishop satisfies

d(gb_,c(a))< size(x,a)-3 ,
because this insures that the white king will be able to block the
escape (since in q it is protecting the bishop). The patterns shown

103

p——

The knight is blocking the white king.

The knight is blocking the bishop.

The knight is being attacked.

/ 7
/////

Figure 6.6. Examples of Knight Interference.

104 -

W, W
gl ///% 7////1*%////

. i,
W

W W
/? / 7

/Il

)

AT
: i, v_‘,, ”“ / /.’/M
Y 7

ph :/

%
"/
. .
7 / 7/
"

g
[IM ' I,*t ;
/ y/ / 7,

ovae? J 7
-y) ,
7/ % 7/ /
/ A/l:.l, 7/

Figure 6.7.

. Vi, i
M2

If the black king moves to K. it will then
3
be able to e .cape.

Black can escape by first moving to K3'

This position is essentially the same as the
result of bk-—K3 in q -

If the white king were in K3 the escape
could be blocked

Forbidden Knight Interference.

105

in q, and gq, are the only bad ones in q (with minor variations)
and are recognized by
badkt(q,a) = [dq(kt,qb):} A dq(bk,qb):l A dq(bk,kt)=2
d(qb,c(a))> size(q,a)-3 A location(q,kt ,a)=2
v roation(q,bkq,a)=0 A ;gggfigg’q,ktq.8)=3)}.
More pattern recognition is required in p because we must be prepared
for bad initial positions as well as results of one move from a q
satisfying badkt . Position p3 and p, arc examples. Both these
positions cannot possibly have come in one black move from a position in
which the area of the appropriate size was recognized. We have
badkt(p,a) = {loseknight(p) A locatioq(p,bkp,a) =1
A lggg&igg(p,ktp,t
A[(dp(wk,bk)=3 A d(bkp,c(a))=3) v
(dp(wk,bk)eh A d(bkp,c(a))=h A
1ocation(p,wkp,a)=-’)]} :
There remains one more knight condition to define. This case occurs
only in areas of size 4, and is illustrated by q, and p, in Figure 6.8,
In Py the black king is able to escape from the area because the only
move to block the escape, wk-K6, gives stalemate, P, 1is a successor
to q - We recognize this pattern by
badk(p,a) = {size(p,a)=k A 1ocation(p,ktp,a)=3
A 1ocation(p,bkp,a)=1 A dp(bk,kt):}]

badk(q,a)

(1]

(size(q,a)=" A 1ocation(q,ktq,a)=3
A d(bkq,c(a))=2] .
Now we can give a complete description of the conditions which an

area must satisfy to be acceptable., We combine safe, badkt and badl into

106

™

‘ il
~1
/ /// 7
//// / NW@
ﬂ q, satisfies function badk. If the black
3’ king moves to K1 (position p2) white must
permit him to escape from the area.
7 / / / “
Yo Vi % %M
o
X5 X is an example of a stage 4 position.
Figure 6.8.
J
]
J 107

goodarea(x,a) = (safe(x,a) A — badkt(x,a) A — badli(x,a))} .
It is possible that more than one area in a position will satisfy
goodarea, s will be the size of the smallest such area, Let C be

a set containing the four corners of the board. Then we have

s(x) = min((size(x,a) | 3 c(c€C A e=area(x,c) A goodarea(x,a))) U (15}) .

If no good area exists in x,s(x)=15 and x 1is in stage 2; otherwise

s(x)<15 and x is in stage 3.

Stage U
This stage is designed to be intermediate between stages 3 and 5.

It is possible for the program to move into stage 5 (or even stage €)
directly. However, if black plays the best defense he will move toward
the white corner and in that case the program will need stage 4 for at
least two moves.

Position X5 in Figure 6.8 is in stage 4, The black king is
confined to the edge and completely controlled by the bishop and king.
Function revcorngos(x) recognizes the pattern of these three pieces,
Obviously revecrnpos satisfies 3.7 and 3.9,

It is the position of the knight which determines that stage b
rather than stage 5 holds., The bishop and king naintain control of the

black king until the knight is in a position for stage 5.

Stage 5
Stage 5 controls the forcing of the black king down the edge of the

board toward the corner where mate can be g’ven, The play of the
pleces in this stage must be very precise, The program follows closely
the example from Capablance [1935) given in Figure 6.9; it is interesting

108

[S————

Frm——
| S)

=

The second and last part will consist in
driving the Black King now from GR8 to GRl or

///////// ///M////l KR8 in order to mate him. GQRL will be the

/

éV //‘ quickest in this position

oy
, %7 éf %%, 10. Kt—Ktbtceh K-R2
. o ///&// ‘ TR
’// 7 " 7 ////ﬁ 7 13. Kt—q5 K~RS

T Black tries to make for KR1l with his King.
White has two ways to prevent thuat, one by
14 B-K5, K—Kt6; 15 Kt—K3?, and the other which
I give as text, and which I consider better for the student to learn, te-
cause it is more methodical and more in accord with the spirit of all
these endings, by using the King as much as possible.

14, K-BS: K=Kt6
15. Kt—Kth K~B6
16. B-Bk4 K=-KtO
17. B-K5 K~R5
18. K-B4 K—=RU4
19. B-B7ch K-R5
20. Kt—Q3 K=R6
21. B-Kt6 K-R5
22. Kt—Kt2ch K R6
23. K-B3 K=R7
24k, K-B2 7<R6
25. B~-BSch K—-R7
26. Kt—@3 K-R8
27. B-Kt4 K-R7
28. Kt—Blch K-R8

29. B-B3 mate

It will be seen that the ending is rather laborious. There are two out-
standing features: the close following by the King, and the controlling
of the squares of opposite color to the Bishop by the combined action of
the Knight and King. The student would do well to exercise himself
methodically in this ending, as it gives a very good idea of the actual
power of the pieces, and it requires foresight in order to accomplish the
mate within the fifty moves which are granted by the rules.

Figure 6.9. Example from Capuablanca, pages 110 and 11l.

109

to note that this example is almost identical to the description of
this part of the end game in all the other chessbooks we have examined.

During the play of this part of the game the white pieces must
keep the black king close to the edge, and at the same time must force
it toward the black corner. To simplify the pattern recognition, we
limit the definitions, only recognizing enough positions to make the
stage playable, Stage 5 will not contain all the positions occurring
after white moves in Figure 6.9. As in stage 3, we will violate rule
3.9, but in this stage we can define a usable measure.

First of all we look for an edge e which satisfies the following
predicates. Let Elg(e) be the black corner on edge e . Then we have
6.3 gg(bkx,e)=0 v
6.4 _d_e(wkx,e)=2 A (3 _d_c(wkx,gl_c_(e))g) -

6.5 de(ab_,e)f2 v d(qdb_,blc(e))>d(wk ,blc(e))) .

