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ABSTRACT

Several low order rational transfer functions have been found
which approximate a matched filter for a rectangular pulse.

These transfer functions are optimum in the sense that the

ratio of peak-signal to rms-noise at the output is maximized

to the extent allowed by the available parameters. Normalized
transfer functions are given and their frequency and time response
are shown graphically. For the most useful cases, realizations
normalized in impedance and pulse duration are given which allow
the use of lossy inductors. A short discussion of a bandpass
realization is presented. A transfer function with zeros restricted
to the iw-axis is given, along with its realization, which is useful

as the lowpass prototype of a bandpass, crystal matched filter.
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RLC REALIZATIONS OF APPROXIMATIONS TO
MATCHED FILTERS FOR A RECTANGUL AR PULSE

15 INTRODUCTION

Matched filters are widely used in communication and radar systems
for the optimum detection of a pulse in white noise. The pulse shape is usually
rectangular and a passive matched filter is often desirable. Several rational
approximations to the transfer function of a matched filter for a rectangular pulse
have been found by a computer -aided search and some of these have been synthe-

sized.l’ Znd

These approximations are optimum in the sense that for the restric-
tions placed on the transfer function (number and/or location of poles and zeros)
the peak signal to rms noise at the output is maximized. The various results are
gathered together here for ready reference.

The optimum pole and zero locations given in sections Il B and C and the
realization of Fig. 14 have been obtained independently by P. Meyer4 who, in
addition, gives results for optimum approximations for transfer functions with

up to 11 poles and 10 zeros.
VE: VARIOUS RATIONAL APPROXIMATIONS AND THEIR REALIZATIONS

s Multiple Order Negative Real Poles

In reference 1 parameters are given for the impulse response of a
matched filter approximation whose transfer function has a multiple pole of up to
the fourth order on the negative real axis. As one might expect, this restriction
makes the approximation inefficient in that for a given complexity (number of poles
and zeros) the best approximation is obtained when the poles are allowed to be com-
plex (see sections B and C below). For completeness the parameters for the impulse
response of the multiple order pole approximations and their performance compared

to the exact matched filter are given in Table 1. T is the pulse duration in seconds,

TABLE 1
n ole azT a3T2 a4T3 p - 10 log p
1 1. 2564 — — —_ 0.8145 0. 890 db
2 2.8427 10. 476 —_ — 0. 8861 0.526
3 4,.5376 —2.8841 34. 990 = 0.9149 0.386
4 6. 1807 13. 830 -73.917 283.75 0.9304 0.313




and p is the signal-to-noise ratio out of the approximate filter compared to that
out of the exact one.

1 . o :
For an n™" order pole, the optimum unit impulse response is

e n-1
nn(t) —\l+azt+...+ant J e : (1)

and the corresponding transfer function (Laplace transform of n, (t) ) is

o nh-1): &
H (s) = S+1a 2 2+...+—n1‘. . (2)
1 (s+ al) (s+oz1)
Ba Two Complex Poles and One Real Zero

For a transfer function of the form

iy = (o) , (3)

(s+a)”" + 8

where K is an arbitrary gain constant, the optimum parameters for approximating

a matched filter are:

BT = 7520
&L = 1511
BT = 1.826

For this approximation p = 0.9140 (0.390db) . In performance this is the same as

the triple pole approximation above. The corresponding unit impulse response (inverse

Laplace transform of H(s) ) is

h(%) =K (cos Rt +ﬁ—;—a sin At) e %! (4)

l%%";—) | ., is plotted in Fig. 1.
For K =1, the unit impulse response is shown in Fig. 2 and the response to a matched

The normalized magnitude of the transfer function,

pulse of T seconds duration and amplitude % is shown in Fig. 3.
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Fig. 1. Normalized magnitude vs. frequency of 2-pole, l-zero
matched filter approximation,
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Fig. 2. Unit impulse response of 2-pole, l-zero matched filter.
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Fig. 3. Response of a 2-pole, l-zero matched filter to a
matched (T second) pulse of amplitude 1/T.



