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It has long been felt that the design of shelters could be improved by
application of knowledge gained from structural mechanics methods. This paper
i> a significant contribution to this area and represents a first attempt to

devise a realistic and usabple model for simulating tne behavior of an air-

supported, single-wall tent, The re:wmults are in generdl agreement with obser-
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vaticns of tent behavior in a wind and inspire confid2nce in the soundness of

the approach,
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ABSTRACT

This report analyzes tle large deformations of a cylindrical, inflated,
single-wvall tent due to wind pressure and is based on the membrane theory for
large deflections put small strains. The tent cross-section is a sector of a
circle in the undeformed position, and the wind is blowing cn it in the broad-
sige direction., The tent motion is taken as plane, and it is assumed that the
wind pressure distribution is known in the deformed state. Tne problem is
solved by numerical analysis and results are presented for the stress, deformed
shape, derodynamic resultants and anchor forces. Tne prcblem is of theoretical
interesi becausa the linear membrane theory does not nave a unique solution for
it, and aiso because it illustrates that the method of small deformations super-
posed on large is of little help when the large defcrmation is of inextensional

type.
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CYL INDRICAL TENT

1. Introduction

In recent vears the use cf pressure-supported structures nas become attrac-
tive to derospace and military equipment designers. Tnhe literature dealing,
witn these preolems includes work by Leonard, Brooks and “cComyi {1] , Stein and
hedgepetn {2] and a book by Utto l3].

The present paper descrives an investigation ¢f the de”lections suffered

)
-
i
;
4
4

by a pressure-supported tent wien subjected to a wind. The tent has the shape

of a long sector of a cylinder, neld down at the egges, and the wind is in the
uroadside direction (i.e., parallel to the ground anu perpendicular to the axis
of the cylinder), A right-nand2d cartesian coordinate system is cnhosen as shown
in figure i. If the tent :s long enough it is reasonable tnat (except near the
ends) the deformation will pe in the x-y plane, possisly with a uniform z-stretch
saperposed.

We shall postulate tnat the tent material is perfectly flexible, i.e., it
nas zero bending stiffness. This means that it is unstable when either princi-
pal stress is negative, and we shall be concerned nere only witn tne case where
neither principal stress is negative, We assume furtner that the tent material
is not hignly elastic in tension, i.e., the strains are aiways small, and it is
adequate Tu u.Se a linear elastic law for an orthotropic material. Although the
strains are small, tne rotations and aisplacements rmay be large, and we shall
enploy large-ceflection memorane tneory in our analysis.

hitially, it is assumed tnat tnree kinds of loads act on the shell, exter-

nal wina pressure, internal inflation pressure and gravity. If tne wind is very
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Figure 1. Orientation of
2

Tent and Wind
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wedk, all these forces may be of comparable size, but, when the wind is at
all strong, the pressure forces are much larger than the gravity forces, which
may then be neglected,

The fundamental analysis of this problem is ac--r~ibed in Section 2, ard
its final formulation as an integro-differential equavion system is obtained
in Section 3, A general soluticn in finite terms co:14 not be obtained al-
though a simple special case is solved in Section 3., Section 4 describes a
numerical analysis of the problem which led to a computer program that pro-
duced the results described in Sectio~ 5, The paper concludes with the dis-

cussion of Section 6.
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2, Analysis
We assume that ine undeformed body is a portion of a cylindrical sheil of

constant thickness h, whose middie surface is described by cylindrical coordinates
a, ¥, 2 wnich are related to the cartesidn coordinates X, Y, Z of the undeformed
shell by (see Figure 2a)

X=asin ¢, Y = -a cos ¢,
Thne cylindrical coordinates of the deformed middle surface, r, ¢, z are related
to its cartesian coordindtes x, y, 2z by (see Figure 2b)

x = r sin ¢, y = -r sin $,
Tne deformaticn is assumed to carry the initially circular cylinder into a non-
circular cylinder by means of a plane motion with a superposed uniform stretch*.
and is defined by

r=r(¢), ¢=4(¢), z=12Z (2 constant) (1)

Tne mixed (i,e., physical) middle surface strain components are

N

A “2‘2\1*&9&11_11 = Y

‘¢ T 2 ds aJ :Laé !: s

J
Y£=1(12_l): { (2)
Z z ) Yz <
YZ“EYSZ-O
A

* ceq s . . . . .
The possibility of this uniform stretch occurring in practice depends on the

way ip whicn the tent is held down at the edges.