Rule 6.3 says that the black king must be on the edge. Rule 6.4 says
that the white king must be on the ‘ile/rank two away from the edge

and also limits its position on that file or rank., For example if e

is the QRfile, then the white king must be on the QBfile in one of the
following squares: QB2, QB3, QB4, QBS, QB6. Rule 6.5 prevents the
bishop from interfering with the movement of the white king down this
file.

It is relatively easy to use the bishop and white king correctly
in this game; the knight is a more difficult piece to control. For
example the knight is the only piece which can be used to deny the black

king a white square on the edge. If it is used to deny the black king a

110

[g vagaani® | 3

M

1":

i

!\

e |

black square on edge it probably will not be available for i%ts correct
use when it is needed. We adopt the following stringent condition:

6.6 (onblack(ktx) A gg(ktx,e)zl) Y, (—1onb1ack(ktx) A gs(ktx,e)=3))
Function onblack(sq) is true if the square sq is black. 6.6 allows
the knight to bear only on white squares on the edge, and only on black
squares on the file/rank next to the edge. One result of this is that
we will be sure the white king is actually being used (once functions
conf and el are defined) since it is the only piece which can bear on
white squares in the file/rank next to the edge. Let function
eposs(x,e) be true if rules 6.3 through 6.6 are satisfied.

In addition to rule 6.6, we also must be sure that the knight is
close enough to the black king to be used effectively. First we must
define a new distance function gg(sql,sq2) which equals the difference
in files between sql and sg2 plus the difference in ranks between
sql and sq2 . For example ir p, in Figure 6.10, zgpl(bk,kt)=h .
Then we have, for edge e

ktpos(p,e) = [[onblack(ktp) A ££p(bk,kt)§2] v

[—1onb1ack(ktp) A ggp(bk,kt)<5]]

ktpos(q,e) [[onblack(ktq) A dq(wk,kt)qu(bk,kt)

A d(bkq,blc(e))-ZSd(ktq,ElE(e))Sd(bkq,blc(e))+1]
v onblack(kt) A fr (bk,kt)= c
This condition, for the knight on a black square, prevents the knight
from denying white edge squares to the black king from a position above
the black king, because in that case the knight could not be used on

the next move to keep the black king confined to the ecdge. The part

111

S
it bt B,

of ktpos which says dq(wk,kt)sdq(bk,kt) prevents the bishop from
being used when the white king should be.

So far we have defined the relationships between the white pieces,
but wehave not said exactly how they should control the black king.
There are two parts to this control, First the black king must be
prevented from escaping from the edge. A small escape may occur, as
in black moves 14-16 in Figure 6.9, but we must be sure no larger
escape is possible. For EBES(X) the set containing the legal succes-

sors of the black king in x , we have

’

conf(p,e) = Vr[re€succ(p) o (de(r,e)=0 v _If_r_(bkp,r)=2)]

conf(q,e) = Vr[r€succ(q) o de(r,e)=0] .
conf is only concerned with the squares labeled X1, X2 and X3 in Py
in Figure 6.10. In q both squares are denied to the black king in
p only X2 is denied.

The control of squares X3, X4, X5 and X6 is measured by
function el . The function determines the amount of control the white
pieces have on the black king from above., To define el , we need
function gggzg(x,x) which is true if the white pieces in x bear on
square X , or if X is not on the board. In the following definition
XN stands for a function with arguments (position,edge,N) which
produces the appropriate square, or NIL if the square is off the board.

onblack(NIL)=NIL ., The following definition assumes that conf is

satisfied, We have

112

S .o .

N4

- "z

”

=3

=

=

/

/4

't

//

,

o4 //// ///

7/

T
///, y/
7

//
"///

%/

// N

1
/////////% w,

W,
/ ///

m

"

/// 8

@ 1
W
///”/

U

///,’/
%

//

Figure 6.10.

g}_(pl,Q,Rfile) = 2 and degge(pl) = 5,
Kkt=QKth will give a q with dedge(q) = 4.

el(p, ,QRfile) = O and dedge(p,) = L.

qQb—QB7 will give a q with dedge(q) = 3.

Positions p3 and p, are not accepted
by stage 5.

Examples for Stage 5..

113 l

:JL.M\;»

el(p,e) = 0 if [bears(p,X4) A (onblack(X3) vV bears(p,X3))] .

=1 if [- bears(p,X4) n bears(p,X3)
A bears(p,X6) A (bears(p,X5) vV onblack(X5))] .
=2 if [- bears(p,X4) A bears(p,X3) A — bears(p,X6)
A (bears(p,X5) v onblack(X5))]
= 3 otherwise,
el(g,e)= 0 if [bears(q,x4)] .
=1 if [- bears(q,X4) A bears(q,X6)
A (onblack(X5) v bears(q,X5))] .
= 2 if [bears(q,X5) A — bears(q,X4)

A - bears(q,X6)] .

3 otherwise,

gl(x,e)<5 means sufficient control from above exists in x . Combining
this with conf, we have in q that the black king must be confined to
the edge. In p itcannot escape the edge into X2 , the square next

to its present position; rule 3.9, may be violated at this point, If

it can escape above, the escape square must be black, This is necessary
to accomodate a position like the one in Figure 6.9 after black move 18.
A white square off the edge is not permitted to the black king, even in
two moves. Only the white king can control such a square. Values of
el are given in Figure 6.10 for positions p, and p, .

Finally there are two positions p which satisfy all the conditions
given so far, butcannot be handled by the ordinary rules, They are
illustrated by p5 and Py in Figure 6,10. The problem is one of
parity; if identical positions to p5 and P, occurred farther down

on the same edge, the bishop would be able to make a move while

114

continuing to bear on the same edge square. We recognize p5 and P,
by badedge(p,e) , and badedge(q,e) = false for all gq .
Now we can give a complete definition of a good edge., Let E be
a set containing the four edges of the board. Then we have
edge(x) = e if [e€E A eposs(x,e) A ktpos(x,e) A conf(x,e)
A el(x,e)<3 A — badedge(x,e)] .

NIL if no such e exists.

A position x 1is in stage 5 if edge(x) is not null,

Next we define a measure for stage 5. This is an indicator of how
much access the black king has to the white corner, For p we can use
d(bkp,glg(gggg(p)))fgl(p,gggg(p)) . For q we must make some adjust-
ments in this formula. We define

adj(q,e) = -1 if [el(q,e)=0 A

(the black king is in check in q)] .

+1 if [el(qg,e)=2 A onblack(bkq) A = onblack(ktq)] .

