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ABSTRACT : This book will be of particular interest to persons concerned with
‘:ﬁhe problems of fluid Jet streams. )The book is devoted to the results of
investigations of a broad and widespread category of incompressible fluid
motions in the form of laminar and turbulent Jjets. The development of comput-
ational methods applicable to an important type of jet streams and based on
a consistent and systematic study of jet flows with a theoretical approach 1is
the aim of this monograph. There are four parts to the book, including a
foreword and an introduction. The first part deals with the solutions of jet
problems based on the exact Navier-Stokes equations for incompressible fluids
-and, in particular, with the Landau investigation of the propagation of a
submerged axially symmetric viscous fluld jet issuing from a thin tube. 'The
second part contains a detalled analysis of laminar jet streams of an incom-
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Among them are complex turbulent Jet streams, patterns of diffusion flames,
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PREFACE

This monograph calling for the reader's attention has been devoted
to the results of investigations of a broad and widespread class of mo-
tions of a viscous incompressible liquid or a compressible gas, name-
ly the laminar and turbulent flows. All considerations apply to steady,
unstressed motions of a continuous medium.

The interest aroused by jet flows is explained by the great impor-
tance of these flows for so many fields of technical engineering. In
rockets, airplanes and engines, in turbines and boilers, combustion
chambers, burners and furnaces, in hydraulic works, chemical and tech-
nological devices, ventilators, devices of jet automation (pneumonics),
etc., we are concerned with jet flows of liquids or gases. They are, as

a rule, essential and often have a decisive importance for the inten-

.sification of the operational process or 1ts efficiency.

Apart from this, the Jet motions take a conspicuous place in the
theoretical and, particularly, in the applied mechanics of viscous flu-
ids. The relevant literature 1s extensive and comprehensive. In the
last two or three decades the number of publications dealing with the
problems of jet motions has increased rapidly in both the Soviet Union
and abroad. Among the publications on jets there are special monographs
on the theory and the results of experiments, review articles in man-
uscripts on hydro- and gas-dynamics, in all a large number of articles.
The references to this literature have been compiled at the end of the
present book.

The great variety in the ways of treatment of the jet motions 1is

=1 =
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characteristic of the investigations carried out by the various au-
thors. Some of them consider the problem from a purely theoretical
point of view, others on the basis of a purely experimental conception,
while in many other papers both aspects have been fused to some degree.
In some papers the authors have restricted themselves to investigating
turbulent jets which are of immediate practical importance, in others
they have considered mainly laminar jets which are based on the strict
equations of hydrodynamics.

In this connection we must briefly summarize the method of inves-
tigating the jet motions chosen in the present book. The principal goal
of the book has been a consequent and systematic consideration from
an - as far as possible - unique point of view of the theory on jet mo-
tions and, based on this theory, of the main development of mathemat-
ical methods applying to the types of flows which are of practical im-
portance. It 1s, of course, the turbulent jets which are mainly impor-
tant in practice. Just as in other flields of the mechanics of viscous
fluids, the theoreticel model of turbulent jets may be built up in the
usual manner from the laws of expansion of laminar Jets. Thelr consid-
eration which is also interesting in itself will, expediently. begin
with an analysis of th> solutions ohtained on the basls of the exact
equations of the hydrodynamics of a viscous fluid, the Navier-Stokes
equations. This enables us to ascertain a series of important gen-
eral properties of jet motions which are essential not only for an in-
vestigation of the laminar jet flows by the methods of the boundary
layer theory, but also for problems on turbulent jJjet flows. Thus, when-
ever this 1s possible, a solution of the latter will be based on the
qualitative flow pattern which is, first of all, obtained from an anal-
ysis of the corresponding laminar motion.

At the same time the results of a difect experiment have a decl-

-2 -
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sive importance for the investigation of turbulent flows. They serve as
a starting point for the development of a mathematical procedure for
the concrete motion and as a criterion for the usefulness of this pro-
cedure in the final state of the investigations. The methods of calcu-
lation which are applied at present in the theory of turbulent flows
and which are based on the so-called semiempirical theories, are not
universal. This 1ndicates that the solution of some problems can be ob-
tained with about the same accuracy on the basis of different assump-
tions on the mechanism of turbulent transport while a large group of
them are solved simply with the help of various mathematical methods.
At the same time 1t very often happens that for a related problem none
of these methods is sufficlently effective. The empirical constants de-
rived from the experiment are likewise nonuniversal; they characterize
the influence of various factors which are not taken into account ex-
plicitly (in particular the microstructure of turbulent flow). Un-
fortunately, the statistical branch in the theory of turbulence, which
is most promising in the general plan, has so far ylelded no results
which are of practical importance for the theory and the calculation

of Jets. The application of the statistical theory of turbulence to

Jet motions has therefore not been discussed in the present book.

The necessity of solving various problems encountered in engl-
neering applications forces us in the present book to cover not only
the well-known and, maybe, classical methods of the theory of the turbu-
lent boundary layer. In addition there are various semlempirical and
purely empir cal mathematical procedures or even the mere results of
an experiment which deserve our interest. This causes a considerable

extension of the range of problems which can be solved by a pre-
liminary approximation method and yields additional material for subse-

quent generalizations. In the complex and far from complete process of
-3 -
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investigating jet flows not a single extreme case can be considered

justified. Neither the abandonment of the necessary practical prob-
lems for the "clean" region of the analytical solutions, nor the re-
jection of generalizations of the laws derived from the individual
experiments carried out under concrete conditions, enables us to de-
velop a sufficiently broad theory meeting the requirements of prac-
tice.

There general considerations and also the cholce of the materi-
al for the book and its entire structure characterize the sclentific
direction of the authors. In the treatment of the problem the authors
tended to a more complete analysis of the physical nature of the phe-
nomena, to a simplified application of the material and, in this con-
nection, to its representation in the form of mathematical results
and illustrations. The solutions of various problems have been com-
piled in detailed tables for the same purpose. To restrict the volume
of the book some problems which are analyzed in detail in literature
accessible for a large circle of readers have been considered in a
condensed form and sometimes even omitted. The results obtalned by
the authors themselves have been considered in greater detail than
elsewhere. The sections dealing with turbulent flows also contain ex-
perimental data 1h sufficient detail for comparison with the results
of calculations. Most of the data have been taken from papers pro-
duced under the guidance of one of the authors between 1951 and 1963
in the thermophysical laboratories of Alma-Ata.

Let us now briefly discuss the material in this book; for de-
tails we refer to the Table of Contents.

The first part is devoted to a detailed discussion of the solu-
tions to flow problems based on the exact Navier-Stokes equations

for an incompressible fluid. In this part the well-known investiga-

-4 -
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tions by L.D. Landau are considered as fundamental; they deal with

= the laws governing the expansion of an axisymmetric jet of viscous
fluid discharged from a thin tube into another fluid. The flow pat-
tern in the Jet and the heat (or mass) transfer are discussed in
detail, indicating the fundamental characteristic features of the
motion. The dynamic and thermal problems (under different boundary
conditions) on the expansion of fan-type jets are also considered.
For the so-called "intense" Jjet the transition was made to a solu-
tion within the framework of the theory of the laminar boundary
layer.

The second part of the contains a detalled analysis of the
methods of the boundary layer theory of laminar Jet flows of an in-
compressible liquld and a gas. Apart from the free Jets discharged
into an immoblle medium or a uniform comoving flow, we consider the
"half-limited" jets (expanding along a solid wall). Both the dynam-
ic and the thermal problems are solved with the help of the method
of the asymptotic boundary layer which 1is used throughout the book.
Particular attention 1s paid to compressible-gas Jets.

The third part 1s devoted to turbulent flows of liquids and

gases. We consider in detall the self-similar solutions for both

free and half-limited source jJets of an incompressible liquid. On
the basis of the hypothesis on the similarity of the momentum flux
density distributions a generalization is given of the data on the

free compressible-gass Jets. Great attention is paid to the method

of the equivalent heat-conduction problem which permits a detalled

investigation into the problem of the expansion of liquid or gas

Jjets discharged from nozzles of finite dimensions with an arbitrarily
) chosen initial velocity distribution, temperature distribution, etc.

The results of the calculations are compared with the experimental
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ones.
The fourth part deals with some theoretical and experimental N
problems in the field of jet flows which, for some reason or other are ~~
supplementary to the basic material of the book. Here we also give a
brief review on some complex turbulent jet flows (counterflows and jet
flows around bodies). The theory of such motions has hardly been de-
veloped as yet. Chapter 16 will therefore mainly contain experimental
data and attempts of their primary generalization which are valuable
in connection with the application of such flows. The next chapter, 17,
in contrast to the previous chapter, gives an example of a successful
application of the theory of laminar and turbulent jJets to a special
problem: the calculation of a diffusion gas flare. That it was entered
in the fourth part of the book 1s due to the fact that a more complete
representation of the flare theory (homogeneous, indirect-jet flare,
etc.) and also of problems specific for the combustion theory are be- o
yond the scope of this book. Finally, the last chapter contains a few
magnetohydrodynamic jet problems which are mainly interesting insofar
as they can be treated by the same methods as ordinary jets of a non-
conducting viscous fluid.
The list of references on viscous-fluid jJets given at the end of
the book is incomplete. It comprises first of all investigations cited
in the text (in particular, a detailed leterature. list of the papers
by the heat physicists of Alma-Ata has been given, papers which have
mainly appeared in the limited circulation of the literature of the
Republic). In addition, the reference list also contains review review
articles and jet flow investigations known to the authors, the ac-
quaintance of which 1s essential for the completeness of a represen-

tation of the problem's present state. The papers published up to 1963

i
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are listed more completely as the manuscript of the book was then
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finished in its basic form. At the end of each chapter literature ref-
erences are given which refer to this chapter in particular.

For convenience we have chosen for the book a continuous numer-
ation of the chapters and a dual for the sections, figures, tables and
formulas (the First Digit indicates the chapter, the second, e.g., the
formula within this chapter).

Not all the problems treated in the book may be considered as
having reached the same degree of solution. Some of them need a theo-
retical or experimental verification. The main direction must be a
wildening of the circle of important practical problems which can be
treated mathematically by the methods of the theory of viscous-fluid
Jets, the development of these methods, an ascertainment of their lim-
its of applicability, and the 1like.

The authors thank theilr colleagues for helping them with selec-
tion of the material, in particular K.Ye. Dzhaugashtin and L.P. Yarin
who took part in the compilation of Chapters 18 and 17, respectively.

With deep gratitude the authors acknowledge the interesting dis-
cussions with G.N. Abramovich on a series of problems considered 1in
the book. The authors thank G.N. Abramovich and G.Yu.Stepanov for their
comments on the manuscript. The attentive work by V.Z. Parton helped
to reduce the editing errors to a minimum.

All remarks which are intended to eliminate failings fo the book

will accepted gratefully by the authors.
L. Vulls

V. Kashkarov




INTRODUCTION

0.1. THE SOURCE JET

The jet motions of a viscous liquid or gas may be of a very dif-
ferent nature as regards the form of flow, the kind of the fluid in
the jet, the surrounding medium or other features. A brief systematic
compilation of these motions referring to the contents of the present
book will be given in the second section of the Introductlionl It may
be preceded by some information of general character.

Just as in any other theory, the theory of Jets has its elementary
models and techniques. Prior knowledge of these facilitates the inves-
tigation of more complex flows but 1s also interesting in 1itself. For
an analysis of the Jet motions of a viscous fluld it 1s in particular
the idea of a unique source jet which is important. Many analytical so-
lutions of the problems of the expansion of a jet refer, in fact, to
motions caused by the source jet. This is the case, e.g., with a con-
siderable part of the so-called "self-similar" solutions (sometimes
referred to the literature as "similar" solutions).

The motion produced by a source jet closely resembles a real flow
in a jet at a great distance from the nozzle from which it 1ssues. A-
nother valuable jet-flow model may be the flow in the mixing zone of a
semi-infinite plane-parallel flow in a surrounding medium. Simllar to
this will be the motion in a plane or axisymmetric jJet near the nozzle.*
Before considering the peculiarities of the fluid's motion in the o

source jet often discussed in the following we turn to the qualitative
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picture of the jet in a viscous fluid. We consider the latter by way of
the particular example of a steady plane or axisymmetric fluid jet dis-
charged into a unlimited medium at rest. For a medium with the same
physical properties as those of the fluid in the jet, the expansion of
the jet can be essentially reduced to a gradual leveling of the initial
velocity distribution as shown schematically in Fig. 0.1. Owing to the
(molecular and mainly turbulent) viscosity the jet draws the surround-
ing fluid into the motion and transfers part of its initial momentum to
it. In this process the veloclty at the jet axis and of course also in

the cross sections will drop.

Fig. 0.1 Schematic representation of free jets. a)Jet of finite dimen-
sion, streamlines and velocity distributions in several cross sections
of the jet; b)source jet; c)relative velocity distribution in a jet of
finite dimensions (scale units: for the velocity the efflux velocity

ups for the transverse coordinate the radius r of the nozzle; d)rel-

ative velocity distribution in a source Jjet (scale units: for the ve-
locity u, on the axis of the jet; for the coordinates the value of

Yy at which u = ¥u ).

A strict solution to the problem of the expansion of a jet would,
obviously, require an integration of the equation of motion and the
continuity equation (for simplicity we consider an incompressible flu-

id) with a given law of internal friction (molecular or molar turbu-
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lent viscosity) and given boundary conditions. The latter must comprise

the efflux conditions (the shape of the nozzle orifice and the velocity
vector field at the outlet), and also the conditions 1in the zones of \r
the nonperturbed fluid (theoretically at infinity) and, finally, the

symmetry conditions for flows with plane or axial symmetry.

