TECHNICAL REPORT 156-VI-GES

STORAGE STABILITY OF CIVIL DEFENSE SHELTER RATIONS

AD-673817

AD

(ANNUAL REPORT)

Experiment, Georgia 30212

DIVISION OF FOOD SCIENCE

-11

ASSOLUTION	8.
cisti	
a#0	· · · · · · · · · · · · · · · · · · ·
eta de pri	
an the	. 3
	an a
ay Birthoi	9 (g. e. e. 1911) 🔭 🕻
11.3.	A State of the second sec
1	
1 1	

This document has been approved for public release and sale; its distribution is unlimited.

そうちょうかい ちょうしょうちょう ちょうしょう

and the second second

The findings in this report are not to be construed as an official Department of the army position unless so designated by other authorized document.

Citation of trade names in this report does not constitute an official indorsement or approval of the use of such items.

Destroy this report when no longer needed. Do not return it to the originator. This document has been approved for public release and sale; its distribution is unlimited.

AD_____

TECHNICAL REPORT 156-VI-GES

STORAGE STABILITY OF CIVIL DEFENSE SHELTER RATIONS

OCD Work Unit 1312B (Annual Report)

by

Sam R. Cecil University of Georgia

Prepared for:

Office of Civil Defense Office of the Secretary of the Army Washington, D. C. 20310

Subcontract No. 12466(6300A-450) Stanford Research Institute Menlo Park, California 94025

OCD Review Notice: This report has been reviewed in the Office of Civil Defense and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Office of Civil Defense.

Project references: DAHC 20-67-C-0136 UGa-St-1-56

June 1968

Division of Food Science University of Georgia College of Agriculture Experiment Staticns GEORGIA EXPERIMENT STATION Experiment, Georgia 30212

FOREWORD

This is the sixth annual report of a study which was initiated in 1962 to determine the stability of representative types of Civil Defense shelter foods and their containers when stored for extended periods. The first five reports, of which the fifth was Technical Report 68-26-GP, December 1967, were issued by U.S. Army Matick Laboratories, Natick, Hassachusetts 01760.

The work reported through 1967 was performed under Contract DA19-129-GM-2050 (project reference OCD-05-62-156), 21 June 1962 - 20 June 1967, awarded by the U.S. Army Matick Laboratories to the University of Georgia, Georgia Experiment Station, to provide facilities and collect data for the study. The purpose was to simulate conditions likely to exist in warehouses and selected shelters in which, beginning in 1962, large quantities of food were stored under the Civil Defense Shelter Program. This included types of food not previously procured, representing new formulations, processes and containers on which little or no long-term storage information was available.

Continuation of the study under the current subcontract, awarded by Stanford Research Institute, the lead laboratory of the Office of Civil Defense, will extend storage into 1969 when the stock of rations stored for the project will be practically exhausted or will have fallen below the acceptable range of quality. Project Officer for this subcontract is Dr. James F. Halsey, Civil Defense Technical Office, Stanford Research Institute.

> Sam R. Cecil Food scientist Georgia Experiment Station

APPROVED:

<u>ii</u>

TABLE OF CONTENTS

			Page
List	of Table	S	vi
Abstr	act		viii
Intro	duction		1
nethc	ds and R	esults	2
I.	Fiberbo 1. Bur 2. Hoi 3. Gen 4. Con	ard (V3c) Cases sting Strength sture Content eral Condition of Cases dition of Case Harkings	2 2 4 7
п.	Hetal C 1. Res 2. Lea 3. Cor 4. Def	ans idual Oxygen in Cans king Cans rosion of Cans ects of Can Coatings	7 7 10 10 14
III.	The Rat	ions	14
	A. Cer 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Peal Items Condition of Packages Condition of Products Appearance and Color Hunter Color Values Fracture Strength Moisture Content Rancidity Values Sensory Scores for Texture, Aroma and Flavor Hedonic Ratings for Aroma, Flavor and Palatability Correlations of Palatability Ratings and Other Measurements	14 14 18 21 23 26 26 26 31 33 36
	E. Car 1. 2. 3. 4.	bohydrate Supplements Condition of Candy Bags Condition of Candy Appearance and Color Hunter Color Values Hoisture Content	36 38 40 44 44

•

_

• .

CONTENTS (cont'd)

- -÷

	6.	pH Values	48
	7.	Sugar Contents	49
	8.	Sensory Scores for Texture, Aroma and Flavor	51
1	9. 0.	Hedonic Ratings for Aroma, Flavor and Palatability Correlations of Palatability Ratings and Other	51
		Measurements.	55
уa	nd	Conclusions	55

Summary and Conclusions

÷,

LIST OF TABLES

Page

1.	Bursting Strength of V3c Fiberboard	3
2.	Loisture Content of V3c Fiberboard	5
3.	Residual Oxygen in Cans of Cereal Items Stored 60 Months	3
4.	Leaking Cans	9
5.	Corrosion of Cereal Item Cans Stored 6C Lonths	.1
6.	Corrosion of Carbohydrate Supplement Cans Stored 48 Months	12
7.	Defects in Can Coatings	1,3
õ.	Package Defects in Cereal Items Stored 60 Months	16
9.	Product Breakage in Cereal Items Stored 60 Honths	19
10.	Appearance-Color and Texture Scores of Cereal Items Stored 50 Honths	22
11.	Hunter Color Values of Cereal Ites Stored 60 Honths	24
12.	Fracture Strength and hoisture Content of Cereal Items Stored 60 Months	27
13.	Rancidity Values of Fats From Cereal Items Stored for 50 Months	30
14.	aroma and Flavor Scores of Cereal Items Stored 60 Months	32
15.	ledonic Ratings for Cereal Iteus Stored 60 Months	34
1ó.	Correlations of Palatability with Other Leasurements for Cereal Items Stored 60 Honths	37
17.	Results of Seam Test on Kraft Bags Stored 48 months in Carbohydrate Supplement Cans	39
18.	Physical Condition of Carbohydrate Supplement Stored 18 Months	41

vi

TABLES (cont'd)

Page	
and the second se	

19.	Appearance-Color Scores, Hoisture Content and pH Values for Carbohydrate Supplement Stored 48 Months	43
20.	Hunter Color Values of Lemon Type Carbohydrate Supplement Stored 48 Months	46
21.	Hunter Color Values of Cherry Type Carbohydrate Supplement Stored 48 Months	47
22.	Sugar Contents of Carbohydrate Supplement Stored 48 Months	50
23.	Texture, Aroma and Flavor Scores of Carbohydrate Supplement Stored 48 Months	52
24.	Hedonic Ratings for Carbohydrate Supplement Stored 48 Lonths	54
25.	Correlations of Palatability Ratings and Other Measurements For Carbohydrate Supplement Stored 45 Months	56

vii

ABSTRACT

Results are reported on the stability of ten lots of fallout shelter cereal rations stored for 5 years and 3 lots of carbohydrate supplement stored for 4 years at $100^{\circ}F/30\%$ r.h., $100^{\circ}/57\%$, $70^{\circ}/80\%$, $70^{\circ}/57\%$, $40^{\circ}/57\%$, and $0^{\circ}/ambient$ r.h. Rations include 4 lots of survival crackers, 4 lots of survival biscuits, 2 lots of bulgur wheat wafers, and 3 lots of mixed lenon and cherry flavored hard candies. Data include 60-month and 43month values, respectively, for (1) bursting strength, moisture content, and general conditions of V3c fiberboard cases; (2) residual oxygen, leaking, corrosion, and coating defects of $2\frac{1}{2}$ -Gallon and 5-gallon metal cans; (3) breakage and general condition of package seals, seams, materials, and product units; (4) fracture strength, peroxides, and free fatty acids of wheat products; (5) pH and sugar contents of carbohydrate supplements; and (6) moisture content, color, sensory quality, and hedonic ratings for all products. Results of previous examinations of stored rations are discussed.

STORAGE STABILITY OF CIVIL DEFENSE SHELTER RATIONS (ANNUAL REPORT)

Introduction

A storage study was conducted over a five-year period to determine the stability of representative types of Civil Defense shelter rations. At the beginning of this period, 10 cereal items were deposited in storage over an interval of four months, and 3 carbohydrate supplements were stored about a year later. Determinations were also made of the stability of packaging materials in which the rations were stored.

Items stored for 5 years were:

<u>Contract</u>	<u>Biscuit</u>	<u>Contract</u>	Bulgur Wafers	Contract			
number	code	number	code	number			
2692-62	CD2	2685-62	CD9	2254-62			
2689-62	CD4	2694-62	("white" wheat)				
2687-62	CD6	2683-62	CD10				
2691-62	CD7	2687-62	("red' wheat)				
	<u>Contract</u> number 2692-62 2689-62 2687-62 2691-62	Contract number Biscuit code 2692-62 CD2 2689-62 CD4 2687-62 CD6 2691-62 CD7	Contract numberBiscuit codeContract number2692-62CD22685-622689-62CD42694-622687-62CD62663-622691-62CD72687-62	Contract number Biscuit code Contract number Bulgur Wafers code 2692-62 CD2 2685-62 CD9 2689-62 CD4 2694-62 ("white" wheat) 2687-62 CD6 2663-62 CD10 2691-62 CD7 2687-62 ("red' wheat)			

Carbohydrate supplements, stored 4 years, were:

Code	<u>Contract</u> Number
CD11	24018-63
CD12	24016-63
CD13	24023-63

Storage conditions for the period, Hovember 1966 to Harch 1968, were:

Code	<u>Temperature</u> °F	<u>Relative Hu idity</u> pe rc ent
100/80	100.1, +1.6, -0.6	79.7, +1.7, -4.9
100/57	99.9, +2.3, -1.5	57.2, +1.3, -2.7
70/80	69.9, +0.2, -0.8	79.4, +1.4, -5.5
70/57	70.1, +1.4, -0.7	57.5, +3.8, -1.0
40/57	40.2, +5.3, -0.8	58.5, +3.6, -2.2
0/ambient	-0.4, +2.5, -1.0	ambient (high)

The large deviations resulted from defective humidity control equipment in the 100/80 and 70/80 rooms and temperature control equipment in rooms 70/57 and 40/57, including the off periods required to replace the defective units.

Samples withdrawn for examination at the end of the respective five-year or four-year periods consisted of one case and two cans from each of the six storage conditions for each item. Basic procedures and sample replicates for the various observations and determinations included in the examinations are given with the results and data reported below. Statistical treatment of data employed standard procedures for analysis of variance, multiple range testing for significance, and calculation of simple correlation coefficients.

methods and Results

I. Fiberboard (V3c) Cases

Entire cases were used in all examinations excepting those for biscuit CDL and crackers CD3 and CD1. These three items were packed in $2\frac{1}{2}$ -gallon cans, six cans per case, and only 1/3 case was available for each withdrawal from storage. Samples at 60 months for CD1 were from intact cases, while those for CD3 and CD4 were the second 1/3 of cases opened at 48 months.

Ten L-inch squares were cut from available locations on side and end panels of each case and placed in sealed containers before removal from the storage room. Containers were then removed to a 73°F condition, allowed to equalize at this temperature, and bursting strength determined as rapidly as possible after opening the container, using a manually operated Fullen-type tester.

1. Bursting strength (Table 1)

Although cereal item cases decreased sharply in bursting strength at 100°F and moderately at 70°F during the first 4 years of storage, with moderate increases at 40° and 0°, there was relatively little change from 48-months values during the fifth year. Carbohydrate supplement cases decreased moderately at 70°F and increased somewhat at 40° during the fourth year. Mean changes from initial bursting strength values were as follows:

Condition	Cereal item cases	stored 5 years	Supplement cases stored 4 years
•F/% r.h.	<u>6-can; CD1, 3, 4</u>	<u>2-can cases</u>	<u>2-can cases</u>
100/80	-186	-154	-80
100/57	-158	-125	-88
70/20	- 69	- 33	-11
70/57	- 32	12	-44
40157	59	48	57
0/a.io	72	41	- 9

Of the 26 cases from 100°F, all except CD8 (5 years) and CD11 (4 years) were below 400 psig; 6 were below 300, averaging 275. Eight of the cases from 70° were below 400, averaging 384. As seen in Table 1, values averaged lower at 80% r.h. than at 57% (17 of 20 sets) in the 100° and 70° rooms, but there was no significant correlation of moisture with bursting strength within rooms.

		ean Std.dev. 10 reps	73 33	91 90	38 26 20	2 31 31	145	21 45	ר ד	.0 31°	16 13 ^c														
		N N	3 47	т ЗС С	6.6	- E1	52	2 52	ص -+-		3 43	onths													
	5	8	46	27	не С	174	27(20	Ŧ	-7	418	748 bid													
	ionths	<u>60</u> 3	498	272	319	727	532	505	42	88	413	ored	;	n						-					
RBOARD	ed 60 I	CDB	535	408 ^a	419 517a	528	626 ^a	620	о С	27	520	ases St	Std.de	37 tep	5	10	01	25	37	Ľ	1	35b	13c		•
c FIBE inch)	s Stor	CU7	483	309	344	463	560	552	0	27	450	nent Ca	ilean	779	366	358	435	402	5 <u>0</u>	437	36	19	417	l case	L Case
OF V3 square	m Case	<u>CD6</u>	472	331	366 1,76	475	476	r 31, a	32	20	951	iupp.Lei	<u>CD13</u>	426	355	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	398	424	437	427	28	25	397	initia	977711T
RENGTH s per	al Ite	CD5	405	366	350 365	434	517	397	27	2000	785	Irate .	<u>CD12</u>	365	301	283	394	354	470	432	31	28	372	at of	
Te DNI	Cere	CD2	451	269	308 1,62	504	5.5	562		17	044	arlohyo	CDLI	548	1.33	455	513	1,27 ^a	603	<i>l</i> , 50a	1.6	41	<u>k</u> 31	hom th	roouls.
BURST	.v	CDF	507	281a	334 4 88ª	167	575	0414	100	227	404	B. C												erent í	ens in
		CU3	434	271	303ª 434ª	438 ^a	503	1.61	77		400													e diff	for it
			485	317	396 396	401	5254	100 20 20	5 t 7 t	0 4 C	401													se cod	rence
	Condition	.r/% r.n.	Initial	100/80	08/02 10/80	70/57	40/57		sturdev., LU reps	Mean Mean				Initial	100/80	100/57	70/80	10/57	1.5/04	due /0	std.dev.,10 reps	sign.dif., 5%	Liean	Fikanufacturer's ca	bignificant diffe.

3

.

TABLE 1

2. ..oisture Content (Table 2)

Samples for moisture determinations were obtained at the same time and in the same manner as these for bursting strength. Moisture was calculated from weight losses of 5 grams of chopped fiberboard after heating 5 hours at 100°C under a 29-inch vacuum.

Moisture contents as given in Table 2 averaged 0.53% lower for cereal item cases, and 0.47% lower for supplement cases at 100° and 70°, than those for the preceding year. Supplement cases at 40° and 0°F averaged 0.28% higher. These changes, relatively unimportant when compared with moisture differences associated with storage conditions, apparently resulted from minor variations in adjustments of room equipment and room loading.

In general, moisture contents increased in proportion to relative humidity, out equilibrium levels were lower at higher temperatures, apparently as a result of increased vapor pressure differentials. There was no verious damage to the cases from the higher moisture contents, although slight decreases in bursting strength and increases in tendency to mold and to bulge in the stacks mere observed.

3. General Conditions of Cases

All the cases showed more or less evidence of staining and slight 'wear from handling in storage rooms which were also in use for other connodities. The resulting "slightly used" appearance, however, had little influence on their function as containers for the ration cans. Certain of the minor imperfections observed during the most recent examinations are given below; ratings for extent, where given, are on a S-point scale.

Loose Seals. Although the adhesive holding the case flaps has become noticable "set" and in some instances slightly "cracked" in cases stored at the higher temperatures, there has been no evidence of loosening of flap seals with storage. Inadequate spreading of the adhesive, leaving loose edges of flaps, was observed in 64 of the 90 cases emanined from CD5 and CD7 (mean defect rating 0.4), 28 of 34 cases of CD10 and CD11 (mean rating 0.5), and in 22 cases (mean rating 0.5) of all other itels except CD2, CD6 and CD12. Also, staples have become quite rusty in some of the cases at $100^{\circ}/80^{\circ}_{\circ}$ and $70^{\circ}/60^{\circ}_{\circ}$, but neither slightly frayed flap edges nor rusty staples has impaired the usefulness of the cases for storage.

<u>Delamination</u>. With the exception of the frayed loose flap edges noted above, only 12 of 530 cases examined during the 5 years had delaminated are-6 of flaps and 6 of panels. Mean defect rating for delaminated flaps was 1.4, and these were observed from the first through fifth years, 2 flaps each at 100°, 40° and 0°F, apparently resulting from handling of cases during transfer or restacking in the storage rooms. Panel delaminations, 1 at 2 years, 2 at 3 years, 3 at 5 years, were all at 30% r.h., 5 at 70° and 1 at 100°F; mean defect rating was 2.5. These included 1 case each of CD6 and CD3, but 2 cases each or about 11% of all the cases of CD1 and CD4. Both of the delaminations in CD4 and 1 of the 2 in CD1, however, were in cases which had been cut in the preceding year, so these panel separations probably resulted from absorption of moisture through the cut edges of the board.

Cases Stored 60 Months CD6 CD7 CD8 CD0 Anto		10.6 10.8 10.7 10.6 10.7 10.77		7.4 7.5 7.3 7.4 7.5 7.3 7.4 7.5	8.7 8.7 8.8 8.8 8.0 8.7	13.6 14.7 14.3 13.8 13.7 14.23	.07 .06 .07 .03 .05 .04	9.85 10.15 9.93 9.90 9.93 10.03		all vases stored 48 Months	CD13 Mean			10.8 10.95	7.6 7.55	9.4 9.40	14.7 14.04	.07 .03		TU.U3 10.05	
<u>Iten Cas</u> CD5		11.1	11.5	7.4	8.9	15.1	10	10.18	t nomo l'uc	ישבוופוור		0.6	7.4	0.9 1	7.5	۰. م	3.5 II	•0 ⁴)T 1016	00% Fon
Cereal		10.8 7.3	11.5	7.5	3.7	.05 .05	12	10.08	ind mate Sur			10.9	7.9	11.2 1	2.2	2. 2.	T4•2 1	01.		12101	Leans 0
CD4	7 U L	7.4	11.4	7·2	3.6 2.1			66.6	. Carbol												for its
<u>co3</u>	10.8	7.5	9.11. 9.11	6.2	ر م م			CT•0T	IJ												re 0.17%
Tao	0.11	7.6	71. 7.		0.7 14.2		80. 208	21.01													ences we
						2 ະອຸກຣ	5%										reus	5%			t differ
·h. z. k.	100/80	100/57	70/57	10/57	0/auto	std.dev.	sign.dir., Mean ^a					08/00T		70/57	40/57	o/amb	std.dev. 2	sign.dif.	hean ^u		b

- •

.

.

TABLE 2

٠

MOISTURE CONTENT OF V3c FIBERBOARD (percent)

<u>Mold</u>. The only mold observed on the outside of the cases examined during the current storage year was 2 small areas (rating of 0.25) on supplement cases CD13 from 80% r.h. conditions. At previous examinations similar moldy areas were seen on 25% of the cases stored at 70°/80% (mean rating 0.7) and 5% of those from 100°/80% (rating 0.7). Lightly molded spots were found inside the CD5 case and the CD13 case from 100°/80% (ratings 2.0 and 0.8). Freviously observed inside mold averaged 0.6 rating in 20% of the cases from 80% and 0.4 rating in 5% of the cases from 57% r.h. rooms. Thus there was no indication of increased incidence of molding beyond the second to fourth year, when most of it was obserbed. Practically all moldy areas were on outer or inner surfaces which had been in contact with other case or can surfaces.

<u>Sweating of Cases</u>. Average rating for moisture or other staining of the outside surfaces of cases was 0.80, exactly the same as the mean high rating from previous years. By storage conditions, average ratings were 1.26 for 70°/80%, 0.94 for 100°/80%, 0.85 for 70°/57%, 0.75 for 100°/57%, and 0.50 for the 40° and 0°F rooms. None of the staining was severe enough to interfere with further utility of the cases.

Inside sweating of cases was judged almost entirely from stained areas resulting from corrosion of cans where they were in contact with case surfaces, so sweating of cases and cans were evaluated together. Sweating varied considerably with density of the packs. Items CDL, 3, 4 (8 lb. cans, averaged 5 per case) and CL., 5, 7, 8 (13-15 lb. cans, 2 per case) had average ratings ranging 0.46-0.80, mean 0.70; CD6 with 2x18 lb. cans averaged 0.96, CD9 and 10 with 2x32 lb. cans averaged 1.49, while CDLL, 12, 13 with 2x35lb. cans, but only 4 years in storage, averaged 1.20. Ratings were somewhat higher in some of the cases stored on the bottom of 4-case stacks, but high ratings were not confined to either bottom or 2nd-from-bottom positions. By storage conditions, ratings averaged 1.56 from 70°/80%, 1.29 from 100°/80%, 0.80 from the 57% rooms at 70° and 100°, and 0.65 from the 40° and 0°F rooms. General mean rating for inside sweating and staining from cans was 0.88 for the current examinations, as compared to a mean high rating of 0.78 from previous years. while not serious from the standpoint of utility of the cases, this does indicate some increase in corrosion of the cans.