0 otherwise,

adj(p,e) = 0

Then we have

dedge(x):d(bkx, edge(x)) +el(x,edge(x))+ad](x,edge(x))
and dedge is a measure for stage 5. For example in Py in Figure 6.10,
edgg(pl)= QRfile and dedge(p)=5 . Only kt-QKth will givea q in
stage 5, and dedge(q)=4 . Therefore this gq will be accepted by
better., For either black king move in this q , we will get a p with
dedge(p)=4 . p, in Figure 6.10 is one of these successors, In Py ,
wk-QB5 and qb-K3 give positions in stage 5 with dedze=lt ; however

qb-QB7 will give dedge=3 .
115

s

It is not difficult to show that edge and dedge satisfy rule 3.7.
For edge, the only condition which presents any difficulty is el and
the value of el determines dedge. We must consider cases. If
el(g,e)=0 , then the black king must move toward the black corner,
giving el(p,e)=0 or 1 , depending on whether the black king was in
check in q . In either case dedge(p) = dedge(q) . If el(q,e)=1
and the black king moves down the edge then there is no problem and
gl(p,e):Q 3 if the black king moves away from the black corner, we have

a position like in Figure 6.10, with el(p,e)=0 . There is no

P2
danger that a white square off the edge and above is available to the
black king in p , because this is expressly forbidden in q . Again

we have dedge(p)=dedge(q) . If el(q,e)=2 , we must have a position

like ql or q, in Figure 6.11. The black king can move down only

in gq, , and we will obviously get el(p,e)=2 and dedye(p)<dedge(q) ;

if the black king moves up in q we will get gl(p,e):l or 2
depending on adj(q) . 1In q, , with Eéi(q1)=1 , we get el(p,e)=2 ,
vhile in q, , with adj(g,)=0 , we get el(p,e)=1 . In either case

dedge(q)=dedge(p) . Therefore all of rule 3.7 is satisfied.

We cannot hope to satisfy rule 3.9 because sometimes a p will
have all successors in a lower stage. For example this occurs after
black move 13 in Figure 6.9. As explained before, this is not critical
to the working of the program. The reason we can use dedge as a
measure in this stage is because there is no error in the evaluation

of dedge, and if dedge(q)>dedge(p) , there really has been a loss of

control.

116

=3

W —

=

' v | emenn |

==

/M/%

%///’/// 7/
///t W, //// 7
W, ///?/%//4

b, ///

7/
/ //

el(q, ,QRfile) = 2 and dedge(q,) = 5.

g;(qQ,QRfile) = 2 and dedge(qe) = L,

For stage 6, the bishop must be in a square
marked X , and the black king in a square

marked Y; the white king must be as shown.
The position of the knight is not important.

kt—QB4 preserves the area and protects the
bishop. However, d (wk,gb) > d (bk,qb),
so q is in stage 1.

Figure 6.11.

117

L

* Stage 6
Stage 6 is similar to stage 4 in that the white king and bishop

| control the black king, while the knight is maneuvered into position
for the next stage (checkmate). Position X5 in Figure 6,11 is an
example of a stage 6 position. The relative positions of the white
king and bishop and the black king are recognized by cornergos(x) .

Obviously, cornerpos satisfies 3.7 and 3.9.

Formal Definitions of better and worse

Now we can give the definitions of stages and measures. The

stages are

{(x is a position with black to move) A

m

x € stage O
[(x is stalemate) vV (the black king can take a piece
in one move in x) v badpos(x)]}.
x € stage 1 = stagel (x) .

x € stage 2 = (- stagel(x) A s(x) = 15} .

mn

x € stage 3 = (- stagel(x) A s(x) < 15) .
x € stage 4 = revcornpos(x) .

x € stage 5 = edge x)

x € stage 6 = cornerpos(x)
x € stage T = x 1is checkmate.

The measures are

m2(x) = dcent(x) x € stage 2,
! ms(x) = dedge(x) x € stage 5.
mi(x) =0 x € stage i, i =0, 1, 3, 4 6, 7
118
S ——— w— . =

s

-8

¢

(e]

R

Additions to better and worse

The formal definition of better is grossly inadequate only in
stage 3. In the other stages additions may be needed in worse. No
changes will be made ir stage 1 since it is very short.

In stage 2 when dcent(p)>0 we ordinarily expect a tree search
of no more than depth 2, If the tree search is longer, this will mean
we are moving the knight out of danger and so the tree will be quite
narrow. When dcent(p)=0 the tree may be deeper, sirce several moves
may he required to establish s(q)<15 . We can eliminate many bishop
moves by
6.7 st(p)=2 A st(a)2 A qbFab " d (wk,qb)>2 A (deent(p)=0 v st(q)=2) .
6.7 is defined for all values of dcent(p) because when dcent(p)>0 ,
we are not interested in bishop moves except to protect the bishop.
There will always be time to make these protective moves without
violating 6.7 because if there were not, we would be in stage 1.

Stage 3 may require more than 20 moves. We immediately add to
better
6.8 st(p)=st(q)=3 A s(q)<s(p)
because as previously noted the difficulty with s as a measure
involves Worse (it violates rule 3.9 but satisfies rule 3.7 which is
the critical one for better). However even with 6,8, more than ten
moves may be needed to force a smaller area, Both the length and the
breadth of the tree search must be decreased. In the following dis-
cussion ar(s(x)) gives the area for which s is the size,

*We can eliminate many moves by adding to worse

119

6.9 (st(p)=3 A st(q)<3
A (a (uk,qb)>2 v [st(q)=1 A - ktspec(p,q)1))
where
ktspec(p,q)= {dp(kt,qb):l A 1ocation(p,ktp,55(s(p)))=o
A losebishop(p) A dp(wk,kt)=l A ££p(wk,qb)=5
A Wk =Wk

q
ktspec reccgnizes a position like p, in Figure 6.11. All moves but
gugpec i

A gb =gqb A — onblack(kt .
b =ab, A = (q))

kt-QB4+ will be rejected at depth 1 since either we would have a q in
stage 0, or dq(wk,qb)>2 . The last three requirements of ktspec
eliminate moves farther down in the tree.

6.9 does not provide sufficient pruning to permit the program to
handle a tree of depth 10. We can shorten the tree by considering how
the program must move to force a smaller aree.., It does this by co-
ordinating the action of the three pieces. We recognize certain of the

S

patterns involved by means of function v defined for x in stage 3

We have
v(x) = 1 if = ktvl(x)
=3 if ktvl(x) A - ktv2(x)
=5 if ktvl(x) A ktv2(x)
where
ktvl(x) = {1ocation(x,ktx,5£(s(x)))=-2
A d(kt_,c(ar(s(x))))=s(x))
ktv2(x) = ([s(x)=k A 4 (k,kt}>1]

v [s(x)>4 A dx(qb,kt)=3 A dx(wk,kt)=5

A d_(wk,qb)=1]} .