With such a general statement an analytical solution of the prob-
lem is as a rule connected with considerable difficulties, though in a
series of practically important cases (e.g., the burning of a torch)
this solution is of greatest interest. _ “

Experimental observations and also theoretical considerations show
that the laws governing a flow at a great distance from the nozzle dis-
play in s=ome way a universal character. In this region the flow 1s vir-
tually independent of the efflux conditions (in what follows we shall
call them the "initial conditions"). This flow, at a great distance
from the nozzle, where Qe may abstract from the concrete initial condi- on
tions, can be considered as the result of the action of a momentum
point source (in the case of an axisymmetric jet, or a linear source
for a plane Jet).oriented in the direction of the axis of symmetry.
Such a motion we shall call a source Jet.

For an analytical solution of the source-jet problem the detalled
initial conditions are replaced by a sufficiently integral condition
whose_part is usually played by a given characteristic quantity, the
initial value of the total momentum flux Jx (projected onto the ox sym-

metry axis):
Je=§ purds,
@ .
where p 1s the density of the fluid, Uno 1s the axial component of the
velocity vector in the efflux section s of the true jet which can be

replaced by the effective source. -
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It is easy to see that the concept of the source jet has a certain
independent meaning in the Jjet theory; it may be considered without
knowing the concrete form of the nozzle and the initial velocity dis-
tribution. It 1s in some way analogous to the concept of the mass point
in mechanics (where at distances exceeding essentially the body dimen-
sions, shape and dimensions of the body do not influence the law of mo-
tion, the field of gravity genereated by the body, etc.).

A characteristic example well-known from experiments 1s the fact
that a jet flowing out of a quadratic, triangular or other form of ori-
fice behaves at a sufficlient distance from the nozzle virtually Jjust
like a Jet ejected from a round orifice.

The practical significance of the concept of the source Jet son-
sists 1n the fact that the motion produced by it 1s self-similar. In
the mathematical description this means a transition from partial dif-
ferential equations to ordinary differential equations and with regard
to the experiment it offers the possibility of generalizing the exper-
imental results since the velocity profiles are similar (Fig. 0.1,b).

We must, however, stress the differences in the flows of a source
Jet of a viscous fluid and an ideal fluid. In the first case (source
Jet) the flow is characterized by its vector character, the directivity
of the initial momentum which gives the whole motion an oriented char-
acter, a peculiar anisotropic flow. In contrast to this, the source
usually considered in the theory of an ideal fluid produces an isotro-
plc flow pattern.

It is extremely important that the initial momentum flux of a jet
of viscous fluld, which expands in an unlimited nonmoving medium 1in
the absence of external forces, 1s conserved as to magnitude and direc-
tion. This follows directly from the general momentum-conservation law.

The directivity of the flow produced by a source Jet 1s closely
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related with another characteristic property of the motion, namely the
limitedness of the field of perturbations in the directions perpendic-
f ular to the initial momentum. As we see from Fig. 0.1,a the region of V4

| velocity change in a cross section of the jet (from maximum velocity to

' virtually zero at the nominal boundary of the jet) is relatively nar-

E | row; the transverse velocity gradients are much smaller than the lon-

gitudinal ones. The veloclity components behave inversely: as_a rule the
transverse velocitly componenté are considerably smaller than the longil-
tudinal ones. These general properties of jet motions render it, fortu-
nately, possible to apply the methods of the boundary layer theory.

In the case where the source jJet together with the momentum flux in-
troduces a flux of a certain property (an excessive heat content, con-
centration or the like) the process of expansion of the jet 1s accompa- h
nied by a dispersion of this property in the surrounding medium. In
i this dispersion the main part is played by the primary process, the mo-
mentum scattering. For the distributions of concentration, temperature,
etc. the self-similarity of the flow, the characteristic properties of
the boundary layer, etc. are also conserved under the corresponding ﬂ
boundary conditions. For an incompressible fluid the solution of the
thermal problem (the problem of the temperature distribution) 1s built
up on the basis of a preliminary solution to the dynamic problem (ve- ‘

locity distribution). In the case of a compressible gas both problems

must be solved at the same time. In both cases, 1.e., for the liquid

and the gas, the ratio between the coefficients of momentum and heat

(or mass) transfer, determined by the so-called Prandtl number is of
decisive importance.
Here we briefly discussed the qualitative flow pattern by way of

the example of a "submerged"¥* axisymmetric source jet. Our remarks ap- ‘o
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ply, however, more or less to other more complex forms of jet motions

of a viscous fluld. For these cases 1t i1s of course, necessary also to
modify the geometrical from of the source jet. Besides the point source
which produces an axisymmetric jet, we may be concerned with a plane }
source jet, a radial (or fan-type jet, i.e., a Jet coming out of the

gap between two discs), an annular jet, flowing out of the gap between

two coaxial cylinders or cones and the like. One of the examples, the
fan-type Jet, is shown in Fig. 0.2. Just as in the case of the point
source, the flows produced by sources of various forms will be charac-
terized by integral characteristics, the momentum flux, the flux of

heat content, etc.

Before we turn to a detailed analysis of concrete problems we
think it expedient to give a brief systematic representation of the

latter.

Fig. 0.2. Diagram of fan Jjet.

0.2. JET FLOWS
Let us try to classify as far as possible the various Jet flows.
The features according to which the various forms of jets must be dis-
tinguished are numerous. We shall only mention the most essential ones.
The plan of the present book has been based on the differences 1in .
the mechanism of jet expansion, that is, the mechanism of momentum, en-
ergy and mass transfer. In this respect it is, as always, ner~essary to
distinguish between laminar and turbulent jJets. In the first case the

nature of the transfer effects such as molecular friction, thermal con-

ductivity, diffusion, are well known. As to the second case, we do not

- 13 -
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possess as yet any physically exact and closed system of equation to
describe turbulent motion. In particular, it is for the present hardly
possible to investigate systematically turbulent Jets of fluid or gas
on the basls of the modern statistical theory of turbulence. Sporadic
attempts of applying statistical conceptions to the theory and calcu-
latior of turbulent jet (e.g., [159] and others) are, essentially, re-
duced to the same empirical methods. As already mentioned in the Pre-
face, we shall not consider this direction in the present book.

From the general class of Jet flows we may separate the motion of
incompressible fluids which, as usual, comprises not only Jets of drop-
able 1liquids but also Jets of gases with relatively small density vari-
ations. The latter are encountered in the case of veloclties which are
small compared to sonlic velocity and also in the case of samll tempera-
ture decreases (compared with the absolute valur) and, finally, when
the molecular weights of the Jet gas and the surrounding medium are
similar.

It stands to reason that the flow of a gas with p ¥ const may be
nbtained as a particular case of the flow of a compressible gas. As to
the method of solution and the independent meaning, it is, however,
necessary to consider the Jets of incompressible fluids separately. The
characteristic feature of a flow with p = const 1s, as already mention-
ed above, the independency of the dynamic problem and the thermal prob-
lem, a fact that simplifies the 1nvestigation essentially.

a

Fig. 0.3. Schematic representation of the
expansion of a jet in a flow. a)Flow 1in
the same direction; b)counterflow.
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As regards the jets of compressible gases, we must among them dis-

tinguish between the manifestations of the compressibility which are
due to the influenc2 of one or several factors of the compressibility
acting simultaneously, the high velocity of the motion or a considera-
ble difference in temperature or composition between the gas in the Jet
and the surrounding medium.

The subdivision of the Jets into homogeneous in composition (as or
liquid) and inhomoéeneous ones may be attributed to the same feature
(the compressibility). The latter type of jets fall into classes ac-
cording to the properties of the carrying medium and the nature of the
impurities (gas, liquid or solid particles).

The matter in a Jet motion may thus be classed in this form or
other according to the three states of aggregation. In addition to this,
attention has beer attracted in the past years by Jets of plasma, the
fourth state of aggrregation of matter.

The subdivision of Jets according to the feature of the compressi-
billity or the state of aggregation takes the state of the matter in
both the jet and the surrounding space into account. Considering the
interactions between jet and surrounding medium in this way, 1t 1s ex-
pedient to take another two features into account, the conditions of
motion of the medium and its geometry.

As to the former we must distinguish between the expansion of a
Jet in a resting and in a moving medium and in this particular case
between a flow 1n the same direction as the Jet, a counterflow or a

flow making a certain angle with the jet (see schematic diagram of PFig.

0.3). To this group of problems the flow in a jet boundary layer is re-

lated which arises owing to the instablility of the tangentlal discon-

tinuity appearing between two homogeneous semi-infinite flows moving in

the same direction or oppsitely (see Fig. 0.4).
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Fig. 0.4. Boundary mixing
of parallel flows. a) Flows
in the same direction;

b) margin of plane Jjet;

c) counterflow.
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Fig. 0.5. Schematic
representations of bound
jets. a) Semilimited jet;
b) jet in limited space;
¢) jet flowing around a
body; d) homogeneous flow
around a body.

As regards the geometry of the space in which the efflux takes
place we must consider separately the expansion of a Jet in a virtually
unbounded space, in the absence of any solld bodies which could inter-
act with the jet; such flows are denoted free Jets. In addition to .’
this, we must distinguish "semilimited" jets moving along a solid sur-
face, "bounded" jets, flowing into a limited space and, finally, the
motions which occur when bodies of finite dimensions are placed in the

Jet flow. Figure 0.5 shows some examples of such types of flows.

It 1s natural that all types of motion discussed above and in the
following may be plane-parallel, axisymmetric or, in the general case,
threedimensional. The geometry of the nozzle producing the Jjet is pre-

‘) determined to an essential degree by this division. Just as the source
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Jet, the real jets (flowing out of nozzles of finite dimensions) may be
plane, axisymmetric, annular, fan-shped, etc., twisted or not, display-
ing various forms of the initial velocity profile (or temperature dis-
tribution, etc.).

Considering the differences in the initial distributions of veloc-
ity temberature and other characteristic parameters, we have 1n fact
arrived at another important feature of Jet motion systematics, the
type of substance transferred. In this sense we distingulsh between the
dynamic problem, the thermal problem and the diffusion problem. Ofter
it 1s two or even all three types of transfer which coact. In these
cases as, e.g., the efflux of a plane-parallel or fan-type jet, it 1s
essential to distinguish between presence and absence of similarities
in the velocity and temperature boundary conditions (Fig. 0.6). differ-
ent boundary conditions for the thermal problem (adiabatically insula-
ted wall, wall of constant temperature, etc.) and for the velocity dis-
tribution (motion with or without flow in the same direction, flow a-
long a porous wall, the pores being sinks or sources of additional
mass, etc.) also characterize the semilimited jets. These features to-
gether with those considered above constitute a great varlety of Jet
flows.

In the individual classes of Jet flows we must distinguish motions
of liquid and gas and whether there are accompanying chemical reactions
or changes in the state of aggregation. Particularly important among
them are the jet flows of hot gas, the so-called flares, resulting from
the combustion of a gas mixture prepared previously (homogeneous flare)
or in the case of a combustion of non mixed gases (diffusion flare).

An independent class of jet flows 1s formed by the Jets of elec-
trically conducting fluids, interacting with an electromagnetic field.

Some of these particular cases of jet flows are considered at the end
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of this book.

Fig. 0.6. Schmatic re-
presentation of a plane
nonisothermal jet. a)Sym-
metrical thermal boundary
layer; b)asymmetric ther-
mal boundary layer.
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Part One

SOLUTIONS TO THE NAVIER-STOKES EQUATIONS

H o~

N/

| In the present part, starting from the Navier-Strokes equations,
’ we shall consider the problem of the expansion of an axisymmetric jet
of a viscous incompressible fluid streaming out of a thin tube. The so-

B lution is constructed for the fluld flow at at a considerable distance
from the nozzle, 1.e., at a distance large compared to the dimenslons
of the orifice. For generality we also consider the thermal (diffusion)
problem in addition to the dynamical problem, though the solution to
the latter 1s obtained independently as this 1s usual for an incom-
pressible fluld with constant physical properties.

The solution of the problem, taking into account the specific fea-

tures of the flow, the axlal symmetry and the ceasing of motion at in-
finite distance from the nozzle, 1s bullt up in the form of series ex-

pansions in decreasing powers of the distance from the source. It is

shown that the fundamental features of the effect are contained in the
| so-called self-similar solution. This solution corresponds to the first
approximation in the series expansion of the expressions of velocity
components, the fluid being free from rotation. In the presence of ro-
tation the approximate self-similar solution may be obtained taking
into account the faster decrease of the rotational component of veloci-
s ty.
In addition to the general investigations we shall consider par-
ticular cases of jet flows in axial symmetry, under various boundary
B condary conditions, the expansion of a jet in an unlimited space or a

flow bounded by surfaces.

- =

One of these cases 1s that of a source jet flowing out of a thin ~
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tube, or the flow inside a cone or a twisted fan-type jet.

We shall point out in a general form the conditions of self-simil-
itude of the moticii, the position-dependent inherent dimensions of re-
lations and the intgral characteristics which, when given for a self-
similar flow, replace the detalled efflux conditions for the nozzle.

Finally we shall pass over in the solutions obtained from the ex-
act Navier-Stokes equations for a "powerful" jet to a form characteris-

tic of the theory of the laminar boundary layer.
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I Chapter 1
L A JET FLOWING OUT OF A THIN TUBE
1.1. THE PROBLEM

For the group of problems considered here, L.D. Landau's paper
& [122] in which a self-similar solution was obtalned for the direct Jjet
flow is of fundamental importance. A generalization for the thermal
(diffusion) problem and ©lso a solution for a jet with nonvanishing an-
gular momentum and a series of particular cases were considered in the
papers [116, 162, 163, 171, 203, 302, 303].

