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1.  Introduction 

Recently new structures and models of arithmetic developed by 

A. Robinson [13], [14] and others have provided a logical foundation 

for a nonarchimedean approach to the Calculus. These structures of 

nonstandard arithmetic offer "alternatives to familiar infinitary 

constructions and passages to the limit" (Robinson [14], p. 841). 

The basis for these methods is embedded in Foundations of Logic and 

permits consideration of a vast class of number fields which are 

richer in many ways than the more familiar extended number systems, 

such as Hubert's Field of quotients of finite polynomials in one 

indeterminate.  It has long been known, for example, that finite 

linear programming theory (see [2], [4], and [5]) is valid over any 

ordered field. Charnes theorem (associating linear independence with 

extreme points) and the Charnes-Cooper Opposite Sign Theorem ([4]) 

are valid over any arbitrarily ordered field. Later Charnes-Cooper- 

Kortanek [8] proved that these two theorems are also valid for general- 

ized finite sequence spaces over any arbitrarily ordered field in the 

context of semi-infinite programming. Historically, developments of 

extended number systems in linear programming arose in the context of 

resolving degeneracy (Charnes [2]) and Goal-programming (see [5], 

Chapter VI, Appendix B). For recent examples involving economic 

interpretations see Charnes-Clower-Kortanek [3], The addition of 

relative infinitesimals and relative infinites to the real number 

Acknowledgement is due to Professor A. Nerode, Department of 
Mathematics, Cornell University for bringing these observations to 
our attention. 
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^'ield avoids the necessity of considering familiar infinitary 

constructions in these particular contexts. While much evidence today 

is being compiled on the importance of extended number fields by out- 

standing mathematicians, the only textbook discussing linear programming 

over arbitrarily ordered fields is that of Charnes-Cooper, [5], in 

particular, pp. 756-757. 

The main purpose of this paper is to develop and prove a duality 

theorem for a special nonstandard semi-infinite programming problem 

over Hilbert's Field. Attention will center on semi-infinite programs 

having real coefficients but whose complete regularizations (see [4], 

[5], and [8]) involve powers of the Nonarchimedean element. A duality 

result first proved in [12] but never published will be given which 

states conditions under which the infimum of the primal problem equals 

the maximum of the dual problem, possibly involving finite powers of 

the relative infinites. Research is currently under way into the 

construction of other Nonarchimedean fields in an attempt to obtain 

strong duality results which resolve, in yet another way, the phenomenon 

of duality gaps (see [9]). 

We first review the basic properties of ordered fields,state 

the definition of Hilbert's Field, and discuss its topological properties. 

2. Ordered Fields1 

A commutative field F is called "ordered" if the property of 

positiveness (> 0) is defined for all its elements, and if it satisfies 

the following postulates 

1. For every a in F just one of the relations a = 0, a > 0, 

-a > 0 is valid. 

The results on ordered fields are presented here as in Van der Waerden[15] 
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2. If a > 0 and b > 0, then a ♦ b > 0 and ab > 0. 

If the absolute value |a| of an element a in F is defined as the 

non-negative one of the elements, a, -a, then the following usual rules 

hold: 

|ab| - |a| |b| 

|a + b| < |a| + [bl 

2      2     2 
Furthermore, a ■ (-a) ■ |a| >^ 0 with equality only for a * 0. 

Thus a sum of squares is always positive. For completeness, other 

properties of inequalities in addition to those above are listed below: 

(1) 0 < 1/a <a> a > 0 

(2) a/b < c/d <«> abd2 < b2 cd 

(3) 0 < a < b - > 0 < 1/b < 1/a 

(4) a < b < 0 * > 0 > 1/a > 1/b 

2    2 2 
and (5) a, "•• a2 + ... ♦ a  >_ 0, where all elements here are in F. 

Again it is emphasized that these rules hold in any ordered field F. 

Observe that by (5), the characteristic of any ordered field is 

zero. 

If a commutative ring R is ordered, then the quotient field F 

of R is ordered in a unique way so that the ordering is preserved. 

Further the ordering of F is given by 

2 
a/b > 0 <s> ab > 0 

See Birkhoff and MacLane  [1] p.  50. 

2 See Birkhoff and MacLane [1], p. 49 Theorem 12. 
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The ordering of a field is called Archimedean  if there exists a 

"natural number" n > a for every field element a. For example, the 

ordering of the rational number field is Archimedean. If the ordering 

of a field is not Archimedean, there exist "infinitely large" elements, 

larger than any rational number and "infinitely small" elements which 

are smaller than any positive rational number but larger than zero. 

