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PREFACE 

This monograph calling for the reader's attention has been devoted 

to the results of Investigations of a broad and widespread class of mo- 

tions of a viscous Incompressible liquid or a compressible gas, name- 

ly the laminar and turbulent flows. All considerations apply to steady, 

unstressed motions of a continuous medium. 

The Interest aroused by Jet flows Is explained by the great Impor- 

tance of these flows for so many fields of technical engineering. In 

rockets, airplanes and engines. In turbines and boilers, combustion 

chambers, burners and furnaces. In hydraulic works, chemical and tech- 

nological devices, ventilators, devices of Jet automation (pneumonlcs), 

etc., we are concerned with Je^ flows of liquids or gases. They are, as 

a rule, essential and often have a decisive Importance for the Inten- 

sification of the operational process or Its efficiency. 

Apart from this, the Jet motions take a conspicuous place In the 

theoretical and, particularly. In the applied mechanics of viscous flu- 

Ids. The relevant literature Is extensive and comprehensive. In the 

last two or three decades the number of publications dealing with the 

problems of Jet motions has Increased rapidly In both the Soviet Union 

and abroad. Among the publications on Jets there are special monographs 

on the theory and the results of experiments, review articles In man- 

uscripts on hydro- and gas-dynamics. In all a large number of articles. 

The references to this literature have been compiled at the end of the 

present book. 

The great variety In the ways of treatment of the Jet motions Is 
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characteristic of the Investigations carried out by the various au- 

thors. Some of them consider the problem from a purely theoretical n point of view, others on the basis of a purely experimental conception, ^/ 

while In many other papers both aspects have been fused to some degree. 

In some papers the authors have restricted themselves to Investigating 

turbulent Jets which are of Immediate practical Importance, In others 

they have considered mainly laminar Jets which are based on the strict 

equations of hydrodynamics. 

In this connection we must briefly summarize the method of Inves- 

tigating the Jet motions chosen In the present book. The principal goal 

of the book has been a consequent and systematic consideration from 

an - as far as possible - unique point of view of the theory on Jet mo- 

tions and, based on this theory, of the main development of mathemat- 

ical methods applying to the types of flows which are of practical Im- 

portance. It Is, of course, the turbulent Jets which are mainly Impor- 

tant In practice. Juac as In other fields of the mechanics of viscous 

fluids, the theoretical model of turbulent Jets may be built up In the 

usual manner from the laws of expansion of laminar Jets. Their consid- 

eration which Is also Interesting In Itself will, expediently begin 

with an analysis of th» solutions obtained on the basis of the exact 

equations of the hydrodynamics of a viscous fluid, the Navler-Stokes 

equations. This enables us to ascertain a series of Important gen- 

eral properties of Jet motions which are essential not only for an In- 

vestigation of the laminar Jet flows by the methods of the boundary 

layer theory, but also for problems on turbulent Jet flows. Thus, when- 

ever this Is possible, a solution of the latter will be based on the 

qualitative flow pattern which Is, first of all, obtained from an anal- 

ysis of the corresponding laminar motion. /-"N 

At the same time the results of a direct experiment have a decl- 
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slve Importance for the Investigation of turbulent flows. They serve as 

a starting point for the development of a mathematical procedure for 

the concrete motion and as a criterion for the usefulness of this pro- 

cedure In the final state of the Investigations. The methods of calcu- 

lation which are applied at present In the theory of turbulent flows 

and which are based on the so-called semlemplrlcal theories, are not 

universal. This Indicates that the solution of some problems can be ob- 

tained with about the same accuracy on the basis of different assump- 

tions on the mechanism of turbulent transport while a large group of 

them are solved simply with the help of various mathematical methods. 

At the same time It very often happens that for a related problem none 

of these methods Is sufficiently effective. The empirical constants de- 

rived from the experiment are likewise nonuniversal; they characterize 

the Influence of various factors which are not taken Into account ex- 

plicitly (In particular the mlcrostructure of turbulent flow). Un- 

fortunately, the statistical branch In the theory of turbulence, which 

Is most promising In the general plan, has so far yielded no results 

which are of practical Importance for the theory and the calculation 

of Jets. The application of the statistical theory of turbulence to 

Jet motions has therefore not been discussed In the present book. 

The necessity of solving various problems encountered In engi- 

neering applications forces us In the present book to cover not only 

the well-known and, maybe, classical methods of the theory of the turbu- 

lent boundary layer. In addition there are various semlemplrlcal and 

purely emplr cal mathematical procedures or even the mere results of 

an experiment which deserve our Interest. This causes a considerable 

extension of the range of problems which can be solved by a pre- 

)      llmlnary approximation method and yields additional material for subse- 

quent generalizations. In the complex and far from complete process of 
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investigating Jet flows not a single extreme case can be considered 

Justified. Neither the abandonment of the necessary practical prob- 

lems for the "clean" region of the analytical solutions, nor the re- 

jection of generalizations of the laws derived from the individual 

experiments carried out under concrete conditions, enables us to de- 

velop a sufficiently broad theory meeting the requirements of prac- 

tice. 

There general considerations and also the choice of the materi- 

al for the book and its entire structure characterize the scientific 

direction of the authors. In the treatment of the problem the authors 

tended to a more complete analysis of the physical nature of the phe- 

nomena, to a simplified application of the material and, in this con- 

nection, to its representation in the form of mathematical results 

and Illustrations. The solutions of various problems have been com- 

piled in detailed tables for the same purpose. To restrict the volume 

of the book some problems which are analyzed in detail in literature 

accessible for a large circle of readers have been considered in a 

condensed form and sometimes even omitted. The results obtained by 

the authors themselves have been considered in greater detail than 

elsewhere. The sections dealing with turbulent flows also contain ex- 

perimental data in sufficient detail for comparison with the results 

of calculations. Most of the data have been taken from papers pro- 

duced under the guidance of one of the authors between 1951 and 1963 

in the thermophysical laboratories of Alma-Ata. 

Let us now briefly discuss the material in this book; for de- 

tails we refer to the Table of Contents. 

The first part is devoted to a detailed discussion of the solu- 

tions to flow problems based on the exact Navier-Stokes equations 

for an Incompressible fluid. In this part the well-known investiga- 
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tlons by L.D. Landau are considered as fundamental; they deal with 

the laws governing the expansion of an axlsymmetric Jet of viscous 

fluid discharged from a thin tube Into another fluid. The flow pat- 

tern In the Jet and the heat (or mass) transfer are discussed In 

detail, Indicating the fundamental characteristic features of the 

motion. The dynamic and thermal problems (under different boundary 

conditions) on the expansion of fan-type Jets are also considered. 

For the so-called "Intense" Jet the transition was made to a solu- 

tion within the framework of the theory of the laminar boundary 

layer. 

The second part of the contains a detailed analysis of the 

methods of the boundary layer theory of laminar Jet flows of an In- 

compressible liquid and a gas. Apart from the free Jets discharged 

Into an Immobile medium or a uniform comovlng flow, we consider the 

"half-limited" Jets (expanding along a solid wall). Both the dynam- 

ic and the thermal problems are solved with the help of the method 

of the asymptotic boundary layer which Is used throughout the book. 

Particular attention Is paid to compresslble-gas Jets. 

The third part Is devoted to turbulent flows of liquids and 

gases. We consider in detail the self-similar solutions for both 

free and half-limited source Jets of an Incompressible liquid. On 

the basis of the hypothesis on the similarity of the momentum flux 

density distributions a generalization Is given of the data on the 

free compresslble-gass Jets. Great attention Is paid to the method 

of the equivalent heat-conduction problem which permits a detailed 

Investigation Into the problem of the expansion of liquid or gas 

Jets discharged from nozzles of finite dimensions with an arbitrarily 

)      chosen Initial velocity distribution, temperature distribution, etc. 

The results of the calculations are compared with the experimental 
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The fourth part dea?.s with some theoretical and experimental 

problems In the field of Jet flows which, for some reason or other are 

supplementary to the basic material of the book. Here we also give a 

brief review on some complex turbulent Jet flows (counterflows and Jet 

flows around bodies). The theory of such motions has hardly been de- 

veloped as yet. Chapter 16 will therefore mainly contain experimental 

data and attempts of their primary generalization which are valuable 

in connection with the application of such flows. The next chapter, 17, 

in contrast to the previous chapter, gives an example of a successful 

application of the theory of laminar and turbulent Jets to a special 

problem: the calculation of a diffusion gas flare. That it was entered 

in the fourth part of the book is due to the fact that a more complete 

representation of the flare theory (homogeneous, indirect-Jet flare, 

etc.) and also of problems specific for the combustion theory are be- 

yond the scope of this book. Finally, the last chapter contains a few 

magnetohydrodynamic Jet problems which are mainly interesting insofar 

as they can be treated by the same methods as ordinary Jets of a non- 

conducting viscous fluid. 

The list of references on viscous-fluid Jets given at the end of 

the book is incomplete. It comprises first of all investigations cited 

in the text (in particular, a detailed leterature. list of the papers 

by the heat physicists of Alma-Ata has been given, papers which have 

mainly appeared in the limited circulation of the literature of the 

Republic). In addition, the reference list also contains review review 

articles and Jet flow investigations known to the authors, the ac- 

quaintance of which is essential for the completeness of a represen- 

tation of the problem's present state. The papers published up to 1963 

are listed more completely as the manuscript of the book was then 
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finished In Its basic form. At the end of each chapter literature ref- 

erences are given which refer to this chapter In particular. 
— 

For convenience we have chosen for the book a continuous numer- 

ation of the chapters and a dual for the sections, figures, tables and 

formulas (the First Digit Indicates the chapter, the second, e.g., the 

formula within this chapter). 

Not all the problems treated In the book may be considered as 

having reached the same degree of solution. Some of them need a theo- 

retical or experimental verification. The main direction must be a 

widening of the circle of Important practical problems which can be 

treated mathematically by the methods of the theory of vlscous-fluld 

Jets, the development of these methods, an ascertainment of their lim- 

its of applicability, and the like. 

The authors thank their colleagues for helping them with selec- 

tion of the material. In particular K.Ye. Dzhaugashtln and L.P. Yarln 

who took part In the compilation of Chapters 18 and 17, respectively. 

With deep gratitude the authors acknowledge the Interesting dis- 

cussions with G.N. Abramovich on a series of problems considered in 

the book. The authors thank G.N. Abramovich and G.Yu.Stepanov for their 

comments on the manuscript. The attentive work by V.Z. Parton helped 

to reduce the editing errors to a minimum. 

All remarks which are intended to eliminate failings fo the book 

will accepted gratefully by the authors. 

L. Vulls 

V. Kashkarov 
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INTRODUCTION 

0.1. THE SOURCE JET 

The Jet motions of a viscous liquid or gas may be of a very dif- 

ferent nature as regards the form of flow, ^he kind of the fluid In 

the Jet, the surrounding medium or other features. A brief systematic 

compilation of these motions referring to the contents of the present 

book will be given In the second section of the Introduction! It may 

be preceded by some Information of general character. 

Just as In any other theory, the theory of Jets has Its elementary 

models and techniques. Prior knowledge of these facilitates the inves- 

tigation of more complex flows but is also Interesting in itself. For 

an analysis of the Jet motions of a viscous fluid it is in particular 

the idea of a unique source Jet which is important. Many analytical so- 

lutions of the problems of the expansion of a Jet refer, in fact, to 

motions caused by the source Jet. This is the case, e.g., with a con- 

siderable part of the so-called "self-similar" solutions (sometimes 

referred to the literature as "similar" solutions). 

The motion produced by a source Jet closely resembles a real flow 

in a Jet at a great distance from the nozzle from which it issues. A- 

nother valuable Jet-flow model may be the flow in the mixing zone of a 

semi-infinite plane-parallel flow in a surrounding medium. Similar to 

this will be the motion In a plane or axisymmetrlc Jet near the nozzle.* 

Before considering the peculiarities of the fluid's motion In the      /-s 

source Jet often discussed in the following we turn to the qualitative 

- 8 - 
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picture of the Jet In a viscous fluid. We consider the latter by way of 

the particular example of a steady plane or axlsymmetrlc fluid Jet dis- 

charged into a unlimited medium at rest. For a medium with the same 

physical properties as those of the fluid In the Jet, the expansion of 

the Jet can be essentially reduced to a gradual leveling of the Initial 

velocity distribution as shown schematically in Fig. 0.1. Owing to the 

(molecular and mainly turbulent) viscosity the Jet draws the surround- 

ing fluid into the motion and transfers part of its initial momentum to 

it. In this process the velocity at the Jet axis and of course also in 

the cross sections will drop. 

") 

Fig. 0.1 Schematic representation of free Jets, a)Jet of finite dimen- 
sion, streamlines and velocity distributions in several cross sections 
of the Jet; b)source Jet; c)relative velocity distribution in a Jet of 
finite dimensions (scale units: for the velocity the efflux velocity 
u0; for the transverse coordinate the radius r0 of the nozzle; d)rel- 

ative velocity distribution in a source Jet (scale units: for the ve- 
locity u on the axis of the Jet; for the coordinates the value of 

vk at which u  « %u_). 

1 

A strict solution to the problem of the expansion of a Jet would, 

obviously, require an integration of the equation of motion and the 

continuity equation (for simplicity we consider an incompressible flu- 

id) with a given law of internal friction (molecular or molar turbu- 

- 9 - 



lent viscosity) and given boundary conditions. The latter must comprise 

the efflux conditions (the shape of the nozzle orifice and the velocity 

vector field at the outlet), and also the conditions In the zones of 

the nonperturbed fluid (theoretically at Infinity) and, finally, the 

symmetry conditions for flows with plane or axial symmetry. 

With such a general statement an analytical solution of the prob- 

lem Is as a rule connected with considerable difficulties, though In a 

series of practically Important cases (e.g., the burning of a torch) 

this solution Is of greatest Interest. 

Experimental observations and also theoretical considerations show 

that the laws governing a flow at a great distance from the nozzle dis- 

play In some way a universal character. In this region the flow Is vir- 

tually Independent of the efflux conditions (In what follows we shall 

call them the "Initial conditions"). This flow, at a great distance 

from the nozzle, where we may abstract from the concrete Initial condi- 

tions, can be considered as the result of the action of a momentum 

point source (In the case of an axlsymmetrlc Jet, or a linear source 

for a plane jet) oriented In the direction of the axis of symmetry. 

Such a motion we shall call a source Jet. 

For an analytical solution of the source-Jet problem the detailed 

Initial conditions are replaced by a sufficiently Integral condition 

whose part Is usually played by a given characteristic quantity, the 

Initial value of the total momentum flux J    (projected onto the 0    sym- 

metry axis) : 

<•> 

where p Is the density of the fluid, M • Is the axial component of the 

velocity vector In the efflux section a of the true Jet which can be 

replaced by the effective source. 

:: 

o 

D 
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It Is easy to see that the concept of the source Jet has a certain 

Independent meaning In the Jet theory; It may be considered without 

knowing the concrete form of the nozzle and the Initial velocity dis- 

tribution. It Is In some way analogous to the concept of the mass point 

In mechanics (where at distances exceeding essentially the body dimen- 

sions, shape and dimensions of the body do not Influence the law of mo- 

tion, the field of gravity genereated by the body, etc.). 

A characteristic example well-known from experiments Is the fact 

that a Jet flowing out of a quadratic, triangular or other form of ori- 

fice behaves at a sufficient distance from the nozzle virtually Just 

like a Jet ejected from a round orifice. 

The practical significance of the concept of the source Jet son- 

slsts In the fact that the motion produced by It Is self-similar. In 

the mathematical description this means a transition from partial dif- 

ferential equations to ordinary differential equations and with regard 

to the experiment It offers the possibility of generalizing the exper- 

imental results since the velocity profiles are similar (Pig. 0.1,b). 

We must, however, stress the differences In the flows of a source 

Jet of a viscous fluid and an Ideal fluid. In the first case (source 

Jet) the flow Is characterized by Its vector character, the directivity 

of the Initial momentum which gives the whole motion an oriented char- 

acter, a peculiar anlsotroplc flow. In contrast to this, the source 

usually considered In the theory of an Ideal fluid produces an Isotro- 

pie flow pattern. 

It Is extremely Important that the Initial momentum flux of a Jet 

of viscous fluid, which expands In an unlimited nonmovlng medium In 

the absence of external forces. Is conserved as to magnitude and direc- 

tion. This follows directly from the general moment urn-conservation law. 

The directivity of the flow produced by a source Jet Is closely 
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related with another characteristic property of the motion, namely the 

llmltedness of the field of perturbations In the directions perpendic- 

ular to the Initial momentum. As we see from Pig. 0.1,a the region of 

velocity change In a cross section of the Jet (from maximum velocity to 

virtually zero at the nominal boundary of the Jet) Is relatively nar- 

row; the transverse velocity gradients are much smaller than the lon- 

gitudinal ones. The velocity components behave Inversely: as a rule the 

transverse velocity components are considerably smaller than the longi- 

tudinal ones. These general properties of Jet motions render It, fortu- 

nately, possible to apply the methods of the boundary layer theory. 

In the case where the source Jet together with the momentum flux in- 

troduces a flux of a certain property (an excessive heat content, con- 

centration or the like) the process of expansion of the Jet Is accompa- 

nied by a dispersion of this property In the surrounding medium. In 

this dispersion the main part Is played by the primary process, the mo- 

mentum scattering. For the distributions of concentration, temperature, 

etc. the self-similarity of the flow, the characteristic properties of 

the boundary layer, etc. are also conserved under the corresponding 

boundary conditions. For an Incompressible fluid the solution of the 

thermal problem (the problem of the temperature distribution) is built 

up on the basis of a preliminary solution to the dynamic problem (ve- 

locity distribution). In the case of a compressible gas both problems 

must be solved at the same time. In both cases, i.e., for the liquid 

and  the gas, the ratio between the coefficients of momentum and heat 

(or mass) transfer, determined by the so-called Prandtl. number is of 

decisive Importance. 

Here we briefly discussed the qualitative flow pattern by way of 

the example of a "submerged"» axisymmetric source Jet. Our remarks ap-  1*1 

- 12 - 



'■ 

ply, however, more or less to other more complex forms of Jet motions 

of a viscous fluid. For these cases It Is of course, necessary also to 

modify the geometrical from of the source Jet. Besides the point source 

which produces an axisymmetric Jet, we may be concerned with a plane 

source Jet, a radial (or fan-type Jet, i.e., a Jet coming out of the 

gap between two discs), an annular Jet, flowing out of the gap between 

two coaxial cylinders or cones and the like. One of the examples, the 

fan-type Jet, is shown in Fig. 0.2. Just as in the case of the point 

source, the flows produced by sources of various forms will be charac- 

terized by integral characteristics, the momentum flux, the flux of 

heat content, etc. 

Before we turn to a detailed analysis of concrete problems we 
think it expedient to give a brief systematic representation of the 
latter. 

Fig. 0.2. Diagram of fan Jet. 

0.2. JET FLOWS 

Let us try to classify as far as possible the various Jet flows. 

The features according to which the various forms of Jets must be dis- 

tinguished are numerous. We shall only mention the most essential ones. 

The plan of the present book has been based on the differences in 

the mechanism of Jet expansion, that is, the mechanism of momentum, en- 

ergy and mass transfer. In this respect it is, as always, necessary to 

distinguish between laminar and turbulent Jets. In the first case the 

nature of the transfer effects such as molecular friction, thermal con- 

ductivity, diffusion, are well known. As to the second case, we do not 
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possess as yet  any physically exact  and closed system of equation to 

describe turbulent motion.  In particular, It Is for the present hardly 

possible to Investigate systematically turbulent Jets of fluid or gas 

on the basis of the modern statistical theory of turbulence.  Sporadic 

attempts of applying statistical conceptions to the theory and calcu- 

latlor  of turbulent Jet  (e.g.,   [159]  and others)  are, essentially, re- 

duced to the same empirical methods.  As already mentioned In the Pre- 

face, we shall not consider this direction In the present book. 

Prom the general class of Jet  flows we may separate the motion of 

Incompressible  fluids which,  as usual, comprises not only Jets of drop- 

able liquids but also Jets of gases with relatively small density vari- 

ations. The latter are encountered In the case of velocities which are 

small compared to sonic velocity and also In the case of samll tempera- 

ture decreases   (compared with the absolute valur)  and,  finally, when 

the molecular weights of the Jet gas and the surrounding medium are 

similar. 

It stands to reason that the flow of a gas with p    ~ const may be 

obtained as a particular case of the flow of a compressible gas.  As to 

the method of solution and the Independent meaning.  It  Is, however, 

necessary to consider the Jets of Incompressible fluids separately. The 

characteristic  feature of a flow with p ■ const Is,  as already mention- 

ed above, the Independency of the dynamic problem and the thermal prob- 

lem,  a fact that simplifies the Investigation essentially. 

Fig.  0.3*  Schematic representation of the 
expansion of a Jet in a flow. a)Plow In 
the same direction;  b)counterflow. 
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As regards the Jets of compressible gases, we must among them dis- 

tinguish between the manifestations of the compressibility which are 

due to the Influence of one or several factors of the compressibility 

acting slmultaneouslj , the high velocity of the motion or a considera- 

ble difference In temperature or composition between the gas In the Jet 

and the surrounding medium. 

The subdivision of the Jets Into homogeneous In composition (as or 

liquid) and Inhomogeneous ones may be attributed to the same feature 

(the compressibility). The latter type of Jets fall Into classes ac- 

cording to the properties of the carrying medium and the nature of the 

Impurities (gas, liquid or solid particles). 

The matter In a Jet motion may thus be classed In this form or 

other according to the three states of aggregation. In addition to this, 

attention has beer, attracted In the past years by Jets of plasma, the 

fourth state of aggregation of matter. 

The subdivision of Jets according to the feature of the compressi- 

bility or the state of aggregation takes the state of the matter In 

both the Jet and the surrounding space Into account. Considering the 

Interactions between Jet and surrounding medium In this way. It Is ex- 

pedient to take another two features Into account, the conditions of 

motion of the medium and Its geometry. 

As to the former we must distinguish between the expansion of a 

Jet In a resting and In a moving medium and In this particular case 

between a flow In the same direction as the Jet, a counterflow or a 

flow making a certain angle with the Jet (see schematic diagram of Pig. 

0.3). To this group of problems the flow In a Jet boundary layer Is re- 

lated which arises owing to the Instability of the tangential discon- 

tinuity appearing between two homogeneous seml-lnflnlte flows moving In 

the same direction or oppsltely (see Pig. 0.4). 
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Fig. 0.4. Boundary mixing 
of parallel flows, a) Flows 
in the same direction; 
b) margin of plane Jet; 
c) counterflow. 
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Flg.  0.5.  Schematic 
representations of bound 
Jets,  a)  Semlllmlted Jet; 
b) Jet In limited space; 
c) Jet flowing around a 
body; d) homogeneous flow 
around a body. 

As regards the geometry of the space In which the efflux takes 

place we must consider separately the expansion of a Jet In a virtually 

unbounded space. In the absence of any solid bodies which could Inter- 

act with the Jet; such flows are denoted free Jets. In addition to 

this, we must distinguish "semlllmlted" Jets moving along a solid sur- 

face, "bounded" Jets, flowing Into a limited space and, finally, the 

motions which occur when bodies of finite dimensions are placed In the 

Jet flow. Figure 0.5 shows some examples of such types of flows. 

It Is natural that all types of motion discussed above and In the 

following may be plane-parallel, axlsymmetrlc or. In the general case, 

threedlmenslonal. The geometry of the nozzle producing the Jet Is pre- 

determined to an essential degree by this division. Just as the source 
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Jet, the real Jets (flowing out of nozzles of finite dimensions) may be 

plane, axlsymmetrlc, annular, fan-shped, etc., twisted or not, display- 

ing various forms of the Initial velocity profile (or temperature dis- 

tribution, etc.). 

Considering the differences In the Initial distributions of veloc- 

ity temberature and other characteristic parameters, we have In fact 

arrived at another Important feature of Jet motion systematlcs, the 

type of substance transferred. In this sense we distinguish between the 

dynamic problem, the thermal problem and the diffusion problem. Öfter 

It Is two or even all three types of transfer which coact. In these 

cases as, e.g., the efflux of a plane-parallel or fan-type Jet, It Is 

essential to distinguish between presence and absence of similarities 

In the velocity and temperature boundary conditions (Pig. 0.6). differ- 

ent boundary conditions for the thermal problem (adlabatlcally Insula- 

ted wall, wall of constant temperature, etc.) and for the velocity dis- 

tribution (motion with or without flow in the same direction, flow a- 

long a porous wall, the pores being sinks or sources of additional 

mass, etc.) also characterize the semilimited Jets. These features to- 

gether with those considered above constitute a great variety of Jet 

flows. 

In the individual classes of Jet flows we must distinguish motions 

of liquid and gas and whether there are accompanying chemical reactions 

or changes in the state of aggregation. Particularly important among 

them are the Jet flows of hot gas, the so-called flares, resulting from 

the combustion of a gas mixture prepared previously (homogeneous flare) 

or in the case of a combustion of non mixed gases (diffusion flare). 

An independent class of Jet flows is formed by the Jets of elec- 

trically conducting fluids, interacting with an electromagnetic field. 

Some of these particular cases of Jet flows are considered at the end 
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of this book. 

Flg. 0.6. Schmatlc re- 
presentation of a plane 
nonlsothermal Jet. a)Sym- 
metrical thermal boundary 
layer; b)asymmetric ther- 
mal boundary layer. 
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Part One 

SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 

In the present part, starting from the Navler-Strokes equations, 

we shall consider the problem of the expansion of an axlsymmetrlc Jet 

of a viscous Incompressible fluid streaming out of a thin tube. The so- 

lution Is constructed for the fluid flow at at a considerable distance 

from the nozzle. I.e., at a distance large compared to the dimensions 

of the orifice. For generality we also consider the thermal (diffusion) 

problem In addition to the dynamical problem, though the solution to 

the latter Is obtained Independently as this Is usual for an Incom- 

pressible fluid with constant physical properties. 

The solution of the problem, taking Into account the specific fea- 

tures of the flow, the axial symmetry and the ceasing of motion at In- 

finite distance from the nozzle. Is built up In the form of series ex- 

pansions In decreasing powers of the distance from the source. It Is 

shown that the fundamental features of the effect are contained In the 

so-called self-similar solution. This solution corresponds to the first 

approximation In the series expansion of the expressions of velocity 

components, the fluid being free from rotation. In the presence of ro- 

tation the approximate self-similar solution may be obtained taking 

Into account the faster decrease of the rotational component of veloci- 

ty. 

In addition to the general Investigations we shall consider par- 

ticular cases of Jet flows In axial symmetry, under various boundary 

condary conditions, the expansion of a Jet In an unlimited space or a 

flow bounded by surfaces. 

One of these cases Is that of a source Jet flowing out of a thin 
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tube, or the flow Inside a cone or a twisted fan-type Jet. 

We shall point out In a general form the conditions of self-slmll- 

Itude of the motion, the position-dependent Inherent dimensions of re- 

lations and the Intgral characteristics which, when given for a self- 

similar flow, replace the detailed efflux conditions for the nozzle. 

Finally we shall pass over In the solutions obtained from the ex- 

act Navler-Stokes equations for a "powerful" Jet to a form characteris- 

tic of the theory of the laminar boundary layer. 

3 
- 21 - 
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Chapter 1 

A JET FLOWING OUT OP A THIN TUBE 

1.1. THE PROBLEM 

For the group of problems considered here, L.D. Landau's paper 

[122] In which a self-similar solution was obtained for the direct Jet 

flow is of fundamental importance. A generalization for the thermal 

(diffusion) problem and also a solution for a Jet with nonvanishing an- 

gular momentum and a series of particular cases were considered in the 

papers [116, 162, 163, 171, 203, 302, 303]. 

Let us study the motion of a fluid produced by a source Jet with a 

directed Initial momentum. In the case where the initial momentum is 

directed along the symmetry axis of the flow a graphic representation* 

of the motion is given in cylindrical coordinates, r, <p, x. As regards 

the mathematical treatment of the problem it is, however, simpler to 

use spherical coordinates, Rt  9, cp. 

Let us, for convenience, give the formulas which link the coordi- 

nates and velocity components in the cylindrical and spherical coordi- 

nate systems: 

»r = fÄ8ine + r,co8e,   r» — r„    t>* —PACOSO—rfsin6. 

The velocity components v t  v ,  v    in the cylindrical system of 

coordinates will be denoted the radial, peripheral and axial compo- 

nents,  respectively.  The quantities vRi   vQ,  v    in the   spherical system       <^ 

of coordinates  (i.e., the projections of the velocity vector on the 
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axes R,  8, cp) are not given special denotations to avoid confusion, 

except for the velocity y_ which Is the same In both systems of coor- 

dinates. 

The Initial system of differential equations of continuity, mo- 

tion and heat (mass) transfer for a steady axlsymmetrlc flow of an In- 

compressible viscous fluid. In the absence of mass forces, will be 

written In the spherical system of coordinates Rt  e, <P. The origin of 

coordinates Is allowed to coincide with the source of the Jet, the po- 

lar axis Ox  Is directed along the axis of symmetry of the flow. 

The continuity equation: 

aJT+-äW 
+"TT+ -*"-" 0V (1.1) 

The equations  of motion: 

v*S7i + iriS + -R Trct88BX -?äW + 

+ v[m + WW + ~^M + ^-'5f + WW-Ril^l)'   (1.3) 

The equation of heat transfer (neglecting viscous dissipation): 

9T  ,   »lar     m(9T   ,   1 «T   ,   2 w  , eteewx ,',,nr","x-wflOT + ÄriF+irwf + i?r'wj*    (1.5) 

In these equations i>fl, y0, v are the velocity components, p, T, 

and p denote pressure, temperature and density, v and a  are the coeffi- 

cients of kinematic viscosity and thermal dlffuslvlty which (Just as 

the diffusion coefficient D,  see below) are considered constant. 

Neglecting the diffusion due to temperature and pressure, the dlf- 
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fusion equation analogous to Eg.   (1.5) would read 

""W + X^-^lsTfr + Är^ + irw+ilrir)'  (1.5a ) 

o  being the concentration and £ the diffusion coefficient. 