Let us study the motion of a fluld produced by a source jet with a

directed initial momentum. In the case where the initial momentum is

directed along the symmetry axis of the flow a graphic representation®
of the motion 1s given in cylindrical coordinates, r, ¢, . As regards
‘ the mathematical treatment of the problem it 1s, however, simpler to
use spherical coordinates, R, 6, 9.
Let us, for convenience, give the formulas which 1link the coordi-
nates and velocity components in the cylindrical and spherical coordi-

nate systems:

r=Rsin0, o=¢, z=Recosb,

v, = vp8in04 vecos B, vy =1v,, v, = ppcos0— vysind.

The velocity components L qp, v, in the cylindrical system of

coordinates will be denoted the radial, peripheral and axial compo-

nents, respectively. The quantities Vps Vgs Y in the 'spherical system «»

P
«w
of coordinates (i.e., the projections of the velocity vector on the
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axes R, 6, ) are not given special denotatlons to avoid confusion,

except for the veloclty v¢ which 1s the same in both systems of coor-

dinates.

The initial system of differential equations of continulty, mo-
tion and heat (mass) transfer for a steady axisymmetric flow of an in-
compressible viscous fluid, in the absence of mass forces, will be
written in the spherical system of coordinates R, ¢, 9. The origin of
coordinates is allowed to coincide with the source of the Jjet, the po-
lar axis Ox 1is directed along the axis of symmetry of the flow.

The continuity equation:

Ovh g&v. 2vp v.ctgo

The equations of motion:
o % B+ {92 oy | o
va gk + 1 50 — il — L (Gt ¥
2 20 2v 2
HERPR R AR R,
A
L )
e T L

By, 1 B 2 89, g0 O 2 %
v+ et R R R+ - Faen) (1.3)

g+ + R+ e tgo=

2 Oy, g0 v, »
"’(T+Fw+'n'zrﬁ+ T m’m) (1.4)

The equation of heat transfer (neglecting viscous dissipation):

ar oT {1 8T 2 8T (/4
vnm+-n°-w (m+nrw+1rm+° 'w)- (1.5)

In these equations Vps Voo v(p are the velocity components, p, T,
and p denote pressure, temperature and density, v and a are the coeffi-
cients of kinematic viscosity and thermal diffusivity which (Just as
the diffusion coefficient D, see below) are considered constant.

Neglecting the diffusion due to temperature and pressure, the dif-

- 23 -

.
T S ar—

_—




fusion equation analogous to Eg. (1.5) would read

R R R LIS LIt
¢ being the concentration and L the diffusion coefficlent.

Since the equations of heat transfer (reglecting the heat of fric-
tion) and mass transfer are of the some form, their solutions, written
in a nondimensional form, will of course, also be 1ldentical in the case
of similar boundary conditions for temperature and concentration. In
the following we shall therefore ignore Eq. (1.5a) and for brevity only
speak of heat transfer. This analogy 1s violated when viscous dissipa-
tion (or radiation) is taken into account in the heat transfer equation
of when temperature- or pressure-induced diffusion 1is taken into ac-
count in the diffusion equation.

Equation (1.1) does not contain the peripheral velocity v¢.

Let us there introduce a stream function of meridional flow in the form

v=vRa @O+ 6@+ Fa®+-}. (1.6)

The velocity components v, and vg are here given by

R

| [l X {
PR = mEE e "= — SN

and defined by the expressions

T ) .
v.-—ﬁ{%—%_"'}o (1.8)

Note that the face that the expansion of the stream function ¥y does not
contain terms containing the independent variable R in powers higher

than the first is due to the conditions of regularity of the velocity
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vector components in the entire field of flow (with the exception of
the origin of coordinates which 1s a singularity) and the requirement

that the velocity components vanish as R + o,

Let us introduce a new indipendent variable
® = cos0

and give the transformation equations 1n explicit form:
&--VRL,

et U—eg.

The expressions of the velocity components vp and Vg taking the

identity gi(e) fi(w) into account, can be written in the form

onem—v{ B0y B0, ) (1.9)
voa_v{"_%%”}r | (1.10)

Let us also put
vomv{2e 4 O 4], (1.11)
’__"’_'°_y!{"_’l('.‘!2+'3n&‘.’)+...}, (1.12)
T—T,-i‘*‘ﬂ-{-"' F oo, | (1.13)

where p_ and T _ are the pressure and temperature in a nonperturbed flu-
id far away from the source, the primed quantities are derivatives with
respect to w. Let us substitute Eqs. (1.9) - (1.13) in Eqs. (1.2) -
(1.5) and in the equations obtained put equal to one another the coef-
ficients of equal powers R in the right-hand and left-hand sides of
each of these equations. To show what is meant we give by way of exam-
ple one of the transformed equations (corresponding to Eq. (1.2) for

the velocity component vR):
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I [A off f—wbe O 1—
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--+,§i—/;+,§r/'. cte(fa )

2YT=4d ¢ 20f,

Tr[71—=]+ﬁl‘h+ﬁ.‘.’|+ +wr—eht.0 (1.2a)

Comparison of the coefficients for l/R ylelds

hy=0, k=0 (1.14)
This indicates that in the expansion (1.12) the first term, containing
1/R is lacking.

In an analogous way, putting.equal the coefficients with 1/R3,

simple transformations yleld the following equations:

f

(A=) AV =ffi— ' — =5 — O — 2k, = 0, (1.15)
F ’
\zm“x)‘h Sad )
(@, VT —0o% —,—:—;.(‘nyi—ﬂ“ =0, (1.17)
M=oy =Prny. ©(1.18)

Pr = v/aq being Prandtl's number.
Let us finally give the analogous equations obtalned from compar-

ing the coefficients for l/Ru:

[(4 — %) f3)’ — /1fs— 3fifs — 20,®, — 3hy = 0, (1.19)

2/:'*" 01®a+hc'0 (1-20)

(@ VT =) — ",(Q,Vi—m’) +‘ (O.Vx—c‘)-o (1.21)
[(1—@')1'. +2f.=?r[(/l1'.)'+/‘t.+/’gd (1.22)

The first three of the above equations (1.15)-(1.18) represent a
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closed system of nonlinear ordinary differential equatione whose inte-
gration determines the dynamic problem. As regards the thermal problem,
its solution can be reduced to integrating the linear equation (1.18)
using the functilon fl(w) found previously.

As usual the equations for the following terms of expansions
(1.19)=-(1.22) and the higher approximations are solved after determin-
ing the functions they consist of and which are obtained from the pre-
ceding approximations. The equations of the second and higher approxi-
mations are then linear differential. equations.

Let us now turn to the boundary conditions of the problem. In the
general form they must display the axial symmetry of the flow.

Along the axis of the jet (with 6 = 0) owing to the symmetry con-
ditions (apart from the vanishing of all derivatives with respect to
the coordinate @ which 1s taken into account in the initial conditions)
the velocity components Vg and vcp and the derivatives with respect to
the angle 0 of the velocity component Vps the pressure and the temper-
ature are vanishing.

Thus

o : :
vty =0, 35 =F =G5 =0 foremo. (1.23)

When seeking a solution we must, in addition to this, take into
account that throughout the region of the flow (except for the origin
of coordinates which is a singularity) the values of the velocity com-
ponents, pressure and temperature are finite.

For Eqs. (1.15)-(1.17) the boundary conditions have the form

lim (L2 "'),-o. ®, (1) = 0.
n(yres) =0 o (1.24)
It 18 trivial that with w = 1 the derivatives in the conditions (1.23)
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vanish since

;

l F=—VIi—aLi.

1. Before we pass over to solve a concrete problem we want to point

ﬁ' I out an essential singularity which 1s connected with the choice of the
expressions for the celocity components, the pressure and temperature,

determined by the expansions (1.9)-(1.13) which grow unlimitedly as the

distance to the origin of cooridinates decreses. Owing to this singu-

| larity each of the solutions obtained will only describe the flow at a

considerable distance from the source. The dimension r,, of the orific

0
of the efflux 1s taken as the measure of the remoteness. The condition

of applicability of the solution is the inequality R >> », which, for

0
the solutions, enables us to 1lgnore shape and dimension of the orifice,
velocity and temperature distribution in the efflux section of the noz-
zle, etc.

Thus the problem is essentially solved without initial conditions.
With the accepted statement of the problem of the source jet it 1s in
fact impossible to take into account details of initial conditions, re-
taining an arbitrary number of terms in the expansions; instead of this
integral conditions (conservstion of momentum flux, heat content, etc.)
are used in the solutions.

When choosing the number of terms in the expanslions it 1s neces-
sary also to consider the following. Though as to thelr absolute values
the velocity components and the temperature tend to infinity as R" with
decreasing R, where n 1s the higher the larger the number of terms in
the expansion; the fact that the signs in the series are alternating
may improve the solution a little compared to the first approximation.

But as it 1s rather cumbersome to calculate the higher approxima-

tions we must restrict ourselves in the following manily to finding a
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first approximation permitting a good description of the physical image
and the most essential laws governing the effect.
1.2. INTEGRATION OF THE EQUATION OF A FIRST APPROXIMATION

Let us determine the first nonvanishing expansion terms for the
velocity components, the pressure and the temperature. The totality of
these expressions will be called the solutions of the problem in a
first approximation. When we add to each of these expressions the next
terms of the expansion we obtain respectively the second, third, etc.
approximations. The fact that the expansions for different velocity
components, pressures and temperatures will be gin with terms contain-
ing the variable R in different powers, obviously indicates that the
corresponding quantities are damped at different degrees as the dis-
tance to the source increases. This could have been predicted from di-
mensionality considerations as shown below.

Let us first of all consider Eq. (1.17) for the function 0l(w),
entering the expression of the peripheral velocity (1.11).

Integrating twice yields

O,VT-—_m‘=C,§ exp(§ ’—"_‘%)dw-i- C,. (1.25)
] 2 B

From Eq. (1.25) with w = -1, taking into account that the function

¢, must be limited, we obtain c? = 0 and with w = 1 we also find that

1l
the constant 01 = (0 since the integrand

exp{ 25550
-1
throughout the interval of variation of the variable w.
Thus 01 = 0.
This indicates that in the first-approximation solution the ex-

pression of the peripheral velocity begins with a term containing a

- 29 =

. — pa——

——




higher power of 1/R.

S e S d

By virtue of the equality ¢. = 0 the function hz(”) may be elimi-

1
nated from Eqs. (1.15) and (1.16). For this purpose we integrate Eq. <’

! (1.16) and determine the value of the function h,

| h.(o)--%;_i,.—/HB- (1.26)

which 1s substituted in Eq. (1.15). After simple transformations we

arrive at the following equation determining the function fl(w):
(A — oM AY — hfi— 7+ 2,— 2By = 0.
A solution of this equation determines the velocity components
Vp and Vg
Integrating this equation twice yields the equation

2(1 — ") /1 + dofy — A —2(Byw? + Bjo + By) =0,

which with
-0 — at\ X0 (1.27)
==z -a g -~
can be represented as the linear differential equation
» | Be+ Bio + By (1.28)
F+ = si—y =0

This form of equation was obtained by N.A. Slezkin [173] for an
axisymmetric flow of an incompressible viscous fluid.

The derivation of a further solution and its agreement with the
boundary conditions for a concrete jet problem depends essentially on
the choice of the constants of integration Bo, Bl’ 82. In the simplest
case where By = B, = B, = 0 we arrive as shown below at L.D. Landau's
problem [122, 302].

Let us now turn to Eq. (1.18) to determine the function rl(w)
which enters Eq. (1.13) for the temperature distribution. Integrating
Eq. (1.18) and noting that the constant of integration vanishes by vir-

tue of the boundary conditions (1.23), we can write (taking into ac- e
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count the connection between the functions fl and F established above)

1 ( 3
S - o e (1.29)

From the latter equation we obtain

7 (@) = BIF (@)™ (1.30)

Temperature and pressure can be defined in the same way in terms
of the function fl(w). From the physical point of view this means that
the temperature distributlon, Just as the pressure distribution, 1s de-
termined by the velocity distribution.

In order to solve the problem in a first approximation such that
a complete solution 1is obtained, it would be necessary to determine the
first nonvanishing term in the expression of the peripheral velocity
component. For this purpose Eq. (1.21) must be integrated, substitut-
ing in it the expression of the function fl(w) obtained for concrete
conditions. If in this procedure the function 02(w) proved to be equal
to zero, one would have to pass over to the equations for the following
terms of the expansion.

Note that 1if @2(w) ¥ 0 - and it is only this case which will be
consldered in what follows-the expression for the peripheral velocity
v¢ is determined (with given value of the angular momentum Mx relative
to the axis of symmetry of the jet), see below, by the function fl(w).

Conversely, the velocity components v, and Vo (and the radial and axial

R
velocity components v, and v, in cylindrical coordinates which are de-

termined unambiguously by the former) are independent of the peripheral
velocity. The same holds true for the temperature and the pressure. As

we can see from Eqs. (1.19)-(1.22) this independence of the "twist" 1is

also conserved in the second approximation.

It 1s quite obvious that this perculiarity of the motion 1s due to

the nature of the method of solution which 1s applicable only at con-
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siderable distances from the source.
1.3. L.D. LANDAU'S PROBLEM

We shall now use the results obtained above for a solution (in a
first approximation) of the concrete problem of a source Jet flowing
out of a thin tube into an unboundec space filled with the same fluild.
In addition to paper [122] we also consider the results of paper [203]
for the peripheral velocity and papers [163, 302) as regards the tem-
perature.

