

OCD Work Unit Nc. 16148 Contract No. DAHC: 0-67-C-0147

May 22, 1968

THIS DOCUMENT HAS DEDI APPROVID FOR PUBLIC RELEASE AND SALE

ystem ciences

No

628

7.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SYSTEM SCIENCES, INCORPORATED

4720 Montgomery Lane Bethesda, Maryland 20014

> SUMMARY OF RESEARCH REPORT

FIREFLY

A Computer Model To Assess The Extent Of Nuclear Fire Damage In Urbanized Areas

> OCD Work Unit No. 1614B Contract No. DAHC20-67-C-0147

> > by

J.W. Crowley, B.R. Smith, H.J. Avise, and N.G. Whitney

for

Office of Civil Defense Office of the Secretary of the Army Washington, D.C. 20310

May 22, 1968

OCD REVIEW NOTICE

This report has been reviewed in the Office of Civil Defense and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Office of Civil Defense.

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED

DEFINITION

The FIREFLY model is a mathematical technique, adapted to computer calculation because of a need for the ability to handle a large amount of data, which will provide estimates of fire damage resulting both directly and indirectly from the detonation of a nuclear weapon.

GENERAL DESCRIPTION

The main task of FIREFLY is to assess the total damage to a real-world set of buildings from the initial thermal pulse of a nuclear weapon and from the subsequent spread of fire from those buildings which are burning. The model reads a great deal of data about the size, construction characteristics, fuel loading, and separation distances of each building, structures some environmental variables concerning wind speed and direction and weapon placement, and calculates the fire destruction in a probabalistic sense.

Two internal quantities are automatically varied to provide a spectrum of fire damage results. The first of these quantities is the probability of exposed room ignition, P_{ri} , and is a function of the total thermal energy delivered directly to a "standard" room sufficient to create a serious enough ignition that would lead to room flashover. The second quantity is the angle of elevation of the weapon fireball. The value for P_{ri} is dependent upon weapon yield, height of burst, atmospheric visibility, room dwelling occupancy, and slant range. By further fixing an angle of fireball elevation, any preset values for P_{ri} and acyle clearly represent

an infinite number of exogenous conditions. FIREFLY generates five values of P_{ri} (0.1, 0.3, 0.5, 0.7, 0.9) to be used with each of three angles (5°, 10⁶, 30°). These fifteen cases, each run 100 times to create a statistical sample, constitute one base case operation of the model using one wind velocity. After about three base cases have been conducted, an analyst may specify exact exogeneous conditions (a given yield, HOB, visibility, wind) and interpolate among the data which was presented for the spectrum of variables. The charts and equations necessary to calculate the actual value of P_{ri} will be presented in the final report to be published later this year.

FIREFLY deals with three calculated quantities:

- ... The probability of the complete ignition and destruction of a flammable building from the thermal pulse, ^ptp
- ... The probability that a burning building will create sufficient heat energy to ignite a flammable substance at a given distance (also called the "probability of jump"), p_j.
- ... The probability of ignition and destruction of a building from fire spread within the building itself (also called the probability of intra-building spread), p.

P_{tp}

The quantity p_{tp} is calculated for each building and is defined as

 $p_{tp} = 1 - (1 - p_{ri})^{N}$

where N is the number of ignition points and is itself a function of size of the building, percent window openings, size of the windows, degree of window shading (blinds, etc.), and degree of window shielding (a function of the heights of surrounding buildings and the fireball elevation).

Pj

The value for p_j depends upon a number of characteristics about a burning building (height, roof type, window openings), the separation distance involved, and the wind speed and direction.

P_s

The quantity p_s is a function of fuel loading, exterior wall type, floor construction, roof construction and height.

The quantities p_{tp} and p_s for a particular building are multiplied together and Monte Carloed against a random number to determine if that particular building is burning. If it is burning, it becomes a candidate to spread the fire to any nearby building. All p_j 's are calculated to any unburned structure; each p_j is also compared to a random number. If it is then determined that there is sufficient energy present at any building(s) in the neighboring area, the value(s) for p_s are themselves Monte Carloed to find which of them are destroyed.

The model is limited by present computer capability to a maximum of 27 city blocks or 1080 buildings, whichever is less. Final answers are provided for each of the fifteen variations of p_{ri} and

angle as a result of 100 runs per case in terms of the total number, percent of total, and standard deviation of

- ... buildings destroyed by thermal pulse
- ... buildings destroyed by fire spread
- ... total of the above

Revisions	and	Additions	to	FIREFLY
-----------	-----	-----------	----	---------

August 14, 1968

I. Revision of Section 5 II

```
I.1 Page 132
```

I.1.a. Addition after KVW is defined--

Symbol Dimension Meaning

KW 1 Code for the wall construction combustibility. See Section 2 VII F.

I.l.b. Replaces first line of fifth symbol, KW--

Symbol Dimension Meaning

KWD 1 General term for the distance in feet

I.I.c. Replaces last line of the meaning of KWE1-4--

eart. See'KWD

I.l.d. Replaces last line of the meaning of KWN1-4--

buildings respectively. See KWD

I.2 Page 133

I.2.a. Replaces last line of the meaning of KWS1-4--

buildings respectively. See KWD

I.2.b. Replaces last line of the meaning of KWW1-4--

buildings respectively. See KWD

II. Revision of Section 6, FIREFLY 1

```
Page 141
```

Replaces third statement --

BANK, ('), /BO/, WITH, KV CONS, PERP, (1), /B1/, FIREFLY1, AGNT

III. Revision of Section 6, FIREFLY 2

III.1 Page 167

III.1.a. Replaces third statement --

BANK, (0), /80/, (1), /81/, FIREFLY2

III.1.b. Replaces seventeenth statement ---

DO 24 K=1,KK

III.l.c. Addition after eighteenth statement ---

24 CONTINUE

III.2. Page 168

III.2.a. Replaces ninth statement --

```
DO 121 K=1,KK
```

III.2.b. Addition after tenth statement--

III.3. Page 175

III.3.a. Replaces sixteenth statement --

DO 8066 K=1,KK

III.3.b. Replaces seventeenth statement --

IF (KR(I,J,K).EQ.()) GO TO 8066

III.3.c. Addition after twenty-sixth statement--

8066 CONTINUE

SYSTEM SCIENCES, INCORPORATED

4720 Montgomery Lane Bethesda, Maryland 2001;

FIREFLY

A Computer Model To Assess The Extent Of Nuclear Fire Damage In Urbanized Areas

Supplemental Report

OCD Work Unit No. 1614B Contract No. DAHC20-67-C-0147

by

J.W. Crowley, B.R. Smith, H.J. Avise, and N.G. Whitney

for Office of Civil Defense Office of the Secretary of the Army Washington, D. C. 20310

May 22, 1968

OCD REVIEW NOTICE

This report has been reviewed in the Office of Civil Defense and approved for pulbication. Approval does not signify that the contents necessarily reflect the views and policies of the Office of Civil Defense.

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED

FOREWORD

The FIREFLY Model was developed for the Office of Civil Defense under Contract No. DAHC20-67-C-0147 as part of Work Unit 1614B. The authors gratefully acknowledge the assistance provided by Mr. George N. Sisson, OCD, OCD Project Officer, under whose guidance and direction the project was performed.

Appreciation is also expressed for the assistance provided by personnel at the National Civil Defense Computer Facility, Olney, Maryland where both developmental and production work on FIREFLY was conducted.

References in the text to Gage-Babcock refer to work by B. M. Cohn, et al, Gage-Babcock and Associates in a study entitled, "A System for Local Assessment of the Conflagration Potential of Urban Areas" (AD 616 623). Some work by IITRI, especially "Prediction of Fire Damage to Installations and Built-Up Areas from Nuclear Weapons" (Contract No. DA-49-146-XZ-021, IITRI Proj. N6001, July 1965) and "Shelter Fire Vulnerability--Survey and Analysis of Representative Buildings" (AD 615 391, IITRI Proj. N6005, March 1965) has proved extremely helpful in developing the working model.

i

ABSTRACT

In computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated.

TABLE OF CONTENTS

•

FOREWORD	Page i
ABS TRACT	ii
SECTION 1 - FIREFLY, GENERAL DESCRIPTION	1
SECTION 2 - FIREFLY 1	42
SECTION 3 - FIREFLY 2	79
SECTION 4 - FIREFLY 3	113
SECTION 5 - GLOSSARY	121
SECTION 6 - PROGRAM	139
FIREFLY 1 FIREFLY 2 FIREFLY 3	140 166 176
REFERENCES	179
DISTRIBUTION LIST	180

FIREFLY

SECTION 1

I. GENERAL DESCRIPTION

The urban fire analysis model, FIREFLY, has been developed by System Sciences, Inc., to provide an automated method for assessing the potential damage to shelter buildings from fires which occur as a result of ignition from the thermal pulse of a nuclear weapon or fire spread from nearby buildings. The model consists of three separate segments.

FIREFLY 1 structures the problem for FIREFLY 2 which in turn operates on the data and provides the results. FIREFLY 3 accepts the output of FIREFLY 2 and provides statistical summaries.

FIREFLY 1 performs the following functions:

- A. Reads building size and construction data about each building as well as the distance that every building is separated from its closest neighbors.
- B. Reads data concerning the wind speed and direction.
- C. Determines the potential flammability of a particular building as a function of its use, its contents and its construction.

- D. Determines the susceptibility of a particular building to the spread of fire from nearby structures as a function of the size of these structures, their separation and the speed and direction of the wind relative to all neighboring buildings.
- E. Writes a tape describing this environment which becomes the input to FIREFLY 2.

FIREFLY 2 performs computing operations on the given set of buildings to determine how many are destroyed for any given set of conditions. In accepting the probabilistic values from FIREFLY 1, it is able to structure a complete problem of exogenous and endogenous variables, to calculate the expected results 100 times in order to create a valid statistical sample, and then to change one of the variables for the calculation of a new set of results. The variables which are changed are a function of moving the fireball closer to the buildings to determine the increasing number of structures which are destroyed by fire due to the thermal pulse. The number of buildings destroyed by fire spread also becomes dependent upon these environmental changes.

FIREFLY 3, a summary program, analyzes each set of the 100 runs processed by FIREFLY 2 and provides the following summary answers for each of those sets:

- .. average number and percent-of-total buildings destroyed by the thermal pulse.
- .. average number and percent-of-total buildings destroyed by fire spread.
- .. standard deviations of the above two averages.

The detailed descriptions of the three segments are contained in the following three sections. An overall flow chart of the FIREFLY system is shown in Figure 1-1.

Paragraph II following will give some of the rationale, background, and relationships presented in a manner for the analyst rather than a programmer. Although much of the information will be repeated and expanded in Sections 2, 3, 4, 5, and 6, the reader wishing a general knowledge of the model may omit Sections 2-6.

1

FIGURE 1-1

-

CAPOLINE P

L

SUBROUTINES AGNT, PERP, WITH

~

SUBROUTINE KV CONS

11

T

ŧ

-

.

Status

1 Cast

FIREFLY 3 Figure 1-1 (Con't)

t

II. DESCRIPTION OF THE FIREFLY MODEL

RAY A MARCA

A. Rationale and Background

IITRI, Gage-Babcock, URS, SRI, and others have done a great deal of developmental and applied work in the field of fire phenomenology. Attempts have been made at specifying the parameters which have a bearing on the problem, defining some of these parameters in terms of workable expressions, and the construction of fire models. No single study, however, appeared to treat the problem in enough detail that real city blocks under hypothetical attack conditions could be assessed rapidly for all possible conditions of nuclear threat. IITRI's model was by far the most complete attempt at solving the urban fire problem and Gage-Babcock had gone furthest in classifying buildings and separation distances. Some of both methods have been employed.

B. Sample Problem

Since Sections 2-6 present much of the more intricate workings of the model we shall begin with a sample problem of fire ignition and fire spread and work it through to completion much in the same way that FIREFLY itself would.

The buildings, A and B, are shown in Figure 1-2. They are identical in size and used for the analysis to be presented here.

The weather conditions prior to the detonation of weapon show a clear day (visibility of 12 miles or greater), and a wind of 10 mph blowing from the northwest.

The neighborhood is medium-class residential with a typical dwelling occupancy of 0.7 persons per room.

A 1 MT weapon is exploded at 640-foot scaled height of burst creating an angle of elevation of the fireball of 20° at buildings A and B.

Of first interest is to determine if either building will burn as a result of the thermal pulse* by calculating two distinct quantities. The first of these quantities, called p_{tp}, represents the probability that a completely flammable building will burn and is given by

$$p_{tp} = 1 - (1 - p_{ri})^{N}$$

We find the value for the probability of room ignition (p_{ri}) from curves such as Figure 1-3 (which have been subsequently reduced to algorithmic form for all yields, heights of burst, and dwelling occupancies).

The actual height of burst for a 1 MT 640-foot scaled is

^{*} It must be borne in mind that FIREFLY does not, at present, take blast effects into account.

...

Second Second

•

HOB = $640 \ \text{W} = 640 \ \text{M} 1000 = 6400 \text{ ft} = 1.21 \text{ miles}$ (W is in kilotons)

The slant range is then

1.

$$\frac{1.21}{\sin 20^{\circ}} = 3.54$$
 miles

Using Figure 1-3, p_{ri} is found to be 0.72 and represents the probability that an exposed room will sustain sufficient ignition to produce flashover.

The quantity N, the number of ignition points, may be defined as

$$N = \left[\frac{\left(\frac{l+w}{2}\right)(h)}{a} \right] \left[p_{w'}, w_{s'}, w_{h} \right]$$

where

\$\$\mathcal{L}\$ = building length (ft)

- w = building width (ft)
- h = building height (ft)
- a = average area of a single window (3 x 5 ft normally)

p_w = ratio of window area to
total wall area (.20)

w = window shading (found to be .50)

w_h = window shielding factor*

^{*} W_h is one minus the percentage shielded. Thus if all windows are totally shielded from the thermal pulse by a neighboring building, then $W_h = 0$.

A note of caution is necessary before N is calculated. Notice that the value for window area, a, is in the denominator. From immediate inspection it appears that if the window size is increased, holding all other values constant, the number of ignition points will decrease which would not be correct. A little interpretation of the case in question is necessary. Take, for example, the case of a modern, all glass front building. If no interpretation of the values is performed, one might mistakenly give "a" a value equal to the entire front area while giving p a value of 1.0. The value of "a" must be examined from the standpoint of the number of compartments showing in the front face and using the net average dimension of the compartments. The value of \textbf{p}_w could never be exactly 1.0--allowance must be made for floor and wall divisions. Further, if for the same building the value of "a" were to double, then \boldsymbol{p}_w must also double.

The length and width of the building are averaged since we wish to express the answers in terms of a lateral random orientation of the weapon.

The only quantity remaining to be assessed is the window shielding, w_h . Curves such as Figure 1-4 must be constructed for a typical urban area as a result of sightings from many window levels (such as may be accomplished using Sanborn maps) to determine the obstructions that will occur. Using Figure 1-4 for an elevation angle of 20° we find that 14% of the windows will be blocked; thus w_h is 0.86. Solving for N, we find

$$N = \left[\frac{\frac{40 + 20}{2} (20)}{15} \right] \left[(.20) (.50) (.86) \right]$$

N = 3.44

Then

$$P_{tp} = 1 - (1 - .72)^{3.44}$$

 $P_{tp} = 0.987$

The second quantity to be calculated is the probability of interior spread, p_s , and is given by

$$p_{s} = \sin \left\{ \frac{\pi}{300} \left[H(L + F + W) + R \right] \right\}$$

Before the terms in the equation for p_s are evaluated it must be mentioned that p_s itself is used in two places. Since it is a measure of inter-building spread, reflecting basically the construction characteristics from a flammability standpoint, it is used to "degrade" p_{tp} and a quantity p_j which will be evaluated in a later paragraph.

The values of H, L, F, W, and R are factors which depend on the height and construction characteristics of the particular building. They are explained in detail in Section 2 but must be quantified here for use in the above expression. The following information is estimated using Sanborn maps:

1. Use -- apartment with a moderate fire load (L=20)

- 2. Exterior Wall Construction--masonry, non-combustible
 (W=10)
- 3. Roof--class 2, non-combustible (R=10)
- 4. Floor--fire-resistive (F=0)
- 5. Height--2-story (H=1.0)

Solving for p_s , we find

$$p_{s} = \sin \frac{\pi}{300} \left[1.0 (20 + 0 + 10) + 10 \right]$$
$$p_{s} = \sin \frac{40\pi}{300} = \sin \frac{\pi}{7.5} = \sin 24^{\circ}$$
$$p_{s} = 0.407$$

Now p_s and p_{tp} are combined into the final probability of building ignition, p_{tpn} , by

$$p_{tpn} = p_{tp} p_{s}$$

 $p_{tpn} = (0.987)(0.407)$
 $p_{tpn} = 0.402$

The value of 0.402 is compared to a random number (in decimal form) which is generated within FIREFLY. If the random number is equal to or less than the value for p_{tpn} , the building is assumed to have been destroyed by fire.

For purposes of demonstrating the fire spread portion of the model, assume that building A is burning and building B is not (i.e., the random number generated for B was greater than 0.402). It is necessary to calculate the threat that A poses to B as a function of

- ... The nature of the flame front that A will present.
- ... The separation distance between A and B.
- ... The speed and direction of the wind.

1. The Flame Front

The first step in assessing the nature of the flame is to decide upon a value for the "average flame height." This term is a bit misleading but only represents an intermediate calculation, and may be assessed using the Table 1-1.*

Remembering that building A has a class 2 roof, average window openings, and is two stories in height, Table 1-1 gives an "average flame height" of 14 feet. This value is divided into the dimension of building A facing building B to determine into which of three radiating shapes the building will fall (square, rectangular, or long rectangular). The desired ratio is, then

$$\frac{40}{14} = 2.86$$

A ratio of 2.86 classifies building A as a rectangular radiator (the criteria being between 1.6 and 8.0).

Number of Content

^{*} Reproduced in total from Table 1 (p. 48) of the Gage-Babcock work referenced in the Foreword.

TABLE" 1-1

"Average Flame Heights" For Building Characteristics (in feet)

Class 1 Roof Construction -- Fire Resistive, 2-Hour or Better

Story		WALL	OPENI	NGS	
Height	None	Few	Average	Many	A11
1	•4	1.8	3.6	7.2	12
2	.7	3.6	7.2	114	24
3	1.1	5.4	11	22	36
4	1.4	7.2	14	29	48
5	1.8	9	18	36	60
6	2.2	11	22	43	72
7	2.5	13	25	50	84
 8 & over	2.9	14	29	58	96

Class 2 Roof Construction -- Noncombustible or Fire Resistive Less Than 2-Hours

Story		WALL	OPENI	NGS	
Height	None	Few	Average	Many	A11
1	10	11	12	14	18
2	10	12	14	17	27
3	10	13	15	21	35
L.	10	14	17	24	44
5	10	15	19	28	52
6	10	15	81	32	60
7	10	17	23	35	69
8 & over	10	17	24	39	77

Class 3 Roof Construction--Wood, Flat or Peaked Up to 15 Feet

Story		WALL	OPENI	NGS	
Height	None	Few	Average	Many	A 11
1	30	31	32	34	38
2	30	32	34	37	47
3	30	33	35	41	55
4	30	34	37	<u>44</u>	64
5	30	34	39	48	72
6	30	35	Ĺл	52	80
7	30	36	43	55	89
8 & over	30	37	44	59	97

Table 1-1 (Continued)

Story	7	WALL	OPENI	NGS	
Heigh	t None	Few	Average	Many	A11
1	45	46	47	49	53
2	45	47	49	52	62
3	45	48	50	56	70
<u>لًا</u>	45	49	52	59	79
5	45	49	54	63	87
6	45	50	56	67	95
7	15	51	58	70	10h
8 6 00	er Jis	52	59	7)	112

Class & Roof Construction--Wood, Bow String Truss or Peaked 16-25 Feet

Class 5 Roof Construction--Wood, Peaked 26 Feet and Over

Story		WALL	OPENI	NGS	
Height	None	Few	Average	Many	A11
1	60	61	62	64	68
2	60	62	64	67	77
3	60	63	65	71	85
4	60	84	67	74	94
5	60	64	69	78	102
6	60	65	71	82	110
7	60	67	73	85	119
8 & over	60	67	74	89	127

Figure 1-5 is the curve of the "safe distance" relationship for a rectangular radiator as a function of the adjusted radiating area. This safe distance is the distance **a**way from the radiating face of a building under quiescent wind conditions at which ignitions will not occur. The adjusted radiating area is the average flame height (14 feet) multiplied by the width of the face (40 feet), or 560 sq ft. Figure 1-5 shows the safe distance to be 68 feet.

2. The Separation Distance

The actual distance of separation is compared to the theoretical safe separation distance. If the actual distance is zero, the probability of "jump", p_j , (i.e., the probability that the heat from building A will be sufficient to cause one or more ignitions in building B) is set equal to 1.0 for combustible separating walls and 0.95 for fire-resistive walls. If the actual distance is greater than the safe distance, p_j is zero. For cases in between a quantity x is calculated as

$$x = \frac{\text{actual distance}}{\text{safe distance}}$$
$$x = \frac{40}{68} = 0.588$$

3. The Wind

The direction of the wind is shown in Figure 1-2; the speed is 10 mph. Building B is located due south from A, thus the wind component for spread considerations from A to B is

 $J_{ab} = J_0 \cos \theta$ $J_{ab} = 10 \cos 45^{\circ}$ $J_{ab} = + 7.07 \text{ mph}$

FIREFLY vectors all winds for spread considerations to create any one of nine cases--fire spread with, perpendicular to, or into a low (<8 mph), medium (\geq 8 but <16 mph), or high wind (\geq 16 mph). The rationale for this may be demonstrated in Figure 1-6.

Figure 1-6

Circle 1 represents the safe distance from a radiating point source located at 0 under quiescent conditions. If a wind is blowing as indicated the figure changes as shown by curve 2. Spread from 0 to A will be difficult since both fire brands and the flame inclination will be "pointed" towards C rather than towards A. Spread perpendicular to the wind (0 to B) will be greater than that from 0 to A but still less than the original value of the radius of circle 1. As the wind speed increases, OA and OB decrease whereas OC increases. It may be thought then any curve will inscribe an identical area.

Within FIREFLY, the nine curves, which each plot actual/safe distance ratio \mathbf{x} versus p_j , fire jump probability, are contained in mathematical form. The expression relating a value of x equal to 0.588 for spread with (building A to B) a <u>low</u> (7.07 mph) wind for x between .45 and .71 is

> $p_j = .96x - .340$ $p_j = 0.224$

The value for p_j is compared to a random number as before. If that random number is less than or equal to p_j , we have sufficient energy present at building B to cause ignition. To determine whether or not B burns, a final random number is compared to p_s (inter-building spread probability) for building B. If B is found to be burning, it then becomes a candidate for causing spread to other nearby structures.

III. OUTPUT

Under normal operating conditions, FIREFLY does not calculate either p_{ri} or the angle of fireball elevation but, instead, "pegs" enough values to create a spectrum of answers. Using one wind vector, p_{ri} takes on values of .1, .3, .5, .7, and .9 for each of the angles of 5°, 10°, and 30°. Since FIREFLY must create a statistical sample, each of the 15 cases of p_{ri} and angle must be run 100 times.

At any one case, an infinite host of conditions are simultaneously represented. A p_{ri} of .5 and an angle of 5°, for example, may represent a small-yield, ground burst weapon at short range on a clear day, a large-yield, air burst weapon far away on a hazy day, and so forth.

Tables 1-2, 1-3, and 1-4 represent actual FIREFLY output from three separate runs (one for each wind speed level) against an actual area in East Boston, Massachusetts. The data may be presented in many ways

... in tabular form as shown
... on curves on linear paper
... on special paper (log-log, linear-probability)

TABLE 1-2

FIREFLY RESULTS

CINIM MOT

E. BOSTON, MASS

		AVG NO. BURNT	OF BUIL (100 CAS	DINGS	PERCEN BU	T BURNT ILDINGS)	(200	STANDA	RD DEVIA	rion %
PROB ROOM IGNITION	ANGLE OF ELEVATION	THERMAL	SPREAD	TOTAL	THERMAL PULSE	SPREAD	TOTAL	THERMAL	SPREAD	TOTAL
0.1	5 DEG	1	2	т	1	Ч	2	1.4	2.6	3.0
0.3	5 DEG	9	ъ	11	ŝ	m	9	2.2	3.7	4.4
0.5	5 DEG	10	8	18	ſ	4	6	3.5	4.2	5.5
0.7	5 DEG	14	11	25	7	9	13	3.3	4.5	5.6
0.9	5 DEG	17	14	31	6	7	16	3.9	4.1	5.7
0.1	10 DEG	m	m	9	2	2	4	1.7	3.3	3.7
0.3	10 DEG	æ	6	17	4	ഗ	6	2.6	4.4	5.1
0.5	10 DEG	15	12	27	8	9	14	3 ° 0	4.5	5.4
0.7	10 DEG	20	14	34	10	7	17	3.6	4.4	5.7
0.9	10 DEG	24	17	41	12	6	21	3.9	4.5	5.9
0.1	30 DEG	14	12	26	7	9	13	3.3	4.8	5.8
0.3	30 DEG	38	19	57	19	10	50	4.9	3.7	6.2
0.5	30 DEG	55	20	75	28	10	OT)	5.9	4.1	7.2
0.7	30 DEG	68	20	88	34	10	44	5.7	4.4	7.2
0° (30 DEG	19	18	57	40	6	64	5.6	4.1	6.9

TABLE 1-3

1

FIREFLY RESULTS

MEDIUM WIND

E. BOSTON, MASS.

		AVG NO. BURNT	(100 CAS	DINGS (SES)	PERCEN BU	T BURNT ILDINGS)	(200	S TANDA	RD DEVIA	LION X
PROB ROOM IGNITION	ANGLE OF ELEVATION	THERMAL PULSE	SPREAD	TOTAL	THERMAL PULSE	SPREAD	TOTAL	THERMAL PULSE	SPREAD	TOTAL
0.1	5 DEG	2	7	4	Ч	Ч	2	1.0	2.8	3.0
0.3	5 DEG	9	7	13	m	4	7	2.2	4.9	5.4
0.5	5 DEG	6	10	19	ъ	S	10	2.8	4.5	5.3
0.7	5 DEG	14	14	28	7	2	14	3.5	4.7	5.8
0.9	5 DEG	17	15	32	6	8	17	3.6	5.1	6.2
36										
0.1	10 DEG	ო	4	7	2	2	4	1.4	3•3	3.6
0.3	10 DEG	6	10	19	2	ഗ	10	3.0	4.7	5.6
0.5	10 DEG	14	13	27	7	9	13	3.9	5.0	6.3
0.7	10 DEG	20	16	36	10	ω	18	3.9	4.7	6.1
0.9	10 DEG	24	18	42	12	6	21	4.5	4.5	6.3
1 0	30 DEG	14	13	27	7	9	13	3°3	4.8	، 8
0.3	30 DEG	38	22	60	19	11	30	5.1	4.6	د.)
0.5	30 DEG	54	23	77	27	12	39	6.0	4.6	7.5
0.7	30 DEG	67	21	88	34	11	45	5.6	<u>،</u> ۱	7.1
0.9	30 DEG	79	21	00 T	40	11	51	5.4	4.1	6.8

. .

TABLE 1-4

FIREFLY RESULTS HIGH WIND E. BOSTON, MASS.

		AVG NO. BURNT	OF BUIL (100 CAS	DINGS SES)	PERCEN BU	T BURNT ILDINGS)	(200	S TANDAR I	DEVIAT	% NOI
PROB ROOM IGNITION	ANGLE OF ELEVATION	THERMAL	SPREAD	TOTAL	THERMAL	SPREAD	TOTAL	THE RMAL PULSE	SPREAD	TOTAL
0.1	5 DEG	2	2	4	L I		~	1.7	3.3	3.7
0.3	5 DEG	9	2	13	ι m	4	1	2.0	4.5	4.9
0.5	5 DEG	6	11	20	S	9	11	2.6	5.1	5.7
0.7	5 DEG	14	16	30	7	8	15	3.7	5.3	6.5
0.9	5 DEG	18	17	35	6	6	18	4.0	4.7	6.2
37										
0.1	10 DEG	e	4	7	2	2	4	1.4	3.6	3.9
0.3	10 DEG	6	11	20	S	9	11	3.0	5.4	6.2
0.5	10 DEG	15	16	31	8	ω	16	3.7	4.9	6.2
0.7	10 DEG	19	17	36	10	6	19	3.3	4.6	5.7
6.0	10 DEG	24	21	45	12	11	23	4.7	5.2	7°0
1,0	30 DEG	14	נ	90	Ĺ	α	u L	с 1	C L	
0.3	30 DEG	38.	23	61	19	12	31			1.0
0,5	30 DEG	54	24	78	27	12	39	0.0	4.6	6.8
0.7	30 DEG	69	24	93	35	12	47	5.5	4.7	7°2
6.0	30 DEG	80	22	102	40	11	51	5.3	4.0	6 ° 6

.,

using different labels for the axes. Figures 1-7 through 1-9 show typical representations of the output for the run made against Boston.

