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FOREWORD

It has long been felt that the design of shelter- could be improved by

application of knowledge gained from structural mechanics methods. This paper

a significant contribution to this area and represents a first attempt to

devise a realistic and usaole model for simulating tne behavior of an air-

supporte4, single-wall tent. The redults are in generdil agreement with obser-

vatiGns of tent behavior in a wind and inspire confide3nce in the soundness of

the approach.
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ABSTRACT

This report analyzes tie large deformations of a cylindrical, inflatsd,

singie-vall tent due to wind pressure and is based on the membrane theory for

large deflections but small strains. The tent cross-section is a sector of a

circle in tne undeformed position, and the wind is blowing cn it in the broad-

siae direction. The tent motion is taken as plane, ana it is assumed that the

wind pressure distribution is known in the deformed state. The problem is

solved by numerical analysis and results are presented for the stress, deformed

snape, aerodynamic resultants and anchor forces. Tne problem is of theoretical

interest because the linear membrane theory does not nave a unique solution for

it, and also because it illustrates that the method of small deformations super-

posed on large is of little help when the large deformation is of inextensional

type.
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S........•,*,oOF AN 1NFLAkTi;D C•YLONDRICAL TENT

I . I utroduct ion

In recent -ears the use of pressure-supported structures has become attrac-

tive to aerospace and military equipment designers. The literature dealing,

wito these problems includes work by Leonard, Brooks and 'ýcCo~mb [Il] , Stein and

hedgepetn [2J and a book by Otto 01].

SThe present paper d.scrioes an investigation of the de:'lections suffered

;)v a pressure-supported tent waen subjected to a wind. The tent has the shape

of a long sector of a cylinder, ,ielu down at the eages, and the wind is in the

zrodac1sie direction (i.e., parallel to the ground ana perpenaicular to the axis

of the cylinder). A right-nandýd cartesian coordindte system is chosen as shown

in Figure i. If the tent is long enough it is reasonable tnat (except near the

ends) tne deformation will ne in the x-y plane, possi.ly with a unitorm z-stretch

superposed.

We shall postulate tnat the tent material is perfectly flexible, i.e., it

nas zero Dending stiffness. This rrieans that it is unstable when either princi-

pal stress is negative, and we shall be concerned nere only with tne case where

neither principal stress is negative. We assume further that the tent material

is not highly elastic in tension, i.e., the strains are always small, and it is

aaequate :- se a linear elastic law for an orthotropic material. Although the

strains are small, the rotations and aispiacements may be large, and we shall

employ large-Geflection memnrane theory in our analysis.

Initially, it is assumed that three kinds of loads act on the shell, exter-

nal wina pressure, internal inflation pressure and gravity. If t.e wind is very
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Figure 1. Orientation of Tent and Wind
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i weak, all these forces may be of compai-able size, but, when the wind is at

all strong, the pressure forces are much larger than the gravity forces, which

may then be neglected.

The fundamental analysis of this problem is ac-_-•-bed in Section 2, azd

its final formulation as an integro-differential equation system is obtained

iai Section 3. A general solution in finite terms coald not be obtained al-

though a simple special case is solved in Section 3. Section 4 describes a

numerical analysis of the problem which led to a computer program that pro-

duced the results described in Sectio- 5. The paper concludes with the dis-

cussion of Section 6.
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2. Analysis

We assume that tne undeformed body is a portion of a cylindrical shell of

constant thickness h, whose middle surface is described by cylindrical coordinates

a, I, Z wnich are related to the cartesian coordinates X, Y, Z of the undeformed

snell by (see Figure 2a)

X = a sin 4, Y = -a cos 0.

The cylindrical coordinates of the deformed middle surface, r, *, z are related

to its cartesian coordinates x, y, z by (see Figure 2b)

x = r sin *, y = -r sin t.