The solutlon is reduced to determining the distributions of all
velocity components, the pressure and the temperature, at a consider-
able distance from the source, taking into account the influence of the
initial momentum on the flow pattern. As to the mathematical side of
the problem, we have to integrate sucessively Egs. (1.28), (1.21) and
to calculate in terms of the given function fl(w) the expressions for
hz(m) and rl(w) with the help of the formulas (1.26) and (1.30).

In this investigation Eq. (1.28) is of fundamental importance as
it contains the three arbitrary constants BO’ Bl’ 32. As already men-
tioned, the cholce of the values of these constants corresponds to the
desired choice of the concrete conditions of flow. Unfortunately this
choice results in "guessing" the needed values of the constants before-
hand and then to verify whether the solution obtalned corresponds to
the stgtement of the problem. In this connection it is interesting to
subJect Eq. (1.28) to a detailed investigation [221]. Some particular
cases of solution will be given in the following, here we shall only
deal with one of them which corresponds to L.D. Landau's Problem.

Let us put Bo = Bl = 82 = 0, As we shall see from the solution,
the assumption that the three constants of Eq. (1.28) are all vanishing
enables us to satisfy all the necessary conditions of the problem. Note

that in paper [122] where Eq. (1.28) does not occur, several terms were

- 32 =

e

W’

PR
O«




also dropped a priori which was Jjustified by a subsequent verification
of the solution to satisfy the conditions of the problem.
From Eq. (1.28) with By = By =B,™ 0 we obtain
Frem0, FuA+ Ay,

and hence
ho=2tgen - (1.31)
The expression obtained for the function fl(w) satisfies the
boundary conditions fl(il) = 0 for arbitrary values of the constant
L = -Al/AQ‘
Subscituting fl(w) in Eq. (1.21) we obtain the followlng equation:

2 2(0—1I» :
© a_u°'+u_m:!u;r°-.°-. (1.32)
This equation determines the function ¢(w) which is linked with the

sought function ¢2(w) by the equation
O=0,V1—0b (1.33)

A general solution of Eq. (1.32) has the form

CLU+L) 1 —a Ly
D=
z - -Lp T harna—rep

{1+ f)o— 1 +3(F —1)a—onm}ts],
which ylelds for the function ¢

O_CL(L+1)Ym 7]
’ 4 (*-’-“)‘+“'(:+L)u‘—urvr-—.r"" >

x{(1+ T)o—++3(mr—1)t—enh e}

It is obvious that one has to set 43 = 0 to prevent the function

2

Oz(w) from growing unlimitedly as w + 1.

Thus

O = CLUu+ L) VI=&
) 2 “-m' (103“)

C being the constant of integration. The expression (1.34) has been ob-
tained in paper [203] by M.S. Tsukker.

In order to determine the pressure distribution, let us determine
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the function h,(w) from Eq. (1.26) with B, = 0 and the above expres-

sion for the function fl(u):
| b= — 2 . (.35

Thus we see that all functions needed to build up a solution of
the dynamic problem in a first approximation can be expressed in terms
of two parameters, namely the constants L and C.

Let us now turn to the determination of the function Tl(w) enter-
ing the expression for the temperature.

From Eq. (1.30), taking into account that P = l-Lw, it follows
; that
| 7, (0) = B(1 — La)™". (1.36)

The expressions (1.31), (1.34), (1.35) and (1.36) furnish a com-

T plete solution to the problem in first approximation. They still con-
tain the three constants L, ¢ and B which remain unknown as they cannot
be determined from the boundary conditions.

In order to determine the constants L, ¢, B we need some addition-
al conditions which replace the initial conditions lacking in the pro-
blem.

As already mentioned, for solutions which are valid at great dis-
tances from the source, the values of do = 2r0, the characteristic di-
mension (tube diameter), the initial values of velocity, temperature,
etc. are unessential. This, of course, does not mean complete arbitrar-
iness in the choice of initial conditions. In a concrete flow problem,
in addition to the physical constants of the effluent fluid (p, v, a)
it 1s necessary to know scme integral characteristics of the jet with
the help of which the constants L, ¢ and B can be found.

REFERENCES
116, 122, 162, 163, 171, 172, 173, 174, 203, 221, 302, 303.
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Chapter 2
SOME PROPERTIES OF THE SOLUTION
2.1. REMARKS ON THE FORM OF SOLUTION

When choosing the integral jet characteristics we can, on the
basis of dimension considerations, draw some conclusions on the charac-
ter of Expansions (1.9)-(1.13), etc.

For the first approximation of the problem on an axisymmetric Jjet
(without "twist") in the orifice of the tube with R + 0 the velocity
component Vop™®s and the initial flow rate of the fluid Go‘m vxodoz*o
whereas the initial "jet momen ) oo ™ vzxodoz is finite (in agree-
ment with the form of solution val : for R >> do, do ~v 0),

Let us add Jx to the given characteristics of the jet. In this
case we can only build up a single expression for the nondimensional

velocity components

and
b
M =ro).
It 1s obvious that the components Vp and Vg (and the axial veloci-

ty vz) are proportional to 1/R as Expansions (1.9) and (1.10) begin

with this term.

A nondimensional expression for the pressure can be written in the

form of
e
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Therefore

P— P g
the function hl(w) in Eq. (1.12) must be identically equal to zero as
this was obtained above.

When Jx is given it 1s thus possible to construct a solution to
the dynamic problem in a first approximation, i.e., to find the con-
stant L.

A nondimensional expressior. for the temperature can be written 1in
the same approximation in terms of the finite and nonvanlishing flux of

2
the surplus heat content @ »~ vzo(To - T J)d 0° Here

(T—Tm)n J,
T_ =FT(9'P_:" ").

and hence follows

T =T~

which also agrees with (1.13) (A = pcpa is the coefficient of thermal
conductivity). Knowing Q enables us to determine the constant B.

When the rotation is taken into account 1t 1s quite natural to
choose the quantity of the initial angular momentum flux Mz of the
fluid relative to the axis of symmetry Ox as an additional character-

istic. The quantity Mz ~voo = will be finite and nonvanishing for

z0% 0%0

vg Y 1/R only if v, ~ l/R2. The first term of Expansion (1.11) must

Q
therefore be identically equal to zero which was already shown when
integrating Eq. (1.17) for the function o .
Thus the nondimentional expression for the peripheral velocity

reads
= (o).

R, = Mz/Jz being a characteristic length.

When M: is given we can find the constant ¢. Thus we have solved
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our problem in the first approximation considered.

In order to develop the next approximation it 1is necessary to know
an additional quantity of the dimension of a length®*., Taking into ac-
count that the "addition" to vp will be proportional to 1/32, we can
choose the initial flow rate per second, denoted by Go, as this quanti-

ty, which 1is nonvanishing in the approximation considered (Go v vzo‘dzo

will be a finite quantity for v, v 1/R2). Knowing G, enables us to
build up nondimentional expressions for the velocity components, the
pressure and the temperature.

Thus, instead of having initial condltions of the jet efflux at
our disposal, we can use the four integral characteristics of the jet,
Jz’ z

Note that only a single nondimensional parameter can be derived

M_, Q@ and G, (the physical constansts p, v, a and °p being given).

from the first three dimensional quantities (Jz’ M, and Q) and the phys
physical constants which must be given simultaneously in order to fi-
nally solve the problem in a first approximation; this parameter which

does not contain Mx and @ is the Reynolds number

PV~

2 .
(or, after the introduction of a proportionality factor, RQ-V-;]/’_)_

Reynolds' number Re is the only characteristic varameter which
maintains its value not only 1n'the first approrimation but also in all
the following ones (provided the motion is free from rotation). With
Mz ¥ 0 in the equation which correspond to higher terms of the expan-
sion (beginning with 1/R3) the interaction between the axial and the
rotational velocity components becomes effective. Together with dimen-
sionality considerations this results in the possibility of deriving a-
nother nondimensiongl parameter from the characteristics Mz and Go (and

the constants), a ratio of characteristic lengths. This parameter be-
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longs to the arguments for nondimensional pressure and temperature dis-
trivutions in the corresponding apprcximations. Here, as always in pro-
blems on the motions of an incompressible fluid with nonvarying physi-

cal properties, the temperature in its turn will not influence the flu-

id's flow.
2.2. SELF-SIMILAR SOLUTIONS

A solution of the basic system of equations written above in the

nondimensior.al tform

B Fare), M - R0, ) %;':-F,(e,ﬁn).}

(P— P) RO (T—T R 1 a6
_P,,i—=‘Fp(°- Re), Tf’"r(e. Re, Pr), J

displays of the following remarkable peculiarity. When each of the

above expressions is written in th form of a ratio, e.g.,

= O.Re), e 6, Re, P
5.,7'.."/“(' ) z'rﬂ:,:=/r(. , Pr) etc.

these ratios will not depend on the coordinate R. This indicates that »
with arbitrary values of R the relative velocity, temperature and pres-
sure distributions will be identical (with any value given for the pa-
rameter Re) and the absolute distributions will thus also be similar.

This property of the solutions 1s consarved in the transition to

cylindrical coordinates

S = he (7 Re) o= (s Ra) = (5 Re),

"lr-o

0_132%’—'/’(':?' Ro), (7153':5/,(%, Re, Pr), (2.2)

where r/x = arctg 9; Y am? vwm and characteristic (e.g., Maximum) valu-
es of the velocity components. These solutions (and the corresponding
motions of the unbounded medium) are called self-similar.

The solution in first approximation i1s thus self-similar.

In order to evaluate this result correctly let us turn to a gener-

a2l investigation of the problem of the self-similar solutions of the
- 38 -




Navier-Stokes and energy Equations (1.1)-(1.5)(see [57]).

In a general form the slef-similar solutions (2.1) can be writien
in terms of the product Fi(G)'R'n . Let us look tor which values of the
exponent n self-similar solutions of the basic system of equations may
exist. Owing to considerations of generality we cannot restrict our-
selves from the very beginning to jet flows alone so that we retain in
the solutions the explicit expressions of velocity, pressure and tem-
perature, given in terms of the coordinates R and 6 alone (for flows of

axial symmetry).

We put .
va= 1z Fa(®), ve=—5Fi(8), vy = = Fo(8),

’_POO=V|FP(°) T—Tq,n’;.(” (2-3)

P R

Note that instead of these expressions we could have written more

general ones, of the form of v, = FR(B)VR(R) etc. It can, however, be

R
shown (by substituting these expressions in the basic equations) that

this generalization does not yleld any new self-similar solutions apart

from the power functions (VR n BT,

Substituting Eq. (2.3) in the system of Egqs. (1.1)-(1.5) we obtain

. F% FgpF, F} F3
R R _Rnu— RYH =

F ‘ » ’
erl +W{“(a—1)pn + Fpr+ Fpctgd —2Fg) —
2

—W(F'. + F.ctgﬁ),

FgF, FF, ”»

(1—B) ReBH + R T g ctgo -

F, 1 e 0 2F zr'.
= — o PO DF+ Fit Fogo—o8bp 28 s

F r ;
-7 R:::l + R‘#:ﬂ (Fo + Foctgf) =
| . r
=~;',—,,{T(T—1)F0+F0+Fo°t89—a;'r;}.
r | , ’ i
| (2—a)EJ—l+W(Fo+F.cth)-0,
Fr + (ctg8— Pr Fg) Fr + [e (e — 1) + ePrFp)Fr = 0
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(the prime marks derivatives with respect to 6).

The system obtained goes over to a system of ordinary differential
equations if a series of conditions resulting from the requirement that
all equations of (2.4) must be independent of the coordinate R, ere 1im-
posed on the constants a, 8, vy, § (the so-called constants of self-sim-
ilarity). These conditions are represented by the equalities

2at+1=a+f+1=P+1=2r+ilmdtlm=at2=8+2,

| atT+imBrr+imrt2 ,
The value of the temperature constant € of self-similarity not

been determined from the equations.

A solution to the latter system of linear algebralc equations
which (together with the integral conditions of conservation of momen-
tum flux, angular momentum, and excessive heat content, see below) de-
termines the problem unambiguously, has the form

GmB=y=1 0=2 e=1, 5.5)

The initial system of Egs. (1.1)-(1.5) will therefore assume the

form

— Fh+ FaFy—Fy—Fy=2F,+ Fa + W
: + Froctgd—2F, —2Fp —2F,ctg®,

, ; : . . By

F.F.—F':ctge=—F,+F.+F.ctge+2ﬂn—iln—:6, + (2 6)

' i} " ¢ F *
FoFy+ FyFqctg = Fy 4 FQCt’ge_ﬂT:"o

Fr+ Fy+ Fyctg8 =0,
Fr+ (ctg®8—Pr F)Fr 4+ Pr FgFr = 0. J

A self-similar solution to this tytsem agreement with the obtained

values of the constants of self- similarity must be written the form
Fy(0 F (0
P—P Fy(0) Fr(9)
E = —f— T-Ta=—p— (2.7)

As far as we know this sofution has not been found so far for an axlw=

symmetric flow of a viscous fluld. For a more precise statement of the

problem, a source Jet with zero angular momentum relative to the axis
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of symmetry (Mx z 0), the result obtained 1s reduced to the problem
considered by L.D. Landau.
At the same time for a twisted Jet the result obtained vw ~ 1/R
disagrees with the expression v¢ v l/R2 derived above (2.1). In our
problem the point is the following. :
The system of expressions (2.7) in which Vo ~ 1/R 1s the only form i

of self-similar solution for the axisymmetric motion. For a twisted

source jet, however, this self-similar solution would correspond to the

trivial case of vq>

the previous section) with v, Vv

0 throughout the region of flow since (as shown in

o v‘,p ~ 1/R the initial =agular me-

mentum flux of the source Jet vanishes.
It 1s therefore impossible to apply the self-similar solution
(2.7) to the problem of the twisted jet.