A convenient circuit for realizing this transfer function is shown in

Fig. 4. . ~G'l
e |
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Fig, 4. Circuit for the rcalization of the 2-pole, 1-zero matched
filter approximation,

The equivalent series resistance of the inductor is accounted for by the resistance

r. The transfer function of the circuit is

r+R
INF S
E,(s) <s+ T, /<CR‘1/
O T Ew T r  C1702 N RPN
s +s <—+ % e (—)(
L C 7 = L€ ¥ O 54

If we use the parameters

r+R1 G,+G

the transfer function has the form

s+o5) (o )
H(s) = — L ; (6)
s +s(02+03)+0203+EE

By equating corresponding polynomial coefficients in Eqs. (3) and (6), we obtain the

following three equations for the design.



r+R1

ao = 00 = T (7)
=0
20, ) T 04 (8)
2 2 1
Ql + Bl = 0’20'3+ E (9)

These equations do not uniquely specify the component values, but they allow just
enough freedom to make the design easy.

A design approach that works well is as follows. Since inductors are the
most difficult component to adjust to a specified value, choose an inductance value
that is convenient for the bandwidth of the filter being designed and have one wound
to this nominal value. Measure its inductance, L, and equivalent series resistance,
r, at a frequency approximately equal to 1/T Hz . Calculate o, from these

measured values of L and r , and then calculate Rl and 04 using Eqgs. (7) and

(8):

R, =~ L-r
o)

o3 = 204 -0y

Then calculate C using Eq. (9):

_ "2 2 N, -1
e [<°‘1+’31‘°203 JL

The last component, G3 , is then computed to be

G3 = g C-—G1



G Three Pole, Two Zero Transfer Function Approximations

1. Unrestricted Pole and Zero Locations (optimum approximation)

For a transfer function of the form

GhREE
(s+0) [(s+o::¢)2 + BZ]

H(s) = K , (10)

the optimum parameters for approximating a matched filter are:

pT = 0.7832
vT = 5.9763
oT = 2.2464
aT = 1.4488
BT = 4.1517

For this approximation p = 0.9470 (0.236 db) , which is somewhat better
than any of the approximations above and the transfer function is not a great

deal more complex. Its unit impulse response is

h(% = K [ 1i80e 7" ~ 1,1281 & "Eips(Hr=0.00489] ., @1
The normalized magnitude of the transfer function, | EH—(%% | , is given in

1. A or = o) = IS sSnhown I1n 1. an t eresponse to a matche
F'gSFth(,{_)'h in Fig. 6 and th hed

pulse of T seconds duration and amplitude ,IT is shown in Fig. 7.
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Fig. 6. Unit impulse response of optimum 3-pole, 2-zero matched filter.
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Fig. 7. Response of the optimum 3-pole, 2-zero matched filter
to a matched (T second) pulse of amplitude 1/T,
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A practical circuit for realizing this transfer function is in Fig. 8.

Fig. 8. Circuit for the realization of the optimum 3-pole, 2-zero
matched filter approximation,

This realization allows a lossy inductor and it incorporates both source and load

resistances. The transfer function of the circuit is

516 8 1+?—2+EZ +s2|L —2 —2 i ©3 __——2(61+GS) e
Cl C3 1 C C C C_ C1C3

>+GIGS rC,(G, +G4)+C +Cy +GI+G3(1+rGl) -
C.C, LC C, LCC,

The design of this circuit is quite complicated and it is given in Appendix A.