(a)

Figure 2, (a) Coordinate Systen
(b)

in tne Undeformed Tent
Cocrdinate System in the Deformed fent
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If 8 is the deformed circumferential arc ‘ength and ¢ is the slope angie

of the deformed circumferential arc, we have by geometry (Figure 3)

ds/de = [r? + (dr/d¢)2)%/2 (3)
v = ¢-T (u)
where
I = arc tan (r"1 dr/de). (5)
Also, if Rs is the radius of curvature of the deformed circumferential arc,
/R, = dv/ds (8)
and
ds/d¢ = r sec (¢ -¥). _ (7)
The physical stress-resultants, Noy N, and Ny, in the deformed state obey
the equilibrium conditions
(ay/32) + (aNgz/38) = 0 (8)
(Ng,/32) + (Mg/3s) = pgh sin y(s) (9)
Ng/Rg = Py - P, + pgh cos ¥(s) (10)

where pg is the weight density of the shell material, F; is the uniform inter-

nal pressure and P {s) is the non-uniform wind pressure.

The constitutive relations are those for an orthotropic¢ thin shell under-

going small strairs,

Ng/h = Cyyg + Covg (11)
Ny/h = Coyg + Cavg ' (12)
st/h = CuYsz (13 )

where C;, C,, C3, Cy are elastic constants.
The edge conditions express that the tent is held down at both edges dur-
ing the deformation, i.e.
3 = -
r(¢,} = r(e) = a ]

(14)

]

.o(¢°)
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Geometry of the Deformed Tent
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£qaeiions (Z) - (i%) are the mathematical embodiment of the physical
problem we wish to solve. They can be simplified slightly by using vgz = 0O,
whence (13) and (8) imply

Ngz = 0

NZ = Nz(S)

If ¢ is taken as the independent variabie we may write the system as

dr/d$ = r tan (¢-y) (15)
1/2

d¢/d9 = (r/a)(1l + 2v) sec (¢-¥) (16)

dN /d¢ = oghr sin ¥ sec (¢-v) (172

dv/d$ = (P; - 2, + pgn cosy) r sec (9-¥) / N_ (18)

together with the constitutive relations
Ng/h = Cylyy + vy}, N /h = Cl(vys + av,) (19)
and tne boundary conditions (l4)., Here
v = Cy/Cy, & = C5/Cy, (20)
and tae constant v,, the uniform axial strain, is taken as known. The entire
system is then a fourth order, non-linear ordinary differential equation system.
We now put the equations into dimensionless form, If p, and U are the mass

density and free-stream velocity of the air, respectively, we set

\

r = ak, N; = aCin., &, = hCn,
_ 2 _ 2
P, = q;(1/2)o, p, = 4,(1/2)0,u + (21)
n = ap_y? £ =
U = arg
2hC C
1 1
-
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lne equations become
dR/d¢
de/de¢
dng/d¢
dy/de¢

ns =

= R tan {¢-y)
172
= R{I ¢ 2y.) / sec (¢-~y¢)

= §{ siny sec

($-y)

Ln(q;-9,) + tcos y] R sec (¢-¢) /n,

Ys * VY. on, = ouy_ o+ ay

dfd tne voundary conditions ire

R(&o)
&(¢o)

we may idgentify n and

pressure forces and gravity forces, respectively,

S Z 5 A
= R(p) = ) I
SR N #(@L) = 3. J

§ as Jimensicnless raraceters reasuring

the ratios o~f

¢ elastic forces.

(22)
(23)
(24)
(25)

(26)

(27)




S, nigh Aind Approximation

In a test run on a tent model in a wind tunnel {[4] the

nCl = 250 ib/in., a = 10,5 in,
o = b0 miles/nr = 1056 1in,/sec
caUQ/Z = ,064 1b/in.?
pgh = 2,9 x 107% 1b/in.?
whence from (<41)
¢ = 1.2x107°, n = 2,67 x 1079,

Tnese values are typical of the cases where the wina is hign

numbers were

are the most severe cases against wnicn the tent muct be designed, we shall

concentrate most of our attention on them. For these -ases we see that

{ << n <<,

ana tnerefore we may negiect the terms involving { in (24) and (25). We shall

call tanis tae bign-wind approximation.