On the other hand, maintaining the relationship vp vV %~ 1/R and

6

assumirg v¢ n l/R2 we arrive at a nonzero (and finite angular momentum

Mx and a self-similar solution of the problem (in a first approxima-

tion) in which the initial system of Egs. (1.1)-(1.5) has been simpli-

fied. This consisted in omitting in Eqs. (1.2) and (1.3) the terms con-

taining ”2¢ =5

to the other terms (of the order of R'3) in Eqs. (1.2.) and (1.3) is

. This neglection of terms proportional to R with respect
obviously permissible at great distances from the source. An analogous
method was used in the papers [54, 131, 197] etc. in order to obtain
self-similar solutions of Jet problems within the framework of the
boundary layer theory. Such flows are usually denoted "slightly twist-
ed" ones.

It stands to reason that a neglection of individual terms in the
initlal system of equations and the assumption that the constants of
self-similarity are equal to
GmBumtm], Tmdm2 : (2.8)
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yields to another system of ordinary equations which hold true instead

of Conditions (2.5) and do not coincide with Eqs. (2.6):

—~F% + FaFy—Fy=2F, + Fa + 1
+ Frelgh—2F, —2Fg — 2F, ctg ,
’ ’ - ’ ’ ’
FoFy = -F,+F.+F.ctgﬂ+ ZFR—“—-n:—.,
] [ ¢ ” (2'9)
FoFq + FyFqctgf=Fqy+ Foclg— sy,
Fg+ Fy+ Foctgd =0,
Fr +(ctg0—PrF)) Fr 4 PrFaPr =0. |

When we pass over to the independent variable w = cos 6 this sys-
tem coincides with Egs. (1.15), (1.16), (1.18) and (1.21) if the func-

tion ¢, = 0 is used in them.

1

The self-similar solutions are of great importance in hydrodynam-
ics [1u8, 177] and, in particular, in the theory of jet motions of a
viscous fluid. From the mathematic. 1 point of view they are character-
ized by the relative simplicity of the pertinent ordinary differential
equations compared to partial differential equations. This 1s particu-
larly important for the nonlinear problems often encountered in hydro-
dynamics.

As to the physical point of view, the self-similarity of solutions
(that 1s, similarity of the velocity, pressure and temperature distri-
butions) corresponds to a property which is common to all processes of
"leveling" (of velocity, pressure, temperature, potential, etc.), the
fact that at a sufficiently large distance from the source of pertur-
bation the initial conditions have no influence. From this point of
view the jet flow considered, which 1s assumed produced by a source
Jet, can be attributed likewise to the efflux from a thin tube of cir-
cular, square, triangular or any other form of cross section.

As regards the estimation of the distance at which the self-simi-

lar solution (or a solution obtained by the method of series expansion

in increasing powers of 1/R) describes the actual flow in a suffi-
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clently good approximation, it may only be determined from an accurate
(or an approximate, e.g.. numerical) solution of the problem of a Jet
issued from a nozzle of finite dimensions where the concrete initial
condaitions have been taken into account. Without such a solution we
only have the inequality R >> do at our disposal where da 1s the char-
acteristic dimension of the outlet cross section of the nozzle.

It 1s obvious that a self-similar solution of the problem consid-
ered could have been obtained immediately from the values of the con-
stants of self-similarity (2.8) determined above and from Egs. (2.9).
The way of representation chosen in this chapter can be explained by
the wish of considering a more general method of solution by series ex-
pansions which enables us to obtaln a solution which is somewhat more
accurate than the self-similar one.

Since in the following chapters we shall consider solutions of the
boundary layer equations, we want to remark in this connection that
precisely the above analysis of the system of Navier-Stokes equations
for a plane-parallel motion of a viscous fluld results in the absence
of a self-similiar solution for the analogous problem of a plane source
Jet. In fact (see [57]), for a self-similar solution to the problem of
a plane flow the corresponding constants of self-similarity are a = .

= f =1, 6 =2 in formulas of the form

14 ] ~#. vo~p"o P—Pp“""‘;‘l'.
(in a polar system of coordinates). Taking the equation of a continu-
ity into account, the equation vy = const/R corresponds to these values
of a, B and 6§, which does not describe a flow produced by a plane and
free source jet.*

Having made these remarks we want to turn to the main problem of
this chapter, the axisymmetric source Jet and its final solution, de-

termining the constants L, C and B.
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! 2.3 THE INTEGRAL CHARACTERISTICS OF THE JET
According to [122] we use the condition of momentum flux conserva-

tion in order to determine the constant L. For thils purpose we calcu-

! late the integral or momentum flux density over a spherical surface of
arbitrary radius centered at the source. It 1s obvious that only one

component of the momentum flux tensor, Il contributes to this integral;

RR
this component 1s obtained by projecting the momentum flux through a
plane whose normal is orientel along R on the axis R.

Taking into account the general relationship between the compo-

nents of the momentum flux density tensor nik and the stress tensor Ok
[122]

n ik = PUVx — Oux,
where
oy, Oy
6u=—P5u+P-( : +a—‘:).
we obtain

o
”an=P+Pvi—297"£-

and in the projection to the Ox axis

Jy = @an;)sed:,
where ds = Rzein ededcp i1s a spherical surface é€lement.
The result of caluslating this.integral, taking the above expres-

sions the the pressure and the velocity v, into account, reads as fol-

R
lows:

1 4 L 1 14L
L= mew =T +Tiep—whier (210

For brevity we shall call the quantity J_ (and accordingly 3;)
the "jet momentum".
Equation (2.10) determines the constant L in terms of the initial

_ ap
i source-jet characteristic Jx. As to its physical meaning Jz corresponds <»
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as 1ndlcated above to the square of the characteristic Reynolds number

of the source jet

7 ot Res
LR [ 77T i 7

or

= L i 14+ L\
Re=8VT, =8 (1 + 3 =p—mhiir)

(2.11)

To 1llustrate this relation we give a graph of the function r =
= L(Re) in Filg. 2.1.

We see that low values of the constant L correspond to low values
of the Reynolds number, whereas when Re goes from zero to infinity the
L goes from zero to unity.

Though it 1is well-known that as soon as with a value of Re ~ 15

[224] (corresponding to L = 0.82) the free axisymmetric laminar jet

loses 1its stability at a certain distance from the nozzle and the flow
becomes turbulent we are, with regard to the following, particularly
interested in a solution to the problem with the parameter L close to
unity. In this case the flow will be characteristic of a problem of the
boundary-layer theory gf a source jet. This problem wlll be discussed
later on on greater detall.

Let us now determine the constant B of integration from the con -
dition of conservation of the flux of excessive heat content &. Just
as in the case of the momentum flux, theqquantity QR = Q 1s obtalned as

the integral over a spherical surface of the radial component of the
heat flux density.®
0 = §ocson (r;r,)—a%%]d:.
Substituting the values of the functions vp 8and r-T, from the ex-

pression

VR ‘—-\!11#2. T—ng n (o) = B“_I‘)—"I '
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Fig. 2.1. The parameter [ as a function of the Reynolds number Re.

we obtain

+1
Q = 2m S (1 —Pr £) 7, do.

t—1

As the result of these calculations we have
B = 2-B(LPn, (2.12)

where

Fuqhx_(%“_Qnm zﬁziiif[““GIfY"“}+

A graphic representation of the function B = B(L,Pr) is given in

Fig. 2.2. As we see from it, the value of B i1s essentially higher than
unity with low values of L. In this region the influence of Prandtl's
number 1s algo conslderable. With'a value of L of about L > 0.5 the
quantity B <1 and B+ 0 as L + 1.

In order to determine the constant ¢ which enters Expression

(1.34) of v, we use the condition of conservation of angular momentum

P
flux relative to the axis of symmetry of the jet through a sphere of

arbitrary radius R.

“p

The latter may be represented in the form <
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Fig. 2.2. The parameter B as dependent on the parameter L and the
Prandtl number Pr: 1. Pr = 0.5; 2. Pr = 1.0; 3, Pr = 2.0.

The latter may be represented in the form

"My= ;‘ZnR’Sﬂg;sin'edﬂ. (2.13)

where the component HR@ of the momentum flux density tensor is given

by

IRy = pvpve + 1 (T ;%)

Determining the veloclty components Vp = - v f'l(w)/R and v(p =
=V @2((»)/1?2 with the help of Egqs. (1.31) and (1.34) we can obtaln an
expression of HR¢ and calculate the integral (2.13). The results of
these calculatiolis ylelds the following relation between the angular

momentum flux and the constant C:

€ = s T, (2.14) .

where

¢ Lu—n 3 41—Dv, {4+Ly
sy ({tsp=3 =T} - (2.15)
Let us glve a brief summary.
The expressions for the veloclty components, the pressure and tem-
perature obtalned above in a first approximation read in their final

form:
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oo = — 2VL L—20 4 L , (2.16)
R R (T=Lay
v.=—2le‘ |‘1_—0" (2.17)
_OvL(+L) Vi=ad
Vo= —m— = Lap" (2.18)
P— P VL L—e
Sty e o=y (2.19)

T —Tw= o (1—Lo)™. (2.20)

To solve the problem in a second approximation the function h3(w)
must be eliminated from Eqs. (1.19) and (1.20), an easy task when we
take into account that 01 = 0. The equation obtained for the function

[(1—o") Fy)’ — /iFy +3(2— f) Fy = 1
having substituted in it thé expression for the fl from (1.31), coin-
cides with Eq. (10) of Paper [162] by Yu.B. Rumer in which 1ts solution
was achleved. This solution (and also the solution for the peripheral
velocity component and the temperature) and to a still higher degree
the further approximations are connected with very cumbersome computa-
tions and are therefore not considered here.
REFERENCES

57, 114, 116, 122, 162, 163, 168, 172, 173, 174, 203, 221, 224, 225,
302, 303.
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Chapter 3
RESULTS OF THE SOLUTION
3.1. THE FLOW PATTERN
In order to represent the results obtained in a more 1llustrative
form we rewrite the expressions determining the velocity, pressure and

temperature distributions in cylindrical coordirates:

2vL +
=V-+m{ (Vi+ﬂ
In (_LViFp
TzVitm 7=,+=..LL)-
m-c““+” k
28 Vi VTZZF—L
»— p., WML (_LYViTw
= SVIiTE (VITw—Lp'
L -3Pe
) t

o= viTa('~ virF

]

(3.1)

T-—T

where 'l"%-

Let us give a few examples to 1llustrate the character of the
flow determined by Eqs. (3.1).

Since Expressions (3.1) are given in terms of the nondimensional
parameter L which 1s an unambiguous function of the characteristic
Reynolds numberko--‘—,z—’."/_',__':_._:it is first of all expedient to determine
the influence of the latter on the spatial distribution of the variable
sought. In thls connection we must not forget that the function L =
= [(Re) represented in Fig. 2.1 shows that when Re 1s allowed to go
from zero to unity. Low values of L will therefore correspond to a jet
flow with small momentum flux whereas with L + 1 the flow 1s produced
by a considerable initial momentun.

Following L.D. Landau [122] we shall agree in calling these flows
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"weak" and "strong", respectively (bearing mind that in the case of

high values of Re and therefore values of I close to unity the actual

o

*4) flow in the jet will be turbulent).
’ »}47’ |
§ - ]
~ o I ~5 = _ ’ﬂa
- ~ , =l
h‘~\:T\\ i \-'-—"47 J‘d
h ~ \\\~ \\\ — J—’ _”
el . T« by 1 -t \ e yan
= :~' N * et P b ‘.1_'—1--
] Q"*“":f.":::-}:::::ﬁi '
-4 -l_ 0 2 ¢ __ 4 .l 4 ]
Fig. 3.1. Streamlines in axisymmetric jet.— L[ = 0.1, "weak" Jet;
am,=, | = 005; w——— [, = 0.8’ "Btrong" Jeto
A general representation of the flow pattern with different val-
ues of L 1s given by the graph in Fig. 3.1, the streamlines being cal-
culated according to the formula
—_ - ” .
\ ¢ = vRg (8) = ZVLm- (3.2)
As we see from the 'igure the flow region corresponding to a cer-
tain given value of y = const narrows as L lncreases, particularly
- strongly below the source. This indicates that &as L increases the whole
distinct field of flow assumes the character of a jet, displaying ani-
sotropy of the motion. Precisely this property of the jet 1s 1llus-
trated clearly by the distributions of the relative velocity components
1 o
-Jk— and __ , represented in Fig. 3.2. As I increases, the axial ve-
Pumia ¥rmax
locity in the cross section of the jJet decreases more and more rapidly
which 1s accompanied .+ a drop of the ratio between radial and axial

velocity components. In this connection it must also be taken into ac-
count that, as [ increases, the damping intensity of the Jjet decreases
with increasing distance from the source as this can be seen from the

::) formula
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‘L-_'_-_-:-r‘f—z (see Fig.3.3).
Figure 3.2 also shows the dependence on L of the characteristic
values of the nondimensional coordinate 4, -;.E_, which correspond to

=05 and 0.1. These curves characterize the condi-

the two values —*
¥z max

tional width of the zone of perturbations caused by the source jet for

several values of the parameter L..Note that the limiting case of a

"weak" jJet, L » 0, corresponds to a quite definite finite width of the

Jet whereas the width of the jet becomes infinitesimal as L + 1.

e ."!'
\ _ '\Ld*

h [ — | .4
L :-: ¢ 3 00 1 3 7 ¢ o o _ﬁ
P v . 6 9 ¢

Fig. 3.2. Relative distributions of the axial. a) and radial; b) velo-
city components in the cross sections of an axisymmetric Jet,-=e= L =
= 0,1} =i=e=e=L = 0,5} =ce== L = 0,8; ¢) conditional width of the jet
n® as a function of the parameter L. 1 (w/ogw = 0.4 1. (s /nm) = 0.