Since the equations of heat transfer (neglecting the heat of fric- 

tion) and mass transfer are of the some form, their solutions, written 

In a nondlmenslonal form, will of course, also be Identical In the case 

of similar boundary conditions for temperature and concentration. In 

the following we shall therefore Ignore Eq. (1.5a) and for brevity only 

speak of heat transfer. This analogy Is violated when viscous dissipa- 

tion (or radiation) Is taken Into account In the heat transfer equation 

of when temperature- or pressure-Induced diffusion Is taken Into ac- 

count In the diffusion equation. 

Equation (1.1) does not contain the peripheral velocity v  . 

Let us there Introduce a stream, function of meridional flow in the form 

♦ = v{^I(e) + ^(e)+.£.ft(e) + "-}.    (1.6) 

The velocity components vR  and i>0 are here given by 

l  dt        1 M 

and defined by the expressions 

(1.7) 

(1.8) 

Note that the face that the expansion of the stream function V does not 

contain terms containing the independent variable R in powers higher 

than the first is due to the conditions of regularity of the velocity 
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vector components In the entire field of flow (with the exception of 

the origin of coordinates which Is a singularity)  and the requirement 

that the velocity  components vanish as R + *. 

Let us Introduce a new Indipendent variable 

ö = eosO 

and give the transformation equations  In explicit  form: 

£—-i+ci-^- 
The expressions of the velocity components vR  and vQt  taking the 

identity g.(e) = /.(w) into account, can be written in the form 

VR 

(1.10) 

Let us also put 

P-Pi 

i,-.p^+2jfL+.t.|.      (1>11) 

,(*<P + ^ + ...Jf (1.12) 
^_^eo-*!jP + !#+..,..        (1.13) 

where p^ and T^  are the pressure and temperature in a nonperturbed flu- 

id far away from the source, the primed quantities are derivatives with 

respect to u. Let us substitute Eqs. (1.9) - (1.13) in Eqs. (1.2) - 

(1.5) and in the equations obtained put equal to one another the coef- 

ficients of equal powers R  in the right-hand and left-hand sides of 

each of these equations. To show what is meant we give by way of exam- 

ple one of the transformed equations (corresponding to Eq. (1.2) for 

the velocity component vR): 
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-2-JT??^[y1=^]+^/; + ^/; + -.- + ÄJ^+-.- (1.2a) 

0 

Comparison of the coefficients for 1/R    yields 

^-0.   ^-0. (1.14) 

This Indicates that In the expansion (1.12) the first term, containing 

1/R  Is lacking. 
■3 

In an analogous way, putting equal the coefficients with 1/R , 

simple transformations yield the following equations: 

l(l-co«)/:i'-/1/;-/?-rAi-<Dj-2Af-0.    (1.15) 

(irlk+'hp**+'k-*      '       (1-16) 

(O.KT^-^c^Knrpy-o.    (1-17) 

Ui-ö^Tir-Pr^T,)'.      .  (1.18) 

Pr ■ v/a  being Prandtl's number. 

Let us finally give the analogous equations obtained from compar- 
b 

Ing the coefficients for 1/R  : 

((1 - a») /',]' - /,/; - 3/1/; - 2(D1<D1 - 3A, - 0. (1.19) 

Z/I + Ä0'0^-0' (1-20) 

(OI^TIl?)--r^(<l)lKrr^)' + iZ^(ol]/T^^)-0. (1.21) 
((i-a)«)T;i'+2Ti-Pr[(/IT1)'+/;t,4/;T1i.       d-22) 

The first three of the above equations (1.15)-(l.l8) represent a 
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closed system of nonlinear ordinary differential equations whose Inte- 

gration determines the dynamic problem. As regards the thermal problem. 

Its solution can be reduced to Integrating the linear equation (1.18) 

using the function /-.(w) found previously. 

As usual the equations for the following terms of expansions 

(1.19)-(1.22) and the higher approximations are solved after determin- 

ing the functions they consist of and which are obtained from the pre- 

ceding approximations. The equations of the second and higher approxi- 

mations are then linear differential, equations. 

Let us now turn to the boundary conditions of the problem. In the 

general form they must display the axial symmetry of the flow. 

Along the axis of the Jet (with 6 ■ 0) owing to the symmetry con- 

ditions (apart from the vanishing of all derivatives with respect to 

the coordinate «p which Is taken Into account In the Initial conditions) 

the velocity components yQ and v    and the derivatives with respect to 

the angle 0 of the velocity component v«, the pressure and the temper- 

ature are vanishing. 

Thus 

"•-".-0.^ = ^-^-0 for 8-0.     (1.23) 

When seeking a solution we must. In addition to this, take Into 

account that throughout the region of the flow (except for the origin 

of coordinates which Is a singularity) the values of the velocity com- 

ponents, pressure and temperature are finite. 

For Eqs. (1.15)-(1.17) the boundary conditions have the form 

(1.210 

It Is trivial that with w - 1 the derivatives In the conditions (1.23) 
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vanish since 

_—ri_w-a_.. 

Before we pass over to solve a concrete problem we want to point 

out an essential singularity which Is connected with the choice of the 

expressions for the celoclty components, the pressure and temperature, 

determined by the expansions (1.9)-(1.13) whl^h grow unllmltedly as the 

distance to the origin of coorldlnates decreses. Owing to this singu- 

larity each of the solutions obtained will only describe the flow at a 

considerable distance from the source. The dimension r-, of the orlflc 

of the efflux Is taken as the measure of the remoteness. The condition 

of applicability of the solution Is the Inequality R » r0  which, for 

the solutions, enables us to Ignore shape and dimension of the orifice, 

velocity and temperature distribution in the efflux section of the noz- 

zle, etc. 

Thus the problem is essentially solved without initial conditions. 

With the accepted statement of the problem of the source Jet It is in 

fact impossible to take into account details of initial conditions, re- 

taining an arbitrary number of terms in the expansions; Instead of this 

Integral conditions (conservation of momentum flux, heat content, etc.) 

are used in the solutions. 

When choosing the number of terms in the expansions it is neces- 

sary also to consider the following. Though as to their absolute values 

the velocity components and the temperature tend to infinity as /?n with 

decreasing Ä, where n Is the higher the larger the number of terms in 

the expansion; the fact that the signs in the series are alternating 

may improve the solution a little compared to the first approximation. 

But as It is rather cumbersome to calculate the higher approxima- 

tions we must restrict ourselves in the following manily to finding a 

- 28 - 

x r 

:: 



) 

first approximation permitting a good description of the physical Image 

and the most essential laws governing the effect. 

1.2. INTEGRATION OF THE EQUATION OF A FIRST APPROXIMATION 

Let us determine the first nonvanlshlng expansion terms for the 

velocity components, the pressure and the temperature. The totality of 

these expressions will be called the solutions of the problem In a 

first approximation. When we add to each of these expressions the next 

terms of the expansion we obtain respectively the second, third, etc. 

approximations. The fact that the expansions for different velocity 

components, pressures and temperatures will be gin with terms contain- 

ing the variable R  In different powers, obviously Indicates that the 

corresponding quantities are damped at different degrees as the dis- 

tance to the source Increases. This could have been predicted from di- 

mensionality considerations as shown below. 

Let us first of all consider Eq. (1.17) for the function *,(u), 

entering the expression of the peripheral velocity (1.11). 

Integrating twice yields 

•      a* 

©iKn^P-c^wpftjMy^+ci, (i.25) 
-i-i 

Prom Eq. (1.25) with w ■ -1, taking Into account that the function 

*, must be limited, we obtain Cp ■ 0 and with u ■ 1 we also find that 

the constant C, ■ 0 since the Integrand 

-i 

throughout the Interval of variation of the variable u. 

Thus ♦, = 0. 

This Indicates that In the first-approximation solution the ex- 

pression of the peripheral velocity begins with a term containing a 
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higher power of 1/Ä. 

By virtue or the equality ♦= 0 the function hAu)  may be ellml- 

nated from Eqs. (1.15) and (1.16). For this purpose we Integrate Bq. 

(1.16) and determine the value of the function hp 

*•(•)--TT=k-/« + * (1.26) 

which Is substituted In Eq. (1.15). After simple transformations we 

arrive at the following equation determining the function ^(w): 

[(l-w»)Al'--/i/I-/? + 2/;- 2Bt-0. 

A solution of this equation determines the velocity components 

vR and Vg. 

Integrating this equation twice yields the  equation 

2(1 -<*•)/; + 4(o/1-/;-2(Bla)« -f Bp + B,) - 0, 

which with 

(1.27) 

can be represented as the  linear differential equation 

p. . *±3m±Bgß „    n (1.28) 

This form of equation was obtained by N.A. Slezkln [173] for an 

axlsymmetrlc flow of an Incompressible viscous fluid. 

The derivation of a further solution and Its agreement with the 

boundary conditions for a concrete Jet problem depends essentially on 

the choice of the constants of Integration BQt  fl,, Sp. In the simplest 

case where S0 ■ B, ■ flp ■ 0 we arrive as shown below at L.D. Landau's 

problem [122, 302]. 

Let us now turn to Eq. (1.18) to determine the function T1(W) 

which enters Eq. (1.13) for the temperature distribution. Integrating 

Eq. (1.18) and noting that the constant of Integration vanishes by vir- 

tue of the boundary conditions (1.23), we can write (taking Into ac- 
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count the connection between the functions /- and F  established above) 

Prom the latter equation we obtain 

T1((ü)-Äl/i»r
,r'. (1.30) 

Temperature and pressure can be defined In the same way In terms 

of the function /,((*>). Prom the physical point of view this means that 

the temperature distribution, Just as the pressure distribution. Is de- 

termined by the velocity distribution. 

In order to solve the problem In a first approximation such that 

a complete solution Is obtained. It would be necessary to determine the 

first nonvanlshlng term In the expression of the peripheral velocity 

component. Por this purpose Eq. (1.21) must be Integrated, substitut- 

ing In It the expression of the function AC«) obtained for concrete 

conditions. If In this procedure the function *2(a)) proved to be equal 

to zero, one would have to pass over to the equations for the following 

terms of the expansion. 

Note that If *2(ü>) ^ 0 - and It Is only this case which will be 

considered In what follows-the expression for the peripheral velocity 

y Is determined (with given value of the angular momentum M    relative q) w x 
to the axis of symmetry of the Jet), see below, by the function /,(«). 

Conversely, the velocity components y„ and ve (and the radial and axial 

velocity components v and v In cylindrical coordinates which are de- 

termined unambiguously by the former) are Independent of the peripheral 

velocity. The same holds true for the temperature and the pressure. As 

we can see from Eqs. (1.19)-(1.22) this Independence of the "twist" Is 

also conserved In the second approximation. 

It Is quite obvious that this percullarlty of the motion Is due to 

the nature of the method of solution which Is applicable only at con- 
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slderable distances from the source. 

1.3. L.D. LANDAU'S PROBLEM n 
We shall now use the results obtained above for a solution (In a 

first approximation) of the concrete problem of a source Jet flowing 

out of a thin tube Into an unbounded space filled with the same fluid. 

In addition to paper [122] we also consider the results of paper [203] 

for the peripheral velocity and papers [163» 302] as regards the tem- 

perature. 

The solution is reduced to determining the distributions of all 

velocity components, the pressure and the temperature, at a consider- 

able distance from the source, taking into account the influence of the 

initial momentum on the flow pattern. As to the mathematical side of 

the problem, we have to integrate sucessively Eqs. (1.28), (1.21) and 

to calculate in terms of the given function /-.(w) the expressions for 

^(w) and T1(ü)) with the help of the formulas (1.26) and (1.30). 

In this investigation Eq. (1.28) is of fundamental importance as 

it contains the three arbitrary constants BQi  B,, B^.  As already men- 

tioned, the choice of the values of these constants corresponds to the 

desired choice of the concrete conditions of flow, unfortunately this 

choice results in "guessing" the needed values of the constants before- 

hand and then to verify whether the solution obtained corresponds to 

the statement of the problem. In this connection it is interesting to 

subject Eq. (1.28) to a detailed Investigation [221]. Some particular 

cases of solution will be given in the following, here we shall only 

deal with one of them which corresponds to L.D. Landau's Problem. 

Let us put BQ m B-\   ' B2 m  ^ As we sha11 see from the solution, 

the assumption that the three constants of Eq. (1.28) are all vanishing 

enables us to satisfy all the necessary conditions of the problem. Note 

that in paper [122] where Eq. (1.28) does not occur, several terms were 
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also dropped a priori which was Justified by a subsequent verification 

of the solution to satisfy the conditions of the problem. 

Prom Eq. (1.28) with B0'B1'B2^0ve  obtain 

F'-O, P-Ata+At, 

and hence 

/lH-^L^. (1.31) 

The expression obtained for the function /,((»))  satisfies the 

boundary conditions fA±l)  ■ 0  for arbitrary values of the constant 

L  «  ~A1/A2. 

Substituting f^oi)  In Eq.   (1.21) we obtain the following equation: 

This equation determines the function ♦((*))  which Is  linked with the 

sought  function ♦g^  by the equation 

0 = 0,/!^?. (1.33) 

A general solution of Eq.   (1.32) has  the form 
^_CLH+L)   1-»« L» 

which yields for the  function «p 

<D ■c£i&±J}££E2 i ii ^  

x{(1 + ^)—T + llxr-Ot1-^}^). 
It Is obvious that one has to set A*  ■ 0 to prevent the function 

♦ 2(a)) from growing unllmltedly as u ♦ 1. 

Thus 

a), j f{i-L**' (1.34) 

C being the constant of Integration. The expression (1.31*) has been ob- 

tained In paper [203] by M.S. Tsukker. 

In order to determine the pressure distribution» let us determine 
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the function Äp(w) from Eq. (1.26) with Bp ■ 0 and the above expres- 

sion for the function /,((*)): 

M«) "(fSat- (1.35)        0 
Thus we see that all functions needed to build up a solution of 

the dynamic problem In a first approximation can be expressed In terms 

of two parameters, namely the constants L  and C, 

Let us now turn to the determination of the function !,(«) enter- 

ing the expression for the temperature. 

Prom Eq. (1.30), taking Into account that F  - l-iu. It follows 

that 

T,(<O)=.B(1-&•)-•". (1.36) 

The expressions (1.31), (1.31*), (1.35) and (1.36) furnish a com- 

plete solution to the problem In first approximation. They still con- 

tain the three constants Lt   C  and B  which remain unknown as they cannot 

be determined from the boundary conditions. 

In order to determine the constants Lt  Ct  B  we need some addition- 

al conditions which replace the Initial conditions lacking In the pro- 

blem. 

As already mentioned, for solutions which are valid at great dis- 

tances from the source, the values of d0  ■ 2r0, the characteristic di- 

mension (tube diameter), the Initial values of velocity, temperature, 

etc. are unessential. This, of course, does not mean complete arbitrar- 

iness In the choice of Initial conditions. In a concrete flow problem. 

In addition to the physical constants of the effluent fluid (p, v, a) 

It Is necessary to know some Integral characteristics of the Jet with 

the help of which the constants L, C  and B  can be found. 

REFERENCES 

116, 122, 162, 163, 171, 172, 173, 174, 203, 221, 302, 303. 
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Chapter 2 

SOME PROPERTIES OF THE SOLUTION 

2.1. REMARKS ON THE FORM OF SOLUTION 

When choosing the Integral Jet characteristics we can, on the 

basis of dimension considerations, draw some conclusions on the charac- 

ter of Expansions (1.9)-(1.13), etc. 

For the first approximation of the problem on an axlsymmetrlc Jet 

(without "twist") In the orifice of the tube with R ■*■ 0  the velocity 
2 

component y -■♦■», and the Initial flow rate of the fluid C- % vx0^0 ^ 
2 whereas the Initial "Jet rnomen   " J 0 * v XQd02  Is finite (In agree- 

ment with the form of solution val . for R » dQt  d- ^ 0). 

Let us add J    to the given characteristics of the Jet. In this 

case we can only build up a single expression for the nondlmenslonal 

velocity components 

and 

*-'.(•.£)• 
It Is obvious that the components v-  and y. (and the axial veloci- 

ty y ) are proportional to 1/i? as Expanslona (1.9) and (1.10) begin 

with this term. 

A nondlmenslonal expression for the pressure can be written In the 

form of 

3 '#-''^- 
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Therefore 

the function hAw)  in Eq. (1.12) must be Identically equal to zero as 

this was obtained above. 

When J Is given It Is thus possible to construct a solution to 

the dynamic problem In a first approximation. I.e., to find the con- 

stant L. 

A nondlmenslonal expression for the temperature can be written In 

the same approximation In terms of the finite and nonvanlshlng flux of 
9 

the surplus heat content Q ^ v  n(Tn  - T )d n.  Here 

(r-rj/j 

IT 
and hence follows 

which also agrees with (1.13) (A ■ po a Is the coefficient of thermal 

conductivity). Knowing Q  enables us to determine the constant B. 

When the rotation Is taken Into account It Is quite natural to 

choose the quantity of the Initial angular momentum flux M    of the 
X 

fluid relative to the axis of symmetry 0    as an additional character- x 

Istlc. The quantity M    ^ v QV^Q^O    wil1 be finlte and nonvanlshlng for 

vx  'v i/R  only If v % l/j?2. The first term of Expansion (1.11) must 

therefore be Identically equal to zero which was already shown when 

Integrating Eq. (1.17) for the function •,. 

Thus the nondimentional expression for the peripheral velocity 

reads 

Ä* ■ **/]„  being a characteristic length. 
X  X 

When M    is given we can find the constant C,  Thus we have solved 
X 
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ty, which is nonvanlshlng In the approximation considered (G- ^ vXQ*d 
2 

will be a finite quantity for w ^ 1/R ). Knowing Gn  enables us to 

our problem in the first approximation considered. 

In order to develop the next approximation it is necessary to know 

an additional quantity of the dimension of a length». Taking into ac- 
p 

count that the "addition" to vR  will be proportional to 1/R  , we can 

choose the Initial flow rate per second, denoted by ff«, as this quanti- 

0 

X U 

build up nondimentional expressions for the velocity components, the 

pressure and the temperature. 

Thus, Instead of having initial conditions of the Jet efflux at 

our disposal, we can use the four integral characteristics of the Jet, 

J , M t  Q  and Gn  (the physical constansts p, v, a and o being given). X       x u p 

Note that only a single nondimensional parameter can be derived 

from the first three dimensional quantities (J . Mm  and Q)  and the phys 
X X 

physical constants which must be given simultaneously in order to fi- 

nally solve the problem in a first approximation; this parameter which 

does not contain M    and Q  is the Reynolds number 

(or, after the Introduction of a proportionality factor, Ito—^.l/'Cl. 

Reynolds' number Re is the only characteristic oarameter which 

maintains its value not only in the first approximation but also in all 

the following ones (provided the motion is free from rotation). With 

M ^ 0 in the equation which correspond to higher terms of the expan- 
X 

sion (beginning with 1/i? ) the interaction between the axial and the 

rotational velocity components becomes effective. Together with dimen- 

sionality considerations this results in the possibility of deriving a- 

nother nondimensional parameter from the characteristics M    and Gn  (and 
X Ü 

the constants), a ratio of characteristic lengths. This parameter be- 
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longs to the arguments for nondlmensional pressure and temperature dls- 

trlvutlons In the corresponding approximations. Here, as always In pro- 

blems on the motions of an Incompressible fluid with nonvarylng physi- 

cal properties, the temperature In Its turn will not Influence the flu- 

Id's flow. 

2.2. SELF-SIMILAR SOLUTIONS 

A solution of the basic system of equations written above In the 

nondlmensional form 

—^— = Fp(e. R«), —A  =Me. R«.Pr), (2.1) 

displays of the following remarkable peculiarity. When each of the 

above expressions Is written In th form of a ratio, e.g., 

,7^-/«(6. «•). i/S/j^-h(8. R«, Pr) etc. 

these ratios will not depend on the  coordinate R.  This Indicates that 

with arbitrary values of /? the relative velocity, temperature and pres- 

sure distributions will be Identical  (with any value given for the pa- 

rameter Re)  and the absolute distributions will thus  also be similar. 

This property of the solutions  Is  conserved In the transition to 

cylindrical  coordinates 

(2.2) 

where r/x - arctg 6; p^,  y  and characteristic (e.g., Maximum) valu- 

es of the velocity components. These solutions (and the corresponding 

motions of the unbounded medium) are called self-similar. 

The solution In first approximation Is thus self-similar. 

In order to evaluate this result correctly let us turn to a gener- 

al Investigation of the problem of the self-similar solutions of the 
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Navler-Stokes and energy Equations (l.l)-(1.5)(see [57]). 

In a general form the slef-slmllar solutions (2.1) can be writ-en 

In terms of the product F.(QhR'n  .   Let us look lor which values of the 

exponent n  self-similar solutions of the basic system of equations may 

exist. Owing to considerations of generality we cannot restrict our- 

selves from the very beginning to Jet flows alone so that we retain In 

the solutions the explicit expressions of velocity, pressure and tem- 

perature, given In terms of the coordinates R  and e alone (for flows of 

axial symmetry). 

We put 
»B-iF* W. "• = -^ ^ (6). »• = ^ (6). 

P-P0 

R* 

»v»^ r^« r —r«« M«) (2.3) 

) 

Note that Instead of these expressions we could have written more 

general ones, of the form of u^ » FF(Q)VR(R)  etc. It can, however, be 

shown (by substituting these expressions In the basic equations) that 

this generalization does not yield any new self-similar solutions apart 

I-«1 from the power functions  {VR ^ R~  ). 

Substituting Eq.   (2.3) In the system of Eqs.   (1.!)-(!.5) we obtain 

^ 'V. 
+1   "r   »a-f! 

'! J1_ 

=Ä ^-+ ^r{«(«-i)^«+ ^H + ^«ctge-2/?«}- 

^(F'. + F.ctge). 

(i-P) + FtFt 

RV*i        #1*1 ctj 

fe- + ^r{p(P-1)^ + ^ + F;ctge-8-^} 2F\ 
TF*' (2.4) 

FRF, O-^^i^r + ^^ + ^ctge)- 

= ^r{T(T-l)^ + ^ + ^ctgG-^}. 

(2-a)^- + ^r(^ + ^ctge)-o, 

/''T + (ctg 6 - Pr/?,)/?'T + le (e — 1) + e Pr FÄJ FT - 0 
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(the prime marks derivatives with respect to 6). 

The system obtained goes over to a system of ordinary differential 

equations If a series of conditions resulting from the requirement that o 

all equations of (2.4) must be Independent of the coordinate Rt  are  Im- 

posed on the constants a, B, y» 8 (the so-called constants of self-slm- 

llarlty). These conditions are represented by the equalities 

2a+l-a + ß + l-2ß + l-2r + l-* + l-sa + 2-P + 2, 

a + T + l-P + T + l-T + 2. 

The value of the temperature constant e of self-slmllarlty not 

been determined from the equations. 

A solution to the latter system of linear algebraic equations 

which (together with the Integral conditions of conservation of momen- 

tum flux, angular momentum, and excessive heat content, see below) de- 

termines the problem unambiguously, has the form 

a-ß-T-1, «-2, «-1. ^?^ 

The Initial system of Eqs. (1.1)-(1.5) will therefore assume the 

form 

- F), + F'RF% -F\- F\ = 2f p + P'n + 
+ FR ctg 6 — 2F\ — 2Fn — 2F9 ctg 6, 

F«F',— f^ctgO • —.Pp +F', + F',ctg9 + 2F'R — -™, 
(2.6) 

FtF, + W, ctg 0 = F; + F\ ctg 9 - ^jjjfj. 

FR + p'. + F.ctge^o, 
FT + (ctg 0 - Pr f.) F'T + Pr FnFj - 0. 

A self-similar solution to this tytsem agreement with the obtained 

values of the constants of self- similarity must be written the form 

'*(•)     '.(•)     '»W 

P-P* 
R 

T~Te 
r-V) 

(2.7) 

As far as we know this solution has not been found so far for an axl* 

symmetric flow of a viscous fluid. For a more precise statement of the 

problem, a source Jet with zero angular momentum relative to the axis 
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of symmetry (M =  0), the result obtained Is reduced to the problem 

considered by L.D. Landau. 

At the same time for a twisted Jet the result obtained w ^ 1/R 
9 

disagrees with the expression t> ^ 1/R    derived above (2.1). In our 

problem the point Is the following. 

The system of expressions (2.7) In which v    'v 1/R  Is the only form 

of self-similar solution for the axlsymmetrlc motion. For a twisted 

source Jet, however, this self-similar solution would correspond to the 

trivial case of y = 0 throughout the region of flow since (as shown In 

the previous section) with t» * tf* **» v_ * 1/R  the Initial angular mo- 

mentum flux of the source Jet vanishes. 

It Is therefore Impossible to apply the self-similar solution 

(2.7) to the problem of the twisted Jet. 

On the other hand, maintaining the relationship v_ 'v y. ^ 1/R  and 
p 

assuming y ^ 1/R    we arrive at a nonzero (and finite angular momentum 

Mm  and a self-similar solution of the problem (in a first approxima- 

tlon) in which the initial system of Eqs. (1.!)-(!.5) has been simpli- 

fied. This consisted in omitting in Eqs. (1.2) and (1.3) the terms con- 

2 _t; 
taining y _ . This neglection of terms proportional to i? ^ with respect 

„■a 
to the other terms (of the order of i? J) in Eqs. (1.2.) and (1.3) is 

obviously permissible at great distances from the source. An analogous 

method was used in the papers [5^, 131, 197] etc. in order to obtain 

self-similar solutions of Jet problems within the framework of the 

boundary layer theory. Such flows are usually denoted "slightly twist- 

ed" ones. 

It stands to reason that a neglection of individual terms in the 

initial system of equations and the assumption that the constants of 

self-similarity are equal to 

«.p.c.l, T«««2 (2.8) 
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yields to another system of ordinary equations which hold true Instead 

of Conditions (2.5) and do not coincide with Eqs. (2.6): 

- n + F'RF. - FJ = 2FP + P\ + 
+ F'K clg 6 - 1F\ — 2FR — 2F, ctg e, 

FtF', = -F'p + F't + F, clg 8 + 2P'R - s-njfi, 
(2.9) 

FJ'. + /•.F.clge = F, + F,ctge - j-f^. 

FA + F; + F.ctge-0, 
FT + (clg 6 — Pr Ft) FT -f Pr PRFT - 0. 

When we pass over to the Independent variable u ■ cos 9 this sys- 

tem coincides with Eqs. (1.15), (1.16), (1.18) and (1.21) If the func- 

tion *, s 0 Is used In them. 

The self-similar solutions are of great Importance In hydrodynam- 

ics [lu8, 177] and. In particular, in the theory of Jet motions of a 

viscous fluid. Prom the mathematlo 1 point of view they are character- 

ized by the relative simplicity of the pertinent ordinary differential 

equations compared to partial differential equations. This Is partlcui-' 

larly Important for the nonlinear problems often encountered In hydro- 

dynamics. 

As to the physical point of view, the self-slmllarlty of solutions 

(that Is, similarity of the velocity, pressure and temperature distri- 

butions) corresponds to a property which Is common to all processes of 

"leveling" (of velocity, pressure, temperature, potential, etc.), the 

fact that at a sufficiently large distance from the source of pertur- 

bation the Initial conditions have no Influence. Prom this point of 

view the Jet flow considered, which is assumed produced by a source 

Jet, can be attributed likewise to the efflux from a thin tube of cir- 

cular, square, triangular or any other form of cross section. 

As regards the estimation of the distance at which the self-simi- 

lar solution (or a solution obtained by the method of series expansion 

in increasing powers of 1/Ä) describes the actual flow in a suffi- 
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clently good approximation. It may only be determined from an accurate 

(or an approximate, e.g.. numerical) solution of the problem of a Jet 
} i 

Issued from a nozzle of finite dimensions where the concrete Initial 

conültlons have been taken Into account. Without such a solution we 

only have the Inequality R » d0  at our disposal where d. Is the char- 

acteristic dimension of the outlet cross section of the nozzle. 

It Is obvious that a self-similar solution of the problem consid- 

ered could have been obtained Immediately from the values of the con- 

stants of self-slmllarlty (2.8) determined above and from Eqs. (2.9). 

The way of representation chosen In this chapter can be explained by 

the wish of considering a more general method of solution by series ex- 

pansions which enables us to obtain a solution which Is somewhat more 

accurate than the self-similar one. 

Since in the following chapters we shall consider solutions of the 

boundary layer equations, we want to remark In this connection that 

precisely the above analysis of the system of Navler-Stokes equations 

for a plane-parallel motion of a viscous fluid results In the absence 

of a self-similar solution for the analogous problem of a plane source 

jet. In fact (see [57]), for a self-similar solution to the problem of 

a plane flow the corresponding constants of self-slmllarlty are a ■ 

■6»1, 6*2 1n formulas of the form 

(In a polar system of coordinates). Taking the equation of a continu- 

ity Into account, the equation y« ■ const//? corresponds to these values 

of a, B and 6, which does not describe a flow produced by a plane and 

free source Jet.» 

Having made these remarks we want to turn to the main problem of 

this chapter, the axlsymmetrlc source Jet and Its final solution, de- 

termining the constants I, C  and B. 
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2.3 THE INTEGRAL CHARACTERISTICS OP THE JET 

According to [122] we use the condition of momentum flux conserva- 

tion In order to determine the constant L.  For  this purpose we calcu- 

late the Integral of momentum flux density over a spherical surface of 

arbitrary radius centered at the source. It Is obvious that only one 

component of the momentum flux tensor, II_„ contributes to this Integral; 

this component Is obtained by projecting the momentum flux through a 

plane whose normal Is orlentel along R  on the axis R. 

Taking Into account the general relationship between the compo- 

nents of the momentum flux density tensor 11.. and the stress tensor a.. 

[122] 

nu^pviVk—Oik, 

where 

we obtain 

HRR = /> + pri — 2JI -gjf- 

and In the projection to the 0    axis 
x 

/, = &nBRco3Bds, 

where de * R ein  öded Is a spherical surface Element. 

The result of caluslatlng this Integral, taking the above expres- 

sions the the pressure and the velocity vR  Into account, reads as fol- 

lows : 

7.= 16npv« T+TI—.'2Z?,nr^r-   (2-10) 

For brevity we shall call the quantity J    (and accordingly eT ) 

the "Jet momentum". 