3. A Non-Archimedean (Order Preserving) Field Extension of the Real 

Numbers: The Hilbert Field 

Let R be the field of real numbers with the usual ordering and 

let U be an indeterminate. Define an ordering of the polynomial ring 

R[U] as follows 

p e R [U], p > 0 

nonvanishing 
if and only if the coefficient of the highesty^ower of U is positive. 

This defines an ordering in R [U] since the laws of trichotomy, 

addition, and multiplication hold, and the ordering preserves the 

ordering of R. Further the quotient field R [U] becomes ordered 

uniquely from R [U] by: 

(0) p/q > 0 if and only if pq > 0, 

2 
preserving the ordering of R [U] and hence that of R. 

See Van der Waerden [15], p. 210. 

2 
' An equivalent and very intuitive definition of this ordering is given 
by pCt) i qCt) if and only if q(t)/p(t) < 1 as t -► «, where t 
ranges through real values. 
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Theorem R (U) under the ordering (0) is non-Archimedean. 

Proof For any natural number n, we have n - U < 0 since the 

coefficient of the highest power of U is -1. Hence n < U; .'. it 

is impossible for the Archimedean property to hold. 

U is an element of R (U) which is to be regarded as infinitely 

large, that is, it is larger than any real number. Similarly observe 

that 1/U is infinitely small. Note also that real numbers can be 

regarded as polynomials in U of 0  power. The field R (U) with 

this ordering is usually called the Hubert field and it is to this 

field which a major portion of our attention will be drawn. It is the 

largest order preserving extension of the real numbers which we consider 

in this paper. 

Again, observe that as far as order relations among elements of 

R (U) are concerned, they are the same as for the real numbers. 

Algorithms which use the order operations of real numbers go over into 

the big field, as is well known for the simplex algorithm. 

4. The Order Topology of R (U) and the Cauchy Completion 

One of the basic properties of the real numbers that is used in 

semi-infinite programming is completeness, i.e. any Cauchy sequence is 

convergent. In fact every compact subset of Euclidean n-space is complete. 

Roughly speaking compactness requires certain limit points to be there 

and completeness assures that they are in the space itself. Thus we 

would like the Hubert field  to be  complete in a topology that agrees 

with the subspace of reals. 



Now it is known that every ordered field has an ordered extension 

field which is unique and complete. Of the various constructions of 

this extension field.perhaps the most well known is Cantor's construction 

by fundamental sequences.  Recall that an infinite sequence {a } in 

an ordered field K is fundamental if given e > 0, and e e K, 

there exists an integer n such that |a - a | < e for p > n and 

q > n. Observe that the topology induced on K by the "|  |M, which 

2 
is used in this construction, is the same as the order topology , i.e. 

if the topology for K has a subbase consisting of all sets of the form 

{x:x < a} or {x:a < x} for some a E K. 

It follows that the usual topology for the reals is identical with the 

order topology. Thus in this topology, which is actually a uniform 

topology, K is uniformly isomorphic to a dense subspace of its 

completion K*. 

3 
Theorem of the Least Upper Bound:  If K has an Archimedean ordering, 

then every non-empty subset of K* bounded from above has a least upper 

bound in K*. 

In Kelly's terminology K* is order-complete. As expected if 

K = R (U^, then R* (U) is also non-Archimedean and therefore not 

order complete. Thus there are sets which are closed and bounded but 

not compact e.g., 

See Van Der Waerden [15] pp. 212-218. 

2 See Kelly [11] pp. 58-59. 
3 

See Van Der Waerden [15] pp. 216-217. 
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A * {a e R* (U): 0 <^ a 1 U}. 

To display the nature of the difficulties that can be encountered 

in nonstandard progranuning over R* (U), consider first the sequence (n), 

n» 1, 2, ..., in R* (U). This sequence is not a Cauchy sequence since 

the minimum distance between members is 1, and therefore no element in 

R* (U) is a limit point of this sequence. Consider the system of 

linear inequalities in one variable over R* (U), 

u>^n   u « 1, 2, ...  (integers) 

Even over R (U), this system is feasible, e.g. u = o U with a > 0 

and real is feasible. The question here however, is whether there can 

be defined in some sense an extended concept of "canonical closure", 

so that the duality theory applies as it does if u is required to be 

real. Two points need emphasis. 

(a) Clearly as it stands no inequality over R* (U) is a 

limiting inequality of the system since the sequence 

(n), n ■ 1, 2, ... has no limit point in R* (U). 