For a given value of [ the distributions of the relative veloclty
components are self-similar, i.e., they depend only on the ratio n = —:—
(see Fig. 3.2). Fig. 3.4 the same distfibution .L- is represented as

% BAx
a function of the reduced coordinate wiw, = r/ny, where n¥ corresponds to

the value of = --;- . This method of representation is often used 1in

¥z max
the theory of jets.

We see from Fig. 3.4 that, generally speaking, the different dis-
tributions of .'.L:_“, corresponding to different values of I tend to co-
incide as L increases. Coincidence 1s virtually reached even with L >
2 0.8. This fact will be explained in the next section of this chapter,

when we dq.scuss the problem of the properties of a solution with high
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values of L.

Finally, Fig. 3.5 shows two sets of values of the veloclty Ve and

the ratilo ;" . The shape of these curves is different as we can see
X IAK

from the figure: the lines of equal velocity with respect to the rela-

tive velocity are straight lines whereas these lines with respect to

Vg are curves Join the axis of flow.

“ht
”Ht
|3
')
- \'i
) A
N
Ny
A N~ “r-
. s o )
ez o+ ¢ =

Fig. 3.3. Variation of the axial velocity component along the axis of ¢t
L = 0.1; ==, m,= L = 0.5; s

the jet (in conventional units).

---- L = 0.8,

7}
[ )
L~
uh
Shy
N ™

0 1 e ﬂw r
. e

Fig. 3.4. _Distribution of axial velocity component in cross sections of
the jet. L =0,1; =s=e=e= L = 0.5; === L = 0,8.

Figure 3.6a shows the relative distributions of the peripheral ve-

locity component approaches the jet axis as the parameter L increcases.
There (Fig. 3.6b), in the same cross section (at a certain distance

from the source) we choose the value of Yy max 28 the scale parameter
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of vQ. The figure shows that the parameters L and Mz exert an opposite
influence on the intensity of "twisting" and the distribution of qvmaz H
in the cross section of the jet. St
.The Jet properties of the flow influence the temperature distribu-
tions analogously as the eynamic picture. In addition to the above
characteristics of the jet the Prandtl number will also characterize
the thermal problem.
Figures 3.7-3.9 show graphs illustrating the decrease of the ex-
cessive temperature in the cross sections of the jet and along its axis

for several values of the parameters L and Pr. Figure 3.10 shows the

preserce of a self-similar distribution of the excessive

(I
!/ -~
,l' | 7

o}
]

-4 -

Fig. 3.5. Lines of equal absolute and relative (stralght lines) values
of the axial velocity component. Lmog —=—=Lew 08; === = L= 08

temperature for a "strong" jet and the relative courses of the velocity
and temperature distributions for several Prandtl numbers. In the case
of Pr = 1 the relative velocity and temperature distributions coincide
as this is usual in problems of the boundary layer theory to which, es-
sentially, the "strong" jet pertain. With other values of the Prandtl ';)

number the temperature distribution curves are correspondingly "broader"
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Fig. 3.6. Relative peripheral velocity distributions in jet cross sec-
tions. - Lum0f; w—— L@ = === Lm0l I Nym3 8 Nyt

L .

u \

» 3
Yor AV -

24 3 7 4

'i". i - i 1
= RN . !
A — —_——t ’

4

'} 1 F] ] J‘w 77 B 7} ] 7]

Fig. 3.7. a) Cross-sectional distribution of excessive temperature;

b) effective thickness of thermal boundary layer of the Jet. u— aT/aTm=04;
: u-mu'.-o.sx 1. Prm08; 8. Prei,0; 3. Pre30 Lol ——=Llo0f = ———L=0s

LA

’ 1 F3

Fig. 3.8. Cross-sectional distributions of excessive temperature, i .fr=os;
5. Premip o P m3, - Loy, ——— =1L =98
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Fig. 3.9. Variation of excessive temperature along the Jjet axis (in
conventional units). I—Le e 17 =L = 0,8 11l = Lw0,8; a.Pr=00; 6. Preg,0; o Pred0.
than the velocity distributions if Pr < 1 or "narrower" if Pr > 1, In’
other words, in a case where, e.g., the mentum transfer coefficlent 1is
smaller than the heat transfer coefficient (v < a, Pr < 1) the temper-
ature drops much more rapidly along the jet axis than the velocity; at
the same time the width of the thermal "trace" (the region of tempera-
ture perturbation) in the same cross sections will exceed the width of
the dynamic "trace". The smaller Pr thé broader will the heat layer be
where the influence of Prandtl's number Pr is great in the marginal
parts of the jet and relatively small in the middle (compart the n*
curve for ﬁ.’: =04 and 0.5 in Fig. 3.7b).

The relationships between the dynamic and thermal properties of
the jet derived above the general, considered from a qualitative point
of view, they are the same in all jet flows, including the problem of

the laninar and turbulent coundary layer jet.
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Fig. 3.10. Relative distributions of velocity (solid lines) and temper-
ature in cross section of the jet (Pr = 1). s.L=04;0.-Lm0s; 5 L=os,

3.2. FLOW INSIDE A CONE

Let us briefly discuss the flow within a right circular cone on
the basis of Eqs. (1.28) and (1.29) as another example for the motion
of a viscous fluid which, in its properties, is similar to the jet flow.
The problem can be sketched as follows. We assume the initial momentum
flux of the jet, issued from a small orifice in the vertex, oriented a-
long the axis of the cone; the lateral.surface of the latter 1s taken
as the surface of the stream. In other words, the problem of the expan-
sion of an untwi:ted jet of a viscous fluid in a bounded space will be
solved under boundary conditions corresponding to a perfect fluid®,
From the general solution of this problem [116] we obtain as a particu-
lar case the solution of the problem of a jet issued from an opening in
a plane wall, perpendicularly to the latter [303].

We shall consider the dynamic and the thermal (diffusion) problem
at the same time.

As in L.D. Landau's problem, we satisfy the conditions chosen by
an appropriate choice of the constants Bgs By and B, in Eq. (1.28),
considering the self-similar solutions of the form of |
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D.-—Vr'(].-). '0-‘-'%0 (3.3)

"”" -vh® r_r, 20
For this problem we have

- By = Bym — 3 By = Uk 1,
In this case, instead of the three constants Bo, 81, 82 a single con-
stant b enters the solution; its value is determined from the condi-
tioris of momentum flux cgnservation.

Equation (1.28) will under these conditions take the form

F + saiapF =0. (3.4)
Its solution must be sought in the form of
F=t+a) (3.5)

to which the two independent particular solutions
Fi=(1+0)"cosQ, Fym(1 + @)*stn Q,
correspond v'vhere Qu=bln(l 4+ @).
A general solution to the dynamic problem, the definite function
fl(w), is obtained in the form

| A - )
hwy=—2(1—o) giiggt=(—u {~1+20ETE]. (3.6)
The value of the arbitrary constant ¢ can be found from the boundary

conditions: ficos a) = L (w) =0, 1.e., o =0 at the surface of the cone

whose vertex angle is equal to 2a. This yields

-1
C--—a—.r’”""g' . (307)

Taking this expression into account we obtain finally
_,_m_,.‘ L L (3.8)

fi(w) = Ne(1 —0)
with the additional definitions:

41 3+1g0,
N'-f:’iti‘: My= T—’-w:. (3.9)

As regards the constant b» it must remain below a maximum value
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which 1s determined from the transcendental equation !

24 tg b} .
O R a0 1e ) o g, (3.10) ,_!

In this equation, which results from the requirement of regulari-

ty of the velocity components throughout the field of the flow, the .

constant b is an implicit function of the characteristic Reynolds num-

ber of the problem, R"Vz:l/g (Ja: is the total momentum flux of the

T i A

jet). As Re increases the value of the constant b also grows which cor-

responds to a transition tao a "strong" jet.

Expression (3.8) obtained for the function fl(w) determines the
velocity components and the pressure (when we take Eq. (1.26) for the
functions fl(w)~ and hz(w) into account).

Let us also determine the function 'rl(w) entering the expression
for the' temperature. For this purpose we shall make use of Eq. (1.30)

which links the sought function F = Pl + CF2 obtained above. After a |

') few transformations we obtain ‘
"N, ‘ C
--;E;;u'&-l.'lﬂ-) CRCTE |
(o) =B(l +w) X
' 3o ',". (3 011)
— T (M g ~1g Og)
W X{M.cosQ—sin@) ety T Gicc)

, |
The value of the constant B is determined from the condition of l
conservation of excessive heat content flux (under the arsumption of an
adiabatic insulation of the nonheat-conducting lateral surface of the

cone): ‘

Q-Mg' U —Prf) v de. (3.12)
ug

The final expressions for the velocity components, the pressure

and temperature are written in terms of the initial (spherical) coordi-

nates:
- 5 . q‘ih
-
" —— =)




W e— ' N.
R= = F W esO—ia0

{tgﬂ.coso—nlnn - ‘

+b‘—°“. ”I—t‘nl
T+cosd M coall—sinB [ *

v o 1—cosb 1 —tgQ, clg0
vm— g N e M cgl—-1 °
P=ro_ % ’» A4 g Py §
7 T THVEEY S, (3=13)
' ‘ _ rm.a-o-u.uo.)-.‘
T—T.,....“’.(1+mo) M0 41
- Pr Ng (Mg —tg 02g)
"o 4y
X {MycosQ—sin Q) L )

We also want to gilve the streamline equation which corresponds to
the usual formula of the stream function of an axisymmetric motion:
v=vRh@®
This equation reads

”.—l‘ﬂ"
T—coef)gli—1g0,)°

R-ﬁ-const( (3.1%)

Figure 3.11 shows by way of example the stream lines for a motion
corresponding to a value of the parameter a = n/3. As we see from the
figure, under the conditions chosen the flow pattern in the paraxial
region maintains the characteristics form of a "strong" jet, in spite
of the limitations imposed by the presence of the walls. This property
1s conserved within a comparatively wide range of values of the angle a.

The problem considered 1s interesting as an idealized scheme of
expansion of a jet in a limited space. It is in particular character-
ized by counterflows of the fluid in the space between jet and walls
which are typical of such flows. For the jJet of a source as considered
here it 1s obvious that the total flow rate of the fluid through an ar-
bitrary orthogonal cone of spherical surface will be equal to zero.

Among the great number of possible values of the vertex angle 2a
of the cone we select one, a = /2, which corresponds to the problem of
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a Jet efflux from an opening in a plane wall. This flow, a particular
- case of the problem under consideration, has already been studizad by
: H. Squire [303].
With a = 7/2, 1.e., a jet perpendicular to the plane wall, we ob-
tain from Eq. (3.13)

Y |
l—mo ‘
i+m5ﬂmﬁ—lﬁﬂ} {

v i—coe® 4041
==K Spt Jegh—1°

' (3.15)
| PP o} A 41 !
. — g v+ 5
T—To= -R-(i+col0)"'{2bc0|0—

—sinQ)o ¥/

The diagrams of Fig. 3.12 1llustrate this

flow. For a "strong" ‘jet the influence of the
walls on the flow 1n the paraxial region 1s ex- 1
tremely weak. When calculating the motion with-
in the framework of the boundary layer theory
this fact enables us to ignore the walls' in-

fluence on the laws governing the expansion of

a jJet.
The boundary condition of the theory of a

perfect fluld (v, =0, va=0 at the cone surface)

accepted in this section instead of the physi-
Fig. 3.11. Stream-

lines for jet in cally correct condition describing the adhension
ggngeéaa;12/3). of the visous fluid, in the case of a "strong"

Jet, virtually does not cause a distortion in
the paraxial flow, not even at a given distance from the axis but suf-
) ficiently far away from the walls, since the boundary layer thickness

at the latter is relatively small. For more precise qualitative details
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| Fig. 3.12. Streamlines a) And isothermal lines b) in a jet issued from *
: an opening in a plane wall ]303]. 1) wall; 2) axis of jJet. i
Let us finally mention that the solutior obtained for a jet issued ]
from a plane wall (just as for the cone) can easily be completed in or-
; der also to comprise the case of 21 twisted jet. The solution of this
problem will be considered in detail in the following section for a
fan-type twisted jJet. Here, on the basis of the similarity of these so-
| lutions, we only give the final expression for the rotatib\al velocity 4
| 1 |
| | component for the efflux of a Jet out of a wall, without deriving it:
|
o Cs T—=cosd (4 4 cos 0)® 1
wm R Y I ST (3150) |
The constant ¢, =4 Cy¥* can be determined when the angular momentum J |
- 60 -

. . - i i e oA o b, I - 'vl,-._ FEROER o SO Sy S 4 _— i-. ' . —— . H




L L TR

flux Mz relative to the longitudinal axis is given. ?

This expression 1s identical to the analogous one for the type jet

(see below) as in both cases the expressions of the function fl(w) and

oz(w) are the same and there does not exist any twist on the axis:

* o -
V= 0 with w 1. Only vcp in cylindrical coordinates will be 4if

ferent.
3.3, THE TWISTED FAN-TYPE JET
Just as in the above case we consider the values of the constants

B B, and B

0’ "1 2
The numerical values of the constants 1is assumed equal to 8y = 1—b%2.

of Eqs. (1.28) connected with the equation Bo = By='—1}, Bi.