The results are that there is a continuum of solutions and ten of these selected
from the range of realizable solutions are given in Table II. The value of the
source resistance R1 is normalized to 1 ohm and the load resistance R3 varies
from approximately O. 6R1 to infinity. Since both inductance and capacitance
are proportional to the pulse duration T (for a given network, the L and C
values are inversely proportional to the bandwidth of the network), multiply both

the L and C values in the table by T to obtain the component values for a pulse
12



of duration T seconds. Also, the impedance level of a particular design must be
increased to obtain practical component values. A particularly convenient way of
doing this is to scale the impedance according to the particular inductor that is to
be used so that it does not have to be trimmed. 1f LO henries is the value of the
inductor to be used, multiply the impedance of the circuit by the factor (LO/LT) :
An alternative method of realizing the transfer function of Eq. (10) is to
use Darlington’'s method of synthesis for a network terminated in resistance at

N

both ends. In the scheime used here the transfer function is predistorted (all
poles and zeros are shifted toward the w axis by an amount u) to place the zeros
of transmission on the w axis. This allows lossy reactances and simplifies the
synthesis. The work is carried out in Appendix B and the resulting network for a
1 second pulse is given in Fig. 9. The transfer impedance };JIZTS) of this circuit

is of the form of Eq. 10 with K = 0. 6743.

Table II
Set No. Component Values
C1 C, C3 R3 L I K
1 0.3613 | 0.2314 | 0.8584 | 0.5756| 0.1189 | 0.1863 | 0.3906
2 0.3177 | 0.1830 | 0.5175 | 1.1524 | 0.1504 | 0.2355 | 0.5769
3 0.2940 | 0.1684 | 0.4465 | 1.537 0.1634 | 0.2560 | 0.6579
4 0.2584 | 0.1532 | 0.3761 | 2.478 0.1797 | 0.2815 | 0.7881
S 0.2360 | 0.1467 | 0.3423 | 3.698 0.1877 | 0.2940 | 0. 8857
6 0.2196 | 0.1433 | 0.3205 | 5. 585 0.1920 | 0.3008 | 0.9698
s 0.2068 | 0.1416 | 0.3045 | 9.132 0.1943 | 0.3044 | 1.0463
8 0.1962 | 0.1408 | 0.2919 | 18.68 (1955 [10.3062 1L LLAS
9 0.1872 | 0.1406 | 0.2816 | 145.5 0.1958 | 0.3067 | 1.1849
10 0.1859 | 0.1406 | 0.2800 @ 0.1958 | 0.3067 | 1.1958

Ten sets of component values for the circuit of Fig. 8, which
realize the optimum 3-pole, 2-zero matched filter approximation
for a 1 second pulse. Rj= 1 ohm and the other component values
are in farads, henries and ohms. K is the gain constant in Egs.
(10) and (11). Observe that both L and C are proportional to
the pulse duration so that for a pulse of duration T seconds,
multiply both the L and C values by T.

13
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R, = 9.683 C, = 0.1318 r = 0.1663¢C
Ry = 1.505 C, = 0.1627

Fig. 9. An alternative realization of the optimum 3-pole, 2-zero matched
filter approximation, Eq. (10). The element values are for a 1 second
pulse, and the gain factor K = 0, 6743,

For lowpass circuits it is almost never necessary to account for the very
small losses in the capacitors used in the realization, so for lowpass realizations
the circuit of Fig. 8 is preferable to that of Fig. 9. However the latter (before
uniform dissipation is added) is useful as a lowpass prototype for the RLC realiza-
tion of a bandpass matched filter. Fig. B-1 shows the lowpass realization of the
predistorted transmission function or the lowpass prototype for a bandpass filter.
This circuit is transformed to bandpass and then uniform dissipation is added for
the final realization. A particularly convenient form of the standard lowpass to
bandpass transformation is given by Saal and Ulbrich in Ref. 7. Applied to the

predistorted network, the transformation yields the network in Fig. 10.

LI -

Fig. 10. Form of the circuit for realizing a bandpass matched filter.
The reactance values are to be calculated from those of the lowpass
prototype through the transformation of Saal and Ulbrich. In the

final circuit, the four LC resonant circuits must have equal Q as
determined by the predistortion.
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The reactance values are calculated from those of the lowpass prototype (Fig. B-1)
through the frequency transformation, and the equations are given in the reference.
In designing a bandpass matched filter, it is the duration of the impulse response that

is of interest so that in the lowpass to bandpass frequency transformation equation,

w w
ANy
wO

w, is as usual the center radian frequency, but w must be grqual to 47/T . The
w1
Q of each of the four resonant circuits must be equal to T at its resonant

frequency w, rad/sec. 2
2. Transmission Zeros on the  Axis
An approximation with the zeros of transmission restricted to
the w axis (imaginary zeros) is required for the realization of a bandpass matched
filter using quartz crystal resonators. The lowpass prototype of such a transfer

function is

K(52+v2)
(s+0o) [(s+a)2 + ,32 ]