<u>Collapse</u>. Ratings for collapse have been relatively variable throughout the storage period, as some cases were wrinkled or dented in shipment (these were generally used during the first year or two) and none of the stacks have been more than 5 cases high. As bulging or wrinkling of cases, ratings for cereal items averaged 0.70 through 4 years, 0.43 at 5 years. Supplement cases averaged 1.00 through three years, 1.12 at 4 years. Storage conditions made little difference during the last year, 80% conditions averaging 0.65, 57% conditions 0.57, the 0°F room 0.50. Can and case weights had some influence, cracker and biscuit cases at 39 lbs. having average rating of 0.38, wafer cases at 71 lbs. averaging 0.63, and supplement cases at 78 lbs. averaging 1.12 as noted above. Actually this storage study provides no test of collapse, as ration stocks in various shelters have been observed in stacks twice as high as the experimental rooms will allow.

4. Condition of Case Markings

There has been essentially no change in the printing on the ration cases. At the current examination, fading was rated 0.27 at 100°F and 70°/80%, 0.19 at 70°/57% and the two lower temperatures. Previous high ratings for fading averaged 0.31. Blurring of print averaged 0.42 at 100°, 0.47 at 70°, and 0.36 at 47° and 0°F; previous high ratings averaged 0.52. Thus there was no indication of any tendency for case markings to become illegible.

II. Letal Cans

Cans of items CD1, 3 and 4 were $2\frac{1}{2}$ -gallon size, containing approximately 7 lbs. of crackers or biscuits. All other cans were 5-gallon size, containing $12\frac{1}{2} - 18\frac{1}{2}$ lbs. of crackers or biscuits (CD2 and 5-8), 32-33 lbs. of bulgur wafers (CD9, 10), or 34-36 lbs. of carbohydrate supplement. All samples consisted of two cans each.

1. Residual Oxygen in Cans. (Table 3)

Oxygen remaining in the can space was determined as the lowest reading obtained while passing gases from the can through a direct-reading oxygen analyzer adjusted to a fresh air reading of 20.5% by volume. Determinations were made only for cereal items, CD1-10.

Oxygen in non-leaking cans decreased during the fifth year in all storage conditions (though not in every can of each item) except 0°F. Previous low non-leakers and periods when they were observed, and non-leakers and leakers at 5 years, averaged as follows:

°F/2 r.h.	Previo	us Low hs	Values mean	Values at 5	Years
	range	aean	20001 20	Kon Kontor D	2010
100/80	18-48	36	ن. 3	4.0	5.4
100/57	18-48	36	5.3	3.2	12.0
70/80	18 - 4ຮ	42	۶.5	8.3	12.9
70157	24-48	42	11.6	3.9	14.)
40/57	36-48	45	13.9	13.0	16.2
0/a:.:b	24-48	1;2	16.9	17.6	20.2

As seen in Table 3, residual oxygen was below 5% in some cans of crachers and biscuits at 100° and 70°F, and below 10% in many. Mafer CD9 averaged only 2.1% at all temperatures above 0° and CD10 averaged 2.6% at 100° and 70°, 6.9% at 40°. The fact that oxygen in 14 of the cans which were classed as non-leakers averaged 2.2% higher than similar cans on previous examinations suggests that there has possibly been some slight leaking in cans whose seals subsequently "closed up" -- this is not an extremely unusual phenomenon in double-seam cans subjected to sharp changes in temperature. Otherwise, depletion of canspace oxygen continued to be progressive with time, temperature, and the amounts of rations in the cans.

3

RESIDUAL OXYGEN IN CANS OF CEREAL ITEMS STORED 60 MONTHS (percent by volume)

<u>Biscuits Wafers Mean Std.dif.</u> 2 <u>CD4 CD5 CD9</u> CD9 cans	1 20.4 17.8 20.4 16.6 17.0 19.18 0.28	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5 CD8	7 20.4	6.9 6.9 10.0 10
Crackers CD3 CD	20.1 19.'	12.53 12.53
cn1	19.3	12.6a 12.6a 8.6 8.6 8.6 12.6a 17.6 17.6 12.54 12.54
Condition •F/% r.h.	Initial	100/80 100/57 70/80 70/57 40/57 40/57 40/57 40/57 40/57 40/57 40/57 8td.dif., ca

^aBoth cans were questionable leakers. Single leakers, cmitted except in can standard difference values, averaged 3.6 ± 2.1 higher than duplicate non-leakers. ^bAll cans were leakers. ^{cSignificant} difference for items in rooms. ^{dSignificant} difference for item neans.

......

4.1 14.24 - ----.....

;

of all appende cantor of a

•

Same and the

•

.

LEAKING CANS (as percentage of cans examined)

$\frac{1}{k \text{ tenss}}$ <th></th> <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th>						•			
$\frac{6}{11}$ $\frac{1}{4}$ $\frac{1}{6}$ <th>Iteins</th> <th></th> <th>Definite 1</th> <th>Leakers</th> <th></th> <th></th> <th><u>Questionable</u></th> <th>e Leakers^a</th> <th></th>	Iteins		Definite 1	Leakers			<u>Questionable</u>	e Leakers ^a	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	([en-	• CHI-18-1-0	24-36 mo.	<u>48-60 mo.</u>	total	0-18 mo.	<u>24-36 mo.</u>	48-60 mo.	total
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, ,	4.9	16.7	0.	6.74	2.4	10,5	8 UC	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m ·	7.3	16.7	20.8	13.48	6-7		0°07	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 (ام	39.0	83.3	0•00⊤	67.42	34.1	2 O ‡	0.0	15.73
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) ا	c	¢						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	v 1			°.	8	2.4	4.2	12.5	5 62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	∩ √	12.2	4.2	8 . 3	8.99	2.4	12.5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 2	б• <i>1</i> .т	41.7	20.8	25.29	2.6	4.2	25.0	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0	ວຸດ	4.2	•	1.12	4.9	0	7.5	3.37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	o c	Ĵ,	°.	਼	8.	•	4.2	2.5	
a1) $0-18$ mo. 0 0 0 0 0 0 0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 10.35 12.2 10.0 8.3 22.4 0 12.5 10.35 12.2 0 33.3 22.4 0 20.0 20.0 20.0 20.0 22.5 5.19 22.4 0 33.3 23.3 23.3 23.3 22.5 25.0 5.19 22.4 20.0 <td< td=""><td>2</td><td>਼</td><td>4.2</td><td>•</td><td>1.12</td><td>0.</td><td>4</td><td>4.2</td><td>4 0 7 0 7 0</td></td<>	2	਼	4.2	•	1.12	0.	4	4.2	4 0 7 0 7 0
al) $\underline{O-18}$ mo. $\underline{24-36}$ mo. $\underline{48}$ mo. $\underline{10.35}$ $\underline{12.2}$ $\underline{0.18}$ mo. $\underline{24-36}$ mo. $\underline{48}$ mo. $\underline{16.7}$ $\underline{10.35}$ $\underline{12.2}$ $\underline{0.0}$ $\underline{8.3}$ $\underline{3.3}$ </td <td>۲</td> <td>0.</td> <td>0.</td> <td>°.</td> <td>8</td> <td>°.</td> <td>0</td> <td>12.5</td> <td>3.37</td>	۲	0.	0.	°.	8	°.	0	12.5	3.37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(لە 1)	0-18 mo.	24-36 mo.	48 no.	total	0-18 mo.	<u>24-</u> 36 mo.	48 AO.	total
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	- C	2.0 4	16.7	10.35 10.35	12.2	0.	8.3	7.79
ition $6-18$ no. $24-36$ no. $48-60$ no. 14.9 00 00 20 $r.h.$ 3.8 11.5 13.0 8.52 10.3 3.8 21.7 11 57 7.7 9.6 100.9 9.09 3.8 21.7 11 57 7.7 9.6 100.9 9.09 3.8 21.7 11 57 7.7 13.5 13.0 13.64 3.8 21.7 11 57 7.7 13.5 17.4 11.93 5.1 5.8 13.0 6.5 3.8 13.0 6.5 3.8 13.0 6.5 3.8 13.0 6.5 3.8 13.0 6.5 3.8 13.0 6.5 3.8 10.9 6.5 3.8 10.9 6.5 3.8 10.9 6.5 3.8 10.9 6.5 3.8 10.9 6.5 3.8 10.9 6.5 3.8 10.9 6.5 3.8 10.9 6.5 3.8 <	19	2.2 12.2		C. CX	5 . 19	5.4	ဝ့ပ	33.3	61.9
ition $6-18$ mo. $24-36$ mo. $48-60$ mo. $10-18$ mo. $24-36$ mo. $24-36$ mo. $18-60$ mo. 10 r.h. 3.8 11.5 13.0 8.52 10.3 3.8 21.7 11 57 7.7 9.6 10.9 9.09 3.8 3.8 21.7 11 57 7.7 9.6 100.9 9.09 3.8 3.8 21.7 11 57 7.7 19.2 13.0 13.64 3.8 3.8 21.7 11 57 7.7 13.5 17.4 11.93 5.1 5.8 4.3 6.5 57 7.7 13.5 17.4 11.93 5.1 5.8 4.3 6.5 50 17.3 13.64 5.1 5.8 4.3 6.5 5.3 51 9.6 21.7 13.64 5.1 5.8 4.3 6.5 9.5 17.3 13.64 5.1 3.8 10.9 6.6 9.3 17.3 11.366 5.77 3.53 11.23 6.6 9.3 11.36 5.77 3.53 11.23 6.77	4	2	2	•	64.0	4.4	•	°.	2.60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>ition</u>	<u>6-18 no.</u>	<u>24-36 no.</u>	<u>48-60 110.</u> b	total	<u>6-18 no.</u>	<u>24-36 mo.</u>	48-6010. ^b	total
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	3.8	11.5	13.0	R. 52	5 01	0	t C	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57	7.7	9.6	10.9	200.0) a			0 <u>6</u> .11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	õ	10.3	19.2	13.0	13 61	0 0 0		0°71	0.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	7.7	12.5			0,		0°5	3.41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22		10	+ C 			ۍ ه	4.3	5.11
3.33 13.46 14.86 11.36 5.77 3.53 11.23 6	qm					1• ¢	5. 8	10.9	6.25
-1.5 -1.60 -1.60 11.30 5.77 3.53 11.23 $\overline{6}$						0.4	3,6	10.9	ó.82
			04•CT	08•4L	11.36	5.77	3.53	J1.23	9.44

•

internal evidence of having leaked DPI 5 • • • bCereal ite is only at 60 months. ^cIncludes initial leakers.

.

2. Leaking Cans (Table 4)

Leaks were detected as streams of bubbles when cans at 73°F were indersed 2 minutes in water at 103-105°F; questionable leakers were those cans emitting only a few bubbles, but whose oxygen, moisture ar rancidity values indicated that leaking had probably occurred.

During the fifth year, biscuit CD2, cracker CD8 and wafer CD10 remained free of definite leaks, but 25% of the cans in each of these items were listed as questionable leakers. Cracker CD1, biscuit CD7 and wafer CD9 also had no definite leaks, although some had been previously recorded, and each also increased somewhat in questionable leakers. Cracker CD5 had no leakers at 5 years, but had some previously. Biscuit CD6 remained about the same in leakers but increased in questionable leakers, while cracker CD3 increased in both types of leakers, and biscuit CD4 again leaked in every can as at 4 years.

Along supplement cans stored 4 years, leakers and questionable leakers increased in CD11 and CD12, but CD13 has had no leakers since the examination at 18 months. Thus the general pattern was one of gradual increase in leaking (excepting CD13), the latest examination including 16.4% leakers and 21.6% questionable leakers, representing increases in questionable leakers at every condition and in definite leakers at every condition except 0°F. As seen in Taole 4, leakers observed during the entire study now amount to 11.36%, questionable leakers to an additional 6.44%, or almost one can in each five cans examined.

3. Corrosion of Cans (Tables 5 and 6)

External. There was little general increase in external corrosion of cereal item cans during the fifth year, although ratings averaging about 0.5 above previous highs were received by 2°_{2} -gallon cans of CD4 and 5-gallon cans of CD2, 5, 8 and 10 at the 80% r.h. conditions. Carbohydrate supplement cans stored 4 years also averaged higher than previously, by 0.8 at 100°/80% and 0.3 at 70°/80%, but with the exception of a 1.6 increase in CD13 at 70°/57%, other ratings were lower. Average trends for the values given in Tables 5 and 6, as changes from previous high ratings, were as follows:

	10	0°	70	0	40°	0°	Period
	80%	57%	80%	57%	57%	aub.	liean
cereal, 2 -gallon	37	40	20	07	30	23	03
cereal, 5-gallon	31	03	06	+.15	20	19	+.19
supplement, 5-zallon	+.80	05	+.30	+.23	73	60	+.34

Thus, while rusting has become fairly extensive on some of the seams and panels of the cans at the higher humidities, much of it occurred during the earlier periods of storage. Through the latest examination, no can has been observed in which leaking could be attributed to corrosion.

AND A REAL PROPERTY OF A

COPROSION OF CEREAL ITEM CANS STORED 60 MONTHS (0-9 scale, 0 = none)

	Std.dif. cans		.36		.36	.61 20	. 28	.74 ^a .28 ^b		۲7.	
	ilean		.36	3.56 1.57	H.	86 86	59. 91	.25 1.72		4.	1.14 1.09 87 .30 .30 .30 .30 .30 .30 .30 .30 .30 .30
	<u>CD10</u>		5.	4.1 2.5 0.5		1.5 1	م	29 29 29 29 29 29 29 29 29 29 29 29 29 2		0.4	11.0 11.0 NS NS 88.
type	<u>60</u> 2		5.	3.6	0	ب م	1.1	2.05		0.5	1.1P 2.1P 1.2P 1.2P .8 .8 .8 .8 .29 .51 1.13
rallon	CD8		ů	3.7	1 20	ν̈́ι	00	1.40		0.7	1.2P 1.3P 1.1 1.1 1.1 1.2 1.32 1.27
2	CD7		ů	3.7	н 2	ιĵ ι	- 'S	1.63		0.5	1.8P 1.2P 1.1 2.8 1.1 2.8 1.1 3 1.13
	SUDY		ŗ.	л. Ч. Ч.	10 2†	່	0°T	.79		0.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	CD5		.4	о 1.1 0	2°0	1.3	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.71		0.5	11111 122 122 122 122 122 122 122 122 1
	CDZ		0.0	5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		9 .	•	1.48		0.1	00000401000 000000000000000000000000000
	Std.dif. cans		۲۲.	ૡ૿ૡૺ	12	17	-24	.38 ^b	ere narked:	•40	122 122 135 135 130 130
n type	Mean		.17	1.27 .53	33	.37	ġ,ĸ	285	I (P) whe	.43	55.55.55 55.55 55.55 55 55 55 55 55 55 5
-rallc	CD4		e.	2.0 .90		Ĺ.	•• • • •	1.18	pitted	0.4	1.00 1.00 1.00 1.00 1.00 1.00
Ň	CD3		5	0.4° 4°	• • •	٠	ч. С	, S. Y. Y.	: also	7•0	<i>。</i>
	CDI	itted:	0.0	ຕູ ເງິດີ -		Ļ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	រុងខ្	urface	0.5	4404405 005 005 005 005 005 005 005 005
Condition	•F/2 r.h.	<u> "xternal, r</u>	Initial	100/30 100/57 70/30	10/20	10/51	0/anto atol dif cane	sign.dif., 5% Hean	Internal. s	Luitial	100/30 100/57 70/30 70/57 40/57 40/410 std.dif., cans std.dif., cans

all nificant difference for items in rooms.

.

-

CORROSION OF CARBOHYDRATE SUPPLEMENT CANS STORED 48 FONTHS (0-9 scale, 0 = none)

0+14 A: P	cans		.13	.17	.29	.29	07.	.17	.29		NSa	.28
	riean	narked:	•59	1.27	۲.23 ר	1.00	1.00	. 9	6	.28	NS	1 . 06
6 FU 0	<u>7 T/10</u>	urface: where	·5	1.3P	1.3P	1.2P	1.2P	1.2P	1.2P	. 31	SN	1.23
	7117	nal, s ed (p)	2.	1.1P	1.2P	6.	с .	1•0	6.	.28	NS	1 . 00
ype run	1100	<u>Inter</u> pitt	č.	1.4P	1.2P	6.	6.	•	•	.25	сł.	.6
5-gallon t	cans		• 22	.78	.17	.29	1.16	.26	.26		1.01ª	.28 ^ù
	rean		.47	2.77	1.40	1.57	1.27	7.3	7.0	.61	.61	1.47
0 540	<u>E 100</u>	itted:	۲.	3.4	2.	2.2	3.0	1.3	1.0	.87	1.50	2.20
0.00	<u>CU12</u>	nal. p	•6	.15	9.	8.	7.	~ ~ ~	ů	.43	.74	•63
	CUL	Exter	•5	3.4	ч С.	1.7	7.		ω	07.	.68	1.38
Ccudition	°F/% r.h.		Linitial	100/00	100/57	70,'20	70/57	40,57	o'aitio	std.difcans	sign.dif. 5%	riean

12

adionificant difference for items in rooms. Odionificant difference for item means.

•

~ e . š

DEFECTS IN CAN CUATINGS (0-9 scale, 0 = none)

	Std.dif.	61705	.35	2.10	.92	• 46	.45	.26	.28		1.58 ^a	.59 ^b	
	Mean		97.	2.61	1.40	1.67	1.20	1.20	1.19	98	.55	1.55	
Ø	CITO		0.5	2.5	6.	1.8	¢	1.4	.9	97.	8.	1.33	
on typ	600		0.5	3.4	1.9	2.2	1.4	1.8	2.1	.49	.85	2.13	
<u> 1183-3</u>			0. 4	1.8	1.2	1 •0	1.1	2.	œ	-47	.82	1.10	
240	773		0.5	1.7	1.2	1.1	1 . 0	† •	6.	44.	.77	1.05	
/40	975		0.3	4.3	2°0	1.9	1.7	1.5	1.9	2.37	NS	2.22	
140	<u> </u>		0.6	2.6	1.1	1.7	1.6	1.7	6.	.37	•64	1.60	
	CUZ		0,4	2.0	1.5 1	2•0	α,	6.	Ч. Ч	с 1 .	.75	1.38	
0 1 1 1 1 1 1 1 1	cans		.39	.26	• 20	•24	20	.20	.26		NSa	a71.	
n type	riean		.43	•90	80.	1.07	-97	.73	.57	ະຈ	8.	•84	
<u>z-gall</u> c	577	Nonths	0.6	1.8	1.9	2.0	1.9	н. 5	1.2	.32	SN	1.72	Ċ
200	3	red 60	4.0	÷.	ů.	•	ŝ	ŝ	N.	.17	SN	•43	-
		uns Jto	0.3	4.	م	•	ŝ	ŝ	ů	.17	NS	.37	с -
Condition	• 110 7 0/3	Cereal. Ite	Initial	100/80	100/57	70/80	70/57	40/57	0/aub	std.dif., cans	sign.dif., 5%	hean	

Carbohydrate Supplement Cans Stored 48 Months:

		217	-rallor	, type	
	TIOO	<u>cu12</u>	<u>cD13</u>	Mean	<u>Std.dif.</u> cans
Initial	•	• 5	•4•	44.	.26
100/20	2.6	1.5	2.4	2.17	.35
100/57	2•3	1. 4	2.3	2.00	44.
70/30	л•8	1.7	1.7	1.73	.29
70/57	1.2	6.	2.5	1.53	.35
10/57	1 . 2	ŝ	1 . 6	1.10	.20
0/arito	1.5 .1	9.	1 . 5	1.20	.12
std.dif.,cans	.39	.24	.29	.31	
sign.dif., 5%	.67	17.	50	.28	-49 ^a
wean	1.77	1.10	2.00	1.62	.20 ^b
^a bignificant difference for items in rooms.					

All and a survey and a survey of the survey

and a standard of the second second second second

.

- Rech

And the second second

Internal. Differences from previous high values for internal corrosion were merely fluctuation, none greater than 0.6. Average trends for the values of Tables 5 and 6, as changes from previous high ratings, were:

	10	0°	7	'0°	40°	<u>C°</u>	Period
	30%	57%	80%	57%	57%	amb.	Mean
cereal, 22-gallon	50	57	30	27	40	43	1?
cereal, 5-gallon	20	+.12	26	21	23	26	+.05
supplement, 5-gallon	+.20	+.23	+.07	10	.00	.00	+.22

Practically all of the internal corrosion was at spots where the product was in direct contact with the can walls. This was particularly the case with the hard candy supplements, which had no wrapping or canlining material. Small discolored areas were frequently observed on the surface of the candy, and in some instances on cereal items having torn wrappers which allowed product units to rest against the metal surface of the can.

