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ABSTRACT 

Several low order rational transfer functions have been found 

which approximate a matched filter for a rectangular pulse. 

These transfer functions are optimum in the sense that the 

ratio of peak-signal to rms-noise at the output is maximized 

to the extent allowed by the available parameters.   Normalized 

transfer functions are given and their frequency and time response 

are shown graphically.   For the most useful cases, realizations 

normalized in impedance and pulse duration are given which allow 

the use of lossy inductors.   A short discussion of a bandpass 

realization is presented.   A transfer function with zeros restricted 

to the ico-axis is given, along with its realization, which is useful 

as the lowpass prototype of a bandpass, crystal matched filter. 

Accepted for the Air Force 
Franklin C. Hudson 
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RLC REALIZATIONS OF APPROXIMATIONS TO 

MATCHED FILTERS FOR A RECTANGULAR PULSE 

I. INTRODUCTION 

Matched filters are widely used in communication and radar systems 

for the optimum detection of a pulse in white noise.   The pulse shape is usually 

rectangular and a passive matched filter is often desirable.   Several rational 

approximations to the transfer function of a matched filter for a rectangular pulse 

have been found by a computer-aided search and some of these have been synthe- 
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sized. '   '     These approximations are optimum in the sense that for the restric- 

tions placed on the transfer function (number and/or location of poles and zeros) 

the peak signal to rms noise at the output is maximized.   The various results are 

gathered together here for ready reference. 

The optimum pole and zero locations given in sections II B and C and the 
4 

realization of Fig.   14 have been obtained independently by P. Meyer   who, in 

addition, gives results for optimum approximations for transfer functions with 

up to 11 poles and 10 zeros. 

II. VARIOUS RATIONAL APPROXIMATIONS AND THEIR REALIZATIONS 

A. Multiple Order Negative Real Poles 

In reference 1 parameters are given for the impulse response of a 

matched filter approximation whose transfer function has a multiple pole of up to 

the fourth order on the negative real axis.   As one might expect, this restriction 

makes the approximation inefficient in that for a given complexity (number of poles 

and zeros) the best approximation is obtained when the poles are allowed to be com- 

plex (see sections B and C below).    For completeness the parameters for the impulse 

response of the multiple order pole approximations and their performance compared 

to the exact matched filter are given in Table I.   T is the pulse duration in seconds, 

TABLE I 

n 
«1T *2T <^2 

*4T P - 10 log p 

1 1.2564 — — — 0.8145 0.890 db 

2 2. 8427 10.476 — — 0.8861 0.526 

3 4.5376 -2.8841 34. 990 — 0.9149 0.386 

4 6. 1807 13.830 -73.917 283.75 0.9304 0.313 



and p is the signal-to-noise ratio out of the approximate filter compared to that 

out of the exact one. 

For an n     order pole, the optimum unit impulse response is 

T?n(t)  = (j + a2t + ... + <y       J e . (1) 

and the corresponding transfer function (Laplace transform of   77  (t) ) is 

1 *2 (n-i):o_ 
H   (s)   =   —i— + —7 + . .. +    H     . (2) 

1      (s + ap (s + ttj) 

B. Two Complex Poles and One Real Zero 

For a transfer function of the form 

H(s)   =      K(s+/)    .     , (3) 
(s + a)   + 8 

where K  is an arbitrary gain constant, the optimum parameters for approximating 

a matched filter are: 

uT = 7.520 
aT = 1.511 
/3T   =   1.826 

For this approximation   p = 0. 9140 (0. 390 db) .    In performance this is the same as 

the triple pole approximation above.   The corresponding unit impulse response (inverse 

Laplace transform of   H (s) ) is 

h(^)=K(cos £t+ii-~—   sin flt) e'at      . (4) 

The normalized magnitude of the transfer function,     | rrrr\     |   >  is plotted in Fig.   1. 

For   K = 1 , the unit impulse response is shown in Fig.  2 and the response to a matched 

pulse of T seconds duration and amplitude   ~   is shown in Fig.  3. 



I H(0) 

1.0 

0 5 

[3-62-8T96] 

0.2 

0.1 

0 05 

002 

0.01 1 1  1 1 1 111         1 1   I  1 1 1 111 1       1     1    l\l 1 
0.1 02 0.5 1.0 10 20 50 100 

<uT (rod) 

Fig. 1.   Normalized magnitude vs. frequency of 2-pole, 1-zero 
matched filter approximation. 



Fig. 2.   Unit impulse response of 2-pole,  1-zero matched filter. 