H(s) = (13)

The optimum parameters for approximating a matched filter are:

vT = 6.122
cT = 2.097
aT = 1.296
RT = 4.696

For this restricted approximation, p =0.9408 (0.265db) , which is insignificantly
worse in performance than the optimum approximation above. Its unit impulse

response (inverse Laplace transform of Eq. 13) is

n(%) = K[1.8453¢ % —0.9385¢ ™" sin (Rt+1.1213)] . (14)
H (iw) . . N . .
| H©) | , the normalized magnitude of the transfer function is shown in Fig. 11.

For K =1, the unit impulse response of Eq. (14) is given in Fig. 12, and Fig. 13

shows the response to matched pulse duration T seconds and amplitude % c

15
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Fig, 11. Normalized magnitude vs, frequency of 3-pole,
2 (imaginary)-zero matched filter approximation.
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Fig. 12, Unit impulse response of 3-pole, 2 (imaginary)-zero matched filter.
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Fig. 13. Response of the 3-pole, 2 (imaginary)-zero matched filter
to a matched (T second) pulse of amplitude 1/T.
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The transfer function of Eq. (13) is realized for T =1 second by the equally
terminated lossless coupling network shown in Fig. 14. The synthesis is carried out
in Appendix C. Crystal bandpass matched filters using this circuit as the lowpass
prototype have been realized very successfully by Damon Engineering, Inc., and a

discussion of their performance is given in Ref. 3.

0. 1297 H.
e
Ay ¥
N A
Sk 0. 2058 F.
e _ 10
El = =

0.9407F} 0. 1015F]

Fig. 14. A realization of the three-pole, two (imaginary)-zero
approximation of Eq, (13) for a filter matched to a 1 second pulse,
For this circuit the gain constant K equals 0. 6639,
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APPENDIX A

A Realization of the Optimum Three-Pole,

Two-Zero Matched Filter Approximations

The circuit to realize the transfer function of Eq. (10) is shown in Fig. 8.
The transfer function of this circuit (which will not be derived here) is given in
Eq. (12). The method used to design the circuit is to equate corresponding coeffi-
cients of the numerator and denominator polynomials of the desired and circuit
transfer functions (Eqs. (10) and (12)). The resulting set of nonlinear equations is
then solved for the circuit element values. A change of variables converts the set
of equations to a linear set which greatly simplifies the solution.

The transfer function, Eq. (12), of the network to be designed is of the form:

2
E2(s) ) Kl(s +als+ao)

= (A-1)
BTG b oTeb by st
3 2 1 0

T(s) =

By introducing the variables

C

A=£ E=C-£
3

G

i 3

B = ——=— F = —=
LC, Cs
(@ G
6y . o
D= H = o

—
—

the constant factor and the polynomial coefficients are:

Ky = BH b, = B(EH + DF) + AFH

a =B b, = A(F +H) + FH + A(EH + DF) + B(D+E)

a, =A b2 = A(1+D+E)+F((1+D)+H(1+E)
by = L+DHE

21



Then by equating the corresponding polynomial coefficients in the transfer functions,

the following set of equations is obtained.

a; = 21 = A (A-2)

a = u2 it v2 =B (A-3)

b,/by = 26 + g =y (A-4)
2 2

bl/bs =200 + @ + B =96 (A-5)

b /b, = a(@’+ /Y = p (A-6)

For the constant factor we have K = Kl /b3. The Eqs. (A-2) and (A-3) specify the
parameters A and B, so the remaining three equations must be solved for the four
other parameters. In these equations the new parameters y, 6 and p have been
introduced.