Figure 1-8

Figure 1-9

SECTION 2

FIREFLY 1

I. INTRODUCTION

The first task of FIREFLY 1 is to read a large amount of information about each building (its size, general construction type, and separation distance from all nearby structures) and a wind vector (given in terms of a wind speed and an azimuth). The model must be structured in terms of the four cardinal directions as all distances, and ultimately all wind vectors, are related to each other in terms of north, east, south, and west. The capacity of the computer's data handling capability limits an area assessment to 27 city blocks, each block containing no more than 10 buildings per side (for a maximum of 40 buildings per block and 1080 buildings per assessment).

Each building is given a three-digit code of the form (i,j,k) where "i" is the block number, "j" is the cardinal direction (1-north, 2-east, 3-south, and 4-west) of the building's location on the block, and "k" is the building number within a particular block; "i" and "k" must be sequentially numbered from one. Figure 2-1 is a typical representation of a city block and a number scheme. It may be noted that the block between Pine Street and Maple Street has been made into two blocks. This was done because of the limitation of 10 buildings per block side. The long building on the

.

* (1,3,2) uniquely defines the building. The block number is
1, the blockside number is 3 (south), and the lot number is
2.

NOTE: There are more than ten buildings on blockside 3 of the physical block made up of BLOCK2 and BLOCK3 so the physical block must be split to keep within the program's limitations. The building on blockside 1 of BLOCK2 and 3 is split by this division; however, the part of this building in BLOCK3 has more than 4 neighboring buildings to the south. Thus the building is again split.

KEY

=====	changes from physical building to those within the limitations of the program
	changes from physical blocks to those within program's limita- tions

southside of Elm Street has been split into three separate buildings because of a limitation of four neighboring buildings in any one direction.

The input data is described in sub-section 2. Once this data has been read by the program, the first task is to compute the probability that any particular building will ignite as a function of its own construction, the distance to nearby structures that may be burning, and the prevailing wind.

II. BUILDING CONSTRUCTION

A. Ignition from Fire Spread

The assessment of the vulnerability of a building to fire was taken in part from a study by Gage-Babcock and Associates ("A System for Local Assessment of the Conflagration Potential of Urban Areas," March 1965). They recorded quantitative values to be assigned to a city block; these values, based primarily upon number of wall openings, roof, floor, and exterior wall construction, building size, and susceptibility of a particular block. FIREFLY uses these quantities to calculate an index (from 0-100) for each building. This index, called $PRF_{i,j,k}$ becomes the probability of ignition from fire spread when divided by 100. A completely wood-frame residential structure develops a rating near 1.0; a modern fireproof office building,

The size of the four building walls is also calculated. This is done so that if this building is found to be burning at a later time, the maximum size of the flame front may be calculated to assess the threat to nearby buildings; a large building which is burning obviously presents a greater threat to a neighboring structure than a small building.

B. Ignition from Thermal Pulse

The mathematical treatment of the phenomena of thermal pulse generation and transmission has been thoroughly covered in other documents and will not be discussed

here. Actually, FIREFLY does not treat basic weapon parameters at all but is concerned with assessing the change in the probability of building ignition from thermal pulse as a function of only two exogenous variables: the probability of ignition of an exposed "room" and the angle of elevation of the weapon fireball.

Three elevation angles $(5^{\circ}, 10^{\circ}, 30^{\circ})$ are examined each with five probabilities (.1, .3, .5, .7, .9), thus FIREFLY 1 runs 15 times. The reason for the limits of the angles of elevation is that much below 5° represents little thermal pulse threat and at angles over 30° the fire problem is insignificant since blast is the major agent of damage at this point. By selecting discrete exposed room probabilities, a world of conditions may be represented independent of yield, atmospheric transmissivity, and distance to burst. Thus with the angle of elevation fixed at, say, 10°, a probability of 0.3 may represent a 1MT weapon, 8 miles away, with visibility of 6 miles, a 200KT weapon, 10 miles away on a clear day--clearly the combinations are infinite.

The general expression that is solved is of the form

$$P_{b} = (1 - (1 - P_{r})^{N})$$

where

- P_b = probability of building ignition
- P_r = probability of "room" ignition
- N = number of exposed "rooms"

A "room" is now defined as any environment behind a window and an exposed room is any environment which will be "seen" by the fireball. The number of exposed rooms, N, is calculated as a function of

- ... the fact that only one building side can effectively face the blast
- ... the number of windows that may be shielded by neighboring buildings given the angle of elevation of the fireball
- ... the physical size of the building
- ... the percent window openings to total wall area
- ... the physical size of the windows
- ... the average expected number of windows which will be covered by drapes, shades, and blinds

Many of the above items have been standardized within the program but they may be varied.

The probability of building ignition, P_b has to be further modified, however, since the expression $1 - (1 - P_r)^N$ takes no account of different building construction. A series of ignitions in a wooden building is potentially more disasterous than ignitions in a modern reinforced-concrete building. The value of P_b is multiplied by PRF_{i,j,k} which was calculated previously to reflect building construction and contents.

III. SEPARATION DISTANCES

All pertinent separation distances are read and become permanent data within the program. Referencing Figure 2-1 again, building (1,3,2) has three associated physical separations. IV. WIND

For purposes of analysis any wind speed (in miles per hour) and any azimuth (measured in degrees counter clockwise from due East) may be chosen. For assessment, the wind will be classified within the program as low (< 8 mph), medium (\geq 8 but < 16 mph) or high (\geq 16 mph) and fire spread potential will be assessed in the four cardinal directions to correspond with the normal methods of calculation within the program. Once the wind vector has been split into its two cardinal orthogonal components, counter, mirror images are formed along the two remaining cardinal directions. For instance, if a wind were blowing from the southwest (i.e., into or towards the northeast) there would exist a vertical component due north and a horizontal component due east. If fire spread is being considered from one building to another, more easterly, building, then the fire spread will be aided (i.e., the probability of spread will be higher). If the reverse were true, a westerly spread, the probability of spread will be correspondingly lowered.

Thus nine combinations exist: fire spread with, into, or perpendicular to a low, medium, or high speed wind. These combinations are used in determining the probability that fire will "jump" a gap.

V. PROBABILITY OF FIRE JUMP

Fire jump from one structure depends upon how large the burning building is, how far away it is, and what the wind conditions are. A distance from a given building is calculated which is the "safe distance"--i.e., that distance at which under quiescent wind conditions no ignitions will occur as a result of radiant flux. Then from any one building under question the actual distance to any neighboring building is examined and a quantity, X, is calculated where

X = <u>actual separation distance</u> "safe distance"

When X is equal to or greater than unity, the probability of fire jump is zero; if X is zero, the probability of fire jump is 1.0. It is when X is between zero and one that any of nine equations are selected which calculate the probability of fire jump as a function of X and the applicable wind vector.

VI. SUMMARY OF OUTPUT DATA

In the output tape which FIREFLY 1 creates for FIREFLY 2 three basic quantities are of interest. It is these quantities which FIREFLY 2 will use in its Monte Carlo routine to assess expected fire damage under various conditions. For each building, FIREFLY 1 contains:

- A. The probability of building ignition from the thermal pulse of a nuclear weapon
- B. The probability of building ignition from fire spread
- C. The probability(ies) that the building will receive sufficient radiant flux from any and all neighboring structures that have themselves been ignited.

Items B and C above are finally combined in Bayesian fashion since B has relevance only if C is met.

VII. DATA DESCRIPTION

The data needed to operate FIREFLY 1 consists of six card types. All values are right justified.

A. Card Type 1--Building Card (1 card)

Cols.	Description
2-5	The total number of buildings, N

B. Card Type 2--Block Card (1 card)

<u>Cols.</u>	Desc	criptio	on			
2-5	The	total	number	of	blocks,	M

C. Card Type 3--Wind Information (1 card)

Cols.Description1-5Number of miles per hour of wind7-10Angle of the wind in radians from east
counterclockwise

D. Card Type 4--Block Information (1 card/block)

Cards should be ordered in ascending block number

Cols. Description

7-8 The number of buildings on the north blockside of the block in question

Cols.	Description
10-11	The number of buildings on the east block- side
13-14	The number of buildings on the south
16-17	The number of buildings on the west

E. Card Type 5--Building Information Card # 1 (1 card/ building)

Cards should be ordered in ascending order number. Every card type 5 must be followed by a card type 6.

<u>Cols.</u> <u>Description</u>

- 1-2 The block number of the building A. There are the following limitations: there should be a maximum of twenty-seven blocks of four blocksides each. Each blockside may have a maximum of ten buildings. The blocks must be sequentially numbered from one.
 - 4 The blockside number of building A. The maximum possible number is four. With each block all the blocksides need not contain a building or buildings. Blockside 1 means the northern part of the block, while blockside 2, 3, or 4 means the eastern, southern, or western part respectively.
- 6-7 The lot number of A. Each blockside which contains a building or buildings must have the lots numbered from one and incremented by one to a maximum of ten. Building information is to be arranged in ascending order according to the order number.
- 11-13 The width in feet in the east and west direction of building A.
- 15-17 The width in feet in the north and south direction of building A.

<u>Cols.</u> <u>Description</u>

18-19 The number of stories.

- 21-23 The number of feet building A is setback from the street. The setback is only recorded for the side of the building considered the front side.
 - 25 The value assigned for the relative number of wall openings which determines combustibility. If there are no, few, average, many, or all openings, the value is one, two, three, four, or five respectively.
 - 27 The value assigned building A for the roof construction which determines its combustibility. A table of values is presented below; this and subsequent tables have been taken from previously-referenced work by Gage-Babcock and Associates.

ROOF CONSTRUCTION

Category	Value
Protected Noncombustible	0
Unprotected Noncombustible	1
Noncombustible on Combustible Supports	2
Combustible	3

Examples

Protected Noncombustible: reinforced concrete, precast concrete, steel construction protected by metal lath and plaster, or by "fire-rated" acoustical ceilings.

<u>Unprotected Noncombustible</u>: any concrete or gypsum roof on exposed steel supports (without metal lath and plaster of "fire-rated" acoustical ceiling), metal deck or metal on concrete supports, fire-retardant treated lumber.

Noncombustible on Combustible Supports: metal or cement-asbestos panels on wood supports (without wood decking or combustible insulation on the inside).

1 Martin and marting and

<u>Combustible</u>: ordinary wood joist construction, mill construction, wood deck on metal or concrete supports, plastic panels on wood or metal supports.

Cols. Description

- 40 The number of neighboring buildings to the north of building A. The maximum number is four.
- 42-44 The distance in feet between the first building to the north of A and building A.
- 46-48 The distance between the second building to the north of A and building A.
- 50-52 The distance in feet between the third building to the north of A and building A.
- 54-56 The distance between the fourth building to the north of A and building A.
 - 58 The number of neighboring buildings to the east of building A.
- 60-62 The distance between the first building to the east of A and building A.
- 64-66 The distance between the second building to the east of A and building A.
- 68-70 The distance between the third building to the east of A and building A.
- 72-74 The distance between the fourth building to the east of A and building A.
 - 76 The number of neighboring buildings to the south of building A.
 - 80 The number "1" designating building information Card # 1.
- F. Card Type 6--Building Information Card # 2 (1 card/ building)

Cols. Description

1-2 The block number of building A.

Cols.	Description
4	The blockside number of building A.
6-7	The lot number of building A.
9-11	The distance between the first building to the south of A and building A.
13-15	The distance between the second building to the south of A and building A.
17-19	The distance in feet between the third build- ing to the south of A and building A.
21-23	The distance between the fourth building to the south of A and building A.
25	The number of neighboring buildings to the west of building A.
27-29	The distance between the first building to the west of A and building A.

- 31-33 The distance between the second building to the west of A and building A.
- 35-37 The distance between the third building to the west of A and building A.
- 39-41 The distance between the fourth building to the west of A and building A.
- 44-45 The value assigned to building A for the fire load of the building which determines its combustibility. (See below)

OCCUPANCY FIRE LOADING

Category	Value
Negligible	0
Light	10
Moderate	20
High	30

States of the second second second

Examples

Negligible: vacant or essentially noncombustible contents, occupancy fire loading not exceeding 5 lbs. per sq. ft. Machine shops & metalworking Boiler houses, power houses with negligible combustibles Brick storage, stone crush-Stge. of metal implements or ing, etc. machinery, not packed or Water treatment & sewage disposal plants crated Light: occupancy fire loading ranging from approximately 6 to 15 lbs. per sq. ft. Houses and apartments Telephone exchanges Hotels, hospitals Libraries (metal shelving) Schools, laboratories Funeral parlors Halls, gymnasiums Coal storage Offices, court houses, Bulk grain, salt storage jails, banks Bulk fertilizer storage Police and fire stations Moderate: occupancy fire loading ranging from approximately 16 to 25 lbs. per sq. ft. Amusement parks, bowling Department and variety stores alleys, theaters premises not crowded Automobile service stations, Retail stores and shops, general repair & parking garages Cold storage warehouses Churches Drug stores Laundry & dry cleaning shops Most manufacturing plants (not Restaurants involving large amounts of combustibles or flammables) Storage of grain, fertilizer, etc. in sacks

High: occupancy fire loading exceeding 25 lbs. per sq. ft.

Aircraft hangars Petroleum refineries Paint Factories Flammable liquids processing Whiskey warehouses Department and variety stores premises crowded Warehouses, general Truck terminals Plastics manufacturing Cotton stocks

Asphalt mixing plants Rubber tire storage Stock yards Junk yards Textiles, clothing, mattress manufacturing or storage Woodworking and lumber yards Feed mills

Cols. Description

47-48 The value assigned to building A for exterior wall construction. (See below)

EXTERIOR WALL CONSTRUCTION

Category	Value
Standard	0
Substandard Masonry	10
Noncombustible	10
Noncombustible on Combustible Supports	15
Combustible	30

Examples

Standard Magonry: not less than 12 in. brick walls or equivalent in sound condition, with not more than an average number of openings. Equally acceptable are 8 in. brick walls on dwellings, 8 in. concrete block with 4 in. brick facing, 12 in. concrete block, 12 in. stone, 10 in. unreinforced concrete or 6 in. reinforced concrete.

<u>Substandard Masonry</u>: masonry walls of lesser thicknesses than above or in poor condition, or with more than an average number of openings.

<u>Noncombustible</u>: glass store fronts on brick buildings, glass or metal curtain walls on concrete or steel supports, metal sheathing over metal supports, etc.

Noncombustible on Combustible Supports: glass or skeleton metal walls on wood supports, corrugated metal or cement-asbestos panels on wood supports, brick or stone veneer, etc.
<u>Combustible</u>: ordinary wood frame construction, wood store fronts or bay windows in brick buildings, enclosed or open wood porches, wood composition, asbestos, or metal sheathing over wood siding, exterior wood paneling regardless of supports, plastic siding etc.

Cols. Description

50-51 The value assigned to building A for floor construction (See below).

FLOOR CONSTRUCTION (Exclude Basement)

CategoryValueFire Resistive or Noncombustible0One or more floors, all or partially10combustible10

Examples

- Fire Resistive or Noncombustible: reinforced concrete, steel deck with or without concrete topping, concrete or other cementious topping on formboard, etc.--all of the above supported on concrete or steel beams, girders, trusses, columns, etc. Wood flooring over concrete or carpeting should not affect the classification.
- <u>Combustible</u>: ordinary wood joists with or without ceilings, mill, and semi-mill construction, wood flooring on steel beams or joists, etc.
 - Cols. Description
 - **53-55** "100"
 - 57-59 The value assigned to building A depending upon the angle of inclination of the terrain. (See the following page)

TERRAIN MULTIPLIER

Slope	Multiplier
10% or less	1.0
11% to 20%	1.1
21% to 40%	1.3
41% to 60%	1.6
61% to 80%	1.8
over 80%	2.0

- Cols.Description61-65The multiplier for building
 - 51-65 The multiplier for building characteristics given in Table 1-1.
 - 80 "2" for building card # 2

VIII. DESCRIPTION OF PROCESSING SEQUENCE

	STATEMEN From	r NUMBER Through
The number of buildings to have lot informa- tion read in is input.	(0+3)	(0+3)
The number of blocks to have lot information read in is input.	(0+4)	(0+4)
Wind information card is input.	(5+1)	(5+2)
KSEQ1 contains the sequence number for the pre- vious record read in. Here it is initially set equal to zero.	(1+1)	(1+1)
KPAGNTN, storing the total number of lines of output on the page, is set to one.	(1+2)	(1+2)
The do loop is used to read in the number of buildings per blockside for each block, i.e. KCOUNT (I,J).	(1+3)	(21)
Type 1 of building information is read. There is a check to see if there is a "1" re- corded in column 80.	(22+2)	(10+1)
The block, blockside, and lot number are stored in NBLK, NDIR, and NLOT, respectively so that these three can be compared to the block, blockside, and lot number of Type 2.	(10+2)	(10+4)
Type 2 of building information is input.	(10+5)	(10+5)
If the density of all the buildings is 100, "KD=100" should appear here. If the density is not necessarily 100, remove this card.	(23+1)	(23+1)
WB1 is set equal to KWIDTH. WB2 is set equal to KWIDTH2. STY has the same value as KSTY. Thus, three floating point vari- ables are set equal to integer variables.	(23+4)	(23+6)

-01

63

•

- There is a check to see if column 80 contains (23+7) (23+9) a "2". The block, blockside, and lot numbers of Type 2 are tested to see if they are the same as Type 1's. If there is a difference, there is a jump to statement (14) which is an error printout.
- These two do loops vary the angle of elevation (23+10) (24) and the probability of ignition of an exposed room. The probability of ignition of an exposed room is modified by its environment. The probability of building ignition is computed.
- If this is not the first time through this part (24+1) (3715+2) for the building under consideration, the probability of building ignition is computed and the angle of fireball elevation, the exposed room ignition probability, and the probability of building ignition from thermal pulse are written. If this is the first time through this part for the building under consideration, there is a jump to the end of the do loop.
- There is a test to see if the cards are in (3718) (25) ascending order. If there is an error, there is a statement written out which indicates a sequence error, and then there is a jump to the end of the program.
- The block and blockside number are stored in (13) (13+1) "I" and "J" respectively for convenience in referencing.
- If the first neighboring building is being con- (28) (46+3) sidered, the wind vector is broken down into its north, east, south, and west components in miles per hour.
- The number of miles per hour and the angle of (15+1) (17+1) the wind are written out as well as the north, east, south, and west components. KPAGNTN is updated.

.

The	contribution factor, FC, is computed using the setback distance. The contribution factor is used to adjust the radiating area when the street width is used rather than the distance between the buildings.	(3719)	(150)
The	four radiating areas are computed.	(160)	(160+4)
Two	factors, KH and KRR, needed to determine the Gage-Babcock index are determined by considering the number of stories, KSTY, and the roof combustibility value, KCR.	(160+5)	(310)
The	Gage-Babcock Index, BIN, is determined in these statements. If BIN is greater than 150, it is set to 150.	(320)	(340)
The	probability the building with lot number K on blockside J of block I will catch fire is determined here.	(350)	(350)
The	radiating areas, WMF (L) where L=1, 2, 3, or 4 are set equal to ARBLDG1, ARBLDG2, ARBLDG3, or ARBLDG4 respectively.	(350+1)	(350+4)
The	flame heights for the north-HFl, east HF2, south-HF3, and west-HF4 direction, are determined in these statements.	(3602)	(3602+3)
The	<pre>shapes of the radiators in the north-S1, east-S2, south-S3, and west-S4 are de- termined in these statements.</pre>	(360 2+4)	(3618)
In t	these statements it is determined which of the four components of the wind vector, DMPHRN, DMPHRE, DMPHRS, or DMPHRW, has the largest positive number of miles per hour of wind and which has the next larg- est number of miles per hour of wind.	(369)	(1820)

STATEMENT	NUMBER
From	Through

(1770+9)

(1800+9)

If the wind vector in the west direction is (1760) (1760+9)
largest, and the one in the north is next,
these statements are not skipped. The
north, east, south, and west components
of the wind vector are classified as low,
medium, or high wind. KVD*=1 indicates a
low wind in the direction D*. The descriptive numbers of north, east, south,
and west are "1", "2", "3", and "4" raspectively. A "4" is stored in MAJDIR.

If the wind vector in the west direction is (1770) the greatest, and the one in the south is next, these statements are not skipped. The north, east, south, and west components of the wind vector are classified as low, medium, or high wind. A "4" is stored in MAJDIR.

and a state of the second

- If the wind vector in the south direction is (1800) the greatest, and the one in the west is next, these statements are not skipped. The north, east, south, and west components of the wind vector are classified as low, medium, or high wind. A "3" is stored in MAJDIR.
- If the component of the wind vector in the (1780) (1780+9)
 north direction is the greatest, and the
 one in the east is next, these statements
 are not skipped. The north, east, south,
 and west components are classified as low,
 medium, or high winds. A "1" is stored in
 MAJDIR to indicate that the northern wind
 component is largest.
- If the component of the wind vector in the east (1790) (1790+9)
 direction is the greatest, and the one in
 the north direction is next, these state ments are not skipped. The north, east,
 south, and west components are classified
 as low, medium, or high winds. A "2" is
 stored in MAJDIR.

^{*} D = N, E, S, or W indicating north, east, south, and west respectively.

(1805) (1805+9)If the component of the wind vector in the north direction is the greatest, and the one in the west is next, these statements are not skipped. The north, east, south, and west components are classified as low, medium, or high winds. A "1" is stored in MAJDIR. (1825)(1825+9)If the component of the wind vector in the south direction is greatest, and the one in the east is next, these statements are not skipped. The north, east, south, and west components of wind are classified as low, medium, or high winds. A "3" is stored in MAJDIR. (1830+9)(1830) If the component of the wind vector in the east is greatest, and the one in the south is next, these statements are not skipped. The north, east, south, and west components are classified as low, medium, or high winds. A "2" is stored in MAJDIR. This do loop is gone through a maximum of six-(730) (730)This loop determines the proteen times. bability of spread from the building in question to all its neighboring buildings. The neighboring buildings are taken in the following order; first, second, third, and fourth buildings to the north; first, second, third, and fourth buildings to the east; first, second, third, and fourth buildings to the south; and first second, third, and fourth buildings to the west. These statements test the value of the index (730+1)(367) variable, JJ, to determine which neighboring building is next to have its probability of spread computed. (2000)(720+1)These statements are not skipped if the index variable is not greater than four, i.e. if the spread consideration is to the north. If the value of the index variable is one, there is a check to see if there are any buildings to the north. If there are no

67

buildings, it jumps almost to the end of the loop where all the probabilities of

spread to the north are set equal to 0, and JJ is set equal to four. If there are neighboring buildings, the general terms S and ARBLDG are set equal to the northern flame height and the northern radiating area respectively of the building from which the spread is being considered. If the index variable is not equal to one, the relative classification of the northern component of the wind is used so this part of the program is skipped. If the index variable is one, the northern component of the wind vector is tested against zero. If the northern component is zero, the relative classification is light wind. If not, the value is compared with eight and sixteen to determine whether it is a light, medium, or high wind.

- These statements are analogous to the state- (2010) (750+1) ments from (2000) through (720+1) except the southern direction is under consideration rather than the northern and the fifth building is analogous to the first.
- These statements are analogous to the statements (2020) (780+1) from (2000) through (720+1) except the southern direction is under consideration rather than the northern direction and the ninth building is analogous to the first.

These statements are analogous to the statements (2030) (860) from (2000) through (720+1) except the western direction is under consideration rather than the northern direction and the 13th building is analogous to the first.

- The component of the wind vector which is stored (2028) (700) in DMPHR is compared with eight and/or sixteen to classify the wind component as light, medium, or high.
- The radiator shape is compared to 1.5. If the (364) (364) flame height is less than 1.5, the classification of the wind component is checked. Otherwise, there is a jump to statement number (1420) or (1425).

(1395+1)

(1405+1)

(1380)

If the wind component's classification is low, and if the radiating area is less than or equal to four hundred and sixty-five, the theoretical separation distance, Y, is determined by a linear equation with the radiating area as its variable afterwhich there is a jump to the part which determines the probability of spread. If the wind component's classification is light, and if the radiating area is greater than four hundred and sixty-five, the following quadratic equation is solved:

 $y^2 - 33.8z - 2.53y + 15.7 = 0$

where y is the separation distance in feet divided by ten and z is the radiating area in feet squared divided by one thousand. The procedure used here is to solve for y and multiply the resulting y by ten to get the separation distance.

If the classification of the component of the (1400) wind is medium, these statements are not skipped. The radiating area is compared to thirteen hundred. The procedure is similar to that in statements (1380) through (1395+1) except the linear equation differs and the quadratic equation is as follows:

 y^2 -34.3z-8.1y + 44.6 = 0

If the classification of the wind is high, the (1410) (1415+1) following statements are not skipped. The radiating area is compared to two thousand three hundred and eighty. The procedure is similar to that in statements (1380) through (1395+1) except the linear equation differs and the quadratic equation is as follows

 y^2 -29.4z-13.75y + 69.9 = 0

STATEME	NT NUMBER
From	Through

(1420)

(1435+1)

The radiator shape is compared to 8. If the flame height is less than 8 but greater than or equal to 1.5 and the classification of the component is low, these statements are not skipped. The radiating area is compared to seven hundred and twentyfive. The procedure is similar to that in statements (1380) through (1395+1) except the linear equation differs and the quadratic equation is as follows:

 $y^2 - 29.3z - 3.35y + 21.2 = 0$

If the radiator shape is greater than or equal (1440) (1445+1)
to 1.5 and less than 8, and if the classification of the component of wind is med
ium, these statements are not skipped.
The radiating area is compared to one
thousand six hundred and fourty-five. The
procedure is similar to that in statements
(1380) through (1395+1) except the linear
equation differs and the quadratic equation is as follows:

$$y^2 - 30.3z - 9.25y + 49.8 = 0$$

If the radiator shape is greater than or equal (1450) (1455+1) to 1.5 and less than 8, and if the classification of the component of wind is high, these statements are not skipped. The radiating area is compared to one thousand one hundred and ten. The procedure is similar to that in statements (1380) through (1395+1) except the linear equation differs and the quadratic equation is as follows:

$$y^2 - 33.2z - 9.4y + 36.8 = 0$$

(1460) (1470+1)

If the radiator shape is greater than 8, and if the classification of the component of the wind is low, these statements are not skipped. The radiating area is compared to one thousand four hundred and twenty. The procedure is similar to that in statements (1380) through (1395+1) except the linear equation differs and the quadratic equation is as follows:

 $y^2 - 21.9z - 6.32y + 31.1 = 0$

If the radiator shape is greater than 8, and if (1475) (1480+1) the classification of the component of the wind is medium, these statements are not skipped. The radiating area is compared to two thousand three hundred and fifty. The procedure is similar to that in statements (1380) through (1395+1) except the linear equation differs and the quadratic equation is as follows:

$$y^2 - 21.4z - 10.76y + 50.2 = 0$$

If the radiator shape is greater than 8, and if (1485) (1490) the classification of the component of the wind is high, these statements are not skipped. The radiating area is compared to two thousand five hundred and ninety. The procedure is similar to that in statements (1380) through (1395+1) except the linear equation differs and the quadratic equation is as follows:

$$y^2 - 24.2z - 12.28y + 62.75 = 0$$

If the index variable JJ is one, these state- (1500) (1368+1) ments are not skipped. The spread to the first building to the north from the building in question is calculated in these statements. If the distance between

these two buildings is zero, the probability of spread is set equal to one, the probability the building will burn is set equal to .98, and there is a skip to a further point in the program. If the distance is greater than zero, the following steps are performed. A variable x is calculated. If x is greater than 1, it is set equal to one. If x is less than O, it is set equal to zero. If the distance between the two buildings is greater than the separation distance, the probability of spread is 0. The direction under consideration here is north. North is compared with MAJDIR, the code for the direction which has the largest amount of positive wind. Depending upon whether north is with, against or perpendicular to the major direction of the wind, the subroutines WITH, AGNT, or PERP are called respectively.

- If the index variable is two, these statements are not skipped. The spread to the second building to the north from the building in question is calculated in these statements. The procedure is the same as in statements (1503) through (1368+1).
- If the index variable is three, these statements are not skipped. The spread to the third building to the north from the building in question is calculated in these statements. The procedure is the same as in statements (1503) through (1368+1).
- (1507)If the index variable is four, these statements are not skipped. The spread to the fourth building to the north from the building in question is calculated in these statements. The procedure is the same as in statements (1503) through (1368+1).

(1504)(1369+1)

(1505) (1370+1)

(1371+1)

- If the index variable is five, these statements (1508) (1372+1)
 are not skipped. The spread to the first
 building to the east from the building in
 question is calculated in these statements.
 The procedure is the same as in statements
 (1503) through (1368+1) except the direc tion under consideration here is east.
- If the index variable is six, these statements (1510) (1373+1)
 are not skipped. The spread to the second
 building to the east from the building in
 question is calculated in these statements.
 The procedure is the same as in statements
 (1503) through (1368+1) except the direc tion under consideration is east.
- If the index variable is seven, these statements (1511) (1374+1)
 are not skipped. The spread to the third
 building to the east from the building in
 question is calculated in these statements.
 The procedure is the same as in statements
 (1503) through (1368+1) except the direc tion under consideration is the east.
- If the index variable is eight, these statements (1515) (1375+1)
 are not skipped. The spread to the fourth
 building to the east from the building in
 question is calculated in these statements.
 The procedure is the same as in statements
 (1503) through (1368+1) except the direc tion under consideration is east.
- If the index variable is nine, these statements (1516) (1376+1)
 are not skipped. The spread to the first
 building to the south from the building in
 question is calculated in these statements.
 The procedure is the same as in statements
 (1503) through (1368+1) except the direc tion under consideration is the south.
- If the index variable is ten, these statements (1518) (1377+1)
 are not skipped. The spread to the second
 building to the south from the building in
 question is calculated in these statements.
 The procedure is the same as in statements
 (1503) through (1368+1) except the direc tion under consideration is the south.