(b) If we consider the equivalent inequality system (or any 

one which is bounded in the real sense), 

— u^l, u«l, 2, ..., then the limiting 

inequality 0 • u >_ 1 should be adjoined €or canonical 

closure. However, with this addition the constraint set 

over R* (U) drastically changes, i.e. becomes empty, 

violating the important property that real systems possess 

as given previously by the following theorem. 

See [9] for the definition of canonical closure for semi-infinite 
programming problems. 
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Theorem. A canonically closed (real) system has the same constraint 

set as the original system.  (See [8] p. 217). 

Therefore we conclude that if we wish to maintain the above 

"constraint set preserving" property of the process of canonical 

closure, we cannot close up systems over R* (U) in the same manner 

as in the real case.  In this situation the extended dual theorem, which 

provides 4 mutually exclusive and collectively exhaustive cases for 

the dual problems, does not hold as evidenced by our example. 

(D (ID 

min u max E n X n 

u > n, n = 1, 2, ... EX   -I — n 

X ^ 0    (all n). 

(I) is consistent as well as (II), while inf u 

u ^ n  n a 1, 2 ... 

does not exist. This exactly displays the Isck of order completeness 

of the extended field R* (U). 

5. A Special Nonstandard Semi*Infinite Problem 

We consider the following dual semi-infinite programming problems, 

where I is an arbitrary index set, {P.: ieDCR. Pn e R , and 

c. e R. for all i e I. 
i   1 

i* *"' ^-'V '0 & "V 
2 

1 See [7], [8], and [9]. 
2 
See [8] and [9] where the Charnes-Cooper device of adding bounding 
constraints and an extra variable was first applied to arbitrary semi- 
infinite programs to render them bounded and consistent. 
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T min   u M ■♦• u P o o 

T subject to    u    +uP.>c.      all    iel o i—i 

T T 
-Uem 

-uTln >- m — -Ue7 

m 

u    > 0 o — 

(iiR) 

T      + max Z.  Tc.A.   -Ue      (v    +v) iel    i i m    v J 

subject to    \    + I.   TX.  = M o        iel i 

E.   -P.A.  +1     (v+ - v") = P iel ii        m  v '        o 

where    A , X.  >_ 0, i e I, 

and   v.+. v." > 0  # 
J        J    - 

Since in the theory of semi-infinite programming, the    (A.)-vectors 

have only finitely many non-zero entries,  the summation   " I "    is well 
iel T 

defined. Here I  is the identity matrix of order m and e   is 
m ' m 

the m-vector whose entries are all "ones." Clearly ID is consistent, 
R 

T 
for take u « 0 and u >^ sup {c.}, since {c.:i el} is a compact 

set. As for (ll^, take A. = 0 (i e I) and v* - v" = P  with 
Ml 0 

\    a M. We shall assume that the set of coefficients {fr.,c.):iel} o " i i 
T 

is compact in R . and that if the system u P. ^ c, iel, is 

consistent, then it has an interior point. Then by the Extended Dual 

. ■■~.~n*mjk,iii**Ms.*.--Ki**,,!if.-i*in-,-,:. i^xiatonwian»««*!«.^ 
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Theorem ([8] and [9])  it follows that there exist vectors X*, v* 

such that inf {u M + uTP } = E. T c.A.* - U E1!1 . v.*, where 
o     o    lei i i     jsl )  * 

v. = v. - v.. Further, the relevant set ( u , u y for flRj is 

non-empty and compact since it is the intersection of closed sets 

(half-spaces) and by regularization is non-empty and bounded. Thus 

T 
by compactness the "inf" is actually assumed for some u *, u* . 

We propose to study problems (IR) and (nR) by relaxing U 

and M through real values and observing the behavior of the solutions 

Thus, we shall take a sequence of positive numbers, U -► « as n ■*■ « 
2 

and set M * U . We claim that in the limit it is possible to attain 
n  n r 

a non-Archimedean dual equation, where U e R (U), of a special type 

gotten from regularizing the minimization problem in powers of U. The 

non-Archimedean dual equation really represents a summary equation of 

the types (or orders) of divergence to infinity that may exist between 

unbounded variables.  In order to provide for this variation, it is 

necessary to introduce powers of the indeterminate U. 

Before we state and prove the theorem we turn to some notions of 

order as developed by Hardy [1], 

Assume that f and g are positive and continuous. We say the 

order of f is greater than that of g if f/g ■* • when x -»■ « and 

we write f 1^ g«  If f/g "*" 0» we say that the order of f is less 

Only bounded u  are relevant. 