By introducing the definitions of the b, 's into Egs. (A-4), (A-5) and (A-60),

k
they can be put into the following form.

(A—y)(D+E)+(F+H)+(DF +EH) = y- A (A-7)
B-6)(D+E)+FH+A(F +H+DF+EH) = & (A-8)
—p(D+E)+ AFH + B (DF + EH) = p (A-9)

In these three equations the variables occur only in certain groupings, and it turns
out that a further change of variables produces a set of three linear equations in four

unknowns. The new variables are:

u = D+E (A-10)
v = F+H (A-11)
w = DF + EH (A-12)
x = FH, (A-13)

and the new set of equations is

22



A-Y)u+v+w Y- A (A-14)

B 6+ Ay — Ak = B =) (A-15)

—pu+Bw+ Ax =p (A-16)

Since there are four unknowns and only three equations, a value for one of the
unknowns can be selected and then the values for the other three can be found. A
convenient one to select a value for initially is u. The value of x is then found

from Eq. (A-15), the value of w from Eq. (A-16), and the value of v from Eq. (A-14).
Actually. x, w and v can easily be found as functions of u alone.

The constants in the last set of equations have the values:

& = 2 = 1.56643
B o e - 36. 32994
Y = 2o+ 0C = 5.14406
5 = 200 +0°+ 8 = 25. 84539
5 = ol 5% - 43. 43620
I = 350764
A(y=A) = 5.60411
B—6+A(y—~A) =16. 08866
5 ~ Ay -A) = 20. 24129

As a function of u , the unknowns X, w and v are:

x = 20.24129 — 16.08866u
w = 1.88929u + 0. 32287 (A-17)
v = 1.68835u + 3. 25477

For a realizable network all elements must have positive values so the variables

v and X must be positive. The first equation of (A-17) thus requires that u < 1.2581.

Below we will find a lower limit on u .

23



Next solve Eqs. (A-10) through (A-13) for D, E, F and H in terms of u,
v, wand x. From (A-11) and (A-13) we obtain v = F + % or F2— Fv+x=o0,
and H=v —F . Sofor F we have

r -3

where we have chosen the negative sign for the second term on the right. And for

H
2 %
_ v v

If v2 > 4x , F and H will be real and positive (assuming x is positive). By sub-
stituting from Eq. (A-17) into this inequality, a lower limit on u is obtained which
is u =20.9031, so we have 0.9031 <su s 1.2581 .

Using these results for F and H, we can solve Eqs. (A-10) and (A-12) for
D and E. The solutions are

P I
and

E =%[u+ w_%“—v—?

()

T

Finally, from these results we obtain the component values as follows,

normalizing R1 = Gl—l = lohm.

G
_ 01
€ = I -

=

_ _D
C2—DC1—ﬁ

24



_ 2 D
C3 1 O
_.-1 _ 1 _ EH
R3 =G  Fc, T DF
_ 1 _H
L_B_CZ_BD

Ten sets of circuit element values for the range of u noted above are given in

Table II.
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APPENDIX B

A Realization of the Optimum Three-Pole,

Two-Zero Matched Filter Approximation Using Predistortion

The transfer function to be realized is that of Eq. (10) which is
(s+u)2 + v2

H(s) = K > 5
(s+0) [ (s+a) "+ 8]

(B-1)

The first step is to move the poles and zeros toward the iw axis (predistort) by
the distance u, and then form the transmission function of the predistorted network.

The result is

2 2 N (s)
tifs) =« = _ o -
°® (sto-n) [(S+Ot—u)2+ 32] D (s)

We will make |t(iw) | have its maximum allowable value of unity by making
2 2 2
ty = (@-p) [(@-w)"+ 8" 1/v

The maximum value occurs at w =0 . This transmission function will be realized

by a lossless coupling network terminated at both ends in 1ohm resistors. The

transmission function is used to obtain the reflection coefficient p (s) at the input

terminals of the network from which we calculate its input impedance when its outoput

is terminated in lohm. A lossless network terminated in a lohm resistor is then

realized in such a way as to have the required zeros of transmissionat s = xiv.
p(s) is defined by