4. Defects of Can Coatings (Table 7)

Two types of defects in coatings averaged somewhat higher than at previous examinations on 5-gallon cans stored at the 100° and 70°F conditions. They were removal of coating by corrosion or abrasion on the carbohydrate supplement cans, and moderate yellowish discoloration of coatings on the cereal item cans. Neither defect was very serious, merely more pronounced than on former observations. Differences between the values of Table 7 and previous high ratings averaged as follows:

	10	<u>0°</u>	. 7	<u>0°</u>	40°	<u>0°</u>	<u>Period</u>
	80%	57%	30%	57%	57%	amb.	Mean
cereal, 22-gallon	27	08	13	13	07	35	+.01
cereal, 5-gallon	+.66	+.69	+.47	+.42	+.13	02	+.44
supplement, 5-gallon	+1.13	+.67	+.60	+.43	18	+.03	+.63

As seen, the condition of coatings on the $2\frac{1}{2}$ -gallon cans, and on the 5-gallon cans from the lower temperatures, did not vary greatly during the last storage period.

III. The Rations

A. Cereal Items

1. Condition of Packages (Table 8)

Whe percentages of broken seals and torn packages were calculated from the numbers of packages per can. These were 15 for CD1, 3 and 4, 24 for CD2, 5, 7 and 8, 28 for CD6, and 126 for wafers CD9 and 10. Only seal breaks or torn places large enough for one unit of product to escape the package were counted. Thus, many packages with small corner perforations, sufficiently large to allow the product to touch the inside surface of the can (as mentioned above in connection with internal corrosion) but not to allow units to slip out of the package, were not included in the data for package breakage shown in Table 8.

<u>Broken Seals</u>. As seen in Table 8, seal breaks in the cellophanc wrap CD6, the waxed paper wraps CD2 and CD7, and the compactly packed wafers CD9 and CD10 (in glassine) averaged lower (mean 11.1% lower) than those in the loosely packed crackers and biscuit CD4, in glassine. General averages in D4, 6, 9 and 10 were higher than at any previous period (mean increase 1.95%), while CD1, 3, 5 and 8 averaged 4.25% lower than previous highs and CD2 and 7 were practically the same. Thus there was little indication of increase in broken seals, although the fifth year general average was C.85% above that at 3 years, which was the previous periodic high value. There appeared to be some tendency for the 57% conditions to average higher than 80% conditions at 100° and 70°F, and for increased seal breakage at 0°F, but as seen from the data, differences among individual cans were much too great to allow any definite conclusion concerning a temperature or condition effect.

Torn Packages. The values for torn packages given in Table 8 were about as usual for CD2 (no tearing) and CDIO; wafer CD9 was slightly above the previous average of 0.33%. Tearing of glassine wrappers of CD1 and 3 was slightly lower than normal (2.2%), and CD4 was definitely lower (previous average 6.4%). CD6 (cellophane) was about 14% above average, though 7% below the 2-year value. CD5 (glassine) and CD7 (waxed paper) were 3.1% above previous highs and the glassine of CD8 had 25% more tearing than previously observed. In general, torn wrappers appear to be increasing, overall averages for the 9 items excluding CD2 being 1.76% for the first 18 months, 5.09% for 2-4 years, and §.32% for 5 years. As with broken seals, can differences were too great for definite statements of actual condition effects, although the room means shown in Table 8 differed statistically.

Total Packages Broken. Total broken packages were essentially the sums of seal breaks and torn wrappers, although averaging about 0.6% icss because a few packages with broken seals also had holes. Unly CD7, CD8 and the wafers were above previous high percentages, iut the general average excluding CD2 was 15.7% above the 12-month valve, 11.9% above the 18 months and 48 months mean, and 5.3% above the mean highs at 24 and 36 months. Thus broken packages appear to be increasing gradually with storage, and the condition values shown in Table 8 also suggest that slight leaking in the 80% rooms and increased brittleness at 0°F may have influenced the spread of 9.7% to 25.5% among these means.

PACKAGE DEFECTS IN CEREAL ITEMS STORED 60 MONTHS (as percent of packages)

Condition		Crack	cers			Bisci	uits.		Wafe	Irs	Mean	Std.dif.
•F/% r.h.	CD1 ⁴	<u>CD3</u> 8	<u>cD5</u>	200 CDS	CD2D	CD48	0000	0070	8	CDIO		cans
droten Sea	13:											
100/80	•	10.0	2.1	4.2	o	26.7	9 1 1	0,0	4•8 6	1.6 0	1.5	8.30 8.30
100/57	6.7	10.0	8° 20°	ب م د	ç	22	2 C T	4 c	0 - C	N 0		0.05 13.05
70/80	10.0	ы С	ي. د	ۍ د و		101	0	8°,9		20.7 7	9°0	16.19
10/21)~) ~		4 C.	2.0		23.3	0	12.5	2.0	2.0	7.53	4.97
	16.7	6.7		18.8	•	13.3	1.8	2.1	2.0	3.6	10.12	10.93
std.difcans	13.05	15.40	9.17	22.25		13.34	2.55	5.40	2.15	1.27	10.98	
sign dif. 5%	SII	SN	SN	NS		NS	SN	NS	NS.	NS	NC	_οζ•/Τ
Mean	7.23	8,90	7.30	16.32	8	26.68	8.	4.86	2.60	2.60	7.74	6.41
Torn Packs	1:63											
100/80	0	0	4.2	8.3	•	°.	23.2	8.3 .3	3.2	4.	4.77	5.69
100/57	•	°	4.2	58.3	°	ы С	3.6	16.7	ч, Ч	o o	8.74	
70/80	Э.Э	°	8.J	10.4	°.	਼	5.4	14.6	,	oʻ.	12.10	
70/57	6.7	਼	਼	33.3	°	਼	37.5	16.7	1 •0	χ .	00.0	8. 1
40/57	0	6.7	2.1	27.1	°	਼	12.5	16.7	4	40	6.04	
O/aub	਼	°	16.7	45.8	۰	਼	85.7	14.6	້	o f	10.01	3• †
std.dif.,cans	6.08	8	06 . 11	22.16		2.74	15.14	19.40	T.04	80	40.11	
sign.dif. 5%	SN	с .	NS	NS		SN	26.20	NS	6). T	NU 1	04.0	DI DI
Mean	1.67	1.12	5.91	30.58	8	5	27.99	14.60	1.20	.21	8. ۲۶	-22.0

(Continued)

Table 8 (Continued)

37. 3 (2 A.V. 1)

t

Condition	i	Crar	c): ene			i						
°F/& r.h.	<u>cm</u> a	CD38	505	<u>600</u>	0200	Bisc CD4a	uit CD6c	CD7 ^D	Mar	ers	Mean	Std.dif.
Total Pack	ares B	roken :				-				CTTC		Calls
100/80 100/57 70/80 70/57	0.01 10.01 0.01	10.0 13.0	6.3 22.9 14.6	12.5 64.6 14.6	000	26.7 26.7 26.7	25.0 5.4 5.4	8.3 20.8 16.7	4.0 4.0	0 X 0 9 H 8	9.72 16.23	9.25 10.56
40/57 0/amb std.dif.,cans sign.dif.,5% Mean	6.7 16.7 15.15 NS 0.34	15.51 15.61 NS	8.3 8.3 1.5.01 NS NS	70.8 39.6 424.77 42.86	000	26.7 23.3 13.05 NS	37.5 12.5 85.7 14.86 25.72	22.9 29.2 21.05 NS	8.28 8.10 8.10 8.10	340.08%	y.08 18.14 13.86 14.65 14.65	18.25 16.60 13.65
azz-gallon cans; bitaxed paper.	o LLG	thers 5-	gallon.	43.70	8	27.24	28.58	19.09	3.53	2.80	0. 20 15.51	23.42 ⁴ 9.02 ^e
	042040	Contrast C										

Waxed paper. Cellophane; all others waxed glassine. dSignificant difference for items in rooms. eSignificant difference for item means. h.15 4.

2. Condition of Products (Table 9)

Defects of products were calculated as percentages of score-lines broken in the multi-unit layers and percentages of broken units. Can totals determined for these calculations were as follows:

<u>CD</u>	Score Lines	<u>Units</u>	CD	Score Lines	<u>Units</u>
1	227	454	5	1286	1286
2	1172	1172	6	1713	1713
3	906	906	7	1363	1363
4	223	446	8	584	1168

Wafers CD9 and CD10 both had 756 units per can, packed as individual units (xix units per package, no score lines).

<u>Score Lines Broken</u>. Breakage of score lines in items CDL-CD8 exhibited the usual can and condition fluctuations, but no trend associated with storage beyond the second year. Crackers averaged 1.3% below previous high values, 0.8% above the 12-48 months mean. Biscuits averaged 1.9% below previous highs and exactly the same as the 12-48 months mean. Product averages, 16.5% for crackers and 5.9% for biscuits, were 1.3% above the 12-18 months mean, 0.2% below the mean for 24-48 months. There were no consistent differences associated with storage conditions for crackers or biscuits.

Crumbled edges of wafers, as given in Table 9, were approximately "average" in CD9 except at $100^{\circ}/57\%$, which was 11% lower than usual. The wafers of CD10 at $40^{\circ}/57\%$ were "average", but the other 5 conditions were 21% below previous means, CD10 having averaged 50% crumbled edges through the first 4 years. As with crackers and biscuits, there were no significant trends for differences associated with storage conditions.

<u>Moderate Unit Breakare</u>. Breakage of individual units varied somewhat more along items, but less between cans, than did score-line breakage; CD3 was 3.3% below the previous mean, CD5 was 6.3% above. As product groups, crackers averaged 2.9% below previous high values, 0.4% above previous mean value; bixcuits were 2.8% below previous highs and 0.6% below previous mean; wafers were 0.34% below former highs, 0.15% below the 1-4 years mean. There were no indications of consistent differences associated with storage conditions, and the 10-item mean, 8.43%, was almost identical with the 1-4 years general mean, 8.47%.

<u>Crushed Units</u>. As seen in Table 9, differences between duplicate cans were generally larger than either item or storage condition differences in percentage of crushed units. Wafer CD9 has had no crushing; the mean of 0.30% for the crackers biscuits and wafer CD10 was 0.26% lower than the 1-4 years mean. Thus crushing of cereal item units, observed only in dented cans, has been and remains practically negligible.

TABLE 9 (AGE IN CEREAL ITEWS STORED

PRODUCT BREAKAGE IN CEREAL ITEMS STORED 60 HOWTHS (as percent of total units)

C. Lines Broken in Leyren: 15.5 12.3 32.8 5.4 4.7 2.7 3.7 3.6 1.1.7 11.3 1.1.7 11.3 1.1.7 11.3 1.7 1.7 3.7<	und Long	CDIA	Cra CD3ª	ckers CD5	CD8	CDZ	Bisc CD4a	uits CD6	CD7	<u>Wa</u> 1 <u>CD9</u>	ers ^b CD10	Mean	Std.dif. cans
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tin	es Broke	n in Le	Vers:									
37.2 9.7 11.7 11.2 3.7 2.5 5.4 9 11.0 30.9 34.9 12.2.3 14.00 27.4 14.0 20.5 12.3 11.7 11.3 5.7 35.6 31.7 8.79 4.60 27.4 14.7 70.9 5.6 5.5 5.4 9 11.0 30.9 34.9 12.2.3 14.00 27.9 16.7 17.7 7.6 3.9 4.7 14.7 27.6 31.4 12.23 14.00 33.3 16.7 17.7 7.6 3.9 4.7 14.7 27.6 31.4 12.23 14.03 33.3 16.7 17.7 7.6 3.9 4.7 14.7 27.6 31.4 12.58 4.84 28.6 5.44 13.4 14.1 10.5 4.12 4.12 5.64 33.4 18.4 9.88 4.32 4.63 12.3 31.23 31.23 31.30 32.68 11.18 5.64 34.6 6.0 27.5 3.4.53 1.2.5 <td></td> <td>15.5</td> <td>12.3</td> <td>32.8</td> <td>5.4</td> <td>4.7</td> <td>2.7</td> <td>2.7</td> <td>25.3</td> <td>35, 2</td> <td>25.7</td> <td>77 CL</td> <td>1 0</td>		15.5	12.3	32.8	5.4	4.7	2.7	2.7	25.3	35, 2	25.7	77 CL	1 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		37.2	2.6 2.6	2.14	2.11.2	ы. С.	\$ \$	ů	6.0	53.5 53.5	24.9	10.28	16.06
27.9 16.0 11.7 11.3 5.7 5.7 55.2 47.4 10.55 5.84 33.6 16.7 17.7 7.6 3.9 4.7 1.4 1.4.7 7.56 31.4 12.58 3.00 33.6 16.7 17.7 7.6 3.9 4.7 1.4 1.4.7 7.56 31.4 12.58 3.00 33.6 16.7 17.7 7.6 3.9 4.6 1.4 1.7 7.56 31.4 12.58 3.00 24.4.48 13.47 18.18 9.88 4.32 4.63 1.23 13.23 31.30 32.68 11.18b 5.61d 24.4.48 13.47 18.18 9.88 4.32 4.63 1.23 31.23 31.30 32.68 11.18b 5.61d 24.4.41 14.7 15.4 10.5 4.14 10.5 4.14 10.55 5.61d 26.5 10.9 34.6 1.2 1.14 10.5 4.12 4.24 0.0 0 0.0 0.0 0.0 0.0 0.0		; ''	12.1	20.7 14.7	0 0 0 0 0 1 0	• • •	5 4 4 4	° (0. 12	30.9	34.9	12.21	14.08
33.6 16.7 17.7 7.6 3.9 4.7 1.4 1.4.7 7.6 5.64 0.55 NS 7.25 3.71 NS NS 7.56 3.9 4.7 7.6 31.4 12.58 3.00 0.55 NS 7.25 3.71 NS NS 7.56 3.9 4.7 7.6 31.4 12.58 3.00 24.48 1.4.1 18.18 9.88 4.32 4.63 1.23 13.23 31.23 31.23 31.23 31.23 31.23 31.23 31.03 32.68 11.118b 5.61d ate Unit Breakage: 8.6 6.0 22.2 8.5 1.4 10.5 4.12 1.05 5.61d 5.61d 20.5 10.9 34.6 12.5 1.0 5.8 10.35 5.61 5.61d 7.5 6.8 16.2 1.4 10.5 4.12 1.6 4.22 5.61 7.5 6.0 22.2 6.0 22.5 1.0 12.5 1.0 2.2 5.61 5.61		27.9	16.0	1.7) 	ر م م	י ע ר	/•0T	5 5 0 0	31.7	8.79	4.84
ans 24.69 4.12 4.19 2.06 3.56 3.14 1.18 7.81 7.56 3.82 9.64 1.00 24.46 13.47 18.18 9.88 4.32 4.63 1.23 13.23 31.30 32.68 11.18 ^b 5.61 ^d ate Unit Breaker: 24.46 13.47 18.18 9.88 4.32 4.63 1.23 13.23 31.30 32.68 11.18 ^b 5.61 ^d ate Unit Breaker: 8.6 6.0 22.2 8.5 1.4 10.5 4.1 6.9 2.2 5.61 ^d 8.6 6.0 22.2 8.5 1.4 10.5 4.1 6.9 2.2 6.8 4.24 6.26 10.0 6.2 39.7 14.1 1.6 12.5 1.0 5.8 0.0 0.0 0.034 6.28 20.5 10.0 3.4.5 14.1 1.6 12.5 1.0 5.61 6.28 0.0 0 0.22.8 4.24 6.28 4.24 6.28 4.24 6.28 0.0 0 0.2		33.6	16.7	17.7	2.6	0 t c				222	4./4	10.55	5.84
5% NS 7.25 3.71 NS NS <th< td=""><td>cans</td><td>24.89</td><td>4.12</td><td>4.19</td><td>2.06</td><td>3.56</td><td>3.14</td><td>1.18</td><td>7.8.7</td><td>21.0</td><td>24.44</td><td>12.58</td><td>9.08 M</td></th<>	cans	24.89	4.12	4.19	2.06	3.56	3.14	1.18	7.8.7	21.0	24.44	12.58	9.08 M
Z4.45 13.47 18.18 9.88 4.32 4.63 1.23 13.23 31.30 32.68 11.18b 5.61d ate Unit Breakage: 8.6 6.0 22.2 8.5 1.4 10.5 4.1 6.9 2 2 6.85 4.24 8.6 6.0 22.2 8.5 1.4 10.5 4.1 6.9 .2 2 6.85 4.24 10.0 6.2 39.7 14.1 1.6 12.5 1.0 5.61 6.28 4.24 10.0 6.2 39.7 14.1 1.6 14.2 0 0 10.34 6.28 7.5 6.8 18.2 14.7 2.26 10.0 5.0 0 0 0.034 6.28 7.5 6.8 18.2 14.7 2.22 6.9 3 4.24 6.28 7.5 6.8 18.2 14.7 2.26 6.9 3 4 7.61 1.51 7.5 9.7 14.7 2.26 6.9 3 6.1 0 0	25	N3	NS	7.25	3.71	NS	NS	NS	NS	NSN SN		7.04 NS	Nec
ate Unit Breakage: 8.6 6.0 22.2 8.5 1.4 10.5 4.1 6.9 2 2 2 6.85 4.24 20.5 10.9 34.6 16.2 .7 14.7 1.6 4.2 0 0 0.034 6.28 10.0 6.2 39.7 14.1 1.6 12.5 1.0 5.8 0 0 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 14.1 1.6 12.5 1.0 5.8 0 0 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10 2.26 1.51 1.51 9.7 9.7 14.7 15.6 1.0 13.9 3.3 5.0 0 9.10 2.26 1.51 1.51 9.7 9.7 15.4 16.2 1.0 13.9 3.148 1.08 .37 .37 4.23 5.02 8.03 3.52 9.26 2.31 .31 3.43 1.48		24.48	13.47	18,18	9.88	4.32	4.63	1.23	13.23	31.30	32.68	11.18 ^b	5.61 ^d
8.6 6.0 22.2 8.5 1.4 10.5 4.1 6.9 .2 .2 6.85 4.24 20.5 10.9 34.6 16.2 .7 14.7 1.6 4.2 .0 .0 10.34 7.5 6.8 18.2 13.3 .7 14.7 1.6 4.2 .0 .0 9.10 7.5 6.8 18.2 13.3 .7 14.7 2.6 4.2 .0 .0 9.10 9.7 9.7 21.8 10.5 1.5 14.7 2.2 6.9 .3 .4 7.61 7.5 14.8 10.5 1.5 14.7 2.2 6.9 .3 .4 7.61 8.03 3.52 9.26 2.31 .31 3.43 1.48 1.08 .37 .37 4.29 NS NS NS NS NS NS NS NS 1.92 6.85 1.5 13.47 2.36 6.02 1.13 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92	ate l	hit Brea	alcage:										
20.5 10.9 34.6 16.2 1.4 10.5 4.1 6.9 .2 .2 6.85 4.24 10.0 6.2 39.7 14.1 1.6 12.5 1.0 5.8 .0 0 10.34 6.28 9.7 9.7 21.8 10.5 1.7 14.7 1.6 4.2 0 0 9.10 2.26 9.7 9.7 21.8 10.5 1.5 14.5 2.0 6.4 .2 0 7.63 5.02 8.03 3.52 9.26 2.31 3.43 1.48 1.08 37 37 4.29 12.76 9.02 25.33 13.98 1.15 13.47 2.36 6.02 1.13 1.0 0 9.08 1.448 1.08 37 37 4.29 1.448 1.22,76 9.02 25.33 13.98 1.15 13.47 2.36 6.02 1.13 1.0 0 9.08		4			1	•							
10.0 6.2 39.7 14.1 1.6 12.5 1.0 5.8 0 0 10.34 6.28 7.5 6.8 18.2 13.3 .7 14.7 1.6 12.5 1.0 5.8 0 0 9.10 2.26 9.7 9.7 9.7 9.7 9.7 14.7 2.2 6.9 .3 .4 7.61 1.51 9.7 9.7 2.7 14.7 2.2 6.9 .3 .4 7.61 1.51 20.2 14.7 15.4 16.2 1.0 13.9 3.3 6.1 .0 .0 9.08 4.48 5% NS NS NS NS 37 .37 .37 .37 .37 .37 .448 5% NS NS NS NS NS 1.08 1.48 1.66 1.51 5% NS NS NS NS 1.48 1.08 1.51 1.51 1.51 1.51 1.51 1.51 1.48 1.08 1.51 1.51		20.5		2	α, τ υ, τ	ч. 1	10 . 5	4,	6.9	م	ŝ	6.85	4.24
7.5 6.8 18.2 13.3 7.0 14.7 2.2 6.9 .3 .4 7.61 1.51 9.7 9.7 21.8 10.5 1.5 14.7 2.2 6.9 .3 .4 7.61 1.51 20.2 14.7 15.4 16.2 1.0 13.9 3.3 6.1 .0 .0 9.08 4.48 5% NS NS NS NS 1.421 .53 NS NS NS NS 1.92 6.85 12.76 9.02 25.33 13.98 1.15 13.47 2.36 6.02 1.3 1.0 2.2		10.01	6.2	20.00 70.00		- v - r	2.04T		4	٩	•	10.34	6.28
9.7 9.7 21.8 10.5 1.5 14.5 2.0 6.4 .2 .0 7.63 1.51 20.2 14.7 15.4 16.2 1.0 13.9 3.3 6.1 .0 .0 7.63 5.02 5% NS NS 4.21 .53 31 3.43 1.48 1.08 .37 .37 4.29 4.48 12.76 9.02 25.33 13.98 1.15 13.47 2.36 6.02 1.3 1.0 2.2 6.856		7.5	6.8	18.2		20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		ο • •	o i	o ·	01.0	2.26
20.2 14.7 15.4 16.2 1.0 13.9 3.3 6.1 .0 7.63 5.02 ans 8.03 3.52 9.26 2.31 .31 3.43 1.48 1.08 .37 .37 4.29 4.48 5% NS NS NS 4.21 .53 NS NS NS NS NS 1.92 6.856 12.76 9.02 25.33 13.98 1.15 13.47 2.36 6.02 13 10 2.2		6.7	9.7	21.8	10.5	- ¥ • -	- 4 - 4 - 4 - 7 - 7		7.0 V	Ĵ,	4.	7.61	1.51
ans 8.03 3.52 9.26 2.31 31 3.43 1.48 1.08 37 37 4.29 4.48 5% NS NS NS 4.21 53 NS NS NS NS NS NS NS 1.92 6.85 12.70 9.02 25.33 13.98 1.15 13.47 2.36 6.02 13 10 2.2 6.85		20.2	2.41	15.4	16.2			ה ה ה ה	t r 0 · 4	N 0	ຸ	7.63	5.02
5% NS NS NS NS 4.21 .53 NS 1.92 6.850 12.70 9.02 25.33 13.98 1.15 13.47 2.36 6.02 .13 .10 8.1304	ans	8.03	3.52	9.26	2.31	16.	3.43	1.48		.	.	9.08 -	4.48
12.76 9.02 25.33 13.98 1.15 13.47 2.36 6.02 13 10 2.32 0.85	5%	NS	NS	SN	4.21	.53	NS	NSN	NN NN		No.	62.4	
		12.73	9.02	25.33	13.98	1.15	13.47	2.36	6.02	ດ ເ		1-72	0.855 0