120

ed

ad

i

4

=

L3
=

=

[
e

= |

- TN

= =1 G

u-ﬁ

Figure 6.12 gives examples of v=3 and v=5, for s=5 . We can use
v by adding to better
6.10 st(p)=st(a)=3 A s(q)=s(p) A v(a)>v(p) .

6.10 cuts down the depth of tree search in almost all cases to a
maximum of 6. 'This maximum is exceeded when the black king is able to
escape from the area in » . This escape will either result in a
smaller area, or will quickly be blocked. In the latter case, the moves
used to block the escape must be added to the moves required to increase
the value of v . Position p5 in Figure 6,12 is an example; a tree
of depth 8 is required. We can reduce thic as follows., We define
function EEEE(P) which is true if the black king can escape in one
move from p . Then
6.11 st(p)=st(q)=3 A s(p)=s(q) A poss(p) A ktposs(p,q)
can be added to better. Function ktposs handles a position like P,
in Figure 6.12., If the program simply accepted any gq in stage 3
with the same size area, then it would accept one with the knight still
on the boundary of the area, so the whole tree would have to be repeated,
ktposs will reject such a q .

The addition of 6.11 to better insures a maximum depth of 6 for
trees in stage 3. Considerable pruning will be needed before the
program can handle these trees. As an aid to pruning we introduce
function sl for positions q in stage 2. sl(q) is the size of the
smallest area a in which
6.12 inside(q,a) A - badkt(q,a) A - badk(q,a)

holds. 5l(q)=15 if no area in q satisfies €.,12. If s(q)=15 and

121

e il

Ao
R o il

i, T, Tl P

&m// ///

%/

///// /

J
Wl
,////%
W, %

S(Pl) = 5, V(pl) = %, The knight is guard-
ing part of the boundary of the area, which

frees the king so it can force a smaller area.

S(Pe) =5, V(pz) = 5. The king must do the
forcing on the part of the boundary away

from the knight,

s(pB) =5 White must move
the knight (to QB4) and the black king can
escape to QKt6. 29§§(p3) is true. If the
king were in K6, it would be unable to later

block the escape and the position would be

and v(pj) =

in stage 2.

s(ph) = 5 and v(ph) = 1 and Eoss(pu). if
after wk—Q5 and bk-QKt3, then wk—K5, the
resulting q will be rejected by ktposs.

Figure 6.12.

122

'

=

- |

i)

PO

3

[t

s1(q)<6 , this means either bpos or kpos failed for the area, One
possibility is that s1(q)=3 (bpos cennot be satisfied in this case).

When st(q)=2 , we look at si(q) . If sl(q)<s(p) either white
is blocking an escape by forcing a smaller area, in which case
sl(q)=s(p)-1 , or white is trying to make a smaller area by moving the
bishop toward the corner, giving sl(q)=s(p)-2 . Often such a move is
wasted because the black king will easily escape. When s(p)=4 we
eliminate both kinds of moves; in addition we reject the second kind
when s1(q)=3 unless v{p)=5 (in this case it is an interim move to
stage 4). We also eliminate positions with unlikely king locations.
We reject all positions satisfying

badsmall(p,q) = (s(p)=4 V is(p)=sl(q)+2 A

([sl(q)=3 A v(p)<5] v location(p,wkquz(S(P)))fl
v (e, olax(s())3) 1) .

We divide the remainder of the discussion of st(p)=3 into two
parts: v(p)sl and v(p)>1 . For v(p)>1 , we can be very concise in
our description of bad moves. When v(p)=3 we refuse all moves such
that
6.15 (s(a)=s(p) A v(a)=1) v (st(q)=2 A si(aP>s(p)) .

We permit st(q)=2 only if sl(q)=s(p) . This occurs when the white
king has moved into the area to try to force a smaller area without the
aid of the knight., Position p, in Figure 6.13 is an example of a
place where such a move should be made., Again this kind of move will
often be wasted since the black king can easily escape. We reject all

such q satisfying

123

wk~QB6 is the best move, and on the next
move, qb—-QB7 will give stage L.

When v(p) = 5, it is time to move the white 1
king inside the area to the square indicated
in p,. s(pe) = 15, but ﬂ(pe) =5,
s(pj) = U4 and v(pj) = 5. The knight moves
to Q5; on the next move, it may go to K7
giving Q-
s_t(qh) = 4 and gl(qh) = 15. We are almost
in stage 5, but need to move the bishop.
u
"
Figure 6.13. L

124

B

r

== En = &

e

trysmall(p,q) = [qbp#qbq Vv 1ocation(p,wkq,§£(s(p)))#l
v [dq(wk,bk)=S(p)-3 A (dq(wk,q%)>1
v 1ocation(p,bkq,£(s(p)))<-;(p)-1)]
Y, dq(wk,bk)>s(p)-l+v [dq(wk,bk)=S(p)-h
A 1ocation(p,bkq,2£(s(p)))<s(p)-2:] .
For example, if in Py the black king were in QR3, the white move wk-QB6
would be rejected by trysmall.
When v(p)=5 , the tree is fairly long, up to depth 6. First, we
introduce a rule similar to 6.13. q will be worse than p if
6.14 (s(a)=s(p) A v(a)=3) v (st(a)=2 A sl(a)>s(p)) .
We can decide what other moves to reject by considering how the
program should play. We went to move the white king inside the area tc
form a position like Py in Figure 6.13. The knight is protecting the
boundary of the area, so we need not worry that the black king will
escape vwhen we do this, Sometimes it will be necessary to move the
knight before the king move can be made. This knight move is a tempo
move; it must satisfy
ktmove(p,q) = [ktp:ktq v [dq(wk,bk)=2 A
(s(pplt A 1ocation(p,ktq,5£(s(p)))=-l
A a(kt,,c(az(s(p))))=s(p)-2) v
(s(p)=lt A location(p,ktq,EE(s(p)))=O
v [location(p,ktq,gg(s(p)))=-3 A
a(xt ,c(ar(s(p)))4D1) .
When s(p)>4 , only one knight move is permitted. In p, this is the
move kt-Q5. When s(p)=4 an additional knight move must be allowed

owing to the peculiarities of stage 5. Positions p5 and 9, in
125

Figure 6.13 are examples. One result of the second knight move is
that 6.14 must be amended so that a position like 9, will not be
rejected (El(qu)>h) . Instead of 6.14 we have

((s(q)=s(p) A v(a)=3) Vv (st(a)=2 A s1(q)>s(p)

A [s(ppb v kt =kt V - ktmove(p,q) 1)} .