2 See Hardy [10] P. 1-5. 

■ - 
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than that of g and write f-<^g.  If f/g remains bounded for all 

values of x after a certain point, then we say that the order of f 

equals the order of g and write f Xg- If f/g tends to a definite 

limit, we write f^g. If f and g are monotonic as well as f/g, 

then the following trichotomy holds: 

(TR) either f ^ g  or f-<g  or  f^g. 

Similarly we may introduce order notions for negative functions, which 

tend to -•, and we use the same symbols, e.g. - log x-< - x having 

the same meaning as log x < x. 

With this introduction we now state our theorem. 

Theorem Assume that the semi-infinite system (IR) has a compact set 

of coefficients in R .. Then there exist non-Archimedean dual 
m+i 

optimal solutions to    (I_)    and (IIR) respectively involving only powers 

of the indeterminate   U    and    P.   e R ,    such that 
i   m 

u* M •»• u! P « I    c.X* - Z Ua^v.* 
o    * o    T i i  . ,     j 

lei      Jal     J 

where a:[l, 2, ..., m] -► [0, 1, ... m], M = IT , and the base field 

is R (U). 

T 
We may speak of the semi-infinite program min u P , subject to 

T u P. > c. all iel as being embedded in a non-Archimedean extension. 

Each real semi-infinite program may in general have a different non- 

Archimedean eabedding. Froa the viewpoint of the process of forming 

regularizations, the theorem states that it is possible to do non- 

Archimedean semi-infinite programming of a very special type, namely, 

... 
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a "regularized" problem that originates from a compact semi-infinite 

problem with vectors having only real entries. The idea of the proof 

is to attain a finite non-Archimedean problem having only a finite number 

of half-spaces as constraints which are either limits of the original 

ones,  (P., c.) or involve powers of the indeterminate U as a bound. 

The limiting case will then be a finite non-Archimedean problem to which 

we can apply known finite duality theory. 

Proof: We may simplify notation at the outset by omitting the variable 

u  and assume the problem to be consistent with interior point over 

the reals. This is because only bounded u  are relevant, and u 7        o o 

is introduced only to provide consistency. Let Q(U) denote the cube 

T        T    T        T ul >-Ue ,-uI >-Ue , with the understanding that U always m —     m'    m —     m & ' 

denotes the indeterminate. Let U  be a real positive sequence 

U •*■ « as n -► o0. n 

Consider the following sequence of minimization problems as    U    ■♦ »: 

T mm u P o 

T subject to       uP.^c.   (iel) 

u e Q (Un) 

Optimal solutions exist by compactness or Haar duality. Let u^ ^ be 

an optimal solution and let T  be a maximal linearly independent set 

of tangent planes from the collection {(P., c.):i e I}, i.e., P. e T 

means u^- ^ P. = c. Furthermore, at each stage, the associated finite 
11 & 

problem, 

• ■ 
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T min u P o 

T subject to       u P. > c.   all P. e T 
* i-i       in 

u e Q (Un) 

has ir ; as an optimal solution. Since the collection of P-planes 

is compact, there exists a limiting set tP^x, ...» V^.yA    of 

(maximal) linearly independent vectors of tho sets T  as n -► n». 

Now as n ->• », ul ^ will exhibit coordinates which are bounded 

and coordinates which are not. Let S i coordinate positions which 

ire bounded, W = coordinate positions which are not bounded. The 

bounded coordinates will have limit points, say u. ^ for all i e S. 

Thus, at the n  stage of the procedure (regularization with u e Q (U )), 

the optimal solution will have the form, 

u(n):j eS 
(n) uv * 

3 

fW'.j  t  W 

where u . and f .J are, of course, real numbers. However, the u^'s 

approach limits, while the f . 's do not. Observe that feasibility 

is expressed as follows: 

E u^ a(^ + I    f^ a^5 > c, i e I where P. = (a(i)). 
jeS  J   J   jeW  J   ^ - 1 J    j 

We need some lemmas about the respective orders of the f.'s. 

Lemma 2: The trichotomy (TR) introduced above holds for the f.'s. 

That is, for i ^ j in W one of the following hold: 

f. > f.  or  f. ^f.  or  f.'rif.. 
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ft. 