7.

and the second of the second

(Continued)

Condition		Grach	(ens			Bisci	uts		Wafe	q	Mean	Std.dif.
"F/% r.h.	CD1 a	e E G D	<u>CD5</u>	80	CDS	CD4 ^B	<u>cD6</u>	ZOD	600	CDIO		cans
Units Crus	shed :											
100/80 100/57 70/80 70/57 40/57 40/57 81d.dif., cans sign.dif., 5% Niean	1.9 1.9 NS 2.9 NS 200 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	••••••	ч ч ^{NS} 1 8	NS 238 1.55 1.56 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.00 1.55 1.55		••••••	000000 8	หาย เอง เรา เป็น เป็น เป็น เป็น เป็น เป็น เป็น เป็น	000000	000000	21. 29. 29. 29. 29. 29. 27. 29. 27. 29. 27. 29. 29. 29. 29. 29. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	1.28 1.28 141 1.49 1.89 NS ⁶
Total Proc	duct Bre	<u>akare</u> :										
100/80 100/57 70/80 70/57 40/57 40/57 0/amb std.dif., cans sign.dif., 5% Mean	16.3 40.9 23.7 23.6 39.4 13.28 NS 25.68 25.68	18.2 20.6 20.6 20.2 25.7 31.4 NS NIS 25.49 31.4 NS 22.49	53.1 46.7 57.4 57.4 32.5 32.5 32.5 33.1 11.17 NS 42.87 42.87	22221 22221 224-7 216.2 3.54 216.2 19.85	6.44 7.44 NS 64 7.47 7.47 7.47	111.8 115.2 115.2 115.3 115.3 115.73	6.4 33.0 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	32.1 10.3 10.3 23.6 21.0 8.13 8.13 19.35	35.4 23.2 35.9 35.4 27.6 7.57 7.57 7.57 31.43	25.9 24.9 32.1 31.4 32.78 32.78 32.78	19.46 20.49 20.57 16.89 17.33 21.58 7.49 NS 19.39 ^b	8.23 9.46 6.19 8.04 4.36 4.36 4.36 4.36 4
bVelies for way	fare wh	ich and	ad and a	te mite	one for	iduumo n	led eder	as: not.	include	d in mea	ç	

Values for wafers, which are separate units, are for crumble values for score line breakage and total product breakage. ^GSignificant difference for items in rooms. ^dSignificant difference for item means.

;

20

-

Table 9 (continued)

•

-1

Total Product Breakage. Total breakage, calculated from total units per can as given above, was the sum of score line and unit breakage, with two exceptions: (1) score line breakage in 2-unit layers was counted at half value for total, as there were twice as many units as score lines, and (2) combined breakage per layer was limited to two breaks for 2-unit layers and four breaks for 4-unit layers, even though three and five-eight breaks may have been counted for separate calculations of score-line and unit breakages. As shown in Table 9, crumbled edges instead of score-line breaks are included for wafers CD9 and 10, but the general condition means and total mean value (19.39%) included only crackers and biscuits.

Total breakage of crackers averaged 3.5% below previous high percentages and 0.3% below previous general mean; biscuits averaged 3.9% below former highs and 0.7% below former mean. For wafers, most of the breakage being crumbled edges, the average of CD9 was 11.5% below the previous high and 1.6% below mean of 1-4 years, but CD10 was unusually low, 42% below previous high and 18% below previous general mean.

Thus for cereal items as a whole, product breakage was apparently associated predominantly with item and can variances, was apparently not increasing with storage, and was apparently unrelated to storage conditions.

3. Appearance and Color (Table 10)

Sensory scores were assigned by five experienced judges who have a performance record of reacting insimilar manner to sample differences (mean can variance \pm 0.29), although tending to use somewhat different rating levels (mean judge variance \pm 1.07) on the 10-1 scale indicated in Table 10. Samples were presented six per session (one from each storage room), two sessions per item, so duplicate cans were scored on different sessions; all samples were identified, and comparisons among storage conditions were invited in the comments.

There was some general reduction of appearance-color scores after the fifth year of storage, the decrease apparently resulting from a slight increase in glazed appearance at lower temperatures and a slight darkening at 100° and 70°F. These reasons are those noted in comments; numerically, the mean decrease from the fourth year was 0.38, and no condition decrease varied from this mean by more than 0.08. As the mean of Table 10 is 0.56 below the mean of 12-36 months, there appears to have been a gradual decrease in appearance-color scores during the last two years, and the 5-year mean is 0.74 below initial. Association of scores with storage conditions is still fairly indefinite, the 100° and 70°/80% conditions averaging 6.49, the 70°/57% and lower temperatures averaging 6.72. Cracker CD5 and wafer CD10, both dark or "toasted" in appearance, were the low-scoring items at 5 years, but cracker CD3 and all biscuits except CD4 also averaged lower (0.22) than at any previous examination.

and the second second

n der son den Mersen in erbeiten im Mersen auferen neberen der seinen die sonner abeitateten der seitet vielen der so

and the article of the second second

APPEARANCE-COLOR AND TEXTURE SCORES OF CEREAL ITEMS STORED 60 MONTHS

			(୨୯୫	Le from	10	sxcelle	snt to	ŏd ⊫ 	or)			
Condition F/X r.h.	CDI	CD3	ackers CD5	CD8	CD2	B1.	<u>scuits</u> <u>CD6</u>	CD7	Wa CD9	fers CD10	Mean	<u>Std.dif.</u> cans
<u>Appearance</u>	-Color	••										
Initial	6.5	7.0	7.5	0.7	8.2	7.85	6.8	8.3	7.7	6.5	7.34	
100/80 100/57 70,80	6.7 6.8 75	6.65 6.95 6.25	6.9 6.10	6.35 6.6	6.75 6.95 7.2	6.9 6.45 6.45	6.65 6.6 6.55	6.5 6.5	6.5 6.55 6.55	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.45 6.52 6.50	07. 07.
70/57	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6.45 6.45		7.15	6.6	0.0	6.85 6.85	6.9	6.0	6.65	.47
40/21 0/auib std.difcans	2.2	, s, s	6.15 28 28	6.8 15	6.85 33	6.95 26	6,9	6.8 21	7.0	5.95	6.75	66.
sign.dif., 5% Mean	NS 6.85	NS 6.74	6.17	6.71 6.72	NS 6.97	.45	NS 6.67	.37	.45	NS 5.79	6.60	usa .24 ^b
'lexture:												
Initial	6.5	7.3	6.8	4.7	3.5	ය. ප	6. 4	8.2	6.2	5.8	40.7	1
100/80 100/ <i>5</i> 7	5.0	2.05	65 6 7 8	5.7	۵۵: سریک	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.0 6.1	6.8 7.1	5.0	10 S	6.00 6.10	.52 .52
70/80 70/51	6.5 7	6.1 6.5	6.0 6.4	6.5 5.5	1°2	22	6 5 1 2	2.0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 0 0	6.46 6.46	8 8
40/ <i>5</i> 7 0/auto	6.6 4.0	6.4 7.1	6.4 6.4	6.4 7.0	2.0	7.4	- 9 1 9	7.7	6.0 4	5.0 5.0	6.57 6.70	-27
std.dif.,cans sign.dif., 5% Mean	.65 NS 6.23	.32 .56 6.35	.19 .32 6.18	.39 .67 6.33	.28 .48 6.85	.30 NS 7.15	.19 NS 6.05	.36 NS 7.38	.83 NS 5.87	. 25 . 43 5 . 22	.12 6.36	 NS ^a . 25 ^b
^a Significant d [:] ^b significant di	Lfferen Lfferen	ce for ce for	items	in roo Means.	us.							

•

ł

* * * *

4. Hunter Color Values (Table 11)

Color values were determined on duplicate samples from each can, chopped and sieved to 14-mesh, using a Hunter type color and color difference meter set with NBS reference Maize (I= 73.8, a = 1.4, b = 31.4).

<u>Hunter L</u>. The L value, a measure of "lightness" of color, tends to increase with fading of color or glazing of sample surface, or decrease with darkining or dulling of the surface. While the L values of Table 11 show that all items continued to be somewhat more glazed and slightly lighter at the higher temperatures, comparison with previous values indicated some tendency to darken during the fourth year and definite through moderate darkening during the fifth year.

From high values at 24-36 months, mean decreases in L were 1.0 at 100°F and the two lower temperatures for crackers CD3 and CD5, 1.7 at 100° and 70° and 1.3 at lower temperatures for the biscuits, 2.9 at 100° and 1.4 at the lower temperatures for crackers CD1 and CD8, and 3.8 at 100°, 2.5 at 70° and 40°, 0.5 at 0° for the wafers. All products retained higher values than initial, but the greater decreases at the higher temperatures were readily detected and scored down as "dulling" or slight darkening by the sensory score panel.

Hunter a. The "a" values indicate relative amounts of red color when positive, green when negative; the "pale" items CD3 and CD4 were more green that red, but values were so small that the predominant hue was yellow. The red component of other items (Table 11) resulted in appearance ranging from light tan for CD2 to deep brown for CD5 and CD10.

The characteristic change in "a" values through the third, and in some items the fourth year was a decrease as the color tended to fade, particularly at higher temperatures. At the fifth year the tendency to begin to darken was reflected in a general increase from low values recorded at the periods of maximum fading. This increase was very slight to negligible in cracker CD1, biscuit CD6 and wafer CD10, all dark-color products, increases averaged 0.2 at 100°F, -0.2 at 70°, 0.0 at 40°, and -0.1 at 0°, or actually no significant change in these items. Crackers CD3, light-colored, and CD5, dark, changed little, averaging 0.7 increase at 100°, and 70°, 0.5 at 40°, no change at 0°. The other five items, all moderately light in color except wafer CD9, increased by averages of 1.1 to 1.2 at all temperatures.

As seen in Table 11, "a" values still averaged lighter than initial in about 65% of the samples from 100°, 55% of those from 70°, 50% of those from 40°, and 40% of those from 0°, but the mean increase of 0.8 from previous low values included more than 80% of all samples. Thus the slight tendency to darken, observable by eye in many instances as "dulling" seems definitely established at the fifth year of storage.

	Std.dif.	cans		1.31	.81 1.38	1.9	-76	1.08	 2 0.04	4.273b		.63	.149 .76 .63 .63 .63 .63 .63 .76 .63 .36b
	Mean			64.53	67.90 67.52	67.94 67.07	66.43	65.77	1.27 57	67.10		3.46	2.28.53.53 2.28.53 2.53.53 2.53 2.53 2.53 2.53 2.53 2.5
	ers	<u>cD10</u>		55.2	56.U 55.6	57 . 8 58.3	56.8	58.2	1.89 MG	57.12		5.0	44444 444 88 88 88 73 88 73 88 75 75 75 75 75 75 75 75 75 75 75 75 75
r 0	Waf	<u>CD9</u>		60.8	61.8 61.6	63.4 63.5	61.19	61.5	1.12 NG	61.96		3.7	446444 46444 4644 4644 4644 4644 4644
HINOM 09		CDZ		69.6	73.8 73.4	72.7	27	71.6	1.20 WS	72.42		2.5	ку 8. 9.0-3.85.9.9 8. 8. 9.0-3.85.9.9 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.
S STORED	cuits	<u>cD</u> 6		59.7	65.1 64.2	د. د م	62.2 52.2	61.5	86.	47 63.35		5.2	44444 4444 44 44 44 44 44 44 44 44 44 4
AL TTEMS	Bisc	6D4		73.4	76.6 76.7	75 . 1	75.5	74.4	1.11	75.53		0.6	1.4 1.6 1.9 2.2 2.2 1.63 1.63
TABLE 5 OF CERF		002		68.7	72.4	72.6	69.7	69.4	07.	71.01		2.0	1.5 1.5 2.5 2.5 3.1 2.42 2.06 2.06 (Conti
OR VALUES		CDB		63.8	72.7 71.4	72.3	72.6	68.8	.52	71.43		2.6	8.55 8.55 8.55 8.55 7.55 7.55 7.55 7.55
INTER COL	skers	30		58.3	62.8 63.7	63 . 8	60 . 8	59.4	1.57	2.01 62.08		6.7	ちょうちちょう N v よいらうのう。 N v
ЛН	Crac	605		69.0	73.1 73.0	ۍ د. و	71.8	70.4	- 82	72.39		1.2	нч нч чч 338554-88 18 39 85 19 19 19 19 19 19 19 19 19 19 19 19 19
		CDI		61.8	64.8 64.1	65 . 3 63 -	62.9 62.9	62.6	2.07	63.75	in i	5.1	440444 40444 100 100 100 100 100 100 100
	Condition	°F/% r.h.	<u>L Values:</u>	Initial	100/30 100/57	70/80	40/57	o/ando	std.dif., cans	Mean	"a" Values	Initial.	100/80 100/57 70/80 70/57 40/57 0/anb std.dif., cans sign.dif., 5% Mean

A CONTRACT

Table 11 (con	tinued)											
Condition •F/% r.h.	CDI	Craol CD3	cers CD5	CD8	CD2	Bisci CD4	uits CD6	<u>CD7</u>	CD9	CD10	Mean	<u>Stá.dif.</u> cans
"b" Value	** ប្រ:											
Initial	25.0	21.6	24.8	21.9	19.9	19.6	24.0	22.0	21.3	19.5	21.96	.32
100/80 100/67	24.4	19.6 20.2	25.0 25.8	21.2	18.7 18.9	17.9 18.0	24.2 24.3	20.1 20.2	20.8 21.0	19.1 19.0	21.12	4.G.
70/80	29.52 557 557	13.2 10.2	25.0 25.0	19.9	17.8	17.7 17.9	24•0 23.8	20.3 20.6	20.2 20.2	18.5 18.4	20.52 20.75	ۍ. وينې
40/57	24.4	19.8	25.3	20.6	18.9	17.5	24.0	20.6	20.7	17.7	20 . 93	22
0/anto std dif cans	24.5	20.3 20.3	25.4 .48	20.4 .38	19.1 .41	17.7 .39	24.1 .30	20.3 .45	50.02 20	18.1 -39	50.40 140	ŧ
sign.dif., 5%	N5 24.21	19.53	NS 25.27	.66 20.57	18.62	NS 17.75	NS 24.05	NS 20.33	.51 20.48	.69 18.45	.18 20.93	.64 ^ª .25 ^b
a/o Ratio	Ωį.											
Initial	.203	•054	.269	.120	.097	•030	.219	3TL.	.173	.256	.158	.027
100/80 100/57	.162	.059 .060	.203 .182	.102	080 . 099	.077	.152	.088 .094	.192	172.	2971. 971.	-024 -036
70/80	.157	170.	.223	77C.	.107	.103	.71.	.121	.205	912.	1740	030
LO/57	181.	.073	231	.112	.130	,087	.202	.131	.217	.253	.165	•032 201
dine/0	.186	.090	.248	.158	191.	.125	.204	.148	202	C22.	1/1.	+rzn•
std.dif.,cans sign.dif., 5% wean	.023 NS .174	.021 NS .066	016 029 218	.022 NS .126	120.036	.02% NS .092	.050 NS .182	.120 .120	.203 .203	NS NS .237	014	uS ^a .017b
^a Significant o	ifference ifference	for ite	ans in ro	Ouits .					F			

ant a

* • >

谋

÷1 2.

30

.

25

.*

Hunter b. The 'b' value, denoting yellow when positive, blue when negative, normally increases with fading of the "red" or "a" color component, out decreases with browning or "dulling" of color in baked products. The characteristic change through four years was increase; although highest period averages ranged 12-48 months, average 30 months, changes from these highs were relatively slight through the fourth year. This slight shift toward darkening (decrease in "b") was more pronounced after the fifth year, all items decreasing from previous low values of "b" except cracker CD5 and biscuit CD6, both dark-baked items. These two were below the highs recorded at periods of maximum fading, but still above previous lows.

Evaluated as decreases from previous lows for "b", darkening in cracker CD1 and wafer CD10, both dark-baked, averaged 0.1 at 100°, 0.6 at 7C°, 0.2 at lower temperatures. Cd9, the lighter of the wafers, and cracker CD8 and biscuit CD7, light-baked items, averaged 0.7 at 100° and 40°, 1.2 at 70°, 1.0 at 0°. Cracker CD3 and biscuits CD2 and CD4 (the latter being the lightest-color item) averaged 1.8 at 70°, 1.3 at other temperatures. Thus tendency to darken still is relatively negligible in dark-baked items, but light-baked item darkening as decreases in "b" averaged 1.0 at 100° and 40°, 1.2 at 0°, and 1.5 at 70°.

Hunter a/b. In conjunction with decreases in L cr "lightness" value, increases in a/b ratio provide a good index of darkening in the shelter rations, as darkening involves increase in "a" but decrease in "b". Average increase at five years above previous low a/b ratios averaged only .014 for the four dark-baked items, cracker CDI and CD5, biscuit CD6 and wafer CD10. These apparently had little tendency to darken, still averaging .034 below initial and .053 below the highest values from storage.

The moderately light to light items, wafer CD9, crackers CD3 and CD8, biscuits CD2 and CD7, averaged .069 increase from lowest a/b ratios, being about the same as initial and previous high storage averages. The increases averaged .076 from 100°F, .066 from other temperatures. Thus, although decreases in "b" values averaged somewhat greater at 70°, higher average "a" increases at 100° apparently resulted in the slightly greater increase in a, b at this temperature. The lightest item, biscuit GD4, increased .086at 40°F and .121 at other temperatures, averaging .062 above initial and .041 above previous high ratios from storage.

in submary, although all items except wafer CD19 still average lighter at the higher temperatures as seen in Table 11, the tendency to darken during the fifth or fourth and fifth years became pronounced in the very light items and definite in the moderately light. Fading was usually considered acceptable out carkening and "dulling" resulted in reduction of appearance-color scores.