In addition to the knighi, the bishop makes a tempo move, Py in
Figure 6.13 is an example, However we can limit the number of bishop
moves allowed by refusing those satisfyiung

{qbp;4qbq A [d(qbq,qbp)>l v dq(wk,bk)>2 V bpos(a,ar(s(p)))]1) .
Finally we can reject many king moves (and an occasional bishop move)
by

badkmove(p,q,10) = (lo<-1 V 1la>1l Vv [1e<1 A (dq(wk,bk);Q

v qbp;éqbq V [lo=-1 A wkp;éwkq]) 1},
where

lo=location(p,wkqug(s(p))) .

We combine all these conditions for v(p)>1 , excepting s(q)<s(p) or
sl(a)<s(p) in

check3b(p,q) = ((st(a)=2 A s1(a)>>s(p) A [s(pl>k v v(p)<5

Y ktp:ktq V = ktmove(p,q)])
vV (v(p)=3 A [st(a)=3 A v(q)=1]
v [st(q)=2 A si(q)=s(p) A trymove(p,q)])
v (v(p)=5 A [st(q)=3 v sl(q)=s(p)]
A [ktmove(p,q) Vv (st(q)=3 A v(q)=3) v
badkmove(p, q, Location(p, wk , ar(s(p))))1)} . .
When v(p)=1 white does not have much control. All knight moves

must be permitted except those giving stage O or stage 1. When
126

Sa—

]

G B /0

by

(e
14

§ ey

(-

s(q)=s(p) , we limit the number of moves somewhat by

s(q)=s(p) A d_(wk,bk)>d(wk_,bk) .

q B i

st(q)=2 or s(gq)>s(p) is only permissible when the black king is
able to escape from the area in p . Position p, in Figure 6.1k is
an example. Then q 1is an intermediate position on a branch‘of the
tree leading either to a smaller area or the same area under better
control. We can limit moves by

(= poss(p) Vv — kpos(q,ar(s(p))) v dq(wk,bk)>dp(wk,bk)

v location(p,wkq,gg(s(p)))>-l] .

We combine conditions for v(p)=1 excepting s(q)<s(p) or
sl(a)<s(p) in

check3a(p,q) = ((st(a)=3 A s(a)=s(p) A 4_(ui,bk)>a_(vk,bk))

v (st(q)=2 A sl(q)=s(p) A trysmall(p,q))

v ([(st(a)=3 A s(a)>s(p)) Vv (st(a)=2 A s1(a)>s(p)))

A [s(p)=k v ab #qb, v - poss(p)
v = kpos(q,ar(s(p))) v dq(wk,bk)>dp(wk,bk)
Vv location(p,wkq,g_r_(s(p)))>-l])] .
The heuristics for p in stage 3 in worse are
check3(p,q) = (st(q)<3 A [dq(wk,qb)>2 v
(st(a)=1 A = ktspec(p,q)) Vv
(st(a)=2 A s1(q)<s(p) A badsmall(p,q)) Vv
(I(st(@)=3 A s(a)>s(p)) v (st(a)=2 A s1(a)>s(p)))
A [(v(p)>3 A check3b(p,q)) v
(v(p)=1 A check3a(p,q))])]} . -
In better we add 6.8, 6.10 and 6.11,

127

A T T

s(pl) = 5, but when wk~Q5 we will have
s(q) = 6 . We permit this move.

d (wk, bk) < d_ (wk, bk) and poss(p.).
q Py 1

This position is at the head of the major
tree search in stage 5(depth 7). kt—Q5 is
the only move on the first level.

This position occurs down in the tree
from Py after 2 white and 2 black moves.
xt=QKts is the only move permitted.

Figure 6.1k,

128

-é

3

s O

oo, S wwn QN W

—

— o

panay

In stage 4 ordinarily a tree of depth 2 will be required to reach
stage 5 because we expect to enter stage 4 from stage 3 with the knight
appropriately placed for s=5 ., However we may occasionally have
stage 4 in a starting position or enter it from s=5 before the knight
is put in positionr In such a case a tree search of up to depth 5 may
occur. Since the whole point of stage 4 is that the wnite king and
bishop can control the black king without moving, allowing white to
bring the knight into play, we can easily reduce the breadth of the
tree search by adding to worse:

st(p)=k A st(q)<t
Then trees in stage 4 will be almost all knight moves.

In stage 5 tree searches are very short excépt for the one black
attempt to escape from the edge (movés 14-16 in Figure 6.9), when a
tree of depth 7 is required. p, in Figure 6.14 is the position at
the head of the tree. We first of all eliminate all positions q with
st(q)f2 . Before proceeding further we must be able to recognize the
edge e even in positions where the black king is not on an edge.

We look for q in stage 2 such that, for e=edge(p)

keond(q,e) = (eposs(qg,e) A [gg(bkq,e)=0 A el(q,e)<3

A d(bk ,bk(e))<3 A keonda(g,e)]
v [ﬂ§4bk,e)>0 A d(bkq,_l_)_l_g(e))§2 A kcondb(qg,e)])
where
kconda(g,e) = gq(bk,kt)<5 A (M(bkq) v gq(wk,bk)dst)
and
keondb(q,e) = {afwk,bk)<3 A([g(bkq,e)d A
¥r(r€succ(q) > [de(r,e)<@ v _f_‘g(wkq,r)=2])]
Vv {gg(bkq,e)=2 A Vr(resucc(q) o de(r,e)=1)1)} .

129

Thece conditions insure that the white pieces remain in the proper
locations for stage 5. In addition, they are so stringent that they
often prevent the many bishép moves (the bishop is the least constrained
piece in stage 5) simply because one of the other pieces has to move.
Positions Py and p5 in Figure 6.14 are examples., In Py only
kt-Q5 will be permitted and in Ps only kt-QKth, 1In fact the effect
of these rules is to reduce the tree tu almost one branch. Occasionally
a few bishop moves will be considered but they are down in the tree
where they do not do much harm. Since the tree has only one branch we
could decide on many of the moves without tree search. However handling
them through tree search enables the program to avoid extra pattern
recognition of the positions with white to move which would result

from such positions. Suwmming up these rules, we add to worse

st(p)=5 A st(a)<5 A (st(q)f2 v - keond(q,edge(p)))) .