STATEMENT	NUMBER
From	Through

- If the index variable is eleven, these state- (1519) (1378+1) ments are not skipped. The spread to the third building to the south from the building in question is calculated in these statements. The procedure is the same as in statements (1503) through (1368+1) except the direction under consideration is south.
- If the index variable is twelve, these state- (1521) (1360+1)
 ments are not skipped. The spread to the
 fourth building to the south from the build ing in question is calculated in these
 statements. The procedure is the same as
 in statements (1503) through (1368+1) ex cept the direction under consideration is
 south.
- If the index variable is thirteen, these state- (1522) (1361+1) ments are not skipped. The spread to the first building to the west from the building in question is calculated in these statements. The procedure is the same as in statements (1503) through (1368+1) except the direction under consideration is west.
- If the index variable is fourteen, these state- (1524) (1362+1)
 ments are not skipped. The spread to the
 second building to the west from the build ing in question is calculated in these
 statements. The procedure is the same as
 in statements (1503) through (1368+1) ex cept the direction under consideration is
 west.
- If the index variable is fifteen, these state- (1525) (1363+1)
 ments are not skipped. The spread to the
 third building to the west from the build ing in question is calculated in these
 statements. The procedure is the same as
 in statements (1503) through (1368+1) ex cept the direction under consideration is
 west.

(1364+1)If the index variable is sixteen, these state-(1527)ments are not skipped. The spread to the fourth building to the west from the building in guestion is calculated in these statements. The procedure is the same as in statements (1503) through (1368+1) except the direction under consideration is west. (9040+1)If the number of neighboring buildings to the (1587)north of the building in question is less than four, and the index variable equals the number of buildings to the north, the remaining probabilities of spread to the north are set equal to zero. The index variable is set to four. (9090+1)If the number of neighboring buildings to the (9010) east of the building is less than four, and the probabilities of spread to all these buildings to the east have been calculated, the remaining probabilities of spread to the east are set equal to zero. The index variable is set to eight. If the number of neighboring buildings to the (9060) (9140+2)south of the building is less than four, and the probabilities of spread to all these buildings to the south have been calculated, the remaining probabilities of spread to the south are set equal to zero. The index variable is set to twelve. If the number of neighboring buildings to the (9110)(9190+1)west of the building in question is less than four, and the probabilities of spread to all these buildings to the west have been calculated, the remaining probabilities of spread to the west are set equal to zero. The index variable is set to sixteen. This is the end of the loop which is passed (1597) (1597)through a maximum of 16 times per building to calculate the probabilities of spread to its neighboring buildings.

	From	Through
The probability of building ignition is com- puted.	(370)	(370)
The angle of elevation, probability of igni- tion of an exposed room and probability of building ignition from thermal pulse are not written on a new page of output if the number of lines on the page is less than fifty-five. The number of lines is increased by two.	(3708)	(3711+2)
The angle of elevation, probability of ignition of an exposed room, and probability of building ignition from thermal pulse are written on a new page if the number of line is greater than or equal to fifty-five. Th number of lines is set equal to two.	(3707) s e	(3715+1)
This is the end of the loop which varies the angle of elevation and the probability of ignition of an exposed room.	(3710)	(3710)
The results are printed out. These results are: the block, blockside and lot num- bers, the radiating areas, the flame heights, the radiating shapes, the separa- tion distances and the Gage-Babcock index of the building in question, as well as, the probabilities of spread to its neigh- boring buildings and the probability the building in question will burn down.	(1270)	(1265)
This is the end of the loop which considers each building singly. When this point is reached information on the next building is read fro cards, and the process continues as described above.	(371) d, om ed	(371)
This is the end of the program.	(545)	(545)

State-

76

.

SUBROUTINE AGNT (KV, X, PR)

This is the subroutine used if the largest wind component of the four basic directions is against the spread direction which is being considered. X and KV are input; PR output. The speed of the wind in the direction of spread consideration and the ratio X are the variables which determine the probability of fire spread from one building to a particular building in a particular direction. On exit, the probability of spread has been computed.

SUBROUTINE PERP (KV, X, PR)

This is the subroutine used if the largest wind component of the four basic directions is perpendicular to the spread direction which is being considered. X and KV are input to the subroutine; PR output. See the subroutine explanation for AGNT above for the variables upon which the probability of spread depends. On exit, the probability of spread has been computed.

SUBROUTINE WITH (KV, X, PR)

This is the subroutine used if the largest wind component of the four basic directions is in the same direction as the spread direction which is being considered. X and KV are input; PR output. See the subroutine explanation for AGNT preceding for variables upon which the probability of spread depends. The result is that the probability of spread has been computed.

SUBROUTINE KV CONS (DMPHR, KV)

This subroutine is to determine from the miles per hour if the wind is light, moderate or high. DMPHR is input; KV output. Thus, there is an exit of general wind classification.

SECTION 3

.

FIREFLY 2

I. OPERATION

The general calculations of FIREFLY 2 are neither lengthy nor involved. FIREFLY 1 has done most of the work in generating probabilities of ignition from the thermal pulse for fifteen different cases (five exposed room ignition probabilities and three fireball elevation angles) and the complete interaction probabilities that govern fire spread. The basic tasks of FIREFLY 2 are to generate random numbers, compare these random numbers to the various probabilities, and keep a record of the progress of fires from both thermal pulse and spread. As mentioned previously, FIREFLY 2 operates 100 times upon the environment of buildings for a given set of conditions; thus FIREFLY 2 will actually conduct 1500 runs in total.

Assume that a set of four buildings are being examined as shown in Figure 3-1. The values of p_b represent probabilities of building ignitions from the thermal pulse; values of s_{cj} are combined spread probabilities. Table 3-1 is a typical tabulation of random numbers. Reading down the first column and testing the first random number against building # 1, we find the random number (.51772) to be greater than the building ignition probability in which case no ignition takes place. Continuing

FIGURE 3-1

87056	15804	76168	63886
90581	67283	75936	03229
94271	49159	20507	45943
42187	14676	70185	05825
74950	47280	38723	33537
19640	11822	52984	84821
97453	24034	94923	46149
93507	41982	50995	19219
88116	16159	72139	23631
14070	35683	38714	02526
04186	65253	24819	91341
10863	88036	72484	99247
37428	06652	99431	85915
17169	71590	36574	54083
50884	47152	59009	95715
93582	00745	50020	72828
76105	25439	36732	84303
56974	68829	28868	63700
12973	48653	09908	92486
36081	27279	55261	07516
62898	55189	76552	92843
21387	41889	51817	18776
55870	85418	90985	15815
86707	16835	25234	30763
85659	28195	11785	03878
46621	65304	73547	58892
21960	62586	25708	39238
11645	94623	56242	81812
31041	52290	00477	02479
96799	87843	32869	16530
29044	20790	42457	07839
06568	98527	54195	64236
25424	30277	08395	16057
45406	60710	46253	95203
82322	06829	36764	21944
42331	95863	95652	09591
83587	51135	79971	85762
52078	57683	10744	48236
75797	77331	36601	79443
81938	29414	97810	62545
74640	03355	25496	34371
23491	64759	40876	65952
60173	56301	64728	67906
02133	91157	73949	04077
79353	17480	21154	90276
51772	64937	50532	65544
24033	15630	07136	08263
45939	09448	27989	39817
305P6	21631	85184	62257
035_5	91097	54398	53298

217

TABLE 3-1

RANDOM NUMBERS

.

to use random numbers in column 1, we find that only building number 3 's assumed to be burning. FIREFLY 2 would record this event and proceed to assess fire spread.

The probability of fire spread from building # 3 to building # 4 is 0.75; the next random number is 0.03585, hence spread occurs. The spread from 3 to 1 does not occur, however.

Now that building # 4 is burning the only spread probability of interest is $S_{42} = 0.60$. The next random number is 0.15630 and now building # 2 is ablaze. In like manner, S_{21} is 0.40 and is greater than 0.09448 so that building # 1 also burns.

In this example, all buildings were destroyed. As explained earlier, FIREFLY 2 would operate an additional 99 times on this environment saving the results each time in terms of which buildings were destroyed by what agent. After the first 100 passes, a new p_b would be introduced (as a function of a change in the probability of exposed room ignition from 0.1 to 0.3) and another 100 cases run. After 500 cases have been analyzed, the angle of elevation is changed from 5° to 10° and the entire process of 500 runs completed. The final 500 cases are conducted for the 30° angle of elevation.

II. OUTPUT

The output from FIREFLY 2 normally proceeds directly into FIREFLY 3 for summary although the output could be printed in any one of three formats as desired. These formats are:

A. A complete summary case-by-case of every building which was destroyed and the cause of this destruction (See Table 3-2 for sample), giving building address, all probabilities and random numbers used, and the building from which the fire spread, if applicable.

B. A condensed form of A. above shown in Table 3-3.

C. A summary of B. above shown in Table 3-4.

TABLE 3-2

.

BLOCK	DIREC- TION	LOT NO.	ADDRESS	F1FTH RANDOM NUMBER	THERMAL PULSE	FOURTH RANDOM NUMBER	SPREAD PROBAB- ILITY
16	3	3	33 LONGFLLW WASH, D.C. 22110021	0.7394	0.1175	0.5526	
16	3	5	25 LONGFLLW WASH, D.C. 22110021	0.9597	0.2213	0.5047	
2 0	1	6	18 LONGFLLW WASH, D.C. 22110021	0.3718	0.2890	0.0082	1.0000
17	1	4	120 LONGFLLW WASH, D.C. 22110021	0.4245	0 .266 0	0.4336	
17	1	3	122 LONGFLLW WASH, D.C. 22110021	0.4930	0 .2660	0.1246	1.0000
18	1	1	118 LONGFLLW WASH, D.C. 22110021	0.8472	0.3144	0.4930	
18	1	2	116 LONGFLLW WASH, D.C. 22110021	0.1284	0.3144	0.6354	1.0000
18	1	4	112 LONGFLLW WASH, D.C. 22110021	0.4343	0.3144	0.5436	
18	1	5	110 LONGFLLW WASH, D.C. 22110021	0.4187	0.3144	0.1425	1.0000
18	1	3	114 LONGFLLW WASH, D.C. 22110021	0.1369	0.3144	0.0403	1.0000
18	1	6	108 LONGFLLW WASH, D.C. 22110021	0.5878	0.3144	0.1369	
18	1	7	106 LONGFLLW WASH, D.C. 22110021	0.8070	0.3144	0.4834	
18	1	8	104 LONGFLLW WASH, D.C. 22110021	0.3993	0.3144	0.0796	
18	1	9	102 LONGFLLW WASH, D.C. 22110021	0.9937	0.3144	0.0415	1.0000
18	2	1	5514 1ST NW WASH, D.C. 22110021	0.4596	0.3995	0.2175	

TABLE 3-2 (Continued)

7

.

ADDRESS	FIRST RANDOM NUMBER	BURN PROBABILITY FROM SPREAD	2ND RANDM NUMB.	FIRE	FIR FRO BLK	E CA M BI DII	AUGHT LDG R LOT
33 LONGFLLW WASH, D.C. 22110021	0.0934		0.7394	YES			
25 LONGFLLW WASH, D.C. 22110021	0.7322		0.9597	YES			
18 LONGFLLW WASH, D.C. 22110021	0.6818	0.5878	0.6900	YES	16	3	5
120 LONGFLLW WASH, D.C. 22110021	0.9290		0.4245	YES			
122 LONGFLLW WASH, D.C. 22110021	0.8088	0.9800	0.6842	YES	17	1	4
118 LONGFLLW WASH, D.C. 22110021	0.6701		0.8472	YES			
116 LONGFLLW WASH, D.C. 22110021	0.8819	0.9800	0.2465	YES	18	1	1
112 LONGFLLW WASH, D.C. 22110021	0.9889		0.4343	YES		·	
110 LONGFLLW WASH, D.C. 22110021	0.2575	0.9800	0.1381	YES	18	1	4
114 LONGFLLW WASH, D.C. 22110021	5483	0.9800	0.5886	YES	18	1	4
108 LONGFLLW WASH, D.C. 22110021	0.8623		0.5878	YES			
106 LONGFLLW WASH, D.C. 22110021	0.1618		0.8070	YES			
104 LONGFLLW WASH, D.C. 22110021	0.1598		0.3993	YES			
102 LONGFLLW WASH, D.C. 22110021	0.5176	0.9800	0.4761	YES	18	1	8
5514 1ST NW WASH, D.C. 22110021	0.6210	86	0.4596	YES			

.

SUMMARY WITH ANGLE OF ELEVATION=30 AND ROOM IGNITION PROB=0.3

BLOCK	DIR	LOT	TYPE OF FIRE
2	1	1	THERMAL PULSE
2	1	2	SPREAD
3	1	1	THERMAL PULSE
3	1	2	THERMAL PULSE
3	1	6	THERMAL PULSE
4	1	4	THERMAL PULSE
6	1	1	THERMAL PULSE
7	1	4	THERMAL PULSE
11	1	2	SPREAD
11	1	3	SPREAD
11	1	4	THERMAL PULSE
11	1	5	SPREAD
11	1	6	SPREAD
11	1	7	SPREAD
11	1	8	SPREAD
11	1	9	SPREAD
11	1	10	SPREAD
12	1	1	SPREAD
12	1	2	THERMAL PULSE
12	1	3	THERMAL PULSE
13	1	3	THERMAL PULSE
13	1	5	THERMAL PULSE
13	1	7	THERMAL PULSE
13	1	8	THERMAL PULSE
13	1	9	THERMAL PULSE
17	1	2	SPREAD
17	1	3	SPREAD
17	1	4	THERMAL PULSE
18	1	1	THERMAL PULSE
18	1	2	SPREAD

TABLE 3-3

SUMMARY WITH ANGLE OF ELEVATION=30 AND ROOM IGNITION PROB=0.3 WITH THE NUMBER OF TIMES THROUGH THE LOOP= TOTAL NUMBER OF BLDGS ON FIRE FROM THERMAL PULSE= 196 TOTAL NUMBER OF BLDGS ON FIRE FROM SPREAD= 51

THROUGH THE LOOP= SUMMARY WITH ANGLE OF ELEVATION=30 AND ROOM IGNITION PROB=0.5 WITH THE NUMBER OF TIMES THROUGH THE I TOTAL NUMBER OF BLDGS ON FIRE FROM THERMAL PULSE= 256 TOTAL NUMBER OF BLDGS ON FIRE FROM SPREAD= SUMMARY WITH ANGLE OF ELEVATION=30 AND ROOM IGNITION PROB=0.7 WITH THE NUMBER OF TIMES THROUGH THE LOOP= TOTAL NUMBER OF BLDGS ON FIRE FROM THERMAL PULSE= 291 TOTAL NUMBER OF BLDGS ON FIRE FROM SPREAD= 11

SUMMARY WITH ANGLE OF ELEVATION=30 AND ROOM IGNITION PROB=0.9 WITH THE NUMBER OF TIMES THROUGH THE LOOP= TOTAL NUMBER OF BLDGS ON FIRE FROM THERMAL PULSE= 326 TOTAL NUMBER OF BLDGS ON FIRE FROM SPREAD= 3

TABLE 3-4

III. DATA DESCRIPTION

In order to operate FIREFLY 2, the following cards must be prepared. All values are right justified

A. Card Type 1--Random Numbers (1 card)

<u>Cols.</u>	Description
3-8	Any six random digits (may be selected from Table 3-1).
12-17	Any six random digits.

B. Card Type 2--Building Information (1 card)

Cols. <u>Description</u>

1-4 Total number of buildings.

C. Card Type 3--Block Information (1 card)

Cols.	Descri	<u>iption</u>			
1-4	Total	number	of	blocks,	м.

D. Card Type 4--Number of Buildings Per Blockside

The number M in the above card is the number of cards of this type.

- Cols. Description
- 7-8 Number of buildings on the north side of a particular block, KC (I,1).

<u>Cols.</u> <u>Description</u>

11

- 10-11 Number of buildings on the east side of this same particular block, KC (I,2).
- 13-14 Number of buildings on the south side of this same particular block, KC (I,3).
- 16-17 Number of buildings on the west side of this same particular block, KC (I,4).
- E. Card Type 5--Number of Buildings of Particular Interest (1 card)

Cols. Description

- 1-3 A value which represents the number of buildings to be summarized in detail in the final output. This option is valuable if in a given analysis, it is desired to examine the number of times a particular building or buildings was destroyed by either pulse or spread (often used when a given urban sample contains shelter buildings).
- F. Card Type 6--Buildings of Particular Interest (l card/ building)
 - (NOTE: This card must appear if the value in Card Type 5 is not zero, and omitted if the value in Type 5 is zero)
 - Cols. <u>Description</u>
 - 1-2 Block number of building of particular interest.
 - 4 The direction number.
 - 6-7 Lot number of the building of particular interest.

G. Card Type 7--Building Information (first of two cards/ building)

Building information is to be arranged in ascending order according to the order number with Card 7 preceding Card 8 of the same number.

Cols. <u>Description</u>

- 1-2 Block number of building A with the information on this card and the following card. The limitations on the direction numbers and the lot numbers are the same as specified in the FIREFLY 1 write-up.
 - 4 Direction number of building A with the information on this card and the next card.
- 6-7 Lot number of building A.
- 9-13 The order number of the third building to the north of building A.
- 15-19 The order number of the fourth building to the north of building A.
- 21-25 The order number of the first building to the east of building A.
- 27-31 The order number of the second building to the east of building A.
- 33-37 The order number of the third building to the east of building A.
- 39-43 The order number of the fourth building to the east of building A.
- 45-49 The order number of the first building to the south of building A.
- 51-55 The order number of the second building to the south of building A.

Cols. Description

١

- 57-61 The order number of the third building to the south of building A.
- 63-67 The order number of the fourth building to the south of building A.
- 69-73 The order number of the first building to the west of building A.
 - 80 A "3" is punched for identification.
- H. Card Type 8--Building Information is to be Arranged In Ascending order According to the Order Number With Card 7 preceding Card 8 of the same Order Number.

Cols. Description

- 1-2 Block number of building A with its information on this card.
- 4 Direction number of building A.
- 6-7 Lot number of building A.
- 9-13 The order number of the second building to the west of building A.
- 15-19 The order number of the third building to the west of building A.
- 21-25 The order number of the fourth building to the west of building A.
- 27-32 The first six letters and/or numbers of the street address of building A.
- 33-38 The last six letters and/or numbers of the street address of building A.
- 40-45 The first six letters and/or numbers of the city and state part of the address.
- 46-51 The last six letters and/or numbers of the city and state part of the address.

Cols. <u>Description</u>

- 53-60 The Standard Location or any other identification code number.
- 67-71 The order number of the first building to the north of building A.
- 73-77 The order number of the second building to the north of building A.
 - 80 A "4" for identification.

During execution, FIREFLY 2 reads the input tape, which is the output from FIREFLY 1. The tape contains information in the form as follows:

First record to be read in which is not blank

Cols. Description

- 22-23 The angle of elevation.
- 61-63 The probability of ignition of an exposed room.

Second record to be read in which is not blank

- Cols. Description
 - 4-5 The block number of building A.
 - 11 The direction number of building A.
- 18-19 The lot number of building A.
- 22-27 The probability of spread from building A to the first neighboring building to the north of A.
- 30-35 The probability of spread from building A to the first building to the east.

Cols. Description

- 38-43 The probability of fire spread from building A to the first building to the south of A.
- 46-51 The probability of spread from building A to the first building to the west of A.
- 67-72 The probability building A will catch on fire.

Third record to be read in which is not blank

- <u>Cols.</u> <u>Description</u>
- 22-27 The probability of spread from building A to the second neighboring building to the north of A.
- 30-35 The probability of spread from building A to the second building to the east.
- 38-43 The probability of fire spread from building A to the second building to the south of A.
- 46-51 The probability of spread from building A to the second building to the west of A.

Fourth record to be read in which is not blank

Cols. Description

- 22-27 The probability of spread from building A the third neighboring building to the sof A.
- 30-35 probability of spread from building A the third building to the east.
- 38-43 The probability of fire spread from building A to the third building to the south of
- 46-5. The faility of spread from building A building to the west of A.

Fifth record to be read in which is not blank

Cols. Description

- 22-27 The probability of spread from building A to the fourth neighboring building to the north of A.
- 30-35 The probability of spread from building A to the fourth building to the east.
- 38-43 The probability of fire spread from building A to the fourth building to the south of A.
- 46-51 The probability of spread from building A to the fourth building to the west of A.

IV. DESCRIPTION OF PROCESSING SEQUENCE

	STATEMENT NUMBER	
	FIOM	Inrough
A zero in KWRITE indicates no intermediate steps will be printed out for any of the buildings. A one indicates inter- mediate steps will be written out.	(0+3)	(0+3)
Two random numbers are read in.	(0+4)	(10)
The number of buildings to be considered is read into core.	(10+1)	(10+1)
The number of block to have buildings read in is read into core.	(10+2)	(20)
This is a do loop which reads in the number of buildings per blockside for each block, i.e. KC(I,J).	(20+1)	(35)
This is the beginning of the loop which varies the block number so that there is a clear- ing of storage location KR(I,J,K) which indicates whether or not a building is to have a running total of the number of times it catches fire from thermal pulse and from spread in the hundred runs where the angle of elevation and the probability of ignition of an exposed room is fixed.	(35+1)	(35+1)
The direction number is varied in this state- ment.	(35+2)	(35+2)
If the number of buildings on a blockside is 0, there is a jump to the end of the loop. The index variable is the lot number. This loop clears the storage location KR (I,J,K).	(35+3)	(35+5)
Read into core is the card which has the NDETAIL, number of buildings of particular interest. If this number is 0, there is a jump to statement number (48).	(25+1)	(26+1)
- The block, lot, and direction numbers of those (26+2) (28) buildings of particular interest are read into core and the entry in table KR of "1" indicates that they are to have their total number of times caught on fire from spread and the pulse calculated and written out.
- The general comments and the two initial random (48) (60) numbers are written out.
- This is a do loop which is gone through N times. (80) (120) The order numbers of the first, second, third, and fourth buildings to the north, east, south and west of the building in question are read in. Also read into core is the address.
- This is the beginning of the do loop which varies (120+1) (120+1) the angle of elevation from 30° to 10° and finally to 5° . This loop includes the rest of the program minus the "STOP" and "END" cards.
- This is the beginning of the do loop which in- (120+2) (120+2) itially sets the probability of an exposed room ignition to .1 and then increments it by .2 through .9. This loop also includes the rest of the program excluding the "STOP" and "END" cards.
- This is the beginning of the loop which clears (120+3) (120+3) the locations in table TPSP so the total number of times a building catches on fire from the thermal pulse or from spread with a fixed angle of elevation and probability of ignition of an exposed room can be computed accurately. The index variable is the block number.

The index variable is the direction number. (120+4) (120+4)

A simple variable is set equal to KC(I,J), the (120+5) (120+5) number of buildings on the blockside defined by the two index variables above. If this simple variable is zero, there is a jump to the end of the loop. If this variable is not zero, the index variable is the lot number. TPSP(I,J,K) is cleared. This is the end of the loop.

(1205)

- This is the beginning of the loop which reads (1200) in the output tape from FIREFLY 1. For a given angle of elevation and a given probability of ignition of an exposed room the results of the FIREFLY 1 run are read for all the buildings.
- If the angle of elevation is 30° and the pro-(1210)(1212+1)bability of exposed room ignition is .1, these statements to read in the output tape from FIREFLY 1 are not skipped. The angle of elevation, the probability of exposed room ignition, the probability of building ignition from the thermal pulse, the block, direction, and lot numbers, the probability the building in question will catch on fire and the probabilities of spread from the building in question to its neighboring buildings are read into core. There is a jump to statement number (1310).
- If the angle of elevation is 30° and probability (1215) (1217+1)
 of exposed room ignition is .3, these state ments to read in the output tape from FIRE FLY 1 are not skipped. (See Description of
 Processing Sequence for statements (1210)
 through (1212+1) for description of tape
 information read in).
- If the angle of elevation is 30° and the proba- (1220) (1227+1)
 bility of exposed room ignition is .5,
 these statements to read in the output
 tape from FIREFLY 1 are not skipped.
 (See Description of Processing Sequence
 for statements (1210) through (1212+1)
 for the description of tape information
 read in.)
- If the angle of elevation is 30° and the pro- (1230) (1232+1)
 bability of exposed room ignition is .7,
 these statements to read in the output
 tape from FIREFLY 1 are not skipped. (See
 Description of Processing Sequence for
 statements (1210) through (1212+1) for the
 description of tape information read in.)

- If the angle of elevation is 30° and the pro- (1235) (1237+1) bability of exposed room ignition is .9, these statements to read in the output tape from FIREFLY 1 are not skipped. (See Description of Processing Jequence for statements (1210) through (1212+1) for the description of tape information read in.)
- If the angle of elevation is 10° and the proba- (1240) (1247+1)
 bility of exposed room ignition is .1, these
 statements to read in the output tape from
 FIREFLY 1 are not skipped. (See Descrip tion of Processing Sequence for statements
 (1210) through (1212+1) for the description
 of the information read in.)
- If the angle of elevation is 10° and the proba- (1250) (1252+1)
 bility of exposed room ignition is .3,
 these statements to read in the output
 tape from FIREFLY 1 are not skipped. (See
 Description of Processing Sequence for
 statements (1210) through (1212+1) for the
 description of the information read in.)
- If the angle of elevation is 10° and the proba- (1255) (1262+1)
 bility of exposed room ignition is .5,
 these statements to read in the output
 tape from FIREFLY 1 are not skipped. (See
 Description of Processing Sequence for
 statements (1210) through (1212+1) for the
 description of the information read in.)
- If the angle of elevation is 10° and the proba- (1265) (1267+1)
 bility of exposed room ignition is .7,
 these statements to read in the output
 tape from FIREFLY 1 are not skipped. (See
 Description of Processing Sequence for
 statements (1210) through (1212+1) for the
 description of the information read in.)

(1282+1)

(1287+1)

(1275)

(1285)

- If the angle of elevation is 10° and the pro- (1270) (1272+1)
 bability of exposed room ignition is .9,
 these statements to read in the output
 tape from FIREFLY 1 are not skipped. (See
 Description of Processing Sequence for
 statements (1210) through (1212+1) for
 the description of the information read
 in.)
- If the angle of elevation is 5° and the probability of exposed room ignition is .1, these statements to read in the output tape from FIREFLY 1 are not skipped. (See Description of Processing Sequence for statements (1210) through (1212+1) for the description of the information read in.)
- If the angle of elevation is 5° and the probability of exposed room ignition is .3, these statements to read in the output tape from FIREFLY 1 are not skipped. (See Description of Processing Sequence for statements (1210) through (1212+1) for the description of the information read in.)
- If the angle of elevation is 5° and the pro- (1290) (1297+1)
 bability of exposed room ignition is .5,
 these statements to read in the output
 tape from FIREFLY 1 are not skipped. (See
 Description of Processing Sequence for
 statements (1210) through (1212+1) for
 the description of the information read
 in.)
- If the angle of elevation is 5° and the pro- (1300) (1302+1)
 bability of exposed room ignition is .7,
 these statements to read in the output
 tape from FIREFLY 1 are not skipped. (See
 Description of Processing Sequence for
 statements (1210) through (1212+1) for
 the information read in.)

STATEMENT NUMBER Through From If the angle of elevation is 5° and the proba-(1305) (1307)bility of exposed room ignition is .9, these statements to read in the output tape from FIREFLY 1 are not skipped. (See Description of Processing Secuence for statements (1210) through (1212+1) for the description of the information read in.) The probability of building ignition from thermal (1310) (1310)pulse is put in a table PRB(I,J,K). This is the end of the do loop which reads in (1320)(1320)the output tape from FIREFLY 1. This loop is gone through N times with the information from a particular individual building read into core with each pass through the loop. (1320+1) (1320+1)This is the beginning of the do loop which calculates which buildings catch fire as a result of the thermal pulse and fire spread using the Monte Carlo method. This loop is passed through one hundred times for each combination of the angle of fireball elevation and probability of ignition of an exposed room. The two loops included in these statements (1320+2) (127)clear the storage location KFR(I,J,K) which indicates whether a particular building is on fire or not for each of the buildings. These statements clear the locations which (127+1) (127+3)store the number of thermal pulse fires NUMTPF, the total number of fires, NTOTAL, and the number of buildings which have had their fire spread completed, NCOUNT. These statements are skipped if the intermediate (127+4) (130+1)step write-out is to be omitted. These statements write-out the heading for the intermediate step printout. The number of lines of printout on the page is set to three.