N, (s) N, (-s)
psi pl-5] & L=t(E) e(-8) = ;

S -8

from which we find that

N (&) N, (-5) = (a5 (s4+a2 sz+ao) ,

26



where

14

2 2.2
208~ (a-w)° 1+ (0-w’ {“’ £ e —1} ,

and

jsv]
1

[Bz+(d—u)2]2 EE: 22 (cr—u)2 ] - 2(cr—u)2 [32 - (oz—u)2 ]
1%

The numerical values are

a, = 31.97149 and a0 = 278. 14857

The roots of N1 (s) are chosen to have negative real parts, so factoring s4 + a252 + a

and selecting the appropriate factors for N1 (s) yields

_ s(s®+1. 17647 s+16. 67779)
p(s) Ee D(S)

The input impedance of the network is defined as

which, upon substitution of numerical values, is the ratio of polynomials

7 (s) = 617955 +2.95007 5 +25. 86880
1 255+3.97090 52+ 36. 30565 s + 25. 86880

Realization of this driving point impedance by standard techniques yields the complete

network shown in Fig. B-1.

27



0. 11404
T

" A 0. 2455

]jl = 10005 ——

% ' 0.3029]

Fig. B-1. Circuit realizing the predistorted transmission function
of Eq. (B-2). Units are ohms, farads and henries. The driving
point impedance Zl(s) is indicated by the arrow,

Next add uniform dissipation of the amount p to all the reactances to move
the poles and zeros of the transfer function to the desired locations as specified in
Eq. (B-1). The resistance in series with the inductor L is equal to p L. ohms and that

in parallel with each capacitor C is equal to (u C)-lohms , where p =0.7832. The

resulting circuit is shown in Fig. B-2. The final form of the network

0. 11404
AM
0.08933
MW
] 5. 200
" 0. 2455
E, 1. 160 i e § 1
> 1. 1005 0.3029 4.216

Fig. B-2. Circuit of Fig. B-1 after uniform dissipation has been added
to realize the desired transfer function of Eq. (B-1).

is obtained by combining the resistors at each of the input and output terminals and

raising the impedance level of the network to obtain a lohm source resistance. The
final network is in Fig. 9.

28



APPENDIX C

A Realization of the Three-Pole,

Two (imaginary)-Zero Matched Filter Approximation

The transfer function to be realized is that of Eq. (13) which is

K (s2+v2)

H(s) =
(s+0) [(s+oz)2+ 82 ]

(C-1)

The transmission function is chosen to have a maximum magnitude of unity (which

occurs at s =0 ), and it is

to(s2+v2)
ti@E) = 5 ) (C-2)
(s+o) [(s+t™ + R™ 1

where
2 2 2
t, = oc(a +87)/v

The reflection coefficient p(s) is defined in terms of t(s) as

NI(S) Nl(‘s)
p(s) p(-s) = 1 —t(s)t(-s) = ORI

From this relation we find that
_ 2 4 2
Nl(s) N1 (-8) = (-87) (s +a2s +a0) :

where

14

2 VAR
ay = 2(8-0d)+ o [<_7@_>_1]

29



and

2
_ 2) 242 o 2) 2 2
ao—(a+3) (1+2:Z)—2° (B —-a)
The values of these constants are
a, = 38.11136 and a = 516. 1973

Nl (s) is chosen to have zeros with negative real part. Selection of the

apnropriate factors for Nl(s) yields

Gy = s (sz+ 2.70714 s+22.7200)
P D ()

The input impedance of the terminated network is then

_ 1-p(s) . 1.98186s%+6. 44746 s+49. 56933
L8 = TE5Ey - 2B )
25547.396145°+5. 18875 s+49. 56933

Realization of this driving point impedance by standard techniques yields the

network in Fig. C-1.

Fig. C-1. Circuit realizing the three-pole, two (imaginary)-zero
approximation of a matched filter for a 1 second pulse. Units are
ohms, farads and henries.
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