The deformation is assumed to carry the initially circular cylinder into a non-

cil-cular cylinder by means of a plane motion with a superposed uniform stretch

and is defined by

r = r(,), , z = AZ (A constant) (i)

The mixed (i.e., physical) middle surface strain components are

I 2 2

z .1.• (A 2 1 ) E Y (2)

YZ6 -- s

rz z

*The possibility of this uniform stretch occurring in practice depends on the

way in whicn the tent is held dow•i at the edges,

4
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Figure 2. (a) Coordinate System in tMe Undeformed Tent(b) Coordinate System in tne Deformed Tent



If s is the deformed circumferential arc l.ength and * is the slope angle

of the deformed circumferential arc, we have by geometry (Figure 3)

ds/d = [r 2 + (dr/d#)2 ] 1 / 2  (3)

(4)

where

r arc tan (r- dr/do). (5)

Also, if R is the radius of curvature of the deformed circumferential arc,

I/Rs = di/ds (6)

and

ds/dO = r sec (4 -0). (7)

The physical stress-resultants, Ns, Nz and Nsz in the deformed state obey

tne equilibrium conditions

3N.1 az) + ( 3Nsz/ as) 0 (8)

3Nsz/3Z) + ( Ns/ as) Pgh sin g(s) (9)

Ns/Rs Pi - Pw + Pgh cos 0(s) (10)

where pg is the weight density of the shell material, Pi is the uniform inter-

nal pressure and PwS) is the non-uniform wind pressure.

The constitutive relations are those for an orthotropic thin shell under-

going small strains,

Na/h = CIys + C2Yz (11)

Nz/h = C2 Ys + C3 Yz (12)

Nsz/h = C4ysz (13)

where Cl, C2 , C3, C4 are elastic constants.

The edge conditions express that the tent is held down at both edges dur-

ing the deformation, i.e.

r(#o 0 r( L a (14a (14)

"$(€o = $' •(L) =ST.6
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Figure 3. Geometry of the Deformed Tent
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Lqjaituns (2) - (i%) are the mathematical embodiment of the physical

problem we wish to solve. They can be simplified slightly by using Ysz 0,

whence (13) and (8) imply

Nsz = 0

NZ = Nz(s)

If # is taken as the independent variable we may write the system as

dr/do = r tan (0-0) (15)

d# = (r/a)(l + 2ys)1/2 sec (0-4) (16)

dN5/dO = Pghr sin i sec (0-0) (17)

d =/dO = (Pi " Pw + ogn cos;P) r sec (-ý4) / N (18)

together with the constitutive relations

NS/h = Cp(r2 + Vyz), Nz/h Cl (vY s + ayz) (19)

and tne boundary conditions (14). Here

v = C2 /C1 , a = C3/C, (20)

and tne constant yz, the uniforn' axial strain, is taken as known. The entire

system is then a fourth order, non-linear ordinary differential equation system.

We now put the equations into dimensionless form. If Pa and U are the mass

density and free-stream velocity of the air, respectively, we set

r = aR, Ns 1 hCins, Sz M hC nz

2 2
Pi = qi(i/2),aU Pw qw(1/ 2 )o aU (21)

a apg

2hC C1



Slhe equdtiols bcm
dR/d# R tan 

(22)~

O/o=yjf2 -12sec (-)(23)

dn./do sinw, se,-, 
(24)

d/o xLrdqi-4w) + '.Cos ý,J R sec (Qi, .~(25)

ns*-Y ~z n y +a 
(26)

dna tne b~oun-lary conditions ire

R(( ) R(; L

ýq0 Po (7

W'e -Tdy iaent-Ify r! and 4as dimensicnless i'dra~neters ?r'easuX-ing tnie r'at-os -ý

-k pressure forces and gravity forces, respectively, to eiastic forces.
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J. filgi Wind Approximation

In a test run on a tent model in a wind tunne3 [4j the numbers were

1-C1 2bO lb/in., a = 10.,- in.

S: b0 miles/nr : 1056 in./sec

U '2 1 .064 lb/in.'2
a

Pgn 2.9 x 10-4 b/in.2

wnence from (21)

4 1.2 x l0- , n 2.67 x 10-J. (28)

These values are typical of tne cases where the winn is high. Since these

are tne most severe cases against wnicn the tent Mrnt be desixTa ed, we shall

concentrate -ost of our attention on them. For these -rases we see that

; << n << 1,

ano therefore we may neglect the terms involving c in (24) and (25). We shall

cdll tais tae nign-wind approximation.