Stage 6 is similar to stage 4, and we immediately add to worse

5t(p)=6 A st()<6 .
However this may permit four bishop movus at every level in addition to
all the knight moves, and althoug/: usually the tree is only of depth 3
or 4, it may be longer. We must allow one bishop move for parity, but
we eliminate all others by insisting that they satisfy

beorner(p,q) = [dq(Qb,Wk)<5 v

(dp(qb,wk)=2 A dq(qb,wk)=3)j g]

Combining the formal definitions of better and worse with the N

various additions we have

130

3 &9 &/

-

|

=

[

-y

,‘Mw

better(p,q) = (st(p)<st(q) v [st(p)=st(q) A mst(p)(q){mSt(P)(p)]
v [st(p)=3 A (s(q)<s(p) v
[s(q)=s(p) A (v(a)>v(p) v poss(p))))]}

worse(p,q) = (st(a)=0 v (st(p)=stla) Am . y{aPnm (1 (p))

[st(q)< stlp) A
{((st(p)=2 A gb ;/qbp A dq(wk,qb)>2 A [dcent(p)=0 v st(q)=2])
v (st(p)=3 A [d {wk,qb)}>2 v (st(q)=1 A = ktspec(p,q))
v (st(q)1 A check3(p,q))])
Vv (st(n)=k A st(q)<hk)
v (st(p)=5 A st(q)<5 A
[st(q)#2 v - keond(q,edge(p))])

v (st(p)=6 A [st(q)<6 v = bcorner(p,q)]) ol

These functions are equivalent to the definitions used by the program.

Examples of Program Play

Qur first example starts with position Py in Figure 6.15.

st(p;)=2 and my(p,)=3 .

|

wk-q@ bk-K2
wk-QB3 bk-K3
wk-Ql We now have m,=0 .
bk-&5
gb=-KB4 ch. bk-@QB>
qb-K5 bk-Q
wk-Q5 Ncw we are in stage 3 with an area
of size 6. Moves 4, 5 and 6 are
selected by tree search,
bk-K2

151

e

p, is in stage 2, and dcent(pl) =3,

P, is in stage 2 and dcent(pe) = 2, I

Vs is in stage 2 and dcent(p§ = 3, However
all immediate successors of p3 are in stage
0 or 1.

Figure 6.15. Starting Positions for Example of Program Play.

132

¥ 7.‘

= B

€
W

»
-l

&

—

M
&I

10.

114

12.

13.

1k,
115,

16.
i

18

19-
20,

21,

kt-KR>

kt-KB2

kt-KKth

kt-KB6

wk-35

wk-QBl4

gqb-QB5 ch,

wk-QKt5
cb-QKth

kt-Q7

bk-KB2

bk-K1

bk-Ql

bk-QBl

bk-QKt2

bk-QKt3

bk-QR3
bk-QXt>

bk-QKt2

bk-QB2

bk-QKt2

bk-QR2

bk-QR>

bk-QR2
bk-QR1

Now v=5 ., We have skipped over
ve3 ,

Moves 9 and 10 are selected by a
tree search of depth 2, HNow we have
an area of size 5.

Now v=3 .

Now v=5 . Moves 13, 14 and 15 are
selected by a tree of depth 3.

This is the bishop move allowed
for tempo.

Now we have sl1=3 .

Now we are in stage 4. Moves 16
through 20 are selected by a tree
of depth 4,

135

PR —

aa.

23.

2k,

25.
26,

28.

29.
30.

o 318

e,

33.

35.
36.

kt-QXt6 ch.

qb-Q6

gb-QKt8

kt-Q5
wk-QB5
kt-QKth
qb-KB4
wk-QBk4
qb-K3

qb-Q4

gb-QKt6

kt-Q
kt-QKt2 ch.

wk-QB3
wk-QB2

bk-QR2

bk-QR>

bk-QRl
bk-QR>
bk-QR6
bk-QKt7
bk-QKt8
bk-QKt7

bk-QR6

bk-QR>

bk-QR6
bk-QR5

bk-QR6
bk-QR7
bk-QR6

We are in the same position as
Figure 6.9 after white move 10.

A tempo move.

m5=5 !

This is the only place in the tree
starting at move 25 where more than
one white move is considered.

Now we have reached the end of the
branch of the tree (of depth 7) and
m_=k ,

pJ

m_=2 ,

']

[’ X

3

37. qb-QB5 ch, mg=1l . Moves 35, 36 and 37
are selected by a tree of
depth 3,
bk-QR7 This move gives a p in stage 6.
38. kt-Q3 bk-QR8
39. ab-gKth A tempo move,
bk-QR7
39. kt-QBl ch, bk-QR8

40, qb-QB3 mate.
The program plays the last part of the game (from move 22 on)
identically to Figure 6.9; different black moves have been selected
to give some variety. In the first part of the game the program play
is dull but steady. As usual, the program sometimes does not make the
best move, About four moves are wasted in this way. The black moves
are selected to give the program a maximum amount of trouble. The
starting position p, is the one given in Capablanca [1935].h
Capablanca only uses nine white moves for the first part (compared with
21 program moves); however his black king moves are more cooperative
than the ones selected in this example,

Our next example is taken from Fine (Figure 6.1). We start from
Py in Figure 6,15 which is the same as the starting position in
Figure 6.1 after adjustments have been made for the fact that the
program has the queen's rather than the king's bishop. Again we start

in stage 2. We have

1. wk-QB4 bk-K5

2, @b-Qb bk-KB4

L. Page 109,
135

-

10.

11,

12,

13.

1k,

15.

16,

wk-Q4

wk-Kb

kt-QB7
Kt-Q5
kt-QKt6

qb-K5

wk-KB4
wk-KB5

qb-KB6

kt-QB8
kt-Q6

kt-Kb4

kt-KKt5

gb-K5

bk-KKt5

bk-KKth

bk-KR3

bk-KKt3

bk-KB2

bk-KKt3

bk-KR3

bk-KR2

bk-KKt1

bk-KR2

bk-KR3

bk-KRk

bk-KR5

136

Now mp=0 but actually we are in
stage 3 with an area of size 6.

This move gives a p with
poss{p) true,

White blocks the escape, so the
position is accepted by better.

Now v=3 .

Now v=5 .

Now we are in an area of size k4.

Now v=5 .

This ig the first allowable knight
move,

This is the second knight move.
We have sl(qj)=15 .

Now we are in stage 5, and m5=h :

P

s &8 =

There is no point in continuing the example since the program will play !
the same as in example 1. Tern more moves are required to mate. As
expected, the program plays differently from Fine. The moves for black
are chosen to illustrate how the program reaches stage 5 through areas
of size 6 and 4. When this path is chcsen, stage 5 is short and check-
mate is reached quickly.
We will now give two short examples to illustrate special cases
in the first part of the game. The next example shows how the program
handles a temporary escape from an area. We begin at position Py, in

Figure 6,12, Eg(pk)=3 R s(ph)=5 , and Eoss(ph) is true. We have

1. wk-Q5 bk-QKt5
2. kt-Kh4 bk-QKt6 ,
3. wk-Q4 bk-QB7 a
b, qb-QKth Now sl(q)=k |

bk-Q8
5. wk-Q3 bk-QB8
6. qb-QB3 Now we are in an area of size &4,

If at any time the black king had returned to the area of size 5, he

would have been trapped there and that branch would have terminated.
Our final example shows what happens when we must cope with a

stage 2 position complicated by the locations. We start at p3 in

Figure 6.15. is in stage 2 but all ol its immediate successors

P3
are in stage O or stage 1.