Proof: At some large n   stage, the approximate order of greatest 

decrease for minimization will be established, i.e., if the dominance 

of f .  over f .  is observed, it cannot reverse itself at some 

later stage since the T -planes are approaching a limit set, and the 

finite coordinates (if there are any) of the optimal u^ '' are also 

approaching limits. If at some large stage n, f . > f ., then at 

further stages the relative direction of f ^ will be sought, only 

possibly to be blocked by some finite plane in the T -set. However, 

at further stages these planes approach limits and their changes and 

effects on such limitation are negligible. This also shows the continuity 

of the functions f.. 
3 

Thus, we may partition the index set W into subsets V     CL  W 

such that each subset corresponds to functions of the same order, i.e. 

W(1)L/W(2)(j  _ yjw(k) B w 

and functions in NT J are of smaller order than those in W^'' if 

i < j. 

For each order class choose a (positive) representative $  , h e Wl J 

in terms of which other members of the class differ by multiplicative 

constants in the large, say v.. Thus, in terms of the partitioning 

of W, feasibility may be expressed as follows at the n   stage: 

"^W^^D^V^T* • • 

+ I   (1 ♦ v.) (fr(kV^ > c.  for i e I. 
4cwfk)     J      J " i jewOO 

These inequalities may only be approximate, in which case th^ error ■* 0 

as n -*• •. This is not to say feasibility is attained with real values. 
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Lenuna 3; In the above partitioning of W as expressed in the (*) 

inequalities, we may replace the <^ ' representatives by - U , where 

U e R(U), and attain feasibility. 

Proof: Observe that in each class the coefficients  E rM (1 + v.) are 

essentially constant and express the order relations between functions 

within the class. Two functions of the same order may differ by a 

multiplicative constant "at «." We now proceed by induction. The 

induction assumption is as follows. For ,1^-1 order classes in W 

it is possible to assign appropriate powers to attain feasibility. For 

the case k « 1, feasibility is expressed at the n   stage by 

E uCn)a(i) ♦f *(i) > c, 
..g  j  j   n w - i 

where   f     is unbounded.    Since    {c.}    is compact as well as 

{a^:i e S)   and   u^V * u\\    it follows that the choice of   U   or    -U 
3 3 3 

(depending on which direction   f     moves) maintains the system of 
fco) fn") 

inequalities,  even with the limit variables    uv/ replacing   u .  , j  e S. 

For the case   k = 2,    we are confronted with a situation as follows: 

f a(i)+ f a(i) > c tla 1 + V 2   - Ci 

all i e I, where ^i^- ^  an^ ^oun^e^ variables have been omitted. 

We must show, that U a jJ + U aL' >_c., i e I.  Suppose not, i.e., 

U2 a(Jo) + U a^0^ < ci , for some io. First, a{lo) = a^lo) leads 
o ~        ^ . 

to a contradiction,    0 > Ci„   and   0 < Ci   .    Therefore either   a; ^  < 0 *        —   *o o 1 

Here we have assumed for simplicity that the coefficients have 
absorbed possible negative signs so that only directions at (+ •) 
are relevant. 

i 

•  ■ - . 
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or a| 0' = 0 and a.}: 0' < 0,    which again is impossible since 

f,^" fj  and coefficients of the system are compact. Thus, 

U a'".'' + U a^ ^.c, i e I. Now assume that for .1 k - 1 unbounded 

variables the required assignment is possible, and consider the case 

for k order classes. Again, at the n   stage, feasibility is 

expressed by, 

E u^a(i) t j  f(l) a(l) + ... + j .v,f«a(i) > c, i e I. 
jeS  5  3   jeW(0 3   3 jcWW J  1 - i 

fk")     fk") In terms of the representative <(iv ' of W   J    we cannot have 

2 #-1 A (1 * v-) a ■ < 0 in the limit because this class is dominant 
jeW(k)

1   j*     2 

and would destroy feasibility in such a situation. Thus, the net effect, 

I  /-i-i (1 + v.) a .  is positive, and if strictly positive, the assignment 

k      k of U  Cor -U ) will maintain feasibility. Further, if the net effect 

is zero, the induction assumption now applies to the remaining k - 1 

variables. Therefore the indicated substitutions of U powers as 

expressed in the lemma are valid. 

Thus, for all n beyond some fixed point, feasibility is attained 

with the U-power substitutions. In the limit we get an optimal solution 
(OB") 

with coordinates u . , i e S and U - power coordinates for i e W, 

which is determined by the T^ stt and the U - power bounding hyperplanes. 