Witn tnis approximition (24) and (2u) imply that ns, nz, ys are all inde-

,penuent of i. Mdoreover, from (23) and (27) we obtain

r LI /do)d$= (I + 2Y )-1/2 m sec (0-;,) ci1

0- 0= (•) •0o) OL U- Oo

7aus, since the strain is small, we get finally

YS (OL - 90)-f LR sec(¢ - ,) - l]do (29)

Then tne basic system reduces to

dR/dO = R tan (,-g) (30)

d*/do = (ns)(.I - qw) R sec (0 - ') (31)

10



•!~ ' i : t(2

R( o) (L) (32)

fns vyz + (L_- )-I L sec (+-) - J.(33)

aTis is now a second-order integro-differential equation system for the func-

t tios X(q), A•) and tne constant n Inen this :,ystes ; :.een solved, tne

function 0(ý) can De found by quadrature,

+ YS)j s(c[3(4)-(s)]di.)

,e see from (314) tnat t(;), w..icvi com.,lctes t:.c Ie•(inlt 'on of the ceformation,

car, De separated as follows

-: • + •s

wnere

: + R(3) secL.(•)-O(3)Jac

0

oz ciefiies a deformation witnout strain (an inextersional defzr-tion) and s

aefines tne very small deformation associatec wit% tne strain.

In some cases an alternative formulat"on of (33) may 1e -_31pful. Since

z is independent of o, we nave

"naC1 nzVL'-o)

iwnere Fz is the total axial force. Then we may reDhrase (33) in terms of

rather taan yz witn tne aid of (26),

vi'n. z + (_-v.2 [ sec('-•)-:jd; (35)
-aan cl(4 - Ao) ( .- o

in some prdcticai cases information a3oit -av De ,ore readiyI' oita inable

tman information about , an3 O3D) will ze more convenlent than (33). 4e
11



notnce that the parameter a which measures the degree of cabric anisotropy,

enters into the final system only througn (35).

We may obtain three useful ideistities between tie pressure distribution

and tne tensile forces dt the edges by taking various definite integrals of

the equilibrium equation (31). These identities merely represent the condi-

tions of overall equilibrium of forces and moments. To find the first two

we multiply (31) by cos j and sin a, respectively, and integrate from no to

*L, obtaining eL

ns(sin L - sin 40) = i qi - qw) K cos 4, sec (• - ) (3b)

ns(cos C ) L -cos (qi - qw) R sin j sec (€ - 4)d¢ (37)

The tnird identity is found as follows: Multiply (31) by R sin (€ - 4) and

integrate from to 0L9

n R(dO/dO) sin (0 - 4)d = n (qi - je) R2 tan (s -O)dt

We have

R(dO/d$) sin (0 - ') d[R cos (0 - )]!/dO - cos (6 - 4,) LOW/do

- R tan (; - 40

Tne last term vanisnes because of (30), and so we ootain
° # 

L

ns[cos (OL - @L) - cos (O0 - Jo)] = " | (qi - qe) R2 tan(t - O4dt (38)

4e may express the norizontal and vertical force resultants and the over-

turning moment resultants (see Figure 4) due to the wind pressure and inflation

12
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pressure on tne deformed tent at

::]R qw C sec ( * - )d# (39)

Hw 0o sin

a q, sec ( $) (40)
Hi /0o sin

(L

MW R2 qw tar(,0-0)dO (41)

M - 0 R2 q. tan (-P- 4)ds (u2)

Further, the vertical and horizontal components of the restraining forces at

the upwind edge, *o, and the downwind edge, *L' are respectively

Vu = ns sin Jpo' VD = ns sin (2n - *L) = - ns sin tL (43)

Hu =-ns cos .o" HD = n s cosOw- )os nL (4)

Then the relation.(36) - (38) may be written

Vu + VD r: (Vi + Vw) (45)

H ÷ H D (H + H w) (4.6)

V u sin #o0 + V ! sin 4 L - H u cos 4o 0 H D Cos •L n (Mw + M.)z (47)

14
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aTnese definitions are useful in describing the forces acting on the tent

during its deformation.