5. Fracture Strength (Table 12)

Twenty units selected in a systematic manner from each can were used to determine fracture strength. Each unit was supported by four corner blocks of about 1/16 sq. in. area and the dull point of a weighted plunger was

No Kertu

and the second second

FRACTURE STRENGTH AND MOISTURE CONTENT OF CEREAL ITEMS STORED 60 MONTHS

<u>CD1 Crackers</u> <u>CD1 CD3 CD5 CD8 CD2 CD4 CD6</u>	kers Biscuits 005 008 012 004 006	008 012 004 006	Biscuits 012 0014 006	Biscuits CD <u>1</u> 4 CD6	nits CD6	•	CDZ	Wafe CD9	cD10	Mean	Std.dif. cans
rength. graus:	1 i S:								-		(
205 0211 0021 0711 0721 0011 0171	1540 1140 1500 1170 209	1140 1500 1170 209	1500 1170 209	1170 209	209	0	1220	2160	1285	1460	89
1468 1101 1476 1425 1712 1179 167	1456 1425 1712 1179 167	1425 1712 1179 167' 1380 1693 1175 177'	1712 1179 167' 1771 771 771	17791 2711	777 L	~ 5	1287 1298	2435 2701	1778 1800	1552 1593	125 58
1479 1078 1517 1360 1752 1152 182	1517 1368 1752 1192 182	1366 1752 1192 182	1752 1192 182	1192 182	182	0	1264	2173	1675	1532	55
1564 1082 1488 1418 1743 1161 180	1488 1418 1743 1161 180	1418 1743 1161 180	1743 1161 180	1911 1911	ы 1 1	ფ.	1245	2193	T/.9T	7557	07.0
1575 1120 1480 1481 1726 1156 18	1480 1481 1726 1156 18	1481 1726 1156 18.	1726 1156 18.	1156 18.	3 3	<u>م</u>	7.7.2T	204.3	1722 1722	242	58 58
1652 1126 1557 1401 1/81 125 18	RT AGTT TRLT TOTT 4251	RT AGTT TRLT TOTT	RT 44TT TR/.T	NT SCTT	n T		2001 201	1022	22) T	2 X 2 X 2 X	
108 73 100 68 33 75	100 68 33 75	68 33 75 110 110 110	33 75 114 MG	75 MG		3	1.4 N	10T	NS SN	C0 [7]	135b
NS 1547 1099 1494 1494 179	CN CN CN SN SN SN SN 21 04II 464I	CN C	CN C	LI OLII	17	18	1279	2292	1732	1554	49°
butent. percent:	ent:										
											č
1.85 2.21 1.42 3.53 1.91 1.69 2.	1.42 3.53 1.91 1.69 2.	3.53 1.91 1.69 2.	1.91 1.69 2.	1.69 2.	N.	714	1.96	10.4	4.03	2.53	• 29
3.15 2.95 1.71 2.94 2.70 2.03 3.	1.71 2.94 2.70 2.03 3.	2.94 2.70 2.03 3.	2.70 2.03 3.	2.03 3.	Ś	50	2.18	3.71	4.01	2.85	.39
2.57 3.21 1.95 3.27 2.63 2.21 2	1.95 3.27 2.63 2.21 2	3.27 2.63 2.21 2	2.63 2.21 2	2.21 2.5	Ń	84	2.16	3.99	2.5.6	2°88	2.
3.14 3.47 ^a 1.54 3.07 3.36 2.20 2.	11.54 3.07 3.36 2.20 2.	3.07 3.36 2.20 2.	3.36 2.20 2.	2.20 2.	ດ້	<u> </u>	2.05	3.86	88 88	2.42	•••
2.45 2.45 1.81 2.85 2.66 1.64 2.	1.61 2.65 2.66 1.64 2.	2.85 2.66 1.64 2.	2.66 1.64 2.	1.64 2.	ຕ່	63	1.64	3.92	3.84	2.01	
2.65 2.50 1.77 2.93 2.67 2.00 2.	1.77 2.93 2.67 2.00 2.	2.93 2.67 2.00 2.	2.67 2.00 2.	2.00 2.	ŝ	22	2.34	4.11	3.20 20	2.75	j
3.09 2.30 1.60 2.89 2.67 1.87 2.	1.60 2.89 2.67 1.87 2.	2.89 2.67 1.87 2.	2.67 1.87 2.	1.87 2.	່	35	2.55	50° 20° 20° 20° 20° 20° 20° 20° 20° 20° 2	2.0	2.2	17.
. 69 . 39 . 21 . 36 . 37 . 19 .	.21 .36 .37 .19	.36 .37 .19 .	.37 .19	•19	• :	53	-24	90 .	50	12.	d V A
NS NS NS NS .20 NS I	NS NS .20 NS I	NS .20 NS I	.20 NS	NS I	_	2	22				
2.66 2.81 1.73 2.99 2.78 2.02 2	1.73 2.99 2.78 2.02 2.	2.99 2.78 2.02 2.	2.78 2.02 2.	2.02 2.	Ń	-79	2.15	7.7	12.5	2.12	011

All cans were leakers. Single leakers are included in fracture strength values but are onitted from moisture values, as they averaged 0.54 ± .16% higher than duplicate non leakers. Doignificant difference for items in rooms.

-.

and the second second

. .

* · · · · ·

THE PROPERTY AND

man

rested on the center of the unit. The plunger carried fixed weights varying from 400 to 1600 grams, depending on the fracture resistance of the unit, and additional weight was added to the point of fracture by applying increasing pressure on the plunger with a 1000-gram spring-loaded pressure tester.

Again, as at previous examinations, there was no consistent pattern for fracture strength as related to storage. Cracker CD3, the most uniform item, was almost exactly average. Cracker CD8 and wafer CD10 were about 200 grams higher than on previous examinations. All other items have exhibited periodic fluctuations of 100-300 grams; at five years, biscuit CD6 was low, items CD1, 2, 4, 5, 7, 9 were high, but none of the seven were higher or lower than at some earlier period.

In general, fracture corresponded only with degree of baking. Light items CD3 and CD4 were tender, moderately brown items CD7 and CD8 were fairly tender. Brown items CD1 and CD5 were brittle, with mid-range fracture, while brown CD6 was somewhat tougher. Biscuit CD2 was tougher than would be expected, as it is a moderately-baked item. wafer CD9, medium-brown, was quite compact, but wafer CD10 was "toasted" and somewhat crumbly.

6. moisture Content (Table 12)

Loisture content was determined on duplicate 14-mesh samples from each can as loss of weight after heating 5-gram aliquants 24 hours at 70°C under a 29-inch vacuum.

As usual, there was no consistent relationship of moisutre to anything except leakers, enough of which were located in high humidity rooms to give the average increase of 0.54% in leakers over non-leakers from the same sample (see footnote, Table 12). Items CDL, 2, 3, 6, and 9 averaged somewhat higher moisture than usual, but not higher than at some previous period; CDLO was nigher than at any other period, but not higher than initial. CD7 and CD8 were about average. CD4, all leakers, and CD5, no leakers, were lower in moisture than averages of previous examinations, but not lower than at some previous examination. Thus moisture was apparently unrelated to storage time or conditions.

7. Rancidity Values (Table 13)

<u>Peroxides</u>. Peroxide values were determined by extracting fat from the ration samples with chloroform, mixing aliquants of the extract with 1.5 volumes of glacial acetic acid, reacting with potassium iodide, and titrating liberated iodine with potassium thiosulfate. As peroxides are unstable early-stage intermediate products in the complex patterns of fat oxidation, these patterns can be evaluated only in relation to changes in levels of peroxide values and other characteristics of the samples involved.

General patterns in the shelter ration items were similar in some aspects, different in others. All samples increased in peroxide values during the

first year in storage, apparently as a result of initial absorption of canspace oxygen, probable deposits of surface films of fat resulting from baking and the variable effects of handling and adjustments to storage temperatures. Peroxides reached highest levels at 100°F in crackers and biscuits, crackers averaging higher, but at 70°F in wafers.

The wafers had relatively more absorptive structures, greater volumes of products per unit can volume, and more rapid absorption of oxygen, all apparently contributing to more rapid establishment of secondary oxidation reactions which utilized peroxides and which also resulted in off aroma and flavor. Thus peroxides never accumulated to as high levels in wafers at 100° as in the less reactive conditions at 70°, and peroxide values of wafers in general remained lower than in the less absorptive crackers and biscuits.

Following the first-year upswings, peroxides decreased sharply in all products during the second to third years, when off flavors also began to appear in crackers and biscuits. This period apparently was one of relative stability, during which initially-accelerated reactions had slowed down and secondary oridation mechanisms were utilizing peroxides as fast as they were formed. By the fourth year, a second, moderate upswing in peroxidation was taking place at 100°F and to some extent at 70°, and further shelf life of crackers and biscuits was questionable, although wafers were apparently changing far more slowly.

The peroxide values of Table 13 show the continuation of the second period of active oxidation, levels being generally as high at 70°F as at 100°, with some increase at 40°. It will be noted that, again, wafers remained practically unchanged. Differences between five-year values and previous highs in peroxides were as follows:

	<u>cracker</u>	S	<u> </u>	its	wafers
	1, 3, 8	5	2. 4. 7	6	9,10
LOO°F	-18.0	9.1	8.7	-2.2	-2.0
70°F	5.7	12.0	11.0	16.1	-6.6
40°F	4.5	·8	2.8	•9	1.2
0°F	•7	1.2	.8	•4	-1.0

Values increased in CD1, 3, 8 and 6 at 100°F also, but levels reached were lower than those at 12 months. Mafers did not increase in general although all except CD9 at 100° were higher than at 46 months. Maile variations in methodology could have accounted for some of the increases, the 0°F mean was only 0.86 above the 48-month mean, whereas the mean increases at higher temperatures were 2.44 at 40°, 8.33 at 70°, and 7.34 at 100°, indicating decreased stability of the fat in the rations.

Free Fatty Acids. These were determined by combining equal volumes of neutral ethanol with the chloroform extracts of fats and titrating with ethanolic alkali. As products of fat hydrolysis, free fatty acids are

	iean Std.dif. cans		דלי 26.	2.80 .67 2.80		.40 2.03	.88 .86				.280 .029	.686 .075 .716 .074 .338 .044	278 .022	.274 .020	•054	•025 •083 ^C
	ers M		1.4	2.3 12 1.8 9	3.0 12	5.0	2.9 2	1.20 4 N	2.98 8		.32	-16- 	Ĵ. Li	.38	.037	.065
SHINOLI	Waft CD9		2.0	1.5 1.85	8 0 0 0	8.6	3.4	4.05 Mi	4.39		.34	.95	.45	.42	.047	.081
ID FOR 60	<u>CD7</u>		α	23.9 22.1	20.0	3.7	2.8	3.25 r 63	15.27		.27		50	90 90	,058	101.
THUS STORE	ouits CD6		6.	8.1 5.3	25.7	4.0p	2.7 ^a	6.37 13 [[10.01		1 4.	.30 .17		.10a	,036	.063
EREAL IT!	Bisc CD4ª		ů	9.9 12.9	15.8 19.5		3.7	4.10 700	11.50		.60	1.24	209 90	•56	.0 <u>3</u> 3	.161
S FROL CI	CD2	grail:	1.0	7.1 ^a 7.1	4.1	- 22 1 02 1 02	3.0	2. 98 MS	5.65		.16	.65 ^a .72 .22	.16 16	.16	•066	ήτι.
LOF FAT	CD8	per hilo	8	13.5 ^b 10.2	10.01 14.8	3.6	2.9	1.93 3.55	9.15	acid:	.36	.67 ^b .83 .37		.35	.055	.095
CTY VALUE	lkers CD5	valents	ŝ	34.8 17.6	13.0 13.0		2.5	17.71	14.92	as oleic	.19		i.	1.	.017	170.
RANCID	Crac CD3	<u>iulieoui</u>	S.	9.0 5.8	10.0 ^a 8.3	6.5	3.2 ⁰	2.72 NS	7.69	percent	.23	.73 .78 .36 a	าส์	ະລີ	.063	.108
	CDI	Values.	1.0	11.0 ^b 12.2 ^b	10.8 8.4	2.7	1.8	3.37	7.81	Y. Acids.	71.	.32 ^b .29 ^b	12	.12	.019	032
	Condition P/X r.h.	Peroxide	Initial	100/80 100/80	70/80	40/57	0/auto	std.dif.,cans sign.dif. 5%	Mean	Free Fatt	Initial	100/80 100/57 70/80	40/57	o/amb	sta.dlf.,cans	Slgn.dlf. 5%

avil cans were leakers.

Single leakers varied little from duplicate non-leakers, vioth cans were questionable leakers.

.085^c .032^d

so are included in values listed.

colgnificant difference for items in rooms. doignificant difference for item means.

TAJLE 13

.-

Senerally proportional to temperature and moisture content, and the higher values for wafers as given in Table 13 could be associated with the higher moisture content of this product. Crachers CD3 and 8 and biscuits CD4 and 7 were mot high-moisture products, however, so the fats were apparently less stable in these six items than in crackers CD1 and 5 and biscuits CD2 and 6.

Free fatty acids did not exhibit the periodic variations observed with peroxides, although mean values did tend to increase during the fourth and fifth years of storage. As compared to previous high values, however, CD2, 4, 5, and 10 averaged .24% higher at 100°F, about the same below 100°, while other items averaged 0.10% lower at 100° and 0.04% lower at other conditions. Thus free fatty acids were essentially associated with temperatures and with item differences, the mean value for 40° and 0°F storage for five years being about the same as initial.

S. sensory Scores for Texture, Arola and Flavor (Tables 10 and 14)

All sensory scores were obtained as described above for appearancecolor.

Texture. The reasons most frequently given for reductions in texture scores were general lack of fresh crispness, with slight increases in hardness or toughness of crackers and biscuits and in crunbling and "grittiness" of wafers at 100°F. Crackers CDI and 3 averaged somewhat lower than at four years, biscuits CD6 and wafer CD10 lower than at any previous examination, other items were only slightly below average for the five-year period. In general, changes in texture were not considered a major problem.

<u>Aroma</u>. Lean aroma scores for storage at 100°F, Table 14, leave no doubt that the score panel judges considered the 100° items ready for discard. All items except CD1 (mean 4.2) and CD10 (mean 4.9) had been scored below 4.0 at 48 months. Fecreases from lowest scores at 3 or 4 years, and mean values for products at 5 years, were as follows:

	cracke	rs	<u> </u>	ts	wafer	<u>s</u>
	decrease	mean	decrease	<u>ilean</u>	decrease	mean
1000	1.3	2.0	•9	1.9	1.0	3.2
70°	-8	5.0	•0	5.6	•9	3.9
40°	•6	6.0	 1	6.4	.6	5.4
0°	•0	6.7	.0	6.8	•3	6.2

Flavor. Every item except wafer CD10 (mean 5.0) had been scored below 4.0 at 48 months. On the scoring scale used by the sensory quality panel, scores below 4.0 denote "fair", i.e., acceptable in emergency but not good (1 on this scale denotes unacceptable under any condition of normal eating). Decreases from lowest scores at 3 or 4 years and mean values at five years were:

•

ł

AROLA AND FLAVOR SCORUES OF CURRAL ITELS STORED 60 MONTHS (scale from 10 = excellent to 1 = poor)

Std.dif. cans			.32 .39	.50 81	.26 ^b			.87 .75	.54 .60	-47	100	.36 ^b
itean		6.87	2.37 2.37 4.75	5.29 6.07	4.53		6.74	2.26 2.74	4.84 5.29	69 . 9		.22. 4.67
cD10		6.4	 	22.5 2.7 2.7			5.4	3.4 3.4	44' 4.0'	~~ ~~	.37	••53 4•53
Wa.f.		6.0	0 n 4	455	4 23		6.2	3.6 4.3	0.00 0.00	0 2 2	52.	4.80
200		6.4	ч ч х 6 6 9 3	5.0 0 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.62 4		7.8	1.2 1.2	<i>v</i> .v.	4.0 6.9	66	1.48 4.48
uits CD6		6.4	222	502			6.4	8 8 9 8 9 8 9	<i>1</i> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0	ë.	5.13
Bi so CD4		0°8	·	5.0 0 0	1.167 4.75		7.5	1.9	7•7 7•7	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.40	00. 4.22
002		7.7	117 201	502	4.57		3.4	2.1.6	410	4 0 7 0 7 0	94.	4.55 4.55
CDC		6.4	622 4 1 1	404 6-14			6.4	1.5 1.6	4 V V V V	6.4 6	.32	-56 4-35
itters CD5		7.2	ы 0 4 20 2	450	4.12		6.3	2.6	220	5.4 6.4	77.	.77 4.52
Crac CD3		7.2	5.74 4.25	500	-79 -79 -4-1 -79		7.0	2.9 3.2	<i>n n n</i>	6.9 9	1.40	2.42 5.05
CDI		7.0	7 2 H	6.6 6.6	5.00		6.0	0 .	້ຳ	0.9 7.2	.57	3.0.2 8.0
Condition F/K r.h.	Arona:	Initial.	100/80 120/57 70/30	70/57 40/57 07 amb	std.dif., cans sign.dif., 5%	Flavor:	Initial	100/60 100/57	70/50	1,c,'04 0,'æ.'J	std.dif., cans	مرد 'uti., sugn.dif., مر

32

^aSignificant difference for items in rooms. ^{OSI}Shificant difference for item ineans.

クショー ロン・ションション

er history of the second of the billing with the second states of the second second second second second second

	cracke	rs	biscui	<u> </u>	wafer	S
	decrease	mean	decrease	nean	decrease	mean
100°F	.6	2.5	•7	2.1	1.0	3.4
70°F	•3	5.2	•2	5.2	•2	4.4
40°F	•2	6.3	.1	6.3	.1	5.8
0°F	3	6.7	•3	6.7	5	6.5

These scores confirm the suggestions made previously that four years should probably be considered the limit for storage of the cereal ration items at 100°F. As seen in Table 15, however, the bedonic ratings for wafers were still above the 4.00 level considered minimal for test samples.

9. Hedonic Ratings for arous, Flavor and Palatability (Table 15)

The hedonic rating panel consisted of 25 judges selected at random as available from a pool of about 100 people. Samples were rated in sets of six perjudge per session, each set containing one can from each of the six storage conditions for a single item; thus, duplicate cans were scored on different sessions. The six samples for each session were randomly assigned to the six positions of a systematically arranged 6 x 25 block plan, the arrangement being such that each sample appeared in each of the six presentation positions (1st to 6th) about the same number of times, and each of the 25 blocks (plates) had the six samples in a different sequence. Arranged thus, the six samples were presented together, with scoring order numbered, so that direct comparisons could be made by any judge who so desired, and comments on these comparisons were invited. The numerical scale was the customary 9-point hedonic range from "like extremely" to "dislike extremely".

Aroma. During the fifth year, the aroma of wafers changed relatively little from previous low values. Crackers and biscuits decreased at 100°F, but mean changes at lower temperatures were slight. Changes from previous lows, and mean values for the three products were as follows:

	crack	ers	<u> Discu</u>	its	<u>vafe</u>	rs
	<u>change</u>	hean	<u>chanze</u>	nean	change	<u>. ean</u>
100°F	58	3.34	ó4	3.19	•03	4.36
'70°F	12	5.17	.13	5.55	05	4.70
40°F	10	5.55	•49	6.08	•05	5.27
0°F	•29	5.97	<i>₊1</i> ;O	6.29	•24;	5.63
Initial		5.85		6.42		5.45

sei eine an their a an the arthreich a berreitering breek and the station of the

nan de la de de la constante de la constante de sun de sector de la constante en la constante de la

Flavor. With approximately the same pattern as for aroma, changes from previous lows, and mean values at 5 years, were as follows:

Std.dif. cans 47 47 47 50 56 26 26 26 27 27 27 27 27 27 .34 32 Mean 6.00 6.17 4.050 4.050 5.0500 5.0500 5.0500 5.0500 5.0500 5.0500 5.0500 5.0500 5 <u>cD10</u> 5.60 4-23 4-23 5-25 5-25 5-25 5-25 5-25 4-75 5.68 5.098 5.098 5.008 5.008 5.008 5.008 5.008 5.008 5.008 5.008 MEDONIC RATINGS FOR CEREAL ITELS STORED 60 MONTHS <u>CD9</u> 5.52 5.30 4.91 MS MS MS 44.55
 55.18
 5.83
 5.83
 5.83
 5.83
 5.83
 5.05
 5.05 CD 6.60 6.54 3.15 3.40 5.78 5.78 5.53 5.53 5.22 5.22 5.22 5.22 19 10 10 10 6.20 6.24 5.093 5.003 700 6.10 6.46 4.75 4.75 4.75 4.75 4.75 4.75 4.75 CD2 6.80 7.62 SD6 6.28 6.06 505 4.565 4.565 4.565 4.565 4.565 4.565 5.88 5.58 60 5.94 6.10 4.28 5.18 5.68 5.68 5.93 5.93 5.93 5.93 5.12 5.12 5.12 5.12 50 5.54 5.58 5.63 5.88 5.88 5.53 5.43 5.19 5.19 std.dif.,cans sign.dif., 5% Nean std.dif.,cans sign.dif., 5% Mean Flavor: Aroua: Condition F/k r.h. 100/80 100/57 70/57 40/57 0/aub 100/80 100/57 70/57 40/57 0/amb **Initial** Initial

(Continued

TABLE 15

Table 15 (continued)

LES & MU

مسمعه من المحمد المن المحمد المحمد

「日本のないになっていたない」というないであってい

10 OC

* ; 5-,

<u>Condition</u> F/ <u>É</u> r.h.	CDI	Crac CD3	kers CD5	CD8	CD2	Craci CD4	kers CD6	CD7	Waf CD9	ers CD10	Niean	Std.dif. cans
Palatao 1.	ity:											
Initial	5.70	6.30	6.06	6.33	7.40	6.40	5.92	6.90	5.36	5.64	6.21	.27
100/30 100/57 70,20 70/57 40/57 0/amb std.dif.,cans sign.dif., 5%	5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.5	6.10 6.10 6.10 7.24 7.24 7.24	4.38 4.39 4.36 4.39 4.39 4.39 4.39	4.55 5.40 5.40 5.40 5.40 5.40 5.40 5.40	2.78 5.50 6.33 6.33 6.33 6.33 6.33 6.33 6.33	4.50 6.55 6.35 6.35 6.35 6.35 6.35 7.68 6.35 7.68 7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.0	х с с с с с с с с с с с с с	5.55 6.58 2.58 2.58 2.58 2.58 2.58 2.58 2.58 2	5.03 NS NS NS	4.94 4.95 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.4	4.05 .14 .18 .18 .18 .18 .18	27 ^b
Asignificant di ^b Significant di	fferen	ce for ce for	itens iten ï	in roc deans.	. SIII							

	crack	ers	<u>_ biscu</u>	its	wafe	rs
	<u>change</u>	nean	<u>change</u>	nean	<u>change</u>	mean
100°F	52	3.45	75	3.30	17	4.47
70°F	08	5.16	.14	5.56	.16	5.07
40°F	03	5.55	.21	5.99	05	5.43
0°F	•29	5.87	•25	ó.22	•33	5.97
Initial		5.90		6.72		5.60

Palatability. Reductions in palatability ratings at 100°F were greater than for aroma and flavor, with other changes and means of similar patterns as follows:

	crack	ers	<u> </u>	<u>its</u>	<u>wafe</u>	rs
	change	mean	<u>change</u>	nean	<u>change</u>	ilean
100°F	-1.14	3.33	-1.35	3.15	28	4.39
70°F	10	5.29	.18	5.69	08	5.00
40°F	.03	5.59	•40	6.19	17	5.35
0°F	.29	5.89	•44	6.35	.11	5.78
Initial		ó.11		6.66		5.50

Thus, assuming a score of 4.00 represents the lower limit of acceptability as a rule in these studies, crackers and biscuits as shown in Table 15 and summarized above were below the specified level of quality for continued storage at 100°F. Mafers, however, were apparently still considered acceptable, though greatly reduced in quality at this temperature.