137

b i A

1. kt-KBS wk-KKt6 would give m2(q)<m2(p)
and dq(wk,qb)<dq(bk,gb) but this
positian is correctly recognized
as a member of stage O, We have
q in stage 1.

bk-KKt1 ¥
2. gb-KB6 We are in stage 2, but
mz(q)=m2(p) . Note dq(wk,q_ 2 .
bk-KB2
3. wk-KKt5 Now we can accept q as better
since m,(q)<m,(p) .
bk-K3
L, kt-KKt7 ch. The knight was blocking the path
of the king.
bk-Q3
5. wk-KB5 Now m2(q)=l .
bk-Ql
6. wk-KB4 The black king is blocking the
white king move into the center,.
bk-QBk
7. wk-K& Now me(q)=0 .
bk-QB 5 1
8. qb-@& Now we are in stage 3.

The program manages nicely.

A

This last exumple indicates that the program should be able to

reach checkmate from any starting position within the 50 move limit.
Stages 5 and 6 together never require more than 19 moves, and the first
example of program play gives a close to maximum number of moves through

stage 3. Since this example ends similarly to the first example after

138

and wam—g

-

g 0

ey

move 6, this means the program still has a margin of 8 moves to take

care of any complications which arise.

The remarks about the previous end games are also valid here.

However, the mediocre (vetter but not best) program moves are not so

frequent in this game. This is because the difficulty of winning

forces more exac.ness in program play. The difficulty of this game

al~o provides a good test of the program. The fact that the program

can win, using the fairly simple patterns which provide the outline of

the play, indicates that the forcing tree model used for the program is

a good one. Also the program play is identical to the book's when

sufficient information is available.

139

N— -

P s ——

—

- ==

&
-

=3

3

&
-

4

14

s =5

CHAPTER 7

PROGRAM CORRECTNESS

Now that the definitions of better and worse have been given for

the various end games, we can consider the question of program correct-

ness., We will say that the program plays an end game correctly if we

can prove that it will reach checkmate from any legal starting position

pEP . To prove, given the position p€P, that the program will actually

win from p , we must show

1. The program can force positions q which are better than p .

2. This process need only be repeated a finite number of times before
checkmate is reached,

First we must introduce some notation.

Defn. grogl(p) = (q | q is at the end of & branch of the tree from

p which is produced by the program)} .

If an immediate successor q of p is better than p , then Erogl(p)
will contain the single element q . If the program is unable to force
better positions from p , we would have Erogl(p)=NIL , which means
either that all branches are rejected or that the program does not

terminate (in 50 moves). The first statement can therefore be written:

Theorem 1., Vp[p€P D = null(grogl(p))] .

Proof. This theorem must be proved separately for the different stages

and measures within each end game, It is sufficient to show that an

140

T -

acceptable path exists; we will not know for certain what Ezggl(p)
contains but we will know that it is not empty since the program uses
a breadth first search,

We give a proof here for positions in stage 2 of the Rook end
game. Recall tha® stage 2 is defined by

x € stage 2 = (goodquad(x) A sgquad(x)>2) .
The measure in stage 2 is

ma(x) = squad(x) vx(x€stage 2) .

better for stage 2 is defined by

(st(p)=2 A (stlqP>2 v
(st (@)=st(p) A (my(a)<my (p) V 4 (v, r)<a (v, r))]))
and worse by
(st(p)=2 A ([st(a)=2 A my(a)>my(p)] Vv
st(q)=1 v [st(q)=2 A = 1) Ad (wk,r)=1
[(st(a) 5t(q)=2 A my(a)=my(p)]) A a (uk,r)
A (@ (wk,r>1 Vv [st(q)=l A r #r_1)])) .
q P q
We divide the proof into two parts depending on dp(wk,r) ‘
1, dp(wk,r)>1 . Then there exists a q with dq(wk,r)<dp(wk,r) *
q will have the same quadrant as p , and since p satisfies
dp(wk,r)ﬁdp(bk,r)+l , we can be sure that dq(wk,r)sdq(bk,r) -
Thas q will be better than p , and Erogl(P)={q*] g
(q* is not necessarily equal to q.)
2. d (wk,r)=1 . There are two cases to consider. Let p'=p or a
p
successor of some q down in the tree from p .
a. There is a rook move leading to a position q (in stage 2 or 3%)
with a smaller quadrant, Such a position q. will be better than

p , and so we know the tree terminates. We are always in case 2a

141

d

—

-

if dp,(bk,r)>2.
b. No such rook move exists,

i. dp,(bk,r):l and we are not in 2a. Then we make one
of the king moves such that dq(wk,r):l and g_{q(bk,wk)<h
for fr as defined in Appendix A. A move like this alweys
exists and is not worse; ££q(wk,bk)<h insures that after
the black king moves we will be in 2a or 2bii, which means
the tree will terminate in one or two more moves.

ii. dp,(bk,r)=2 Ag_r_p,(bk,wk)=h and we are not in 2a. This
is the place where the white king moves onto the boundary
of the quadrant. Then after the black king moves we are
in case 2a with just one move to terminate the tree.

N | dp,(bk,r)=2 A gp,(bk,wk)=5 and we are not in 2a. We make
a white king move such that dq(wk,r):l , and after the
black king moves we are in case 2bi or 2a {at most three

more moves to terminate the search).

Obviously such proofs are very tedious and we will not attempt to give
them for the other stages. The method of proof remains the same, and

sketches of such proof have been given in the various chapters.

Although the example chosen for the proof of the previous theorem
was given using the practical definition of better, for the rest of
this discussion we will use the formal definition of better. We will
discuss the extension of the theorems to the practical definition after
they have been proved.

First we must prove that rule 3.7 holds,

12

.
S B i SO g P~ S
I .
- - gre .

R T

Theorem 2, Yq Vp(qMBp o [st(pPst(q) v

(st(p)=st(a) Amg,(y(p)my y(a))]) .

Proof. Again we must prove this for the different stages and measures,
In fact we have proved it informally in the chapters covering the end
games. The reason it is possible to prove this is that stages and
measures depend almost entirely upon the position of the white pieces.
When a rule is made about the position of the black king it is stated
in q and in p in such a way that if it holds in q , it will hold

in all immediate successors p of q.