The system (30), (31) can be written in the fowrn of a single, second-

order differential equation by solvinp (31) for R and insertinp the result

in (30). ve get

d2 (sin l0/d02 - G d(sir, r)/do + sin r = :o0 F. (48)

uflere

wr G(O) dLloF (qj - qw)]/do, (49)

and R can be found from

R = Lcos i' + d(sin F)/dt2 nsl[1(q -w (50)

Equation (48) is still in general non-linear and ! aw;ward Zecau'e of the

T singularity where qi = q, see (4j). For purpc.;es of numerical analysis tne

system (30), (31) is more convenient. However, (48) - (:0) is useful for

finding approximate solutions in certain special cases.

First, if the total pressure, qi - qw, is constant, tnen C 0). and (48)

can be solved very easily. Some complications still remain due to the non-

linearity of (50). If, in addition, sin r is small enough so that cos r 1,

the system can easily be solved for R and sin r, and the results inserted in

(33) or (35) to evaluate n . Some care is required in these nanipulations,
s

but for the case

151

we obtain, using (Jb), the results

I

• 15



R = + C (cos 0o - cos *)

sinf = - C sin0

n = n (qi - q w)(1ns.q (51)

I-C Cos

C r r )(q. -q
0 w

(1 - 2X (n - ) cos 00 + sin j
Apart from tnis simple solution, the intepro-differential equal:ion sys-

tems (00) - (32) and (331 or (35) seem intractable - purely analytical meth-

ods, and recourse was nad to numerical analysis at this point.

16



K
4. Nujnerical Analysis

Tne computer program for solving the systems (3J) - (32) and (35) is

based on tne following procedure, assuming that we know the function qw(•) and

the c-nstants *0, O6, n, q1, v, rz and a. A trial value i3 cnosen for ns. 'Ie

second-order differential equation system (30) - (J2) is solved, using the trial

value of n. Tne solution.s for R(ý) and P(O) are then substituted into either

(33) or (3s) and a new value of ns is obtained, wnicn is comoared with tne trial

value. If tne two ec not agree, a new trial value is used and the procedure re-

peated until agreement is outainec. When agreement has been reached, -ne Cunction

S(•) is found by a numerical integration and various quantities oý physical in-

terest, V., Vw, Hit ti Mi M 9' vo Diu ans 5 1 are also calculated.

The boundary value problem posed b; -n2 differential ecuation systen (30) -

(32) was solved by repeated use of tne second-order Runge-s.utta procedure for a

pair of first-order equations, as descriied, for example in L5]. A trial-and-

error procedure was needed because tie Doundary conuitions mere of two-point

type. Various values ere tried for iJ(0 ) until one was ostainec tnat generatedo

a solution having R(. ) i. This process was systematized zsy use of an itera-

tive procedure to produce rapid (but not sure) convergence to tne solution naving

The accuracy of the program was tested in various ways. 7or a uniform pres-

sure distribution, numerical results were compared with (51) and gave satisfactory

agreement, but tnis was not a severe test of the comnutation scneme. A nore strin-

gent procedure was to make successive refinements of tne mesh for a pressure dis-

trinution typical of a Droadside wind on the tent. Since {rs <- 1, and ns is

obtained in (33) ny integrating quantities, R and -, tnat are not small, a good

17



"6a of udnceiiation takes place in calculating ns. Phis suggests that the

stability of n is a sensitive test of the accuracy of the entire computation.s

several such tests were made. For example, using the values

* 600 L = 2w - = 3000, 11 .267 x 10-2
o Lo

1 1, v : .3, qi .5

and taking for qW(0) a distribution typical of a broadside wind, the lollowing

results were obtained from calculations with K mesh points

K ns

24 .002776

48 .002749

96 .002742

The value of n. is quite stanle in this example, and several similar tests gave

like results.

in general, the program worked well although poor initial guesses fcr '(o )

or ns sometimes caused it to fail. This difficulty could be evaded by changing

the initial guesses. A different stambling block is encountered when -w/2

at some point. At these points there is a singularity in the differential equation

system (30) and (31), which is caused by the use of 0 as independent variable (see

(7)). If this singularity is to occur, the deflections must be very large, far

larger than could be tolerated in use. This singularity did occur in some extreme

cases among the calculations described in the next Section.