10. Correlations of Palatability Ratings with Other Measurements (Table 16)

The correlations of Table 16 were along samples, including temperature effects, for items and product groups. It is seen that many of the correlations with color, residual oxygen, peroxide values, and all with free fatty acids, are significant. This was expected, since the temperature and item characteristics influencing these various parameters also influence aroma, flavor, and palatability. It is noted that agreement of palatability ratings with sensory scores for texture, aroma and flavor (by a different taste panel) remained very high, indicating that sample differences were definite enough to be readily detected.

B. The Carbohydrate Supplements

The hard candies of the carbohydrate supplement consisted of two flavors and colors, lemon and cherry in equal parts. The two types were examined separately for all determinations except taste panel scores, for which only comments were separate. Data and discussions are based on cans and items, however, except in instances where there were distinct differences as in color values, and type variations are noted only when they were observed.

CORRELATIONS OF PALATABILITY RATINGS WITH OTHER MEASUREMENTS FOR CEREAL ITEMS STORED 60 MONTHS (simple correlation coefficient, r)

Palatability with:	Crackers			Biscuits			lafers	ļ
	<u>CD1</u> <u>CD3</u> <u>CD5</u> <u>CD8</u>	TT	CD2 CD4ª			600		чl
Hunter L a b a/b	365638 ^b 641 ^b 424 +.214 +.423 +.863 ^c +.297 058168108759 ^c +.207 +.450 +.862 ^c +.409	160 141 141	646 ^b 807 ^c +.632 ^b +.728 ^b +.007,454 +.655 ^b +.744 ^c	857°75 +.605 ^b +.73 557 +.41 +.638 ^b +.72	2°193 1 +.341b 5 +.033 3° +.457°	+.024 +. 003 +.146	470 +.19 36323 801°21 21203	るようひ
Fracture Strength	+•415 +•271 +•566 +•117	-,038	+.711°169	+.735023	3002	642 ^b	32719	14
.oisture Content	23914133721400	003	+.196467	437 +.04	5084	+ 222 -	נני- 914	9
kesidual Oxygen	+.215 +.817° +.788° +.879°	+.677 ^c	+•\$53° +•571	+.919 ^c +.97	7° +.728°	+ • • 473 + •	778 +.59	9 ⁰ 0
Peroxide Values	667 ^b 097734 ^c 576 ^b	573°	401111	+.02371	7°230	+.204 +.	489 +.25	25
Free Fatty acids	576°976°967°937°	649c	953°990°	940 ^c 99	5c644c	719°	\$0°c75	0 <mark>0</mark>
Jensory Jcores: Appearance-Color Texture Aroma Flavor	+.326023 +.544 +.647 ^b +.566 ^b +.667 ^b +.757 ^c +.767 ^c +.573 ^c +.523 ^c +.936 ^c +.953 ^c +.527 ^c +.305 ^c +.976 ^c +.982 ^c	+.330° +.646° +.913°	+.143 +.180 +.570c +.858c +.570c +.934c +.550c +.966c	+.109 +.78 +.139 +.81 +.973c +.96 +.969 ^c +.98	5° +.211 8° +.413° 6° +.975° 3° +.949°	+.326 +. 059 +. +.541 +.	.328 +.20 .674 ^b +.17 .915 ^c +.77	22002
aall cans were leak Significant at the Significant at the	ters. 5/, level of probability. 1/, level of probability.						-	

.

ļ

the second secon

The candies were packed in bull in the cans, average 34.7 lbs. per can, with no lining or stuffing material. One banded packet of 20 kraft bags was included in each can, lying on the top of the candy. The bags were made as pouches by folding a $10\frac{1}{2}$ -inch x $3\frac{1}{2}$ -inch strip of kraft at 5 inches (leaving a $\frac{1}{2}$ -inch lip at the top) and sealing up the two sides with $\frac{1}{2}$ -inch seams, thus providing 3-inch by 5-inch internal dimensions.

1. Condition of Candy Bags (Table 17)

Leansurements of length of top lip and internal size of bags were discontinued after the initial and first two storage examinations. Bags per car, width of side seams, and seam tests were determined on all examinations.

<u>pars per can</u>. Counts of usable pars per can (some bags had holes, some were sealed only on one side) at 4 years, and cumulative counts for all cans examined through 4 years, were as follows:

	at 4 years	All cans examined thr	ough 4 years
	bags per can	range	mean
CD11	20	21-16, 1 w/none	19.64
CD12	19.42	21-11, 1 wynone	19.23
CD13	20.08	21-19	20.00
All	19.83	21-11, 2 wrone	19.62

Hidth of side seams. Normal width of side seams is 04 (4/16 inch). Hidths of seams on bags examined at 4 years, and on all bags examined through 4 years, were as follows:

at 4 yearsno. of seals 430 464 462 1446 range of widths $04-07$ $00-03$ $04-07$ $00-03$ mean width 04.77 04.74^a 05.77 05.10^a through 4 years 3024 3044 3080 9148 range of widths $01-07$ $70-12$ $02-13$ $00-13$ ean width 04.33 04.51^3 05.12 04.66^b	, .	<u>CD11</u>	<u>CD12</u>	CD13	<u></u>	
through L yearsno. of seals $302L$ 3044 3080 9148 range of widths $01-07$ $70-12$ $02-13$ $00-13$ ean width 04.33 04.51° 05.12 04.66°	at h years no. of seals range of widths mean width	480 04-07 04•77	464 00-06 04.74ª	482 04:-07 05•77	1446 00-0ű 05.10 ^a	
	through 4 years no. of seals range of widths lean width	30 <i>2i</i> ; 01–07 04•33	3044 -70-12 04.51 ³	3080 02-13 05.12	9148 00-13 04.66 ^b	

^aC missing seams (00) not included. ⁹38 missing seams (00) not included.

Over the 4 years, seams less than 04 were: 3.5% @ 03, 5.5% @ 02, 0.5% @ 01 for CD11; 2.6% @ 03, 0.6% @ 02, 1.7% @ 01, 1.2% @ 00 for CD12; 0.3% @ 03, 0.7% @ 02 for CD13, or a mean of 5.6\% under 04 for all bags emained.

REJULTS OF SEAL TEST ON REAFT BAGS STORED 48 LOWTHS IN CARBOHYDRATE SUPPLEMENT CANS

71 MIUNT

Sec.

Condition F/A. I.h.	0D 6-24	11 36-48 1 10		12 36-48 "o	5-24 1.10	.3 36-48 110	Tot 6-24	41 36-48 iio.	Std.di. 6-24 mo.	fcans 36- <u>4</u> 3 iilo.	<u>Mean</u> , 6-24 mo.	Inches ^a 36-43 110
Partial.	jeparat j	on. Derc	enta <u>r</u> e g	ວີເມື່ອຣີ ມີດ	••							
Initial	4.0/:/2	.062	2.05%,	.062%	2.50%	.125.	2.37%.	"180 .	4.5	ېږ د ب		
100/J0 100,57 70,57 70,57 1,0,57 0,ach 2,dach 1,1,, cans 5td.ch1,, cans 5td.ch1, 5% ean,percent 3an,inch3s ^a Co.plete	11.5 11.5 7.3 7.3 7.4 7.4 7.5 7.3 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	25.0 1.3 1.3 .6 .6 .6 .6 .5 .55 .152 .152	Centago Centago Centago Centago	0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	8 7 7 7 7 7 7 7 7 7 7 7 7 7	ト 5.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55	65.23 65.77 6.73 65.77 6.73 65.77 6.73 65.77 6.73 65.77 6.73 65.77 6.73 65.77 6.73 65.77 7.72 65.77 7.72 65.77 7.72 7.73 7.73 7.73 7.73 7.73 7.73 7	5.86 2.05 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.70	5.73 5.77 6.09 4.85 4.85 17.04 3.20 6.05 5.27 2.470	13.67 2.89 2.50 2.51 2.62 2.62 2.62	.133 .060 .065	.172 .113 .113 .153
								1	2	0		

	8	±2	0	3	54	g	-	a06	3°c
5.09	.69 4.6	• 86 8•4	.23 7.7	73 8.7	.15 11.6	2.50 .C		5.76° 7.5	2.35° 3.2
2	3.14 5	2.08 4	8.00 3	5.63]	7.92 13	00.	62.7	4.57 5	4.46 2
L.	2.71	1 . 35	3.31	.1,2	6.52	4.03	6.15	3.33	3.03
.50	7.5	6.3	19.6	16.S	23.6	•	12.32	13.43	12.42
4	6 . 1	V+•0	∼ ∵	Т•3	10.0	11.3	14.06	10.26	8.79
8	°.	਼	3.0	•	°	਼	5.25	EIS.	.63
•	•	•	•	਼	0	2.	1.21	SN	11.
0	.19	0	਼	•	0	•	1.62	1.77	.31
õ	°	•	•	•	0	•			00.
ünitial	100/30	100, 57	00,/0/,	10, 11	407.57	0, anb	std.dif.cans	«clib.uris	treored, the second

aInc udes only sea which partially separated, lot total sea s. Jignificant difference for itens in rooms. Conficant difference for iten means.

.

•

La su su summe de la sur sur sur

- - -

Seat Test. The seam test was a measure of linear separation of seams on a 1-inch cross section of bag when subjected to a steady 1-lb. pull for 5 minutes at $73^{\circ}F/50$ r.h. Data showing percentages of seams which partially separated, mean linear separation of these seams in inches, and percentages of seams which separated completely, for tests performed through 2 years and at 3-4 years, are listed in Table 17. 金の記録が見たのないなかって見たいない

のなからいであるというないであるという

There was a decrease in partial separation during the last 2 years in all items, although mean separation per seam increased for the partiallyseparated seams of CDI1 and CDI3. Complete separation increased in all items, but remained very low in CDI1 and CDI2, in which most of both partial and complete separations were in bag seams from the higher temperatures. Thus CDI3 was the only item in which defective seams increased significantly during the 3rd and 4th years, from 5.75% complete and 5.98% partial separation through the first 2 years to 12.42% complete and 4.28% partial separation during the last 2 years. Lost of the separation in CDI3 was at the 70° and 40°F conditions, but the only general statement which can be made concerning storage conditions effects is that total percent defective seams appears to be decreasing at 0°F.

Total defectives for 35-48 months were 1.47% for CD12, 6.28% for CD11, and 16.70\% for CD13. Considering that CD13 seams averaged .044 inch wider, with only 1.0\% under the standard .250 inch as compared to 9.6\% and 4.5%under for CD11 and CD12, it would appear that the seaming of the CD13 bass was definitely not up to par.

2. Condition of Candy (Table 18)

Characteristics of the candies which were considered not likely to be affected by storage were not determined after the first year. These were:

	<u>CD11</u>	<u>CD12</u>	<u>CD13</u>	ilean
Product weight lbs.	34.2	35.8	34.0	34.7
Piece count per 1b.	120	89	38	99
Count 5 per can, lemon. cherry	48.3 51.7	48.3 51.7	49.2 50.8	48.6 51.4
Unsanded, count ⋦	.08	.21	.01	.10
Off-color, count %	.02	.01	.0 6	.03
Off-shape, count 6	5.2	1.1	2.9	3.1

Characteristics which could be influenced by storage and handling were determined at every examination. Data on these for the L-year inspections are shown in Table 18.

ļ

la de, ser a la factoria de la construction de la construction de la construction de la construction de la cons Construction de la construction de l

FHYSICAL CONDITION OF CARBOHYDRATE SUPPLEMENT STORED 48 MONTHS

.dif. ns	<u>v count</u> :	.79	85.41.00 12.00 15.	by weight:	.29	466 855 865 855 855 855 855 855 855 855 8
Std ca	ent b			rcent	, L	ri i i
Mean	. per c	.72	1.37 .66 .12 .12 .12 .12 .12 .55 .55	sh ^c , per	1.55	1.33 1.33 1.33 1.33 1.33 1.32 1.32 1.33 1.32 1.32
<u>CD13</u>	logether	.65	8.2.1.2.2.2.2.5.8 2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	ing 3-ine	58 .	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CD12	Stuck '	. 08	886886866 ³ 8	l. Passi	•59	ઌૡૹ૱ૡ૽ઙૹૢૡ
CD11	Pieces	1.73	ч ч ч ч ч с с с с с с с с с с с с с с с	Materie	3.18	и Корилони Сони Сони Сони Сони Сони Сони Сони С
<u>Std.dif</u> . cans	sount:	3.38	2.86 1.44 1.04 1.76 2.66d 2.66d	count:	.72	1.48 .84 .144 .1.07 .39 .39 .39 .35 ^d .55 ^e
Mean	sent by c	7.98	10.80 9.46 8.34 12.07 11.18 11.18 1.09 1.09 10.34	ercent by	.70	
CD13	s ^a , perc	6.11	11.22 7.6 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	Up ^b pe	1.09	1 11 80.00000 80.00000000
CD12	d Piece	74.44	13.8 113.5 113.5 19.6 19.6 10.65	Broken	13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TICO	Chippe	3.38	ッちょうかって、 うちゃののので、 ので、 ので、 ので、 ので、 ので、 ので、 しょ、 しょ、 しょ、 しょ、 ひょう、 しょ、 ひょう、 しょ、 ひょう、 しょ、 ひょう、 しょ、 ひょう、 しょ、 ひょう、 しょ、 ひ。 ひ。 の、 ひ。 の の の の の の の の の の の の の の の の の の	Pieces	1.13	
<u>Condition</u> •F/ <u>%</u> r.h.		0-36 no.	1:00/80 100/57 70/80 70/57 40/57 40/57 std.dif., cans sign.dif., 5% Mean		0-36 iito.	100/57 100/57 70/30 70/57 40/57 40/57 40/57 40/57 40/57 8:td.dif., cans sign.dif., 5% Mean

^aPieces with not more than 25% broken off; reductions from normal weight for the three items averaged 25.2, 3.1 and 12.9%, respectively. ^bEstimated as count in excess of amounts of chips required to restore chipped pieces to normal weight; negative values indicate chips discarded from chipped pieces before packing in the can. ^c nost of this material was sanding sugar. ^dSignificant difference for items in roms.

<u>Chipped pieces</u>. These were defined as pieces from which bits of surface or corners were chipped off, but which remained at least 75% intact. With the exception that CD12 was high at 6 months (slightly damaged cases and cans were removed from storage early in the test), percentages of chipped pieces were higher at 4 years than at any previous examination. As periodic comparisons with previous highs averaged a 1.59% increase at 2 years, with additional increases of 1.35 at 3 years and 1.39% at 4 years, there appears to be a mean increase of abcut 1.4% chipped pieces per year since the end of the first year. This ranges from 0.9% for CD11 to 2.2% for CD12, and has been fairly consistent, so it seems reasonable to assume the increases reflect the effects of handling the supplement cases in storage and sampling.

There was apparently no temperature effect on chipping, nor were there any consistent differences between lemon and cherry types in CD11 and CD12. The cherry candy of CD13 chipped more than the lemon, however, in all except 2 of the 12 cans at 4 years, mean 11.6% vs 7.5%; from all cases of CD13 examined, chipping of cherry has been greater in 68% of the cans, averaging 7.4% as compared to 5.8% for the lemon type.

Broken pieces. These were defined as anything riding an 8-mesh 3creen which was less than 75% of a whole piece. They were calculated, however, as count % whole pieces in excess of amounts required to restore chipped pieces to normal weight. Thus the total count % values for chips actually present in the cans were the sums of values shown as chipped pieces and broken pieces in Table 18.

Averages for excess broken bits through three years were 1.01% for CD11, -0.17% for CD12 (chips apparently lost before the candy was packed in the cans), and 0.96% for CD13. These are very close to the 4-year means of Table 16 except in CD11; the only negative values observed for this item were those shown. There have been no consistent temperature or time effects, and no consistent differences between lemon and cherry types except in CD12, in which all lemon has averaged -.029%, all cherry -0.05% for excess bits. These also become meaningless, however, in comparison with the 15% mean amounts of bits which have been calculated as required to restore chipped pieces of CD12 to normal weight.

Fieces stuck together. As seen in Table 13, clumping of pieces was somewhat higher than previous average in CD11, slightly lower in CD12 and CD13. There was an association with can moisture within item CD11 (4 cans averaging 1.03% moisture had 0.20% clumps, 8 cans with 1.67% moisture had 2.07% clumps) but not between items, as CD12 had 1.49% moisture with almost no clumping, CD13 had 1.65% with only 0.45% clumps. Cherry candy had almost twice as much clumping as lemon in CD11, without association with moisture content, and lemon almost twice as much as cherry in CD13, but none of this followed any previously set pattern. For the three items, 77% of the clumped pieces were in clumps of 2 pieces (including all of CD12 and 96% of CD13), 11% in clumps of 3, 4% in clumps of 4, 2% in clumps of 5, with 1 clump (1%) of 11 pieces and 1 clump (5%) of 42 pieces; the 5, 11 and 42 clumps were in

.

APPEARANCE-COLOR SCORES, MOLSTURE CONTENT AND PH VALUES

maition 78 r.h.	<u>T T T T T T T T T T T T T T T T T T T </u>	CD12	CD13	itean	JPPLEALENT SIG Std.dif. cans		2100	5013	Mean	<u>Std.dif</u> . cans
	Appea	rance-	Color	icore.	10-1 scale:	Noist	ure Co	ntent.	percent:	
ial	8.36	8.24	8.20	8.27	.27	1.35	1.34	1.50	1.40	0.22
/80	6.05	<i>6.6</i>	5.7	6.12	26.	1.65 1	1.40	1.64	1.57	.16
/80	6.9 6.7	0.7	2, i 2, i 2, i	0.43 7.02	4. 1.	1.02 1	1.53 1.53	1.52 1.52	1.51 1.36	.15 15
/57	7.2	7.35	2.0	7.18	13	1.85	ר. בי	1.7	1.69	17.
/57 /amh	0- 0-		5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	7.43	17.	1 8 0 80	1.49	ц. 23 23	1.67	06
dif., cans	5	97	50	5.5.		32.	7 7		-19 -19	
1.dif., 5%	112	9T.	1.47	14.	NSA		20.	NS.	.17	24ª
-	0.88	1.22	o.73	6. 94	, 55°	1.40	1. 49	1. 65	L-53	-60.
	pH Va	lues:								
ci 6. L	6.55	6.65	6.75	6.65	.10					
/80	5.95	6.45	6.53	6.31	•0 •					
/57	5.86	6.44	6.46	6.25	08					
Ő.	5.56	6.70	6.50	6.25	.07					
157	6.12	6.35	6.55	6.34	.48					
1.5.1	6.07	6.11	6.55	6.25	90.					
cime'	5.56	6.4.5	6.67	6.23	.10					
dif., cans	11	.34	-07	ನ						
1.dif., 5%	.19	SI.	.12	SN	.27a					
	5.86	5.42	6.54	6.27	ou.					