Fig. 3.   Response of a 2-pole, 1-zero matched filter to a 
matched (T second) pulse of amplitude 1/T. 



A convenient circuit for realizing this transfer function is shown in 

Fig.  4. 

Fig. 4.   Circuit for the realization of the 2-pole,  1-zero matched 
filter approximation. 

The equivalent series resistance of the inductor is accounted for by tie  resistance 

r .   The transfer function of the circuit is 

E2(s) c 
H(s) • ^ 

r+Rx ^Y    1    N 

X
G1 + G2A,  ,     1 ,r, r°l+G2 " 

1 L +—— y + LC + <E) v~c— J 

(5) 

If we use the parameters 

r+R. G.+G0 1 r 12 
-T—   ,      a2   =   r        and        ag   =   —^— 

the transfer function has the form 

H(s) 

(s+CTo) Cciq) 

s  +s(a2+a3) + ff2
ff3+EC 

(6) 

By equating corresponding polynomial coefficients in Eqs.  (3) and (6), we obtain the 

following three equations for the design. 



r + R. 
a    =  a     =   —=—- (7) 

o o L v ' 

2a. - CT
9 + o% (8) 1        2       u3 

ai + Bi = CT2a3+ rc (9> 

These equations do not uniquely specify the component values, but they allow just 

enough freedom to make the design easy. 

A design approach that works well is as follows.   Since inductors are the 

most difficult component to adjust to a specified value, choose an inductance value 

that is convenient for the bandwidth of the filter being designed and have one wound 

to this nominal value.    Measure its inductance, L , and equivalent series resistance, 

r , at a frequency approximately equal to   l/T Hz .   Calculate   a^  from these 

measured values of L and r , and then calculate   R.  and a~   using Eqs.  (7) and 

(8): 

R.    =   r*   L 1 o 

a 3  =  2*x-o2 

Then calculate C using Eq. (9): 

The last component,   G, ,  is then computed to be 

G3   -   a3 C-G1 



Three Pole, Two Zero Transfer Function Approximations 

1.   Unrestricted Pole and Zero Locations (optimum approximation) 

For a transfer function of the form 

H(s)  = K   (s+^)2 + ';2      2 , (10) 
(s + o)[(s + a)z+ B   ] 

the optimum parameters for approximating a matched filter are: 

juT = 0.7832 

yT = 5.9763 

(TT = 2.2464 

«T = 1.4488 

0T = 4.1517 

For this approximation   p = 0. 9470   (0. 236 db) , which is somewhat better 

than any of the approximations above and the transfer function is not a great 

deal more complex.    Its unit impulse response is 

h(^)   =  K [2. 1181 e"CTt  - 1.1231 e"^ cos (£t- 0.09439) ]      , (11) 

The normalized magnitude of the   transfer function, H ; >      |   , is given in 

Fig.  5.    For   K = 1 ,   h(=-)   is shown in Fig.  6 and the response to a matched 
1 1 

pulse of T seconds duration and amplitude  =• is shown in Fig. 7. 
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Fig. 5.   Normalized magnitude vs. frequency of optimum 3-pole, 
2-zero matched filter approximation. 
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Fig. 6.   Unit impulse response of optimum 3-pole, 2-zero matched filter. 
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0 2 

Fig. 7.   Response of the optimum 3-pole, 2-zero matched filter 
to a matched (T second) pulse of amplitude 1/T. 
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A practical circuit for realizing this transfer function is in Fig. 8. 

E. 

Fig. 8.   Circuit for the realization of the optimum 3-pole, 2-zero 
matched filter approximation. 

This realization allows a lossy inductor and it incorporates both source and load 

resistances.   The transfer function of the circuit is 

H(s) = 
E2(s) 

ETM 

^2   fs2 + s!+     M 
C1C3   V L     LC2/ 

^m/4-w^k 
+ B\r 

+ %C2<G1+G7 
C3        C1C3 

+ 

[L\C1    C3/    Cl 

G3 | rC2(G1+G3)+C1 + C3- 

C3 LC1C3 
+ 

;i+G3(l+rG1)l 

LC1C3      ") 
(12) 

The design of this circuit is quite complicated and it is given in Appendix A. 