Equation (2.10) determines the constant L   In terms of the Initial 

source-Jet characteristic J  .  As to Its physical meaning 7    corresponds 
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as indicated above to the square of the characteristic Reynolds number 

of the source Jet 

or 

R. = 8K^=8(^4-414r.-2r.lnr^r),/'        (2.11) 

To Illustrate this relation we give a graph of the function L  ■ 

- LfRe; In Fig. 2.1. 

We see that low values of the constant L correspond to low values 

of the Reynolds number, whereas when Re goes from zero to Infinity the 

L  goes from zero to unity. 

Though it is well-known that as soon as with a value of Re ^  15 

[224] (corresponding to I « 0.82) the free axisymmetric laminar Jet 

loses its stability at a certain distance from the nozzle and the flow 

becomes turbulent we are, with regard to the following, particularly 

Interested in a solution to the problem with the parameter L   close to 

unity. In this case the flow will be characteristic of a problem of the 

boundary-layer theory of a source Jet. This problem will be discussed 

later on on greater detail. 

Let us now determine the constant B  of Integration from the con - 

dition of conservation of the flux of excessive heat content Q.  Just 

as in the case of the momentum flux, theqquantity Q- ! Q is obtained as 

the Integral over a spherical surface of the radial component of the 

heat flux density.* 

^ = §pcJ)[rJ,(r-rlo)-flU](if. 

Substituting the values of the functions vR and T-T^ from the ex- 

pression 

»»=    v'»*"*   r    r      T,(a,)     BV-**r*' 
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Flg. 2.1. The parameter L as a function of the Reynolds number Re. 

we obtain 

^-2JIX J (1—Pr/,)^«/«). 
—i 

As the result of these calculations we have 

B = 2SrB(L.Pr). (2.12) 

where 

.-i 

fftt.fO;. (4-,p {^^ [.-(1^),'",1 + 

+(^^■'-,}■ 
A graphic representation of the function B  » ¥(Lt?r)  is given In 

Fig. 2.2. As we see from it, the value of B is essentially higher than 

unity with low values of L.   In this region the influence of Frandtl's 

number is algo considerable. With a value of L  of about L >_ 0.5 the 

quantity fl < 1 and fl -»■ 0 as L * 1. 

In order to determine the constant C  which enters Expression 

(1.34) of y_ we use the condition of conservation of angular momentum 

flux relative to the axis of symmetry of the Jet through a sphere of 

arbitrary radius R. 

The latter may be represented in the form 

» * 
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Fig.   2.2. The parameter B as dependent  on the parameter L and the 
Prandtl number Pr:   1.   Pr«0.5;  2.   Pr«  1.0;  3.  Pr«  2.0. 

The latter may be represented In the form 

Mx= 2nfl»^/7n,8in«edet (2.13) 

where the component n_ of the momentum flux density tensor Is given 

by 

Determining the velocity components ^D s - v f^daJ/R  and v    ■ 

» v *2(u>)/Ä with the help of Eqs. (1.31) and (1.31*) we can obtain an 

expression of n„ and calculate the Integral (2.13). The results of 

these calculations yields the following relation between the angular 

momentum flux and the constant C: 

C'^^ (2.14) 

3 1—L« . 1+L-j-i (2.15) 

where 

c = TLTTT-I1 + n: 51^3ln f^r) 
Let us give a brief summary. 

The expressions for the velocity components, the pressure and tem- 

perature obtained above In a first approximation read In their final 

form: 
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r,, —** jl=ja±^g (2.16)        -* 

—-TT^. (2•17, 

"• 27P (i - Uf (2.18) 

■—T-3"  Äi~(i-A<i)*' (2.19) 
» »    ,  v.^. r-r»«-^^-^) 

(2.20) 

To solve the problem in a second approximation the function hAu) 

must be eliminated from Eqs. (1.19) and (1.20), an easy task when we 

take into account that *, E 0. The equation obtained for the function 

F    ■ — f^ • 
2 c3 

[(I-ö>«);P;I'_/1F;+3(2-/1)/'I-I 

having substituted in it the expression for the /, from (1.31)» coin- 

cides with Eq. (10) of Paper [162] by Yu.B. Rumer in which its solution 

was achieved. This solution (and also the solution for the peripheral 

velocity component and the temperature) and to a still higher degree 

the further approximations are connected with very cumbersome computa- 

tions and are therefore not considered here. 

REFERENCES 
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Chapter 3 

RESULTS OF THE SOLUTION 

3.1. THE FLOW PATTERN 

In order to represent the results obtained In a more Illustrative 

form we rewrite the expressions determining the velocity, pressure and 

temperature distributions In cylindrical coordinates; 

2vL     f. . ___LzJ£__\ 

Vr 

v CvL(l-Hl.) t) (3.1) 

P-P» W       1 — L V"! + n* 

_        r 
where " "" T* 

Let us give a few examples to Illustrate the character of the 

flow determined by Eqs.   (3.1). 

Since Expressions  (3.1)  are given In terms of the nondlmenslonal 

parameter L which Is an unambiguous function of the characteristic 

Reynolds number R«— -£= |/_35_ It  Is  first of all expedient to determine 

the Influence of the latter on the spatial distribution of the variable 

sought.   In this  connection we must not  forget that the function L ■ 

■ L(Re)  represented in Pig.  2.1 shows that when Re is allowed to go 

from zero to unity.  Low values of L will therefore correspond to a Jet 

flow with small momentum flux whereas with L ■♦• 1 the flow is produced 

by a considerable initial momentum. 

Following L.D. Landau [122'J we shall agree in calling these flows 
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"weak" and "strong", respectively  (bearing mind that In the case of 

high values of Re and therefore values of L close to unity the actual 

flow In the Jet will be turbulent). 

-♦ -i 0 

^*~ 

or* 

Plg. 3.1. Streamlines In axlsymmetrlc Jet.  L ■ 0.1, "weak" Jet; 
-.-.-. L  - 0.5; L  - 0.8, "strong" Jet. 

A general representation of the flow pattern with different val- 

ues of L  Is given by the graph In Fig. 3.1, the streamlines being cal- 

culated according to the formula 

+ -v/frt(e)»2vLyft^Ig. (3.2) 

As we see from the figure the  flow region corresponding to a cer- 

tain given value of y ■ const narrows as L Increases, particularly 

strongly below the source. This Indicates that as L Increases  the whole 

distinct field of flow assumes the character of a Jet, displaying anl- 

sotropy of the motion.  Precisely this property of the Jet Is illus- 

trated clearly by the distributions of the relative velocity components 

and , represented In Fig. 3*2. As L  Increases, the axial ve- 
'nuz 

loclty In the cross section of the Jet decreases more and more rapidly 

which Is accompanied bv a drop of the ratio between radial and axial 

velocity components. In this connection It must also be taken Into ac- 

count that, as L  Increases, the damping Intensity of the Jet decreases 

with Increasing distance from the source as this can be seen from the 

formula 
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'«mal 4L (see 71g.3.3). 

Figure 3.2 also shows the dependence on L  of the characteristic 

values of the nondlmenslonal coordinate %,"|JL,  which correspond to 
9m the two values 0,5 and 0.1. These curves characterize the condl- 
'saai 

tlonal width of the zone of perturbations caused by the source Jet for 

several values of the parameter £..Note that the limiting case of a 

"weak" jet, £ "• 0, corresponds to a quite definite finite width of the 

Jet whereas the width of the Jet becomes Infinitesimal as £ * 1. 

o 

4        -f*               t) si'              I) 
Fig. 3*2. Relative distributions of the axial, a) and radial; b) velo- 
city components In the cross sections of an axlsymmetrlc Jet. L  > 
- 0,1; -.-.-.- L  ■ 0.5; L m  0.8; c) conditional width of the Jet 
n* as a function of the parameter L.  i. tmm_j   m •. («B/W-O.!. 

For a given value of L the distributions of the relative velocity 

components are self-similar. I.e., they depend only on the ratio t) — -j 

(see Fig. 3.2). Fig. 3.^ the same distribution -3— Is represented as 
'■max 

a function of the reduced coordinate Vnv, m rln^ where n% corresponds to 

the value of JSL. -4-. This method of representation Is often used In 

the theory of Jets. 

We see from Fig.   3.4 that, generally speaking, the different dis- 

tributions of -2L.,   corresponding to different values of L tend to co- 

incide as L Increases.  Coincidence Is virtually reached even with L >_ 

±,0.8.  This fact will be explained In the next section of this chapter, 

when we discuss the problem of the properties of a solution with high 
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values of L. 

Finally, Pig. 3.5 shows two sets of values of the velocity v    and 

the ratio . The shape of these curves is different as we can see 

from the figure: the lines of equal velocity with respect to the rela- 

tive velocity are straight lines whereas these lines with respect to 

v    are curves Join the axis of flow, x 

11 
i \ 
1 \ 
V \ 

^ 
\ 

^^■•«« 

*—— "id 
i '        4 1 f       i ** 

Fig. 3.3. Variation of the axial velocity component along the axis of t 

the Jet (in conventional units).   L  - 0.1; -.-.-.- L  ■ 0.5;   

  I m  0.8. 

V 

4 \ 

\ n ̂ 

\ 

^ ̂ 5 J55 m    | 

/ i j 1   4 J U' 
Fig. 3.i*. Distribution of axial velocity component in cross sections of 
the Jet. ^^  L  • 0.1; -.-.-.- L  - 0.5;   L  ■ 0.8. 

D 

Figure 3.6a shows the relative distributions of the peripheral ve- 

locity component approaches the Jet axis as the parameter L  increases. 

There (Fig. 3.6b), in the same cross section (at a certain distance 

from the source) we choose the value of v_ -m^  as the scale parameter 
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of y   . The figure shows that the parameters L and M   exert an opposite 

influence on the Intensity of "twisting" and the distribution of tv cp/nax 
In the cross section of the Jet. 

The Jet properties of the flow Influence the temperature distribu- 

tions analogously as the eynamlc picture.  In addition to the above 

characteristics of the Jet the Prandtl number will also characterize 

the thermal problem. 

Figures 3.7-3.9 show graphs Illustrating the decrease of the ex- 

cessive temperature  In the  cross sections of the Jet and along Its  axis 

for several values of the parameters £ and Pr.  Figure 3.10 shows the 

presence of a self-similar distribution of the excessive 

O 

Fig.   3.5.  Lines of equal absolute and relative  (straight lines) values 
of the axial velocity component.  1-0.1; x.-o.i: i-o.t. 

temperature for a "strong" Jet and the relative courses of the velocity 

and temperature distributions for several Prandtl numbers.  In the case 

of Pr ■ 1 the relative velocity and temperature distributions  coincide 

as this is usual in problems of the boundary layer theory to which,  es- 

sentially, the "strong" Jet pertain. With other values of the Prandtl 

number the temperature distribution curves are correspondingly "broader" 
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Flg. 3.6. Relative peripheral velocity distributions In Jet cross sec- 
tions . t - O.t; t - «.»; t - 0,1; I. M, - 1; r it, - 1. 

o 
V       4« 

Fig.   3>7.  a)  Cross-sectional distribution of excessive temperature; 
b) effective thickness of thermal boundary layer of the Jet .• u- AT/AT«-o.i: 
tt - Ar/Ar* - Mk J. Pr - 9,1; f. Pr- 1.0; J. Pr - 1.0.  t - 0,1; — 1 - «A  - - I, - 0,0. 

J 

i#jr 1 1— 

ttyt-4- 

*      ♦_.   * 

Fig. 3.8. Cross-sectional distributions of excessive temperature. *■ *-o.t: 
t. Pr * i^;. *. *f >m 1,0.   L m |,l; t - f* 
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Flg. 3*9• Variation of excessive temperature along the Jet axis (In 
conventional units). / -L - MI // -1 - M: m - t-o,i; •. * - oj; •. fr-t,«! •. rr-M- 

than the velocity distributions If Pr < 1 or "narrower" If Pr > 1. In 

other words. In a case where, e.g., the mentum transfer coefficient Is 

smaller than the heat transfer coefficient (v < a, Pr < 1) the temper- 

ature drops much more rapidly along the Jet axis than the velocity; at 

the same time the width of the thermal "trace" (the region of tempera- 

ture perturbation) In the same cross sections will exceed the width of 

the dynamic "trace". The smaller Pr the broader will the heat layer be 

where the Influence of Prandtl's number Pr Is great In the marginal 

parts of the Jet and relatively small In the middle (compart the n* 

curve for Ar 
1^ 

0,1 and 0.5 In Pig. 3.7b). 

The relationships between the dynamic and thermal properties of 

the Jet derived above the general, considered from a qualitative point 

of view, they are the same In all Jet flows. Including the problem of 

the laminar and turbulent coundary layer Jet. 

:: 

i 
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Fig. 3*10. Relative distributions of velocity (solid lines) and temper- 
ature In cross section of the Jet (Pr - 1). i.i. - o.i: f ■ i. - o,i: •. & - •,•. 

i 

0 

3.2. PLOW INSIDE A CONE 

Let us briefly discuss the flow within a right circular cone on 

the basis of Eqs. (1.28) and (1.29) as another example for the motion 

of a viscous fluid which. In Its properties, Is similar to the Jet flow. 

The problem can be sketched as follows. We assume the Initial momentum 

flux of the Jet, Issued from a small orifice In the vertex, oriented a- 

long the axis of the cone; the lateral surface of the latter Is taken 

as the surface of the stream. In other words, the problem of the expan- 

sion of an untwltted Jet of a viscous fluid In a bounded space will be 

solved under boundary conditions corresponding to a perfect fluid*. 

From the general solution of this problem [116] we obtain as a particu- 

lar case the solution of the problem of a Jet Issued from an opening In 

a plane wall, perpendicularly to the latter [3033. 

We shall consider the dynamic and the thermal (diffusion) problem 

at the same time. 

As In L.D. Landau's problem, we satisfy the conditions chosen by 

an appropriate choice of the constants B«, B. and B2 In Eq. (1.28), 

considering the self-similar solutions of the form of 
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.       .. 1*'....-,^.    I (3.3) 

For this problem we have 

Ä,-Bl--4.B1-l»!jtl. 

In this case, Instead of the three constants BQ, B^t  fl2 a single con- 

stant b  enters the solution; Its value Is determined from the condi- 

tions of momentum flux conservation.     | 

Equation (1.28) will under these conditions take the form 

(3.*) 

Its solution must be sought In the form of 

J-(l + •y^ (3.5) 

to which the two Independent particular solutions 

f i - (1 + »)v,co8 Q, F. - (1 + «ySla 0, 

correspond where 0-6 in {! + «•). 

A general solution to the dynamic problem, the definite function 

fAu),  Is obtained In the form 

The value of the arbitrary constant C can be found from the boundary 

conditions: /i(co8 a) » /i (ID.) "■ 0» i.e., •» =« 0 at the surface of the cone 

whose vertex angle Is equal to 2a. This yields 

<:--£&*' (3.7) 
Taking this expression Into account we obtain finally 

(3.8) 

with the additional definitions: 

(3.9) 

As regards the constant b  It must remain below a maximum value 

A(«)-iV.(i-«)i^5££, 

o 

; 
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which Is determined from the transcendental equation 

In this equation, which results from the requirement of regulari- 

ty of the velocity components throughout the field of the flow, the 

constant b  Is an Implicit function of the characteristic Reynolds num- 

ber of the problem, R« «-^"i/^l (J Is the total momentum flux of the 

Jet). As Re Increases the value of the constant b  also grows which cor- 

responds to a transition to a "strong" Jet. 

Expression (3*8) obtained for the function /-.(w) determines the 

velocity components and the pressure (when we take Eq. (1.26) for the 

functions fAu)  and hAu)  into account). 

Let us also determine the function TAU)  entering the expression 

for the temperature. For this purpose we shall make use of Eq. (1.30) 

which links the sought function F - P, + CFp obtained above. After a 

r\ few transformations we obtain 
Mr« 

Tl(a,)-B(l + «) X 
(3.11) frff, 

r    X {3/.CO.Q-.inQ}"^« *****. 

The value of the constant B  is determined from the condition of 

conservation of excessive heat content flux (under the assumption of cm 

adiabatic insulation of the nonheat-conducting lateral surface of the 

cone): 

^-anJtJ (l-Pr^TtAi. (3.12) 

The final expressions for the velocity components, the pressure 

and temperature are written in terms of the initial (spherical) coordi- 

nates : 
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'*■—ff V.co.fl-rinfl  {tgO^oiO-iinP   f- 

»#--4-^ 
P-P* 

"r   l + coid A/acotä-slDfi r 
l-co»d 1-tgO.ctgO 
"iini      iV.etffa —1   ' 

~-r+v'Ä"+v,-2iir. 

7-^-^.(1+co« 9) "V+i 

»w« +1* 

(3.13) 

£l x{Jlf«cosQ —sinQ) 

We also want to give the streamline equation which corresponds to 

the usual formula of the stream function of an axlsymmetrlc motion: 

t - v Ä /i (6). 

This equation reads 

m     eout ^#.—tgO , . 
/t-^-COn8t(i--co.*)(itfl-ttfl.)' O.U) 

Figure 3.11 shows by way of example the stream lines for a motion 

corresponding to a value of the parameter a ■ Tr/3. As we see from the 

figure, under the conditions chosen the flow pattern in the paraxial 

region maintains the characteristics form of a "strong" Jet, in spite 

of the limitations imposed by the presence of the walls. This property 

is conserved within a comparatively wide range of values of the angle a. 

The problem considered is interesting as an idealized scheme of 

expansion of a Jet in a limited space. It is in particular character- 

ized by counterflows of the fluid in the space between Jet and walls 

which are typical of such flows. For the Jet of a source as considered 

here it is obvious that the total flow rate of the fluid through an ar- 

bitrary orthogonal cone of spherical surface will be equal to zero. 

Among the great number of possible values of the vertex angle 2a 

of the cone we select one, a ■ Tr/2, which corresponds to the problem of 

-se- 

il 

; 

; 



o 
a Jet efflux from an opening In a plane wall. This flow, a particular 

case of the problem under consideration, has already been studi3d by 

H.  Squire  [303]. 

With o - Tr/2, I.e., a Jet perpendicular to the plane wall, we ob- 

tain from Eq.   (3.13) 

r=i5rBl8i,lQ- 
ot, 1 — CM • 1 1 
"rl + CMe26eMQ—■iBaj' 

v l-eot6    «• + ! 

(3.15) 

) 

The diagrams of Fig. 3.12 Illustrate this 

flow. For a "strong" Jet the Influence of the 

walls on the flow In the paraxlal region Is ex- 

tremely weak. When calculating the motion with- 

in the framework of the boundary layer theory 

this fact enables us to Ignore the walls • In- 

fluence on the laws governing the expansion of 

a Jet. 

The boundary condition of the theory of a 

perfect fluid ( p, = 0, PJJ ^t 0 at the cone surface) 

accepted in this section instead of the physi- 

cally correct condition describing the adhension 

of the visous fluid, in the case of a "strong" 

Jet, virtually does not cause a distortion in 

the paraxlal flow, not even at a given distance from the axis but suf- 

ficiently far away from the walls, since the boundary layer thickness 

at the latter is relatively small. For more precise qualitative details 
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Fig.  3.11.  Stream- 
lines for Jet in 
cone  (o ■ ir/3). 
1) Jet axis. 



reference must be made to N.A.  Slezkln's paper [172]. 
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Fig. 3.12. Streamlines a) And Isothermal lines b) In a Jet Issued from 
an opening In a plane wall 3303]• 1) wall; 2) axis of Jet. 

Let us finally mention that the solution obtained for a Jet issued 

from a plane wall (Just as for the cone) can easily be completed In or^ 

der also to comprise the case of i  twisted Jet. The solution of this 

problem will be considered In detail In the following section for a 

fan-type twisted Jet. Here, on the basis of the similarity of these so- 

lutions, we only give the final expression for the rotational velocity 

component for the efflux of a Jet out of a wall, without deriving It: 

*•  Tpy 1 + eo.* ifc+f+(t_1)(1 + co-d)l], •    (3.15a) 

The constant c, - 4 £,*■  can be determined when the angular momentum 

- 60 - 

_■ - ■ 



o 

I 

) 

flux M   relative to the longitudinal axis Is given. 

This expression Is Identical to the analogous one for the type Jet 

(see below) as In both cases the expressions of the function /,((*)) and 

«2(0)) are the same and there does not exist any twist on the axis: 

ggj "0 with u ■ 1. Only v    In cylindrical coordinates will be dif- 

ferent . 

3.3. THE TWISTED PAN-TYPE JET 

Just as In the above case we consider the values of the constants 

BQt  B, and Bp of Eqs. (1.28) connected with the equation Bo — ifc- — 1/« Ä1' 

The numerical values of the constants Is assumed equal to ^W11—^/2. 

In this case Eq. (1.28) and Its solution under the correpondlng bound- 

ary conditions will describe a flow produced by an annular source*. As 

already mentioned In the Introduction we agreed In calling this form of 

Jet motion fan-type or radial Jet (see schematic representation of 

Pig. 0.2). 

With the values accepted for the constants BQt  B, and B« Eq. (1.28) 

can be written In the form 

F'+r(r£pF-0' (3.16) 

Its particular solutions have the form 

and hence we obtain 

,.(.)—2(l_^^-(l-.) {-l + »^fi|;}. (3.17) 

The boundary conditions for the fan-type Jet are the following: 

/t-0 «h« <o»0, A-O «ton »-1.      (3.18) 

they permit the determination of the arbitrary constant C 

C-Ji}. (3.19) 

whence 
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M«)-(!-«•) (3.20) 

The constant b,  as in other cases, Is determined by the Integral   ^ 

condition of momentum flux conservation (for the semlspace) 

/Jt-2«Ä«J
,(p + P«"Jl-2|i5f)Kr=13»d<..     (3.21) 

which results In an Implicit connection of b  and the Reynolds number: 

-/£ 
Here too a "strong" Jet corresponds to large values of Re. 

Let us now turn to the calculation of the rotational velocity com- 

ponent •    In the same self-similar approximation. 
9 

The function *2VüJ)  entering expression   r,- * aML I. Is determined 

by the differential equation 

<i>;_r^io;+^o1-o. (3.22) 

The boundary conditions, taking the ayrtuiietry with respect to the 

plane 6» ^ (»-0) Into account, can be written In the form 

Integrating Eq. (3.22), preliminarily rewritten In the form 

i(i - «•) o;r+2 (««>,)' - (/»<!>,)' - o, 

and taking the boundary  conditions Into account, we obtain 

«>•(«)-C, (1 - <o«) exp (J j^jp). 
t 

Using expression fAu)  derived above we obtain finally 

where  C« - 4 CJP. The constant C^ Is determined by the total flux of an- 

gular momentum relative to the axis of symmetry of the Jet, through a 

semlsphere of arbitrary radius centered at the source of the Jet: 
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J»/.-2npv«y3-/;)<!>, da». 
(3.25) 

In order to solve the thermal problem under the condition that the 

temperature values in the upper and the lower semlspaces must be equal 

we again use Eq. (1.30). 

After simple transformations we obtain 

tiH-BCl+V^^ + ^ + ^T".        (3-26) 

The value of the constant of Integration B  Is determined as be- 

fore, from the Integral condition of conservation of excessive heat 

content flux: 

^-2aJl|(l-Pr/;)T1rf«. (3.37) 

The final expressions in spherical coordinates for the velocity 

components, the pressure and temperature have the form 

'»--T 1—6 
r^i-d + co.^ 

j^Y + d+ «»•)» 

»..t-1-11-cote       (i-t-cot*)* 
—^ r^if+cöii r* + i  *r 

v  1 —cos9 
*+i 

1—6 
j^-d + COt»)» 

^5T + (l + co•^), 

'""^y l + co••I^ + l + (^_l)(l + CoI»)»I,, 

r - r« - ^. (1 + cose)" (b-I, [{±| + (i + coi e)*]-1 *. 

(3.28) 

As to the qualitative aspects the graphs of streamlines and iso- 

thermal lines corresponding to the solution obtained displays the same 

characteristic properties of a "strong" Jet (with the appropriate val- 

ues of the problem's parameters) as in L.D. Landau's problem consider- 

ed in detail. Not that the solution obtained to the  dynamical problem 

is, in particular, free from the deficiencies displayed by H. Squire's 
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paper [171]• In this paper the streamlines must be constructed under 

the assumption that they emerge from fictitious sources positioned on 

the axis of symmetry of the Jet. The author of paper [171] points out 

that these sources are unreal but their Introduction distorts the Jet 

flow only little. 

In this problem, lust as In all the problems considered above, the 

thermal problem Is solved under the presupposition of similar boundary 

conditions for velocity and temperature. In contrast to this, the fan- 

type Jet enables us to Investigate the thermal problem for the case of 

a temperature asymmetry In the boundary conditions and, consequently, 

lost similarity of the boundary conditions for velocity and temperature. 

Note that the temperature values of the nonperturbed fluid differ 

In the upper and lower spaces, that Is, on either side of the plane of 

symmetry of the fan-type Jet. Assume that with Ä ->• «» and w ■ 1 the tem- 

perature T ■ T, whereas with Ä ->• • but u ■ -1, T ■ Tp. In this case, in 

order to solve the thermal problem, using the same results as obtained 

when solving the dynamical problem, we must. Instead of using Eq. 

(1.29), return to the basic equation of heat propagation. I.e., Eq. 

(1.5). 

Prom physical considerations analogous to those of paper [56] we 

are led to 

T^-'W. (3.29) 

I.e., the temperature at any point of the flow produced by the fan-type 

source Jet Is assumed Independent of the distance to the source. This 

Is obviously the only condition which permits a self-clmllar solution 

with the temperature boundary conditions chosen. In agreement with 

(e.29), Eq. (1.5) can be rewritten In the form 

TTW-S + ir*«*' (3.30)        O 
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Introducing the variable w ■ cos 6 and substituting the value of 

UQ, we obtain for T(W) an ordinary linear differential equation of sec- 

ond order: 

l(l-(D«)T'(«))l'=Pr/l(<0)t'(«) 

with the boundary conditions 

t ■■ 1    npn   » -» 4- li 1 
 1. J 

(3.31) 

(3.32) t = 0   npa   tt 

When we replace In Eq.   (3.31)  the function /^(w)  by the function P(a)), 

which Is  connected with ^(w)  by the relation  (1.27), we obtain 

'^jT^ 2Pr. (3.33) 

tJf-OS -Ql -Q4-V  0   4* 44 4f   4f (I a 

Pig.   3.13.  Temperature distribution In a fan-type Jet.  b ■ A;  1.  Pr ■ 
- 0.5;  2.  Pr - 0.75;  3.  Pr - 1.0;  H.  Pr - 2.0. 

Integrating twice and taking the boundary  conditions  (3.32). Into 

account, we obtain 
• *i -i 

mm S (i —J"^^ [_\ (i-.?/* ] • (3.3*) 

When we take the expression for the function F(w)  from H.  Squire's 

paper [171] 
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we can write our expression for the temperature In the final form 
m 

'^l'-f^+mr*.  i (3.35) 

The corresponding temperature distribution for several values of 

Prandtl's number Pr Is shown In Pig. 3.i3. 

3.^. TRANSITION TO THE BOUNDARY LAYER 

Analyzing the solutions obtained above, one often considered the 

laws of a flow, corresponding to one of the limiting regions, namely 

the "strong" Jet. By way of example L.D. Landau's basic problem on the 

axlsymmetrlc source Jet, we shall now show that the relations obtained 

In the limiting transition (with Re ■* *), transform the solutions found 

In the general case Into solutions to the same problem within the 

framework of the boundary layer theory. This result Is of course not 

unexpected but It Is of Interest as It shows In particular that the so- 

lutions of the Navler-Stokes equations contain a series of solutions 

obtained Independently at a different time. 

For the sake of convenience we now turn to the system of equations 

(3.1) written In cylindrical coordinates. In this system the velocity 

component, pressure and temperature at the axis of the Jet depend on 

the coordinate x  and the parameter L  which are unambiguous functions of 

Reynolds' number. The relative distributions of the velocity components, 

the pressure and the temperature In the cross sections of the Jet are 

In their turn dependent on the nondlmenslonal coordinate n * r/x  and 

the parameter L.   In addition to Its dependence on other parameters the 

temperature distribution also depends on Prandtl's number. 

Let In all equations of the system (3.1) L  tend subsequently to 
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unity (Re ■*■<•).  We consider preliminarily Eq. (2.10), which links the 

momentum «^ of the Jet with the parameter L: 

f ^IfapVfi   .       4L« 1   ,ni±L\ 

J.^±± 
i+jff 

tfiyt 

or 

^..Ä(,-f)(i-^)[.+(5t^]. 

With L * 1{J„ ♦ *) we shall have x 

i-i-T'   a,-T?- (3.36) 

The nondlmenslonal parameter a Is obviously Inversely proportional to 

Reynolds' number Re. 

Using Eq. (3.36) we can write the equations of the system (3.1) 

In a form which corresponds to the limiting transition L ■*■ 1  (Re ♦ •). 

In all expressions we restrict ourselves to terms which are small In 

second order with respect to the quantities a and r\.  Note that we are 

here concerned with one and not with two Independent limitations as we 

learn from dimension considerations that for a "strong" Jet the quanti- 

ties a and n are of the same order of magnitude. 

To illustrate this we shall varry out in detail the transformation 

of the expression for one of the velocity components, vm. 

In a general case 

With the substitution L  ■ l-o /2 we have 

or,  finally. 

• .  „ 4          1 
F         ' (t+-J)r'                                       (3-37) 

D Recall that   ««-i^., and when we Introduce the designation 

»-¥j/li^                                (3.38) 
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we finally obtain 

v. i 

FW 
(3.39) 

Without giving the analogous transformations, the other equations 

of system (3.1) can be written In the transformed forms: 

i./a£ii(1rWi 

(3.40) 

!>,»• '-TV **-fä7f' 

».«I ttW 
P-Pco       8v«   1      1-T*' 

' _'i«» Stove—   • /      1    flF^' 

(3.41) 

(3.1»2) 

(3.43) 

The last  expression for the temperature was derived by means of a 

limiting expression for the constant B from Eq.   (2.12) 

B^HK—FT—2      a   * 
Let us briefly discuss the results obtained. 