18



-.... ! Is r~r S rai Cases

'IThe program was used to calculate deflections, strains and other quantities
of physical interest for 4 cylindrical tent witn PardmeterJ ds given in (28).
The values v .3, I'z = U (no net longitudinal force) and a I (isotropic

!z

tent naterial) were used.

74o different functior.s were used for the wind nressre

e r ,main one (see Figure 5), called (I), was determine by lrakinn pressure mea-
surements around the tent during wind zunnel tests. 7, 15 important to notice
that 'he wind tunnel tests were conducted with rather hirh inflation pressures,
.q, so that tne deformations were fairly smrall, Since the wind pressure distri-
Dbution depends on tne deformned snape (i.e., tnere is coupljnr between the fluid
flow problem and the elastic deformation problem), this wind pressure distribution
may not be an accurate approx'mation to the true one when tne inflation pressure

il, low.

The second wind pressure distribution, designatea as (1'), is a discortinucus,
purely hypotnetical one, given by

qw = .6 63 °<q< 150

0 
(50CL = -. 8 300 ° •> 1.50 o

Altnough this has tve same general shape as the experimental wind pressure distri-
bution, it is very different in detail, and there is no reason to expect the re-
suits to oe similar.

All tnese calculations were carried out with 96 mesh points, for a ranke of a

Ojq. .12.5 for (I)
.3 q <2.5 fcr (11)

19
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the dibtribution (1i) was tried for 0 < q. < .3, tne calculation could not

'e completed owing to the fact that • - took tne value r/2 at some points.

Ine results of the calculations that were completed are shwni in Figures 6 - 11

as graphs of various parameters plotted against q . Since t,'e maximum deforma-

tion magnitude decreases when qi increases, we may regard q, as an inverse

measure of t.ýa magnitude of deformation. 4t.en i ' max (o), the results

snould agree with the constant pressure, small deflection results (51).

We see from Figure o tnat tne tensile stress, n5 , is almost linearly de-

pendent. on qi and is not affected much by the chanze in presýure distribut>'ZIs.

The edge angle on tne upwind side, ;() decreases non-linearly as qi increases,

especially when qi is small. Also, it is greater for Distribution (1i) than for

(1). Tne wind resultants, Vw, Hw and 1 which are s no-n in Figure 7, are sensi-

tive to changes in the wind pressure distribution (I.e., the results for (I) and

(ii) differ substantially) but not especially so to changes in qi" .he vertical

resultant of the inflation pressure, Vj, is also zraphed in Figuie 7 and increases

linearly with -i, being scarcely affected Dy tne wind distribution. ni; Fn Mi are

negligible compared with Hw and vw ana are not snown.

The deformed tent radii, R(o), for tne two wind distributions are plotted in

Figures 8 and 9. Also, the actual deformed shades in several different cases are

displayed in Figure 10.

For the discontinuous pressure distribution, (iI), it is easy to derive cer-

tain conclusions that serve as partial checKs on the computed resulS .. First, sor

21
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B
smdij aeiormations

• , R I

we may oLtain the wind pressure resultants by insertins- the oressure dis-

riL)ution Ui), given by (b,), into (J0) a.u (41). We obtair,

Vw = .b, Hw = .0(1 + VJ) = 2 Id*, ;4w = 0 (53)

Second, the inflation pressure resultants aje found similarly to ne

Vi = zqi sin o = VI ni (Z,

hi =

,igure / snows that the small-deflection estimate (:4) for V, remains very

accurate even for large aeflections (i.e., small -zi). As !ar as can be de-

termined from Figure 7, Vw(II), £1.(II) ant :.Iw(1i) all a•roac;. the limiting

values given Dy (53) as qi zecomes large. Finally, we know from (1G) that

tne deforined shape of the tent is made up of two arcs of circles ,oined

smoothly at tne ray * = lý0° ar-i passing trirou-n the points A -- 1 at

4 U0 and 3d0°. Tne snape shown in Figure 10 is seen to nave this Drop-

erty with gooa accuracy.