Taken together these hyperplanes form a finite non-Archimedean problem 

with the same minimum as the semi-infinite one due to our construction 

above.  Hence, finite non-Archimedean duality theory now applies to 
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provide dual feasibility and the dual equation of the form required of 

the theorem. Observe that inconsistency is handled by bringing in the 

additional variable u  with functional value larger than any of the 

powers of U assigned to unbounded variables, e.g. with coefficients 

IT . This completes the proof of the Theorem. 

We conclude with three examples of problems whose variables have 

different rates of growth to - ». 

Example 1 min u + u. 

subject to   u > 0 
o — 

u + 1/k u, + 1/k u2 ^ 0, for k * 2, 3,... . 

This system has interior points and the coefficient set is compact. 

Therefore it is canonically closed. Further, if we regularize with 

U (real) large, we find the solution to be 

u * s 1/22 U , u* * -U , and u * = U . 
o       n' 1    n       2   n 

These all have the same order, and therefore there is only one order 

class for unbounded coordinate positions. In fact, adjoining linear 

2 
powers of U as constraints yields the optimum u * = 1/2 U, 

o 

u * 

max 

U, and u-* * U. Furthermore, the regularized dual reads: 

- U [v*    +    v*    +    Vj   +    v'2 ] 

2 

XÄ + E j 1/k  'i Xk +   j  1   |vj ♦/ G    vj    +1-1 Vj Y   0|V2 = 

vl/k' 
V 

and   X's,  v's >. 0. 
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-* 
The dual optimum reads:  XI ■ 1, v. = 1/2, v2 -  1/2  with dual 

2 
functional, -Ü (1/2 + 1/2 ) • - 3/4 U. Since the direct functional is 

u * + u,* = o    1 3/4 U, we attain the dual equation. 

Example 2. min - u. 

u. 1/x - u2 ^ 1 - log x, x ^ 2 

> 1 

u. 

u 

0 u.  - 0 u2 >_ -1 

- u,        > - U' 

" u2 i " U 

v\ i 
/     6 

'A 
I Figure 3 

Regularizing with U  yields an optimum I 
u * a U  and u^* ■ log U . In      2    6 n 

s 

> 
u, 

In this case there are two order classes, and variable u2 is 
2 

regularized with respect to U and u. with resppct to U . Thus, the 
2 

non-Archimedean optimum reads u,* s u , u2* = U. The dual problem has 
-* 

an optimum at v2 »1 and all other variables zero, with equation of 

dual functionals prevailing, i.e. 

2 - 
max E (1 - log x) X + X. - X2 - U vi " u v2 

x 

Xx, X^ X2, Vj, v2 > 0. 
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Example 3  Consider as the constraint set the points under the curve 

y ■ tan" (x), with x ^ 0 and above the x-axis. 

_ _      '( ft- 

~     ttuv» =    »C^   X 

IX 

Figure 1 

We observe that the equation of the tangent line at the point 

-1 -1 2 (x, tan     x)    is given by    (Uj - tan     xD/Cu,  - x) * 1/(1 + x )    and 

therefore our constraint set is given by the following system of 

inequalities 

(I) 

u,   (1 ♦ x )"    - u- ^ - tan'    x ♦ x (1 ♦ x )'    = c 

u, > 0 

u2 > -   (7r/2) 

Let the direct problem, I, be min (-uj subject to the above constraints 

In this example the set of coefficient points of 

{(1 ♦ x2)'1, -1, -tan"1 x ■»• x (1 ♦ xW.x >_ 0} 

in addition to the points (1, 0, 0) and (0, -1, -tT/2). Clearly this 

set is compact, since the limit point (0, -1, -n/2) as x -»- • is 

added. Note that min -u2 = -max u« « -n/2 is never attained because 

feasible points must lie on or under the curve. 

1 
See [8] pp. 214-215. 

■ 
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For this example, the dual II is as follows. 

If we let 

/       9 .1 \ 
/ 1 

i' P„ = 
1 

then we have 

max Z c X + 0-X + (-Tr/2) X. 
xx    a P 

all X's > 0. a a   " "      .... 

We see that if X = 1 and ail other X's = 0, then the maximum -IT/2 
P 

is attained. Observe, however, that if we adjoin the constraint 

u2 — "Z^, then problem (I) becomes inconsistent over the real field. 

The dual solution, however, prevails. Over the Hilbert field R (U), 

as previously introduced, problem (I) is consistent, e.g., u. ■ U 

and u2 = TT/2. We view this type of inconsistency or duality gap over 

the real field as one which may be removed by considering the semi- 

infinite problem in a nonstandard way, namely programming over R (U). 
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