		STATEMENT NUMBER	
		From	Through
The	block, direction, and lot numbers are varied for each building to see if it catches the from the thermal pulse.	(132)	(132+4)
Α' ٦	If the proba- by of building ignition from thermal faise is freater than the newly generated random number, it is assumed by the Monte Carlo method that there is a fire by ther- mal pulse. If there is a fire from the thermal pulse, the storage location KFR(I,J, is set to 3. If the building is one of par- ticular interest, i.e. KR(I,J,K) is not equal to zero, the location TPSP(I,J,K) is increased by one to indicate there is a fire from the thermal pulse. Whether or not the building is of particular interest, NUMTPF is in- creased by one, NTOTAL is increased by one, and KBDG (NUMTPF) is set equal to the order number of the building just determined to be on fire from the thermal pulse.	(132+5) K) 1 ed	(165+2)
Two	random numbers are given new values. After it completes all this, there is a return to the beginning of the loop where the block, lot, and direction numbers are varied until all the buildings have been considered for fire from the thermal pulse.	(170)	(180)
Thes	se statements are skipped if there are thermal pulse fires. If there are no fires from the thermal pulse, there is a write-out which indicates there are none and a jump to the end of the loop which is passed through one hundred times.	(180+1)	(190+1)
The	3 storage locations which store the block, direction, and lot numbers of the build- ing under consideration are initially set to the block, direction, and lot numbers of the first building which was determined to be on fire as a result of the thermal pulse. These three numbers are computed from KBDG(1). A random number is gener- ated in this statement. The storage lo- cation which keeps a running total of the number of buildings on fire from spread, NUMSP, is set to zero.	(200)	(200+5)

.

A Charles and the second of th

This is the beginning of the loop which is (200+6) (200+6) passed through as many times as there are buildings which catch on fire as a result of thermal pulse and passed through partially as many times as there are buildings which catch on fire from spread.

STATEMENT NUMBER

(200+7) (200+7)

(200+8) (230+1)

(260)

Through

From

The storage location KSPREAD in this statement is set to zero and does not vary until the spread of fire from buildings on fire from thermal pulse has been completed.

- If the intermediate steps are not to be written out, these statements are skipped. If the number of lines on the page to be written is greater than 60, a new page is begun with the headings written out and the number of lines per page set to three. The block, direction, and lot numbers, the street part of the address, the probability of building ignition from thermal pulse, four random numbers used in the calculation, and the city part of the address are written out. The running total of the number of lines in increased by four.
- This loop is gone through 16 times or at least (240) (240) as many times as there are neighboring buildings for each building on fire to see if the fire spreads to other neighboring buildings.
- The two random numbers used in the Monte Carlo (240+1) (250) method to determine if the fire spreads, and if the building catches on fire, are generated in these statements.
- The index variable is tested to see if it is (260) less than, equal to, or greater than two.
- If the index variable is not one, these state- (270) (270+2) ments are skipped. General terms are set equal to the probability of spread to and the order number of the first neighboring building to the north.

	STATEME	MT NUMBER
	From	Inrouqu
If the index variable is not two, these state- ments are skipped. General terms are set equal to the probability of spread to and the order number of the second neighboring building to the north.	(280)	(280+2)
The index variable is tested to see if it is less than, equal to, or greater than 4.	(290)	(290)
If the index variable is not 3, these state- ments are skipped. General terms are set equal to the probability of spread to and the order number of the third neighboring building to the north.	(3 00)	(300+2)
If the index variable is not four, these state- ments are skipped. General terms are set equal to the probability of spread to and the order number of the fourth neighboring building to the north.	(310)	(310+2)
The index variable is tested to see if it is less than, equal to, or greater than six.	(320)	(320)
If the index variable is not five, these state- ments are skipped. General terms are set equal to the probability of spread to and the order number of the first neighboring building to the east.	(330)	(330+2)
If the index variable is not six, these state- ments are skipped. General terms are set equal to the probability of spread to and the order number of the second neighboring building to the east.	(340)	(340+2)
The index variable is tested to see if it is less than, equal to, or greater than 8.	(350)	(350)
If the index variable is not seven, these state- ments are skipped. General terms are set equal to the probability of spread to and the order number of the third neighboring building to the east.	(360)	(360+2)

- If the index variable is not eight, these state- (370) (370+2) ments are skipped. General terms are set equal to the probability of spread to and the order number of the fourth neighboring building to the east.
- The index variable is tested to see if it is (380) (2.37) less than, equal to, or greater than ten.
- If the index variable is not nine, these state- 390) (390+2) ments are skipped. General terms are set equal to the probability of spread to and the order number of the first neighboring building to the south.
- If the index variable is not ten, these state- (400) (400+2) ments are skipped. General terms are set equal to the probability of spread to and the order number of the second neighboring building to the south.
- The index variable is tested to see if it is (410) (410) less than, equal to, or greater than 12.
- If the index variable is not eleven, these state- (420) (420+2) ments are skipped. General terms are set equal to the probability of spread to and the order number of the third neighboring building to the south.
- If the index variable is not twelve, these state- (430) (430+2) ments are skipped. General terms are set equal to the probability of spread to and the order number of the fourth neighboring building to the south.
- The index variable is tested to see if it is (440) (440) less than, equal to, or greater than 14.
- If the index variable is not 13, these state- (450) (450+2) ments are skipped. General terms are set equal to the probability of spread to and the order number of the first neighboring building to the west.

	S TATEMEN	$T = N \cup T B F R$
	From	Through
If the index variable is not 14, these state- ments are skipped. General terms are set equal to the probability of spread to and the order number of the second neighboring building to the west.	(460)	(4ē∪+2)
The index variable is tested to see if it is 15 or 16.	(470)	(470)
If the index variable is not 15, these state- ments are skipped. General terms are set equal to the probability of spread to and the order number of the third neighboring building to the west.	(480)	(480+2)
If the index variable is not 16, these state- ments are skipped. A general term is set equal to the probability of spread to the fourth neighboring building to the west. If the storage location in KFR associated with the building from which spread is con- sidered is not 3, the location is set to 2 to indicate the spread consideration is complete. Whether or not KFR(I,J,K) equals 3, a general erm is set equal to the order number of the Fourth neighboring building to the west.	(490)	(495)
This general term which stores an order number is broken down into block, lot, and direction numbers.	(500)	(500+3)
If the order number is zero which implies there are less than 16 neighboring buildings, the spread consideration and write-out is skipped	(500+4) 1.	(500+5)
The Monte Carlo method is used to see if fire spreads to the neighboring building under consideration. If it does spread, the probability the neighboring building will catch on fire is compared to another ran- dom number.	(510)	(510)
The probability the neighboring building will catch on fire is compared to a random number. If the probability the building catches fire is not greater than the ran- dom number, the statements which cause the writing-out of the buildings which are	(: ?0)	(530+1)

on fire are skipped. If the probability is greater than the random number, there is a test to see if the neighboring building already caught on fire. If the neighboring building had already caught on fire, statement numbers (535) through (560+1) are skipped.

- The storage location KFR is set equal to "1". (535) (535) The "1" indicates the building caught on fire from spread, but its spread consideration to its neighboring buildings is not complete.
- If the building is of particular interest, TPSP (535+1) (535+2) (I,J,K) is increased by .001 to indicate another fire from spread.
- The running total of the number of buildings on (536) (536+1) fire as a result of spread, NUMSP, is increased by one. The running total of the number of buildings on fire, NTOTAL, is increased by one.
- The table KBDG, which stores the order number of (536+2) (536+2) those buildings on fire has entered the order number of the building which was just simulated to be on fire.
- If the details are not to be printed out, there (560+1)(538) is a jump to statement number (610). Otherwise there is a test to see if there are more than 60 lines of write-out on the page. If there are, headings are printed out on the next page, and the number of lines of write-out is set to 3. The block, lot number, and direction number of the building just determined to be on fire from spread, as well as its address, the probability that the building would catch on fire, the probability of building ignition, and the probability of spread from the building which is having its spread determined to a neighboring building are printed. The number of lines of write-out is increased by four.

,	STATEMEN	T NUMBER
	From	Through
If the index variable is not 16, there is a jump to statement number (630). When this variable is 16, it indicates that the spread from the building to its neigh- boring buildings has been completed.	(610)	(610)
The running total of the number of buildings which have had spread consideration com- pleted, NCOUNT, is increased by one.	(610+1)	(610+1)
<pre>If the running total number of buildings on fire, NTOTAL, is less than NCOUNT, there is a jump to statement number (690). Otherwise the following occurs: the build- ing determined to be on fire after the one which has just had its spread consideration completed has its block, direction, and lot numbers determined from the order number</pre>	(610+2)	(610+4)
Two random numbers are varied.	(630)	(630+1)
This is the end of the loop which considers the spread from the buildings in question to its neighboring buildings.	(640)	(640)
If the buildings on fire from thermal pulse have been completed, there is a jump to state- ment number (670) which sets the index vari- able to one. Otherwise, there is a jump to (660).	(650)	(650+1)
The index variable is compared to the number of buildings on fire as a result of thermal pulse. If the number of build- ings on fire from thermal pulse is greater than the index variable, there is a jump to statement number (680).	(660)	(660)
If the number of buildings on fire from the thermal pulse is less than or equal to the index variables, KSPREAD is set to one to indicate that the spread from the buildings on fire from the thermal pulse has been completed. There is a jump to the beginning of the loop which considers spread to the neighboring buildings (Statement Number 240).	(670)	(670+1)

	STATEMEN Profession	IT THEER Through
This is the end of the loop which considers the spread of the buildings on fire from ther- mal pulse. When the buildings on fire from thermal pulse have had their spread considerations completed, the index vari- able is set to one until all spread con- siderations are complete.	(680)	(680)
The index variable, NN, is tested to see if it is less than, equal to, or greater than 2. If NN = 1, the probability of exposed room ignition is set to .1, and there is a jump to statement number (6835). If NN = 2, the probability of exposed room ignition is set .3, and there is also a jump to statement number (6835).	(690) to	(6810+1)
There is a test to see if NN = 3, 4, or 5. If NN = 3, the probability of exposed room ignition is set to .5; NN = 4, probability set to .7; NN = 5, probability set to .9. After the probability of exposed room ig- nition has been set, there is a jump to statement number (6835).	(6815)	(6830)
There is a test to see if the index variable, MM, equals one, two, or three. If the variable is one, the angle is 30° ; if 2, the angle is 10° ; if 3, the angle is 5° . After the angle of elevation has been evaluated, there is a jump to statement number (695).	(6835)	(6850)
If the write-out of the intermediate steps are to be skipped, there is a jump to state- ment number (705). Otherwise, the angle of elevation and the probability of ex- posed room ignition are written out and there is a jump to statement number (708).	(695)	(700+1)
The angle of elevation, the probability of ex- posed room ignition and the index variable JJ, indicating the number of times the given simulation with the angle and probability fixed has been completed are written out	(705)	(706)

	STATEMENT NUMBER	
	From	Through
This is the beginning of the loop which varies the block number. This loop causes the write out of the summary of the block, direction, and lot numbers of the build- ings on fire.	(708)	(708)
This is the beginning of the loop which varies the direction number so all buildings will be considered in the summary.	(708+1)	(708+1)
The index variables set in statement numbers (708) and (708+1) determine an entry in the table which stores the number of buildings on the blockside. If the table entry is zero, there is a jump to statement number (785).	(708+2)	(710)
If the number of buildings on the blockside is not zero, this loop is not skipped. The lot number is the variable index.	(710)	(710)
If the location KFR(I,J,K) equals 3, there is a jump to statement number (730). Other- wise, the following occurs: if the inter- mediate steps are not to be written out, there is a jump to statement number (770).	(710+1)	(710+2)
There is a write-out of the block, direction and lot numbers of the building on fire from the thermal pulse. There is a jump to statement number (770).	(715)	(720+1)
If the building is not on fire from spread, and the spread considerations to its neighbor- ing buildings are not complete, there is a jump to statement number (770).	(730)	(730)
If the intermediate details are not to be written out, there is a jump to (770).	(730+1)	(730+1)
The block, direction, and lot numbers of the buildings on fire from spread are written out only if the intermediate steps are to be written out.	(735)	(740)
This is the end of the loop which has the lot number varied.	(770)	(770)

Con Lastrias

110

. •

.

	STATEMENT NUMBER	
	From	Through
This is the end of the do loop which varies the direction number and writes out the summary.	(785)	(785)
This is the end of the do loop which varies the block number and writes the summary.	(790)	(790)
The number of lines of write-out is cleared. If the total number of buildings on fire is zero, the number of buildings on fire from spread is cleared.	(790+1)	(80 0+1)
The number of buildings on fire from the ther- mal pulse and the spread, as well as the total number of buildings on fire, are written out.	(801)	(805)
If NDETAIL equals zero, there is a jump to statement number (807).	(806)	(806)
If this is not the hundredth time through the loop, there is a jump to statement number (807).	(806+1)	(806+1)
This is the beginning of the loop which writes out the number of times those buildings of particular interest catch on fire from the thermal pulse and from spread. The index variable is the block number.	(806+2)	(806+2)
The index variable for this loop is the direc- tion number.	(806+3)	(806+3)
A simple term is set equal to the entry in the table KC. If the simple term is zero, there is a jump to statement number (807). Otherwise, the beginning of the do loop which varies the lot number is encountered.	(806+4)	(806+6)
If the building is not of particular interest, there is a jump to statement number (807). An integer variable is set equal to the floating point number TPSP(I,J,K), which stores the number of thermal pulse fires and one thousandth of the number of spread fires, so that the number of fires from the	(806+7)	(8065+1)

oating integer

thermal pulse is determined. A floating point variable is set equal to the integer variable so arithmetic operations involving floating point variables can be performed. The number of fires from spread is one thousand times the fractional part of the variable storing both thermal pulse and spread. The block, lot, and direction numbers, as well as the number of fires from the thermal pulse and spread are written out. The variable TPSP(I,J,K) is cleared.

- This is the end of the locp which writes out (807) (807) the number of times each building of particular interest catches fire from the thermal pulse and from spread.
- This is the end of the loop which varies the (808) (808) angle of elevation and the probability of exposed room ignition. The tape being read in is rewound so the information concerning another combination of the angle of elevation and the probability of room ignition can be read into core.

This is the end of the program. (810) (810+1)

SECTION 4

FIREFLY 3

I. INTRODUCTION

FIREFLY 3 uses as input the output tape from FIREFLY 2. FIREFLY 3 first computes the average of the number of buildings on fire from spread and the thermal pulse, as well as the average of the total number of buildings on fire, for each one hundred case test base where the angle of fireball elevation and the probability of ignition of an exposed room are fixed. Next, the averages just computed are expressed as a percent of the total number of buildings. Finally, the standard deviation of the number of buildings on fire from spread, thermal pulse and total are determined. II. SUMMARY OF OUTPUT DATA

For each angle of fireball elevation and probability of ignition of an exposed room, FIREFLY 3 contains:

- A. The average number and percent of total buildings destroyed by the thermal pulse.
- B. The average number and percent of total buildings destroyed by fire spread.
- C. The average number and percent of total buildings destroyed from both fire spread and thermal pulse.

A sample of this output is shown in Table 1-2, 1-3, and 1-4.

III. DATA DESCRIPTION

The data needed to operate FIREFLY 3 consist of two card types. All values are right justified.

A. Card Type 1--Records to Skip (15 cards)

Cols. Description

1-4 KSKIP, number of records to be skipped on the input tape from FIREFLY 2 before each one hundred case writeout of the number of the building on fire from spread, the thermal pulse, and both the spread and the thermal pulse for a particular angle of elevation and probability of ignition of an exposed room.

> KSKIP must be defined for each of the 15 cases of output so that extraneous page, column, and row headings are not erroneously read as data. In a normal operation, that is, when no special building analysis has been performed by defining a value for NDETAIL, the first KSKIP card contains a "7" in column 4 followed by 14 blank cards.

B. Card Type 2--General Information (1 card)

Cols. <u>Description</u>

- 1-4 Total number of buildings
- 6-15 City name (Alphameric)
- 17-28 The wind speed used in FIREFLY 1, (e.g., "8 mph, east").

IV. INPUT TAPE

During execution, FIREFLY 3 reads the output tape of FIREFLY 2. KSKIP plus one records are by-passed until the following record is encountered:

Cols.	Description

- 52-55 Number of buildings on fire from the thermal pulse.
- 103-105 Number of buildings on fire from fire spread.

V. DESCRIPTION OF PROCESSING SEQUENCE

` .

12.00 999

16

All the set of the second

0.00

A MARTIN A MERICAN

	S TATEMEN From	T NUMBER Through
The number of records to be skipped on the input tape before each one hundred group is read into the table, KSKIP.	(0+1)	(15)
The number of buildings, the city name, and the wind speed are read.	(15+1)	(20)
The above three items and a heading are writ- ten out. The location storing the num- ber of lines per page of output is in- creased by seven.	(20+1)	(25+2)
This is the beginning of the loop which varies the combinations of the angle of eleva- tion and the probability of ignition of an exposed room so that the averages, per- centages, and standard deviations of the number of buildings on fire from spread, thermal pulse, and both spread and thermal pulse for each combination can be performed.	(25+2)	(25+2)
A simple variable is set to KSKIP. If the value of KSKIP is zero, there is a jump to statement (40) so only one record is skipped on the input tape.	(25+3)	(25+4)
This loop causes one record to be skipped for each pass. This loop is gone through KSKIP times.	(25+5)	(35)
The sums of the number of buildings on fire from the thermal pulse and from spread for the hundred case test base is cleared.	(40)	(40+1)
The input tape from FIREFLY 2 is read skipping all but the number of buildings on fire from spread and thermal pulse for each pass. The sums of the number of buildings on fire from spread and the thermal pulse for the hundred case test base is updated. This loop is passed through one hundred times.	(40+2)	(50)

118

•

.

		From	Through
The	sum of the total number of buildings on fire for the hundred case test base is computed.	(50+1)	(50+1)
The	average number of buildings on fire from the thermal pulse is computed and rounded to the nearest integer.	(50+2)	(55)
The	average number of buildings on fire from spread is computed and rounded to the nearest integer.	(60)	(65)`
The	average total number of buildings on fire is calculated.	(70)	(70)
The	percent of the average number of buildings on fire from the thermal pulse is computed. This percent is rounded to the nearest integer.	(70+1)	(75)
The	percent of the average number of buildings on fire from spread is computed. This percent is rounded to the nearest integer.	(8 0)	(85)
The	percent of the average total number of buildings on fire is computed.	(9 0)	(90)
The	<pre>sums of the squares of the absolute values of the differences between the average and the actual number of buildings on fire from spread and the thermal pulse are cleared, i.e. KTOTSQSP = 0, KTOTSQTP = 0.</pre>	(90+1)	(90+2)
This	loop is gone through one hundred times to determine the squares of the sums of the absolute value of the differences between the average and the actual number of buildings burning from spread and the thermal pulse for a particular angle of elevation and probability of exposed room ignition.	(90+3)	(100)
The	standard deviations of the number of build- ings on fire from fire spread, the thermal pulse and both spread and the thermal pulse are calculated.	(100+1)	(100+3)

MDFD

119

۰.

If	<pre>the index variable M (loop beginning in statement number (25+2)) is less than or equal to five, KELEV, angle of ele- vation, is set to thirty. If M is greater than five but less than eleven, KELEV is set to ten. If M is greater than or equal to eleven, KELEV is set to five. If M equals one, six, or eleven, the probability of exposed room ignition equals.1; if M equals two, seven, or twelve, the proba- bility is .3; if M equals three eight, or thirteen, the probability is .5; if M equals four, nine, or fourteen, the probability is .7; if M equals five, ten or fifteen, the</pre>	(100+4)	(170)
	.7; if M equals five, ten or fifteen, the probability is .9.		

STATEMENT NUMBER

From

Through

(183+1)

(200+1) (200+2)

If the number of lines of output on the page (175) of printout is greater than or equal to fifty-five, the title line is printed out at the top of a new page, the number of lines of output on the new page is set to seven and if the exposed room ignition probability is .1, a line is skipped, and the number of lines of output is updated.

The averages, percents, and standard deviations (185) (190+1) of the number of buildings on fire from spread, the thermal pulse, and both are written out with the angle of elevation and the probability of ignition of an exposed room specified.

This is the end of the loop beginning at (25+2). (200) (200) Each pass through this loop compiles the information for a particular combination of the probability of ignition of an exposed room and the angle of elevation.

End of program.

SECTION 5 GLOSSARY •

.

٠,

.

I. GENERAL TERMS

BLOCK--

A block is a rectangular or near rectangular area containing at least one building.

BLOCKSIDE-- A blockside is one of four sides of a block--north, east, south, or west.

BUILDING DESIGNATION--See ORDER NUMBER

CARDINAL DIRECTIONS -- North, East, South, and West

LOT-- The lot number is a number given to each building. On a blockside the lot numbers given to the buildings are values from one and incremented by one to a maximum of ten.

ORDER NUMBER-- The order number, which uniquely designates a building, is defined in the following equation:

ORDER NUMBER = 1000I + 100J + K

Where: I = block number J = blockside number K = lot number

SETBACK-- The setback is the distance in feet the front side of a building is back from the street, with the following exception: if the distance between the front of the building across the street is used as the separation distance, then the setback is zero. If only the street width is used as the separation distance, then the setback must be defined so that the total separation distance may be calculated. THEORETICAL SEPARATION DISTANCE--Theoretical separation distance in any of the four basic directions from a particular building is the maximum distance between the building and another building where the probability of spread in the direction under consideration is zero.

II. FORTRAN CONSTANTS AND VARIABLES

GLOSSARY OF TERMS USED IN COMPUTER PROGRAM (COMPUTER SYMBOLS)

123

This glossary defines the terms of FIREFLY 1, FIREFLY 2, and FIREFLY 3 which are in common storage. All the terms used in the subroutines in FIREFLY 1 are also used in the main program; therefore, there are no definitions specifically for the subroutines.

Those variables which are not an array name have a "1" as their dimension.

. . .

SYMBOL	DIMENSION	MEANING
ADR1-2(I,J,K)	27,4, 10	Street part of address of building on block I, blockside J, and lot K
ANG	1	Angle of the wind in radians mea- sured from east counter-clockwise
ARBLDG	1	General term for one of the radiat- ing areas
ARBLDG1	1	Radiating area from the north of the building
ARBLDG2	1	Radiating area from the east of the building
ARBLDG 3	1	Radiating area from the south of the building
ARBLDG4	1	Radiating area from the west of the building
AVGSP	1	Floating point variable equal to the average of the number of buildings on fire from spread in a hundred case test base.
AVGTP	1	Floating point variable equal to the average of the number of buildings on fire from the thermal pulse in a hun- dred case test base
BIN	1	Gage-Babcock Index
CTY1, CTY2	1	City and State
D	1	Floating point variable equivalent to KD (see KD)
DET	1	The part of the solution of the qua- dratic equation to solve for the separa- tion distance which is under the square root operation
DEVSP	1	Standard deviation of the number of buildings on fire from spread

.

.

man and and

1

L

.

125

• •

•

.

.

SIMBOL	DIMENSION	MEANING
DEVTOT	1	Standard deviation of the total num- ber of buildings on fire
DEVTP	1	Standard deviation of the number of buildings on fire from the thermal pulse
DM	1	Multiplier for building characteris- tics used in calculating the radiat- ing area. It is dependent upon the wall openings, number of stories and type of roof construction. See Section 2 VII E.
DMPHR	1	General term for one of the wind com- ponent's number of miles/hour
DMPHRE	1	Number of miles/hour for the eastern component of the wind vector
DMPHRN	1	Number of miles/hour for the northern component
DMPHRS	1	Number of miles/hour for the southern component of the wind vector
DMPHRW	1	Number of miles/hour for the western wind component
EN	1	Probability of room ignition with the environmental factors considered
FC	1	Contribution factor adjusts the radiat- ing area of the side of a building which is the front. The contribution factor is dependent upon the building's setback from the street.
HFl	1	Flame height in the northern part of the building
HF2	1	Flame height in the eastern part of the building
HF 3	1	Flame height in the southern part of the building

and the second second

The second

100 212000

126

٨Ŀ

.

• •

and the second

Start Barry Start Start

and and

SYMBOL	DIMENSION	MEANING
HF4	1	Flame height in the western part of the building
I	1	Block number of building. The blocks must be numbered from one and incre- mented by one with a maximum of 27.
J	1	The side, direction, or blockside num- ber of building. The maximum possible number is four. With each block all the blocksides need not contain a build- ing or buildings. Blockside 1 means the northern part of the block while block- side 2, 3, or 4 means eastern, southern, or western part respectively.
K	1	Lot number of building. Each blockside which contains a building or buildings must have the lots numbered from one and incremented by one to a maximum of ten.
KARD1-4	1	To check to see cards read into core in correct order
KAVGSP	1	Fixed point variable equal to AVGSP (see AVGSP)
KAVGTOT	1	Average of the total number cf build- ings on fire
ка /Зтр	1	Fixed point variable equal to AVGTP (see AVGTP)
KBDG	1080	Table which stores the order numbers of those buildings determined to be on fire. The order numbers of those buildings on fire from thermal pulse appear before those on fire from spread.
KBLK	1	Block number of building
KC(I,J)	27,4	Number of buildings on the blockside J of lot I
KCOUNT(I,J)	30,4	Same as KC(I,J)

۰.

SAMPLE	DIMENSION	MEANING
KCR	1	Code for the roof construction com- bustibility. See Section 2 VII E
KD	1	Density multiplier times one hundred. This will usually be 100.
KDIFSP	100	Absolute value of the difference be- tween the average of the number of buildings on fire from spread and the actual number of buildings on fire from spread for one of the hundred cases. The index corresponds to the index of the actual number of build- ings on fire from spread.
KDIFTP	100	Absolute value of the difference be- tween the average of the number of buildings on fire from the thermal pulse and the actual number of build- ings on fire from the thermal pulse for : one of the hundred cases. The index corresponds to the index of the actual number of buildings on fire from the thermal pulse.
KDIR	1	Blockside number of the building (see J)
KELEV	1	Angle of fireball elevation
KF	1	Code for the floor construction com- bustibility. See Section 2 VII F
KFR(I,J,K)	27,4,10	Table indicating fire and spread com- pletion information about the build- ing determined by I, J, and K. If the location contains a "O", this indicates there is no fire. If there is a "l", the fire is from spread, but the spread consideration to its neighboring build- ings is not complete. If the building is on fire from spread and the spread consideration is complete, the table entry contains a "2". A building on fire from the thermal pulse is indicated by a "3".

SYMBOL	DIMENSION	MEANING
КН	1	Term dependent upon the number of stories in the building. KH is used in the calculation of the Gage-Babcock index.
кк	1	See KC(I,J)
KLOT	1	Lot number of card read in. See K
ко	1	Value assigned to a building for its use which determines its combustibil- ity. See Section 2 VII F
KOW	1	Value assigned for the relative num- ber of wall openings which determines combustibility. If there are no, few, average, many, or all openings, the value is one, two, three, four or five respectively.
KPAGNI'N	1	Number of lines of printout on a given page
KPGNTN	1	See KPAGNTN
KPSP	1	Percent of the average number of build- ings on fire from spread
KPTOT	1	Percent of the average number of total buildings on fire
KPTP	1	Percent of the average number of build- ings on fire from the thermal pulse
KR(I,J,K)	27,4,10	Table which stores whether or not the building is to have the number of times it catches fire from thermal pulse and spread computed and written out, i.e., whether or not it is a building of par- ticular interest. If the table entry is a "1", there is a calculation and printout; whereas, if there is a "0", there is no calculation or printout. This calculation is determined for a fixed angle of elevation and exposed room ignition probability (one hun- dred case test base).

۰.

SYMBOL	DIMENSION	<u>MEAN ING</u>
KRR	1	Value dependent upon the roof construc- tion code. It is used in determining the Gage-Babcock Index.
KSB	1	Number of feet the building is set back from the street. See setback in glossary
KSEQ1	1	Order number of the building with infor- mation read in on previous card
KSEQ2	1	Order number of the building with infor- mation read in. A comparison between KSEQ1 and KSEQ2 is performed to deter- mine if the input cards are in the correct order.
KSKIP	15	Number of records to be skipped on output tape from FIREFLY 2 before the one hun- dred case output of the number of build- ings on fire from spread and thermal pulse is encountered. The index equals the num- ber of one hundred cases which have been encountered plus one.
KSMSP	1	Running total of the number of buildings on fire from spread in a particular test base
KSMTOT	1	The total number of buildings on fire in a particular test base
KSMTP	1	Running total of the number of buildings on fire from the thermal pulse in a par- ticular test base
KSP	1	Number of times a building catches on fire from spread with the angle of fireball elevation and the exposed room ignition probability fixed
KSPF	100	Number of buildings on fire from spread for each case of the one hundred under consideration. The number of buildings on fire from spread for the first time through the loop is stored in KSPF(1). The index of KSPF corresponds to the num- ber of times the problem has been simu- lated with a particular angle of eleva- tion and probability of ignition of an exposed room.

•

to a success of

•

TRANSPORT

THE OWNER WAS

SYMBOL DIMENSION MEANING KSPREAD 1 Indicates whether or not the spread considerations for those buildings on fire from the thermal pulse have been completed. A "0" indicates that the spread consideration is not complete, while a "1" indicates those buildings on fire from the thermal pulse have had their spread considerations completed. KSOSP 100 Square of KDIFSP with the indices corresponding 100 Square of KDIFTP with the indices KSQTP corresponding KS TY 1 Number of stories a building has 1 Running total of KSQSP for the hun-**KTOTSOSP** dred cases **KTOTS OTP** 1 Running total of KSQTP for the hundred cases KTP 1 Number of times a building catches on fire from the thermal pulse with the angle of fireball elevation and the exposed room ignition probability fixed. 100 KTPF Number of buildings on fire from the thermal pulse for each case of the one hundred under consideration. The number of buildings on fire from the thermal pulse for the first time through the loop is stored in KTPF(1). The index of KTPF corresponds to the number of times the problem has been simulated with a particular angle of elevation and probability of ignition of an exposed room. KV 1 General term for the classification of one of the four wind components as a light, moderate, or high wind. A component less than 8 miles/hour is a low wind and indicated by a "1" in the location KV. A medium wind from 8 to 16 miles/hour is indicated by a "2" in KV. A "3" in KV indicates there is a high wind, a wind 16 miles/hour or above.