Tne edge-restraint forces, from which tne ground anchor forces c6n be

estimated, are saown in Figures ±i and i2. These forces should be related to

the tent resultants i)y (45) - (47), and it can De seen tn.t this is true with

* gooa accuracy. For example, for tne distribution (I) ana q: .3 (whlicn is

an extreme case) we nave

Vu = .1337, V0  .10=llo, nu .2.41, hj

Vi = .4630, Vw = .707, h; .002, =t 1 .436,

M. = -. 02, M = -. 6260

23



and tnereiore

V u .tijb n(Vi + Vw) = .222

Hu + HD = .3J88, n(Hi + Hi) = .383

VU sin +o + VD sin *L - Hu Cos - HD COS u L = -. 168

n(Mw + Mi) = -. 167

We conclude that the program is sufficiently accurate for engineering

purposes.

24
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U. Aiscussion

There are several aspects of tnis problem tnat are worth further dis-

cussion.

First, it is important to understand wriat has oeen done in this analysis

and now it is related to the practical proolem of predicting tent behavior.

The central point is that we aave taken the wind- 1 ressure in the deformed

state as known. From it we aave calcalated the deformed shape, under the

Scinenatic assumptions UI). In attempting to use these results in practice,

oe face tvie onstacle of not knowing the wind-pressure cistrioution in the de-

rfu.n• state. To analyize the prozblemn completely, we neeo to Knlow tre •iinl

pressure distributiun for every reasonanie deformed state (in tnis connection

see tne comments of "truesdell ana Noll Lui), a severe requirement in view o'-

Stine fact tinat turnulent separation occurs lot most tent Shapes. M~oreover,

experiments L4J snow tnat at sufficiently low inflation pressures the tent

executes a large lateral viLration. To analyze tnese cases we must also con-

•h sider inertia forces in the tent and possibly also in the fluid. From these

remarks it should be clear that, while this paper presents necessary and use-

ful information about tent deformation, a great deal remains to be done before

a practically satisfactory preaictior of tent nenavior is possiole.

Secona, it is necessary to De careful anout oar interpretation of the

Ssmall deflection results in tnis problem. We assame tnat the tent is in the

unrceformeu state, with circul.ar cylinarical snape, in the complete absence o!

gravity and pressure forces. IA gravity alone acts, the tent will, of course,

collapse immediately, anu toe analysis of the system (ez) - (27) with n = 0 and

4 ' 0 would snow tnis Dy predicting %s < 0 for some portion of tne znell. f
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gvaVily and inflation pressure are both operative, but there is no wind, then

tue tent wi! undergo only small aefiections from its undeformed shape, provided

kte inflation pressure, nqi, is above a certain minimum value, such that ns > 0

everywhere. We may denote this deformed state, wnich the tent assumes in calm

air, oy JSC. Now, when a nign wind '43 turned on, the tent undergoes such large

deformations tnat the detormatikns associated with DSC" are negigFible by coir-

parison, as are the gravity forces. This is the basis on which the system

(OU) - U.J4) was derived. when we now make a small deflection analysis of

tnis system to get (0l), we ;.wst remember that gravity forces have been neglected.

The actual aeformations that occur, when the wind ana inflation pressures are very

iow, are not accurately ,given by (0i), and as the wind velocity approaches zero,

()±) does not approach tne solution AJSC.

TIne retaining comments nave to oo wi:n the relation Detween this problem and

the general theory of thin shells.