43

asignificant difference for items in rcoms. Usignificant difference for item means.

. .

CD11. With the exception that CD11 has had more clumps than CD13, and CD12 very few clumps at all, there is apparently no definite pattern to clumping of pieces other than increases in a few unsealed cans.

Material passing 8-mesh screen. With the exception that CDll averaged lower than usual (initial 2.45%, 6-36 months 3.24%, 48 months 2.40%), sanding sugar and bits of candy passing 8-mesh was apparently not associated with any storage variable.

3. Appearance and Color (Table 19)

Sensory scores for appearance and color of the carbohydrate supplements stored 48 months were obtained from the five judges of the sensory quality panel in the same manner as described above for the cereal items. The two types of candy, lemon and cherry, were scored together, with separate comments when differences were present. In general, appearance was scored down for dullness and epaqueness, color for slight darkening and graying of lemon and slight fading of the cherry type. Scores in Table 19 are the means of appearance and color scores. CD11 scored slightly lower on appearance, CD12 on color, CD13 averaged the same for both attributes.

Scores were lower than on previous examinations for all samples except the 40° and 0°F candy of CD12. Hean reductions were 0.94 at 100°/80%, 0.43 at 100°/57% and the 70° conditions, 0.19 at the two lower temperatures. As seen from the large standard differences for duplicate cans, both color and appearance were quite variable in the candies from $100^{\circ}/60\%$. The only two leakers detected, both from CD12, checked more closely than either CD11 or CD13, so the large can variance suggested the possibility of undetected leaking at this condition. In fact, the cans of both $100^{\circ}/30\%$ and $100^{\circ}/57\%$ in CD11 had marked differences in moisture content, although CD13 from 100° conditions was more variable in appearance-color scores with little variation in moisture.

Contents in general indicated that color had become quite variable, and somewhat unattractive in many samples, at 100°F, with some variability at 70° and slight loss of "brightness" at the lower temperatures.

4. Hunter Colcr Values (Tables 20 and 21)

Color values were determined on duplicate samples of 4-8 mesh bits of candy, cracked by hand to prevent "dusting" of surfaces. The Hunter Color Difference meter was set with INES Maize (L = 73.3, a = 1.4, b = 31.4) for lemon candy, NES Mitchen Red (L = 28.7, a = 49.5, b = 18.1) for cherry candy.

tendency to become duller at higher temperatures was indicated by differences in amounts of increase, however. The values for 100° F samples changed 1.8 units less, and those for 70° samples 0.5 less, than those for samples from 40° and 0°F.

The cherry type changed less in L values, mean changes from 3 years being a 2.1 unit increase for CD11 and a 1.2 unit decrease for CD12 and CD13. The slight fading effect at higher temperatures was illustrated by average changes, which were 0.7 increase at 100°F, no change at 70°, 1.0 decrease at the lower temperatures. Some of the panel judges noted a slight "darkened" appearance in the 40° and 0° samples in comparing them with samples from higher temperatures, although this is not too clearly indicated by the L values of Table 21.

Hunter "a" values. Changes in "a" values were fairly uniform in the lemon candies, averaging 0.3 unit decrease for CDll and 0.7 unit increase for CDl2 and CDl3. For temperatures, changes from 3 years averaged 1.6 units increase at 100°, 0.4 unit increase at 70°, 0.8 unit decrease at 40° and 0°. As related to the values given in Table 20, these represent a slight shift from green toward gray for CDl1 and CDl3 and toward slight browning of the light pink of CDl2 in samples from 100° and 70°F.

Values for "a" in the cherry type were somewhat more variable, as seen in Table 21, and there was an average increase over 3-year values of about 5 units in CD11, 4 in CD12, and 3 in CD13. The difference illustrating the slight fading at higher temperatures vs. slight darkening at lower, as mentioned by the taste panel, was the mean increase of 3.7 units at 100° and 70° vs. 4.3 units at 40° and 0°.

Hunter "b" v. 3. The "b" values for lemon candies averaged 4.6 units higher, those for cherry candies 3.1 units lower than at 3 years. For the lemon type the increase averaged 4.1 at 100° and 70°, 5.3 at 40° and 0°F, indicating the duller or grayer shades at higher temperatures. The slight fading at 100°, or darkening at lower temperatures for the cherry type, as noted by some of the panel judges, was rather poorly indicated by the average decrease of 1.8 mnits at 100° vs. 2.1 units at 70° and below.

Hunter a/b values. The ratios of a/b given in Tables 20 and 21 indicate the predominant characteristics of the color of the various candies, i.e., the slight greenish-yellow of CDL1 and CDL3 as compared to the pinkyellow of CDL2 lemon, and the paler red of CDL2 cherry. They do not indicate the temperature differences, however, which could be seen by visual observation. These differences were suggested by the changes in a/b from the 3-year values, these being .059 increase at 100°F, .016 at 70°, and .023 decrease at 40° and 0° for the lemon type (i.e., grayer or darker at higher temperatures), and 2.13 increase at 100° compared to 2.43 at 70° and below for the cherry type (i.e., less red at 100° or less yellow at the temperatures).

HUNTER COLOR VALUES OF LEGON TYPE CARBOHYDRATE SUPPLEMENT STORED 48 MONTHS

•			;							
<u>Condition</u> •F/½ r.h.	TIOD	<u>CD12</u>	CD13	Mean	Std.dif. cans	TIOO	<u>CD12</u>	<u>CD13</u>	Mean	<u>Std.dif</u> . cans
	Hunter	Ë				Hunter	:			
100/80	58.0	53.2	58.6 60.7	56.59 57.43	і.50 1.74	31.3 30.2	27.1 30.0	28.5 27.5	29.22	1.02 2.08
70/80	53.4	55.9	60.2	56.50	1.83 3.69	29.0 30.9	28 . 1 29 . 8	27.3 29.6	28.12 30.11	.68 2.51
1.5/07	58.0	57.1	57.6	57.59	3.79	32.4	28.5	28.1	29.63	77.
O/anb	53.9	56.2 2.23	59.1 53.1	56.38 2 55	.91	27.4	28.U 1.45	20.7 1.64	1.56	
std.dif.cans sign.dif.,5%	NSN	USN ?	NS NS	NSN SN	NSe L b	2.73	NS VR 58	NS 28,29	1.34	2.66 ^a 95 ^b
Mean	55.80	56.11	59.50	tr.).c	- 1 0		50.02	12103		
	Hunter	"a":				Hunter	<u>a/b</u> :			
100/80	с. С. Г.	10.2	-2.9	2.87 1.18	1.38 .91	100.	375	101	.045	.060
70/80		6.6	9.4	.61	.67	100	.234	169	010	53
70/57	-1.2	10.9		1.81	16 .	- 038	308	161°-	002	036
40/57	, - 4 	0 U 0 U	ာ့စ ဂိုဂ်	07.1	· 70	018). 15: 17:	137	.027	.037
orduuo st.d.dif.cans			-74	16.		910.	.056	•030	.038	
sign.dif. 5%	26.	2.30	1.27	8	1.48 ^a	.028	260.	150.	.035 0.5	.061 ⁴
Mean	37	8.50	-4.12	1.34	.570	012	.291	0 ⁴ 1	040.	-(20.
asignificant d buignificant d	ifference	e for it e for it	ens in ro en means.	. Shio				 		

BLE 21	
TAJ	

F |

HUNTER COLOR VALUES OF CHERRY TYPE CARBOHYDRATE SUPPLEMENT STORED 48 MONTHS

<u>Std.dif</u> . cans	1.90 1.87 1.79 1.13 1.03 NS ^a .30 ^b	.38 1.61 .56 2.55 2.06 NS ^a 1.02 ^b
Mean	4.81 4.78 4.43 1.31 NS NS	9.65 9.65 9.65 9.65 9.65 1.68 1.68 1.68 1.68 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65
<u>CD13</u>	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.55 3.25 2.70 2.72 2.70 2.72 2.70 2.72 2.70 2.72 2.70 2.72 2.70 2.72 2.70 2.72 2.70 2.72 2.72
<u>5 (0) 2</u>	8.8 9.7 8.5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	a/b: 1.99 2.12 2.12 2.18 2.18 2.18 2.18 8 .15 2.10
<u>CIU</u> <u>Hunter</u>	8.19.28.29.29.29.29.29.29.29.29.29.29.29.29.29.	Hunter 5.45 3.95 3.95 4.25 4.25 4.22 4.22
<u>Std.dif</u> . cans	2.32 2.67 2.64 1.170 MSa NSa 1.17 ⁵	7.08 9.31 9.32 1.96 3.77 8.17 8 NISa NISa
Mean	36.03 36.35 36.58 36.58 34.58 1.92 1.92 35.50 35.50	14.23 13.10 13.10 14.23 14.23 14.23 14.23 13.17
<u>CD13</u>	30.5 32.3 31.5 31.5 31.6 NS NS 31.72 31.72	10.0 8 0.0 9 0.0 100 9 0.0 9 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<u>cur</u> :	44.2 43.5 43.5 43.5 43.5 42.4 NS NS	17.5 17.5 20.6 19.6 19.8 19.8 NS 19.3 NS
<u>cunter</u>	а 22,22,22,22,23,2 22,20,23,22,23,2 22,20,20,20,23,23,23,23,23,23,23,23,23,23,23,23,23,	Hunter 14.9 8.00 14.0 14.0 14.0 11.16
Condition •F/ <u>%</u> r.h.	100/80 100/57 70/80 70/57 40/57 0/amb std.dif., cans sign.dif., 5% Mean	100/80 100/57 70/57 40/57 40/57 0/amb std.dif., cans sign.dif., 5%

aSignificant difference for items in rooms. Usignificant difference for item means.

. .

In general, the Hunter color values remained, as at former examinations, a relatively poor measurement of changes which were readily observed by the taste panels. One of the chief reasons for this was that most of the changes were observed as surface and general appearance differences, whereas the Hunter instrument yielded values only for the center colors of the candy. The shifts caused by the effects of temperature were generally toward the gray or "neutral" region in lemon candies, and toward opaqueness and "purpling" of the red in cherry candies, and each of these are areas of poor response for tri-stimulus color measurements.

5. moisture Content (Table 19)

Through 4 years, moisture has been determined as loss of weight on heating 20-mesh samples 24 hours at 65°-70°C with pressure about 30mm Hg, on lemon and cherry candies from 77 cans of each supplement item. CDll averaged 1.62%, GDl2 averaged 1.48%, with no mean difference between lemon and cherry; CDl3 lemon averaged 1.75%, cherry 1.60%, with lemon higher in 49 of the 77 cans. In CDl3, 48 cans ranged 1.6-1.9%, 22 cans 1.2-1.6%, 7 cans 1.9-2.1%. CDl2 ranged 42 cans 1.5-1.7%, 23 cans 1.3-1.5%, 12 cans 1.1-1.3%. CDl1, however, had 19 cans ranging 0.7-1.2%, 15 cans 1.2-1.6%, 25 cans 1.6-2.0%, and 18 cans 2.0-2.4%. This perhaps is a contributing factor in the wider ranges observed in almost all other characteristics of CDl1.

As in the values given in Table 19, there has been no indication of any time or temperature effects on moisture levels. In most instances, as at 4 years, leaking cans have differed very little from non-leakers. Apparently moisture has varied only with formulation and cooking.

6. pH Values (Table 19)

pH values were determined with the customary glass-electrode pH electrometer, using 1 + 1 solutions of candy prepared with demineralized water. The values continued the downward trend which has been exhibited by all items since the end of the first year in storage. Compared to previous low values, the 4-year means were down 0.30 in CD11, 0.15 in CD12, 0.10 in CD13; mean decreases from initial values are shown in Table 19.

There was no consistent association with storage conditions, $70^{\circ}/80\%$ and $40^{\circ}/57\%$ averaging 0.24 decrease, other conditons 0.12 decrease. Lemon and cherry types did not differ significantly at 4 years. Leaking cans did not differ except in CD12 at $70^{\circ}/57\%$, where the leaker was somewhat lower. In duplicate cans having moisture differences, the higher moisture and higher pH were usually found in the same can. As seen in the tabulated data CD13 had the smallest range of values, and CD11 the lowest values. In fact, CD11 was definitely low for the supplement type of candy, which probably contributed to the generally more variable quality of this item.

7. Sugar Contents (Table 22)

Sugars were determined by the official Lane-Eynon general volumetric procedure, with acid inversion at 73°F (Association of Official Agricultural Chemists, Washington, D. C.). Reducing sugar titrations were corrected for sucrose effect as directed by Fitelson (J. Assoc. Off. Agr. Chem., 1932, p. 624). All results were calculated on a dry weight basis.

<u>Reducing Sugars as Dextrose</u>. While reducing sugars did not average significantly lower at 4 years than on previous examinations, there were some unusually definite indications of changes associated with temperatures and pH values. For example, there were three samples with pH values lower than average: $70^{\circ}/80\%$ and $0^{\circ}/amb$ in CDl1 (pH 5.56) and $40^{\circ}/57\%$ in CDl2 (pH 6.11, but 0.36 lower than other 5 samples). Reference to reducing sugar values in Table 22 shows that inversion is definitely indicated in the two low pH samples of CDl1, and possibly in the $40^{\circ}/57\%$ sample of CDl2. Although pH values were not particularly low, there was also some suggestion of inversion in the higher-temperature samples of CDl3.

There were also some suggestions of decreased reducing sugars, possibly through anhydride formation and subsequent degradation reactions in some of the samples at higher temperatures. Examples were the 100°F samples of CD11 (1.1% below average), the 100°/57% and 70°/80% samples of CD12 (0.7% below average), and the 70°/57% sample of CD13 (0.9% below average); all of these also had low sucrose values.

<u>Sucrose</u>. There was little mean change in sucrose values with the exception of an 0.5% decrease from initial for CD13. (This item has averaged as high as initial on only one examination, however, so a reference value of 62.4% would probably be a better one than the initial 63.0% given in Table 22.) Differences among individual samples, as related to the changes in reducing sugars noted above, were observed as follows:

For the three samples in which inversion was suggested by high reducing sugars with low pi, sucrose averaged 4.1_{0} low in the 70°/80% sample and 2.1_{0}^{1} low in the 0°/a b sample of CD11. It was not low, however, in the 40°/57% sample of CD12. In CD13, with some inversion suggested at 100°F and possibly at 70°/80%, sucrose was 1.7% low at 100°/50%, but only slightly low or normal at 100°/57% and 70°/80%.

For the samples in which possible degradation of sugars was suggested, sucrose was 1.6% below average in CD11 at $100^{\circ}/50\%$, but about average at $100^{\circ}/57\%$; 1.7% below average in CD12 at $70^{\circ}/30\%$ out only 0.5% low at $100^{\circ}/57\%$; and somewhere around 1% low in CD13 at $70^{\circ}/57\%$. On the other hand, values were 2% above average in CD11 at $70^{\circ}/57\%$ and $40^{\circ}/57\%$, with some increase in CD12 at $40^{\circ}/57\%$ and CD13 at $0^{\circ}/amb$, so definite statements concerning reduction of sugars through degradation may be questionable.

Total Sugars. Although the total sugar values for CDLL appear to average low as given in Table 22, the previous storage team for CDLL was 80.9% instead of the 82.2% initial value shown, so there was actually no significant

SUGAR CONTENTS OF CARBOHYDRATE SUPPLEMENT STORED 48 MONTHS

Condition •F/% r.h.	CDII	CD12	<u>cD13</u>	Mean	Std.d <u>if</u> . cans	ττασ	<u>cD12</u>	CD13	Mean	<u>Std.dif</u> . cans
	Part-nose	, nercel	t:			Sucrose	. percen	•• וני		
				07 21		62.8	65.1	63.0	63.63	.75
Initial	19.4	16.3	17.4	60° J.T	ŧ	2		1		0 - r
	0.01	15.8	18.0	17.00	.52	í.19	65 . 0	60•7	62.20 63.09	1.40 2.23
	16.7	15.5 15.5	18.3	16.84	1.45	050	04.0	40°4	61.56	2.04
	20.6	15.5	17.8	17.93	1.4.		4.	61.7	63.85	1.53
70/57	18.2	15.9	17.2	17.10	1		10,94	63.0	64.58	2.8 8
10/57	19.3	17.2	17.5	18.00	,	24.0	65.4	63.4	63.18	•64
0/amb	20.4	16. 6	17.5	18.17	•47	1.07	2.07	-94	1.74	
std.difcans	.91	4.	8.			01.0	NS	SN	1.60	2.878
sign.dif., 5%	1.58 18.73	16.07	SN 27.71	17.51	q24.	62.11	64.93	62.22	63.09	1.06
						Dextro	se/sucroi	se ratio		
	Total S	<u>ugar. D</u>	i LOOUP						1	200
Tutta	g. 2	81.4	80.4	81.3	ц.	.309	.250	.277	.278	200
TREATUR	2		• ;		52 5	(AC)	.243	.297	.273	010.
100/80	78.3	80.8	78.7	79.20		267	172	.294	.267	.015
100/57	79.3	50.1	80.4	56.62		351	214	.284	.291	510.
70/80	79.3	78.9	80.3	At 6/.) .	282	214	.279	.268	-017
70/57	63.0	81.0	78.9	22.02		398	260	.278	.279	
1.0/57	54.1	83.2 2	80.5	82.20		336	.251	.276	.288	600 .
0/amb	81.1	82.0	80.9	27.18 20.00			ğ	10.	.013	
std.dif., cans	2.31	2.16	1.73	20.2	NSB	00	SN (SN	.012	0229
sign.dif., 5%		N N N N N N N	20 00		qSN	.302	172.	.285	.278	-900.
Mean	fig. 03	M.1 8	12.24							
act and ficant.	14 fferenc	e for it	ens in r	00MB .						
bSignificant (lifferenc	e for it	em means	-						

50

1

· •

decrease in mean values for total sugars. They averaged low, however, in CDl1 at the 100°F and 70°/80% conditions (2.6%, 1.6%, and 1.6%, respectively), in CDl2 at 100°/57% and 70°/80% (1.1% and 2.3%), and in CDl3 at 100°/80% and 70°/57% (1.5% and 1.3%); as mentioned above, these decreases could represent degradation reactions. They could also be can fluctuations, as values 1.1% and 3.2% above average were found in CDl1 at 70°/57% and 40°/57%, and CDl2 at $40^{\circ}/57\%$ was 2% high.

<u>Dextrose/Sucrese</u>. Changes in ratios of dextrose to sucrose, as seen in Table 22, confirm the indication of inversion in CD11 at 70°/80% and 0°/amb, with possibility of inversion in CD12 at $40^{\circ}/57\%$ and in the 100°F and 70°/80% samples of CD13. Decreases were observed at 100°F and 70°/57% in CD11, with slight decrease in the 100° and 70° samples of CD12.

8. Sensory Scores for Texture, Aroma and Flavor (Table 23)

Scores were assigned by the 5-member sensory quality panel in the manner described above for cereal items (Section A. 3.).

<u>Texture</u>. As seen in Table 23, there was relatively little difference in texture scores for the various samples. Comments indicated the 100°F candies were scored slightly lower because of increased hardness or "toughness". The mean decreases from previous low scores were 0.13 for 100°, 0.34 for 70° and 40°, and 0.07 for 0°. As experience indicates that few members of this or the hedonic panel try to chew the candy, at least not until dissolving mart of it in the mouth, the texture scores may be considered of little practical importance.

Aroma. The candies were scored low from 100°F for off or "terpene" odors, and reductions at 70° and 40° were attributed to "flatness" or lack of typical aroma. Scores seen in Table 23 averaged 1.6 lower than previously at 100°, 0.3 lower at 70°, about the same as previous lows at 40°. Candy from 3° was scored about the same as the average of all previous ratings, which was about 0.5 higher than the lowest ratings received during the first three years of storage.

Flavor. Candies from 100°F averaged 1.1 lower than previous lows because of off or "chemical, strong" flavors, with average reduction of 0.5 at 70° for slight off flavors or lack of typical flavor. Scores averaged 0.4 higher than previous lows at 40° and 0.5 higher at 0°, though 0.1-0.2 below previous averages at these temperatures.

9. Hedonic Ratings for Aroma, Flavor and Falatability (Table 24)

The hedonic evaluations of the supplements were made in the manner described above (Section A. 9.) for cereal items, several pieces of each of the two types of candy being presented as each coded sample.