1

SYMBOL	DIMENSION	MEANING
KVE	1	Classification of the eastern wind component as a light, medium, or high wind. See KV
KVN	1	Classification of the northern wind component as a light, medium, or high wind. See KV
KVS	1	Classification of the southern wind component as a light, medium, or high wind. See KV
KVW	1	Classification of the western wind component as a light, medium, or high wind. See KV
KW	1	General term for the distance in fest between the building and one of its neighboring buildings. If the neigh- boring building is opposite its front side, the street width may be recorded as the width if the setback distance is recorded.
KWE1-4	1	Distance in feet between the building and one of its neighboring buildings to the east. If there is no neighbor- ing building, distance=0. The "1", "2", "3", and "4" indicate the distance between the building and the first, second, third, and fourth buildings respectively to the east. See KW
KWIDTH1-2	1	Width in feet of the building. The east-west length of the building is stored in KWIDTH 1. The north-south length is stored in KWIDTH 2.
KWN1-4	1	Distance in feet between the building and one of its neighboring buildings to the north. If there is no neigh- boring building, distance = 0. The "1", "2", "3", and "4" indicate the distance between the building and the first, second, third, and fourth buildings respectively. See KW

•

.

132

•

.
SYMBOL	DIMENSION	MEANING
KWR I TE	1	Indicates whether or not the intermedi- ate steps are to be written out. If KWRITE=0, there is no intermediate step printout. If KWRITE=1, there is the write-out of the intermediate steps.
KWS1-4	1	Distance in feet between the building and one of its neighboring buildings to the south. If there is no neigh- boring building, distance=0. The "1", "2", "3", and "4" indicate the distance between the building and the first, second, third, and fourth neighboring buildings respectively. See KW
KWWl-4	1	Distance in feet between the building and one of its neighboring buildings to the west. If th re is no neighbor- ing building, distance=0. The "1", "2", "3", and "4" indicate the distance between the building and the first, second, third, and fourth neighboring buildings respectively. See KW
М	1	Total number of blocks. M is also the maximum block number since M is from one and incremented by one.
MAJDIR	1	Code for the wind component which has the largest number of miles/hour. North, east, south, and west are re- presented by "1", "2", "3", and "4" respectively.
N	1	Total number of buildings in the area to have buildings on fire considered
NBE1-4(I,J,K)	27,4,10	Order numbers of the neighboring build- ings to the east. See NBLDG
NBLDG	1	General term for the order number of a neighboring building. For NBE1-4, NBN1-4, NBS1-4, and NBW1-4 the "1", "2", "3", and "4" indicate the first, second, third, and fourth neighboring buildings respectively.

STMDOL	DIMENSION	PEANING
NBLK	1	Block number of building. It is used to store the block number read in on the first card of the block informa- tion so it can be compared to the block number of the second card.
NBN1-4(I,J,K)	27,4,10	Order numbers of the neighboring buildings to the north. See NBLDG
NBS1-4(I,J,K)	27,4,10	Order numbers of the neighboring buildings to the south. See NBLDG
NBW1-4(I,J,K)	27,4,10	Order numbers of the neighboring buildings to the west. See NBLDG
NCNT	1	NCOUNT + 1 (see NCOUNT)
NCOUNT	1	Number of buildings on fire which have had their spread considerations com- pleted
NDETAIL	1	Number of buildings which are of par- ticular interest
NDIR	1	Blockside number of building. It is used to store the blockside number of the first card of the building infor- mation so it can be compared to block- side number of the second card.
nlot	1	Lot number of building. It is used to compare the lot numbers of the first and second card of the building infor- mation.
NTH	1	Order number of building minus the block number times one thousand
NTOTAL	1	Total number of buildings which are known to have caught on fire
NUME	1	Number of neighboring buildings to the east of the building
NUMN	1	Number of neighboring buildings to the north

A DESCRIPTION OF A DESC

•

•

.

.

• • •

SYMBOL	DIMENSION	MEANING
NUMS	1	Number of neighboring buildings to the south
NUMS P	1	Number of buildings on fire from spread
NUMTPF	1	Number of buildings on fire from the thermal pulse
NUMW	1	Number of neighboring buildings to the west
PR	1	General term for a probability of spread to one of the neighboring buildings. For PRE1-4, PRN1-4, PRS1-4, and PRW1-4, the "1", "2", "3", and "4" indicate the probabil- ity of spread to the first, second, third, or fourth neighboring build- ing respectively in the direction under consideration.
PRB(I,J,K)	27,4,10	Probability of building ignition from thermal pulse
PRE1-4(I,J,K)	27,4,10	Probability of spread to the first, second, third, or fourth neighboring building (see PR) to the east of the building
PRF(I,J,K)	27,4,10	Probability of the building defined by I, J, and K to catch on fire
PRN1-4(I,J,K)	27,4,10	Probability of fire spread to the first, second, third, or fourth neighboring building (see PR) to the north of the building
PROB	1	Probability of building ignition from thermal pulse
PRS1-4(I,J,K)	27,4,10	Probability of fire spread to the first, second, third, or fourth neighboring building (see PR) to the south of the building

1-1

135

۰.

.

SYMBOL	DIMENSION	MEANING
PRW1-4(I,J,K)	27,4,10	Probability of fire spread to the first, second, third, or fourth neighboring building (see PR) to the west of the building
PSP	1	Floating point variable equal to KPSP (see KPSP)
PTP	1	Floating point variable equal to KPTP (see KPTP)
Q	1	Intermediate value used in computing the Gage-Babcock Index
RANDOM1-2	1	Used to generate RANDOM4 and RANDOM5
RANDOM4-5	1	Used in the Monte Carlo method to deter- mine if the building catches on fire from the thermal pulse, if the fire is going to spread to within reach of a neighboring building, and if this neigh- boring building will catch on fire
RI	1	Exposed room ignition probability
RII	1	See RI
RKTP	1	Floating point variable set equal to KTP (see KTP)
RN	1	Floating point variable set equal to N (see N)
RNN	1	Floating point number set equal to the exposed room ignition probability
S	1	General term for the shape of the ra- diator
Sl	1	Northern radiator shape of the building
S2	1	Eastern radiator shape of the building
S3	1	Southern shape of the radiator of the building

•

136

.

a sutte

•

*

•

SYMBOL	DIMENSION	MEANING
S4	1	Western shape of the radiator of the building
SHIELD	1	Shielding factor dependent upon the elevation of the fireball angle and the number of stories of the building in question
STY	1	Floating point variable storing the number of stories
Т	1	The value assigned to building A de- pending upon the angle of inclination of the terrain. See Section 2 VII F
TPSP(I,J,K)	27,4,10	Number of times the building of par- ticular interest defined by I, J, and K catches fire from the thermal pulse is stored in the integer part of the floating point number. The number of times the building of particular in- terest catches on fire from spread is the fractional part times one thousand. These two numbers are totaled for a fixed angle of elevation and exposed room ignition probability.
WB1-2	1	Floating point variables WBl for KWIDTHL and WB2 for KWIDTH2
WE1-4	1	Floating point variables WEl for KWEl, WE2 for KWE2, WE3 for KWE3, and WE4 for KWE4
WIND1-2	1	BCD description of wind, i.e. LOW, MEDIUM, or HIGH WIND
WMF	4	Radiating areas of a building. The subscript 1 indicates the northern radiating area, 2 the eastern area, 3 the southern area, and 4 the west- ern area
WN1-4	1	Floating point variables WNl for KWNl, WN2 for KWN2, WN3 for KWN3, and WN4 for KWN4
WS1-4	1	Floating point variables WS1 for KWS1, WS2 for KWS2, WS3 for KWS3, and WS4 for KWS4

1

.

Ļ

137

۰.

SYMBOL	DIMENSION	MEANING
WW1-4	1	Floating point variables WWl for KWWl, WW2 for KWW2, WW3 for KWW3, and WW4 for KWW4
x	1	Term using r=ratio of the distance be- tween two buildings to the theoretical separation distance. The equation follows: x=l-r
Y	1	Theoretical separation distance in any of the four basic directions from a particular building
YE	1	Eastern theoretical separation dis- tance from the building in question
YN	1	Northern theoretical separation dis- tance
YS	1	Southern theoretical separation dis- tance
YW	1	Western theoretical separation dis- tance
YY	1	KTOTSQTP divided by one hundred
YZ	1	YY + ZZ
22	1	KTOTSQSP divided by one hundred

•

and the second second

.

HAMPHING TE

.

in anti-

•••

SECTION 6 PROGRAM .

۰.

.

. .

FIREFLY 1 PROGRAM

•

To: Contraction

03/25/68

.

		En C.	ana" F	IREFLY1								
		1 M /	-> 510 N	1		PRF (30,	4,10),	WHE (4)	KCOUNI	(30,4),		
		1 24/11	1 (51,4	1,10), PRN2/	(30,4,1	O),PRNJ	(50,4)	16), PR	N4(30,4	1,10),		
		1 PRH:	(33,4	10) . PRF2	(30.4.1	U), PRES	(30,4,	10) , PRI	c4(30,4	,10),		
		- 2851	150.4	10) PRS2/	30,4,1	DIPHSS	(30,4,	10) , PR	54(30,4	1,10),	•	
		- 11. ·		101.00002	1.4.1	O1.PRWS	130.4.	10.3 . PR	4(30,4	1.10)		
		1		//////////////////////////////////////				אנים ניוא	4	,	+	
		COM	10//00	JAMME .			KNIPRI		9 8 9 8 - 036		DD 7	
		1-4/4	4/01/P	RE1, PREZ, P	KF2'LK	E4,PKS1	1PH251	PKSSIF	124,244	11PRACI	PRWSI	
		20144	÷									
		RANK	A. (0).	/80/, WITH,	KV CON	IS, PERP,	(1),/8:	1/ . FIRI	= 2 , AGNT	•		
	C	TOTA	I NUM	HER OF BLT	GS WIT	H LOT I	NFORMA	TION =	N			
		DEAT	3		5 . N							
	C		2 • 1 - NI, LW	ALLED INE DIT	NORS E	M		-				~
	6	1014		BCK OF DL		39						
	• • • •	REAL)		_ > + <u>!</u> !							-
	5	FORM	14) (1	,H , [4)								
		PEAD) 1,UM	IPHR, ANG					•			
	1	FORM	141 (F	5,1,1X,F4	,2)							
		KSEG	1=0									
	•	KPAG	INTNE1									
		2 00	A MME	1.м								
		- 00 L	n in Their	• • • • • • • • • • • • • •	22.180	OTAL T (MM	in in the				and the second second	
	۲J.	TODU			COINT		14114-2	1041				
··· -	22	FORM	IAT.	(6X) 12,1X	(+ 1211×	12121	[2]		Station -			
		NO 3	571 II	=1,N								
	. N	READ)		10,KBL	K,KDIR,	KLOT,	KWID	[H1,KWI	DTH2,KS	TY, KSB, K	
	1	104.0	CR, NU	MN, KWN1, KV	IN2, KWN	13.KWN4.	NUME, KH	WE1,KWE	2. KWE3	KWE4.N	UMS,	_
		ZKARU	11			-						
	10	FUB	AT (1	2.18 . 11.12	- 12.3X		13.11.1	1.5	12.18.1	3.18.11	.1 ¥ . 11.	
	10			217431717	Id. IV.	17 1 Y.T	7.44.17	7.4¥.1.	167407- 2 19.11	14.7.5.	1 1 1 3.	
		1141	.1.		11/14.	1211411	01 TVII	51 T VI I V	, , TV) TT	1141 101	TX 101	
		11X, I	3,1X,	13,1×,11,3	5X,117							
		_ IF _ (KARD1	NE. 1) GO	TO 14							
		NBLK	(=KBLK	,								
		NDIR	REKDIR	/				-				
		NLOT										
		READ)		23.KBL	K.KDIR	KLOT, KH	AS1 KWS	52.KWS3	KWS4,NI	UMW.	
	,	4.4.4.4.1	·	KULIZ KUWE	L.KO.KW	KE KD.	T. DM.KA	לח א				
	22	TUNHT	AT IT	3.4 V 14 4	1 12 1 V	13.14.	1 2 4 4 4 7 1	4 1Y.1	× 14.1	1.14.13	4 0 13.	
	20		1A 1 4	CILX / 11/40	1.1.1.4.4	1101401			U 25 4			
		11%,1	3,1X,	1215X11511	XIISIT	X, 12, 1A	12111	1 31111	711211	174X 1 11)	
		KD=1	.00									
		W81 =	KWIDT	н1								
		WB2=	KWIDT	н2								
		STY=	KSTY									-
		IF (KARD2	NE 21 60	T0 14							
			WING	TA CEE IE	BECODI	STN ORI						
	0			IU SEC IF	NEUURD	3 114 011						
			ALU I	NE.NLUIJ O		4						
		IF S	KUIK.	NE.NDIRI C	50 10 I	4						
		IF (KARK'	NE.NBLK) G	O TO 1	4					- 22	
		00 3	5710 M	M=1.3								
		DO 3	5710 N	N=1,9,2								
	C	PROH		OF BUILT	ING IG	NITION	FROMTH	HERMAL	PULSE			• •
	0 0	POOV	4 LGNT	TION BOOD	011							
		- RUU-	- ••••	TION FROB-	· · · · · · · · · · · · · · · · · · ·							
		KNN =	# NN	•								-
		_RII=	‡RNN≠,	1								
		EN 🖷 🖡	,0355*	STY+(WR1-	F W82)							
		IF ((MM-2)	2790,2861	2,2930							
	C	• • • • •										
	C	ANGI	FOF	FLEVATION	= 36 D	FOREES						1
	• •••	nutra e	• • • • • • •									- 3

141

••

03/25/68

C	
2793	1F(AS(Y=14) 2810,2800,2800)
2000	SHIELD=,94
	GC 10 2050
2013	IF (KSTY-12) 2013,2812,2811
2011	SH1:L0=,30
	COTO Zazu
2812	SHIELDE, NS
	00 10 2550
2613	IF (KSTY-10) 2016,2015,2014
2014	SHIPLU=,77
	0 TO 2000
2815	SHIELD=,70
	GO TO 2850
2610	IF (KSTY-8) 2819,2818,2817
2817	SHIELD=,63
	GO TO 2850
2810	SHIELD=,55
	GO TO 2850
2319	IF (KSTY-0) 2022,2821,2820
2820	SHILLU=,48
	GO TO 2850
2021	SHIELD=,42
	30 TO 2850
2822	IF (KSTY-4) 2825,2824,2823
2523	SHIEL D=, 37
	GO TO 2850
2324	SHIELD=,30
_	GO TO 2850
2525	IF (KSTY-2) 2828,2827,2826
2826	SHIELD=,24
	.GO TO 2850
2827	SHIELD=,20
and analy to	GO TO 2850
2828	SHIELD=,10
2650	P=RII+SHIELD
	KELE V=30
	<u>GO TO 24</u>
C	
C	ANGLE OF ELEVATION =10 DEGREES
C	
2860	IF (KSTY-14) 2871,2870,2870
2870	SHIELDE, 62
	_GO_TO_292J
2871	IF (KSIY-12) 28/4,28/3,28/2
2572	SHIELUF, 69
	GO TO 2920
2373	SHIELUF, 50
- //	GO TO 2920
	IF (KSIY-10) 2877,2870,2875
2875	SHIELDE, 45
	-90,10, CY20
2076	SHIELUF, 20
2877	IF (KSIY-8) 2880,28/9,28/8
2078	SHIELVE, 12

03/25/08

•

÷

.

.

71.5.4

	00 10 2359
2379	SHILU=.11
	50 10 2920
2000	IF (KSTY-2) 2003, 2802, 2881
2681	SH!HD=.10
2001	
2432	
2002	
• • • • •	
2003	IF (KSIY-2) 2800,2003,2004
2 5 8 4	SHICLD=.05
	GO TO 2920
2885	SHIELD=,04
	GO TO 2920
2 886	SHIELD=,03
2920	P=RII+SHIELD
	KELEV=10
i i i i i i i i i i i i i i i i i i i	GO TO 24
C	
	ANGLE OF LEVATION SE RECORDS
0	ANGLE OF ELEVATION -> DEGREES
2930	1F (KS14-14) 2932,2931,2931
2931	SHICLD=,73
	GU TO 2990
2932	IF (KSTY-12) 2935,2934,2933
2933	SHIELD=.62
	GO TO 2990
2934	SHIFL DE 50
2704	
2075	15 / 4 STV-10 1 207 8. 2077. 2074
2737	(r (KS)(-10) 2730(2737)(2730
2430	
0077	
2931	SHIELDE ZU
- 0	
2938	IF (KS1Y-0) 2941,2940,2939
2939	SHIELD=,12
	GO TO 2990
2940	SHIELD=,10
	GO TO 2990
2941	IF (KSTY-5) 2944,2943,2942
2942	SHIELD=,10
	GO TO 2990
2943	SHIELD=.06
	GO TO 2990
2944	SHIELDE. 03
2000	0+DIT+SUIEI D
2770	
24	[F (MM,E0,1) 60 [U 3/06
	GO TO 370
3706	IF (NN,EQ,1) GD TO 3718
	GO TO 370
37 18	KSEU2=KBLK+1000+KDIR+100+KLOT
	1F (KSE02-KSE01) 14,25,25
14	WRITE (6,20)
20	FORMAT (1H0,40HTHERE IS AN ERROR IN SEQUENCING OF INPUT)
	GO TO 545
25	KSEQ1=KSEQ2
······································	

143

.

- ----

۰.

.

;	10.4	• 03/25/68
	13	I=KBLN
	52722	J=KUIR
	28	IF (II.NE,1) GO TO 15
		IF (ANG.EQ.C) 60 TO 4/
		$IF (A \times G = 1, 57) = 30, 32, 34$
	47	ОМРАНЕТОМРИК
		00 TO 15
	32	
	52	
		DMPHRS=+DMPHRN
	S	DMPHRw=D
		GO TO 15
	34	IF (ANG-3,14) 36,38,41
	30	DMPHRW=DMPHR
		DMPnRN=0
		DMPHRE=-DMPHRW
		DMPHRS=0
		GO TO 15
	- 41	IF (ANG-4,71) 42,43,44
	43	DMPHRS=DMPHR
		DMPHRN=-DMPHRS
		DMPHRE=0
	- ··· •	
		GO TO 15
		IF (ANG-6,28) 46,48,48
	48	4NG=6,28-ANG
		GO TO 28
	[CONVERTS VECTOR INTO NURTH, EAST SUDIRY AND REST COMPONENTS
		BREAKS MPHR. VELTUR INID NURTH AND EAST COMPONENTS
	30	
	C	REFERS MORE VECTOR INTO NORTH AND WEST COMPONENTS
	 ZA	DMPHRWECOS(3,14-ANG)+DMPHR
	00	DMPHRN=SIN(3,14-ANG)+DMPHR
		DMPHRE=>DMPHRW
		TMPHRS=-DMPHRN
		GO TO 15
	C	BREAKS MPHR. VECTOR INTO SOUTH AND WEST COMPONENTS
	42	DMPHRH=COS(ANG+3,14)+DMPHR
		DMPHRS=SIN(ANG-3.14)+DMPHR
		DMPHRN=-DMPHRS
	1	DMPHRE=-DMPHRW
		GO TO 15
	C	BREAKS MPHR VECTOR INTO SOUTH AND EAST COMPONENTS
	46	DMPHRE=COS(6,28-ANG)+DMPHR
		DMPHRS=SIN(6,28-ANG)+DMPHR
		DMPHRN=-DMPHRS
	15	IF (KPAGNTN-55) 18,18,19

•

- -

,
TAD. 4 03/25/68
TO THE REPORT OF A SHORE TA DIAMANDE SA 1.74 MANGER.
is runnan (190,66 M/HRE,FS,1,20 ANGE,FM,2,76 M/HRME,FU,4,76 M/HREE,FS, Trolling M/HRSE,F6,1,78 M/HRWE,Fo,1)
KPAGNTN=KPAGNTN+2
BU TO STIP A STIP A STOLD AND DEPENDED FOR DEPENDENT OF DEPENDENT
17 FORIAT (1H1.6H M/HR=.F5.1.5H ANG=.F4.2.7H M/HRN=.F6.1.7H M/HRE=.
1F6,1,7H M/HRS=,F6,1,7H M/HRW=,F0,1)
KPASNIN=1
C FC (COMPUTEU 37:9 15 (KSH-300) 65.60.60
60 FC=j
GO 10 160
65 IF (KSH-200) 75,70,70
GO TO 160
75 IF (KSB-150) 65,80,80
80 FC∓+2 GO TO 160
85 [F (KSB-100) 95,90,90
90 FC=,3
GO TO 160 95 TE (KSB-75) 105.100.100
100 FC=,4
_GO TO 160
105 IF (KSB=50) 115,110,110 110 EC= 5
GO TO 160
115 IF (KSH-40) 125,120,120
120 FC=.6
125 IF (KSB-30) 135,130,130
130 FC= 7.
GO TO 160 135 TE (KSR+20) 145.140.140
140 FC=,8
142 IF (KSB=10) 122,120,120 150 FC=.9
GO TO 160
155 FC=1,0
WMF(2) = WB2 * DM
WMF(3)=WMF(1)
WMF(4)=WMF(2) WMF(K)1P)=WMF(K)+FC
IF (KSTY-2) 210,210,220
210 KH=1
GO TO 250 220 15 (KSTV-5) 230 230 240
230 KH=2
GO TO 250
240 KH=3
260 KRR=0
GO TO 320
270 KRR=10

•

.

1

•

145

•

178214 03/25/00 40 10 520 200 18 (NON-4) 240,300,310 290 KRR=20 60 10 520 333 NRR=30 90 10 520 310 KRR=40 320 0=KH= (KU+NW+KF)+KRR D=KJ C---- GAGE-BABCUCK INDEX CALCULATED BIN=(+)+T++01 IF (BIN-150.) 350,340,340 340 BIN=150, C---- PROBABILITY OF BUILDING TO CATCH FIRE CALCULATED 350 PRF(1, J, KLOT)=SIN(3, 141593+BIN/300,) C---- CALCULATE RADIATING AREA OF INDIVIDUAL BLDG, ARALDG1=WMF(1) ARBLDG2=WMF(2) ARHLDG3=WMF(3) ARBLDG4=WMF(4) C---- FLAME HEIGHTS IN 4 PARTS OF BUILDING CALCULATED HF2=ARBLDG2/WB2 - HF3=ARBLDG3/WB1 HF4=ARHLDG4/WB2 _IF (HF1,E0,0) GO TO 3606 C---- SHAPES OF RADIATOR CALCUALTED S1=WB1/HF1. GO TO 3607 _ 3606 S1=0 3607 IF (HF2,E0,0) GO TO 3608 S2=#82/HF2____ GO TO 3610 __3608_S2=0 3610 IF (HF3,E0,0) GO TO 3616 _____S3#WB1/HF3_____ GO TO 3617 3617 IF (HF4,EQ.0) GO TO 3618 S4=w827HF4 _____3616_S3=0 S4=wB2/HF4_____ GO TO 369 ._ 3618_S4≡û C---- CLASSIFY COMPONENTS OF WIND VECTOR AS LOW, MEDIUM OR HIGH 369_IF_(DMPHRN) 1740,1740,1745 1740 IF (DMPHRE) 1750,1750,1820 ____1750_IF__(DMPHRS+DMPHRW)_1770,1800,1800___ 1745 IF (DMPHRE) 1785,1785,1775 1775_IF_(DMPHRN-DMPHRE) 1790,1780,1780 1785 IF (DMPHRN-DMPHRW) 1760,1805,1805 1820 IF (DMPHRE-DMPHRS) 1825,1830,1830 1760 DMPHR=DMPHRW CALL KY CONS (DMPHR, KY) KVW=KV KVE=KV DMPHR=DMPHRN CALL_KY_CONS_(DMPHR,KV) 146

Printer 74, 191

. 03/25/68

.

.

	× V , ≖ κ V		
	$\times \forall S = \vee V$		
	MAUDINEA		
	SG TO /30 ·		2.12
1/70	1181년 65 1年 1) 서민금문 과		
-	DHUL KV CONSIGDMPHR,KV)		
	V - AV		
	DNP-RHUNPHKS		
	CALL NV CONS (DMPHR, KV)	· · · · · · · · · · · · · · · · · · ·	
	KVS=KV		
	K V V=K V		
	MAUDIR=4		
	GO TO 730		
1300	DMPHR=DMPHRS		
14 A 4	CALL KV CONS (DMPHR, KV)		
	KVS=KV		
	K V V=K V		
	DMPAR=DMPARW		
	CALL KV CONS (DMPHR, KV)		
	ズマシーズマ		
	KVE=KV		
	MAJDIR=3		1
	_GO TO 730	· · · · · · · · · · · · · · · · · · ·	
1780	DMPAR=DMPARN		1
	CALL KV CONS (DMPHR, KV)		
	K V N = K V		1
. C Minister	KVS=KV		
	DMPHR=DMPHRE		1
	CALL KV CONS (UMPHR, KV)		
	KVE=KV		
	KVW=KV		
	MAJDIR=1		4
	GO TO 730		
1790	DMPHREDMPHRE		
-	CALLINV CUNS (DMPHRINV)		
all's season of the sea	א - א V - א האפע פערו - בעמאר		
	KANEKA	· · · · · · · · · · · · · · · · · · ·	
	MAJ018=2		
	60 10 730		
1805	DMPHR=DMPHRN		
2	CALL KY CONS (DMPHR.KV)		
	KVN=KV		
	KVS=KV		
· ···· ·· ···	DMPHR=DMPHRW		· · · · · · · · · · · · · · · · · · ·
	CALL KV CONS (DMPHR, KV)		
	KVW=KV	anna a fuar a sheanna a sa sanay ga ang a tan ng ga ang a tan ng a ga ang a sa	
	KVE=KV		
	MAJDIR=1		
··· · ·	GD TO 730		
1025	DMPHR=DMPHRS		
	CALL KV CONS (DMPHR, KV)		

147

FTND.4

The second second

03/25/68

.

	KVS=KV
	KV N = KV
	лирик=лирике
	CALL KV CONS (OMPHRAKV)
	KVHEKV
1830	TMPAKEDMPHKE
	CALL KV CONS (DMPHR, KV)
	KVE=KV
	KVw=KV
	DMPHR=DMPHRS
	CALL KV CONS (DMPHR, KV)
	KVS=KV
	KVN=KV
	MA.IDIRS2
770	
/30	UU 1977 JJ+1110
· · · · · · · · · · · · · · · · · · ·	
366	IF (JJ-8) 2010,2010,30/
367	IF (JJ=12) 2020,2020,2030
2000	IF (JJ.NE.1) GO TO 2007
	IF (NUMN, EQ. 0) GO TO 9005
2007	S=S1
	ARBLDG=ARHLDG1
	IF (JJ.NE.1) GO TO 364
•	IE (DMPHRN) 700.700.720
720	
120	
2010	$\frac{1}{1} \left(\frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1$
2017	5=52
•	_ARBLDG=ARBLDG2
	IF (JJ,NE,5) GO TO 364
	_1F. (DMPHRE). 700, 700, 750
750	DMPHR=DMPHRE
	_GOTO. 2028
2020	IF (JJ,NE,9) GO TO 2027.
	IF (NUMS, EQ. 0) GO TO 9105
2027	S=S3
	ARHLDG=ARHLDG3
	1F (JJ.NE.9) GO TO 364
	IF (DMPHRS) 700,700,780
780	DMPHR=DMPHRS
	GO TO 2028
20.70	15 (LL NE. 13)GD TO 2037
2000	T = (NUMM) = 0 as co = T0 = 9455
2037	5=34
	IF (JJ,NE,13)6U (U 304
	_IF(DMPHRW)_700,700,800
860	DMPHR=DMPHRW
2028	IF (DMPHR -8,) 2035,2045,2040
2035	KV=1
	_GO_TO_364

.

148

. . .

Allowing and the

. .