First of all we want to represent the distributions of the velo- 

city components, the pressure and the temperature under the limiting 

conditions chosen In equivalent forms: 

Z 

'- VW 
i'-W) 

fm-**>        «• 

(»»T-L 
«0. 
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o 
where the quantities w  and r*—f«,- Afm, are taken as the velocity and 

Xtn 

temperature scale units given by 

As we see from the above formulas, the transverse velocity compo- 

nents and temperature distributions In a "strong" Jet are universal 

functions (each quantity being referred to their scale units. I.e., the 

peak values). The velocity components y and v0  and also the surplus 
SS /T 

temperature T - T^  decrease with the distance according to an l/«-law, 

whereas v    *  1/x . The relative amount of "twisting", v /t; will there- 
CD CD   * 

fore drop as 1/x, 

As regards the pressure. In our approximation **—jw—1/ot~/« the 

surplus pressure on the Jet axis (and thus also at any arbitrary point) 

will grow proportionally to the momentum of the Jet. The relative quan- 

tity of the order of V^rr^t/ will be a quantity of the order of a*-<l. 

as we can see from Eq. (3.^4). In the approximation considered the flow 

may be considered isobaric. 

Not also that from the fact that the quantities a and n are of the 

same order of magnitude it results that the effective region of the 

flow occupied by the Jet must be limited by a cone of a relatively small 

vertex angle [-j —tg«»~«»—«).y 

In this case the ratio v/v,.  of the velocity components will be a 
2*  X 

small quantity of the order of o 'v- 1/Re; this is typical for a "strong" 

Jet. Analogously, the ratio v /v    of the components will also be a 
qp  x 

small quantity of the order of aM /x as we are concerned with slight 

"twist". 

These qualitative results obtained for a " strong" Jet, such as 

the limltedness of the perturbed region, the pressure distribution, the 

the smallness of the radial velocity component compared to the axial 
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one, kthe rapid change of the velocity and the like across the Jet com- 

pared to the variations along It, are well-know characteristic features 

of the flow In a boundary layer. *^ 

More than that. Expressions   (3.i10)-(3.1*5)  derived above are as  ac- 

curate as the results of a direct solution of the problem of the expan- 

sion of an axlsymmetrlc twisted laminar source Jet, obtained by L.G. 

Loytsyanskly  [131] by intgratlng the boundary layer equations  (see Part 

II). 

Our limiting transition (L •*■ 1)  corresponds to a first  self-similar 

approximation of the solution to L.D.   Landau's problem. The final re- 

sult obtained Is a first self-similar solution of the  problem of an ax- 

lsymmetrlc source-Jet within the  framework of the boundary-layer theory. 

The transition L -► 1 made to obtain the second and further approxima- 

tions in solutions of Landau's problem would of course also yield the 

second and further approximations in the boundary layer theory. ^ 

Let us give for comparison,  also in this first approximation, the 

formulas obtained by another limiting transition (L + 0) for the case 

of a "weak" Jet. As indicated above this corresponds to a momentum of 

/.«lonpy"!,    of the Jet,  that is,  to small Reynolds numbers 

Without giving details  of the transformations we write the  final re- 

sults : 

»«m* 2(l+n•)V, * 

AT   . 1 
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As we see from these formulas, the velocity components vm  and w 

In a "weak" Jet, In contrast to the "strong" Jet, are quantities of the 

same order of magnitude. As regards the pressure, : Ap/(p»5/2)m  Is of the 
2 

order of Re ; in other words, the pressure drop plays a noticeable part 
2 

in the motion of the fluid compared to the kinetic hear pv /2. x 
Thus the motion of a viscous fluid in the limiting case of a 

"weak" Jet rather reminds us of a source in a perfect fluid than of a 

Jet flow characteristics of problems of the boundary layer theory. 

The Jet flow properties established with the help of the example 

of an axisymmetric Jet are dur to the fact that as Re * » the Influence 

of the viscosity seems to become localized to a samll zone, the bound- 

ary layer, which is common for flows of viscous fluids. In the general 

boundary layer theory considered in the following in connection with 

Jet flows, the limiting transition Re -»■ • will therefore be carried out 

in the Navier-Stokes equations themselves. 

REFERENCES 
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Part Two 

LAMINAR JETS OF LIQUIDS AND OASES 

3 

In this part we shall consider a series of problems on the expan- 

sion of a Jet of liquid or gas which are solved within the framework of 

the laminar boundary layer theory. 

As shown In the preceding part these solutions (for an Incompress- 

ible fluid) correspond to the limiting transition In solutions obtained 

from the Navler-Stokes equations for a "strong" Jet. Unlike this case, 

the analogous problems (e.g., on the expansion of an axlsymmetrlc Jet) 

In the second part are considered on the basis of an analogous limiting 

transition carried out In an earlier stage, that Is, In the Initial dif- 

ferential equations, which Is thus general for the various problems. 

For simplicity this transition (derivation of the boundary layer 

equations) Is carried out for motions of Incompressible fluids. 

This derivation and also a brief review of the various methods of 

Integration of the laminar boundary layer equations applied In the the- 

ory of Jet motion of liquids and gases, will be given before we turn to 

the analyses of concrete Jet problems. The latter are considered sepa- 

rately for the cases of free and seml-llmlted Jet flows of liquids and 

gases, taking the specific features Into account (the form of the flow, 

boundary conditions, etc.). The consideration Is limited to self-simi- 

lar motions. I.e., an Investigation of source Jets. 

For these Jets detailed Information, containing the Initial equa- 

tions, the boundary conditions, the formulas for the transformation to 

a self-similar form, the final solutions and the Integral characteris- 

tics are for convenience compiled In the tabke of the fundamental re-    4 fc 

suits. For a Jet of finite dimensions a solution Is only given within 
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the framework of the method of small perturbations. In all cases pref- 

erence Is given to the method of the asymptotic boundary layer prlncl- 

- ^     pally used in this book; for comparison, however, we also give in a 

brief form the solutions obtained by the method of integral relations 

for a free boundary layer of finite thickness. 

The results obtained in this part have both an immediate signifi- 

cance (for the theory of the laminary boundary layer) and an indirect 

one, as a model of a turbulent Jet flow. 
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Chapter 4 

FREE JETS OP AN INCOMPRESSIBLE FLUID 

I.I. THE BOUNDARY LAYER EQUATION 

It Is well-known that the number of problems on the motion of an 

Incompressible fluid that can be solved on the basis of the exact 

Navler-Stokes equation Is extremely limited. Even a solution of the 

problem on the expansion of a plane source Jet (analogous to L.D. Lan- 

dau's problem on the axlsymmetrlc Jet) applicable to Jet flows has not 

been obtained so far*. In connection with this, besides the numerical 

solutions of concrete problems In the theory of laminar Jets, the gen- 

eral method of solution based on the widespread boundary layer theory 

is of great importance. 

The methods of the boundary layer theory are now applied in virtu- 

ally all fields of hydrodynamics and gasdynamlcs; there Is very much 

literature devoted to It [130, 135, 155, W, 212, etc.]. To recall 

them we shall therefore consider as briefly as possible by way of ex- 

ample of a steady laminar flow of Incompressible fluid In a boundary 

layer (plane and axlsymmetrlc) the transition from the Navler-Stokes 

equations to Prandtl's boundary layer equations. 

The ideas which is based have already been used above when we ex- 

plained the solurion to L.D. Landau's problem on the axlsymmtric Jet, 

in the "strong"Jets. As shown above in detail, the latter correspone to 

tne limiting transition Re -► • in the solutions of the Navler-Stokes 

equations. In this transition the flow displays a peculiar anisotropy: 

the characteristic dimensions and velocity components in a direction 
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of the Initial momentum become very small compared to the analogous 

quantities In the direction of the momentum. In a short form these re- 

lationships may be represented by the following Inequalities •• 

/,>/„, «~u>>w  (« = »„ v^Vy,   w-rt) 

and consequently. 

To estimate the Individual terms entering the Navler-Stokes equa- 

tions It must be assumed that the quantities 1 , u  and ware of the 
Wm 

order of unity, 1 and v  being of the order of a small quantity a«<l 

(correspondingly the orders of magnitude of the derivatives djdx, d*/di* 

will be unity while the derivatives d/fy.öVfy1 will be of the order of 

fi'S *'*  ). Starting from this and from the tendency of obtaining an 

approximation In which the viscosity factor y is conserved in the equa- 

2 
tlons, we must assume y of the order of 6 . This constitutes in princi- 

ple the difference between the transition to the boundary layer equa- 

tions and the transition to Euler's equations of a perfect fluid in 

which one must set y = 0. 

To avoid the difficulty caused by this way of estimating a dimen- 

sional physical constant (y 'v 6 ) the transformation to the boundary 

layer equation can be carried out with the nondimensional form of the 

Navler-Stokes equations, introducing in them different scale units for 

the longitudinal and transverse coordinates and velocity components. 

In this case the boundary layer equations are obtained by means of a 

limiting transition, letting tend the Reynolds number to infinity. 

Taking this conclusion into account we write the Navler-Stokes and 

energy equations in a form which is suitable for both the axlsymmetrlc 

(in the case of a nonvanishing peripheral velocity component) and the 

plane-parallel motions: 
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(The axis Om Is oriented along the Initial momentum of the Jet,  the ax- 

Is Oy Is perpendicular to Ox; u and v are the velocity components along 

Ox and Oyj w Is the peripheral velocity; fc » 1 for an axlsyrametrlc mo- 

tion, fc » 0 for a plane-parallel one.) 

Let us Introduce the dlmenslonless quantities 

yH . . •   " v.._   . 
where /„ lt, uo, to are the scale units (the characteristic dimensions and 

velocities), Re Is Reynolds' number, p», f«, are pressure and tempera- 

ture In the unperturbed fluid. 

For simplicity we omit the bars on the dlmenslonless variables so 

that we can write the Navler-Stokes and energy equations for the con- 

sidered case of a steady laminar flow of an Incompressible fluid as 

follows: 

9u   .    lxv   du 1 «0  ,    1   I>M   .*«     i  * LJ,8*\\ 

+f.{S+f[^W)-'?]}- 
"i+£['£+?]-i{g+|[^(/£)-*l}- 

',r, a £(y*«) + ^(y*0-o. 
. /,».   w    a    i fa»r ,   'S i » /^WNI 

(4.1) 

4  » 

Taking Into account that the scale units 1    and vQ were chosen ar- 
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bltrally and considering the condition for the order-of-magnltude e- 

quallty of the Inertlal and viscous terms as Re -»• •, we put 

Our system of equations will then take the form 

dv   .      dw   ,   v»        I   a*w  .    I  d f k fi\       w 

dT  ,     9T 1   PT . 1  I • Z.»*^ u 35" + p 5^ " TÜ^T * ^i + rT' ^ 5; l" J^j • 

When we allow the Reynolds number to tend to Infinity and return 

to dimensional variables we finally obtain 

(4.3) 

The system of L. Prandtl's Equations (4.3) obtained In this way 

Is essentially simpler than System (4.1) of the Navler-Stokes equations. 

The simplification achieved Is first of all due to the fact that the 

three equations of motion (for the velocity components u, v  and w)  were 

reduced to two (the first and the third) In the axlsymmetrlc case and 

one (the first) In the case of a plane motion. The second equation is 

replaced by the fundamental law of the dynamics of a boundary layer in 

a plane-parallel motion, expressing the constancy of pressure perpen- 

dicular to the boundary layer. Moreover, the number of terms could be 

reduced in the right-hande sides of the first, third and fifth equa- 

tions of System (4.3). These advantages also exist in more complex 
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cases of flow In a boundary layer, thus permitting a v»lde application 

of the boundary layer equations In hydodynamlcs and gasdynamlcs, par- 

ticularly In the theory of Jet flows. 

In addition to this It should be stressed that the boundary layer 

equations hold strictly only In the case of very high (theoretically 

Infinite) values of the Reynolds number, I.e., Just for such conditions 

with which there Is virtually no laminar motion. A solution of the pro- 

blem of laminar Jet motions has therefore mainly a general theoretical 

significance. Besides, as we shall show later by way of particular ex- 

amples, the Integrals of the boundary layer equations contain a certain 

singularity In a series of cases as already Indicated by L. Prandtl 

[279]. 

Let us briefly consider the general methods of Integrating the 

boundary layer equations applied when solving problems on the motion of 

Jets of a viscous fluid. 

First of all It should be noted that for laminar Jets (as previ- 

ously for exact solutions) the conception of the source Jet maintains 

Its applicability; In a first approximation It yields a self-similar 

solution without requiring detailed Initial efflux conditions given be- 

forehand. The problems (also comprising such which have no self-similar 

solutions) may then be Investigated by means of two fundamental methods 

of the boundary layer theory, assuming finite or Infinite thickness of 

the layer. 

In the first case the boundary conditions for velocity, tempera- 

ture, etc. are given for definite outer boundaries(y - 6, j/ - 6_) of 

the dynamic and thermal boundary layers. Their thickness (6 and 6«) and 

also a series of characteristic parameters (the thickness of displace- 

ment of momentum, heat content and the like) are Introduced explicitly 

Into the solution. The motion beyond the boundary layer Is assumed to 
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n 
be a potential motion. 

In the second case the boundary layer Is assumed to expane as If 

It were arbitrarily far away; the boundary conditions are given for 

y m co.  The Idea of this (asymptotically) Infinite boundary layer Is 

however, not In contradiction to the original Idea of the boundary lay- 

er as a limited region In which the action of the forces of viscosity 

are chiefly localized. The solutions of the equation In fact given for 

the velocity, temperature, etc. are functions of the transverse coor- 

dinates which decrease so rapidly that at a finite and rather small 

distance which determines the effective thickness of the layer, the In- 

fluence of the viscosity has virtually vanished. In this case we obtain 

a smooth asymptotic solution for the flow around the Jet. The variables 

(«, Tt  etc.) and their derivatives with respect to the coordinates at 

the effective Jet boundaries have no singularities. 

Besides the direct Integration of the differential equations of a 

(finite or asymptotic) boundary layer or their transformation to, e.g., 

a linear equation of the type of the heat-conduction equation (In coor1- 

dlnates according to Mlses et al.), for the solution of problems on Jet 

motions one also uses the method of Integral relations and other ap- 

proximation methods of calculating. They are all considered In detail 

In the monographs on the boundary layer theory [135, 155, I?'*, 212, 

etc.]. It le therefore expedient to Illustrate the application of the 

various methods of solving Jet problems Immediately by way of examples; 

as to the details we refer to the sources mentioned above. 

Note by the way that all these methods and also a series of others 

(semlemplrlcal and empirical) are also used In the theory of turbulent 

Jets. 

i».2. THE AXISMMETRIC TWISTED SOURCE JET 

Let us derive the problem of the expansion of an axlsymmetrlc, 
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free and twisted Jet of an Incompressible viscous fluid. The Jet Is as- 

sumed to flow out of an unlimited space filled by a fluid of the same 

physical properties ("submerged" Jet). In the general case we shall as-  +p 

sume the temperature of the fluid In the Jet different from the temper- 

ature of the medium. We shall further assume that the difference be- 

tween the temperatures of Jet and surrounding medium Is so small that 

the density of the fluid as well as the viscosity and heat conduction 

coefficients which, In general, depend on the temperature (and the 

pressure) can be considered as constant. With these assumptions the 

temperature plays the part of some "coloring" of the fluid. Neglecting 

the heat of friction (and the radiation) the heat propagation equation 

Is analogous to the diffusion equation for some (nonactlve) Impurity. 

We start from the boundary layer equations for an sxlsymmetrlc 

twisted source Jet which therefore have the form [131] 

9u   .     du i 9p .     i'9 I   9u\ 

9w   ,      dw   ,   vw fi   9 /   dw\       w) B*+'*+T"vt7*(,'S*)-*}'       ^'^ 
al(y«) + ^)-0. 
„9T   ,     9T i  9 I   9T\ 

The boundary conditions for the asymptotic layer can be written In 

the form 
, = 0. u;-0.Sj-|£-0  «h.n y-0. | 
u = u;r=Ar = /> = 0 «ten y =■ oo. J      Ci.S) 

(The symbols LT  and p denote the surplus temperature and pressure with 

respect to the constant values Tm  and p^, the temperature and the pres- 

sure of the surrounding medium.) 

As to the boundary conditions (4.5) and their analogues we shall 

remark In the following that solutions of problems obtained by means of 

the method of the asymptotic layer. In contrast to the boundary layer 
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of finite thickness, yield a smooth fit of the distributions of the 

(e.g. the velocity, the temperature, etc.) In the Jet and In the sur- 

rounding medium. The solutions obtained within the framework of the 

theory of the asympotlc boundary layer will therefore satisfy "automat- 

ically", for example. In the case considered, the equation 

These additional boundary conditions (the vanishing of the derivatives 

du  9T 
1%'dj   etc. at the outer boundary of the Jet) can thus be used In de- 

riving the Integral relations or In other cases, when this Is neces- 

sary for the estimation of total effects and the like, without overde- 

flnlng the problem. Owing to this, the equality ^ = 0  with j/ ■ • or 

other analogous relations which are not used In the Integration are 

sometimes written to the boundary conditions (which then seem to exceed 

the order of the differential equation). 

In solutions obtained by the method of the finite boundary layer 

the number of boundary conditions Is chosen In agreement with the nec- 

essity of determining. In the general case, the unknown values of the 

(dynamic, thermal) boundary layer coordinates from the solution. In 

this case. In particular In the thermal problem, the continuity at the 

boundary Is very often violated even for the first derivative. E.g., 

In the thermal problem of the Jet boundary ^"f 0 at the outer boundary 

and the heat flow displays a discontinuity. 

For a source Jet we shall, as usually, consider the self-similar 

solution which holds true at a sufficiently large distance from the or- 

flce. 

Just as In the exact solutions we Introduce the Integral conditions 

of conservation 

/.-2nJy(p + pi»«)<iy-eonil, (1|#6j 
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A/, = 2n j putvy*dy =» const, 
o 
00 

Q =2JI} pcpiiATydy = const. 

(4.7) 

(4.8) 

Th*- first and second of these conditions describe the conservation 

of momentum flux (in the projection on the Ox axis) and the angular mo- 

mentum of the Jet relative to the axis of symmetry, the third condition 

is the condition of conservation of the surplus heat content of the Jet 

(in the absence  of heat sources). 

Recall the origin of the integral  conditions.  We multiply the 

first equation System (4.4) by y  and the fourth by u and add them: 

&[»{? + P"1)! I- jy(py«") = I*4(y S)* 

Integrating this equation across the boundary layer from y ■ 0 to 

y = * and taking the boundary conditions (4.5) into account, we obtain 

the integral invariant (^.6). 

Let us now multiply the equation of continuity by w  and the third 

equation of the system (r.r) by y.   We then obtain as the result of 

their multiplication 

G (y««0 + 4 ^m) +vw - ^[y | M] • 
The last equation will again be multiplied by y  and rewritten in 

the form 

rx W™) + ^ iytvw) =v ^ [y 4 M - 2H • 

An integration of this equation with respect to y within the lim- 

its  from 0 to »,  taking the oundary  conditions  (4.5)   into account, 

yields the integral conservation condition (4.7). 

In an analogous way we arrive at the Invariant   (4.8):  the energy 

equation 1    multiplied by y and added to the continuity equation which 

has been multiplied preliminarily by AT.  A subsequant  integration 
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yields  (4.8).  In a series of cases the nonvanishing value of the inte- 

gral invariant can be given such (e.g., Mm ft 0 with u?(0) = u>(oo) = 0 )  that a 

nontrivlal (nonvanishing)  solution can be obtained. 

A.  Solution by the method of the asymptotic layer.  In order to ob- 

tain a self-similar solution we transform the system Equations   i^.^) to 

a system of ordinary differential equations by means of a substitution 

of variables; we shall agree in calling this a self-similar transforma- 

tion.  Let us introduce the following power functions*: 

um - Ax*, wm - Cx\ pM = pZ)x», AJm = IV, «p = Bj/x»,        (4.9) 

and the denotations 
±.m. £.„«,, *-,(„. Ä.,(f) 

( um, Arm,pm are the values of the velocity, the surplus temperatures 

and the pressure at the axis of the Jet, w    is the maximum value of the 

peripheral velocity; the prime here and in the following indicates dif- 

ferentiation with respect to the variable 9). 

Taking into account that 

ax ä| "f" a« rfip - 1^ "^ P « rfqi •    ay"* dySf^        rff • 

we transform all terms if Eqs (4.4) to the new independent variable 

) 

» = — 5^(y«)rfi/--B«-»-1 [(«-2p) J + p^]. 

£-Cx->(ea> + Pq4>'). 
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^ = BrxW, dy 

Substituting the reduced values In the Initial system of equations 

of this system the term —j£    (which, as shown below, decreases with 

the growth of x  much more rapidly than the other terms of the equa- 

tion*), we obtain after a transformation 

c* (pa 

+ (P-.)^]-o, 
(^.10) 

f    +P^x-«*->[(«-2ß)^-T9]-0. 

We require that the equations obtained are Independent of the var- 

iable x.   In this case we have 
a-l ß , ä-2.. 

(4.11) 

and In the equations three "self-slmllarlty constants" will remain: o, 

e and y ! 

(4.12) i[t(f)7+Ä[T{f)'-{f)>^ 

WY 
i^) 

(4.15) 

Let us now use the Integral Conditions (4.6)-(4.8) (by virtue of 

what has been shown above. In the first of them the pressure will not 

enter the Integrand) In order to determine the constants a, e and y* 

We rewrite (4.6)-(4.8) In the form 

_ Oil _ 

:: 

- 



(^.17) 

(M.18) 

00 

2«p^ *-«»+• J F'dHp«/» - MM, 

00 

,    W4   , a-P, e=-3ß-a-2af T-2p-«--l. 
and obtain 
Talcing Eq.   (4.11)  Into account we  finally obtain 

a»ß-T--l, e--.2, a--4. i^.19) 

We find from the same Integral conditions 
A*       {m AC       Hx AT Q r Ü   90) 
ir-iHfj;'   IF'S^TT'  ^"ss^r.« K***V* 

where the symbols J,, J2 and J3 denote the definite Integral 
00 00 

0 , .   * (4.20a) 

whose values, which are given here, have been obtained from the solu- 

tion of the problem derived In the following. 

Returning to Eqs. (4.12)-(4.15) we choose arbitrary values for the 

ratios of the constants: 

»-»•T-T- (4>21) 

Taking Eq.   (4.20a)  Into account, we obtain from (4.20)  and (4.21) 

^"sssjn^' r"   K^l   • 

Finally we shall have the equations 

(f-^)'+(^)'-0, (4.221 

P--^. (4.23) 

y-i-LtZ^-t-^+f-'o-O. (4.24) 
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(«pe'y+Pr^'-o 
(4.25) 

with the boundary conditions 

-^-1, -^-=0, (D = 9'-0*»»nq)=-0. 

-^ = 0, (D = e = P = 0 «hm «p — oo. 
9 T (4.26) 

As always In the case of an Incompressible  fluid with constant 

physical properties, the dynamic problem Is solved separately from the 

thermal problem. 

Integrating Eq.   (4.22)  we obtain 

9        f 

Prom the conditions of symmetry we obtain C, ■ 0 on the axis of 

the Jet. Repeated Integration yields 

vF' + l-{P-*)P~Ct, 

where Cp ■ 0.  A third Integration, taking the boundary conditions Into 

account,  leads us to the equality 

f = iitte i + W 

where C~ ■ 1/8. Hence we  fine 

i 

F = x»
1 r 

TZ'T \t • 

t + Xf« T  (»+-^»,), (11.27) 

Let us now determine the law of variation (Increase) of the flu- 

Id's flow rate In the Jet 

,* 

,1 

no 

C = 2« J pay dy = 2np~x[F {oo) — F(0)], 

or 

G = 8n|ix, 

and the  law of variation  (decrease)  of the kinetic energy flux 

oo oo 

£ = « J pu»y dy =, «p g-1- J ^dT, 

or 
;: 
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Turning to the Integration of Eq. i.k,2k)  we must remark first of 

all that It may be rewritten In the form 

(9»<I>' —q»(l—FW-0, 

and hence we obtain 

«jKD'-qKl—F)®-^. 

From the boundary conditions (4.26) follows the equality C^ * 0, 

so that In order to obtain the function * we obtain the equation 

from which, taking Eq. (M.27) Into account, we finally obtain 

(the constant of Integration which Is a factor In the right-hand side 

of the last equation Is assumed to be equal to unity; this Is possible 

since the expression for the peripheral velocity contains an arbitrary 

constant c). 

Using the solution of the dynamic problem, we Integrate the tem- 

perature Equation (4.25), taking the boundary condition (4.26) Into ac- 

count. We have 

«p^ + RrfB-O 

Rewriting the latter equation In the form 

or, determining the function F from the equation (see above) 

r-^-i. 
we obtain 
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Hence  (taking into account that  9(0)  = 1)  we find 

H3' 
(•+» 

•FT« 
(4.29) 

Note that  the  final result of the solution of our thermal problem 

can be represented In the  form 

£-£)"• ^30) 

• This equation may be Interpreted clearly from the point of view of 

the thickness ratio of the dynamic and the thermal boundary layers. 

With a Prandtl number Pr » 1 (\> « a) the effective thicknesses of the 

layers agree with one another; with v<a (or v>a) the dynamic layer will 

be narrower (or broader) than the thermal. As regards the values of the 

effective layer thicknesses they are easy to determine if the desired 

degree of accuracy is given. 

Let us consider for comparison two values of the relative velocity 

u   AT 
and temperature: the value J- = A7^ = 0,5, characterizing the middle part 

u      Ar 
of the distribution,  and a definite external boundary, e.g.,—«TJT-« 

in vn 

= 10'* . The numerical values of the nondimensional variables  correspond- 

ing to the chosen values of velocity and temperature for three valuas 

of the Prandtl number are compiled in the talbe 

TABLE A 

I   «t          AT 

•• 
| 

fr-0.i fr-l.o ''-«.0 

i 
T 

!    lo-» 
1,82 
8.49 

2,83 
28.14 

1,82 
8,49 

1.27 
4,16    | 

—j»   and   08T   is of 

course arbitrary,  it  can illustrate, however,  the rate of decline and 

the relative  courses of velocity and temperature in the cross sections 

of an asymptotic   ("infinltew) boundary  layer. 
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The results of the obtained solution of the problem are Illustrat- 

ed In Pigs. 4.1 and 4.2. 

The mathematical expressions for the problem considered are con- 

tained In Table 7.1 given below, together with the results of solutions 

of other problems dealing with the expansion of laminar Jets of an in- 

compressible fluid. 

Urn 
I* 
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Ha 

a* 

.1 
\\ \ 

\ to y 

^ ̂  "xcL 
*s 

• ^ 

lit*» 

) 

Pig. 4,1, Variation of velocity and surplus temperature along the axis 
of a round Jet (in arbitrary coordinates). 1. LT ;  Pr ■ 0.5; 2. u ;  LT  ; 
Pr - 1.0; 3. AT ; Pr - 2.0. m* m' mJ 

tf 

« 
^ 

\ 

V 

\ 

^ 
\v 

•*. 
\ < 
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- > v: ^^ 

0 . ( J i f * 

Pig. 4.2. Universal distributions of velocity and surplus temperature 
in cross sections of a round Jet. 1. u/u ,• LT/LT  ;  Pr ■ 1.0; 2. LT/LT ; 
Pr - 0.5; 3. AT/AT ; Pr • 2.0. n m m 

B. Approximate solution. In spite of the fact that the problem of the 

axlsymmetric source Jet can be solved by quadratures, we give for com- 

parison an approximate solution of the same problem, which is based on 

the integral method of the boundary layer of finite thickness. 

For the sake of simplicity we consider the case of a nontwisted 
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Jet and, without Integrating the equations 

du ,    du      v a / f»u\ 

i(y») + ^(if«0-o, .  I      (4.3i) 

we choose the velocity distribution on the basis of the "smoothness" to 

be expected for the solution In the fortr. of a polynomial of e.g., third 

degree 

u = <io + a^ + a,«/« + o,^. (^.32) 

Satisfying the boundary conditions on the axis of the Jet 

du      A  v a /  du\     *«m        - 

(the second condition Is obtained with y ■ 0 from the first equation of 

System (4.31) and at the outer boundary of the Jet 

« = 0, ^ = 0 «hm y = 6, 

we obtain four linear equation In order to determine the coefficients 

a0-ao. The values found for an-a^  are compiled In the following table: • 

o. Ol a. a. 

«*       dum 

ßv""» dx 0 4v   dx 6v6 dx 

The velocity distribution for these values of the  coefficients Is 

determined by the expression 

•-£-^[-i+>W-M+)'] (4.33) 

With t/ * 0 we find from Eq. (4.33) an equation which links the ve- 

locity on the Jet axis, u    * u
m^x^  and the boundary layer thickness 

6 - 6(x): 

dx 
12v 

(4.34) 

Taking this relation into account, we can represent the velocity 
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distribution in a nondimensional form (ü —~-, y.^-V 

ü = l_3yV+2yi». (*.35) 

Using the integral condition of momentum conservation 

Jt = 2n^putydy, 

which we rewrite in the form 

7x=2np««uJ|Jii«yrfy, 
0 

we obtain another equation linking u    and 6: 

«•»i-SP   i'-l'^y<$-•&)' (4.36) 
0 

Prom Eqs.   (4.3^)  and (4.36) we obtain 

*•«, ^        72 npv   . 

which, when we take the condition 6«0, u»<»ifx"0 into account, 

yields the following expression for the velocity at the Jet axis: 

and for the boundary layer thickness 

Ä=12vx|^/^. (4.38) 

Let us now analyze the solution obtained.  First of all it  should 

be noted that it is also self-similar with the »ame values of the con- 

stants of self-similarity a » 8 --1 as above.  As regards the constants 
ft ft 

A  and B  entering the transformation formulas u ■ dx , 9 ■ Byx  t  the 

first of them. A,  which characterizes the longitudinal damping of the 

Jet and is obtained from the approximate solution as equal to A'    ■ 

— —■«0 486— » exceeds the exact value x = 0.375—5- by about 30%. 72 apv     v''*au mv npv 

In contrast to this, the value of the constant F«0.20l i/"/«   J-" the 

y *& 
approximate solution* is more than three times smaller than the exact 

value fl-0,6121/2^ . 
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I The relative similarity of the values of A'  and A  and the great 

difference between B'  and B  for the approximate and the exact solutions 

is easy to explain. The constant A'  is determined by means of the in- 

tegral condition of momentum conservation in which the velocity distri- 

bution only exerts an indirect influence (through the value of the in- 

tegral J).  The constant B'  depends immediately on the shape of the 

distribution. The latter, determined by the approximate solution (4.35), 

corresponds to the linear differential equation of the form (—=-)' = C + Dy 

instead of the nonlinear differential equation of the form 

In other words, the approximate solution (4.35) obtained is no integral 

of the initial system of differential equations. 