The results are that there is a continuum of solutions and ten of these selected 

from the range of realizable solutions are given in Table II.   The value of the 

source resistance   R.   is normalized to 1 ohm and the load resistance   R3   varies 

from approximately   0. 6R     to infinity.   Since both inductance and capacitance 

are proportional to the pulse duration T  (for a given network, the L and C 

values are inversely proportional to the bandwidth of the network),  multiply both 

the L and C values in the table by T to obtain the component values for a pulse 

12 



of duration T seconds.    Also, the impedance level of a particular design must be 

increased to obtain practical component values.    A particularly convenient way of 

doing this is to scale the impedance according to the particular inductor that is to 

be used so that it does not have to be trimmed.    If  L     henries is the value of the 
o 

inductor to be used,  multiply the impedance of the circuit by the factor (L   /LT) . 

An alternative method of realizing the transfer function of Eq.  (10) is to 

use Darlington's method of synthesis for a network terminated in resistance at 

both ends. In the scheme used here the transfer function is predistorted (all 

poles and zeros are shifted toward the  co axis by an amount \i) to place the zeros 

of transmission on the   oo axis.   This allows lossy reactances and simplifies the 

synthesis.   The work is carried out in Appendix B and the resulting network for a 
E2(s) 

1 second pulse is given in Fig.  9.   The transfer impedance    T / \   of this circuit 

is of the form of Eq.   10 with   K = 0. 6743 . l 

Table II 

Set No. Component Values 

Cl c2 C3 R3 L r K 

1 0.3613 0.2314 0.8584 0.5756 0.1189 0.1863 0.3906 

2 0.3177 0.1830 0.5175 1. 1524 0.1504 0.2355 0. 5769 

3 0. 2940 0. 1684 0.4465 1.537 0.1634 0.2560 0.6579 

4 0.2584 0. 1532 0.3761 2.478 0.1797 0.2815 0.7881 

5 0. 2360 0. 1467 0.3423 3.698 0.1877 0. 2940 0.8857 

6 0.2196 0.1433 0.3205 5.585 0.1920 0. 3008 0.9698 

7 0. 2068 0.1416 0.3045 9. 132 0.1943 0.3044 1.0463 

8 0. 1962 0.1408 0.2919 18.68 0.1955 0.3062 1. 1175 

9 0.1872 0.1406 0.2816 145.5 0.1958 0. 3067 1. 1849 

10 0.1859 0.1406 0.2800 00 0.1958 0. 3067 1.1958 

Ten sets of component values for the circuit of Fig. 8,   which 
realize the optimum 3-pole, 2-zero matched filter approximation 
for a 1 second pulse.   Ri« 1 ohm and the other component values 
are in farads, henries and ohms.   K   is the gain constant in Eqs. 
(10) and (11).   Observe that both  L  and  C   are proportional to 
the pulse duration so that for a pulse of duration  T   seconds, 
multiply both the   L   and  C   values by   T. 
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L r 

Rx   =   W 

R2   =   9.683 

R, 1.505 

Cj   =   0. 5908 F 

C„   =  0. 1318 

C3   =  0. 1627 

L   =   0. 2123H 

r    =   0. 1663f 

Fig. 9.   An alternative realization of the optimum 3-pole, 2-zero matched 
filter approximation, Eq. (10).   The element values are for a 1 second 
pulse, and the gain factor K = 0.6743. 

For lowpass circuits it is almost never necessary to account for the very 

small losses in the capacitors used in the realization, so for lowpass realizations 

the circuit of Fig. 8 is preferable to that of Fig. 9.   However the latter (before 

uniform dissipation is added) is useful as a lowpass prototype for the RLC realiza- 

tion of a bandpass matched filter.   Fig. B-l shows the lowpass realization of the 

predistorted transmission function or the lowpass prototype for a bandpass filter. 

This circuit is transformed to bandpass and then uniform dissipation is added for 

the final realization.    A particularly convenient form of the standard lowpass to 

bandpass transformation is given by Saal and Ulbrich in Ref. 7.    Applied to the 

predistorted network, the transformation yields the network in Fig.  10. 

-nppt^ 1 HfflfW*  

Fig. 10.    Form of the circuit for realizing a bandpass matched filter. 
The reactance values are to be calculated from those of the lowpass 
prototype through the transformation of Saal and Ulbrich.   In the 
final circuit, the four LC resonant circuits must have equal Q as 
determined by the predistortion. 
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The reactance values are calculated from those of the lowpass prototype (Fig. B-l) 

through the frequency transformation, and the equations are given in the reference. 

In designing a bandpass matched filter, it is the duration of the impulse response that 

is of interest so that in the lowpass to bandpass frequency transformation equation, 

CO        s CO     >s 

A        w     v to s   y 

to     is as usual the center radian frequency, but w must be equal to   4TT/T .   The 
o                                                                                                  to^T 

Q of each of the four resonant circuits must be equal to   -*  at its resonant 
o frequency   to, rad/sec. 