Section and the second

X9.4	03/25/68
2040	IF (1)2PHR =16.) 2045.2050.2050
2345	
	GO TO 364
2050	
700	GU 1J 364
C++++	CALCULATION OF THEORETICAL SEPARATION DISTANCES
. 364	IF (S-1,5) 1380,1420
1330	IF (KV-2) 1390,1400,1410
1390	IF (AR8LDG-465.) 1393,1393,1394
1393	<pre>> Y=5,44*(ARBLDG/1000,)*10, co.to.trainad</pre>
C+-	BELOW IS THE SOLUTION OF THE FOLLOWING EQUATION -
C	Y++2-33,8(ARPLDG/1000)-2,53Y+15,7=0. THE FINAL Y EQUALS TEN TIMES
C	THIS Y
1394	DET=6,4009-4,+(-33,8+(ARBLDG/1000,)+15,/)
4700	IF (DET) 1392,1395,1395
1092	WRITE (0,393) 1,J
070	GO TO 3710
1395	Y=(2,53+SQRT(DET))+5,
	<u>GO_TO_1500</u>
1400	IF (ARBLDG-1300.) 1401,1401,1402
1401	Y=6,23+(ARBLDG/1000,)+10,
C	GO TO 1500 Delow is the solution of the following fouation .
	V++2-34 3(ARRI DG/1000)+8.1Y+44.6=0. THE FINAL Y EQUALS TEN TIMES
C	THIS Y
1402	DET=65,61-4,+(-34,3+(ARBL,DG/1000,)+44,6)
	IF (DET) 1392,1405,1405
1405	Y=(8,1+SQRT(DET))+5,
4410	GO TO 1500
1411	} {AKDLUG=2000, / 1911;3491;4594; V=5,76+(ARR) NG/1000,)#10.
	GO TO 1500
C	RELOW IS THE SOLUTION OF THE FOLLOWING EQUATION .
C	Y++2-29,4(ARBLDG/1000)+13,75Y+69,9=0, THE FINAL Y EQUALS TEN TIMES
<u> </u>	THIS Y
1-12	DET=189,0020+4,*(=29,4*(AKG6D8/4000,707,7/ 16 /DET) 1300.1445.1415
1415	Y=(13.75+SQRT(DET))+5.
	GO TO 1500
1420	1F (S-8,) 1425,1460,1460
1425	IF (KV-2) 1430,1440,1450
1430	IF (AKULDG-/2),) 1431/1431/1432 N=4 434/ADD+06/4000, \+40.
1-01	CO TO 1500
C	RELOW IS THE SOLUTION OF THE FOLLOWING EQUATION -
C	Y++2-29,3(ARALDG/1000)+3,35Y+21,2=0, THE FINAL Y EQUALS TEN TIMES
C	THISY
1432	DET=11,2225-4,+(-29,3+(ARBLDG/1000,)+21,2)
1435	
1-02	CO TO 1500
1440	IF (ARBLDG-1645.) 1441,1441,1442
1441	Y=5,62+(ARBLDG/1000,)+10,
u	
	149

•

Fit and the

Ļ

.

P2 4 .

· ·

•

03/25/68

	60 TO 1500
0	RELOW IS THE SOLUTION OF THE FOLLOWING EQUATION -
(;	Y++2-30,3(ARBLDG/1000)+9,25Y+49,8=0. THE FINAL Y EQUALS TEN TIMES
C	THIS Y
1442	DET=85,5625-4,+(-30,3+(ARB) DG/1000,)+49,8)
▲ ' ' '•	TE (DET) 1392.1445.1445
1445	
	GO FO 1500
1450	IF (ARBLDG-1110.) 1451,1451,1452
1451	Y=8,40+(ARBLDG/1000,)+10,
	CO TO 1500
C	RELOW IS THE SULUTION OF THE FOLLOWING EQUATION -
C	Y++2-33.2(ARRI 06/1000)+9.4Y+36.8=0. THE FINAL Y EQUALS TEN TIMES
C	
4 4 5 0	DET-0- 76-0 -/-77 0+/APPI DC/1000 \+66.8)
1495	
	IF (DEI) 1392,1400,1400
1455	Y=(9,4+SQRT(DET))+5.
- 636 - 55	GO TO 1500
1460	IF (KV-2) 1465,1475,1485
1465	IF (ARBLDG-1420.) 1466,1466,1467
1466	Y=4.45+(ABBI DG/1000.)+10.
1.00	
	DELOW IS THE SOUNTION OF THE FOULDWING HOMATION -
	HELUN IS THE SCUTTON OF THE FOLLOWING EQUATION -
G	Y++2-21,9(ARBLUG/1000/40,321431,140, THE FINAL T EQUALS TEN TIMES
C	THIS Y
1467	DET=39,9424-4,+(-21,9+(AR8LDG/1000,)+31,1)
	IF (DET) 1392,1470,1470
1470	Y=(6.32+SQRT(DET))+5.
	GO TO 1500
1 4 7 5	TE (ARRING-2350) 1476.1476.1477
4 4 7 4	
14/0	1=4,20*(ARDLUG/1000)/*10;
ana	60 10.1500
C	BELOW IS THE SOLUTION OF THE FOLLOWING EQUATION -
C	_Y++2-21,4(ARHLDG/1000)+10,76Y+50,2=U, THE FINAL Y EQUALS TEN TIMES
C	THIS Y
1477	_DE <u>T=115,7776-4,+(-21,4+(ARBLDG/1000,)+50,2)</u>
	IF (DET) 1392,1480,1480
1480	Y=(10.76+SQRT(DET))+5.
ana ang ang ang ang ang ang ang ang ang	CO TO 1500
1495	15 (APRIDG-2590 V 1486.1486.1487
1702	V-A 74+/ADD 0C/4000 1+40
1400	1-41/4-/WWDFNALTAA
	_60 10 1200
C-+	RELOW IS THE SOLUTION OF THE FOLLOWING EQUATION +
C	Y++2-24,2(ARALDG/1000)-12,28Y+62,75=0,THE FINAL Y EQUALS TEN TIMES
C	THIS Y
1487	DET=150,7984-4,*(*24,2*(ARBLDG/1000,)*62,75)
	IF (DET) 1392,1490,1490
4 4 0 0	Y=(12.20+SQRT(DET))+5.
±770. 4 KAA	15 (11-4) 1502.1507.1508
T200	15 / 1 1-21 45AZ 45AA.45A5
1202	IF. VJJ-61_42031174414202
1503	YN=Y
	IF (KWN1) 2605,2600,2005
2:00	PRF(I,J,KLOT)=,98
	PRN1(1, J, KLOT)=1.
	GO TO 1587
2605	WN1=KWN1

Sugar.

•

٠

.

•

TND.4

X=1. - WN1/Y IF (X-1,) 1560,1560,1559 1359 X=1 GO TO 930 1560 IF (X) 925,930,930 925 X=0 930 IF (WN1-Y) 1565,6025,6025 1565 KV=KVN 1690 IF (MAJDIR-2) 1900,1905,1910 1910 IF (MAJDIR-3) 1920,1920,1905 1900 CALL WITH (KV,X,PR) GO TO 1368 1905 CALL PERP(KV,X,PR) GO TO 1368 1920 CALL AGNT (KV,X,PR) GO TO 1368 6025 PRN1(1, J,KLOT)=0 GO TO 1587 1368 PRN1(I, J,KLOT)=PR GO TO 1587 1504 YN=Y IF (KWN2) 2615,2610,2615 2610 PRF(1, J, KLOT)=, 98 PRN2(1, J,KLOT)=1 GO TO 1587 2615_WN2=KWN2 . X=1,-WN2/Y _IF (X-1,)_1506,1506,1512 1512 X=1 . GO._TO .9.40 1506 IF (X) 935,940,940 935.X=0. 940 IF (WN2-Y) 1585,6055,6055 1585 KV=KVN IF (MAJDIR-2) 1925,1930,1935 1935 IF (MAJDIR-3) 1945,1945,1930 1925 CALL WITH (KV,X,PR) GO TO 1369 1930 CALL PERP (KV,X,PR) GO TO 1369 1945 CALL AGNT (KV,X,PR) GO TO 1369 6055 PRN2(1.J.KLOT)=0 GO TO 1587 1369 PRN2(I, J,KLOT)=PR GO TO 1587 1505 YN=Y IF (KWN3) 2625,2620,2625 2620 PRF(1, J, KLOT)=, 98 PRNJ(1, J,KLOT)=1. . . . GO TO 1587 2625_WN3=KWN3 X=1,-WN3/Y IF (X-1,) 870,870,865 865 X=1 GO IO 950

03/25/68

151

03/25/68

Ť	٨	5		÷	
---	---	---	--	---	--

•---

- ----

-

....

•

	TE (Y) 945.050.950
070 042	11 1A/ 7728728820 V=0
7-7	A-U 10 / 11/2 - VI 1505 - 6085 - 6085
720	IN TRADIC TOADIONODION
1095	NYENYN
	IF (MAUDIR-2) 1900,1900,1900
1960	IF (MAJDIR-3) 1970,19/0,1955
1950	CALL WITH (KV,X,PR)
	GO TO 1370
1955	CALL PERP (KV,X,PR)
	GO TO 1370
1970	CALL AGNT (KV.X.PR)
4125	PPNR/1.4.4071=0
0000	CO TO 1597
1370	PRNS(1)J)ALUT)=PR
1207	
	IF (KWN4) 2635,2630,2037
2630	PRF(I,J,KLOT)=,98
- · - -	.PRN4(I,J,KLOT)=1,
	GO TO 1587
2635.	WN4=KWN4
	X=1.+WN4/Y
	IF (X-1,) 880,880,875
875	X=1
-,.	GO TO 960
RAD	1F (X) 955,960,960
055	X=U
	15 (UNA-V) 1405 4115 6115
900	TL / VANA-11 TOAD10TTA10TTA
1005.	
	IF (MAJUIK-Z) 1900/19/0/1980
1980-	.IF (MAJUIR:S) 1990,1990,1977
1965	CALL WITH (KV,X,PR)
	_GO_I.0 1371
	CALL PERP(KV,X;PR)
	GO TO 1371
1990	CALL AGNT (KV,X,PR)
	_GO_TO_1371
6115	PRN4(I)JKLOT)=0
	_GO_TO 1587
1371	PRN4(I, J, KLOT) = PR
	GO_TO 1587
1508	IF (JJ-8) 1670,1515,1516
1670	IF (JJ-6) 1509,1510,1511
1509	YEsy
	IF (KWE1) 2645,2640,2645
2640	PRF(1, J, KLOT) = . 98
	PRF1(1, J, KLOT)=1.
	GO TO 1587
2645	WE1=KWE1
	, α ματικά ματα ματα ματα ματα ματα ματα ματα ματ
	15 (Y=1) 800,800,885
	17 <u>17 17 11 07010701007</u>
885	
890	$I = (X) = y_0 = y_1 = $
	X50

152

1.10.1

03/25/68

	•73	IF (RE1-Y) 1625,6145,6145
	1025	KV=NVE
		IF (MAJDIR-2) 2070,2080,2090
 1.55 	0 1 9 0	IF (MAJDIR-3) 2070;2070,2110
	2070	CALL PERP(KV,X,PR)
		50 YO 1372
	2030	CALL WITH (KV,X,PR)
		60 TO 1372
	2110	CALL AGNT (KV,X,PR)
1.0		
	6145	PRE1(I,J,KLOT)=D
10. 		GO TO 1587
	13/2	PRE1(I,J,KLOT)=PR
	1710	YEFY
		if (KWE2) 2050,2000,2000
	2050	PRF(1)J)KLUI)=:98
		PRE2(1)J,NLU[)=1,
	2655	
• •	2033	
		X=1,=WCZ/Y YC /V=1 \ 1400.1400.1603
	1607	1 (V-1)) TOSSITOSSITOS
	1023	
· ···· 100-20-	1622	15 / Y) 975.990.980
	1022	
	972	15 (WE2-V) 1635,6175,6175
	1675	KAEKAE IL (MESEL) TOODIOTIDIOTID
5,533,553	1002	16 (MA IDTP-2) 2005.2100.2105
	2105	15 (MA D1P-3) 2005.2095.2120
	2105	CALL PERP (KV, X, PR)
	2097	
	2100	CALL WITH (KV.X.PR)
	2-00	GO TO 1373
	2120	CALL AGNT (KV, X, PR)
		GO TO 1373
	6175	PRE2(1, J, KLOT) = 0
		GO TO 1587
	1373	PRE2(1, J, KLOT)=PR
		GO TO 1587
	1511	YE=Y
		IF (KWE3) 2665,2660,2665
	2660	PRF(1, J, KLOT) = , 98
		PRE3(I, J, KLOT)=1.
		GO TO 1587
	2665	WE3=KWE3
		X=1,*WE3/Y
		IF (X-1,) 895,895,1580
	1>80	X=1
		GO TO 990
	095	IF (X) 985,990,990
	985	
	770	IF LWEDWIF 10441020010200 .
	1044	NV#NVG
	2140	17 (MAJULRTZ) ZIJUJZIJ7JZI4U 15 /MA UTULZN 2130,2130,2145
	2140	TE VINANTURAT CTONTERANGERAN
	7. 17	
		153

. . .

03/25/68

	2130	CALL PERP (KV,X,PR)
		GO TO 1374
	2135	CALL WITH (KV,X,PR)
	2145	GUIUIS74 CALLAGNT (KV.X.PR)
	2 - 7 /	GO TO 1374
	6205	PRE3(I, J, KLOT)=0
$\cdot = \cdot$		GO TO 1587
	1374	PRE3(1,J,KLOT)=PR
	1515	GU U 1987
	1110	TE (KWF4) 2675.2670.2675
	2670	PRF(1, J, KLOT) = . 98
	-	PRE4(1, J, KLOT)=1.
		GO TO 1587
	2675	WE4=KWE4
		X=1,=WE4/Y 15 /y=1 \ 905.905.900
	900	X=1
		GO TO 1000
	905	IF (X) 995,1000,1000
	995	X=0
	1000	IF (WE4-Y) 1655,6235,6235
	1055	- KV#KVE
	2160	IF (MAJDIR-3) 2150,2150,2165
	2150	CALL PERP (KV,X,PR)
		_GO TO 1375
	2155	CALL WITH (KV, X, PR)
	0445	
	2107	CALL AGNI (KV)AJERJ CO TO 1375
	6235	PRE4(1, J, KLOT)=0
		_GO TO 1587
	1375	PRE4(I,J,KLOT)=PR
	1517	TF (_LU=10) 1662.1518.1520
	1662	YSEY
		IF_(KWS1)_2685,2680,2685
	2680	PRF(1, J, KLOT) = ,98
• •	- 1-	PRS1(I, J, KLOT)=1.
	2695	MC4 = KMC1 CO (O 1201 -
	-2003.	X=1.+WS1/Y
		IF (X-1,) 1529,1529,1531
	1531	X=1
		_GO_TO_1010
	1229	X=V 14 (X) 1002/1010/1010
-	1010	IF (WS1-Y) 1665,6265,6265
	1665	KV=KVS
		IF (MAJDIR-2) 2170,2175,2180
	_2180.	IF (MAJDIR-3) 2185, 2185, 2175
	2170	GALL AUNI NRVIAJERI GO TO 1376
		1.54

1.2.4

4

03/25/68

2175	CALL PERP (KV)AAPK)
21.5	CALL ALTH (AV.X.PR)
2-01	
ວິວອີ	PRS1(I, J, KLOT)=0
	10 70 1987
4 37 6	2251(1.1.KIOT)=PR
_ 070	
1518	Y S = Y
	IF (K~S2) 2695,2690,2695
2600	
2090	
	PR52(1)J,NLU)=1,
	GO TO 1587
2695	WS2=KWS2
· ··· ··· ··· ··· ··· ···	X=1, + WS2/Y
6 <u></u> . 6	IF (X-1,7 1934)1934
1236	x=1
	GO TO 102J
1534	IE (X) 1015.1020.1020
1045	
1015	x=0
1020	IF (WS2-Y) 1675,6295,6295
1675	KV=KVS
75 EST 8	15 (MA ID 12-2) 2100, 2195, 2200
	IF (MAJUIR-3) 2205,2205,2195
2190	CALL AGNT (KV,X,PR)
	80 TO 1377
2195	CALL PERP (KV;X;PR)
	GO TO 1377
2205	CALL WITH (KV,X,PR)
	60 10 1377
6295	PRS2(1, JakL01)=0
	GO TO 1587
1377	PRS2(I, J, KLOT)=PR
-	60 10 1587
1920	
	IF (KWS3) 3005,3000,3005
3000	PRF(I,J,KLOT)=,98
	PRS3(I,J,KLOT)=1.
	CO TO 1687
3445	
3005	NOJ=NWJJ
	X=1,-WS3/Y
	IF (X-1,) 1533,1533,1532
1572	¥z1
1-52	
	60 10 1030
1533	IF (X) 1025,1030,1030
1025	X = 0
1070	15 (US3-V) 1485 4325 4325
1030	IL (#30-17 IG0)(832)(032)
1085	KV=KVS
	IF (MAJDIR-2) 2210,2215,2220
2221	IF (MAJDIR-3) 2225,2225,2215
2210	UALL ADNI (RVJAJPK)
	GO TO 1378
2215	CALL PERP (KV, X, PR)
	CO TO 1378
2225	UALL HITH (RV)AJPRI
	GO TO 1379

155

TN2.4

and the state of t

•	
6325	PRS3(1,J,KLOT)=0
	RU TO 1587
1378	PPS3(1,1,KLOT)=PR
1010	
1521	YS=Y
	17 (KwS4) 3015,3010,3015
3010	PRF(I)JKLUI)=,9K
	PRS4(1, J, KLOT)=1.
	GO TO 1587
704 E	
3012	WS4=KWS4
	X=1WS4/Y
	IF (Y-1.) 915.915.910
910	X # 1
	_G0 _T0 _1040
915	1F(X) = 1035.1040.1040
4075	
1040	IF (WS4-Y) 1695,6355,0355
1695	KV=KVS
·	15 (MA ID 19-2) 2230, 2235, 2240
2240	IF(MAJDIN-3)_2242,2242,2232
2230	CALL AGNT (KV,X,PR)
•••••	GO TO 1360
2235	CALL PERP (KV,X,PR)
2245	CALL WITH (KV.X.PR)
6643	
6355	PRS4(I,J,KLOT)=0
	GO TO 1587
47/6	
1360	PRS4(1)J;KLUT)=PR
1523	TE (JJ.EQ.16) GO TO 1527
1664	YW=Y.
	1F (KWW1) 3025, 3020
7020	
3020	
	PRW1(LIJAKLOII = 2
	GO TO 1507
3025	
	IF (X-1.) 2 42.1741.1239
1539	X=1
••••	60 TO 1050
1241	16 (X) 7045)7090'7050
1045	X=0
1050	IF (WW1+Y) 1705.6385.6385
4745	
1/02	
	IF (MAJDIH-2) 2200,8200,8200,8200,8200,8200,8200,8200
2260	IF (MAJDIR-3) 2250,2250,2265
2250	CALL PERP (KV.X.PR)
2230	
	<u>G0_F0_1391</u>
2255	CALL AGNT (KV;X;PR)
	GO TO 1361
00/5	
2202	
	<u> </u>
6385	PRW1(I,J,KLOT)=0
	GO TO 1587

1.

•

•

CALLS - Self Bank of Constant

• • .

 2	٠	

•

	. 03/25/68
235.	PRAI(1)J,KLUT)FPR
• • • • • •	- V HA
- 24	YE (KAN2) 3035,3030,3035
3030	PRF(1,J,KLOT)=198
	PR-2(1, J, KLOT)=1.
	GO TO 1507
3.35	<a>2=Ka×2
	X=1.+WW2/Y
	IF (X-1,) 1542,1542,1543
1943	X=1
. 5 . 5	
1242	1 (Y) 100011000
1.160	IF (3x2-Y) 1715,6415
1715	
* **	IF (MAJDIR-2) 2270,2275,2280
2280	IF (MAJUIR-3) 2270,2270,2285
2270	CALL PERP (KV,X,PR)
	GO TO 1562
2275	CALL AGNI (KVJXJPR)
2295	
2205	
6415	PRW2(1.1.KLOT)=0
0.17	GO TO 1587
1362	PRW2(1, J, KLOT)=PR
	GO TO 1587
1526	YW=Y
	IF (KWW3) 3045,3040,3045
3040	PRF(1, J, KLOT) =, 98
	PRW3(], J, KL0])=1,
3045	して、10 T 20 /
	X=1.=WW3/Y
	IF (X-1,) 1544,1544,1546
1546	X=1
	GO TO 1070
1544	IF (X) 1065,1070,1070
1065	
10/0	IF (WWOFT) 1/20,0440,0440 KN+KNU
1/25	1F (MAUDIR-2) 2290.2295.2300
2300	IF (MAJDIR-3) 2290,2290,2305
2290	CALL PERP (KV,X,PR)
	GO TO 1363 ·
2295	CALL AGNT (KV,X,PR)
	GO TO 1363
2305	CALL WITH (KV,X,PR)
······	GO TO 1363
6445	PRWS(1)J)KLOT)=0
1767	GU TU 1207 PPW3(1, 1, KLOT)=PP
1202	GO TO 1587
1527	YWEY
	IF (KWW4) 3055,3050,3055
	157

1.225.50

03/25/08

N . 5

- Kellen

33	50 PRF(1,J,KLOT)=,98
	PR%4(1,J,KLOT)=1,
	GO TO 1007
; *	55 WWA = KwWA
0	
	15 (V=1-) 1547.1547.1548
1	
	G0 10 1080
-	47 IF (X) 10/5,1000,1000
1	75 X=0
1	80 IF (WW4-Y) 1735,6475,6475
1	35 IF (MAJDIR-2) 2310,2315,2320
2	20 IF (MAJDIN-3) 2310,2310,2325
2	10 CALL PERP (KV.X.PR)
C `	
2	
2	
	GO (0 1364
2	25 CALL WITH (KV,X,PR)
•	GO TO 1364
. 6	75 PRW4(1, J, KLOT)=0
	GO TO 1587
1.	64 PRW4(I.J.KLOT)=PR
-	CO TO 1587
4	87 15 (LENIMAN 1507 0000 0010
· · · · · · · · · · · · · · · · · · ·	00 1C (NUMN CO 4) 00 TO 1507
9	$UU = P (NUMN_{1} = U_{1} + J_{1} = U_{1} + U_{2} + J_{2} = U_{1} + U_{2} +$
	IF (NUMN-2) 9020,9030,9040
9	05 PRN1(I,J,KLOT)=0
- 9	20_PRN2(1, J, KLOT)=0
9	30 PRN3(1, J, KLOT)=0
9	40 PRN4(1, J, KLOT)=0
	JJ=4
	CO TO 1597
	10 15 (LI=4+NIME) 1507.9050.9060
7	TO IF (00-4-000F) 19979909099000
	20-17 INUME 21 69,47 GU. 10. 1277
12	
	55_PRE1(1, J, KLOT)=0
9	70 PRE2(I,J.KLOT)=0
9	80_PRE3(1, J, KLOT)=0
9	90 PRE4(I,J,KLOT)=0
	500 JJ=8
	GO TO 1597
9	60_1F (JJ-8-NUMS) 1597,9100,9110
0	00 TE (NUMS, E0.4) GO TO 1597
	IF (NUMS=2) 0120.0130.0140
•	
4	UD PRS1(1)J)RLU()=0
9	20 PRS2(1)JakL017=0
9	30 PRS3(I)J,KLOT)=0
9	40_PRS4(I,J,KLOT)=0
	JJ=12
22 COM 18.	GO TC 1597
9	10 IF (JJ-12-NUMW) 1597,9150,1597
	50_IF_(NUMW, EQ. 4) GO TU 1597
	IF (NUMW-2) 9170,9180,9190
0	55 PRW1(1.J.KLOT)=0
	70 PPW2(1, 1, K) (T)=0
9	40 PRESIDENTED -
	OU_FIRMOLISUSNEUI/+U

158

٠

.

•

. 03/25/68

.

.

3131 De 3/1.1.8(07)=0		
919 · A (4(1)01/(0)//=0		
NOT CONTINUE		
	F(KRLK,KDIR,KLUT)	
5713 F (KPAGNIA-55) 3709.5707	3707	
5719 KRITE (6.3711) KELEV.RII.		
S711 FORMAT (1H0,20HANGLE OF EI	LEVATIONS , 12, 9H DEGREES ,6X, 22H ROOM	IGN
1 1 T I ON PROH. = + F4.2+6X+55H	PROBABILITY OF BUILDING IGNITION FRO	MT
2HERMAL PULSE= $4E8.643X$		
KPAGNIN=KPAGNIN+2		
50 TC 3710		
3707 WRITE (6,3715) KELEV, RII.	PROB	
3715 FORMAT (1H1,20HANGLE OF EL	LEVATION= ,12,9H DEGREES ,6X,22H ROOM	IGN
11TION PROB, = , F4.2, 6X, 55H	PROBABILITY OF BUILDING IGNITION FRO	<u>M T</u>
2HERMAL PULSE= ,F8,6,3X)		
KPAGNTN=2		
3710 CONTINUE		
1270 WRITE (6,6)		
6 FORMAT (1H0,119HBLOCK DI	REC- LOT NORTH EAST SOUTH WES	
1 RADIATING FIRE GAG	GE-BAB- FLAME RADIATOR SEPA	RAT
210N,//, 1H ,7X,112HT	ION NO, SPREAD SPREAD SPREAD SPI	
SD AREA PROB- CO	OCK INDEX HEIGHT SHAPE DI	STA
4NCE ,/,1H ,64X,7HABILITY)		
1275 WRITE (6,1260) I, J.KLOT, P	RNI(I,J,KLUI), PREI(I,J,KLUI), PREI(I,J,	NLU_
1T), PRW1(I, J, KLOT), ARBLDG1,	, PRF(I, J, KLOT), BIN, HF1, S1, YN	4
1260 FORMAI (1H0,2X,12,5X,11,6)	X, 12, 2X, F 5, 4, 2X, F 0, 4, 2X, F 0, 4, 2X, F 0, 4, 2X	Χ,
1F10,3,3X,F6,4,2X,F10,3,2X	,F10,3,2X,F10,3,2X,F10,3)	
WRITE (5,1265) PRN2(1, J, KI	L01), $PRE2(1)$, $NL01$), $PRS2(1)$, $NL017$,	
1PRW2(I,J,KLOT),ARBLUG2,HF	2,32,1E	
1265 FORMAL (1H ,20%, FO. 4,2%, FO	0,4,2%,10,4,2%,10,4,2%,110,5,25%,110,5,	·
	LATA DECKAL I REATA DESTAL. I. KLATA DENT	3/1
WRITE (0112007 PRNSTIJJA)	S	<u> </u>
UDITE (A.1946) DONA(T. I.KI	OT).PRE4(1.J.KLOT).PRS4(1.J.KLOT).	
1 PPW4 (1, 1, KL OT), APRI DG4, HF	4.54.74	
KPAGNIN=KPAGNIN+12		-
371 CONTINUE		
545 REWIND 27		-
END		
		al Chan
	6	
		63
		- 6
		6
	159	
		42
	An AMERICAN AND A AN A A A A A A A A A A A A A A	
		-

03/25/68

	SUBBOUTINE FORT(KVIX.PR)	12 E
		- a 1
	439.2R=c.067+X-5,667	
	GO TO 430 110 15 (Ma and 418 418	
	415 IF (5,0+X-4,0) + 405,405,419	
	419 PR=5,0+X+4.0	
•	GU TU 430 420 TE (X=.75) 405.428.428	••
	425 IF (4,0+X-3,0) 405,405,429	I
	429 PR=4,0*X+3,0	
a	405 PR=0	
	430 END	
		<u>.</u>
··· · ··· · ·····		
		27 T
		. 11
·····		
	·	
	•	
		·· ••• ·· ··
10 - 11 - 11 - 11		6 D -
5 00 m 0	160	- 1
a ana mana milana milana		-
for Shipher, shined have the shiple		3

03/25/68

T.N5.4

		SUBROUTINE PERPIKVIXIPRI
	ΎΎC	JF (KV-2) 480,442,515
	-42	IF (X98) 448,448,518
	440	IF (X-,935) 453,453,450
	451	!F ((4,4*X-3,35) 553,553,452
	+52	PR=4.4 *X=3.35
		S0 T0 555
	257	15 (Y = 36) (453, 455
	755	15 (/ 5+V-2 0/) 563.553.457
	400	
	431	PR=4,U*X=2,94
		GO TO 555
	458	IF (X-,79) 463,463,460
	400	IF (2,14+X-1,35) 553,553,462
	402	PR=2,14+X-1,35
		GO TO 555
	463	1F (X=,03) 468,468,465
- 648 - 55	465	IF (1, 23+X+0, 64) 553,553,467
	467	
	-07	
	468	IF (X-,40) 553,553,470
	47C	IF (,652*X-,258) 553,553,472
	472	PR=,6>2+X-,258
		GO TO 555
	480	IF (X=,97) 485,485,518
	485	IF (Y- 92) 490.488
	400	1 (A 1/2/ 4/014/01/00 1 (A 1/2/ 4/014/01/00
·• •• •	400	
	489	PRE4, UTXTD, ON
		GO TO 555
	490	IF (X-,84) 495,495,493
	493	IF (3,75+X-2,67) 553,553,494
	494	PR=3,75=X=2,67
		GO TO 555
• • •	405	IF (X=.75) 500.500.498
	408	IF (1.67+X+.90) 553.553.499
	400	DD=1 67+V = 0.6
	777	CO TO REE FRELIV/FA-170
	5.0.0-	60 10 777
	200	IF (X-, 52) 505,505,203
	203	IF (1,09+X-,4/) 553,553,504
	504	PR=1,09+X-,47
		GO TO 555
	505	IF (X-,36) 553,553,508
	508	IF (.625+X235) 553,553,509
	510	PP= 625+X+.235
	- 0 -	
	6 a = -	
	212	11 (X+ ¹ AA) 250'25012T0
-	210	PR=1
		GO TO 555
	520	IF (X-,95) 525,525,523
	523	IF (5, +X=3,95) 553,553,524
	524	PR=5. +X-3.95
		CO TO 555
	525	15 (Y- HR) 530,530,528
•	500	10 / A 4V-2 \ 557 553 500
	228	17 (41#A#01) 220/2201287
	>29	PR=4, *X=3,
		GO TO 555
	530	IF (X-,82) 535,535,533

. 03/25/68

033 IF (2,0+X-1,03) 553,553,534 >34 PR=2,0+X-1,68 . 30 10 505 535 IF (X-,70) 540,540,530 . --- --- ---555 17 (1, 7+X+, n2) 553, 553, 539 539 PR=1,0+X-,82 60 10 555 040 IF (X-,54) 548,548,543 543 IF (,075+X-,415) 553,553,544 544 PR=,875+X-,415 GO TO 555 548 IF (X-,44) 553,553,550 550 IF (,5*X+,22) 553,553,551 GU TO 555 553 PR=0____ 555 END . . . 162 ſ • • . .