The Insults of the calculations obtained from the exact and the 

approximate formulas differ essentially in the outer parts of the Jet, 

the approximate solution results in a more rapid velocity drop in the 

Jet cross section. 

This way of calculation may of course also be used in order to 

solve the thermal problem. Let us show this by way of the same example 

of an axisymmetric Jet. We shall here consider the dynamic problem 

solved (by the approximate method) and, in order to vary the case, not 

the temperature distribution in the cross section but the heat flux 

distribution g = _x^-. given in the form of a polynomial. 

We shall use. Just as in the case of the dynamic problem of ve- 

locity, a four-term expression for the temperature 

The boundary conditions for the heat flux: 

^ - 0 if j/ - 0 and j/ - 6r        (4.40) 
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Moreover, we find from ChM) for the condition on the Jet axis 

-^-fi(»^U c-«» 
Finally we also take the equation 

AT - 0 If y - fiy (4.1*2) 

Into account which holds true at the boundary of the thermal layer. 

Without giving the simple transformations which are analogous to 

the preceding ones we write the  final expression for the temperature 

distribution: 

It Is evident that the relative distributions u/u_ and LT/LT    In 
m m 

the Jet cross section coincide If In each of them Its scale unit (6 or 

6«) for the coordinate y Is Introduced. With 6 ■ 6-, they also coincide 

completely In the physical plane xt  y. 

As shown In the exact solution, the equality of the effective 

thicknesses of the dynamic and thermal layers 6 » 6-, corresponds to 

Pr ■ 1. Accordingly, with Pr s 1 we may obtain 6„ s 6. To calculate 

LT   « LT (x)  we use under this supposition 6 ■ 6,, the Integral condl- 

tlon of conservation of the excessive heat content 

i 

(>.= 2n\pCpuArj/dy = const. (4.44) 

Substituting here the values of u from (4.35) and LT from (4.43) 

we obtain after a recalculation 

Ar.-ri-.r-^-0.488^. 

The value obtained for the constant r'   Is relatively similar (with 

Pr ■ 1) to the exact value   r» 0,375-5-.    Here, as a consequence of the 

assumption   A —AT|  Z.-^.. 
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In the theory of layers of finite thickness the assumption of 

equal thickness of dynamic and thermal boundary layers Is widespread. 

In the case of Prandtl numbers different from unity it is connected 

with an essential distortion of both the quantitative and the qualita- 

tive image of the process. It can be tried to improve the approximate 

results a little for the range of Pr > 1 by an Independent determina- 

tion of the thickness 6_, of the thermal boundary layer. In this zone,* 

obviously, 6», < 6. 

The independent quantity 6„  introduced above may be determined 

from Eq. (U.M) in which the upper limit of the integral is replaced 

by 6^, and from the condition at the Jet axis in the form 

*Tm = 
12M     dx 

which is analogous to Condition (4.3^) for the velocity on the Jet 

axis. 

Prom the equation 

•T 
Q = 2n\ pepu Wy dy 

we  obtain 

Q - o13npcpumArmö,
T (i _ .5. e|. + A ^ j. 

Let us restrict ourselves to the case of 6^ << 6, which corres- 

ponds to a droppable liquid (Pr >> 1) and drop the second and third 

terms in the parentheses of the above expression. We than have 

Using the above equations which link the quantities AT and 6-, 

and also u    and 6, we finally arrive at 

The latter formula may be written in a simpler form which is char- 
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acterlstlc of solutions obtained by the method of finite thickness: 

«r        t 

It should be mentioned finally that In the theory of laminar Jets 

the method of the layer of finite thickness has not only no advantages 

compared to the method of the asymptotic layer but Is also more accu- 

rate than It is we showed above. With the modem development of the 

technique of computation It can In general not be considered Justified 

to apply the method of the layer of finite thickness In the theory of 

the free laminar layer (this will of course also hold true for the 

theory of the laminar boundary layer as a whole). 

Otherwise It Is necessary to estimate the solutions of problems 

on the expansion of turbulent Jets with the help of the method of the 

layer of finite thickness or general Integral relations [75, 77, 304, 

etc.]. In the first place, the empirical constants Introduced when 

solving the problem of the expansion of turbulent Jets may comprise 

the lack of mathematical "binding." Secondly, these methods permit an 

arbitrary extension of the number of problems yielding to approximate 

calculation, also including several nonself-slmllar flows. 

4.3. THE PLANE SOURCE JET 

The methods discussed above which are used to determine self-sim- 

ilar solutions may also be used in investigations of the motion pro- 

duced by a plane source-Jet. Taking into account that such a solution 

is analogous to the preceding, we can summarize its representation, 

developing some problems specific of plane Jets in greater detail. 

The initial system of equations of the dynamic problem 

8u   ,  9u 
a* 
du + 5-0 

MI 

(4.45) 

with the boundary conditions 
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If y = 0.      | 

If y = ±oo. J 
1^ = 0.   r = 0 

■,.0 " —■■.-   f ^^^ 

can be  reduced by means  of the self-slmllarlty  transformations 

F'(q)),    um~Ax',    <f = Byxß u 
u_ 

to an ordinary differential equation (with A/B    ■ 6v and the values of 

the constants a and 8  of self-similarity determined below) 

with the boundary  conditions 

F~0,    F = l if 9 = 0. } (1.48) F' = 0, if «p = ±oo 

The solution of this equation reads 

F = th(p, '
;
" = -JHI^ = 

1
 —

th,,P. ih.i\9) 

The values of the  constants A,  B and the  constants a and 6 of 

self-similarity  (which were  determined by means of the integral  condl- 

tion of conservation of momentum of the Jet     '/,= \ pB»dy = const )  are 
—00 

equal to 

ä-U'/JS.   B-'\V±  *    *   *    * 

Figure   k.3 shows the universal velocity distribution in the  cross 

section of a plane Jet  in the coordinates   ~ = /W%),     where   SL = JLt 
um " <Pi/t      »•/, 

as in other cases the abscissa y = y±  corresponds to an ordinate value 

of u - u/2. 
m 

In this  way  the method of the  asymptotic  layer permits a simple 

solution of the problem.  We  shall therefore not give the approximate 

solution which can be  obtained by the method of the  finite layer, 

analogously  as in the  case of the  axisymmetric Jet. 

Let us now turn to the  thermal problem.   We shall derive a solution 
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Fig.   ^.3.  Universal velocity distribu- 
tions In Jet  cross  sections.  1)  Round 
Jet; 2) plane Jet. 

) 

for two types of boundary conditions for the temperature: such which 

are similar to the boundary conditions for the velocity (the values of 

the temperature are the same on either side of the Jet) and such with- 

out this similarity (the temperature values at the outer boundaries of 

the Jet are different). An analogous problem was considered In the 

first part for a fan-type Jet. 

Let us add to the system of equations (4.45) whose solution Is 

assumed known the equation of heat transfer 

VT   ,     dT        9*T ^- + Vj-SMa-gg[ 

and the two variants of boundary conditions: 

(4.50) 

a) £-0 If y-O, 
T^Tco If y=»±oo 

(4.51a) 

and 

b) 

r-Ti   lfy- + oot 

r = 7\   Ify- oo. J 
(4.51b) 

We Introduce the self-similarity transformation: 

a) for a syranetrlcal thermal boundary layer 

T-rao?-(rm-r08)Ga(q.),   rm-r,D-iv; (1.52a) 

b) for an "asymmetric" thermal boundary layer,  on the basis of 

physical considerations we assume  [56] that at a great distance from 
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the  source 
^^-8b(f)    (i.e.,   Y  «   0). 

(4.52b) 

In the  first  case,  using the Integral condition of conservation 

of the surplus heat  content 

+00 

Q = ^ pc^^T —T^dy = const, (4.53) 

we obtain the value y  = —1/3»  and Eq. (4.50) can then be written In 

the form 
e:+2P,w=.o (^514) 

with the boundary  conditions 

e; = 0       if      q> = 0, 
efl = o      if     9=i±oc. (4.55) 

The solution of Eq. (4.54), with the boundary conditions (4.55) 

and the Integral condition (4.53) taken into account, can be written 

in the form 

"•-isi^   r-ml^'",*'T- (1.56) 

,. 

As also in the case of the axisymmetric Jet, the solution of the 

thermal problem in the case of similar boundary conditions for veloc- 

ity  and temperature  can be represented in the   form 

With Pr ■ 1 the universal velocity  and temperature distributions 

coincide; with Pr ^ 1 we have the correspondence between the  effective 

thicknesses of the  dynamic and the thermal boundary layers mentioned 

above. 

In the second case,  Eq.   (4.50)  and the boundary conditions  (4.51b) 

can be rewritten in the  form 

:: 
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) 

e, + 2PrFei - 0, 
61-1  if qi-+oo, > 
61 »0 If 9» —.00. J 

(1.58) 

(1.59) 

The solution of Eq.   (1.58) with these boundary conditions and the 

equation F" + 2FF' ■ 0  from the dynamic problem will read 

8» - fcr, - c« \ ^^ *'  c» = [ S (ch 1,)","df]"* (1.60) 
—00        -« 

In the simplest particular case of Pr ■ 1 the constant of Integra- 

tion Is C. 0.5 and 

A   _ 1-f thf 
Of,«! =•  5—*. 

Let us give the numerical values of the constant CQ for several 

values of the Prandtl number: 

'' 0.5 0.7S   » t > 

CMFr) 0,36 0.44 0,50 0,75    | 

The corresponding distributions of the nondlmenslonal temperature 

are given In Pig. I.M. 

Our example of asymmetric boundary conditions for the temperature 

and other analogous examples are Interesting as they provide a scheme 

of the Jet mixing In the Interface of two volumes filled with media of 

different properties, e.g., two different gases or liquids. The devel- 

opment of a Jet boundary layer along the plane Interface of these vol- 

umes Intensifies the heat and mass exchange (which Is particularly es- 

sential In the case of turbulent mixing). 

For the Intensity characteristic of heat transfer through the in- 

terface y ■ 0 we introduce, as this is usually done, a nondlmenslonal 

parameter, the Nusselt number Nu. - ouc/X, which is a function of the 

Reynolds number Re# (J  »xVpv characteristic of the problem, o being 
x 

the heat transfer coefficient and X the heat-conduction coefficient, 
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Pig.   4.4.  Temperature  distribution in cross sections of a plane Jet. 
-)  Tj » r2 = T^; )  Tj j T2.   1)   ?r »  0.5;   2)  Pr -  1.0;   3)   Pr « 2.0. 

+00 

7, = C pu' dy = canst 

is the total momentum of the Jet. The local Nusselt number is 

Wll«"Tflj=Tg. where 9 = -x^l • 

or,  after a transformation, 
09% 

WH> 
.x = Bx»+,e;|^ = BC,x,\ 

where the values  of the constants B  and CQ are given above. 

Since   B^-^^^^^Y^'    we  anally obtain 

Nux=4-(R..),Ä. 

The mean value of the Nusselt number 

s 

Ni; =-L C Nu, rfx =-J Nu,, 
o 

Let us now  consider the dynamic problem and. determine the  law of 

variation of mass  flow in a plane Jet  (which is the same  for the two 

variants of temperature boundary conditions) 

+«   
G= [ purfy-p^i'Mf (+oo)—F(—«Oi^aep^y,.!-/«. , 
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Let us also determine the law of variation (decrease) of the kinetic 

energy flux 

£-4- J pu»dy--^K6pvV«.x-* 

At the end of this  section devoted to the plane  laminar Jet we 

consider the transformation of the variables as  suggested by R.  Mlses 

[133,  212]. 

We  Introduce as Independent variables   for Eqs.   i^.^5) the  coordi- 

nate £ « a: and the strean function ty with the well-known definition 

equations 

With the substitution of variables   A«, * _p * f    ' «B *       we can 

rewrite Eq.   (^.^5)  In the  form of the equation as given by R.  Mlses 

du« d*M* 
dr = vaä*r- (4.61) 

Thl'-  Is a nonlinear equation of the type of the heat-conduction 

equation whose coefficient depends on the  sought  function.  A general 

method of Integration of this equation Is  not known.   Approximation 

methods of Integration are therefore of some Interest.  In particular, 

a method of successive approximations was  given by L.G.  Loytsyanskly 

[133].   In the zeroth approximation of this method, the variable quan- 

tity u,   the "coefficient" of the right-hand side of Eq.   (4.6l),  Is  re- 

placed by a characteristic constant.  The solution of the  linear equa- 

tion obtained with the relevant boundary conditions Is used In the 

Iteration process  carried out to obtain the higher approximations. 

This method may be of considerable Interest since the solution of a 

heat-conduction-type equation (e.g., by the source method) enables us 

to take detailed Initial conditions Into account  (the velocity dlstrl- 

• 
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bution at the orifice, etc.). As a rule, the zeroth approximation Is, 

however, far from exact and the calculation of the following approxi- 

mations Is complicated and cumbersome. Owing to this the method could 

not  achieve  any  remarkable  spread In the theory  of plane Jets. 

The integration of R.  Mlses'  nonlinear equation by the method of 

finite differences must be  considered more promising.  In particular if 

static electro-integrators   (SEI)  are used for this purpose  [1^2]. 

4.4.   THE  PAN-TYPE  SOURCE  JET 

In this section we shall  consider a laminar flow produced by a 

fan-type source Jet.   Let us assume that  at all points of the  slit is- 

suing the Jet the velocity  vector lies in one and the same plane, 

i.e.,  in the origin cross section the projection of the  velocity vec- 

tor to the  axis  Oy of symmetry is identically equal to zero.   In the 

absence of a "twist" the velocity in the origin cross  section is  di- 

rected along the  radius, in the presence of it, it makes  a certain an- 

gle with the radius in the plane t/ «  0.   In the  first case the Jet  is 

sometimes  called a radial-slit Jet;   for generality we shall speak of a 

fan-type Jet which may be twisted or nontwisted. 

Just  as in other cases  of source Jets we shall consider the mo- 

tion at  a sufficient  distance  from the orifice.  We shall  first con- 

sider the dymamic problem [132,   161] taking into account   (analogously 

as in the plane Jet)  that the temperature boundary  conditions  are  dif- 

ferent. 

Note that  as  to its  "geometry" the  fan-type Jet in some way takes 

an intermediate position between a plane and an axisymmetric Jet.  The 

flow produced by a fan-type source Jet is  as in the plane Jet  symmet- 

rical with respect to the plane # = 0  and,  as in a round Jet,  it has 

axial symmetry.  But the axis  of symmetry is here perpendicular to the 

velocity  vector,   identical with the Oy  axis, and not with the   longitu- 

- 102 - 

XP 

: 

4 % 
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dlnal Ox axis as In the above problem on the axlsyrametrlc Jet.  The  fan- 

type Jet Is related with the latter by the continuity equation and the 

law of growth of the Jet's cross-sectional area connected with  this 

equation. 

The equations of motion and continuity In the approximation of 

the boundary-layer theory, using the above denotations,  can be written 

In the following form: 

du   ,9H W* MI 

i£-0 
9w   ,      9w   ,    UM 9** 

(4.62) 

The boundary conditions for the system (4.62)  read 

(4.63) 
—o. i*-^ = 0    if    v-0- 
u = u> = 0 If      y —±oo. 

For unamblguousness of the L   Tut Ion of the problem,   the boundary 

conditions   (4.63) must be completed by Integral conditions. 

We multiply the first equation of System  (4.62) by x and the 

fourth by u and add them: 

i(«,)+^(^)-^ = v^(xu). 

We Integrate the equation obtained with respect to y from -a, to +00; 

taking the boundary conditions  (4.63) Into account, we then obtain 

± \ xu*dy~ J ufidy. (4.64) 

Prom this equation It follows In particular that In the case of a 

nontwlsted Jet (If w - 0) the momentum flux (the "Impulse" of the Jet) 

remains constant along the Jet: 

/, — 2xx y ptfdy =» cowt. (4.65) 
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In the case of a twisted fan-type Jet we must use the strict con- 

dition (^.64) in order to solve the problem, for a slightly twisted 

Jet, at a great distance from the source, Eq. (^1.65) will, however, 

maintain Its property as a limiting relation. The validity of the lat- 

ter statement results In the fact that, as will be shown later, the 

laws of variation of the longitudinal (u) and  the peripheral (w) ve- 

locity components with Increasing distance to the source will be dif- 

ferent: 

\0 

U~- w  

While the term u2/x ^ 1/x5 In the  first equation of the Initial 

system,  the other terms will be proportional to l/x*.   Consequently,   at 

greater distances  from the source, we may neglect the term w2/x rela- 

tive to the other terms  of the  first equation.  Then, however,   also in 

the integral relation  m.SH)  the right-hand side must be set equal to 

zero in this approximation. 

In order to obtain a second integral condition we multiply the 

third equation of the  system (1*.62) by x2  and add it to the  fourth 

equation which has been multiplied preliminarily by xw.   As  a result we 

obtain 

äF (a:,uu,) + H ^%vw^ ^"W* ^^ 

which we integrate  from 1/ » -« to t/ « ■f» across the boundary layer, 

the boundary conditions  (4.63) being taken into account.  This yields 

the  following condition: 

M% = 2ns? J puwdy = conit (4.66) 

along the  Jet.   Equation (4.66)  expresses the  law of conservation of 

angular momentum in the Jet,  relative to the  axis  of symmetry,  Oy. 

To solve our problem we put 
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u - Ax'F (<p),   w -^ Ci'd» (<p),  9 = Byx*. 
(4.67) 

Let us require that finite equations must not contain the coordi- 

nate x. For this purpose we put 

ß^^f1 (4.68) 

and after a transformation we  obtain 

^P (D'= (1 + e) F'O - ^p F<P'. 

The  constants of self-similarity,  a,  ß  and e  can be obtained from 

the Integral conditions   (4.65)   and  (4.66) 

ß = 2a + l,       e = ß —a —2 (4.70) 

and,   moreover. 

T-Sifc (A=5^9). (i,.71) 
—00 

c = 42-fe      (A-T^^)' (4.72) 

When we solve Eqs.   (4.68)  and (4.70)  simultaneously, we obtain 

the  following values  for the  constants  of self-similarity: 

«-P--1,      e = -2. (4.73) 

Making use of the arbitrariness of the values of the constants A 

and B  we can put in addition to the above relations 

^f=2v; (4.74) 

such that the problem is reduced to integrating the system of ordinary 

differential equations 

/?- + 2(FF')'-0. (4.75) 
<D' + 2(F<D)' = 0 (J4>76) 

with the boundary  conditions 

F = 0, f' = (D=.l       if        «p = 0, 
F' = <5 = 0 if (p=.±oo 
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The equations  (^.75)   for F' and  (4.76)  for * and the boundary  con- 

ditions are similar such that the  functions F' ana * may only differ 

by a constant   factor which can be  taken equal to unity since the veloc- 

ity components  u and w are determined with an accuracy that implies  ar- 

bitrary values of the factors  A and C.  They will be determined in the 

following. 

It should also be noted that  Eq.   (4.75)  and the boundary condi- 

tions  (4.77)   for the determination of the function F'(«p)  are identical 

with Eq.   (4.47)  and the boundary  conditions   (4.48)  to which we reduced 

the solution of the problem on the expansion of a plane laminar source 

Jet.  The solution of the present problem for the  function F'((p)  is 

therefore  obtained immediately: 

F-thf.  r-g^-i-ttff.    r~<t>. (4.78) 

To complete the solution of the problem we determine the values 

of the const suits A, B and C from the conditions  (4.71),   (4.72)  and 

(4.73): 

A'mTV  Siv^»       ""TV  4^»'       CS
"8RPK   357, * 

(H^re we took into account that   /,=/,== C F'*d9=-4-V 

In this way we arrive at the  final solution of the dynamic prob- 

lem 

tf 

w 

2ntp*v ■ ch'v * 

1   »/"SvTJ 1 2<p--8b2( 
~T V   4«p  ■     ePf 

-fA/v Y   3nV^x i^ePf 
(4.79) 

Let us now turn to the thermal problem and consider its solution 

(in t similar way as we treated the above case of the plane Jet)  for 
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"1 

3 

two types   of boundary   conditions   for the  temperature: 

a) % = *     if    y-o,     \ CÜ.SOa) dy 
if y-=o. 

T^To, if y = ±oo 

T -=T1 if y = + oo 
T ^Tt if y = — oo 

I 
K \ i = i i y = — oo. J b) * ' (4.80b) 

As in the case of the plane Jet, In order to solve the energy equation 

"£ + »f-£ (4.81) 

we Introduce different self-similarity transformations   for the boundary 

conditions  (4.80a)   and (i|.80b): 

a) for the  "symmetrical" boundary   conditions   (4.80a) 

l~If -My).    rm—r.-r«'; (4.82a) 

b) for the "asymmetric" boundary conditions (4.80b) 

^^ = e,(9). (4.82b) 

In the first case, to obtain a complete solution of the problem 

we must add to the boundary conditions (4.80a) the Integral condition 

of conservation of the surplus heat content in the Jet: 

+0C 

2jti J pcpu(T — T00)dy = Q = const, (4.83) 

derived analogously  as the conditions   (4.65)  and  (4.66). 

Substituting the expressions  for the  longitudinal velocity compo- 

nent  u from  (4.79)   and the temperature  difference  T - T^  from (4.82a) 

in th   Integral condition  (4.83)  enables us to determine the  constant 

of self-similarity Y and the  constant  T 

—00 

The heat  transfer equation  (4.81)   and the boundary  conditions 

(4.80a) transform with the value  of y = -1 obtained to an ordinary dlf- 
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ferentlal equation 

e: + 2Pr(f«,y-o (1|#85) 

with the boundary conditions ^> 

B', = 0   If     q)=x0,       1 
ea = 0 If    <p = ±oo. J (^.86) 

In the second case Eq.   (i».8l)  and the boundary conditions  (*.80b) 

can be rewritten In the  form 

& + 2PrF&**0, (4.87) 
li-llff + oo,! 
e8 = 0   if     q. = _oo.  / (i1.88) 

The equations and boundary conditions   (4.85)  and (4.86) and also 

(4.8?)  and (4.88)  coincide with the corresponding equations and bound- 

ary  conditions  (4.54),   (4.55)  and (4.58),   (4.59)  for the problem of 

the expansion of a plane Jet; we can therefore rewrite Immediately  all 

the results  for the temperature distribution In the  fan-type Jet. 

In the first case   (symmetrical thermal boundary layer) 

^r' '!:a^1 • ^^-^UJ •       (^.89) 

+5» 
-J- If   Pr = 0,5l 

-f if   Pr = ll0, 

^if   Pr-2.0. 

In the second case   ("asymmetric" thermal boundary layer) 

£^ =9,= C0 5 (ch,,)-»'>,    CB = [J (chq.)-»"^]-*.     (4.90) 

The values of the  constant C0 were derived above for several 

Prandtl numbers. 

The nondlmenslonal temperature distributions  in the  fan-type  and 

the plane  free laminar Jets are the same.  The latter are shown in Pig. 

4.4. 
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The  coincidence of the self-similar equations  and their solutions 

(i.e.,  of the  universal nondimenslonal velocity and temperature dis- 

tributions)   for the dynamic and the  thermal problems  on the expansion 

of a plane  and a fan-type  free Jet  is a general property.   It is  also 

encountered in the self-similar solutions  for half-limited laminar 

Jets  and in analogous problems  of the theory of free  and half-limited 

turbulent Jets. 

To obtain the total characteristic of the problem we also calcu- 

late the  integral quantities  of the  fan-type Jet. 

The  flow rate per second of the  fluid in the Jet is equal to 
-H» 

G — 2nx \ pudy = 2 vA6n!p,v/x x — «. 

The kinetic energy  flux is 

E-nx \ p^y-a^r^-f^T^^ 

and the local Nusselt number is obtained as 

.. x        dT \ <"» I „'i da       n~ Nux = =—=--*—      = -^—       1 = 6» ,=„* -r- = BCt, = const. 

Besides the plane fan-type Jet   (where the initial velocity vector 

lies  in the plane y - 0)  the  so-called conic radial-slit Jet considered 

by L.G.   Loytsyanskiy  [132]  and H.   Squire   [171]  is  of interest.   Such  a 

Jet which flows out of an annular slit produces  in the  initial cross 

section a divergent cone with a vertex angle of 2a between the  limits 

a = TT/2   (plane  fan-type Jet)  and a = 0  (efflux from a ring parallel to 

the  axis  Ox). 
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|agePt [Footnotes] 
No. 

8 Note that In the extended scheme  of a turbulent Jet,  sug- 
gested by G.N. Abramovich [1, 4] for the flow sections of 
the Jet in the immediate proximity of the nozzle and away 
from it the terms "initial" and "basic" Jet sections have 
been adopted. 

12 We agree in calling a Jet  "submerged" if it issues into a 
space filled by a fluid of the same physical properties  as 
the  fluid of the Jet. 

19 Under these numbers the books  or papers can be  found in the 
Reference List  at the end of the book. 

22 A fan-type  Jet in which the  initial momentum is  directed 
radially in the plane of symmetry  is  considered separately. 

37 At  first  sight  it seems that the ratio W /J    could serve as xx 
this quantity.   It does not exist, however,  for a nontwisted 
Jet while in the presence  of a "twist" it does not enter the 
expression for Vp in a second approximation. 

43 If ve » 0 the values  of a ■ 1  and 6=2  correspond to the 

motion of a viscous flu. i in a wedge-type space formed by 
intersecting planes  (Gamel's problem [122]). 

45 The residual  components  of the heat  flux density  are  obvi- 
ously equal to zero.  This results   from the definition of the 
flux of an arbitrary scalar quantity through a spherical sur- 
face centered at  the source  of this quantity. 

55 A solution of the analogous dynamic problem with boundary 
conditions  corresponding to a viscous  fluid (ü- = 0,  VQ = 0 
at the surface of the  cone) was  obtained in the  form of se- 
ries in a paper by N.A.  SlezKin [172]. 

61 By virtue of the symmetry of the  flow with respect to the 
plane  6 ■ TT/2 the solution is developed for the upper semi- 
space   (0 £ 6 £ IT/2).   In order to obtain a solution for the 
lower semispace we must replace in Eq.   (3.20)  w by -w  (also 
in the  integral  conditions of the problem). 

74 This  is  connected with the  fact that for a plane jet motion 
no self-similar solutions exist   (see Chapter 2). 

75 The  coordinate x is directed along the initial momentum. 

83 Note that the  form of the expressions  for the velocity,  the 
temperature, etc., and also for the reduced coordinate cp 
written as power-function complexes predetermines  for the 
self-similar solutions the constancy of the value of the in- 
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n 
tegral taken over the  Jet cross section,  of the  form 

(•*<•«wast,    where    o-^   and   it-Qxrfdy,    (where  k »  0,   1). 

For free Jets a = 2  and this Integral condition coincides 

with the more  general condition of conservation /, «(puVf- 

=  const, which is  in no connection with an assumption of 
self-similarity  of the  flow.   In those  cases where the  gen- 
eral integral Invariant of the problem Is  unknown,  an equa- 

tion of the  form of    ^•«• rff - «msi + 0     under zero boundary  con- 

ditions guarantees the possibility  of obtaining a nontrlvlal 
solution. 

84 Just as in the previous part we only  consider the case of a 
"slight  twist." In this  case,  although the pressure Is main- 
tained in the second equation of the system (4.4)  It may be 
omitted in the  first  equation in connection with the sharp 
drop (^ar1*) with Increasing distance to the source.   In the 
case of a "strong twist"  (w >> u)  this  simplification is  in- 
admissible since here,  as shown by experiment,  counterflows 
arise in the paraxlal region of the  flow. 

91 Note that an analogous solution of the problem on the plane 
source Jet  leads to a considerably smaller difference  of the 
constants:  the  constants A and A'  differ only by 2% while 
the difference between the constants B and B'  amounts  to 
about SQ%.  The  agreement can be Improved by raising the  de- 
gree of the polynomial  (^.32). 

94 With Pr < 1 we must have 6-, > 6.   But since beyond a layer of 

the thickness 6 the  flow velocity  is  equal to zero and it  is 
rather artificial to extend the method of solution to this 
range of values  of Prandtl's number. 

) 
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Chapter 5 

THE JET IN THE CO-MOVING PLOW 

5.1 THE METHOD OF SMALL PERTURBATIONS 

The Idea of the laminar source Jet has Its advantages and 

disadvantages Just as any other schematic conception. An advantage 

Is the possibility of passing over from partial differential equa- 

tions to ordinary differential equations and the solution of the 

latter without the necessity of taking detailed Initial conditions 

Into account. These achievements were demonstrated by way of exam- 

ples considered above. As regards the disadvantages of the schema- 

tic conception chosen (If this term may be applied to the fundamen- 

tal, essential properties of source Jets), the Impossibility of 

obtaining a solution and the corresponding representation of the 

true nature of the motion for flows In a Jet near the orifice of 

the nozzle may be considered as such. In a series of problems It 

Is, however, of great Interest to know, for example, the varia- 

tion of the Initial velocity distribution and the ]lke. 

To overcome these difficulties. I.e., to obtain a direct solu- 

tion to problems of nonselfslmllar flows, we must have recourse, 

as already mentioned, to numerical calculations, e.g., by means 

of computers. Besides this, the approximation methods of calcula- 

tion are of well-known Interest as they permit a simple and Illus- 

trative Interpretation. 

One of these approximation methods applied In the theory of 
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Jets and in many other fields of mathematical physics as well. Is 

the method of linearization of the fundamental equations, usually 

called the method of small perturbat-ons. If applied to calculating 

laminar (and also turbulent) Jets, the method of small perturbations 

results In a transition from the nonlinear boundary layer equations 

to a well-known linear equation of the type of the heat-conduction 

equation. As already mentioned, the latter is relatively easy to 

solve both analytically and with the help of various integrators. 

Note that the method of small perturbations may also be applied 

to self-similar flows produced by source-Jets since the motion far 

away from the source of perturbations in the same sense belongs to 

the class of flows with small perturbations. Such examples will be 

dealt with below. 

The main significance of the method of small perturbations 

consists however, in the possibility of applying it to problems which 

cannot be reduced to self-similar ones. 