Witn tnis approximation (24) and (20) imply taat n_y D,

gengent of 3, HMoreover, from (23) and {27) we obtain
¢

(ao/dedde= (1 + 2ys)’l/2

X

’O ¢°
= 3(¢L) - o(Oo) = ?L - °°

Tous, since the strain is small, we get finaliy
¢
-1 L .
vo = (8 - 9,) (R sec(¢ - v) - 1ld¢

%o

Tnen tne pasic system reduces tc

dr/d¢ R tan (¢-¢)

dv/dé

(n/n Mq; - q,) R sec (9 - ¥)

10

sec (¢-v) a¢

(28)
. Since these
» Yg ave all inde-
(29)
(30)
(317




{; .
3
s 3
4

* 3

Alta
K(éo) = R(@L) = 1 (32)
¥L
= - -1 s - - 4
ng vy, + (e -9 ) Lx sec (3-¢) - llde. (33)
%
Tnis is now a second-order integro-differential ejuation system for the func-

ticus x{p), ¥(¢) and tne constant n Hnen this s»yster nas neen scolved, tne

S.
function ¢(%) can de found by quadrature,

P = ¢+ ‘1'79)34: 7 osecl9i8)~v(s))dn. (34)

0

(8]
ne see from (34) tnat #($), waicn completes tue definlition of

the ceformation,

can be sepdrated as follows

L 4 = Qi + :s
AREre R
. = o, t 2(3) secl(2)-o(3)]cs
e,
r’
vooT -y x(8) secL#{=.~,(3) )<z,
)00

v aefines a deformation witncut strain (an inextersional deformetion) and ;s
gefines the very small deformation associated witn tne strairn,

In some cases an alternative formulation of (33) may be n=2lpfal. Since

L, is independent of ¢, we nave
r, = naCl nz\QL-;ol

wnere F, is the total axial force. Then we may rechrase (33) in terms of T

z
rataer taan y, witn tae aid of (26),
™
vF 2 .
n, = z + (a-v4) L7 sec(e=v)-ljc; (35)
ne -t '
aan«.l(éi‘ vo) S(GL-QO) )‘O

in some practicai cases informaticn avodt ?z may De more readdiiy cvtainable

ana (3>) wili oe more convenient than (33). de
11

tnan information about .

-
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notice that the parameter a which measures the degree of fabric anisotropy,
enters into the final system only througn (35).

de may obtain three useful identities between tl2 pressure distribution
and tne tensile forces at the edges by taking various definite integrals of
the equilibrium equation (31). These identities merely represent the condi-
tions of overall equilibrium of forces and moments, To find the first two

we multiply (31) by cos ¢ and sin ¢, respectively, and integrate from ¢, to

$,, obtaining oL
ng(sin vy, - sin vg) = n {g; - g,) K cos y sec (¢ - w)d¢ (36)
X
L
ns(cos ¥, = cos wL) = n (q; - q,) R sin ¢ sec (¢ - y)d¢ (37)
%

The tnird identity is found as follows: Multiply (31) by R sin (¢ - ¥) and

integrate from ¢ to ¢,

¢y 'L
nsl' R(d¢/dé) sin (¢ - ¢)d¢ = nJ' (qi - qe) 22 tan (¢ -y)ds
3} ¢

o 0
We nhave
%(d¥/ds) sin (¢ - ¥) = d{R cos (¢ - ¥)1/d¢ - cos (& - ¥) [AP/de
- R tan (% - )]
Tane last term vanisaes because of (30}, and so we ?3Eain
nglcos (¢ - ¥y ) - cos (¢4 - ¥5)] = 1 (g1 - %) R? tan(¢ - y)ds (38)
%o

We may express the norizontal and vertical force resultants and the over-

turning moment resultants (see Figure 4) due to the wind pressure and iInflation

12
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’L cos
R Qy
00 Sif‘
‘L B
co8
- R qi
7 % sin
L