2.   Transmission Zeros on the coAxis 

An approximation with the zeros of transmission restricted to 

the to axis (imaginary zeros) is required for the realization of a bandpass matched 

filter using quartz crystal resonators.   The lowpass prototype of such a transfer 

function is 

H(s)   =    K(s2+%)       , . (13) 
(s + a) [(s + a)   + |T ] 

The optimum parameters for approximating a matched filter are: 

vT =   6. 122 

(jT =   2.097 

«T =   1.296 

BT =   4.696 

For this restricted approximation,    p = 0. 9408 (0. 265db) , which is insignificantly 

worse in performance than the optimum approximation above.   Its unit impulse 

response (inverse Laplace transform of Eq.  13) is 

h(l)   =  K[l.8453e"at  -0.9385e"°'t   sin (flt + 1.1213) ]       .    (14) 

| t}}\ I ' tne normalized magnitude of the transfer function is shown in Fig. 11. 

For K = 1 , the unit impulse response of Eq. (14) is given in Fig. 12, and Fig. 13 

shows the response to matched pulse duration T seconds and amplitude  =r  . 

15 
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Fig.  11.   Normalized magnitude vs. frequency of 3-pole, 
2 (imaginary)-zero matched filter approximation. 
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Fig.  12.   Unit impulse response of 3-pole, 2 (imaginary)-zero matched filter. 
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Fig.  13.    Response of the 3-pole, 2 (imaginary)-zero matched filter 
to a matched (T second) pulse of amplitude 1/T. 
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The transfer function of Eq. (13) is realized for  T = 1   second by the equally 

terminated lossless coupling network shown in Fig.  14.   The synthesis is carried out 

in Appendix C.   Crystal bandpass matched filters using this circuit as the lowpass 

prototype have been realized very successfully by Damon Engineering, Inc., and a 

discussion of their performance is given in Ref. 3. 

0. 1297H. 
—'W— 

if? 

•D.. 
tt 

0.2058F. 

9407FI        0.1015F 
m 

Fig. 14.   A realization of the three-pole, two (imaginary)-zero 
approximation of Eq. (13) for a filter matched to a 1 second pulse. 
For this circuit the gain constant K equals 0.6639. 
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APPENDIX A 

A Realization of the Optimum Three-Pole, 

Two-Zero Matched Filter Approximations 

The circuit to realize the transfer function of Eq.  (10) is shown in Fig.  8. 

The transfer function of this circuit (which will not be derived here) is given in 

Eq.  (12).   The method used to design the circuit is to equate corresponding coeffi- 

cients of the numerator and denominator polynomials of the desired and circuit 

transfer functions (Eqs. (10) and (12)). The resulting set of nonlinear equations is 

then solved for the circuit element values.    A change of variables converts the set 

of equations to a linear set which greatly simplifies the solution. 

The transfer function, Eq.  (12), of the network to be designed is of the form: 

E9(s) K, (s  +a. s + a   ) 
T(s)   =   ITTiT  =   —1 2 — (A_1) KPS'        bQs  +b0s  +b. s + b 

3 2 1        o 

By introducing the variables 

C0 

A   =   - E   =   — L C3 

B   =   -i- F   -2i 
LC2 C3 

C2 Gl D = cr H = cr 

the constant factor and the polynomial coefficients are: 

b     =  B(EH + DF) +AFH 
o 

b     =   A(F+ H) + FH + A(EH+ DF) + B(D+E) 

b2   =   A(l + D + E) + F(1 + D) + H(1 + E) 

b3   =   1 + D + E 

Zl 

Kl 
=   EH 

a 
0 

=  B 

al 
= A 



Then by equating the corresponding polynomial coefficients in the transfer functions, 

the following set of equations is obtained. 

aL   =   2n   =   A (A-2) 

a     =   n2 +  v1  =  B (A-3) 

b2/b3   =   2a  +   a   =  y (A-4) 

bj/b3  = 2aa + a2 +   g2  = S (A-5) 

bQ/b3  =  a(a2+ P2)   =  p (A-6) 

For the constant factor we have   K = K. /b„ .  The Eqs.  (A-2) and (A-3) specify the 

parameters A and B, so the remaining three equations must be solved for the four 

other parameters.    In these equations the new parameters   y , 6 and p   have been 

introduced. 