In order to illustrate the method 

as a whole, we consider the expansion 

of a Jet of finite dimensions in an in- 

finite, co-moving uniform flow. A sin- 

gle limitation (which, generally speak- 

ing, is essential) imposed on the flow 

(see schematic representation of Pig.5.1 

consists in the supposition that the 

quantity of the "excessive velocity" u, » M — u^ is at all points 

(and, first of all, for the maximum value u, )essentially smaller 

than the velocity u of the co-moving flow. Thus we have u-  << u . 
in»    • 

In the approximation of the theory of the laminar boundary layer 

where the transverse velocity component is considerably smaller than 

Fig. 5.1 Schematic rep- 
resentation of the expan- 
sion of a Jet in a co-mov- 
ing flow. 
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the longitudinal component (»^" * O. It Is obvious that we must as- 

sume the order of the quantity y to be the same as that of «,. In oth- 

er wordo, y«<u«,- 

On this basis, we may rewrite the boundary layer equations for a 

plane and nontwlsted axlsymmetrlc flow 

»£+"lhvi(^)' iow+i^-0     (5.i) 

In a form corresponding to the method of small perturbations. For 

this purpose, we replace in these equations the velocity u by the 

sum u    + u-,   and then omit all terms which are small of second order In 

u,. As the result of this linearization, we obtain the quantity 

-Tr-Sr-'H^)'      (5-2) 
where T =-|f-— Is the "time" of propagation of perturbation, trans- 

00 

ferred In the linearized flow with the constant velocity u . In the 
00 

same way, we came to the well-known unldlmenslonal heat-conduction 

(diffusion) equation which must be Integrated Instead of the system 

of equations (5.1) under the corresponding boundary conditions for 

the "velocity surplus" w^. The latter can be written In the follow- 

ing form: 

B, . liM(y) within the limits of the outlet cross section , 
of the nozzle 

with x ■ 0 
H, = 0  beyond the nozzle } 

and 

«1 = 0. ^-=0 if x>0Hy-»oe. 

The solution obtained In nondlmenslonal form can be represented 

by the dependence on the relative coordinates 77«77» the parameter 

U UP 

m=J£5. anc[ Reynolds number R©-= J«üLI where rn  and «,-, are the 
"oo v '       o Jutn 

characteristic values of nozzle dimensions and efflux velocity ex- 
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cesslve relative to the velocity of the co-moving flow, u^. 

It must be mentioned that a solution by means of the method of 

small perturbations does not at all require a restriction to plane or 

axlsymmetrlc problems as this was necessary with Eq. (5.1). For the 

efflux of a Jet from a square, rectangular or any other such form of 

nozzle, i.e., for a three-dimensional (spatial) Jet flow, the linear- 

ization of the equation has the form of a two-dimensional equation of 

the type of the heat-conduction equation (T — ü^) 

9ui  _ l&ui   ,  3*1*1 \ 
at  \ ay» "T" a«» / • 

which Is also easy to solve, e.g., by the method of sources or other 

methods. 

If In solutions obtained by the method of small perturbations, 

we consider the limiting relations for a great distance from the 

nozzle (with—>.l), these will correspond to a self-similar flow. 

The constant of self-similarity, ß, entering a power function 

of self-similarity of the form cp = Byi?,  can be found by substituting 

the expressions for "i.^1 etc., in the basic equations. The homogenei- 

ty of the linear equation (5.2) will here permit a definition of the 

constant ß independently of the constant a entering the expression 

r , 
ui = yli<,-F. The latter in its turn is found from the integral condition. 

The simplest considerations of dimensionality, however, enable 

us to estimate Immediately the value of the constant ß. For example, 

in the case of a plane (or axlsymmetrlc) Jet, it follows from the 

equation 

<JT  
v „* 3y \*  ^r; 

that the nondimensional argument for a self-similar solution can on- 

ly be represented in the form of the function <P ■ const i/Avx/u^)"2, 

ß ■ -1/2, since at large distances from the nozzle the initial para- 
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meters r0  and u10    do not Influence the motion. 

Note finally that the method of small perturbations can also be 

a-plied to slightly twisted Jets, I.e., to the peripheral velocity w        w 

under the supposition of the motion's self-similarity. As to the ther- 

mal problem, it cam be solved even without using the method of small 

perturbations (by virtue of the linearity of the heat transfer equa- 

tion) after the determination of the perturbed motion. This, however, 

is a very cumbersome way. It is therefore expedient to solve not only 

the dynamic problem but also the thermal problem by the same method of 

small perturbations. The corresponding examples will be given in the 

following section. 

5.2 EXAMPLES OF SOLUTIONS BY THE METHOD OP SMALL PERTURBATIONS 

Let us now use the general considerations developed in the preced- 

ing section on the application of the method of small perturbations in 

the theory of Jet flows in order to solve concrete problems. 

Let us first consider the problem of a plane Jet Issuing from a 

slot nozzle of the finite length of 21  and expanding in a co-moving 

uniform flow of fluid of the same physical properties, which streams 

with the velocity w^. In accordance with what has been said above, 

the velocity and the temperature of the Jet at the nozzle orifice are 

assumed to differ only slightly from the velocity and the temperature 

of the co-moving flow (see Pig. 5.1). 

As shown above, the solution of the dynamic and the thermal problems 

can be reduced under these conditions to an Integration of equations of 

the type of the heat-conduction equation. 

dx 
ar, 
dx 

= a-s* 
(-a (5.3) 

o 
for the excessive velocity (uj = u — ««,) and the temperature (fi = f — r»). 
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The  solution of Eq.   (5.3) must  satisfy the  following Initial 

and boundary  conditions: 

Wi-«»(»). Ti-'«(»)   If  -^<J/</. ] x^o. 
iij-O,        T^O if      \y\>l,    J 

9ai       A STi ^--0.      ^--0 lf y-O,     |x>0 
(S.M 

Note that In contrast to Jet  flows which do not  satisfy the re- 

quirements of the method of small perturbations, Eq.   (5.3)   for the 

temperature can be  Integrated Independently of the velocity equation. 

To begin with,  let us turn to the solution of the dynamic problem. 

As regards the  thermal problem.  Its  solution may be obtained by way of 

a simple replacement of u1 by T1   (u10 by T10)  in the solution of the 

dynamic problem;  the kinematic coefficient of viscosity,  v,  is here 

replaced by the heat-conduction coefficient a.  This replacement re- 

fers to the symmetrical Jet  at whose boundaries both the velocity 

values and the temperature values are the same.  But the linearization 

of the equations  to such of the type of the heat-conduction equation 

enables us in each problem (the dynamic and the thermal problems or 

in both simultaneously) to obtain a solution even with different boun- 

dary values at y = +<»    and y « -». 

The solution of an equation of the type of  (5.3) with the boun- 

dary conditions   (5.1*) Is well known [I88]: 

t' 
"'^ y) - TvW i »»«)«?[- fi^]* (5.5) 

In the particular case where the velocity in the Jet at- the out- 

let of the slit is constant   u10(y = u10 = const,  we shall have 

Ä.^i  Twpr-fi^jZLU. (5.6) 

The latter expression can be rewritten in a form more conven- 

ient for application if we substitute the variables as follows: 
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2 Vvt 

After this transition to new variables, we obtain 

or, having In mind that the Integrand Is an even function, 

t 

(In this equation erfi=»-^^exp^ a^d« is an error Integral). 

Let us rewrite Eq. (5.7) In nondlmenslonal variables 

*-*my'm (5.8) 

where 

y — -|-, x — — , R«o =■ — .  M 

o 

Consequently, the velocity In a jet of finite dimensions Is 

determined by the expression 

C-^H^VfH^^)}- (5.9) 
Prom Eq. (5.9), It Is easy to obtain In particular the law of 

velocity variation along the axis of the Jet (y = 0): 

^-« + —«(T/5)-        (5.10) 

According to the above, we can write the solution of the thermal 

problem In the form 

n(x.y)-4-/^|rw(6)exp[-i^Pr]d6.  (5#11) 

For a uniform temperature distribution at the nozzle outlet 

frii(ö = Tu - coiwtj we obtain 

Ä-S-{-(i*i|/^)+-(1Ti|/^)}-   (5.12) 0 
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The temperature distribution In a plane Jet of finite dimen- 

sions Is thus determined by the expression 

l-t^H^/W^-'i^/W t5-13) 

(Here we Introduced the additional denotation mx = T* .) 
00 

Along the axis of the Jet (9=0)  the temperature varies according 

to the following law: 

(5.1*1) 

Note that also In this nonselfslmllar flow one of the fundamental 

properties of Jet motions Is con erved, namely the similarity of the 

temperature and velocity distributions» under similar boundary condi- 

tions and a Prandtl number equal to unity. 

In a quite analogous way, we can Investigate the laws governing 

the expansion of an axlsymmetrlc Jet Issuing from a round opening Into 

a uniform wake. Under the same suppositions as In the problem of the 

plane Jet of finite dimensions (ui = u — u«, <u«; Ti= T—Tt>0<Ta,),  we start 

from the equations 

"IT " T T» \y-'WI' 

Uli , « a (vaTl\ 
(5.15) 

with the Initial and boundary conditions 

«i=«i(y),   fi-fiOO   If 0<y<t, 
«i = 0, 

-37' 

«, = 0.^=0. -^ 

if y>'. 
if y-o, 

if y 00. 

U-o, 

x>0. 
(5.16) 

The solution of Eqs. (5.15) under the conditions (5.16) and uni- 

form velocity and temperature distributions In the nozzle orifice Is 

also well known: 

I 
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-^ = 5 /„ (yX) /, (X) ozp [- j~ X«] ik, 
OS 

(5.17) 
o 

In the latter equations I- and J. are Bessel functions of first 

kind and of zeroth and first order, respectively, the other designa- 

tions are the same as In the problem of the plane Jet*. 

The assumption of a similarity of the velocity and temperature 

distributions with Pr « 1 in this case remains In force. 

The above problems on Jets of finite dimensions referred to the 

motion of an Incompressible fluid. The solutions obtained describe 

(within the framework of the method of small perturbations), however, 

also the flow of a compressible gas. In this case, v and a are the 

respective values In the nonperturbed wake C28]. 

As regards the problems of the expansion of Jets of compressible 

gas discharged from nozzles of finite dimensions, they can be solved 

more strictly either by numerical Integration of the corresponding 

equations or by the method of successive approximations. A series of 

solutions of this kind were given by Bay Shl-1 [28]. 

Let us now consider the limiting transition to the case of the 

expansion of a source Jet In a uniform wake, by way of the example of 

a plane Jet of finite dimensions. For this purpose, we return to 

Eq. (5.6) and, considering the width 21  of the nozzle sufficiently 

small, we apply the theorem of the mean to the Integral In the right- 

hand side. We obtain as a result 

The momentum of the Jet In the outlet cross section Is equal to 

.1 

0 
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disregarding the second-order small quantities; hence follows that 

Ul02/= ^*_, so that we obtain for u- 
Puoo 

"'-Zpu.K^x CXPL    4VT J- 

In the limiting transition with I ->• 0 we shall suppose that at 

the same time uio-»-<», while the momentum J remains constant, equal to 

—00 

Under these suppositions, we shall have finally 

B|,  /'   expC-q.') («P'^W-F)-       (5.18) 

An analogous limiting transition carried out in the rightband 

side of Eq.   (5.11), under the condition that in the Jet of the ex- 

cess flow the following heat content is retained: 

T ^ = \ pcpUaiTidy = const 
—<o 

results  in the following expression for the excessive temperature: 

^^/^«PH^)- (5.19) 

Using the method of small perturbations the same results can be 

obtained for the excessive velocity u, and the temperature T- by way 

of an immediate integration of the initial system of equations of ex- 

pansion of a plane source Jet in a uniform wake under corresponding 

boundary conditions and integral conditions. A solution by the method 

of small perturbations may be obtained in a very simple and clear way 

with the help of dynamic or static hydro- or electrointegrators [,,,»S8 

5.3 THE MIXING OF UNIFORM FLOWS 

The problem of a plane boundary layer in the interface of two 

parallel flows has already been studied in a series of investigations. 

- 121 - 



W.c Tollmlen's paper [,17] Is devoted to the turbulent mixing In the 

Interface of a seml-lnflnlte uniform flow of Incompressible fluid and 

a medium at rest, possessing the same physical properties. Later on   i> 

this problem was generalized to the case of a motion In the same direc- 

tion of two parallel flows. In the papers by A. Kuethe C251] and 

H. Qörtler [280]. 

In the present section, we discuss the results of Investigations 

of both the parallel motion of two uniform, plane-parallel laminar 

flows and the well-known schematic representation of counterflows 

(Pig. 0.4), I.e., tha mixing zone produced by two uniform antiparallel 

flows. 

Such a motion (for an axlsymmetrlc turbulent Jet) was considered 

In paper C11*] In connection with the problem of Jet stabilization of 

flames (see also [*•]. Considering this problem in a first approxima- 

tion, we adopt the usual assumptions of the boundary layer theory. In 

particular, we neglect for the mixing zone the pressure variations 

transverse to the flow due to the curvature of the streamlines of the 

fluid. 

On the basis of these considerations, we shall now turn to the 

statement and solution of the problem on the mixing of uniform parallel 

or antiparallel flows of a viscous incompressible flow. 

We shall assume that two flews of one and the same fluid move with 

the different velocities u.  and u„ and the temperatures T.and r„ along 

a plate which is parallel to the Ox  axis. The flows are assumed uni- 

form, i.e., the initial velocity distribution produced by the flow 

around the plate is not taken into account; in other words, the "wall" 

parting the flow is identified with the zero streamline of each of 

the flows. 

At the point « - 0, the end of the plate, the mixing of the 
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flows and the formation of a laminar boundary layer begin. The 

velocity and temperature distributions In this boundary layer are 

described by the solution of the following system of differential 

equations: 

du   .      du       . fru 

du a. *! - ft 

dT    ,     dT W 
(5.20) 

with the boundary conditions 

u = uj,   r « 0, 7* = T, 
„ = „„    » = 0, 7 = 7, 

u-ux, 7 = 7l 

u = o1, 7 = 7, 

if ^>0'   U<0.     ) 
if »<0.   / 

" y= + oo'\x>0. 
if y = —oo, | 

(5.21) 

Note that the value of the velocity u„ may be either positive 

(parallel flows) or negative (antiparallel flows). In contrast to 

this, we always have u- > 0. The ratio w«/"* Is denoted by m; we 

have — oo<m<l» (the value m - 0 corresponds to the problem of the 

Jet boundary). 

Starting from physical considerations (constant values of 

velocity and temperature at the boundaries of the mixing zone) we 

shall seek a solution of the system of equations (5.20) under the 

boundary conditions (5.21) In the form 

«-«^'(V).  T^.^W  C*-^**)-     (5.22) 

Substituting these functions and their derivatives In the equa- 

tions of the system (5.20) and requiring that the variable x  must 

not enter the transformed equations, we obtain 

and. In addition. 

F" + 2PF' - 0, 

0'-f2PrFe' = 0 
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The boundary conditions (In the rlghthand semlplane) for the 

problem considered take the following form: 

F-l. 8 = 1 If 9- + 00. 1        (5t26) 
F — m,   B = 0 ±f     9 —— oo. J 

In order to determine the temperature distribution It Is neces- 

sary to solve the dynamic problem beforehand.  For this purpose, we 

use an Iteration method (similar to that of C250]),  representing the 

sought function   /"(«p) In the form of a series 

F(9)- SCm-l)1^^). (5.27) 

The first term of this series Is put equal to the variable (P: 

^(«P)-*. (5.28) 

We substitute the function F(<f), determined by the series (5.27) 

and Its derivatives In Eq. (5.23) and equalize the coefficients In 

terms of the same powers of (m - 3). This yields a system of differen- 

tial equations for the determination of the function /«(9): 

K + Wx =- 0, 
^" + 29^; = -2^, (5.29) 

which must satisfy the following boundary conditions: 

yi(+oo)-0l 

^i(-oo)-l. (5,30)     • 
^i(±oo)-0    (/>2). 

Integrating the first of Eqs. (5.29) with the boundary condi- 

tions (5.30) taken Into account, we obtain 

/i(f)-4-{»-\(«««MP+Ci}'       (5.31) 

- 

.; 

• 

Using the value of f^),obtained, the second equation of the sys- 

tems (5.29) can be used to determine the function Ft(y)   and so on. But 

let us restrict ourselves to the first two terms of the series (5.27) 

as an estimation of the following terms carried out by H. Qortler [280] 

showed that they are relatively small. 
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In this case we have 

F(f) = q. + 4-(m-l) {9 -\(«ll)Ä + Ci}. (5.32) 

The velocity components are determined by the expressions 

(5.33) 

where R« -«-^. 

The stream function can be represented In the form 

_^If-f + 4.(m-l)|f-.J(tif.)A + C,}.    (5^) 

Note that the first equation of (5.33) with q> = 0 yields 

In particular, with m - Ö, we obtain o = -y). 

Such a symmetry of the distribution of the longitudinal velocity 

component relative to the Ox  axis Is rather unlikely. This has been 

proven by experimental data on turbulent motions ([*] and others). 

It Is a well-known property of the boundary layer equations [279] 

that besides the solution of the dynamic equations of system (5.20) In 

the form of a function f(<p) there also exist other solutions which 

satisfy the sane boundary conditions. In the form of fftp*) where v* 

differs from <P by a certain constant. 

The solution of the problem could be brought to an agreement with 

the experiment by choosing this constant, as It was done In paper [S1] 

for a turbulent motion. For the laminar motion, however, no experimen- 

tal data exist. 

Note that the first equation of (5.33) may be rewritten In the 

form 
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—^-j ^—V-^  - TW q> -((erf«)</« + C,} 

or 

When In Eq. (5.36) the longitudinal velocity component Is ex- 

pressed In terms of the stream function (u » 1$). we obtain a formula 

for the stream function of a complex motion In the form 

^ " ^i + —^— $*•* 
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The rlghthand side of Eq. (3*35) Is universal. I.e., It Is 

Independent of m. It Is essential that the expression -^(l + erfv) 

represents the value of f(<p) for the case where m ■ 0. 

Equation (5.33) si ows that It would be possible to restrict 

oneself to a solution of the problem only for the case of m - 0 

(boundary of the jet) since the velocity distribution In the presence 

of a parallel or an antiparallel flow 

U-U. + CIH-B,)^),_ (5.36) 

Is entirely determined by the function 

-iL--J.(l + erff). 

It Is obvious that this conclusion cannot be drawn apriori.  It 

can only be obtained as a result of the solution (and Is connected 

with the linearization of the problem In a first approximation). 

Since the terms omitted of the series for /"(«p) are sufficiently 

small, the above statements can also be extended with some degree of 

accuracy to the total solution of (5»27). 

This result (the possibility of a transition to the "excessive" 

motion) will of course also apply to the transverse velocity component: 

(5.37) ;} 



n 
The latter formula which we obtained from *--he solution has a 

more general meaning: It expresses the law governing the addition 

of stream functions for the motion considered (the case where both 

flows are directed along the Ox  axis), which Is valid within the 

limits of the given approximation. 

Let us now turn to the solution of the thermal problem. With 

the help of (5.23), we rewrite Eq. (S.S1*) In the form 

?r' 

Integrating this expression twice, we obtain 

From the boundary conditions (5.26), we find 

Consequently, 

e (v) -1-1 irr * [j[ in" #r • 
When we substitute the value of the function f (<p), calculated 

from Eq. (5.32) 

f («p) 
5-J!Laxp(_^), 

) 

In the latter expression we finally arrive at 

OfoO-YU+erf^Vl*)). (5.38) 

The temperature distribution obtained Is universal. I.e., It Is 

Independent of  the parameter m. It also disposes of all the fundamental 

properties of temperature distributions In Jet flows as already Indi- 

cated previously (similarity of the velocity and temperature distri- 

butions with Pr ■ 1, etc.). 

Here we restrict ourselves to these general considerations about 
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the properties of the solution obtained, postponing the detailed 

analysis of the flow pattern and the agreement o "  the solution with 

experimental data to Chapter 11 which deals with an Investigation of 

an analogous problem for a turbulent flow. 

Literature References 

25, 45. 51. 114, 130. 183, 134. 151. 152, 174, 262, 264, 277. 279. 

o 

Manu- 

^Jpt [Footnotes] 

No. 

120     Construction of the profiles for an axlsymmetric Jet, par- 
ticularly for nonunlform Initial distributions ui(0,y) and 
Tl(0,y), is made easier by referring to tables of the so- 
called P-functions [264]. 

123     Needless to say, the solutions obtained below also extend to 
the region of satellite flows for which r<.«.<?., on introduc- 
tion of the parameter m'-i/m<i and reversal of the direction 
of the Oy-axis. 

1 

O 
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Chapter 6 

SEMILIMITED JETS OP AN INCOMPRESSIBLE PLUID 

6.1. THE PLANE JET 

Among the various Jet flows a Jet expanding along solid surfaces 

is of considerable interest, especially for the turbulent motion. We 

shall agree in calling this kind of Jet flows "along a wall" semi- 

limited Jets. These semilimited Jets possess the peculiarity that the 

region of flow covered by them looks as if it were the result of a 

synthesis of two types of boundary layers, a free one and one along a 

wall. In connection with this, the laws governing the flow in a semi- 

limited Jet take an intermediate position between the laws effective 

in the boundary layer on a solid wall and those of a free Jet-type 

boundary layer. 

This circumstance has an influence on both the laws of increase 

of effective thickness of the Jet, of decrease of maximum velocity, 

etc., and the integral Invariants of the problem. 

In this section we consider a plane laminar semilimited source 

Jet of incompressible fluid moving along an infinitely large plate. 

Thereafter we shall deal with a generalization of this problem to oth- 

er cases of motion (fan-type semilimited Jet, Jet along a cone) and 

also with the peculiarities of semilimited gas Jets and finally, in 

the following part, with turbulent Jets. 

The flow in a plane laminar source Jet which expands along a 

)      solid surface (see Fig. 0.5a) is described by a system of differential 
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boundary layer equations for an Incompressible fluid: 

du du    ,       9u PH 
U1F + V1t-',W 

du , bt (6.1) 

with the boundary conditions 

uav —0 

u-0 If 

lf I!) (6.2) 

Let us first turn to the solution of the dynamic problem for a 

plane semlllmlted Jet obtained by N.I. Akatnov C1*]. As regards the 

thermal problem It Is, because of the great difference of the tempera- 

ture boundary conditions, expedient to consider It separately. 

The self-similarity transformation 

(6.3) 

often used above reduces the system of Eqs. (6.1) to one ordinary 

differential equation for the function p^: 

F' + wK« + l)^'-2riF'«l-0.      (6.4) 

We have here the same relation linking the constants of self-slmllar- 

Ity which was obtained previously when studying free Jet flows: 

ß--^-. (6.5)  • 

The transverse velocity component entering Eq. (6.1) is deter- 

mined by the expression 

p--.^-i"T'l(a-l)q»^ + (« + l)^l.     (6.6) 

As also in the case of free Jets, the problem on the semlllmlted 

Jet can be solved with the help of (besides the boundary conditions) 

an Integral condition of conservation of a certain quantity, which is 

necessary in order to obtain a nontrivial solution and to de ermine 

the constants of self-similarity, a and 8, and the constants A and 

B as well. Such a condition for a plane semlllmlted Jet was found by 
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3 

N.I. Akatnov C1*]. 

Let us briefly derive this Integral condition. We multiply the 

second equation of System (6.1) by u  and add It to the first: 

^("•) + £M-v|£. 

Integrating the latter equation across the boundary layer, taking 

the boundary conditions (6.2) Into account, we obtain 

IffW + w-VTj-v^)  •        (6.7) 
0 v*> 

hence we obtain In particular 

iU'^--v(Sr) • (6.8) 
o v^ 

We multiply Eq. (6.7) by u and again Integrate with respect to 

y  between 0 and <»: 

•      0 0 • 

The first Integral In the lefthand side of the latter equation 

can be represented as the difference 

f.i(Ui)<,-±r.(U*)*-fe({.'*)*. 
0      0 0    0 0     0 

The second Integral of the rlghthand side can be transformed 

with the help of the continuity equation 

0     0 0    0 

which, after an integration by parts, yields 

\*§u*dy)dy ~ -v^u'dy + [*vdy. 

Returning to Eq. (6.9), we rewrite it in the form 

i5»(5»«rfy)dy+r«5«'dy--v(^)iM(f»dy.  (6#10) 
0  0 • • 

The continuity equation of the transverse velocity component 
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yields 

taking this and Eq. (6.8) Into account, Eq. (6.10) can be represented 

In the form 

0 0 

or 

^{5«(5««dy)rfy-ß«dy)ß««rfy)}-0. 
«      i 

O 

When the first  Integral In the last equation Is Integrated by 

parts, we obtain 

^*§udy)dy~0. 

Consequently 

J pu« (Jpu dy) dy~K~ const. (6.11) 

Instead of the Integral Invariant K  ■ const we can now Introduce 

a simpler one In the form 
00 

/>= ^pu'dy ~ const, 

where a ■ 0/o.  In the problem given, with       a 3    (see below). It Is 

obvious that 0 ■ 3/2.  Note that for self-similar semlllralted Jets an 

equation of the form» 
00 

/> = Jpu^«df-const. 

will always exist;  ds = {Zay^dy   for a plane  (k ■ 0) and an    xlsymmetrlc 

(He - 1) Jet, or   di-=2jixdy   for a fan-type Jet and the like. 

Let us substitute In Eq.  (6.11) the expression for the longitudi- 

nal velocity component u from (6.3). We then obtain from the trans- 
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formed equation  (6.11)  of the  form 
00 

j*. *•-* C FF'9 (f«p = -^- = const 
1 ) • P 

another relationship for the constants of self-slmllarlty 

ß = |a (6.12) 

and, moreover, 

W    TJT     \l   } l (6.13) 

Prom Eqs. (6.5) and (6.12) we find 

Taking the value obtained for a Into account and assuming (In 

connection with the arbitrariness of the constants A and B) that 

^=»4v, (b.15) 4v, (6.15) 

we obtain the following differential equation instead of (6.4) for 

the function F{<f)  determining the velocity distribution: 

Fm + FF' + 2F't = 0 (6.16) 

with the boundary conditions 

F = F' = 0 if «p = 0, .F' = 0 if 9 = «>-    (6.17) 

We multiply Eq. (6.16) by F  and integrate once: 

Pr + F*r-\F*>-Ci, (6.16a) 

where it follows from the boundary conditions (6.17) that C1 * 0, 

Multiplying the latter equation by F'3'2  and integrating once more 

we obtain 

F^'F'+\F"'~Ct. ^    , N 3 (6.16b) 

Prom the condition for cp ■ • we find the value of Ci«-j-fJä. 

Consequently 

) ^F' +1(^-/^-0. (6.l8) 

When instead of F(q>) the new function 
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fW-VTW, (6.19) 

Is Introduced, we obtain the equation 

which is easy to solve In the form of 

r x- i \n t±!!s±!s i O nrctir ül^ 

o 

The constant of Integration C_ Is determined from the boundary 

conditions for <P - 0: 

Returning to the function '"(T). we finally obtain 

Assuming that F' ■ I at the point where u  - «max It Is easy to 

find that r - I.7818. _. 

Equations (6.18) and (6.20) may be regarded as parametric equa- 

tions for the determination of the function F ='?($)•  With a series of 

preglven arbitrary values of the function F, we obtain from these • 

equations a series of mutually corresponding values of F' and 9 with 

the help of which we can draw the curve representing the nondlmensional 

velocity F m  u/w_ as a function of the variable q>. This curve is shown 
Hi 

In Pig. 6.1. 

For a total solution of the dynamic problem, we determine the 

values of the constants A and B from Eqs. (6.13) and (6.15): 

'-V^w. »-i^Sr (6-21> 

The velocity components in a plane semlllmlted Jet are thus deter- 

mined by the expressions 

O 
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(6.22) 

Let us finally give the laws of variation along the Jet of the 

mass flow rate G  per second, the momentum / , the kinetic energy flux E 

1.0 

V 

4« 

^ 

\\ \ 

v\ \ 

\ 

\ V 
\ 
\ 

^ 
1— 

> v^ 1 
,s 

Pig. 6.1 Universal velocity and 
temperature distributions In a 
semilimited Jet. 
I.   u/u«- ATMTn,    (Pr-l;    «•   AT/ATm 

(Pr - 2);  J.   Ar/ATm (Pr - 04). 

smd the frlctlonal stress T. at the plate: 

'--W'"-''?^*-'"1    i/'-l^-     (6.2») 

*-$**»-■& fi&l-'*' («-25) 

1 It follows from Eqs. (6.23) and (6.24) that for a plane seml- 

llmlted Jet expanding along a plate the product of momentum and flow 
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rate per secord remains constant: 

/.C« Foo^-JC-coMt. 

Let us now consider the solution of the thermal problem. The 

equation of heat propagation 

"Sf + '-gf^'W (6.27) 

will be Integrated with three different types of boundary conditions 

C"]: 

(a) the wall temperature T    and the temperature fm  of the fluid at 

rest are equal: 

AT" - 0   If y - 0, 
Ar = 0  If y=oo , 
(Ar-r-f,-r-r^|       (6-28a) 

(b) a nonheatconducting wall: 

0    if y - o. 
(6.28b) AT —0   If  y - oo 

(Ar-r-r«); 
(c) a constant wall temperature which differs from the temperature 

of the fluid far away from the plate: 

y-0.    1 
(6.28c) 

Ar-AT.   if y-0, 
AT* - 0    if y - oo 
(Ar-r-r«; Ar.-f.-r»). 

Let us consider the solution of the energy equation with the 

above types of boundary conditions, one after the other. 

(a) In the case of similar boundary conditions for velocity and 

temperature difference [Conditions (6.28)] a unique solution of the 

thermal problem requires (as In the case of the free Jet) the appli- 

cation of an Integral condition of conservation of some quantity. 

This Is firstly necessary In order to obtain a nontrlvlal solution 

(since the boundary conditions for the temperature difference contain 

the possibility of zero temperature at the body surface and away from 

It). Secondly, the Integral Invariant helps us In determining the 

- 136 - 

n 

; 

;: 



value of the constant of self-slmllarlty y  in the temperature equation. 