7
sec (¢ - v)de¢
]
¥
sec (¢ - Y)d¢
]
u

R q tan (¢ - ¥)dé
W

,’r

5

- R2 q, tan (¢ - v)d¢

%

Further, the vertical and horizontal components of the restraining forces at

the upwind edge, ¢,, and the downwind edge, ¢, are respectively

Vu = ngsin v, Vp = ng sin (27 - ¢) = - ng sin y
H, =-ng cos ¥ , Hy = n_ cos (2% - wL) = ng cos ¥
Tnen the relations(36) - (38) may be written
Vg + Vp = n(V; + V) ’
Hu + HD = n (Hi + Hu)
Vu sin oo + VD sin ¢’ - Hu cos ¢ - HD cos °L = n (Hu + Mi)

14

(39)

(40)

(41)

(62)

(43)

(ub)
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Tne~e definitions are useful in describing the forces acring on the tent
during its deformation.,
The system (30), (31) can be written in the form of a single, second~
order differential equation by solving (31) for R and inserting the result
in (30). we get
d?(sin F)/d02 - 6 d(sin T)/dé + sin T = 7 o5 T. (48)
where
G = G(¢) = dllog (q; - q,))/de, (49)
and R can be found from

R = lecos I' + d(sin 7)/de2 n/ln(q: = 3,01, (593

tw
Equation (48) is still in general non-linear and Is awwward because of the
singularity where G; = G, See (45)., TFor purpcsies of numerical analysis tne
system (30), (31) is more convenient. However, (48) - (29) is useful for
finding approximate solutions in certain special cases.

First, if the total pressure, q; = Qe is constant, tnen G = O, and (u48)
can be solved vefy easily, Some complications still remain due to the non-
linearity of (50). If, in addition, sin [ is small enougn so that cos I = 1,
the system can easily be solved for R and sin [, and the results insz2rted in
(33) or (35) to evaluate n_. Some care is required in these ranipulations,
but for the case

= 21’!—¢°’F = 0

6L z ’

we obtain, using (3%), the results

15
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sin T

1G]

(@]
"

Apart from tnis

tems (30) - (32) and

1 +C (cos ¢, - cos $)
= - C sin ¢

n (qi - qw) 3

1 - C cos ¢,

r(n - @o)(qi - qw)

(1 - v (n - ¢.) cos ¢ + sin ¢}

e

simple solution, the integro-differential equation sys-

(33 or (35) seem intractable .. purely analytical meth-

ods, and recourse was nhad to numerical analysis at this peint,

16
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4. Numerical Analysis
Tne computer program for solving the systems (39) - (42) and (35) is

Lased on tne following procedure, assuming that we know tne function q,(¢) and

the constants $50 .0 Ny Gy v, I, and a. A trial value is cnosen for n.. Tne

second-order differential equation system (30) - (32) is sclved, using the trial
value of n , The solutions for R(%) and ¢(¢) are then suvstituted into either
s

(33) or (35) and a new value ot n, is obtained, wnich is compared with the trial
value. If tne two cc not agree, a new trial value is used and the procedure re-
peated until agreement is ovtainec., Wienh agreement has been reached, “ne ‘unction
#(3) is found by a numerical integration and varicus quantities of physical in-

terest, Vi, v H.y H , M., M Ju, JD’ ﬁu and Hj are alsc calculated,

LA S LS G i

The boundary value problem posed by tne dirferential eguation system (30) -
(32) was solved by repeated use of tne second-order Runge--utta procedure for a
pair of first-order equations, as descrived, for example in |5). A trial-and-
errcr procedure was needed because tie boundary conuitions mere of two-point
type. Various values wre tried for w(oo) until one was ontaineg tnat generated
a solution naving R(°L) = 1. T7his process wWas systernatized oy use of an itera-
tive procedure to produce rapid (but not sure) convergence to tne solution naving
k(e;) = 1.