. •

03/25/68

		SUBROUTINE WITH(KV,X,PR)
	250	1F (KV-2) 563,095,628
	503	IF (X-, 95) 568, 568, 630
	5.5.5	IF (X91) 573,573,570
	625	1F = (4, 44 + x - 3, 24) = 658, 658, 271
	571	PR=4.44 + X = 3.24
	877	15 (N= a1) 578.578.575
	270	$15 (3 0 \pm 1 \pm 1 \pm 2 \pm 1) = 576$
	5/5	
	210	
	2/0	[+ (X+,/1) 203/283/200
	580	IF (1,5+X-,71) 658,000,001
	>61	PR=1, 0*X-, 71
		GO TO 665
	583	IF (X-,45) 588,588,585
	585	IF (,96+X-,34) 658,658,586
8	586	PR=,96*X-,34
		GO TO 665
	588	IF (X-,27) 658,658,590
	590	IF (,556+X-,156) 658,658,591
	591	PR=,556+X-,156
		GU TO 665
	595	1F (X94) 600.600.630
	600	1F (X=.89) 605.603
	603	1F (4, 0 + X - 2, 76) = 658.658.604
	604	
	004	
	605	15 (Y= 77) 440.410.608
	600	17 (A 5+V-1 (AB) (58 (58 (50)
	.000. 400	17 (210#X711422) 020192019U2
	009	
	010	$\frac{1}{12} + \frac{1}{12} $
	013	IF (1,304#X=,334) 02010201014
	014	
· · · · · · · · · · · · · · · · · · ·		
	615	17 (X = 37) 620, 620, 610
	618	11 (,802+X=,221) 020,020,019
	019	PR=,802*X=,221
		<u>GO TO 665</u>
	620	IF (X-,17) 658,658,623
	623	IF (,40+X+,01) 658,658,624
	624	PR=,40*X+,01
		GO TO 665
	628	IF (X=,92) 633,633,630
	630	PR=1
		GO TO 665
	633	1F (X-,86) 638,638,635
	635	1F (3, 33+X-2, 067) 658, 658, 636
	636	PR=3,33+X-2,067
• •		GO TO 665
	638	JF_(X-,67) 643,643,640
	640	IF (2,143.X-1.036) 658,658,641
	641	PR=2,143+X=1,036
		GO TO 665
	643	1F (X-,58) 648,648,645
	TV	a di kana di kana di kana da kana di kana di kana kana kana kana kana kana kana kan

163

.

.

• .

03/25/68 FTN514 045 1F (1,0/1+X-,208) 658,558,646 040 PR=1,071+X-.200 30 10 665 248 IF (X-.26) 653.653.650 053 IF (,761+X-,103) 658,658,651 051 Ph: 701+X-.103 GD TO 565 053 IF (X) 650,650,655 655 IF (, 384+X-,001) 658,658,656 556 PR=,364*X-,001 GO TO 065 608 PR=0 _____ 665 END 1 -----+++ . . ile es .

12.4			
	SUBROUTINE KV CONS IF (DMPER-8.) 2035	S (DMPHR,KV) 5,2045,2040	
	2035 KV=1		
	2040 IF (DMPHR-16,) 204	45,2050,2050	
	2045 KV=2	File - File - H	
	2050 KV=3		
	2060 END		
			<u> </u>
		······	1.E
			· · · · · · · · · · · · · · · · · · ·
		•	
		······································	
	· · · · · · · · · · · · · · · · · · ·		
			,
		165	······
		• • • • • • • • • • • • • • • • • • •	

· ·

-

~

FIREFLY 2 PROGRAM

•

.

.

TN5.4						03/26/68
	PRO	RAM FIRE	F1 Y2			
	DIME	-NSION KC	(27.4) KFR(2	7,4,10),PRN1	(27,4,10), PRN:	2(27,4,10),
	198.13	5(27.4.10), PRN4(27,4,	10),PRE1(27,	4,10), PRE2(27	,4,10),
	2PRES	5(27,4,10), PRE4(27,4,	10), PRS1(27,	4,10), PRS2(27.	,4,10),
	32853	\$ (27,4,10) PRS4(27.4.	10), PRW1(27,	4,10), PRW2(27	,4,10),
	4PRW3	5(27.4.10), PRW4(27,4,	10),NBN1(27,	4,10), NBN2(27.	4,10),NBN3(27,4
	5103.	NBN4(27.	4.10).NBF1(2	7,4,10),NBE2	(27,4,10),NBE	\$(27,4,10),
	DVBEA	(27.4.10	1.NRS1(27.4.	10),NBS2(27,	4.10),NBS3(27)	4,10),NBS4(27,4
	7101.	NHW1 (27.	4.10).NBW2(2	7.4.10.) . NBWS	(27.4.10) NBW	4(27,4,10),
	8	KRUG(10.	8).	ADR1 (27 . 4.14).ADR2(27.4.10), PRF(27,4,10),
	00027	27.4.101	.FR(27.4.10)	.TPSP(27.4.1	0)	
			N1 . PCN2 . PRN3	PRN4 PRE1 P	RE2. PRE3. PRE4.	PRS1.PRS2.PRS3.
	1 2052		D1/DRW2. P	RW3.PRW4.NRN	1.NHN2.NHN3.NF	N4.NBE1.NBE2.
	1-404	E SIDEA ND	CI NDC2 NHCK	NDSA NRW1 N	RW2.NHW3.NRW4.	KC . KEP . KBDG . PRF
	200	A DO4 A DO	211N6321N633	NUCALICONTIN		
	SPRD,	AURI, AUR	2 KR IPSP	19560		
-	HANK	,(0),/80	/,(1),/81/,/	INESP.	UNITER OUT	800 (1000 and a cars a
C	KWRI	16=1 16	WANT INTERME	DIALE SIEPS	WRITTEN UUT	
C	OTHE	RWISE KW	RITE≖0.		1 ··· 1 ··	
	KWRI	TE=0				
	READ)	10, RAN	DOM1, RANDOM2		· · · · · · · · · · · · · · · · · · ·
	10 FORM	1AT (F8.6	<u>,1</u> X,F8.6)			
· ••)	20,N			
	REAÜ		20,M			
	20 FORM	AT (14)				
	DO 3	50 I=1,M				
	30 READ)	35,(KC	([,J),J=1,4)		
	35 FORM	AT (6X.1)	2,1X,12,1X,1	2,1X,12)		
	D0 2	5 I=1,M				
· · ·	no 2	5 J=1.4				
	KK=K	(C(1,J)				
	IF (KK.EQ.0)	GO TO 25			
	no 2	5 K=1 KK				
	KRIT	K)=0		· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	25 CONT	TNUE				
	DEAD	26.NILET.	A T I		····	
	04 E09M	AT (13)	A i la			
	PURM	NUMERATI A		4.9		
	17 1	NUEIALL I	20107 00 10 ·	10		
	READ		K. 			
	27 FURM	AI (12+1)	X, 11, 1X, 12)		· ·	
	28 KR(1	, J, K) = 1			,	
	48 WRIT	E (6,50)				60.1 4 1 1 1 1 1 1 1 1 1 1
	50 FORM	AT (1H1,	39HGENERAL CO	JMMENIS ON F	IRE SPREAD PRO	GRAM, / , 1H0, 4X,
	110HD	IRECTIONS	S,/,1H0,6X,7	H1=NORTH,/,1	HU, OX, OHZELAST	,/,1H0,6X,7H3=50
	2UTH,	/,1H0,6X,	,6H4=WEST)			
	WRIT	E (6,60)	RANDOM1, RANI	DOM2		
	60 FORM	AT (1H0,	40HTHE FIRST	AND SECOND I	RANDOM NUMBERS	ARE , F8,6,
	15H A	ND , F8,6,	,1H.)			
	80 DO 1	20 II=1,	N			
	READ		110,1,.	J,K,NBN3(I,J,	,K),NBN4(I,J,K),NBE1(],J,K),
	1NBE2	(I,J,K),	NBE3(1, J,K),	NBE4(I,J,K),	NBS1(I,J,K),NB	S2(1, J,K),
	2NBS3	(I,J,K),	NBS4(I, J,K),	NBW1(I,J,K),I	(ARD3	
	110 FORM	AT (12,1)	(, 11, 1X, 12, 1)	(, 15, 1X, 15, 1)	(15,1X,15,1X,	15,1X, 15,1X, 15,
	11X.I	5,1X,15,1	X. 15.1X.15.0	5X.11)		
	READ	in in internet of the fast I	115.1.	AKANBW2(I.J.	K) NUW3(I J.K), NBW4(1, J.K).
	14081	(1.4.6).4	DR2(1.J.K).	TY1.CTY2.	NEN1(I.J.K).	NBN2(IAJ.K).
- - - 5						
	•			167	••••	· · · · · · · · · · · · · · · · · · ·
				TO /		
						-

•

2

.

•

7.52.4

03/25/68

K- 4- 14 116 FORVER (12,1X, 11,1X, 12,1X, 15,1X, 15,1X, 15,1X, A6, A6, 1X, A6, A6, 1X, 1 X, 5X, 15, 1X, 15, 2X, 11) 121 CONTINUE 00 600 HM=1,3 ng s's wa=1,5 00 122 I=1.M no 122 J=1.4 1F (KC(1.J).F0.0) GO TO 122 KK=NC(I,J) DO 122 K=1.KK TPSP(I,J,K)=0.0122 CONTINUE 1200 DO 1320 II=1,N JF (MM-2) 1205,1240,1275 1205 IF (NN-2) 1210,1215,1220 1210 READ INPUT TAPE 10,1212,KELEV,RI,PRUB,I,J,K,PRN1(I,J,K), 1PRE1(I,J,K),PRS1(I,J,K), PRW1(1, J, K), PRF(1, J, K), PRN2(1, J, K), PRE2(1, J, K), PRS2(1, J, K) 1 2, PRW2(1, J, K), PRN3(1, J, K), PRE3(1, J, K), PRS3(1, J, K), PRW3(1, J, K), 3PRN4(1, J, K), PRE4(1, J, K), PRS4(1, J, K), PKW4(1, J, K) 1212 FORMAT (/ 13X, 12, 5X, 11, 6X, 12, 2X, F6, 4, 2X, F6, 4, 2X, 1F6,4,2X,F6,4,15X,F6,4/21X,F6,4,2X,F6,4,2X,F6,4,2X,F6,4/21X,F6,4, 22X,F6.4,2X,F6,4,2X,F6,4/21X,F6,4,2X,F6,4,2X,F6,4,2X,F6,4) GO TO 1310 1215 READ INPUT TAPE 10,1217, KELEV, RI, PROB, I, J, K, PRN1(I, J, K), 1PRE1(1, J, K), PRS1(1, J, K), PRW1(I,J,K),PRF(I,J,K),PRN2(I,J,K),PKE2(I,J,K),PRS2(I,J,K) 2,PR#2(I,J,K),PRN3(I,J,K),PRE3(I,J,K),PRS3(I,J,K),PRW3(I,J,K), 3PRN4(I, J, K), PRE4(I, J, K), PRS4(I, J, K), PRW4(I, J, K) 1217 FORMAT (// 13X, 12, 5X, 11, 6X, 12, 2X, F6, 4, 2X, F6, 4, 2X, 1F6,4,2X,F6,4,15X,F6,4/21X,F6,4,2X,F6,4,2X,F6,4,2X,F6,4/21X,F6,4, 22X,F6,4,2X,F6,4,2X,F6,4/21X,F6,4,2X,F6,4,2X,F6,4,2X,F6,4) GO TO 1310 1220 IF (NN-4) 1225,1230,1235 1225 READ INPUT TAPE 10,1227,KELEV,RI,PROB,I,J,K,PRN1(I,J,K), 1PRE1(I, J, K), PRS1(I, J, K), PRW1(I,J,K),PRF(I,J,K),PRN2(I,J,K),PRE2(I,J,K),PRS2(I,J,K) 2, PRW2(1, J,K), PRN3(1, J,K), PRE3(1, J,K), PRS3(1, J,K), PRW3(1, J,K), 3PRN4(I, J, K), PRE4(I, J, K), PRS4(I, J, K), PKW4(I, J, K) 111111111111111 1227 FORMAT (/// 21X, 12, 37X, F4, 2, 61X, F8, 6/ 13X, 12, 5X, 11, 6X, 12, 2X, F6, 4, 2X, F6, 4, 2X, 1F6,4,2Y,F0,4,15X,F6.4/21X,F6,4,2X,F6,4,2X,F6,4,2X,F6,4/21X,F6,4, 22X,F6,4,2X,F6,4,2X,F6,4/21X,F6,4,2X,F6,4,2X,F6,4,2X,F6,4) GO TO 1310 1230 READ INPUT TAPE 10,1239,KELEV,RI,PROB,I,J,K,PRN1(I,J,K), 1PRE1(I, J, K), PRS1(I, J, K), PRW1(I,J,K),PRF(I,J,K),PRN2(I,J,K),PRE2(I,J,K),PRS2(I,J,K) 1 2, PRW2(1, J, K), PRN3(1, J, K), PRE3(1, J, K), PRS3(1, J, K), PRW3(1, J, K), 3PRN4(I,J,K), PRE4(I,J,K), PRS4(I,J,K), PRW4(I,J,K) 21X, 12, 37X, F4, 2, 61X, F8, 6/ 1232 FORMAT (//// 13X, 12, 5X, 11, 6X, 12, 2X, F6, 4, 2X, F6, 4, 2X, 1F6,4,2X,F6,4,15X,F6,4/21X,F6,4,2X,F6,4,2X,F6,4,2X,F6,4/21X,F6,4, 22X, F6, 4, 2X, F6, 4, 2X, F6, 4/21X, F6, 4, 2X, F6, 4, 2X, F6, 4, 2X, F6, 4)
TN5.4																			•	03	12	6/6	8	. .	
		GC T	0 13	10																					
	1235	S SEAD	INP	UT T	APE BRS1	101	123 K	7,1	KELI	Ł۷,	RI	•P	RÜE	3,1	ل و	, K	۰,۲	RN:		ل و	۶K),			
		1		PRW1	(1.)	, K)	PR	F()	I J.	, K)	, P	RN	2(1	ر ،	۶K),	PK	Ë2 (Ι,	ا ر ل	K)	, PR	S2 (1.	J, K)"
		2. PR.	2(1)	Jir)	PRN	3(1	ول و	к),	PR	= 3 (1,	و ل	K),	PR	53	(1	ل ر	• K)) , P	RW	3 (IJ	• K)		
		3PRN4	(1,)	, K) ,	PRE4	(1)	JJK) , F	PRS	4(]	1 1	۰K),F	, 7 M	4(i.	JA	K)	,			, , ,			
•• •>	1237	1 7 8 1 1 7 8 1	A (2 H V	11//	/ 6 Y . I	2.2	X . F	2 I A . A	L X #	1 Z J X . F	57	4.1	гч. 2х.	۲,	01	^ ;	10	101		1	///	,,,			
		1F6.4	.2X.	Fó.4	15X	F6	4/	21)	() F (5.4	1.2	X	F6,	4,	2 X .	, F	6,	4,2	2x,	F 6	, 4,	/21	X , F	6.4	4,
		22X.F	6.4,	2X.F	6.4,	2X.	F 6	4/2	21X	, F 6	4	, 2	X , F	6,	4,1	2 X	,F	6.4	,2	X.F	F 6	,4)			
		GO T	0 13	10																					
	1240) IF (NN=2) 12 UT T	4211	250	124	うつ フ・4		= v .	RI	. PI	2 06		• 1	. к	. P		61		• K '	١.			
· · · ·	1240	1PRF1		чк).	PRS1	(]	JJK	/#5 }*		. • •	•	• F 1	, vu		, ,		•		-		-		10 10 100 010 1		
		1		PRW1	(1.)	K)	PR	FCI	ال و ا	, к)	, P	RN	2(1	. J	•К.),	PR	E2 (1,	Jat	K)	PR	S2 (1	J,K)
		2.PRA	2(1,	J.K)	PRN	3(1)		K),	PRE	3(I	اول	<>>	PR	53	(I	لو ۾	• K)	• P	RWJ	3()	l e J	,K)	1	
	1 2 4 7	3PRN4	(I)J	, K) , . , , , , ,	PRE4	(1)	JaK	21	'RS	4(] 12.	137	∎ K ¥ - 1) / P = 4	2.	4() 61)	1 J X .	J.	K ? . 6 /	,	·	1		111		
•	154/	13X.I	2,5%	11.	// 6X • 1:	2,2	X.F.	6.4	1,2)	C.F	6.	4,2	2X	-1	- 1 /		r U	, .,						. , ,	
		1F6,4	,2X,	F6.4	,15x	F6	4/	21>	(FC	5,4	,2	XII	10,	4,	2 X .	•F	6,	4,2	2X.,	F 6 ;	, 4,	/21	XJF	6,6	+,
		22X.F	6,4,	2X.F	6,4,	2X,I	F6,	4/2	21X	F 6	.4	;2)	K.F	6.	4,1	2 X	F	6.4	,2	Х, Р	6	4)			
	1250	GO T	0 13	10 HT T		• ^ ·	126	0.4		= v .	DI	DI	one		. T		D		/ T		. K 1	۲.			
	1220	1PRE1	(Ind	. ۱ ۱ U	PRST	100. (1	129. J.K	29"),	Ser 5		n 4	• - :	NUD			<i>,</i> N	•			141					
		1		PRW1	(1.)	.K)	PRI	F(I	• J •	K)	. +1	KN 2	112		• K),	PK	Ξź.	1.	Jot	< > .	PR	S2 (1	J,K)
		2.PRN	2(1,	J.K)	PRN	3(1	ا و ل ا	K),	PRE	3(1.	Jot	(),	PR	53	(1	ل و	, K)	iP	RW3	3'()	līJ	, K)	1	
	De o	3PRN4	(I,J	ا ډ (۲ و	PRE4	(1)	JIK) , P	rrs4		1 J.	K) , P	RW	4()	• •	JJJ	<		-			, , ,		· /-/
	222	131.1	AI () 2.5X	. 11.	6X.I:	2.22	(.F)	۲۲ ۲۰۹	. 2)	(.F	6.0	4 . 2	2 T #	61	011	~ /	- 0	101						///	//
		1F6,4	,2X,1	0,4	15X	F6	4/	21X	FC	4	,2)	K, F	6	4,1	2X.	F	6	4,2	X;	F6;	4/	21	XiF	6,4	
		22X.F	6,4,	2X.F	5.4.2	2X . [6,	4/2	1X.	F6	.4	2)	(F	6,4	4,2	5 X	• F (5,4	,2	XyF	6	4)			
	255	GO T	0 13			345	12	20																	
 1	1255	READ	INPL		APE 1		26	2,K	ELE	v,	RI	PF	10B	• I (ر ل ر	ĸ	, Pf	RN1	(I	ول و	K)		-		· · · · · · · · · · · · · · · · · · ·
-		1PRE1	CI.J.	, K) , F	RS1	(1).	J,K),											• •			•			
		1	F	PRW1 ((I,J	K),	PR	F (1		K)	, PF	RN2	1.1	•	• K)) ,	PRE	2(1.	J,K),	PRS	52 (1.1	(K)
		2 PRW	2(1)	J # K)	PRNS	S (] 4	ا و ل ا ا کار ا	(), \.P	PRE	30	10.	Ja K . K N		PR: Rui	33(ړلي و د د ا) К.) () (• P	RWJ		1.) K)		
1	262	FORM	AT (////			21	XI	2,	37)	(• F	4.	2.6	51 X		8	61				11	11	111	11
		13X,12	2,5X	11,6	5X.12	2,2)	(,F	5,4	15X	.F	6,4	1,2	x,		-				• •	•	• ••				
		1F6,4	,2X,F	6.4	15X	F6	4/2	21X	+ F 6	.4	,2>	(» F	٥,	4,6	2X.	F	5.4	1.2	X , I	F6.	41	21)	(,F	6,4	
		222.1	0,4,2	έΧ⊅Ε€ ι∩	4,2	:X • F	0,	4/2	1×,	10	. 4 ,	2X		0,4	1,6	: X (, * 6	.4	12	x , P	0,	41			
1	265	READ	INPL	JT TA	PE 1	10.1	26	7,K	ELE	۷,	RI	PR	OB.	.1.	و ل آو	K	Pŕ	N1	(1	و ل و	к)				
		1PRE1	(I,J,	K) , F	RS1 (1	J.K) ,		•	•							_				-			
		1	F	PRW1 (1, J.	K),	PR	1)7		K)	, PF	N2	(1	و ل و	•K)	108	PRE	2(1.	J', K),	PRS	52(1, J	7K)-
		2, PRW	$\frac{1}{2}$	ינאיך זינאי	PRNJ	5 C I J	Jak	(); \.P	PRE	5(11.	J K N) . . P	rrs Ru4	55 (47 T	I.		(K) () "	P	WS	(1	و لو و	K)	•	
1	267	FORM	AT (/////	////	/		21	XI	2,	37%	() F	4	2,6	51×	())	8	0/				11	11	111	11
		13X.I	2.5X	11.6	X.12	2,2>	GF (5 4	,2X	F	6,4	,2	X,					••••	•					·	
		1F6.4.	, 2X.F	6,4,	15X.	F6	4/2	21X	.F6	.4	, 2X	F	6.	4,2	2X	FC	5,4	1.2	X.,	56.	41	21)	1.F	6,4	1
		22X F	0 1 24	2×,F6	4,2	:X • F	01	4/2	1×,	10	141	2X	11	0,4	* , 2	۲X I	, t ć	4	,2)	Kyt	٥,	4)			
1	270	READ	INPL	JT TA	PE	0,1	.272	2, K	ELE	۷.	RI.	PR	0B	, 1 .	، ل ا	K	FF	N1	(1)		K)	7			
•		1PRE1	(1,)	K),F	RS1	1	J.K),					-					-				•			
		1	F	PRW1 (1.J.	K),	PRE	-(1	. J.	K)	PF	IN2	(1	د ل د	• K)) s F	RE	2(1.	J , K	1,	PRS	62(1, J	•KY.
				- 11		22														•••	•				
• c										1	69														

03/26/68 785.4 2, PR&2(1, J, K), PRN3(1, J, K), PRE3(1, J, K), PRS3(1, J, K), PRW3(1, J, K), 3PRN4(I,J,K), PRE4(I,J,K), PRS4(I,J,K), PRW4(I,J,K) 1272 FORMAT (/////////// 21X, 12, 37X, F4, 2, 01X, F0, 6/ 11111111 13X, 12, 5X, 11, 6X, 12, 2X, F6, 4, 2X, F6, 4, 2X, 1F6,4,2X,F0,4,15X,F6,4/21X,F6,4,2X,F6,4,2X,F6,4,2X,F6,4/21X,F6,4, 22X, F6, 4, 2X, F6, 4, 2X, F6, 4/21X, F0, 4, 2X, F6, 4, 2X, F6, 4, 2X, F6, 4) GO TO 1310 1275 IF (NN-2) 1280,1285,1290 1280 READ INPUT TAPE 10,1282, KELEV, RI, PROB, I, J, K, PRN1(I, J, K), 1PRE1(I,J K), PRS1(I,J,K), PRW1(I,J,K), PRF(I,J,K), PRN2(I,J,K), PRE2(I,J,K), PRS2(1,J,K) 2, PRW2(1, J, K), PRN3(1, J, K), PRE3(1, J, K), PR53(1, J, K), PRW3(1, J, K), 3PRN4(1, J, K), PRE4(1, J, K), PRS4(1, J, K), PRW4(1, J, K) 21X, I2, 37X, F4, 2, 61X, F8, 6/ 1111111 13X, 12, 5X, 11, 6X, 12, 2X, F6, 4, 2X, F6, 4, 2X, 1F6,4,2X,F6,4,15X,F6,4/21X,F6,4,2X,F6,4,2X,F6,4,2X,F6,4/21X,F6,4, 22%, F6, 4, 2%, F6, 4, 2%, F6, 4/21%, F6, 4, 2%, F6, 4, 2%, F6, 4, 2%, F6, 4) GO TO 1310 1285 READ INPUT TAPE 10,1287,KELEV,RI,PRUB,I,J,K,PRN1(I,J,K), 1PRE1(I,J,K), PRS1(I,J,K), _ PRW1(I,J,K), PRF(I,J,K), PRN2(I,J,K), PRE2(I,J,K), PRS2(I,J,K) 2, PRW2(I, J, K), PRN3(I, J, K), PRE3(I, J, K), PRS3(I, J, K), PRW3(I, J, K), 3PRN4(1, J, K), PRE4(1, J, K), PRS4(1, J, K), PRW4(1, J, K) 21X, 12, 37X, F4, 2, 61X, F8, 6/ 111111 ____13X, 12, 5X, 11, 6X, 12, 2X, F6, 4, 2X, F6, 4, 2X, 1F6, 4, 2X, F0, 4, 15X, F6, 4/21X, F6, 4, 2X, F6, 4, 2X, F6, 4, 2X, F6, 4/21X, F6, 4, 22X,F6,4,2X,F6,4,2X,F6,4/21X,F6,4,2X,F6,4,2X,F6,4,2X,F6,4) GO TO 1310 1290 IF (NN-4) 1295,1300,1305 1295 READ INPUT TAPE 10,1297,KELEV,RI,PROB,I,J,K,PRN1(I,J,K), 1PRE1(I, J, K), PRS1(I, J, K), PRW1(1, J, K), PRF(1, J, K), PRN2(1, J, K), PRE2(1, J, K), PRS2(1, J, K) 2, PRW2(I, J, K), PRN3(I, J, K), PRE3(I, J, K), PRS3(I, J, K), PRW3(I, J, K), 3PRN4(1, J, K), PRE4(1, J, K), PRS4(1, J, K), PRW4(1, J, K) 1297 FORMAT (///////// 21X,12,37X,F4,2,61X,F8,6/ 11111 13X, 12, 5X, 11, 6X, 12, 2X, F6, 4, 2X, F6, 4, 2X, 1F6,4,2X,F6,4,15X,F6,4/21X,F6,4,2X,F6,4,2X,F6,4,2X,F6,4/21X,F6,4, 22X, F6, 4, 2X, F6, 4, 2X, F6, 4/21X, F6, 4, 2X, F6, 4, 2X, F6, 4, 2X, F6, 4) GO TO 1310 1300 READ INPUT TAPE 10,1302, KELEV, RI, PROB, J, J, K, PHN1(I, J, K), 1PRE1(I,J,K), PRS1(I,J,K), PRW1(1, J, K), PRF(1, J, K), PRN2(1, J, K), PRE2(1, J, K), PRS2(1, J, K) 2.PRw2(1,J,K),PRN3(1,J,K),PRE3(1,J,K),PRS3(1,J,K),PRW3(1,J,K), 3PRN4(I,J,K), PRE4(I,J,K), PRS4(I,J,K), PRW4(I,J,K) 1302 FORMAT (///////// 21X, 12, 37X, F4, 2, 61X, F8, 6/ 1111 13X, I2, 5X, I1, 6X, I2, 2X, F6, 4, 2X, F6, 4, 2X, 1F6, 4, 2X, F6, 4, 15X, F6, 4/21X, F6, 4, 2X, F6, 4, 2X, F6, 4, 2X, F6, 4/21X, F6, 4, 22X, F6, 4, 2X, F6, 4, 2X, F6, 4/21X, F6, 4, 2X, F6, 4, 2X, F6, 4, 2X, F6, 4) GO TO 1310 1305 READ INPUT TAPE 10,1307, KELEV, RI, PROB, I, J, K, PRN1(I, J, K), 1PRE1(I,J,K), PRS1(I,J,K), PRW1(I, J, K), PRF(I, J, K), PRN2(I, J, K), PRE2(I, J, K), PRS2(I, J, K) 2, PRW2(1, J, K), PRN3(1, J, K), PRE3(1, J, K), PRS3(1, J, K), PRW3(1, J, K), 3PRN4(1, J, K), PRE4(1, J, K), PRS4(1, J, K), PRW4(1, J, K) 1307 FORMAT (////////////21X,12,37X,F4,2,61X,F8,6/ 13X, I2, 5X, I1, 6X, I2, 2X, F6, 4, 2X, F6, 4, 2X,

03/20/68 TN5.4 1F6,4,2X,F6,4,15X,F6,4/21X,F6,4,2X,F6,4,2X,F6,4,2X,F6,4/21X,F6,4, 22X, F6, 4, 2X, F6, 4, 2X, F6, 4/21X, F6, 4, 2X, F6, 4, 2X, F6, 4, 2X, F6, 4) 1310 PRR([,J,K)=PR08 1320 CONTINUE DO 607 JJ=1,100 DO 127 I=1,M DO 127 J=1,4 IF (KC(1,J),EQ,0) GU TO 127 KK=KC(I,J) DO 125 K=1,KK 125 KFR(1, J, K)=0 127 CONTINUE NUMTPF=0 NCOUNT=0 NTOTAL=0 IF (KWRITE,EQ,0) GO TO 132 WRITE (6,130) 130 FORMAT (1H1,119HBLOCK DIRECT LOT ADDRESS FIFTH THERMAL 1 FOURTH SPREAD FIRST BURN PROBABILITY 2ND FIRE FIRE CAU RANDOM PULSE RANDOM 2GHT/1H ,8X,111HTION NO. FROM BLDG /1H RANDM 3PROBAB- RANDOM FROM SPREAD NUMBER, 20X, 5HNUMB, 9X, 434X, 6HNUMBER, 11X, 6HNUMBER, 2X, 15HILITY 511HBLK DIR LOT) KPAGNTN=3 C---- THERMAL PULSE CONSIDERATION 132 DO 150 I=1.M DO 180 J=1,4 IF (KC(1,J),EQ,0) GO TO 180 KK=KC(I,J) DO 180 K=1.KK RANDOM5=RANDOM1+RANDOM2 IF (RANDOM5-1,) 150,140,140 140 RANDOM5=RANDOM5-1. 150 IF (PRB(1, J, K) - RANDOM5) 170, 170, 160 160 KFR(1, J, K)=3 IF (KR(1, J, K), EQ, 0) GO TO 165 TPSP(I,J,K) = TPSP(I,J,K) + 1165 NUMTPF=NUMTPF+1 NTOTAL=NTOTAL+1 KBDG(NUMTPF)=I+1000+J+100+K 170 RANDOM1=RANDOM2 RANDOM2=RANDOM5 180 CONTINUE C---- IF THERE ARE NO FIRES, THERE IS A JUMP TO THE END OF THE PROGRAM IF (NUMTPF.NE.0) GO TO 200 WRITE (6,190) 190 FORMAT (1HD, 18HTHERE ARE NO FIRES) WRITE (6,195) 195 FORMAT (51X, 3H 0, 47X, 3H 0) GO TO 807 C---- THE FIRE SPREAD CONSIDERATION IS INITIALIZED AT ONE OF THE C---- BUILDINGS WHERE THERMAL PULSE FIRE 200 I=KoDG(1)/1000 NTH=KBDG(1)+(I+1000) J=NTH/100 K=NTH=(J+100)

171

.....