In this case Eq. (1.28) and its solution under the correponding bound-

ary conditions will describe a flow produced by an annular source®*. As

already mentioned in the Introduction we agreed in calling this form of

Jet motion fan-type or radial jet (see schematic representation of

Fig. 0.2). 1
With the values accepted for the constants Bo, Bl and 82 Eq. (1.28)

can be written in the form

{0

Its particular solutions have the form

2 A k3
Fl-(’+.). a+.), F.-(l‘-’-')' u-»'

and hence we obtain

7, +CF,

' ) - b
fio = —20— e b e — ) {1+ 0Z8ES) (307)

The boundary conditions for the fan-type jet are the following: i
/i=0 when 0e=0, /=0 wen o=1, (3.18)
they permit the determination of the arbitrary constant ¢
c:-r:{! (3.19)

whence

N61 = E

o oren e = S . _— . 2 b s e ko .l'.. “ r— I n — . II




:-t}—(i+0)‘

h@ ==t +bsgr | (3.20)

The constant b, as in other cases, 18 determined by the integral

=

condition of momentum flux conservation (for the semispace)

+1
L
J,-zuR'S (p+ ook — 28 38 VT—aVdo, (3.21)
[}
1 which results in an implicit connection of » and the Reynolds number:

| |
| Re ~ l/ g :
‘ Here too a "strong" Jet corresponds to large values of Re.

Let us now turn to the calculation of the rotaéional velocity com-
ponent v(p in the same self-similar approximation.

The. function 02iw) entering expression v,—%-ﬁ%l, is determined
by the differential equation

o — L0+ 2=k 0, =0, (3.22)

The boundary conditions, taking the syminetry with respect to the e

plane 0= % (@ =0) into account, can be written in the form

4 (0) = 0, lim (72 = (3.23)

Integrating Eq. (3.22), preliminarily rewritten in the form
(1 — o) Dy}’ + 2 (@®,)’ — (1®y)’ = 0,

and taking the boundary conditions into account, we obtain
{ o

@y (0) = Cy (1 — o) exp (S ;’-::%) .

‘-.,
.

Using expression fl(w) derived above we obtain finally

” =0 +ub
SO =Cmrire-nater’ L

where C, =4 C)*. The constant Cu is determined by the total flux of an-

gular momentum relative to the axis of symmetry of the jet, through a

“n
I semisphere of arbitrary radius centered at the source of the jet: «r
- 62 =
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M,-zﬂPV's‘a"x)""“' (3.25) |

‘} In order to solve the thermal problem under the condition that the
temperature values in the upper and the lower semlspaces must be equal
we again use Eq. (1.30).

After simple transformations we obtain
-ah
n@=B+o)*" [F+a+a'] . (3.26)

The value of the constant of integration B 1s determined as be-
fore, from the integral condition of conservation of excessive heat
content flux:

1

Q-za;.S(i—rrf,)ndqo- (3.37)
3

The final expressions in spherical coordinates for the velocity

components, the pressure and temperature have the form

. 1
vus—"}' i—bz-t_"—“-*-m.). —_—
| =

ob+11—cosd (14 coa)® .
b_“+°°'i—[5r'-"—%+(i+cu0)'

b4-1 .
v._.__;_:..co.oi_bm-““"“‘)'l,  (3.28)
= g + (1 + con)]

po = Y08 o [T—cosd (1 +cos0)®
R Y Tfcosdp 1 (b—1)(1+cosd)

e R,

T—Tom -ﬁ-(t + cos @)™ >V :—_’t—:+(i +cos9)']_"'- J

As to the qualitative aspects the graphs of streamlines and 1iso-
thermal lines corresponding to the solution obtained displays the same
characteristic properties of a "strong" jet (with the appropriate val- ]
ues of the rroblem's parameters) as in L.D. Landau's problem consider-

") ed in detall. Not that the solution obtained to the dynamical problem
is, in particular, free from the deficiencies displayed by H. Squire's

Cr
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paper [171]. In this paper the streanlines must be constructed under

the assumption that they emerge from fictitious sources positioned on

the axis of symmetry of the jet. The author of paper [171] points out s
that these sources are unreal but their introduction distorts the jet

flow only little.

In this problem, just as in all the problems considered above, the
thermal problem is solved under the presupposition of similar boundary
conditions for velocity and temperature. In contrast to this, the fan-
type Jjet enables us to investigate the thermal problem for the case of
a temperature asymmetry in the boundary conditions and, consequently,
lost similarity of the boundary conditions for velocity and temperature.

ﬁote that the temperature values of the nonperturbed fluid differ
in the upper and lower spaces, that is, on either side of the plane of

symmetry of the fan-type jet. Assume that with R + ® and w = 1 the tem-

perature T = T1 whereas with R + ®» but w = =1, T = T2. In this case, in ..
order to solve the thermal problem, using the same results as obtained t
when solving the dynamical problem, we must, instead of using Eq. t
(1.29), return to the basic equation of heat propagation, i.e., Eq. l
(1.5). |

From physical considerations analogous to those of paper [56] we

are led to |

=0, (3.29) -
i.e., the temperature at any point of the flow produced by the fan-type

source jet 1s assumed independent of the distance to the source. This ?
is obviously the only condition which permits a self-cimilar solution |
with the temperature boundary conditions chosen. In agreement with

(e.29), Eq. (1.5) can be rewritten in the form

R s
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Introducing the variable w = cos 6 and substituting the value of

vgs We obtain for t(w) an ordinary linear differential equation of sec-

\) ond order:
(1 —a®) ¥ ()’ =P/, (0) ¥ (@) (3.31)

with the boundary conditions

t=4 nmpx o=<+1{,
T=0 mpx o=—i,

When we replace in Eq. (3.31) the function fl(w) by the function F(w),

which 18 connected with fl(w) by the relation (1.27), we obtain

B = —2n. (3.33)

| f--
~1p

—J |

/4
1

>

-0 05 Q082 0 W M &'lq'u

Fig. 3.13. Temperature distribution in a fan-type jet. b = U; 1, Pr =
= 0.5; 2. Pr = 0.75; 3. Pr = 1.0; 4, Pr = 2,0, 1

Integrating twice and taking the boundary conditions (3.32).'into

account, we obtain

[ +1 -y’
- de de
*(®) _S‘ A—ah P [_S‘ (1-.-)1"'] ’ (3.34)
When we take the expression for the function F(w) from H. Squire's

paper [171]
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we can write our expression for the temperature in the final form ::
§ do
'(‘) [T Pe
p A i_..)hﬂ [(: —e ‘ —.) I
; " (3.35)

o

: The corresponding temperature distribution for several values of

Prandtl's number Pr is shown in Fig. 3.1}3.
3.4, TRANSITION TO THE BOUNDARY LAYER

Analyzing the solutions obtained above, one often considered the
laws of a flow, corresponding to one of the limiting regions, namely
the "strong" jet. By way of example L.D. Landau's basic problem on the
axisymmetric source jet, we shall now show that the relations obtalned
in the limiting transition (with Re + ), transform the solutions found

in the general case into solutions to the same problem within the

N

framework of the boundary layer theory. This result 1s of course not
unexpected but it 1s of interest as it shows in particular that the so-
; lutions of the Navier-Stokes equations contain a series of solutions

obtained independently at a different time.

For the sake of convenience we now turn to the system of equations |
(3.1) written in cylindrical coordinates. In this system the velocity ,;
{

component, pressure and temperature at the axis of the jet depend on |

the coordinate x and the parameter L which are unambiguous functions of

Reynolds' number. The relative distributions of the velocity components,

the pressure and the temperature in the cross sections of the Jet are

|

|

| in their turn dependent on the nondimensional coordinate n = »/x and ]
|

; the parameter L. In addition to 1ts dependence on other parameters the
temperature distribution also depends on Prandtl's number. ;l

Let in all equations of the system (3.1) L tend subsequently to
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unity (Re + »). We consider preliminarily Eq. (2.10), which links the
moment um Jx of the Jet with the parameter L:

. A 1 14L

.’&S {1+ _ )—-z-,ﬂlé't}.

With L -+ l(Jz + =) we shall have

a

L=t—F, «=%g (3.36)

The nondimensional parameter a is obviously inversely proportional to

Reynolds' number Re.

Using Eq. (3.36) we can write the equations of the system (3.1)

in a form which corresponds to the limiting transition L + 1 (Re + =),

! In all expressions we restrict ourselves to terms which are small 1in

'; second order with respect to the quantities a and n. Note that we are

ﬁ here concerned with one and not with two independent limitations as we
learn from dimension considerations that for a "strong" jet the quanti-
ties a and n are of the same order of magnitude.

! To 1llustrate this we shall varry out 1n detall the transformation

}, of the expression for one of the velocity components, L

i In a general case

‘ o=y + i

With the substitution L[ = 1-02/2 we have

A

. _ \-T { 1=(1-%)’

TS _[‘+"¥‘ (-5

i+gn

or

woa=(t -t - 1)t + o).
or, finally,

1

s 4
LT (3.37)

' ) Recall that a’-%i,. and when we introduce the designation
] aQ
g '
r
=) w (3.38)
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we finally obtain

v, = vy, s. 1
Snpv & 1 * . -
t+ze) (3.39) s
Without giving the analogous transformations, the other equations
of system (3.1) can be written in the transformed forms:
» I/ 3, 1 ’(“T")
TR m g
t3¢ (3.40)
N,
"zm V +- ' (3.41)
i+ ¢
R o L .
R - gl (3.42)
(1+5)
QEPrt-4) 1 14
Fu To= . (3.43)
T age)
The last expression for the temperature was derived by means of a
limiting expression for the constant B from Eq. (2.12) - |
A S 4
Bz—,?x 2Pr 44 2""',0‘7'-
Let us briefly discuss the results obtained.
First of all we want to represent the distributions of the velo-
city components, the pressure and the temperature under the limiting
conditions chosen in equivalent forms:
L 'l g )
. (!+%"'). .
@v (1-3)
H“l'")
."“_’“ -T 0
” =
T-T, 1 £
o=y ot o o
= = (‘+%¢) 7
- 68 -




where the quantities v = and Tn—T.= AT., are taken as the velocity and i

temperature scale units given by

Y, 1 ' (@ +1)Q 3
vm-ﬁ-;. AT"-W,L_7' (3.45)

As we see from the above formulas, the transverse velocity compo- .

nents and temperature distributions in a "strong" Jjet are universal
functions (each quantity being referred to their scale units, i.e., the ;
peak values). The velocity components v, and Vp and also the surplus
temperature T - T, decrease with the distance according to an 1/z-law,

whereas vQ N 1/:2. The relative amount of "twisting", ﬁp/”z will there-

fore drop as l/z.
As regards the pressure, in our approximation pm—pe~1/as~J:z the
surplus pressure on the jet axis (and thus also at any arbitrary point)

will grow proportionally to the momentum of the jJet. The relative quan-
~ Pm —.’..
oy
ns we can see from Eq. (3.44). In the approximation considered the flow

tity of the order of + will be a quantity of the order of o*<1i.

may be considered 1isobaric.

Not also that from the fact that the quantities o and n are of the |

same order of magnitude it results that the effective region of the

flow occupled by the jet must be limited by a cone of a relatively small |

vertex angle (%- tga.;a.~¢) ” '
In this case the ratio ”r/”z of the velocity components will be a

small quantity of the order of a ~ 1/Re; this'is typical for a "strong"

L Jet. Analogously, the ratio v¢/vz of the components will also be a

small quantity of the order of aMx/x as we are concerned with slight .

"twist".
These qualitative results obtained for a "strong" jet, such as
the limitedness of the perturbed region, the pressure distribution, the

) the smallness of the radial velocity component compared to the axial i

ettt ittt i it .

- 69 -




one, kthe rapld change of the velocity and the like across the jet com-
pared to the varliations along it, are well-know characteristic features

I of the flow in a boundary layer.

More than that, Expressicns (3.40)-(3.45) derived above are as ac-
curate as the results of a direct solution of the problem of the expan-
sion of an axisymmetric twisted laminar source jet, obtained by L.G.
Loytsyanskiy [131] by intgrating the boundary layer equations (see Psart
1 1I).

Our limiting transition (L + 1) corresponds to a first self-similar

approximation of the solution to L.D. Landau's problem. The final re-

| sult obtained is a first self-similar solution of the problem of an ax-
1
isymmetric source-~jet within the framework of the boundary-layer theory.
. The transition L + 1 made to obtain the second and further approxima-
| tions in solutions of Lapdau's problem would of course also yleld the
{ second and further approximations in the boundary layer theory. 5
Let us give for comparison, also in this first approximation, the g 3
formulas obtained by another limiting transition (L + 0) for the case
of a "weak" Jet. As 1ndicated above this corresponds to a momentum of
' J.=16npvL, of the jet, that 1s, to small Reynolds numbers
| ‘9 T
] R.-ﬁ: T SVE
l Without giving details of the transformations we write the final re-
! sults: "z 24w Y
2(l+n')"" DL
A"~ ?, -J.l
Vem 2(i+n') o Ty
'.~ ’ ' . . 0'.' | .|'
o ~'£i‘«+n')",f' g gy g _
’—’u~ AT”‘- £ TR 1
s_?,_wuwh u;(m), : 1
('-r). ] e
‘ > g N . o
37‘.."'71"+-’|"
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As we see from these formulas, the velocity components vy and v,
in a "weak" jet, in contrast to the "strong" Jjet, are quantities of the
same order of magnitude. As regards the pressure, ' Ap/(pvd/2)w 18 of the
order of Re2; in other words, the pressure drop plays a noticeable part
in the motion of the fluild compared to the kinetic hear pvzz/Z.