~he accuracy of the program was tested in various ways. For a uniform pres-
sure distribution, numerical results were compared with (51) and gave satisfactory
agreement, but tnais was not a severe test cf the computation scheme. A rore strine
gent procedure was to mdke successive refinements of tne mesh for a pressure dise

tribution typical of a proadside wind on the tent. 3ince Irsl << 1, and ng is

obtained in (33) by integrating guantities, R and ¥, that are rot smali, a good




deal of cancellatvion takes place 1in calculating ng This suggests that the

stability of ng is a sensitive test of the accuracy of the entire computation,

teveral such tests were made, For example, using the values

¢ = 60°, o, = W~ = 306°, n = ,267 x 107°
o

and taking for qw(e) a distribution typical of a broadside wind, the “ollowing

results were obtained from calculations with K mesh points

= Is

24 .002776
48 .002749
46 002742

The value of ng is quite stable in this example, anc several similar tests gave

like results.

In general, the program worked well although poor initial guesses fcr w(éo)
or n sometimes caused it to fail, This difficulty could be evaded by changing

the initial guesses, A different stumbling block is encountered when ¢ - ¢ = =/2
at some point, At these points there is a singularity in the differential equation
system (30) and (31), which is caused by the use.of ¢ as independent variable (see
(7)). If this singularity is to occur, the deflections must be very large, far
larger than could be tolerated in use, This singularity did occur in some extreme

cases among the calculations described in the next Section.

18
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5 {or Several Cases
The program was used to calculate deflecti.ns, strains and other quantities
ot physical interest for 4 cylindrical tent witn parameter; as given in (28),

Tne values v = «3y F_ =0 (no net longitudinal force) and a = ) (isotropic

z
tent material) were used,

“wo different functiors were used for the wind nressure 1istributicn qw(¢).

“ne main one (see Figure 5), called (1), was deternineq by makina pressure mea-

Surements around the tent during wind :unnel tests. T+ i5 important to notice

8]

that 'he wind tunnel tests were conducted with rather hiry inflation Pressures,
d:» SO that tne deformations were fairly small, Sipce the #ind pressure distri-
bution depends on tne deformed snape (i.e.,, tnere is couplinz between the fluid
flow problem and the elastic deformation problem), this wind pressure distribution
Ty not be an accurate approximation to the true ope wien tne inflation pressure
iz low.

The second wind pressure distribution, designatea as (I7), is a discortinucus,

rarely hypotnetical one, given by

9 = .8 60%<q< 150°
q, = -.8 300%>4> 150°,

Although this has the same general shape as the experimental wind pressure distri-
obution, it is very different ip detail, and there is no reason to expect the re-~
sults to pe similar,

All tnese calculations were carried out with 96 mesh points, for a range of a,
i

0f9; 2.5  for (1)
327, <2.5  fer (1)

19
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vugin the distribution (I1) was tried for O < q; < +3, tne calculation could not

e completed owing to the fact tnat ¢ - . took the value r/2 at some points.

ine results of the calculations that were completed are shown in Figures 6 - 11

as graphs of various parameters plotted against q . Since (e maximum deforma-

tion magnitude decreases when ¢. increases, we may reJard 5. as an inverse
i :

4

measure of the magnitude of deformation. sien % >> max 13 (¢), the results

snould agree with tne constant pressure, small deflection results (51).

We see from figure o tnat tne tensile stress, ng, is aimost linearly de-
penden’ on q; and is not affected much bty the change in cressure distribut’oas,
The edge angle on tne upwind side, w(¢°), decreases non-linearly as 93 increasas,
2specially when ¢; is small. Also, it is greater fcr Distribution (II) than for

(I), T7ne wind resultants, V,, H, and %,, wnicn are sacwn in Tigure 7, are sensi-

tive to cnanges in tne wind pressure distribution (I.e., the results for (I) and

{(Il) differ substantiaily) but nct especially so to changes in 9;. The vertical

resyltant of tne inflation pressure, V;, is also graphed in Tigure 7 anc increases

and ¥; are

linearly with 1qj, being scarcely affected oy the wind distribution. n i

%
Py

LAPE S | H : "} ~ .
negligible compared witn H, and M, and are nct shown.