It is interesting that toe linear membrane theory version of this problem

does not nave a unique solution for the aisplacements because the edge fixity

implies conditions of vanishing normal displacement. Sucti conditions lead to

non-uniqueness witnin linear membrane theory (see Novozhilov [7]). Thus, al-

tnougi tae stress, nsp, given uy (51), agrees as n - 3 with tne stress obtained

from linear membrane theory, tnere is no unique, linear solution with which to

compare the deflections of (0!).

Tne similarity of this proDlen: to that for curved ross might lead us to

expect tnat a tneory for plane, initially curved rous, similar to the one given

in Love LbJ, woula be useful nere. Such is not the case, for in that theory

the rous are assumed to aeform without extension while the extension plays an



inmyortant part in the analysis of this problem. We hMve already pointed out

that tsie complete motion consists of a sukill extensional deformation together

wita a possibly large inextensional oeforrmation. Although the extensionil

aeformation is small, it is absolutely crucial Decause it determines the stress

tn;-ougn the constitutive relation.

Fimnaly, one might alto nope to treat tne prozlem by means of the theory of

small uefor•maticns superposed on large, as aescrinea oy Green, Riviin and Shield

LOi, Green anu .ernd LlOJ, or for elastic menwranes, Snield and Corneliussen

LiiJ. The natural procedure ciere consists of trying to !ina tae large inexten-

sional deformation first anu taen superixosing tne small extensional defor!ation.

This does not work because tne theory -upposes tnat tne stresses associated with

tae small deforimation are small comp.:ired witn the stresses of the large deforna-

tion, while exactly the opposite is tne case here. Anotner way of loo'kng at it

is tuat in this theory we imagine the large defor•ation as determinea by condi-

tions of equilibrium with tne initially applied ioaas, and the theory fails be-

cause the large inextensional deformation causes no stresses and therefore cannot

be in equilibrium with any applied loads. in fact tne large, inextensional ne-

formation is determined ;y its interaction witn tne small extensional defor-mation,

anG the two cannot De found separately.
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o. Appendix: Nomenclature

a Undefortued tent radius (in.)

C Constant, occurring in (51)

j = 1, 2, 3, 4, elastic constants (lb/in. 2)

I'Z Total axis force (lu) on tent

tld, i• Dimensionless norizontal forces on deformed tent due to wind and

inflation pressures, respectively

,• hD Dimensionless norizontal restraint forces at upwind and downwind
u

edges of tent, respectively

a ThicKness of tent fabric (in.)

Numoer of mesn points usea in numerical integration

wt 141 Dimensionless moment of the deformed tent, about the axis, due to

wind and inflation pressures, respectively
1, Uz, 1It Physical stress resultants in fabric (lb/in.)

ns, nz Dimensionless ;nysical stress resultants in tangential and axial

directions, respectively, see (21)

Pi, Pw Pressure due to inflation and wind (lb/in. )-

qi, qw Dimensionless inflation and wind pressure, see (21)

R Dimensionless radius of deformed tent, see (21)

r Radius of deformed tent (in.)

Rs Radius of curvature of deformed tent (in.), see (6)

s Deformed circumferential arc length (in.)

U Free stream wind velocity (in./sec)

Vw, Vi Dimensionless vertical forces on deformed tent due to wind and

inflation pressures, respectively
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Vu, VJ Dimensionless vertical restraint forces at upwind and downwind

edges of tent, respectively

X, Y, Z Cartesian coordinates of undefornned tent

x, y, 7 Cartesian cocrdinates of deformed tent

Ia Dimensionless measure of degree of anisotropy, see (20)

SF Angle in deformed state, see (4), (b)

SYZ0 Dimensionless physical strain components,

see (2)

jimensionless parameter measuring ratio oF gravity forces to

elastic forces

Dimensionless parameter measuring ratio of pressure forces to

elastic forces

v Poisson Ratio

P. iass density of air (ID - sec 2in.

Pg Weight density of tent faoric (ID/in. )

S~Cylindrical angle in undeformed tent

4) Cylindrical angle in deformed tent

Cylindrical angles at upwind and downwind edtes of tent, respectively

Slope angle f deformed tent
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