Aroma. The aroma ratings given in Table 24 averaged 0.28 lower than previous low values at 100°F, 0.02 lower at 70°, but 0.18 higher at 40° and 0.44 higher at 0°. The 40° ratings averaged only 0.08 below initial,

TEXTURE, AROMA AND FLAVOR SCORFS OF CARBOHYDRATE SUPPLEMENT STORED 48 MONTHS (Scale from 10 = excellent to 1 = poor)

¥

		Ū,	cale ir	I OT HO	n lia Tracita	3	Linnd			
Condition •F/& r.h.	CULL	<u>cD12</u>	Textu CD13	re Lieen	<u>Std.dif.</u> cans	CDIT	CD12	CD13	i.iean	Std.dif. cans
Initial	6.24	8.56	8.20	33 33	.17	7.4	7.6	7.8	7.59	.23
100/80 100/57 70/80 70/57 40/57 50 50 50 50 50 50 50 50 50 50 50 50 50	7.0 7.0 7.0 NS NS 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.0 7.0 NS NS	7.126 NIS NIS NIS NIS NIS NIS NIS NIS NIS NIS	6.93 6.93 7.10 7.03 7.03 7.04 NIS	42 26 12 82 12 82 83 83 83 83 83 83 83 83 83 83 84 83 84 83 84 83 84 84 84 84 84 84 84 84 84 84 84 84 84	522 822352321458 822352321458	6 110,000 2010 2010 2010 2010 2010 2010 20	6.13 6.13 6.13 6.13 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	4.40 6.50 6.50 7.70 6.15 6.15	-57 -29 -24 -25 -24 -25 -24 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25
			Flavo	L.						
Initial	7.9	7.3	7.9	7.70	.24					
100/80 100/57 70/80 40/57 40/57 0/amb std.dif., cans sign.dif., 5% Mean	4.20 6.20 20 20 20 20 20 20 20 20 20 20 20 20 2	6.75 7.75 747 8.75 747 747 75 75 75	7.20 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.5	6.52 6.52 6.53 7.53 7.53 7.53 7.53 7.53 7.53 7.52 6.53 7.52 6.53 7.52 7.52 7.52 7.52 7.52 7.52 7.52 7.52	96. 335 825 825 825 825 825 825 825 825 825 82					
^a Significant d ^b Significant d	ifferen ifferen	ICE for ICE for	items item n	in roon leans.	IS .	1				

52

. 1

•

۰.

.

the 0° ratings 0.06 above initial. As with the smaller sensory quality panel, reasons given for reduction of ratings were predominantly off or "foreign" odors at 100° and lack of typical aroma at 70°.

Flavor. The flavor ratings at 4 years averaged 0.18 lower than previous low values at 100°F, but ratings at 70° averaged exactly the same as previous lows (CD11 decreased 0.28, Cl13 decreased 0.08, CD12 increased 0.36). Flavor ratings for 40° candies averaged 0.36 above former low values and 0.46 below initial, while 0° ratings were 0.43 above previous lows and 0.44 below initial. As usual, reduction of ratings was caused by off flavors at 100° and lack of typical flavor at 70°.

<u>Falataoility</u>. Ratings for palatability decreased more than aroma and flavor ratings after 4 years at 100° and 70°F, reductions from previous low values averaging 0.41 at 100° and 0.13 at 70°. Ratings at 40° averaged 0.19 above previous lows but 0.57 below initial, those at 0° were 0.41 above previous lows and 0.47 below initial.

Hean Hedonic Ratings. This section is included in Table 24 because it illustrates some of the characteristics of the carbohydrate supplements after 4 years in storage. It is seen that, while CD12 was rated lower than the other candies on initial examination for having less character, it changed less in storage at every condition. This item has been relatively stable in all characteristics. Second in general stability is CD13, which averaged higher than the other items at 100° and 70°F but changed hore than did CD12. CD11 was least stable at higher temperatures, but changed less than CD13 at 40° and 0° conditions.

The differences in ratings between duplicate cans within the various samples is of some interest. As seen in Table 24, this difference was considerably larger in CD12, and in the lower temperature conditions. While there was a normal amount of variation in CD12, the only characteristics in which it varied more than the other items were chipped pieces, Hunter L values, and sucrose content. As described in Section A. 9., the panel members rated duplicate cans on different sessions, each session being one set of the six storage conditions. Comments indicated the unusually large can variation resulted from less distinct differences among conditions in CD12, causing the panel members, who expected differences among samples from past experience, to use relatively greater ranges of scores for smaller differences in this item. As these smaller differences tended to be more closely associated with variations among individual pieces of candy than among storage conditions in many instances, the result was an apparently large can variation when the two sets of ratings for CD12 were compared.

The same type of "comparison phenomenon" apparently caused the large can variations at 40° and 0°F. The differences in ratings resulted more from varying differences between 40° and 0° samples and those from 70° and 100°, which were compared within sets of samples, than from differences between the duplicate cans themselves. These, being presented in different sets, could not be directly compared.

HEDONIC RATINGS FOR CARBOHYDRATE SUPPLEMENT STORED 43 MONTHS

Condition °F/% r.h.	CDII	CD12	CD13	Mean	Std.dif. cans	<u>t tab</u>	<u>cD12</u>	<u>CD13</u>	idean	Std.dif cans
	Arome	•• đi				Flavo				
Initial	6.88	6.'76	1.04	6.89		7.76	7.24	7.76	7 .59	
100/80	5.30	5.88	6.05	5.74	.31	6.08	6.35	6.23	6.22	.15
	5,60 20 20 20	5.73	6.35	5.89	.16	5.98	6.28	6.50	6.25)÷
70/57	2.0 28.0 89.0	0 0 0 0 0 0 0	040	0.44 24	0č. 77	6.58 2.33	6.90 20	, 5 5 7 7 7 7 7	6.67	.19
40/57	6.65	, % , %	6.88				0 2 2 2	0 22 22 22 22	69 • 0	55.
0/amb	6.95	6.88	2.03	6, 05	,				2	.38
std.dif., cans	ನ	.45	าส		;		0,4	8 T •/	CT-/	22
sign.dif., 5%	.36	.78	.36	27	NSE	3.	NSN NSN		, , , ,	NCA
liean	71. 9	6.40	6.55	6.37	•19)	6.53	6.80	6.72	6.68	180
	Palat.	abilit	к :			Niean	ledoni	e Ratin	53	
Initial	7.48	7.40	7.76	7.55	1	7.37	7.13	7.52	7.34	
100/80	5.73	6.18	6.10	6.00	.16	5.70	9 . 14	6.13	5.99	5
1.5/00T	5.80	6.15	6.30	6.08	01.	5.79	6.05	6.38	6.07	
03/0/	6.53	6.73	6.33	6.53	.18	6.50	6.73	6.42	6.55	ີ່ເຊ
12/01	6.15 0.15	6.73	6.68	6.52	.45	%	6.72	6.72	6.52	202
	0,0	7.18	6.90	6.99	.32	6.85	7.13	6.53	6.98	
	7.18	7.05	7.03	7.08	.18	7.11	2.00	7.08	7.06	
std ulf., cans	.18	ů, V	ನ	.26	1	20	.43	18	-29	
Sleader, 5%	רי בי	19.	.38	.22	NSa	.17	.37	.16	γr.	.278
Nean	6.30	6.67	6.55	6.53	.16 ^b	6.35	6.62	6.61	6.53	401.
all the part of	100				• • • • • • • • • • • • • • • • • • • •	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;				
Det zut of some u	TTHELEUIC	Ce IOL	ltens	in rooms	•					
n lucorfrudre	literenc	Ce Ior	item m	eans.						

CORRELATIONS OF PALATABILITY RATINGS AND OTHER MEASUREMENTS FOR CARBOHYDRATE SUPPLEMENT STORED 48 MONTHS (simple correlation coefficient, r)

Combined Products

terry Type Combined Products DI2 CD13 All CD11 CD12 CD13 All		.381222 +.087 .017184 +.087 .138572 +.155 .347 +.435069	.373098137317 +.566 ^b +.136109 .366 +.750 ^b +.049343466 ^a +.436 ^a +.015	.632 ^a 132 +.267 +.792 ^b +.413 ^a 208 +.189 .686 ^a +.859 ^b +.277072 +.338 +.562 ^b +.231 .708 ^b +.857 ^b +.383 ^a +.365 +.381 +.376 +.308 ^b	.366547 +.113 +.657 ^b +.276499 ^a +.074	+.827b +.915b +.769 ^b +.750 ^b +.328 .000 +.588 ^a +.321 +.865 ^b +.947 ^b +.829 ^b +.871 ^b +.920 ^b +.890 ^b +.710 ^b +.828 ^b	.468 \div .033 \pm .461 ^b \pm .760 ^b \pm .076 \pm .100 \pm .472 ^b .069 \pm .228 \pm .404 ^a \pm .522 ^b \pm .052 \pm .258 \pm .353 ^b .172 \pm .147 \pm .233 \pm .474 ^a \pm .021 \pm .136 \pm .134 .149 \pm .238 \pm .012 \pm .179 \pm .001 \pm .067 \pm .065	.033064470 ^b 632 ^b +.099174384 ^b	ed.)
CD11 C				+.826b + 237 + +.164 +	+.686a +		+.748 ^b - 579 ^a + +.560 +	682 ^a -	(continu
TIA		+.005 +.065 193	084	+.111 +.179 +.225) +.033		L +.1,85 ^b 4305 5142	3305	
Type CD13		313 478 +.358 394	+.322	273 +.284 +.084	460		+.061 1941 272	38(
CD12		+.458 171 +.019 245	+.826 ^b 568	+.089 043 016	+.178			+.076	
CDLL	: प	158 5998 346 6138	339 262	+.771 ^b +.142 +.577a	+.628 ^a		+.776 ^b 473 +.397 +.059	5838	
	<u>Palatability wit</u>	Hunter L a b a/b	Moisture pH	Dextrose Sucrose Total Sugar	Dextroze/ Sucrose	Sensory Color " Texture " Arona " Flavor	<u>kioisture with:</u> pH Dextrose Sucrose Total Jugar	Dextrose/ Sucrose	

-

;

1

and a strange of the second strange of the s

1

, }

56

, ,

H.

	Lemon Type CD11 CD12 CD13	IIV	Cherry Type CD11 CD12 CD13 A11	Combined Product CD11 CD12 CD13 A11	
<u>pH with</u> :					
Dextrose Sucrose Total Sugar	360\+.218139 . +.714 ^b 069252 - +.397009240 -	524 ^b +.291 035	636 ^a 561073741 ^b +.689 ^a 548 +.779 ^b +.025 +.434583 ^a +.794 ^b 341 ^a	467 ^a 283160631 ^t +.670 ^b 316 +.287 +.149 +.402326 +.169198	d d d d d d d d d d d d d d d d d d d
Dextrose/ Sucrose	593ª +.401016	580 ^b	774 ^b 3664 <i>55</i> 661 ^b	663 ^b 105294620 ^t	a R
aSignificant at	the 5% level of probab: the 1% level of probab.	ility.			

. AITTICATION AND THE THEAT OF DECOMPOSITION.

.... .

;

. 1. 3 Cal.

يتخال منابع المتعاط والألبان المراجع المراجع المتلك المتعادين والمسابق المراجع المراجع المسابق والمسابق

a de la comparte de l * 2. * *

A series with constraint and series of a series

いってい ちょう ちょう しょう いちょう かんかい ちょうちょう ちょうちょう ちょうちょう しょうちょう しょうちょう しょうしょう しょうしょう しょうしょう しょうしょう

57

Table 25 (continued)

cereal item cases at 5 years. Reductions at 70° averaged 20 psig, but there was an average increase of 47 psig at 40° and 0°F. Values were below 400 psig in 84% of the cases at 100° (23% were below 300) and 31% of those at 70°.

2. Moisture content of the fiberboard averaged 11.0% at 80% r.h., 8.0% at 57% r.h., and 14.2 at 0°F with ambient r.h. Bursting strength was not significantly correlated with moisture content.

3-4. General condition of cases remained satisfactory. Despite reduced bursting strength at higher temperatures, there was no can collapse and relatively little distortion of cases, essentially no molding or delamination, only moderate staining, and practically no change in legibility of case markings.

II. inetal Cans

1. Residual oxygen in non-leaking cans of cereal rations averaged 3.7% at 100°F, 8.7% at 70°, 13.0% at 40°, and 17.7% at 0°, with considerable ranges at all conditions except 0°.

2. All cans leaked in one item $(2\frac{1}{2}$ -gallon) and leakers ranged 8-25% in five others. Questionable leakers, ranging 4-33%, averaged 15% in ten items, leaving only one item free of leakers of any type.

3. Corrosion increased during the fourth and fifth years of storage on cans at the 80% r.h. conditions, with 10-20% of external surfaces corroded along seams and on panels. Internal corrosion remained practically unchanged, relatively slight. No leaks have been caused by corrosion.

4. Coatings of some of the 5-gallon cans were slightly yellowed at higher temperatures, but there was no softening or excessive flaking of any coating.

III. The Rations

A. Cereal Itens.

1. Broken packages averaged about 5% higher than on previous examinations, the increase being 1% more broken seals and 4% more torn wrappers. One biscuit in waxed paper had no broken packages, wafers averaged 3.2%, other items ranged 6.3 - 43.8%.

2. Broken score lines ranged 1.2 - 24.5%, mean 11.2%; moderate unit breakage 0.1 - 25.3, mean 3.4%; severe breakage was negligible. Total breakage, 3.6 - 42.9% with mean 19.4%, was apparently not associated with storage time or temperatures.

3. Appearance-color sensory scores decreased about 0.4 during the fifth year, due to slightly increased glazing of surfaces at lower

temperatures and the apparent beginning of browning or darkening at 100° and 70°F. Host of the changes were in light-baked items, and all ratings still averaged "good".

4. Slight to moderate decreases in Hunter Color "L" and "b" values, with corresponding increases in "a" and a/b, were correlated with observed changes in appearance. Items at 100° and 70°F were generally lighter than initial, but darker than at periods of maximum fading.

5. Fracture strength ranged 1100 - 2300 grams by items, and was apparently related only to degree of baking or other item characteristics.

6. Moisture content ranged 1.5 - 3.5%, mean 2.5%, in crackers and biscuits; mean 3.9% in wafers. Moisture varied somewhat with degree of browning in baking, but was not significantly correlated with fracture strength.

7. Peroxide values ranged 1.8 - 3.7 m-Eq., mean 2.9 at 0°F; 2.7 - 9.9, mean 5.4 at 40°; 2.7 - 25.7, mean 11.8 at 70°; and 1.5 - 34.8, mean 10.9 at 100°. General patterns indicated stability was exhausted at 100° and significantly decreased at 70°. Free fatty acids, ranging from 0.11 - 0.56, mean 0.27% at 0°F to 0.25 - 1.24, mean 0.70% at 100°, exhibited little indication of increase with storage. Free fatty acids have apparently established relatively steady-state b increase with oxidation in the various items at the various temperatures

8-9. Sensory quality ratings for texture still averaged "good", with moderate reduction for increased toughness or brittleness at higher temperatures. Scores for aroma and flavor and hedonic ratings for aroma, flavor and palatability were highly correlated. Palatability ratings ranged 2.55 - 4.45, mean 3.47 at 100°F (wafers and one cracker averaged 4.33); 4.63 - 6.10, mean 5.39 at 70°; mean ratings were 5.78 at 40° and 6.05 at 0°. The period of acceptable storage at 100°F is apparently passed, except possibly for wafers, which changed relatively little during the fifth year.

10. Correlations of palatability ratings with measurements associated with oxygen, rancidity, and color were relatively high.

B. Carbohydrate Supplements

1. Candy bags changed very little with storage except increases from 2.5 to 4.3% in partial separation and 4.5 to 12.4% in complete separation of seams in tests for one item.

2. Chipping of pieces of the hard candies appeared to be increasing by about 1.4% per year; the 4-year average was 10.3% chipped. Additional breakage, 0.2%; clumping, 0.6%; and locse sanding sugar, 1.3%, were apparently not influenced by storage.

3. Appearance-color scores averaged about 1.2 lower at 100°F and 0.4 lower at 70° than at the lower temperatures. Scores were reduced for opaqueness, with slight darkening or graying of lemon candy and slight fading of cherry candy.

4. Hunter Color values failed to show color differences which could be visually observed, as most changes were in areas in which the Color Meter is relatively insensitive.

5. noisture contents averaged about 1.5% in two items, with considerable can variation in one; the third item averaged 1.65% with lemon candy about 0.15% higher than cherry. Storage has apparently not influenced moisture content except in a few leaking cans.

6. pH values averaged about 5.9 in one item, 6.5 in the other two. One item varied considerably among cans, another varied among storage conditions. The mean of 5.9, about 0.7 below initial, is considered low for the supplement type of hard candy.

7. Dextrose contents averaged 16.1, 17.7 and 18.7%, with corresponding sucrose averages of 64.9, 62.2 and 62.1%. There was definite indication of inversion in two samples with pH below 5.6, and possible inversion in four other samples with pH nearer normal. Five samples, all at higher temperatures, were below average in both dextrose and sucrose, suggesting that degradation reactions may have accompanied observed changes in color and crystal structure of these candies.

8-9. Texture scores varied little, and were relatively unimportant, as few persons attempt to chew the hard candy before partially dissolving it in the mouth. Quality and hedonic ratings for aroma ranged 0.2 - 1.0, mean 0.55 lower than those for flavor of candies from 100°F, and averaged 0.25 lower at 70°; mean hedonic ratings were 6.03 at 100°, 6.53 at 70°, 7.02 at lower temperatures. Thus, although the candy was definitely offcolor at 100°, it was still rated moderately good to eat.

10. Correlations of palatability ratings with other measurements were generally inconsistent. The supplement apparently lacks a related sequence of changes such as the temperature-fading-oxidation-rancidity pattern of the cereal items.

Unclosedfied			
Security Classification			
DOCUMENT CO	ONTROL DATA - R&D		
(Security classification of title, body of shetrect and index	ing annotation must be enter	ed when	the everal report is classified)
University of Georgia		117 117	nleedfied
Georgia Experiment Station	24	. CROU	
Experiment, Georgia 30212		~	
J. REPORT TITLE			
Storage Stability of Civil Defense Sh	elter Rations (An	nual I	Report)
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Sixth Annual Report, 1 July 1967 - 30	June 1968		
5. F.O INOR(5) (Lear name, Inst name, Initial)			
Cecil, Sam R.			
	17. 707.4 10.07.04		
June 1968	60	LJ	2
Se. CONTRACT OR GRANT NO.	Se. ORIGINATOR'S REPO	RT NUM	BER(S)
Sub No. 12466(6300A-450)		15	6-VI-GES
L PROJECT NO. Costact			
DAHC-20-07-C-0130	S. OTHER REPORT NO	5) (Any	other numbers that may be sealgned
UGa-St-1-56	this report)		
TO A VAILABILITY/LMITATION NOTICES			
This document has been approved for p is unlimited.	ublic release and	sale;	; its distribution
11. SUPPLEMENTARY N . TES Subcontractor	12. SPONSORING MILITAR	NY ACTI	VITY
Stanford Research Institute Menlo Park, California 94025	Office of the S	L Dete Secret	ense of the Army
	Washington, D.	C. 2	20310
13. ABSTRACT			
Results are reported on the stability o stored for 5 years and 3 lots of carboh 100°F/80% r.h., 100°/57%, 70°/80%, 70°/ include 4 lots of survival crackers, 4 wheat wafers, and 3 lots of mixed lemon include 60-month and 48-month values, r	f ten lots of fall ydrate supplement 57%, 40°/57%, and lots of survival h and cherry flavon espectively, for (lout s store 0°/an biscui red ha (1) bu	shelter cereal rations ed for 4 years at abient r.h. ~ Rations its, 2 lots of bulgur ard candies. Data arsting strength,
moisture content, and general condition oxygen, leaking, corrosion, and coating cans; (3) breakage and general conditio product units; (4) fracture strength, p products; (5) pH and sugar contents of content, color, sensory quality, and he of previous examinations of stored ratio	s of V3c fiberboar defects of 2 1/2- n of package seals eroxides, and free carbohydrate supp donic ratings for ons are discussed	rd cas -gall. s, sea e fatt lement all p	ses; (2) residual on and 5-gallon metal ams, materials, and ty acids of wheat ts; and (6) moisture products. Results
		*	
DD FORM 1473		11e - 1	landfind
		Unc.	urity Classification
		560	

Unclassif	ied
Security	Classification

14. VEN WARMA	LIN	KA	LIN	KB	LIN	KC
KET WORDS	ROLE	WT	ROLE	WT	ROLE	WT
Storage stability	8					
Cans	9					
Fiberboard	9					
Containers	9					
Food containers	9					
Rations	4		4			
Survival	4		4			
Civil Defense	4		4			
Shelters	4		4			
Acceptability			8			
Flavor			8,9			
Bakery Product:			8,9			
Carbohydrate supplements			8,9			

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter tast name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7e. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES. Enter the total number of references cited in the report.

8. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be .dentified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the aponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

DD .5084 1473 (BACK)

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."²
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if snown.

11. SUPPLEMENTARY NOTES: Use for additional explanatory motes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (pering for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identi-.iers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rales, and weights is optional.

> Unclassified Security Classification