112.4

03/26/68

	NUMSPER	
	DO AAR HILE1.MUMTPF	
	NCDURANEN	
	TE (ZURITE.EN.N) RN TN 248	
	$T_{\rm F}$ (KPAGNIN-KO) 220.220.210	
2	TE INFRONTITOVI ZEVIELUILAV Den udite ikitänn	
-	ZIU ARTIE (DIIDU/ MDAGATAER	
2	DDD WETTE (A.230) I. I.K.ADRI(I.J.K), ADR2(I.J.K), RANDOM5, PRB(I	J.K),
-	PANDOMI.RANDOMI.CTY1.CTY2	
	The CINALOY 12.5X.11.5X.12.3X, A6, A6, 2X, F6, 4, 3X, F6, 4, 2X	.F6.4.
	Fn 4.10Y FA 4.3X.3HYES/1H ,20X.2A6/1H)	
	A A A A A A A A A A A A A A A A A A A	
C	THE AS IS GONE THROUGH FOR ALL THE BUILDINGS ON FIRE T	O SEE IF
	THE FINE SPREADS TO OTHER BUILDINGS	
	240 DO 640 II=1.16	
13	RANDOM4=ABS(RANDOM2-RANDOM1)	
	RANDOM5=RANDOM1+RANDOM2	
	IF (RANDOM5-1.) 260,260,250	
1	250 RANDOM5=RANDOM5-1.	
7	260 IF (11-2) 270,280,290	
2	270 PR=PRN1(1,J,K)	
	NBLDG=NBN1(1,J,K)	
	GO TO 500	
	280 PR=PRN2(1, J, K)	
	NBLDG=NBN2(1, J,K)	
	GO TO >00	
2	290 IF (11-4) 300,310,320	
	300 PR=PRN3(1, J, K)	
	NBLDG=NBN3(I,J,K)	
	GO TO 500	
	31C PR=PRN4(I,J,K)	
	NBLDG=NBN4(I,J,K)	
	GC TO 500	
	320 IF (11-6) 330,340,350	(
	330 PR=PRE1(I,J,K)	
	NBLDG=NPEl(,,J,K)	
	GO TO DOD	
· · · · · · · · · ·	340 PR=PRE2(1,J,K)	
	NBLDG=NBEZ(I,J)K)	
	GO [O 200 200 10 11-01 240 270 380	
	210 00-000((1 K) 220 [b []10] 20092409260	
	ADD DOWNER (1. 1.KA	
	VO TO ROU	
	270 DD=D054(1.1.K)	
	NEL AGENEFALT. J.K)	
	CO TO 500	
	3en (11-10) 300.400.410	
	300 PR=PRS1(1,J,K)	
	NRLDG=NBS1(I,J,K)	
	GO TO 500	
	400 PR=PRS2(1, J,K)	
	NBLDG=NBS2(1, J,K)	
	GO TO 500	1
	410 IF (11-12) 420,430,440	
	172	
-		

• •

.

N5.4		03/26/68
420	PR=PRS3(I,J,K)	
	NBLDG=NBS3(I,J,K)	
	SO TO 500 .	
430	PR=PRS4(1,J,K)	
	NBLDG=NdS4(I,J,K)	-0.3
	GO TO DUU 15 (11-14) 450 460 470	
440	11 (11-14) 400/400/470	
420		
		•
460	PR=PRW2(1, J, K)	
	NBLDG=NBW2(I,J.K)	
	GO TO 500	
470	IF (II-16) 480,490,490	
480	PR=PRw3(I, J, K)	
	NBLDG=NBW3(I,J,K)	
	GO TO 500	
490	PR=PRW4(1)J)K) -	
	$K_{2}(1, 1, K) = 2$	
405		
500		
200	NTH=NBLDG+(NBLK+1000)	
	NDIR=NTH/100	
	NLOT=NTH=(NDIR+100)	
	IF (NBLDG, NE, 0) GO TO 510	
	GO TO 610	
C	USE MONTE CARLO METHOD TO SEE WHETHER FIRE MAY S	PREAD
510	IF (PR-RANDOM5) 610,610,520	C 0105 5195
C	USE MONTE CARLO METHOD TO SEE IF BUILDING CATCHE	S UNCE FIRE
<u> </u>	TE CORECNOLE NOTE NOTA-RANDOMAL 610.610.530	
520	IF (FRF(NBLK, NDIR, NLOI) - FA, 0) GO TO 535	
535	KFR(NBLK,NDIR,NLOT)=1	
	IF (KR(NBLK, NDIR, NLOT), EQ, 0) GO TO 536	
	TPSP(NBLK, NDIR, NLOT) = TPSP(NBLK, NDIR, NLOT) +,001	
536	NUMSP=NUMSP+1	
	NTOTAL=NTOTAL+1	
	KBDG(NTOTAL)=NBLDG	
538	IF (KWRITE, EQ, D) GO TU DIU	
239	IF (NFAGNIN-DU) 330/330/340	
	KDAGNTANEZ	
550	WRITE (6.560) NRIKANDIRANLOTADRI(NBLKANDIRANLOT	ADR2(NBLK.NDIR.N
	LLOT), RANDOMS, PRB (NBLK, NDIR, NLOT), RANDOM4, PR, RANDI	DM1, PRF(NBLK, NDIR,
	2NLOT), RANDOM2, I, J, K, CTY1, CTY2	
560	FORMAT (1H0,2X, 12,5X, 11,5X, 12, 3X, A6, A6, 2X, F6, 4, 3	x,F6,4,2X,F6,4,2X,
1	1F6,4,3X,F6,4,7X,F6,4,6X,F6,4,3X,3HYES,4X,12,2X,1	1,3X,12/1H ,20X,
	22A6/1H)	
مراجرة مستحد الراد	KPAGNTN=KPAGNTN+4	
610	IF (II,NE,16) GO TO 630	
	NUUUN =NUUUN +1	· · · · · · · · · · · · · · · · · · ·
600	IF INCOUNTENTUIALI OZUJOVUJOVU NCNTENCOINTAL	
020	1=KHDG(NCNT)/1000	
	-1	

IN5.4

The second second

•

03/26/68

	NTH=KBDG(NCNT)-(1+1000)
	J=NTH/100
	K=NTH-(J+100)
C	NTOTAL IS TOTAL NO. OF BLDGS WITH FIRE (RUNNING TOTAL)
C	THIS IS BOTH THERMAL PULSE FIRE AND SPREAD FIRE
630	RANDOM1=RANDOM2
	RANDOMZERANDUMD
640	CONTINUE
050	16 (KSPREAU, EW, U) GU TU GU
6 4 D	10 10 070 15 (111-NUMTRE) 680.670.670
. 000	
0/0	LLGAI KSDJEADE1
680	CONTINUE
690	1F (NN-2) 6805,6810,6815
6805	
0005	GO TO 6835
6810	R1=.3
U U L U.	GO TO 6835
6815	1F (NN-4) 6820,6825,6830
6820	R1+.5
	GO TO 6835
6825	RIs.7
0.5	GO TO 6835
6630	R1=.9
6835	IF (MM-2) 6840,6845,6850
6840	KELEV=30
•••••	GO TO 695
6845	KELEV=10
	GO TO 695
6850	KELEV=5
695	IF (KWRITE, EQ. 0) GO TO 705
	WRITE (6,700) KELEV, RI
700	FORMAT (1H1, 3X, 32HSUMMARY WITH ANGLE OF ELEVATION=, 12, 24H AND ROOM
	1 IGNITION PROB=,F4,2/1H0,29HBLOCK DIR LUT TYPE OF FIRE)
	_GO TO 708
705	WRITE (6,706) KELEV, RI, JJ
706	FORMAT (1H0, 32HSUMMARY WITH ANGLE OF ELEVATION=, 12, 24H AND ROOM IG
	INITION PROB=,F4.2,43H WITH THE NUMBER OF TIMES THROUGH THE LOOP=,
	213,11X)
C	BELOW IS THE LOOP WHICH GIVES A SUMMARY OF THE BLOCK, DIRECTION
<u> </u>	LOT NUMBER OF THE BUILDINGS WHICH CAUGHI UN FIRE
708	DO 790 I=1,M
	_D0_785_J=1.4
	$IF(KG(I_0J)_1EQ_10) GU IO 702$
/10	$\frac{10}{70} = \frac{1}{10} \text{KK}$
	$\frac{11}{10} \frac{11}{10} \frac{11}{10} \frac{11}{10} \frac{10}{10} 10$
715	UDITE (A 700) 1 J K
	SODWAT (140, 47, 12, 57, 14, 47, 12, 27, 13HTHERMAL PULSE)
<i>, 2</i> 0	CO. TO. 770
770	15 (KER(1.J.K), NE.2) G0 T0 770
, 50	IF (KWRITE.ED.D) GO TO 770
735	WRITE (6,740) 1, J,K
	1/4

.

-

• .

•

11.5. 1

745 FORMAT (100.1X.12.5X.14.4X.12.2X.6HSPREAD)	

KPAGNINEU Real Internation NELON CO. TO ROL	··· ·· ·· ·· ·
SOO IF (NIOTAL+NE+U) GO IU BUL	
NUMSP=0	
801 WRITE (6,005) NUMTPE, NUMSP, NIDIAL	
805 FORMAT (1H , SOHTOTAL NUMBER OF BLDGS ON FIRE FROM THERMAL PULSE=	
1I3,4X, 43HTOTAL NUMBER OF BLDGS ON FIRE FROM SPREADE (13,4X)	
221HTOTAL BLDGS ON FIRE= ,13,4X)	
806 IF (NDETAIL, EQ, 0) GO TO 807	
IF (JJ.NE.100) GO TO 807	
DQ 507 1=1.M	
DO = 807 = 1.4	
KK=KC(I)	
10 007 N-17NN 17 78271 1 88 50 08 60 70 907	
KSP=(PSP(1,J,K)=RK P)+10001	-
KTOT=KTP+KSP	
WRITE (6,8061)	
8061 FORMAT (1H1, 3X, 19HBUILDING DEFINED BY, 7X, 31HNUMBER OF TIMES I	N
1100 CASE RUN /1H , 3X, 18HBLOCK SIDE LUT , 8X, 28HBUILDING CAU	GH
2T ON FIRE FROM /1H ,29X, 32HTHERMAL PULSE SPREAD TOTAL /	
31H , 3X, 5H , 3X, 4H , 3X, 3H , 8X, 13H, 4X	,
4 6447. 54)	
ADAD WRITE (A. ADAS) I. J. K. KTP. KSP. KTOT	
R045 FORMAT (1H .5Y.12.6X.14.5X.12.14X.13.10X.13.6X.13)	
	·····
Level C BOS REWIND 10	
810 REWIND 27	
SIOP	
END	
	1
	1
	1
	1
175	
•··•	
a more a little i antenna	Nauthfiline -

FIREFLY 3 PROGRAM

Ditter any

32.2

03/26/68

	<u>ר</u> ר` (
90	KPIUI=KP '*KP5P KTOTSOTP=0
C	TOTAL PERCENT OF BUILDINGS BURNT
85	KPSP=KPSP+1
	IF ((PSP-KPSP)+,5) 90,85,85
80	KPSP=PSP
80	PSP=AVGSP/RN+100.
75	REPERTING TOTAL NUMBER OF RUILDINGS WHICH RURNT FROM FIRE SPREAD
na ang ang ang ang ang ang ang ang ang a	IF ((PTP-KPTP)-,5) 80,75,75
	KPTP=PTP
_	PTP=AVGTP/RN+100,
C	PERCENT OF TOTAL NUMBER OF BUILDINGS WHICH BURNT FROM THERMAL PULSE
, , , , , , , , , , , , , , , , , , , ,	
70	KAVGTOT=KAVGTP+KAVGSP
65	KAVGSPEKAVGSPEI Average Number of Total Rutidings rurnt in 100 cases
	1F ((AVGSP+KAVGSP)+,) /U,0),00
	KAVGSP=AVGSP
60	AVGSP=KSMSP/100
C	AVERAGE NUMBER OF BUILDINGS BURNT FROM FIRE SPREAD IN 100 CASES
55	KAVGTP=KAVGTP+1
	IF ((AVGTP-KAVGTP)-,5) 60,55,55
	AACLERADE MALLER AL DATENTINGS BAUNT LURUWAR LARDE TH HAA CASES
2	KSMTDIEKSMIP+KSMSP Avedage Number of Differings Dirent from Thermal Direst in 100 cases
50	KSMSP=KSMSP+KSPF(L)
	KSMTP=KSMTP+KTPF(L)
45	FORMAT (/51X, 13, 47X, 13)
	READ INPUT TAPE 10,45, KTPF(L),KSPF(L)
	DO 50 L=1,100
40	
35	FURMAL (1H)
30	READ INPUT TAPE 10,35
	DO 30 L=1,K
	IF (KSKIP(M), EQ. 0) GO TO 40
	K=KSKIP(M)
	DO 200 M=1,15
And a surger serve	KPGNTN=7
4	STHERMAL SPREAD TOTAL SPREAD TOTAL THERMAL SPREAD TOTAL THERMAL SPREAD TOTAL SPREAD
)	A TOTAL TOTAL THERMAL SPREAD TOTAL THERMAL SPREAD TOTAL
	21H ,63HIGNITION ELEVATION BURNI (100 CASES) FUILDI
	1 OF BUILDINGS PERCENT BURNT (, 14, /X, 18HSTANDARD DEVIATION/
25	FORMAT (1H1, 29X, 2A5, 14X, 2A6/1H0, 64HPRUB RUOM ANGLE OF AVG NO,
	WRITE (6,25) CTY1, CTY2, WIND1, WIND2, N
20	FORMAT (14,1x,2A5,1x,2A6)
- 5	REAL 20.N.CTV1.CTV2.WIND1.WIND2
10	- HEAL 19, ASKIP(I) TO I (I)
	no 10 1=1,15
	1'57 P(100), ASC5P(100)
	1 213:05 KSK1#(15), KTPF(100), KSPF(100), KDIFTP(100), KDIFSP(100),
	The second point of the

1//

	03/26/68
KTOTSQSP=0	
DO 100 I=1,100	
KSHKSPF(T)-KAVGSP KIHKIPF(T)-KAVGIP	
KD1FTP(I)=XAPSF(KT)	
KDIFSP(I) = XABSF(KS)	
KSQTP(1)=KU1FTP(1)==2 KSQSP(1)=KD1FSP(1)==2	
KTCTSUTP=KTOTSUTP+KSGTP(1)	
1_0 KTOTSUSP=KTOTSQSP+KSQSP(1)	
77=5TUTS05P/100	i i i i i i i i i i i i i i i i i i i
Y 2 = Y Y + Z Z	
C STANDARD DEVIATION OF BUILDINGS BURNT FROM	THERMAL PULSE
C STANDARD DEVIATION OF BUILDINGS BURNT FROM	FIRE SPREAD
DEVSP=SORTF(ZZ)	
C STANDARD DEVIATION OF ALL BUILDINGS BURNT	
IF (M+5) 105,105,150	
105 KELEV=30	•
IF (M=2) 115,120,125	
GO TO 175	
120 RI=, 3	
GO TO 175 125 JE (M=4) 130 135 140	
130 RI=,5	
GO TO 175	
135 RI#,7 60 TO 175	
140 RI=,9	
GO TO 175	
150 IF (M-10) 155,155,105 155 KFLEV=10	
IF (M-7) 115,120,160	•••••
160 IF (M-9) 130,135,140	
IGD KELEVED IF (M+12) 115,120,170	
170 IF (M-14) 130,135,140	· · · · · · · · · · · · · · · · · · ·
175 IF (KPGNTN=55) 185,180,180	
KPGNTN=7	
IF (RI-,1) 185,182,185	
182 WRITE (6,183)	
KPGNTN=KPGNTN+1	
185 WRITE (6,190) RI, KELEV, KAVGTP, KAVGSP, KAVGTO	T,KPTP,KPSP,KPTOT,
1 DEVTP, DEVSP, DEVTOT	Y. 14-67.13-57.13-59.13-
14X,F5,1,5X,F5,1,3X,F5,1)	~ [~] ~] ~] ~] ~] ~] ~]] ~]] ~]] ~]
KPGNTN=KPGNTN+1	
200 CONTINUE REWIND 27	
STOP	
END	
178	

.

•

REFERENCES

- COHN, B. M., et al, "A System for Local Assessment of the Conflagration Potential of Urban Areas", Gage-Babcock and Associates, AD 616 623
- 2. "Prediction of Fire Damage to Installations and Built-Up Areas from Nuclear Weapons", IITRI, July 1965
- 3. "Shelter Fire Vulnerability--Survey and Analysis of Representative Buildings", IITRI, March 1965
- 4. CROWLEY, J. W. and STAHL, F. G., "The Fire Problem in Nuclear War", System Sciences, Inc., December 1964
- 5. CROWLEY, J. W., LETTS, M. H., and STAHL, F.G., "Role of the Fire Services in Nuclear War", System Sciences, Inc., April 1965

Computer model called FIREFLY is been developed and written Sector sectors Sector sectors Sector sectors	DOCUM	ENT CONTROL DATA - R & D
OPUIDENTIAL ACTIVITY (Computer author) <pre>System Sciences, Inc. 4720 Nontgomery Lane Bethesda, Maryland FIREFLYA COMPUTER MODEL TO ASSESS THE EXTENT OF NUCLEAR FIRE DAMAGE IN URANAIZED AREAS</pre>	(Security classification of title, body of abstract	and indexing annotation must be entered when the overall report is classified)
System Sciences, Inc. H 2020 Montgomery Lane Bethesda, Maryland Medear inc. FIREFLYA COMPUTER MODEL TO ASSESS THE EXTENT OF NUCLEAR FIRE DAMAGE IN URBANIZED AREAS OBICHIPTOTE NOTES (Dype of report and inclusive datase) N.A. AUTHORN (Dirich mas, added indited, last mass) John W. Crowley, Brian R. Smith, Herbert J. Avise, and Nancy G. Whitney H 00 K Crowley, Brian R. Smith, Herbert J. Avise, and Nancy G. Whitney A 00 K UNIT NO. 194 194 194 194 194 194 194 194	ORIGINATING ACTIVITY (Corporate author)	20. REPORT SECURITY CLASSIFICATION
4720 Montgomery Lane http://www.marking.com/documents/part/2011/2011/2011/2011/2011/2011/2011/201	System Sciences, Inc.	UNCLASSIFIED
Bethesda, Maryland Freedow Twick FIREFLYA COMPUTER MODEL TO ASSESS THE EXTENT OF NUCLEAR FIRE DAMAGE IN URBANIZED AREAS OBJECTIVE NOTES (Type of report and inclusive dates) N.A. AVHIGHING/Hardman, added indick dates) N.A. AVHIGHING/HARDMAN BERNARD DARC20-67-C-0147 Networks NORK UNIT NO. 16148 A AUHIGHING HARD BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DIS- TRIBUTION IS UNLIMITED A computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of building destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U) DIMENDIAL AND	4720 Montgomery Lane	25. GROUP
AFCART MILE FIREFLYA COMPUTER MODEL TO ASSESS THE EXTENT OF NUCLEAR FIRE DAMAGE IN URBANIZED AREAS OTICHUSTIC ACTOR (The Description of the de	Bethesda, Maryland	
PIREPLYA COMPUTER MODEL TO ASSESS THE EXTENT OF NUCLEAR FIRE DAMAGE IN URBANIZED AREAS OCCUPANTION TOTAL OF ALL AND	REPORT TITLE	
IN UNIANIZED AREAS OBLIGHTIVE NOTE: (Type of reported inclusive data;) N.A. AVTIONN() (Find mass, allde inclusive data;) John W. Crowley, Brian R. Smith, Herbert J. Avise, and Nancy G. Whitney APPORT Date 194 APPORT Date	FIREFLYA COMPUTER MODEL TO	ASSESS THE EXTENT OF NUCLEAR FIRE DAMAGE
Descriptive Note: (Type of report and inclusive dates) N.A. AUVIONITY (Prior means, middle initial, fast means) John W. Crowley, Brian R. Smith, Herbert J. Avise, and Nancy G. Whitney May 22, 1968 Conventor of share to be a state initial fast means) Conventor of share to be a state initial fast means Conventor of share to be a state initial fast means Conventor of share to be a state initial fast means Conventor of share to be a state initial fast means Conventor of share to be a state initial fast means Conventor of share to be a state initial fast means Conventor of share to be a state of the st	IN URBANIZED AREAS	
N.A. 2017HORNIN (Print mass., aidde Indital, Karimann) John W. Crowley, Brian R. Smith, Herbert J. Avise, and Nancy G. Whitney Attore of the second secon	DESCRIPTIVE NOTES (Type of report and inclusive dat	
John W. Crowley, Brian R. Smith, Herbert J. Avise, and Nancy G. Whitney AFFORVENT AND DATES 194 5 CONTACT OF AGENT NO DATES 194 CONTACT OF AGENT NO CONTACT OF AGENT CONTACT CONTACT OF AGENT CONTACT OF AGENT CONTACT CONT	N.A.	
John W. Crowley, Brian R. Smith, Herbert J. Avise, and Nancy G. Whitney APONT CATE May 22, 1968 Contract of SAMTAC. DAHC20-67-C-0147 Contract of SAMTAC. WORK UNIT NO. 16148 Contract of Sama Contract of Same method Baland & Same Contract of Same Contract o	AUTHOR(S) (First name, middle initial, last name)	
ACCONTRACT 194 5 May 22, 1968 194 5 CONTRACT OF SAMANT NO. 194 5 DARC20-67-C-0147 - ONSIGNATION FROM THOMAGENERS 5 * WORK UNIT NO. - ONSIGNATION FROM THOMAGENERS - ONSIGNATION FROM THOMAGENERS - NUMBER UNIT NO. - ONSIGNATION FROM THOMAGENERS - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THAT NO. - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THAT NO. - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THAT NO. - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THAT AND THE SAME THAT NO. - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THAT NO. - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THAT THE SAME THAT NO. - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THAT THAT THE SAME THAT NO. - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THOMAGENESS - ONSIGNATION FROM THAT THAT THE SAME THAT NO. - ONSIGNATION FROM THAT ACTIVITY Office of Civil Defense Prentagon - A COMPUTER THAT THAT THAT THAT THAT THAT THAT THA	John W. Crowley, Brian R. Sm.	ith, Herbert J. Avise, and Nancy G. Whitney
ARGONY GATE May 22, 1968 CONTRACT OR BANAN NO. DARC20-67-C-0147 FROMET NO. 16148 4 CONTRACT OR BANAN NO. DARC20-67-C-0147 FROMET NO. 16148 4 CONTRACTORY REPORT NUMBERNAM INFORMATION INCLUSION INFORMATION INFOR		
A converter model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothecical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U)		
DAK22-1700 CONTRACT NO. CONTRACT NO. CONTRACT NO. CONTRACT NO. CONTRIBUTION STATEMENT THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED CONTRIBUTION STATEMENT THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED CONTRIBUTION SUNLIMITED CONTRACT Computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U) DO NOT ANY	Mar 22 1069	A TOTAL NO. OF PAGES 70. NO. OF HEPS
DAHC20-67-C-0147 MORK UNIT NO. 1614B DISTRIBUTION STATEMENT THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DIS- TRIBUTION IS UNLIMITED DISTRIBUTION IS UNLIMITED A computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U)	LIGY 621 1900	194 D
WORK UNIT NO. 1614B	DAHC20-67-C-0147	
WORK UNIT NO. 1614B DIMARATE ONT HOUSE (Any other numbers for fair by be settly of DIMARATE ON THOUSE (Any other numbers for fair by be settly of DIMARATE ON THOUSE (Any other numbers for fair by be settly of DIMARATE ON THOUSE (Any other numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U) MONTANY MOTES MONTANY HOUSE (U) MO	DAILCZO-07-C-0147	
WORK UNIT NO. 1614B A OUTWAINT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DIS- TRIBUTION IS UNLIMITED DEFINITION IS UNLIMITED A OFFICE of Civil Defense Pentagon Washington, D. C. A computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U) More and the evaluated of the species of the s		
1614B A SINTAINAUTION STATEMENT THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DIS- TRIBUTION IS UNLIMITED Suprementation of the speed of the second state of the	• WORK UNIT NO.	98. OTHER REPORT NO(5) (Any other numbers that may be assigned
OISTAISUTION STATEMENT THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED UPPLEMENTARY NOTE:	1614B	
THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DISTRIBUTION IS UNLIMITED TUPPLEMENTARY MOTES TO DEFINITION IS UNLIMITED T	d	
THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DIS- TRIBUTION IS UNLIMITED	0. DISTRIBUTION STATEMENT	
TRIBUTION IS UNLIMITED TRIBUTION IS UNLIMITED (1. SPONSORING MILITARY ACTIVITY Office of Civil Defense Pentagon Washington, D. C. A computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U)	THIS DOCUMENT HAS BEEN APPROV	VED FOR PUBLIC RELEASE AND SALE: ITS DIS-
A computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U)	TRIBUTION IS UNLIMITED	
ABUTALCY A computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U)		
Office of Civil Defense Pentagon Wachington, D. C. A computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U)	1. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY
Pentagon Washington, D. C. A computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U)		Office of Civil Defense
A computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U)		Pentagon
A computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U)	ABSTRACT	Washington, D. C.
A computer model called FIREFLY has been developed and written in FORTRAN IV for the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U)		
D. M. 1473 Control of the CDC 3600. This model may be applied to obtain statistical data on the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U)	A computer model called	d FIREFLY has been developed and written
D. Mar. 1473 Subject to the the expected numbers of buildings destroyed by fire from the thermal pulse of a hypothetical nuclear weapon and from any subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U) D. Mar. 1473 Subject to the transmission of the tran	in FORTRAN IV for the CDC 30	600. This model may be applied to obtain
D . Many Subsequent urban fire spread. Many variables concerning numbers and sizes of buildings, their construction, and separation distances may be evaluated. (U)	statistical data on the expe	ected numbers of buildings destroyed by
D	fire from the thermal pulse	of a hypothetical nuclear weapon and
D	from any subsequent urban r	ire spread. Many variables concerning
D	distances may be evaluated	ngs, their construction, and separation
D ,	distances may be evaluated.	(U)
D, M. 1473 States for and 100 - 1 and 44, When to UNCLASS IF IED		
D, M		
D, Mar 1473 SEPLACES FOR AND 1472. 1 JAN 64, WHICH 18 UNCLASS IF IED		
D . 1473 SEPLACES PO FORM 1475, 1 JAN 64, WHICH 15 UNCLASS IF IED		
D. 1473 SECOND 1075, 1 JAN 64, WHICH 15 UNCLASS IF IED		
D. 1473 Stockere por Anny use. UNCLASS IF IED		
D		
D. 1473 SEPLACES POR ANNY USE. UNCLASS IF IED		
D . 1473 SEPLACES SS FORM 1475, 1 JAN 64, WHICH IS UNCLASS IF IED		
D		
D		
D . 1473 DEPLACES DO FORM 1475, 1 JAN 64, WHICH IS UNCLASS IF IED		
UNCLASS IF IED		
UNCLASSIFIED		

		K A	LIN	K B	LINKC	
KEY WORDS	ROLE	WT	ROLE WT		ROLE WT	
omputer model						
rban fire spread	1					
	l l					
	[
		L				
				_	· ·	
		Security	Classifi	cetion		

Ļ