We have purposely given informal proofs for Theorems 1 and 2 because
the detail required for a formal proof is excessive and uninstructive.
It is necessary in these theorems to give separate proofs for :ach stage
of each end game, The proof given for Theorem 1 is correct for stage 2
of the Rook end gmme, and serves as an example of how such proofs should
proceed, both for Theorem 1 and Theorem 2, although the proofs for
Theorem 2 are simpler,

Bzggl(p) produces only one step of the program, To handle the

entire program we make the following definition

Defn, For D1,
prog, (p)=(a | 3p'q'(q'€prog, ,(p) A a'Mgp' A q€prog, (»'))} .
Please note that the i in grogi(p) does not generally stand for

the ith move from p ; it stands for the ith iteration of the 7'

program. A new iteration is not begun until the tree (possibly of 1

o

depth 1) from the previous program entry is exhausted.

-

143

=

$ x'

=

-'--.J

&
[

i

=3

1
L

| —

— -
= =

-_—

-

Now we can formalize the second statement.

Theorem 3. Vp[p€P D 3K VN(N>K o null(grogN(p)))] .

Proof. P 1is associated with some end game, and let us suppose this
came has n stages, For each stage i , let ki be the number of
different values which the measure mi assumes, We know kle for

all i ., (k, must be finite; this is true for all the measures which

i
have been defined,) Let

n

K= Z (k;) .

i=l
K 1is the number of different categories into which positions in the

end game can be put, not counting stage 0. We refer to each category
as & level, eud we define a function le , which gives the level of a
position as fellows.,

(1) da(x)=1 = (gtlx}=d A m (x)=saxin, (1)) , for S=y | s8()=1) .
Y€

(2) Assume we have defined the set of positions x for which
le(x)=i . If this set is empty, then so is level i+l . Other-
wise, we define the set tor which 1lc(x)=i+l as follows. Let
X be a position such that le(x)=i .

If i=K , then x is a checkmate position and the i+l level
is empty.

Otherwise st(x)<n . If ms_t(x)(X)>;lég(ms_t(y)(y)) , for

S = (y | st(y)=st(x)) , we have

le(z)=141 = (st(z)=st(x) A mst(x)(z)=m2§(mst(x)(y))] s
— y —

for 8= (v | sty)=st(x) Amgy y(¥)<myey(x)) .

1Lk

IDS—
Iy

o

Otherwise we have

le(z)=141 = (st(z)=st(x)+1 A mst(z)(z)=mgg(mst(z)(y))l :
1 yes &%

for S = (y | st(y)=st(z)) .
For completeness we define
le(x)=0 = st(x)=0 .
The levels have the same order as. we would like the program to follow;
we know O< le(x)<K , for all x€Q . Recall Q=P U (q|3p(peP A prq)] .

We have the following lemmas,

Lemma 1. Vpa((q€Q A aMyp) D le(p)> le(a)) .

Proof, This follows immediately from Theorem 2.

Lemma 2. Vpa{(p€P A qeprog, (p)) > le(a)lle(p)) .

Proof. Since qegrogl(p) , we know better(p,q) is true, Therefore,

le(qPle(p) .

Now, for pEP and N>K , let us assume there exists a q€grogN(p) .
We unravel the meaning of this:

a€prog, (p) e

3p, 9, (a,€prog, ,(p) A q;Mpp; A a€prog, (p,))

3219y« +By_1 Oy (dy. 1 CEOE) (P) A ay_y Moy y A A aprog, (b))
We select the appropriate Pys Qseves Py_ps Iy » and apply our

lemmas to get

le(ay_;)>1e(p) A le(py_, 2> le(ay ;) A...A le(aPle(p,) .

&=

145

ey
[}
—

]

&
[

4

&
[

3

= &

J

-1

o

Each time we have ls(qil>£g(pi+l) we can write lg(qi)z_ls(pi+l)+1
since le is an integer function. So we have

le(qy_,)> le(p)+1 A le(py ;)2 le(qy ;)

le(ay)2 le(py ()41 A le(py o)> le(qy)

Therefore lS(qN-e)Z le(p)+2 A lg(pN_e)Z_ls(p)+2 .

le(q,)> le(py)+l A le(py)2 le(q)) .
This gives lﬁ(plki.lg(P)+N'l and since lg(qki.lg(pl)+l , we have
le(q)> le(p)+N > le(p)+K > K+l ,

but this is impossible since le(x)< K for all x€Q . Therefore

ErogN(p) is empty.

Theorem 3 insures that the program will never get into a l9op. It

says that k in addition to being the number of values the measure m,

i b
assumes in stage i, is also a bound on the number of times the program
can produce better positions in stage i as it moves along from a starting
position to checkmate. The proof of Theorem 3 depends entirely upon
Theorem 2 and the definition of better (Lemmas 1 and 2).

We use this theorem as follows. Consider how the set grogN(p)
is formed, There are two parts to the definition. One part looks like
qiegrogl(pi+l) 3y the other is a statement like qiMBpi . Now Theorem 1
says that the statement qi€Er°g(pi+l) is always true providec

pi+lGP . We know this for the original p . However we must show

Theorem k. vp*(3pa(peP A qeprog, (p) A aMp*) O p*eP] .

Proof, This proof is the same for all end games and it produces a
condition on the definition of stages. If we assume the premise for
some p* , then we know le(p*)>2 , since le(pP>l . This means that
all non-winning positions which can be produced from a winning position
must be below the second level. 1In all three of the games discussed
the second level is in stage 2, The only questionable game is the
Bishop-Knight; we are confident that there is no p€P , st(p)=l ,

which produces p* , st(p*)=2 , but p*¢P in this end game,

By Theorems 1 and 4 we can be sure that the chain leading to
EESEN(P) does not fail because a set 259&1(p1+1) is ompty. There-
fore it must fail in the other statement , qiMBpi . This can only
happen if some g9 has no successors, But if qy has no successors
it is either stalemate or checkmate, 1In tnis case it cannot be stalemate
since we know it is better than some p ; therefore it must be checkmate,
Bo Theorem 3 means that less than K uses of prog, are required to

reach checkmate for any pEP . Therefore we can say
Theorem. Yp(pcP o the program will force checkmate from p).

Befcre leaving the subject of correctness we must discuss the
extension of these theorems to the practical definitions of better and
worse. Theorem 4 is the only one which is unaffected by the additions,
We consider Theorems 1, 2 and 3.

We first realize that Theorem 1 is not affected by the additions

to better. This theorem is really a statement of existence and if the

147 1]

T T—

d

&
-

—

s

ot

=

1

ad

——y ”)
:—J [S———]

program terminates sooner than expected this does not affect the proof.
Theorem 1 is affected,however, by the additions to worse. We must be
sure that wors<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>