A conclusion analogous to the above foi* the condition K  » const 

will in the general case result In the equation 

4;{u*TL49)iy~An*g4t, 

which does not enable us to draw any general conclusion with respect 

to the Invariant or the problem of the value of the constant y. Let 

us therefore first consider the simple particular case of a Prandtl 

number equal to unity. Just as In other cases (with symmetrical boun- 

dary conditions for velocity and temperature) the velocity and tempera- 

ture distributions are similar If Pr » 1. In this case, the Integral 

In the rlghthand side of the above equation vanishes. Analogously to 

the dynamic problem, the thermal problem, with Pr - 1, also possesses 

a general (Independent of the supposition of self-slmllarlty) Invariant 

of the form 
oo V 

KT ={ pep»(f — Too)(Cpu dy)dy = const. 
oJ I (6.29) 

Hence It follows In particular that the constants a and y are equal to 

one another. I.e., a = T = —-j. 

Here 

p      P 

and finally 

and 

Ar-r-^rx-v.F'(,H_^,'(9) 

T-T^, 
e(«p) = 7^^71=='p'^• (6.30) 

With other Prandtl numbers different from unity, the determina- 

tion of the temperature distribution requires a preliminary choice of 

- 137 - 

 -—— _ 



the value of the constant y.  In analogy to the great number of pro- 

blems on self-similar flows (summarized below in Table 7.1)» we 

assume that in the problem considered and values of the constant ex- 

ponents a and y  of the expressions iim = .4** and Afm = fa*, are equal. 

In the given case, Just as with Pr > 1, we must therefore assume that 

a ■ Y ■ - 1/2. The problem can then be reduced to a simple numerical 

integration of a differential equation for the function 6(9), which has 

the form 

-Jre- + F9' + 2F'e-o (6#31) 

with the boundary conditions e(0) = 9 (00) = 0. 

The validity of the above supposition on the equality of the val- 

ues of a and y  outside the dependence on the Prandtl number is proven 

by the fact that with this value of Y a numerical calculation permits 

the construction of an integral curve 6(q>) for each value of Pr, which 

satisfied the boundary conditions and the additional condition that the 

maximum value 6mlx is equal to unity with a certain value of the argu- 

ment Vm-       For the calculation one must choose a value of  0'(0)  which 

satisfies the condition 6m«x = 1. The results of a calculation for two 

values of Pr are shown in Fig. 6.1. The same numerical calculation for 

Pr • 1 yields a practical coincidence with the exact solutions. 

To illustrate the influence of the Prandtl number on the tempera- 

ture distribution, the following table gives the approximate values of 

•  and 6'(0) for several values of Pr; 

„ 

rr 0.5 0.7J M M 

9m 1,50 1,26 1.10 0,80 

•"(0) 1.00 1,07 1,18 1,50 

:: 
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The data given In the table and In Fig. 6.1 are, as In other 

analogous cases, Indicating the increase in thickness of the boundary 

layer of both the Jet flow and the flow near the wall with a decrease 

of the Prandtl number. As regards the integral invariant satisfying a 

nontrivial solution (in the calculation this is achieved through a 

choice of ^(O)^*0) and permitting the determination of the still un- 

known value of the constant r (Pr) for the self-similar thermal (and dyna- 

mic) problem of the plane semilimited Jet the following equations hold 

true: 
00 CO 

{ u'/>dy = const,    j Ar'^rfy = const, 
o o 

The second of these integrals must be taken to the given parameters of 

the problem and thus enable us to find ^^hf). 

We denote the integral as follows: 

oa 

J äT^dy KT =» const. 

In this case the value of the constant r will be equal to 

_,... r BKT IM r(Pr)H « 
11 ** J 

e 

and, with ß = _' T=s_* we finally obtain 

r(Pr) = [59v'd«p(B^T)_1J • 

In order to finish the problem completely we also determine the 

law of variation of the total flux of excessive heat content along the 

Jet: 
00 00 

o • (6.32) 

We see from this formula that the function ^~x-,/' maintains its form 

which is equal to that of the momentum flux j M £-•/. independently of 
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the Prandtl number. 

b) In the case of the expansion of a semlllmlted Jet along an 

nonheatconducting plate the Integral Invariant of the thermal problem 

Is obvious from the physical point of view. It Is easily obtained also 

from Eq. (6.27) by Integrating it across the Jet. In this way, the 

thermal Integral Invariant in the form 

Q ~^ pcpu AT" dy - const (6.33) 

corresponds to the condition of conservation of the total flux of ex- 

cessive heat content in the Jet. 

Suggesting 
-£■ = 6(9). rm-r«, = Ar«. - raf, 

(6.34) 

for the solution of the problem, we transform the equation of heat 

propagation (6.27) to an ordinary differential equation for the sought 

function 6(9): 

8-+ Pr (/^_ 4TFe) = 0. (6.35) 

which must be integrated under the boundary conditions 

■^ 0 

1 

V=0  it  »-0, i (6 36) 
6=0 if 9 — oo.' J 

With the help of the integral condition (6.33) we can determine 

the values of the constants y and F 

With the value of Y = —i obtained we can rewrite Eq. (6.35) in 

the form 

er+Pr(/^)'-o. (6.37) 

When we take the boundary conditions (6.36) into account, it is 

easy to solve the latter equation 

6(9)-exp(-rtjVW.). (6-38) 3 
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Thus we finally have for the surplus temperature 

bT~T-Ta=^yZEZx-'''exp[-Pr\Fdv). (6.39) 
0 

(In this variant of the boundary conditions, the sought value of the 

wall temperature Is equal to the factor of the power function in the 

last formula). The temperature distribution calculated from Eq, (6.39) 

Is represented In Fig. fi.2. 

c) Finally, In order to solve the thermal problem of a Jet which 

expands along a wall with constant temperature (different from the 

temperature of the fluid at j/ » ») we put (for Y = 0) 

Ar.£^--e(f);        (6.40) 

we then obtain Instead of (6.27)  and  (6.28c) the equation 

V + frF'V-O (6.41) 

with the boundary  conditions: 

e=llf    «p = 0,   0-0 if    «p=oo. (6.42) 

Integrating Eq. (6.4l) twice, with the boundary conditions (6.42) 

taken Into account, we arrive at a solution In the form 

0(9) = l-[Joxp(-Pr5f d9)rfq>][5exp(-Pr5FAp)' d«p].  (6.43) 
t      •       •      o 

The distribution of the excessive nondlmenslonal temperature In a Jet 

cross section Is shown In Fig. 6.3. 
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Flg.   6.2 Temperature distribu- 
tion In a Jet moving along a non- 
heat conducting wall (- - - - ve- 
locity). |,   Pr-0.7&; J. fr- 1,0; rf.Pr'-Ö.o! ' 

.: 

Pig.  6.3. Temperature distribu- 
tion In a Jet moving along a wall 
of constant temperature (- - - - ve- 
locity ). '• " - M» V WI& '' *' " 1'0: 

At last we  calculate the flux of excessive heat  content In the  Jet 

and the heat transfer through the plate: 
00 .  Ott 

Q = \ pc,,« Af dy ~2ep (f„ - Tm) /^\ ^'6^9 - «^.     (6.44) 

The quantity Q varies with the length In the same way as the fluid 

flow rate In the Jet.  The mean value of the Nusselt number, averaged 

over the length of the plate, Is given by 

0 

Using the solution of (6.43) obtained, we find 

K~if^j{M-*W*)*f~*' (6.45) 

The mean value of the heat transfer coefficient, o~x-,/' will, as usual, 

drop as the Nusselt number Increases along the plate. 

6.2 JET ALONG A STRAIGHT ROUND CONE 

Let us now consider the problem of a slightly twisted laminar Jet 

of an Incompressible fluid, discharged from a small nozzle and expand- 

ing along the surface of a straight round cone with a vertex angle of 

O 

', 
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2w (see schematic diagram of Flg. ö.1»). 

We choose an orthogonal system of coordinates In which the Ox 

axis Is directed along the generatrix of the cone and the Oy  axis Is 

normal to It, while the coordinate 6 measures the angle around the 

axis of the cone. The origin of coordinates Is allowed to coincide with 

the vertex of the cone. 

In the coordinate system chosen the Navler-Stokes equations and 

the energy equation for an axlsymmetrlc motion. In the absence of vol- 

ume forces and heat sources, have the following forms C51*]: 

w- sin u 

■ 

du   ,       du 
isinw \-ycoiii) 

d'u    ,    d*u    , 1 

1   *£, 

. fd'u      ,     0*tt      . 
z sin a + y cos o 

u 
dv    .        dv to* cos a . „ _ 1 ^ 4. 

isin« (ycosü)   " P ^y 

'      Id«»    "^ dy*    «^ zsinco + ycosu 

dw dw tt^+pÄ«- + dy w usina-f »cos» 
i sin <o -I- y cos u 

dho   , 1 

x sin <■> + y cos 

dx*    *   dy*    '    i sin a) + y cos a) 

w rdw   . , dw Xj — sma-f—costo- 

9u   ,   9*  .   Msin<ft4- pcosco _ n> 
dx   T   dy   '   x sin a + y coaa ~    ' 

dT   ,      dT rd*T    ,   d»T    , 

dl' 

(6.46) 

+ ns-(Sslnö)+^C0S(0)]- ' z sin a -j- y cos« 

An estimation of the terms of Eqs. (6.46) usually carried out In 

the boundary layer theory (or a transition to the boundary layer equa- 

tions In some other way) yields 
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du   ,       du        vt l  dp   ,       0*u 

(6.47) 

ar . öT U-Sir+V-W (6.i*8) 

If we restrict ourselves to the case of a slightly twisted Jet, 

on the basis of considerations, analogous to those of §4.4 when con- 

sidering the problem of a free fan-type twisted source Jet, we must 

omit the terms —»•/« and — ^ |£. In the first equation of System (6.47). 

: 

Fig. 6.4. Schematic representation 
of the expansion of a Jet along a 
cone. 

The system of the boundary layer equations (6.47) for the dynamic 

problem must be Integrated with the boundary conditions 

„ = „ = «,-0 If  y-0. |        (6J|9) 
u = u>«0, if y — oo. J 

Since also here we are concerned with a source Jet, the boundary 

conditions (6.49) must be completed by Integral conditions of conser- 

vation of the form 

\ pxti* f \ pxu dy) ay** K = const, :: 

(6.50) 
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D 
\ pxftiw\piu dyjdy — N — const, (6.51) 

which are derived analogously as those in the previous section (see 

also [202]). Assuming K r o  and N / 0t ve  find a nontrivial solution. 

We put as usual for the solution of the dynamic problem 

(6.52) 

where 

um=Ax;    wm = Cx;    P00~Pm=Dxi,    y^Byx». 

When we transform the equation of the dynamic problem (6.147) 

with the help of Eqs.   (6.52) we arrive at a system of ordinary differ- 

ential equations: 
F" + FF' + IF'1 = 0, 
i>' = —O«. 

0)" + ;r<D'+ 2/!,'<D = 0   J 
(6.53) 

(6.54) 

with the baundary conditions 
/? = f' = (D = 0    lf«P = 0,    1 

/?' = <D = /' = 0    if<p = 00-i 

The values of the constants of self-similarity and the constants A, 

Bt  Ct  Dt  obtained in this transformation of equations and application 

of the integral Invariants (6.50) and (6.51) are equal to 

—3      a-     5      •-     5      A        
19 (6.55) 

and also 

A-V 4p«vy, •   a~y ü&Ul>   L~yV 4^77■ 
(6.56) 

Comparing the first and the third equations of System (6.53) and 

the boundary conditions for the functions F'  and ♦ it follows that 

Moreover, the problem of finding the function F'(<p)  is analogous 
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to the problem considered In detail In the preceding section  (on the 

plane semlllmlted Jet). The solution can therefore be written down 

Immediately 

F = (D = |(fy-n, (6.57) 

where 

i    f..' + K^ + 'a --r 
(6.58) 

00 

»-^h (VT-yrz)' 

(as also previously  ^ ■ 1,7818) 

Thus, we  finally have for the velocity components  and the pres- 

sure 

(6.59) 

:* 

We use the expressions obtained for the velocity components In 

order to calculate the mass flow rate £, the momentum Jm of the Jet, 

the moment of momentum M and the total flux of kinetic energy f: 

G — ? pu d« = 2np sin w -g- FooX*'4 ~ «,/'. 
« 

00 

/, = \ pu« d» =. 2jtp sin © ^ x-'i- ^ F'* dtf ~ r*'*, 
• o 

00 

A/ « ( pxuu> sin <Dd» « 2«p sin« <D ^ x-'i* \ P'% dy ~ «-•/•, 
• o 

00 

£ - -i- C pu» d* - np sin u> ^ »-,/4 \ *'' «*f—*-V4- 
• o 

Just as In paper [202] the product of flow rate and total momen- 

tum GJ    or the product of flow rate and moment of momentum GM  and also 

a product of the form G E  remain constant along the Jet In conic sec- 
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tlons orthogonal to the surface of the cone. 

In the coordinate system chosen the expressions for the velocity 

components coincide with those obtalndd In the paper by M.S. Tsukker 

[202] for the case of «=j- This limiting case corresponds to the 

efflux of a fan-type, twisted semlllmlted Jet. The pressure gradient 

vanishes as w-*y The presence of a pressure gradient (^-^"O) is a 

characteristic peculiarity of the problem considered In the case of 

ü)<T. 

Let us now turn to the solution of the thermal problem. Consider- 

ing the three types of boundary conditions (6.28a-c) we write the solu- 

tions of the energy equation (6.48) In the following form 

a) AT^IVO.Op), (6.60a) 
b) Ar = rx^98(9), (6.60b) 
c) Af = ArA(q>)- (6.60c) 

In order to obtain self-similar solutions of the energy equations 

(6.48) with the boundary conditions (6.28) we complete them by the In- 

tegral Invariants and the values of the constant of self-slmllarlty, y. 

We do this subsequently for all three forms of the temperature boundary 

conditions. 

a) Under symmetrical boundary conditions for the velocity and 

temperature we assume, as In the problem of the plane semlllmlted Jet, 

that 
> 

m 
T = a = — -|, ^T=J (Arf'x dy = const. 

o 

In the particular case of a Prandtl number equal to unity, we also give 

as above an expression for a more general Invariant: 

00 v 

Kj m \ pcptt Af (\puxdy\xdy m const, 
o o 

b) For a nonheatconducting wall 

') r 
(?0 = 2rtsin o)\ pCpUATidy =con8t,    T=.—j, 
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c) Por a wall of constant temperature v —0. 

After the transition to the self-similar equations, we arrive 

again at the same ordinary differential equations as in the case of 

the plane semilimited Jet: 
e'. + Pr (F9't + 2^'e,) - 0, 

e^+Pr^y-o. 
9i + Pr -Pe', - 0, 

with the same boundary conditions. The solutions for the fan-type 

semilimited Jet will therefore have the same form as those obtained for 

the plane Jet. Only the values of the constants will be new, which is 

due to the other form of the continuity equation. 

The final results read as follows: 

a)        Aip    r*KT^ (6.61) 

* * 

rir-I-l,x-,/«1i 

(^-w/S^'WforPr-l). 
b) Q«   VTTT    /   ?  x       (6-62) 

C) Ar-Ar.jl-^exp^Pr^Frfipjrf^X 
•       o 

x[^(-*y*)*y].      (6.63) 

It is easy to calculate the variation of the flux of excessive 

heat content under the conditions of the problems a) and c): 

00 

^i = 2npcp sin »^-xM F'Mf— i-^. 

in the case of a wall temperature which equals that of the fluid away 

from it (with an arbitrary value of Pr) and 
oo 

QM m Inpcp sin co (7^ - f«) j/^^ ^ \   F'9, d<p - *h 

with a constant wall temperature (7,»^*27'<x>)- The latter relationship is 
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again the same as In the case of the efflux of a Jet of fluid. 

Finally, for a mean cone (with respect to the lateral surface) 

the value of the Nusselt number in case c) is obtained as follows: 

■Fn] = --/iZ?e',(0) *-*/.. 

In the limiting case of a vertex angle of ""f our problem on 

the expansion of a .let along the surface of a cone becomes the 

problem of the fan-type semilimited Jet. 

In an analogous way B.P. Ustimenko, in his paper [ *'] solved 

the problem of the expansion of a laminar semilimited Jet along a cylin- 

der. 

6.3 A JET ALONG A POROUS WALL 

Another problem related to those considered in the preceding 

sections is the problem of the expansion of a plane-parallel laminar 

Jet of incompressible fluid discharged from a thin slit oriented along, 

the axis Oa  ar"" moving along a porous plate in the direction of the 

axis Ox.  Fluid of the boundary layer may flow off through the plate or 

be injected through it into this layer. The physical properties of the 

fluid supplied (or withdrawn) through the plate are assumed to be the 

same as In the Jet. Outside the Jet, Just as in the usual semilimited 

Jet, we assume a fluid of the same properties which (at infinity) is 

at rest. 

The solution is based on the system of equations (6.1) of the 

laminar plane boundary layer 

du   .  di«   d'u    du    .    dv       f. , ^  v ud; + v-st = vsf   ä?+d^=a0'      (6.1) 

with the following boundary conditions 

= 0, J 
= oo, J «1 = 0 If y 

(6.64) 

In this way, as usually, the longitudinal velocity component 

vanishes at the surface of the porous plate; the transverse velocity 
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I component Is assumed to be a power function of the coordinate x. 

In order to obtain a nontrlvlal solution we use an Integral 

condition whose derivation Is analogous to that of the Invariant K 

In the problem of the semlllmlted Jet. For the Jet along the porous 

plate, this condition has the form 

oo    v «00 

L = const. (6.65) 
0    0 0   0 

The components of the velocity vector can be written in the form 

of power series of the nondlmenslonal parameter <?: 

which Is assumed sufficiently small: 

it _ ^i« F\(q)) + qAxx**P\ (f) + • •.. 

« = »„ - 4 X*-*-» [(a - ß) F, + W\ 1 - 

(6.65) 

(6.67) 

Similarly as In other cases we have also here ^ _ 5^. the prime denotes 

the differential quotient with respect to the variable <p. 

We now substitute Eq. (6.67) In the Initial equations. The co- 

efficients of the same powers of the parameter q  are then set equal to 

zero. As a result, we obtain a system of ordinary differential equa- 

tions for the determination of the functions fQt  F-, ....; 

i^ + APf1^-^-0'      (6.68) 

(6.69) 
LA 
vMjß 

Fo = 0, 

Instead of the Integral condition (6.65) we obtain 

A*** \Fl^dy)dy~L 
0       0 

(6.70) 

; 

>   r 

3 
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and 

,J 

oo v oo K 

.4,*»—. J Fo (J F', rfy)dy + 2Alx*"" J ^ Q F;rfy)rfy - 
0 0 (6.71) 

-£$«••($ *to)rf*-o. 

In the derivation of the equations and the integral conditions, 

we assumed that 

P = _2~'   •»--T-« (6.72) 

Prom Eq.   (6.70) we have in addition to this, 3a = 2ß.    So we obtain 

«=-4. P--T. «I-T (6.73) 

Let us also put 

i / L \"' i  L IL V« »-m- B-m' ^-H(ä).    («-7«) 
such that the equations, boundary and integral conditions for the zeroth 

approximation take the form 

Fo = /o = 0 if q>~0, 1 

F; = 0    if 9=«. J (6.76) 

\Fjli*~i. (6.77) 
0 

Analogously, we have for the first approximation, to which we restrict 

ourselves 
F:+W'I+(i - 4x^ FX+4 (i+x) /?; F, - 4^;, 

.        (6.78) 
Fl + F.^; + (1 -4x)FX + 4(1 + x)^ F, - 4F;, 

^ = ^ = 0 if <p-0, 

fi = 0  if   q>=.oo, 
oo 

5F;[F;(Fl-i) + 2F0F;](/<p = 0. 

(6.79) 

(6.80) 
■ 

The solution of the equations in zeroth approximation, with the 

corresponding boundary conditions, are well known (cf.Section (6.1): 

^ = 4/^(1-,«) («'-^•).   1 
.  « ,„L±i±f!4.VTarctff/3.. f     (6'8l) 

Consequently, the coefficients in the equations of the first 
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approximation (6.78) are determined. What remains arbitrary ia the 

value of the constant <  (the exponent in the law governing the sinks 

and sources). 

We consider x = 0. as the simplest particular case. This corres- 

ponds to sources or sinks of constant intensity along the plate. In 

this rase Eq. (6.78) takes the form 

K + Wi + F'oF', + AFlFi - 4tf. (6.82) 

We introduce the new independent variable 't**"" J^)  instead of ^P 

Analogously as in paper [19], we then obtain the equation (prime: 

differentiation with respect to «) 

(l_z»)i^(J)_6»«(l_z»)fr(2) + 24(l-4i»)F1(«)-24(l-4«»)  (6.83) 

with the boundary conditions: 

lim(l-«,)f,;(2) = 0 if «-1. i        (6.81) 

Equation (6.83) has a singular point at j =. i. We shall therefore solve 

it in the following way. Since in a considerable range of variations 

of a,  e.g., o<2<0,9, there are no singularities, the solution of 

Eq. (6.83), which can be represented in the form 

1(1 - *»)« F'iY = 24 (1 - 4«») (1 - Fx),        (6.83a) 

can be found by the method of successive approximations (as in paper 

C1*]). Near the point f=i the solution of this equation is sought in 

the form of a power series of 1 —«.With the second boundary condition 

of (6.81») the general solution for the range 0,9<«<1 j^g ^he form 

F1(i)-H-Cl[l-«-2(l-«)« + -i(i_,)i_|(i-,)«-j....]+ 

+ Ci{[l-» + 2(l-«)« + |(l-i)»-|(l-«)«]ln(l-f) + 

+ [- j + 4(l-i)t-3,166(l-*)» + l,638(l-«)* + ...]}+... (6.85) 
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The constants C. and C« are determined when Solution (6.85) Is 

"sewed together" with the solution for the range o < z < 0,9.. obtained by 

the method of successive approximations. 

';. r; 
1.2 

1.0 

0.S 

r \ 

// 
^N o ̂ 

// 
i\ \ 

^ m\      / / i A    > >\ 

0.0 

V 

0 

0.2 

■OA 

/ 
Lt V y\N k 

// / / 
\ s^ ̂

 11/ \ < 
^ 

\ 7 0    l F    i 0     U     3J0    ." 

I     r i 

\ / 
\ / 

•u \j 

Pig. 6.5. Universal velocity distributions for a semlllmlted Jet along 
a porous wall. 1) '"/«mo)  for an Impermeable wall; 2) the function F.m 

3) (u/ii,^)    with     0--0.3      (sinks);  4)   («/«w     with   ;-o.s     (sources). 

(6.86) 

) 

Pig.  6.5 shows the function ^(«p).  found  '.n this way and also the 

function   F0{<f),    corresponding to the Impermeable plate.  We  can now write 

for the longitudinal velocity component  In a first approximation 

&i)  F (TH-..J. 

As In paper [19] mentioned above. It can be proved that, with finite co- 

efficients Series (6.86) will be convergent on condition that the para- 

meter Ial = l9.(ä),/,|<1. 
M 

The calculated distributions of the nondlmenslonal velocity «mo' 

where um^U^\'' —  Is the maximum velocity In a Jet cross section with 

neither sources nor sinks, are also shown In Pig. 6.5. We see from the 

diagram that with d>0 (sources of fluid) the peak In the velocity 
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distribution Is farther away from the plate and the effective thick- 

ness of the Jet boundary layer Is greater. In this case, the frlctlonal 

stress at the plate Is lower as follows from the expression 

T-'=^L==£(^)K(0)i-äF;(0) + ...].        (6.87) 

Prom the condition x«, = 0 We find the separation point 

ZMp=Rb>n) ~~™'        (6-88) 

It follows from Eq. (6.88) that the position of the point of separation 

Is determined by the properties of the fluid, the velocity of efflux of 

the Jet and depends strongly on the Injection velocity. The point of 

separation approaches the source as qQ  Increases. 

If ä<0 (sinks of luld) the peak In the velocity distribution Is 

closer to the plate, the Jet becomes thinner and the frlctlonal stress 

grows. According to the laws of variation of friction, we have the fol- 

lowing expression for the relative flow rate of fluid In the Jet (C- Is 

the flow rate for an Impermeable plate): 

Prom the latter we see that If the plate contains sources (<?- > 0)  the 

flow rate Increases and when It contains sinks (q. < 0)    It drops. 

The results obtained Illustrate the Influence of sources and sinks 

on the expansion of a semlllmlted Jet. 

Note that Eq. (6.78) Is easy to Integrate even for other values 

of the constant K. For example, with x = ~l It can be reduced to a 

second-order equation 

F' + F,F + bF'j ~tfi. (6.90) 

One of the particular solutions corresponds to the well-known homogen- 

eous equation: F = F't.   Consequently, with x = —1 the problem can be 

solved by quadrature. Also easily Integrable Is the equation 
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n 
F'i  + ^o^I + WoT'i + ^o^i =- 4f;, (6.91) 

which corresponds to the particular value of x = —-^, as for the 

corresponding homogenous equation, two particular solutions can be 

given 

F, = Fi H Fi = Fo + vF'9. 

So we see that also here the solution can be reduced to a quadrature 

and the first-approximation solution obtained Iz  the self-similar one. 

The thermal problem of the expansion of a Jet along a porous plate 

can be treated analogously. 

Literature references 

14, 17, 19, 53, 54, 71, 114, 170, 198, 202, 246. 
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Chapter 7 

LAMINAR JETS OF INCOMPRESSIBLE FLUID 

7.1 THE SELF-SIMILAR SOLUTIONS 

Most of the solutions of problems considered above belong to the 

class of self-similar Jet motions caused by the efflux of various forms 

of source Jets. It Is a general feature of them that they can be treat- 

ed within the framework of the theory of the asymptotic laminar bounda- 

ry layer of an Incompressible fluid. In this connection, It Is expedi- 

ent to follow Paper C87] and analyze the conditions at which a flow 

of the type of a source Jet is self-similar in a general form. For this 

purpose, we again return to the equations of a free, laminar (plane or 

axlsymmetric) boundary layer, ('I.S). For simplicity, we assume the peri- 

pheral velocity component w  equal to zero*. *♦ 

In this case Eqs. (4.3) for the laminar problem take the form 

8u   ,      du \   d  I  y du\ ui:+9j;-*?js[*i;h (7.1) 
iow+jyoW-o (7.2) 

{k » 0  corresponds to a plane and fc - I to an axlsymmetric boundary 

layer. 

We admit that the two partial differential equations (7.1) and 

(7.2) can be reduced to one ordinary differential equation. For this 

purpose we set up a generalized self-similarity transformation: 

For the sake of completeness of the calculation, we give the expres- 
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slons  for all quantities entering Eqs.   (7.1) and  (7.2): 

£-"(£)'• H^-'f^m 
(the primes Indicate differentiation with respect to the "proper" var- 

iable). 

We substitute these expressions In the Initial equation (7.1) and 

Investigate the conditions at which it can be reduced to an ordinary 

differential equation. As we see from the equation 

these conditions consist in a proportionality of the terms which stand 

as coefficients in front of the functions which depend on the variable 

«p alone. In order words, we must put (~ the sign of proportionality) 

These conditions are general for plane and axisymmetric flows. 

From the first relation^--—-^it follows that 

/ = con8tX", (7.5) 

such that, talcing (7.5) into account, we obtain from the second 

X»-*r = coMt. (7.6) 

In the case where the constant n is different from two, we obtain 

——K- = const x, 
n — 2 

it 

/ = con8tl(Fi —2)x^T,. 

(The factor n - 2  has not been Included in the const in order to stress 

the inequality n^ 2). 

Thus, with njL  2t  the self-similarity transformation (7.3) takes 
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the form of power functions 

F' . « M const x" —r ,    ® = const wr, 

0 
with the constants of self-slmllarlty 

The concrete values of a and 6 can be determined with the help of 

an Integral condition.  For free Jets this condition (momentum conserva- 

tion) has the form 

/x — 2n*\ pu'y^dy = const, 
o 

It permits the determination of the constant n: 

00 

/. - 2JI»P-^ \ HF *P = const    lX (af)*"'*'1 - con^l. 
. » 

This equation Is possible If 

nsa!L+i.   a = *±».   p-^. (7>7) 

In precisely this (exponential) form, with the values of the con- 

stants of self-slmllarlty obtained here, the transformations of Type 

(7.3) were used above when solving problems on the expansion of free 

laminar souce Jets (plane Jet with fc - ö and axlsymmetrlc Jet with 

k  - 1). 

In the case of semlllmlted Jets (to consider a concrete case, we 

only deal with the plane Jet) the Integral condition of the form 

00 

P = \ u'bdy = const 

yields /,/' = constX, and hence follows n = ~, <x=. —j-, ß = ■—j-. These values 

also agree with those derived above. 

Analogously, making use of Transformations (7.3) with n ^  2 

we also can consider the other self-similar Jet flows discussed above 

(the Jet boundary, at a - 0 and fe « 0, the free and the semlllmlted 
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fan-type Jets, etc.). Moreover, as will be shown In the following, 

the general power laws of self-slmllarlty can also be extended to 

self-similar turbulent Jet flows of Incompressible fluid. 

Besides the exponential transformation formular corresponding to 

the Inequality n ^ 2 we can In principle also apply self-slmllarlty 

transformations of the form e '*' to Jet flows. They correspond to a 

value of n « 2 In Eq. (7.6). 

With n ■ 2 we have 

=- = const, X = const e"" 

and, taking (7.5) Into account, 

/ = const e*™*, 

where, owing to physical considerations (the llmltedness of the speed 

of flow), we must assume that m < 0. 

The transformations of self-slmllarlty take the form 

u - const e*** ^P-, <f = const yem*. 

These transformation formulas do not satisfy the Integral condi- 

tions (for the free or semilimited Jets) and have not been applied in 

the theory of Jet motions. 

Similarly as with the dynamic problem, it is also easy to deter- 

mine the conditions of self-similarity in the thermal (diffusion) pro- 

blem [57]. The results which, for brevity, are not given here, are in- 

cluded in the summary table 7.1 in the following section. 