By introducing the definitions of the   b 's   into Eqs.  (A-4), (A-5) and (A-6), 

they can be put into the following form. 

(A- Y) (D + E) + (F+H) + (DF +EH)   =   y-A (A-7) 

(B -6) (D + E) + FH + A(F +H + DF + EH)   =  6 (A-8) 

- p (D + E) +AFH+ B (DF+ EH)   =   p (A-9) 

In these three equations the variables occur only in certain groupings, and it turns 

out that a further change of variables produces a set of three linear equations in four 

unknowns.   The new variables are: 

u   = D + E (A-10) 

v   = F +H (A-ll) 

w = DF + EH (A-12) 

x   = FH , (A-13) 

and the new set of equations is 
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(A-Y)U+V + W =   Y-A (A-14) 

(B-6 +Ay-A2)u + x    =6-A(\-A) (A-15) 

-pu + Bw + Ax =   p (A-16) 

Since there are four unknowns and only three equations, a value for one of the 

unknowns can be selected and then the values for the other three can be found.    A 

convenient one to select a value for initially is u .   The value of x  is then found 

from Eq.  (A-15), the value of w from Eq.  (A-16), and the value of v from Eq.  (A-14). 

Actually,   x, w and v can easily be found as functions of u alone. 

The constants in the last set of equations have the values: 

A   =   2u =   1.56643 

2       2 
B   =  ix   + v = 36.32994 

Y   =   2OL+ o =   5. 14406 

6   =  2cta + a2 + 82 = 25.84539 

p   =  a(«2+ 02) = 43.43620 

Y  -  A =   3.57764 

A(y-A) =   5.60411 

B-S + A(Y - A) = 16.08866 

6   -   A(y - A) = 20.24129 

As a function of u , the unknowns x, w and v are: 

x   =   20.24129- 16.08866u 

w =   1.88929u + 0.32287 

v   =   1. 68835u + 3. 25477 

(A-17) 

For a realizable network all elements must have positive values so the variables 

v and x must be positive.   The first equation of (A-17) thus requires that   u <.  1.2581. 

Below we will find a lower limit on u . 
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Next solve Eqs.  (A-10) through (A-13) for D,  E, F and H in terms of u. 

0 
x 2 

v, w and x .    From (A-11) and (A-13) we obtain  v = F + p or   F   - Fv + x 

and   H = v - F .    So for F we have 

v     [v V 

where we have chosen the negative sign for the second term on the right.    And for 

II 

«-5+(T-")1 

If   v    > 4x , F and H will be real and positive (assuming x is positive).   By sub- 

stituting from Eq.  (A-17) into this inequality, a lower limit on u  is obtained which 

is   u > 0. 9031 , so we have   0. 9031 £ u S 1. 2581 . 

Using these results for F and H , we can solve Eqs. (A-10) and (A-12) for 

D and E .   The solutions are 

D   =  | 
w uv 

{t-yi 
and 

E   -* 
w - *uv 

(v - -)*J 
Finally, from these results we obtain the component values as follows, 

normalizing  R    =G.     = 1 ohm . 

C    = -1  = I 1 H H 

C2   =  DCl   =  g 

24 



r        °1       JL 
3        E EH 

R  - G"1 - 1       • K3   U3    FC3 
EH 
DF 

L =  !  = H 

BC2   BD 

r - AL - AH r " AL   BD^ 

Ten sets of circuit element values for the range of u noted above are given in 

Table II. 
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APPENDIX B 

A Realization of the Optimum Three-Pole, 

Two-Zero Matched Filter Approximation Using Predistortion 

The transfer function to be realized is that of Eq.  (10) which is 

H(s)   =  K  (S + U)2 + 1;2      • . (B-l) 
(S + CT) [(s + a)   + 8   ] 

The first step is to move the poles and zeros toward the ico axis (predistort) by 

the distance u , and then form the transmission function of the predistorted network. 

The result is 

2      2 N   (s) 

0  (s + cr-n) [(s + at-u)z+ fT ] { } 

We will make   | t(ioo) |   have its maximum allowable value of unity by making 

tQ   =   (o~n)[(a-n)2+ &2]/v2    . 