Thus the motion of a viscous fluid in the limiting case of a
"weak" jet rather reminds us of a source in a perfect fluid than of a
Jet flow characteristics of problems of the boundary layer theory.

The Jet flow properties established with the help of the example
of an axlisymmetric jet are dur to the fact that as Re + « the influence
of the viscosity seems to become localized to a samll zone, the bound-
ary layer, which 1s common for flows of viscous fluids. In the general
boundary layer theory considered in the following in connection with
Jet flows, the limiting transition Re + « will therefore be carried out
in the Navier-Stokes equations themselves.

REFERENCES _
116, 122, 171, 172, 173, 174, 202, 203, 221, 302, 303.
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Part Two
{ F LAMINAR JETS OF LIQUIDS AND GASES

'| In this part we shall consider a series of problems on the expan-
sion of a jet of liquid or gas which are solved within the framework of

the laminar boundary layer theory.

2 As shown in the preceding part these solutions (for an incompress-

ible fluid) correspond to the limiting transition in solutions obtained
from the Navier-Stokes equations for a "strong" jJet. Unlike this case,

the analogous problems (e.g., on the expansion of an axisymmetric jet)

W EE— N MMcoNT

in the second part are considered on the basis of an analogous limiting

transition carried out in an earlier stage, that is, in the initial dif

ferential equations, which i1s thus general for the various problems.

For simplicity this transition (derivation of the boundary layer
equations) is carried out for motions of incompressible fluids.
A This derivation and also a brief review of the various methods of
integration of the laminar boundary layer equations applied in the the-
] ory of jet motion of liquids and gases, will be given before we turn to

{ the analyses of concrete jet problems. The latter are consldered sepa-
rately for the cases of free and semi-limited Jjet flows of liquids and

{ gases, taking the specific features into account (the form of the flow,

boundéry conditions, etc.). The consideration is limited to self-simi-
lar motions, 1.e., an investigation of source jets.
'! For these Jets detaliled information, containing the initial equa-
tions, the boundary conditions, the formulas for the transformation to
a self-similar form, the final solutions and the integral characteris-

tics are for convenience compiled in the tabke of the fundamental re- P

'

sults. For a jet of finite dimensions a solution is only given within
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the framework of the method of small perturbations. In all cases pref-
erence 1s given to the method of the asymptotic boundary layer princi-
pally used in this book; for comparison, however, we also give 1n a
brief form the solutions obtained by the method of integral relations

for a free boundary layer of finite thickness.

The results obtained in this part have both an immediate signifi-
cance (for the theory of the laminary boundary layer) and an indirect

one, as a model of a turbulent jet flow.

13- |
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Chapter 4
FREE JETS OF AN INCOMPRESSIBLE FLUID
4.1. THE BOUNDARY LAYER EQUATION

It 1s well-known that the number of problems on the motion of an
incompressible fluid that can be solved on the basils of the exact
Navier-Stokes equation is extremely limited. Even a solution of the
problem on the expansion of a plane source jet (analogous to L.D. Lan-
dau's problem on the axisymmetric jet) applicable to jet flows has not
been obtained so far*. In connection with this, besides the numerical
solutions of concrete problems in the theory of laminar jets, the gen-
eral method of solution based on the widespread boundary layer theory
is of great importance.

The methods of the boundary layer theory are now applied in virtu-
ally all fields of hydrodynamics and gasdynamics; there 1s very much
literature devoted to it [130, 135, 155, 174, 212, etc.]. To recall
them we shall therefore consider as briefly as possible by way of ex-
ample of a steady laminar flow of incompressible fluld in a boundary
layer (plane and axisymmetric) the transition from the Navier-Stokes
equations to Prandtl's boundary layer equations.

The ideas which 1is based have already been used above when we ex-
plained the solurion to L.D. Landau's problem on the axisymmtric Jet,
in the "strong"jets. As shown above in detail, the latter correspone to
the limiting transition Re + « in the solutions of the Navier-Stokes
equations. In this transition the flow displays a peculiar anisotropy: -

the characteristic dimensions and velocity components in a direction
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of the initial momentum become very small compared to the analogous
quantities in the direction of the momentum. In a short form these re-

lationships may be represented by the following inequalities ##

L>l, u~wv>v (=0, v=D, W=D,
and consequently,
%= <%

To estimate the individual terms entering the Navier-Stokes equa-
tions it must be assumed that the quantities lz, u and v’ are of the
order of unity, }y and v being of the order of a small quantity 81
(correspondingly the orders of magnitude of the derivatives 94/dz, 3%/dz*
will be unity while the derivatives 3/3y,8%9y* will be of the order of
61,6 ). Starting from this and from the tendency of obtaining an
approximation in which the viscosity factor u is conserved in the equa-
tions, we must assume u of the order of 62. This constitutes in princi-
ple the difference between the transition to the boundary layer equa-
tions and the transition to Euler's equations of a perfect fluid in
which one must set yu = 0.

To avoid the difficulty caused by this way of estimating a dimen-
sional physical constant (u " 62) the transformation to the boundary
layer equation can be carried out with the nondimensional form of the
Navier-Stokes equations, introducing in them different scale units for
the longitudinal and transverse coordinates and velocity components.

In thils case the boundary layer equations are obtained by means of a
limiting transition, letting tend the Reynolds number to infinity.

Taking this conclusion into account we write the Navier-Stokes and
energy equations in a form which is suitable for both the axisymmetric
(in the case of a nonvanishing peripheral velocity component) and the

plane-parallel motions:
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(The axis Oz is oriented along the initlial momentum of the Jet, the ax-
is Oy 1s perpendicular to Ox; u and v are the velocity components along
Ox and Oy; w is the peripheral velocity; ¥ = 1 for an axisymmetric mo-
tion, k » 0 for a plane-parallel one.)
Let us introduce the dimensionless quantities
L N y Yot -l -D
z’}:! ﬂ--,;. a- vo ..o'w g
P— P llt' o T
p- 'T- ’ R.- .'.
g T
where [, {,, u, » are the scale units (the characteristic dimensions and
velocities), Re is Reynolds' number, p« Two are pressure and tempera- j
ture in the unperturbed fluid. _
For simplicity we omit the bars on the dimensionless variables so
- that we can write the Navier-Stokes and energy equations for the con-
sldered case of a steady laminar flow of an incompressible fluid as
follows:
\
du 1,9 du 19 {1 o B 10 du
vt T:.T."&"""2‘55+'k‘i[$i+‘,s' ;ni(”'bi)]-
& 109 O Iyug o lyue 10
u;+!v—u—.va—k/-;.—.-;-——-l:-'—..-r£+
' t [ow , B 0,00 v
+% |t E[;&("&)""?]]' dio)
~ < ~ -~ l . *
Sw , I» dw |, e 1 |8
E+ g eI - lE e e R
[ Ive 8
]’;(y‘")+ ':5(”.")-0'
Ieve « tfoor , B0 ,01
-t {'sr+7-;;53§("'5)}' )
AN
«»r
Taking into account that the scale units ly and v, were chosen ar-
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bitraily and considering the condition for the order-of-magnitude e~

quality of the inertial and viscous terms as Re + «, we put

! v |
- L=k,

Our system of equations will then take the form

B ofo -SSR
“ w(eEm+ &)—"-'-735’*'—-3?*

| +5{ps0'E) 3} |
vty YR Bt () - (4.2)
5 ) + 5 (#40) = O,

e B AL ).

When we allow the Reynolds number to tend to infinity and return

to dimenslional variables we finally obtain

“35“69'-”“” urg) ]

"35*'”%'*"5""’ an('H) -3} (4.3)
R0+ 2 A) =0,

Eeof-esdem. |

The system of L. Prandtl's Equations (4.3) obtained in this way
i1s essentially simpler than System (4.1) of the Navier-Stokes equations.
The simplification achleved is first of all due to the fact that the
three equations of motion (for the velocity components u, v and w) were
reducéd to two (the first and the third) in the axisymmetric case and

one (the first) in the case of a plane motion. The second equation is

replaced by the fundamental law of the dynamics of a boundary layer in

a plane-parallel motion, expressing the constancy of pressure perpen-

dicular to the boundary layer. Moreover, the number of terms could be
=~ reduced in the right-hande sides of the first, third and fifth equa-

tions of System (4.3). These advantages also exist in more complex
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cases of flow in a boundary layer, thus permitting a wide application

of the boundary layer equations in hydodynamics and gasdynamics, par-

ticularly in the theory of jet flows. W
In addition to this it should be stressed that the boundary layer
| equations hold strictly only in the case of very high (theoretically

infinite) values of the Reynolds number, i.e., just for such conditions

| with vwhich there is virtually no laminar motion. A solution of the pro-
blem of laminar jet motions has therefore mainly a general theoretical
significance. Besides, as we shall show later by way of particular ex-
amples, the integrals of the boundary layer equations contain a certain
singularity in a series of cases as already indicated by L. Prandtl
(279].
Let us briefly consider the general methods of integrating the

boundary layer equations applied when solving problems on the motion of

——— -

Jets of a viscous fluld. .
First of all it should be noted that for laminar jets (as previ-

ously for exact solutions) the conception of the source Jet malntains

E its applicability; in a first approximation it ylelds a self-similar

solution without requiring detailed initial efflux conditions given be-

forehand. The problems (also comprising such which have no self-similar
solutions) may then be investigated by means of two fundamental methods
of the boundary layer theory, assuming finite or infinite thickness of
the layer.
In the first case the boundary conditions for velocity, tempera-
ture, etc. are given for definite outer boundaries(y = §, y = GT).of
the dynamic and thermal boundary layers. Their thickness (8§ and GT) and
also a series of characteristic parameters (the thickness of displace-
ment of momentum, heat content and the like) are introduced explicitly <y

L 4
into the solution. The motion beyond the bcundary layer is assumed to
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be a potential motion.

In the second case the boundary layer is assumed to expane as if
it were arbitrarily far away; the boundary conditions are given for
y = ©, The idea of this (asymptotically) infinite boundary layer is
however, not in contradiction to the original idea of the boundary lay-
er as a limited region in which the action of the forces of viscosity
are chiefly localized. The solutions of the equation in fact given for
the velocity, temperature, etc. are functions of the transversé coor-
dinates which decrease so rapidly that at a finite and rather small
distance which determines the effective thickness of the layer, the in-
fluence of the viscosity has virtually vanished. In this case we obtain
a smooth asymptotic solution for the flow around the Jet. The variables
(u, T, etc.) and their derivatives with respect to the coordinates at
the effective jet boundaries have no singularities.

Besides the direct integration of the differential equations of a
(finite or asymptotic) boundary layer or their transformation to, e.g.,
a linear equation of the type of the heat-conduction equation (in coor-
dinates according to Mises et al.), for the solution of problems on jet
motions one also uses the method of integral relations and other ap~
proximation methods of calculating. They are all considered in detail
in the monographs on the boundary layer theory [135, 155, 1T4, 212,
etc.]. It ir therefore expedient to illustrate the application of the
various methods of solving jJet problems immediately by way of examples;
as to the details we refer to the sources mentioned above.

Note by the way that all these methods and also a series of others
(semiempirical and empirical) are also used in the theory of turbulent
Jets.

4.,2. THE AXISMMETRIC TWISTED SOURCE JET
Let us derive the problem of the expansion of an axisymmetric,
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free and twisted jet of an incompressible viscous fluld. The Jet is as-
sumed to flow out of an unlimited space fllled by a fluld of the same

A~
physical properties ("submerged" jet). In the general case we shall as- <

e

sume the temperature of the fluld in the Jet different from the temper-
ature of the medium. We shall further assume that the difference be-
tween the temperatures of jet and surrounding medium is so small that
the density of the fluld as well as the viscosity and heat conduction
coefficients which, in general, depend on the temperature (and the
pressure) can be considered as constant. With these assumptions the

temperature plays the part of some "coloring" of the fluid. Neglecting

the heat of friction (and the radiation) the heat propagation equation
is analogous to the diffusion equation for some (nonactive) impurity.

We start from the boundary layer equations for an sxisymmetric

twisted source jet which therefore have the form [131]

e —

lla—+ ——“gt'l' (V%‘)o . i
| g | '

N T A

EO0) + 2 @) =0, :

I T !

The boundary conditions for the asymptotic layer can be written in

) the form
»=0, w-oa-’l-o when y-O,}

u-w-AT-p-Oduny-Oo- (u.S)

| (The symbols AT and p denote.the surplus temperature and pressure with
B respect to the constant values T_ and p_, the temperature and the pres-
! sure of the surrounding medium.)

As to the boundary conditions (4.5) and their analogues we shall

remark in the following that solutions of problems obtained by means of
'R N

the method of the asymptotic layer, in contrast to the boundary layer «»
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of finite thickness, yleld a smooth fit of the distributions of the
(e.g. the velocity, the temperature, etc.) in the jet and in the sur-
rounding medium. The solutions obtained within the framework of the
theory of the asympotic boundary layer will therefore satisfy "automat-

ically", for example, in the case considered, the equation

u v O .

These additional boundary conditions (the vanishing of the derivatives

%;',‘-%-r etc. at the outer boundary of the jet) can thus be used in de-
riving the integral relations or in other cases, when this 1s neces-
sary for the estimation of total effects and the like, without overde-
fining the problem. Owing to this, the equality %;::0 with y = « or
other analogous relations which are not used in the integration are
sometimes written to the boundary conditions (which then seem to exceed
the order of the differential equation).

In solutions obtained by the method of the finite boundary layer
the number of boundary conditions 1s chosen in agreement with the nec-
essity of determining, in the general case, the unknown values of the
(dynamic, thermal) boundary layer coordinates from the solution. In
this case, in particular in the thermal problem, the continuity at the
boundary 1s very o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>