The deformed tent radii, R(¢), For tne two wind distributions are plctted in
Figures 8 and 9. Also, the actual deformed shapes in several different cases are
displaved in Figure 10,

T

For tne discontinuous pressure distributicn, (II), it is easy to derive cer-

tain conclusions that serve as partial cnecks on the computed resulie, First, ‘or
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we nay obtain the wind pressure resultants by insertins the pressure dis-
trivation (Ii), given by (52), into (49) aau (41). We ouvtain

Vo = o8, H, = .o(l +73) = 2 lav, M, = 0 (53)

Second, tne inflation pressure resultants ace found simildrly to be

v (ou)

i ocagsingg = sy

hi = A":i = Qn

Jigure / snows that the small-deflection estimate (v4) for V; remains very
accurate even for large geflections (.i.,e., smail gj}. As {ar us can be de-
termined from Figure 7, V (II), =,(II1) anu 4 (1I) ail approaci the limiting
values given by (53) as q; pecomes large. Finally, we know from (1C) that

tne deformed shape of the tent is made up of two arcs of circles roined
smootnly at tne ray ¢ = 150° and passing turcusa tne points x = 1 at
¢ = o0° and 300°, Tne snape shown in Figure 10 is seen tc nave tnis crop-
erty with gooa accuracy.

Tne edge-restraint forces, from which tne ground anchor forces can Le
estimdted, are snown in Figures il and iZ, Tnese torces should de related to
toe tent resultants oy (45) - (47), and it can pe seen taat tnis is true with

good accuracy. For example, for tne distribution (Ii) ana q; = .3 (wnica is

an extreme case) we nave

V, = .1337, Vy = L1016, By, = L1881, By = .208%
vy = L4b30, Vv, = 3707, hy = ,002, h, = 1,436,
Moo= =092, M, = -.6260

23




and tnerefore

Va t Yy = L4235, vy +v)) = 222

.383

Hy + Hp .88, n(H; + H;)
Vu sin ¢, + V) sin ¢ - H; cos %, - H) cos 9, = -.168

n("w + Mi) = '0157

We conclude that the program is sufficiently accurate for engineering

purposes,
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v, Jiscussion

Inere are severdl aspects of tnis problem tnat are wortn further dis-
cussion,

First, it is important to understand wnat has peen done in this analysis
and now it is related to tne practical prouvlem ot predicting tent behavior.
Toe central point is that we uave taken tne wind-gressure in the deformed
state as xnown, from it we nave calcualated tne deformed shape, under the
xinematic assumptions (1), In attempting to use these results in préctice,
»e face tue obstdcle of not knowing tne wind-pressure cistribution in the de-
furame. state. To anaiyze tae provlem completely, we need to know tne ¢ina
pressure distrisution for every reascnable deformed state (in tnis connecticn

see tne comments of Truesdell anma Noll lbl), a severe rejuirement in view o*

b

i

tne fact that turbulent 3epdration occurs for most tent snapes. M{oreover,

experiments L4} snow tnat at sufficiently low inflation pressures the tent

g% executes a large lateral vioration, Jo analyze these cases we must also con-
&

§~ sider inertia forces in the tent and possibly also in the fluid. Trom these
g

= remarks it should be clear that, wnile this paper presents necessary and use-
WE-

§% ful information about tent deformation, a great deal remains to be done before
; 4 practically satisfactory predictior of tent penavior is possibple,

E% . Secona, it is necessary to pe careful about vur interpretation of the

=

Lo

small deflection results in tnis problem, We assame that the tent is in the

unaeformea state, with circuidr cylincrical snape, in tnhe complete absence of
gravity and pressure forces, If gravity aione acts, the tent will, of course,
collapse immediately, amd tne analysis of tne system (<) - (27) with n = 0 and

¢ > 0 would snow tois by preaicting ng < O for some portion of tne snelli, :Iif

-

J1
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gravily and inflation pressure are both operative, but there is no wind, then
tue tent wiil undergo only small defiections from its undeftormed shape, provided

the inflation pressure, nq;, is above a certain minimum value, such that ng > 0
everywhere, We may denote this deformed state, wnich the tent assumes in calm

air, by USC, Now, when a hign wind is turned on, the tent undergoes such large
deformations that the detormaticns associated with USC are nepgiigible by cor-
parison, as are the gravity forces, This is the basis on which the systenm

(30) - (33) was derived. Wnen we now make a small deflection analysis of

tnis system to get (51), we m:st rememver that gravity forces have heen neglected.
Tne actual aeformations that occur, when the wind ana inflation pressures are very
low, are not accuratiely given by (s1), and as the wind velocity app-oaches zerc,
(51) does not approdch tae solution USC,

Tne remaining comments nave to dao Wwitn the relation petween this problem and
tne general theory of thin snells.