The maximum value occurs at   a) = o .   This transmission function will be realized 

by a lossless coupling network terminated at both ends in lohm resistors.   The 

transmission function is used to obtain the reflection coefficient   p (s)  at the input 

terminals of the network from which we calculate its input impedance when its outout 

is terminated in  lohm.    A lossless network terminated in a   lohm resistor is then 

realized in such a way as to have the required zeros of transmission at   s = ±i v . 

p (s)   is defined by 

p(s)p(-s)   =   l-t(s)t(-s)   =    D(s)D(.s)      - 

from which we find that 

N^sJNjf-s)   -   (-s2) (s4 + a2 s2 + aQ)  , 

26 



where 

a2 - 2 [ e2 - (a V ] + <a-H)2 kl±^l^ _ , 

and 

an  =   [02+(«-y)2]2 [l+4(a-^)2]-2(CT-^)2[32-(a-(x)2]     . 
° v 

The numerical values are 

a0   =   31.97149 and a     =   278.14857 
2 o 

4 2 The roots of  N. (s)   are chosen to have negative real parts,  so factoring   s   + a~s   + a 

and selecting the appropriate factors for   N. (s)   yields 

,,        s(s2+l. 17647 s+16. 67779) 
P(S)   =   ~ DTi) "        • 

The input impedance of the network is defined as 

Z|(a) = fe£43 1v l + p(s) 

which, upon substitution of numerical values,  is the ratio of polynomials 

„   . v 1.61795s2 + 2. 95007 s + 25. 86880 Z. (s)   = , v=v   -  —5 9  
2 s   +3. 97090 s   +36. 30565 s + 25. 86880 

Realization of this driving point impedance by standard techniques yields the complete 

network shown in Fig. B-l. 
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0.11404 

—^WJT— 

0.2455 

1.1005     ~ 
0.3029 

Fig. B-l.   Circuit realizing the predistorted transmission function 
of Eq. (B-2).   Units are ohms, farads and henries.   The driving 
point impedance Z.(s) is indicated by the arrow. 

Next add uniform dissipation of the amount \L to all the reactances to move 

the poles and zeros of the transfer function to the desired locations as specified in 

Eq.  (B-l).   The resistance in series with the inductor L  is equal to nL ohms and that 

in parallel with each capacitor C  is equal to   (uC)     ohms, where  \x - 0.7832.   The 

resulting circuit is shown in Fig. B-2.    The final form of the network 
0.11404 

1. 160 

->\AV- 
0.08933 

-/wrv- 

5.200 

i\ 0. 2455 

1.1005 0.3029 4.216 

Fig. B-2.   Circuit of Fig. B-l after uniform dissipation has been added 
to realize the desired transfer function of Eq. (B-l). 

is obtained by combining the resistors at each of the input and output terminals and 

raising the impedance level of the network to obtain a  lohm source resistance.   The 

final network is in Fig.  9. 
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APPENDIX C 

A Realization of the Three-Pole, 

Two (imaginary)-Zero Matched Filter Approximation 

The transfer function to be realized is that of Eq.  (13) which is 

H(s,   . ^ + "\       , 
(S+CT) [(s+a)  + B   ] 

(C-l) 

The transmission function is chosen to have a maximum magnitude of unity (which 

occurs at   s = o ), and it is 

t(s)   = 
t   (s  +v ) 
o 

(s + a) [(s+a)2 + B2 i 
(C-2) 

where 

2       2        2 
to = o(atz+B)/v 

The reflection coefficient   p (s)   is defined in terms of  t (s)   as 

NjfsJNjf-s) 
p(s)p(-s)  =   l-t(s)t(-s)  =   ^s)D(.s) 

From this relation we find that 

where 

2      4 2 
N1(s)N1(-s)   =   (-s ) (s   +a2s   +aQ)   , 

2       2 2 
a2   =   2(B -0t) + O (*2+B2)2      I 

V 
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and 

2       2 2 ao = («+rr HS} 2       2        2 
2cr   < /3   -a  ) 

The values of these constants are 

a2   =   38.11136 and a     =   516. 1973 
o 

N. (s)   is chosen to have zeros with negative real part.    Selection of the 

appropriate factors for   N. (s)   yields 

p(s)   = 
s(s   +2.70714S + 22.720Q) 

D(s) 

The input impedance of the terminated network is then 

Z1(S)   ~    l + p(s) 
1. 98186s  +6. 44746 s + 49. 56933 

2s3 + 7.39614s2+5. 18875 s + 49. 56933 

Realization of this driving point impedance by standard techniques yields tne 

network in Fig. C-l. 

0.1297 

1 

11: 205J. 

Z     0.1015 
0.9407 

Fig. C-l. Circuit realizing the three-pole, two (imaginary)-zero 
approximation of a matched filter for a 1 second pulse. Units are 
ohms, farads and henries. 
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