It is interesting that toe linear memdrane theory version of this problem
does not nave a unique solution for tne aisplacements because the edge fixity
implies conditions of vanishing normal displacement. Sucn conditions lead to
non-uniqueness witnin linear membrane theory (see Novozhilov [7]), Thus, al-
taougu tae stress, ng, given vy (51), agrees as n + J with tne stress obtained
from linear memdrane thecry, there is no unique, linear soluticn with which to
compare tne defiections of (51),

Tne similarity of zhis probvlem to that for curved roas mnignt lead us to
expect that a tmeory for plane, initially curved rous, similar to the one given
in Love lb), woula be useful nere., Sucn is not the case, for in that theory

tne rous are assuaed to geform without extension wnile tne extension plays an

Y




important part in the analysis of this problem, We have already pointed out

that the complete motion consis*s of a smiall extensional deformation together
wita a possiply large inextensional deformation., Although the extensional
Jeformation is small, it is absolutely crucial pecause it determines the stress
tirough the constitutive relation.

Finally, one mignt alco nope to treat the provlem by means of the theory of
smail deformaticns superposed on large, as descrivea oy ireen, Riviin and Srield
Ls), Green and cerna L10], or fcr elastic membranes, Siaield and Corneliussen
Lil), Tne naturai procedure uere consists of trying to !ind tne large inexten-
sional deformation first any tnen superposing tne small extensional deform2tion.
Tnis does not work because the taeory suppcses tnat the stresses dassociated witn
tie smail deformation are small compared witn tne stresses of tne largze deforma-
tion, while exactly the opposite is the case here, Ancther way of looking at it
is tnat in tnis tneory We imagine the large deformation as determined by condi-
tions of equiliprium witn tne initiaily applied iocaas, and the theory fails be-
cause tne large inextensional deformation causes no stresses and therefore cannot
be in equiliorium with any applied loaas. In fact tne larpe, inextensional ace-
formation is determined vy its interaction witn tne small extensional deformation,

anag the two cannot de found separately.
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Nomenclature

Undeformed tent radius (ir.)
Constant, occurring in (51)

j = 4, 4, 3, 4, elastic constants (lb/in.z)

Total axis force (1b) on tent

gimensionless horizontal forces on deformed tent due to wind and

inflation pressures, respectively

vimensionless norizontal restraint forces at upwind and downwind
edges of tent, respectively

Thickness of tent fapbric (in.)

Numper of mesn points used in numerical integration
Dimensionless moment of tne deformed tent, about tne axis, due tc
#ind and inflation pressures, respectively

Pnysical stress resultants in fabric (1b/in.)

Dimensionless ;nysical stress resultants in tangential and axial
directions, respectively, see (21)

Pressure due to inflation and wind (lb/in.z)'

Dimensionless inflation and wind pressure, see (21)
Dimensionless radius of deformed tént, see (21)

Radius of deformed tent (ir.)

Radius of curvature of deformed tent (in,), see (6)

Deformed circumferential arc length (in.)

Free stream wind velocity (in./sec)

Dimensionless vertical forces on deformed tent due to wind and

infiation pressures, respectively




Alait i io atlomd Y
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Yor %L

Dimensionless vertical restraint forces at upwind and downwind
edjes of tent, respectively

Cartesian coordinates of undeformed tent

Carteslan cocrdinates of deformed tent

Dimensionless measure of degree of anisotropy, see (20)

Angle in deformed state, see (4), (5)

- ¢ . e n . -
Yoo YZ© =Ygy Yz© F Yg, Dimensionless physical strain components,

see (2)

Jimensionless parameter measuring ratio of gravity forces to
elastic forces
Uimensionless parameter measvuring ratioc of pressure forces to
elastic forces
Paisson Ratio

. - - . 2,. 4
HYass density of air (ib - sec /in. )
. » - . € v 7 - 3
Weignt density of tent fabpric (ib/in.” )
Cylindrical angle in undefcrmed tent
Cylindrical angle in deformed tent
Cylindrical angles at upwind and downwind edges of tent, respectively

Slope angle o deformed tent

(%9
(21
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