7.2 THE FUNDAMENTAL RESULTS 

Let us compare the results of solution of various problems of 

self-similar flows. Besides the local characteristics, we also consider 

some integral features to which, in general, the laws of variation 

along the Jet belong for the following characteristics: 
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G^^pudi  the mas8 flow per second, 

/«= jpu'rf« the momentum flux, 

Af = 5P'"««'«'* the angular momentum flux, 

E =*2-^pusdsthe  kinetic energy flux, 

Q = {pcpiidkTdsthe  flux of excessive heat content, 

jf» {putftpttc^ds    the flrst integral invariant of the semiliraited 

Jets, 

N —)pruwnpuds\ds   the second integral invariant of the semilimited 

Jets, 

Kr^l^T'i'dt   the third (thermal) integral invariant of self- 

similar semilimited Jets, 

XV »JpÄpoAT^Jp^jrf« the same for the case of Pr - 1. 

To write these expressions as simply as possible, we used the de- 

notation dt=l2nr)*dy     for the areal element of a Jet cross section where' 

the distance to the axis of symmetry r = j/ in problems on the expan- 

sion of Jets with Ox  being the axis of symmetry directed along the 

flow and r = x for Jets with Oy  as the axis of symmetry (in the case 

of a conic Jet rmarimm,  where 2u) is the vertex angle of the cone). 

We have compiled the results of solution of various problems for 

the purpose of convenient comparison and application in a single sum- 

mary table for self-similar solutions to problems on the expansion of 

laminar Jets of incompressible fluids. In Table 7.1 (see below) for 

each solution to the dynamic problem and the pertinent variants of 

solutions to the thermal problem (for different boundary conditions 

for the temperature) we given, in this order, the initial equations, 

the boundary conditions, and so on, up to the integral laws. 

It must be mentioned that the results of solution of self-simi- 

lar equations contained in this table will be used in what follows 

(with other values of the constants of self-similarity) in the theory 
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and calculation of turbulent Jets of Incompressible fluids. 

As already mentioned, this summary table does not  contain the 

results of approximate solutions of problems on the propagation of a 

Jet  in a parallel   (or antiparallel)  uniform Tlow of the problems  con- 

sidered in the previous three chapters;  within the framework of the 

theory of tie laminar,  free and semilimited Jet boundary layers,  since 

these solutions, which were obtained by the method of small perturba- 

tions and taking into account the  "initial" conditions of efflux, do 

not contain to the self-similar solutions. 

Before we pass  over to laminar Jets of compressible gas, we  consi- 

der yet another example of Jet flow, namely the formation of a peculiar 

boundary layer at the interface of two colllnear flows of fluids which 

do not mix. 
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TABLE 7.1 

Self-Similar Laminar Jets of Incompressible Fluids 

Scheme of Table 

1) Form of flow; 
2) differential equations; 
3) boundary conditions; 
4) transformation formulas: 
5) constants of self-slmllarlty; 
6) constants In the transforms- 

tlon formulas; 

7) Integral conditions of conserva- 
tion: 

8) self-similar equations; 
9) boundary conditions; 

10) solutions; 
11) Integral characteristics. 

Remarks 

In lines 2, 3, etc., I  refers to the dynamic problem, II  to the 
thermal (diffusion) problem. 

In the lines 3» i*, etc. Ila  refers to the thermal problem with 
symmetrical boundary conditions, lib  to It with asymmetrical boundary 
conditions (for the temperature). 

In the tables for semlllmlted Jets: 

Ila  refers to the thermal problem with T    - Tmt lib to  the thermal 
problem with a nonheatconducting wall, IIo  to the thermal problem with 
r. ■ const T.. 

1 £         CMOoniUn lUIOCKtH ctpyR 

2 
i 

8u         du        S*u                         du      Bv 

ii 
dT        BT        &T 

a 
i 

du 
^=0;                       «(«.i^-O                                        | 

i • 
dT 

v-.-0' T{ß,±»)~Tm I 6 7{*.-oo)MMTt                           { 

) 
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TABLE 7.1 continued 

l'l y\    CuodonHtH iviecMaii orpr*                                                                    { 

4 

I JST-'Mf).              "m = '**".             »-^* 

IU 
T — T 

116 
7*       T*                                                             1 

f    —f     -"CP).     ^m-'oo-1* m         oo 

5 
I 

1                                                     Q                    2                                                                                                                  ' 

Ila 
i 

116 (T = 0)                             j 
1 

6 

I 
i ,•/&'*          . i \n: 

'4- 2 K    4p«v                    ^- 2  K   6pv«                                             j 
j 

Ila 
..         +00 

116 (r-n-r.) 
00 

7 

I 7, =  \ pu* rfy = coüBl 
—00 

Ila 

+O0 

Q= ^ pcpu(r-TJdy = const 
—00 

116 —                             t 

8 

I /'• + 2(f/" + /'»)-=0 

Ila                      6» + 2Pr (/'O'+ fe) = 0 116 V+VfFV = §                            j 

9 
1 ^(0) = 0.   /'(0) = 1,    F'(±»«) = 0                                                         j 

Ila e'(o) = o. e(±8o) = o 116 e(+oo) = i.  e(-oo) = o 

1 

10 

I /• = th<p.  /,'=l-th«9 

Ila e«p)-(n"-(i-th«<p)rf 116 
_ •                                           _   -+00 

• (<P) - I 5  (ch<p)-,p' ^ ! [ 5 (chV»"1" rffj       1 
—00                                J l-—00                               J            j 

11 

I t »-ftV'^.r                       | G-ysApW^. 

Ila - 116 
-H»                 ,                         1 

—00                                                          ! 
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TABLE 7.1 continued 

1 Q        Cnyriiu« HJIII ■crpe'iiiua IIOTOKM 

2 
I „ du         du     „ i}*u    du       dv                                                                     i 

II 
dT     dT     d«r                                                     ! 

3 
I 

du\                                                                                              \ 
u{*. +00, = «,^|y.±o6=0;   u («, - oo) - u,                                               j 

IU — |ii6{         r (., + oo) = Tu T (x, - oo) - r,          j 

4 
I 

•4                                                                                                                                                                                                                                                            ! 

— — r(^),   um=iHl = const,   «p-fly*9                                                 j 

I la — 116 f-—f-t - e (*).   r,, - Tt - const, r, - const 

5 
I «-0.   3 = -y                                                             j 

IU -                                       !lI6 T-0                                   i 

6 
I M-«.). fl-i/ii                          j 

Ha -                                        IlIC (r«Ti-r,)                     j 

7 
I -                                                                                      | 

IU — II6|                                        -                                        | 

8 
I Pm + 2FF'=*0                                                                         1 

IU • 116 6' + 2Prf 6' = 0]                               [ 

8 
I r(+»)»ll   /•(+oo) = 0:    r(-oo)-am=^.    f(-Oc) = 0                                   j 

IU — 16 e(+oo) = i. e(-oo) = o               j 

10 
I J»r(9)-H- y(«-l)(l-erf<p)     {*** * - Yn\ <'* dt) 

IU 
. 

116 e-Jr=^-g-ll + erf{<p/Pr)l 

tl 
I — 

116 — 

I 
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TABLE 7.1  continued 

D       CMOoniu* ocaonKiMrpnmi erpyii 

,11 

du        du        I   d I  <Ju\     pw*      dp       dw        dw   .   «w        {id/  dw\      »1    * » 

iu 

lla 

I 

Ha 

1 

IU 

Ha 

I 

Ha 

10 

I 

IU 

IU 

dT       dT        Id/  dT\ 
uto+vdüssa79y\v^yl 

<>u • I 

u(«, oo) = w(*, oo) =0,   p(*, oo)-^ 

v (x. 0) ~ w» (x, 0) = g^- 
dw | 

9T\ 
dy hi' 

0,  T(x, «.) = r00 116 

U F'     (if) W p      —      Pgg 

r-r„ 
f-ZT--•(»). ■/'m-r00 = r^ 

m        oo 
IIC 

o = —1. ß = —1, e = -2, « = -4 

T = -l 116 

8npv ' [/   8npv« ' 32«pv« y    8np ' 2048 «»pH« 

(2Pf + l)Q 
""    Snpvep 

116 

Jx = 2n C pu»y rfy = const,    A/, = 2« C puwy* dy =,const 

Q = 2a J pcpa (T - rj y rfy = const 116 

/ F'V     /FF'V O1 1 4-/" nif' + f—1 
r-7) + (V)=0: i>'=T; ,I,'+Lir0'+Mi?—a>=0 

((pö')'-i P'(/"ö)'= o 1161 

9»o       *    9 
= 0,   <I>(0) = 0;   — = 0.    (I»(oo)=0;   P(oo) = 0 

6' (0) - 0,   6 (oc) = 0 116 

FW = w 
•+^' '~('+\*r "f&f 'W"FW 

•(«-(£)- i   \iff 

(«+if) 
116 
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TABLE  7.1  continued 

1 U        CaoOOAHiR ococHMMsrpHiiuH orpyH 

11 
I 

»                                                                   00                                                          00 

0                                                                     U                                                            u 

IU -                                       116                                         - 

\p 

I £       Ciir.0o4i(«« MopHi« crpyH 

2 
I du        du        d*u         dw        dw   ,   uw        d*w     d              d 

dT       dT       iflT 

S 
I du             dm 

'^0^0'd^u.0-dü ^o- 0;   u (x. ± oo) - w <*. i «>) = 0 

IU -0.    T(z,±0o)^Toe 116 
T(t, +lx.) = r1, 
T («, — c«) = r. 

4 

I 
fn                       ffi 

II« 
in        oo 

116 ^H«»> 
S 

I a = -l,   ß--l,e--2 

IU T--1 116                                        (T - 0) 

6 

I 
1      3 / .   '   1 / 

t     » /   0 J* '   V*        r     ™V,V**P 
4 V    2«»p»v' 2 J/   4iipv« '            top ^   *", 

IU 116 (r-Tj-r.) 

7 

I v                 IT Jx — 2ax   \   pu« rfy == const,  A/v —2nx> \  puu»rfy = const 
—00                                                                        —00 

IU V0 
Q-2iw  ^   pcpu(r-rjrfy-= const 

-00 

116 
1 

— 

8 
I A"" + 2 (/'/")' - 0,    ©' -f 2 (/"O)' - 0 

IU e' + yr^er-o 116 e» + 2Pr/o' - o 

0 
I /((»-O.    /"(0)-l,    /"(±oo)-<D{±oo)x30;    ©'(0) = 0 

IU e'(0)-o. e(±oo)-o 116 e(+oo) = j. e^ooj-o 
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TABLE 7.1  continued 

.1 1 £        CBOOOAH«!! BCppiian crpyii                                                                             { 

10 

I f = thq),   A" = 1 -tli»«p;   (D^/1^! —th'ip                                               j 

11« • (f)-(/*)"-(«hf)-*" 116 
9                                              +0O                                    "I          ! 

0 (<p) = [ C   (cb (ji)-,r' «/«p] [ 5 (ch (P)"1" rf<p]         1 
—oo                              —oo 

It 

I 

—oc 

+ 0O                                  . 

—oo                                                                                                   | 

Ila — 116 Q = cp (r. - Tt) V GnVv./^ C yc-e ^          j 
—00 

1 p     njiocKin noJiyorpaMHicHHan crpyri 

2 

I du         du        d*«     du       dv                                                                    i 
ud, + vdy-wdy*'   dx +dy-0                                                         [ 

II 
dT       dT        d*T                                                                     \ 

udT+vdy-ady* 

3 

I u (*, 0) = »(x. 0) = 0;   u (x. oo) = 0 

Ila 
r^. 0) = roo. 

T (x, oo) - r. 116 
dT 

dy 
= 0. r(». oo)-r, 1 

K-O                                             "    | IlB 
T{*.0)=Tw,                j 

r(x. 00) = ^           j 

4 

ir. "m 

Ila 
1            T-Tco 

116 

T — T 00 — 0 (mi 
Illl .00   ^, (Wmv    M' -T T"   . . r   ^ J »1         ' 00 'A.-?'          W,■ 

3rm-r„-iv 'te      ■• 00                                            ! 

5 

I 
1    0      

3                                          i 
• —!•   P—T                                                 j 

IU 
i i 

T y 116 
i 

IlB Cr-o)              ; 

6 

I 
"-/^ 

00                                                                                            | 

n-i -.v *    / 
0 

/, '             2  V 4p»v»y1     \ 

11« 
00 

^(Pr)-[Je,^*p(/f^fl)-»]v, 

0 

116 
'                          0 

III (r-r^-rj 

7 

I X = V pu' / \ pu rfy j </y = const 

0             0                                                                                                                                  j 

IU 
00 

/fy-J (T-r^'/'rfv-court 
0 

116 

00 

<? = J Pcpu (r —T,,,) e[y = const 

0 

III 
| 

) 

MM« 

- 167 - 

___ mmm* 



TABLE 7.1  continued 

1 '[.'       IIJIOCM.IH iionyorptHHieMHi« e*pT* 

8 

I Fm + FF' + 2f •» - 0                                                                   i 

II. 
Pr 

116 6* + ** (F6)' -= 0 IIB 6' + PrFV m 0                i 

9 
I f (0) = r (0) - 0;   /''(oo)-O                                                         j 

IU 0(0)-o. eM-o 116 O'^-O.   6(oo)-0 IlB 6(0) =-1.   9(00)^0 

10 

I 

/"-j (f^jpV.-/••);    /•(«.)-1.7818 

IU e(9)pr-«-''(9) 116 
• 

e(9)-exp(—Pr^ Fdy] 
\                   V                   / 

0 

IU 

e((p)-l- 

*                    * 
~"[j exp(—Pr $'"^«'«pjx 

0                           0 
00                            00 

o        '        i                     | 

11 

I 1            o.\^.'„i*p:   '.-tf^'**] 
o                                                              r               *     0            " 4fJi V 4p«v»A«»              | 

1 

116 

• 

IU IU 
00 

0 

00 

X J/'6*p 
■0                 ' 

4» 

:: 
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TABLE 7.1  continued 

(J        Ctt»6o3iKpy<ieHHtH crpyn, pacnpocrpaHHiom«RC(i uaonu MOHjca 

du du o1u       w* dp       dw        dw       uw        d*w     d d 

II 
dT       dT       d*T 

I H(X. 0) = »{*, 0) = «;(*. 0)^0,   u(r, oo)-w(«, oo)-i0,   p(«. <») = ^0 

Ha 

I 

r(«. oo)-^ 
U If 

116 
dT 
dy w-o 

= o, r (*. oo) - Ttt III 
^(*. 0)-^. 

T(x.oo)-Tm 

Pn-P 
in HI »oo      «m 

Ila 

T1 —^ 
f—Hf - = 6 (9). 

00 

-T" m      ' oo 

7'm-r00 = ^ 

116 
oo 

m oo 
-•ftp). 

m oo 

IlB 

y —rm  00 

10 00 
»(9). 

(r-T„-rj 

a = -Y' 0== T'   •-■ 2 ' 6 = - -/- 
19 
4 

Ila 
a 

116 T- —: MB (T = 0) 

*-V&t- '~\/^°-NjV^T,'>~*'&WMrS ('-!""•) 

Ila 
TO I 

r = r —T 
* J IB J O 

2nPcp8inu) ^ ^WF 

00 j 

0 

U> U 00 V 

A' = \ piu* ( \ pxu dyj dy M const,    A' =  \   px^wV pxu rfyj rfy = const 

Ila ArT=J(r-7'00),/'xrfv = const 116 
Q = 2n sin u \ pxucp x 

o 
x(7,-'roo)^ = const 

IIB 

/•" 4. /f • + Zi" = 0;   P' = — ©•;   O' + F<b' + 2F'0 = 0 

Ila .1- e* + /-e' + 2/"e = 0 116 e' + Pr(/,e)' = o in e' + Pr/'e'-o 

P(0) = /"(0) = ®(0)-0;   /••(oo) = a>(oo) = i>(oo)A0 

Ila e(0) = o, e(oc) = o 116 d'^^O.   6(00) =0 
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TABLE 7.1 continued 

CJuOoatKpyieiiMn orpyn, pienpocrpiiinnouncM *noah KOHTM 

10 

"-ac 
r+yjri+r. 1    f.   F+Vf 

KJQ« 
+ 2 VI ( «rctg 

(■ 

2VF+VFt 

ywi •trrI« fä)l 

lit »(9)r,-,-''(<P) 116 e(9)«»eipf—Pr\ F4q)\ III 

e(<p)-i- 

- [^ exp |_ Pr ^ A" rf(pj dp j x 
o o 
00 00 

11 

iu 

C » 2npf,
00»in u 1 (|V4;   yx =2np sin u ^L. ,-•/. \ /"i i(p;  A# = 2np ^ sin«*»-'/« \ F^dtp; 

o o 
00 

fi — np sin © ^ ,-'/. [ F^dy 

Q-2npep-g-«"*/,8in«> ^ F'Wf 116 IIB 

Q - 2npep x 

A 
X8ina)5(rw-rj«'/. Jredf 

A) Free plan« Jet; C) parallel or anti-parallel flows; D) free axl- 
synunetrlc Jet; E) free fan-type Jet; P) plane semi limited Jet; G) 
slightly twisted Jet expanding along a cone. 

7.3 THE PLOW AT THE INTERPACE OP IMMISCIBLE PLUIDS 

Let us consider the problem of parallel and antiparallel laminar 

flows, analogously as In Section 5.3» but with the essential differ- 

ence that the uniform flows are flows of Immiscible fluids. The two 

uniform flows of fluid are assumed characterized by the values of 

velocity, temperature, density, the coefficients of viscosity, heat 

conduction and specific heat denoted by U1» ^»t P». t1». *■»• epi   and u», Tt, 

Pti Ht. ^». eP»'  respectively. 

At point 0  the two flows come into touch and each of the fluid 

forms boundary layers (dynamic and thermal) along the interface which 

coincides with the axis Ox.  We investigate the flows in these boundary 

- 170 - 



— 

layers under the assumption that the physical characteristics of the 
f 
fluids remain unchanged. 

The equations of motion and heat transfer for each of the fluids 

In the range x > 0 can be written as follows: 

„rau"'  .   „.au"' U(.) __+„(.)__ 
a„(» , a«,(» _ A 

~dr+  ay ~" "• 

Vl 
a^' 

ay' I • 

,ar^ 
a« u(t)rLr.+ra)__ = ai 

»ar'" 

(7.8) 

and 

n(t) au«> 
"ST +»« au^' 

ay = v. 
a«u'«> 

ay» • 
au(i)    a,,«« _ 
"äT"1- ay "^ 

az iay 
a«r(,) 

a«-äJir- j 

(7.9) 

The systems of Eqs. (7.8) and (7.9) must be Integrated under the 

following boundary conditions: 

u«) (x, + oo) = u,, f») (x, + oo) = f,; u») (x, 0) - u» («, 0); ^ 
»») (x, — oo) = ut, r« (x. — oo) = r,; T"«» (x, 0) =. f («> (x,0) 

t*l 
aj«^ 
dy 

au<« ar<i) i 
^"^rU1 X|"äirl«-o 

. ar»» (7.10) 

As It Is rather cumbersome to solve all systems of Eqs. (7.8)- 

(7.9) we first consider the dynamic problem separately. 

We suppose that 

u») = u1F'1((p)1 »«-^'«(f,), (7.11) 

where 

In this case the problem can be reduced to Integrating the ordinary 

differential equations 

F'x (<Pi) + 2F! («p,) F; (q),) = 0, (7.12) 

K («Pi) + 2/?, («p«) F.' (9,) = 0 (7.13) 

with the following boundary conditions  for the  functions  F\{$\) and 
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(7.1M 

(-Q-/^) 

A solution to Eqs.   (7.12) and  (7.13) can be  found by, e.g., the 

method of successive approximations  (similarly as this was done In 

Section 5.3) where we take as the zeroth approximation the functions 

^"IO ("Pi) = Ti •nd  ^to (ft) = ?•• 

For the functions of the  first approximation we then obtain the 

equations 

K + Wl-O, 1 

which are quite analogous to the first equation of System (5.26). Gen- 

eral solutions of the latter equations can be written In the form of 

Fi OPi) = Cx \ (erf 0 dt + C,<p + Ct,  I 
• I       (7.16) 

Ft («Pi) = Ct\ (erf z) dx + C& + Ct. 

Hence we obtain 

^(<Pi)=C1erf(<Pi) + C„ 1 
'iCf^-C.trfCfO + C«. | (7.17) 

Using the boundary conditions (7.10) we can determine the con- 

stants of Integration C' to C.,  The simple calculations result In the 

following final expressions for the functions F^fa)   and ^t («pt): 

.OJ 

(7.18) 
MT.) = jq^ (ß + m-f-(1 - m) erf 9,}= V' 

^i(fi)- rpä{Q + /n + fi(l-m)erf(p1) -i^, 

With Q ■ 1 (which corresponds to the mixing of two uniform flows 

of fluids of like physical properties) the two latter expressions co- 

incide with the first expression of (5.30). 
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(7.19) 

With the help of the equations 

-'■'- ft. 
,». ^ 

and Eq. (7.18) It is easy to obtain expressions for the streamfunctions 

in the ranges y  > 0  and y  < 0  (with x > 0): 

2-^~rh>km + a)*+{l-m)[\*rl')d'+c]] 
ri^^TU^m + Q)^+Q{l-m^erl,)dx + Ct\}' 

If we take the axis Ox, i.e., the interface of the fluids, as the 

zero streamline of each of the flows, the constants C7 and Cg (Just as 

Cr  and Cg)  vanish; this is assumed in the following. 

For an interpretation of the results of solution of the dynamic 

problem and an explanation of the flow patterns in each of the fluids 

it is expedient to establish t>  'ependence between the characteristic 

values of the variable q),UaK„q)i*„o.<Pttt-f *t*-o. corresponding to zero velocity 

of flow and zero stream function in the ranges y > 0  and y  < 0%  respect- 

ively, and  the parameters m and ß. 

Setting equal to zero the lefthand sides of Eqs. (7.18) and (7.19) 

and carrying out some elementary transformations we obtain 

ß<Pi*-o+I   (erf«M« 
erf(q),u_0) + O ^ 5 

m = —rr= »—r- .        "» - 

(7.20) 
J   (erlf)rf« —»1<M0 

»< 

<Pw_o+    f    (erfi)rfi 
n  erf (<fiumi)) +1  ,  

'^ -«Pw-o + O   I    (erf«)«'« 
o 

Figure 7.1 shows the velocity distributions calculated from 

Eq. (7.18) for several values of the parameters n and ft. It follows 

rom the calculation that counterflows occur in the fluids at certain 

definite ratios of the parameters m and ft in the ranges y  > 0  and y  < 0. 
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Note that in the limiting case Q-».o (jif-*oo) and m ■ 0 the first func- 

tion of (7.18) will correspond to and approximate solution of the 

Blasius problem of a uniform laminar flow of incompressible fluid 

streaming around a plate. 

^ 

2 • 

1 

L 
*% 

* , 

1 
^ ̂ ^ 

fl ?' 

Pig. 7.1 Velocity distribution 
at the interface of immiscible 
fluids (m - 2). j.o-os- 

f.Q - 1,0; J. u - a.o. 

n 

Let us now turn to the solution of the thermal problem. We intro- 

duce the new functions 

^-MfO-S^.^-Mf»)-*^   (7>21) 

and rewrite the energy equations (7.8) and (7.9) and the boundary con- 

ditions : 

^ % + <-•« ^.•«&+^--.9'  (7.22) 
e, 

d*    ' '     Sy »dy» 

if ^=+00,  9t =»0  if (ft«—00, 
e'-e'.^L,^£U if ^=^=0- (7.23) 

Equation (7.22) for the determination of the functions 9, and op 

can be reduced to ordinary differential equations 

9; 
9; 

91 +2?^ = 0,1 
9; + 2PTtFtB't - 0, J 

whose general solutions are easily obtained: 

V 
e1(<Pi)=C,5(F'i)"-d«Pi + Cu. 

0 

•« 
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Determining the constants of Integration Cg-CjB  from the boundary 

conditions (7.23) we obtain finally 

TiV   at 

8.(T,)' — ll+crfCq.tKPr,)!. 
(7.25) 

Examples of the temperature distributions are shown In Fig. 7.2. 

Fig. 7.2. Temperature distribu- 
tions at the Interface of Immis- 
cible fluids . (Pr,»4, Pr, »t).  J. • ()L|A,l/aJat-2; 

■ t.t-i; J.toO.I. 

To finish this section we give at last the expressions for the 

frictional stress and the heat flux at the Interface of the fluids: 

_    / puiipit*i"i      m — ut x-y   m  Vw+Vw' 

VT, 

(7.26) 

(7.27) 

0 
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[Footnotes] 

In the case of a twisted Jet the self-similar solutions cor- 
respond - as this was shown previously — to the additional 
assumption of the so-called "slight twist." 
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Chapter 8 

LAMINAR JETS  OF A  COMPRESSIBLE GAS 

8.1 ON THE  INFLUENCE OF COMPRESSIBILITY 

The compressibility of a gas In Jet flows, as also In other cases, 

may be the result of high values of the velocity of motion, a consider- 

able heating and differences In the  composition of the gas. 

The  Influence of these three  factors, velocity,  temperature and 

composition of the gas. Influence the Jet flows of compressible gases 

both separately and Jointly.  The  Influence of all of them results In a 

change of density of tne gas. 

Restricting ourselves in this book to Investigating unstressed 

flows we must, primarily, separate  the following two problems:  the in- 

fluence of a variable density distribution  (without  reference to Its 

origin)  on the dynamic characteristics of the Jet and the influence of 

the Prandtl number v/a (or its analogue of the diffusion problem, some- 

times denoted Schmidt's number v/Z?)  on the thermal  (diffusion)  charac- 

teristics. 

In the  framework of the theory of the expansion of laminar Jets 

and the  investigation by the methods of the boundary  layer theory, it 

is quite natural that,  first of all, one turns to solutions which per- 

mit a reduction of the problem of the motion of a Jet  of compressible 

gas to the equivalent problem of an incompressible  fluid.  These methods, 

which are  connected .«fith transformations of the flow from the physical 

plane to the plane of A.A.  Dorodnitsyn's [•*] or R. Mises'   [2l2] var- 
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lables, are applied In the Investigation of plane flows. For axi- 

symmetrlc Jets (disregarding fan-type Jets») analogous methods of 

solution have not yet been developed. This fact forces us to restrict 

our considerations to problems of plane, free and semilimited Jets and 

also fan-type Jets. 

The main problem which must be considered when solving problems 

on the expansion of Jets of compressible gas results in a comparison 

of the laws of expansion of a gas Jet issuing in a space filled by a 

gas of lower, the same or higher density. Speaking of the laws we 

mainly think of the variations of velocity, temperature and the like 

along the axis of the Jet and in Its cross sections, but also of var- 

iations of flow rate and other integral characteristics 

In addition to this, it is, in particular for the thermal (diffu- 

sion) problem, necessary to elucidate the relationships between the 

velocity and temperature distributions, and also the effective thick- 

nesses of the dynamic and thermal layers for various ratios of the co- 

efficients of molecular momentum transfer (v), heat transfer (a) and, 

generally, mass transfer (D). The quantities y, a  and D  must be con- 

sidered with regard to their dependences on the temperature (and the 

composition, when different gases mix). As to the pressure, it is In 

most cases possible to consider it to be constant. 

When solving concrete problems, we restrict ourselves to the meth- 

ods of the asymptotic layer applied to self-similar motions produced by 

source Jets, and partially also to the method of small perturbations. 

Before we discuss the methods of solving problems on the expan- 

sion of compressible gas Jets, we devote ourselves to some general 

considerations of physical nature on the influence of compressibility 

on the expansion of Jets. 

For definitenesa we consider the efflux from a nozzle of finite 
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dimensions of three gas Jets (where the density p of the gas is lower, 

equal or higher than the density p^) of the same initial velocity into 

a space filled with a gas of the given density p^. It is quite natural 

to expect the damping of these Jets, which may be characterized by, 

e.g., the decrease of axial velocity, to be the stronger the higher the 

ratio Pn/p. In other words, a gas Jet of low density (relative to the 

density of the medium) will be damped more rapidly than a gas Jet 

whose density is the same as that of the surrounding medium. The axial 

velocity of a Jet of a denser gas will decrease still more slowly. The 

same holds true for the mean flow rate values. 

On the other hand, a gas Jet of low density will expand more 

rapidly than in the case where the gas of the Jet and the surrounding 

medium have equal densities. In contradistinction to this, a denser 

Jet will expand only insignificantly. This is evident for the limiting 

case of the motion of a solid piston in a gaseous atmosphere. 

Thus, the velocity (and also the temperature) along the axis and 

in the cross sections of a Jet will decrease the more rapidly the high- 

er the parameter of compressibility, u » ?»/?• This result is illustra- 

ted schematically in Fig. 8.1 and in greater detail in Pig. 8.2 (see 

below). 

SP 

Fig. 8.1 Schematic representation 
of expansion of a compressible gas 
Jet.   Isothermal Jet; — Jet of 
hot gas. ; 
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Let us now derive in a general form the equations of a free 

laminar boundary layer of compressible gas, which will be used later 

on In order to solve severa concrete problems 

The Initial system of equations describing a steady, plane lami- 

nar flow In the absence of a pressure gradient can be written In the 

form 
9u   .        du        9 I    d*\ 

dv (8.2) 
£(pu)+>)-0. (8>3) 

PB3F + Ppä?="äirUV3y)+^W (8.10 

(In the last equation the heat of friction has been taken Into account). 

We complete these equations by the equation of state 

3 

P *-=±9i (8.5) 
N     r 

and the equation linking the viscosity  coefficient and the enthalpy 

I* = «•. ^8 •6 ^ 

In these equations i ■ o T Is the enthalpy Cp = —^r, H=a|=, where ep, eVl x p x •    c» 

and ."? are the specific heats with constant pressure and volume, their 

ratio and the specific gas constant respectively. 

We also give another form of the energy equation which Is often 

used; It takes the heat of friction Into account. We Introduce the en- 

thalpy of damping 

«•-< + ?. (8.7) 
The energy equation for the quantity i- will then read 

'«g + P'g-^ + a-')^)'    (8-8) 
In the particular case of Pr ■ 1, Eq. (8.8) resembles Eq. (8.1). 

Under similar boundary conditions for velocity and enthalpy of damping 

Eq. (8.8) has the solution 

i, = C, u + C,. (8.9) 
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In contrast to the system of equations for the incompressible 

fluid which permits an Independent solution of the dynamic problem, 

the system of the equations of motion and energy for the compressi- 

ble gas must be Integrated as a whole. 

As regards the case where a gas Jet expands In a gaseous medium 

of different physical properties and where, consequently, molecular 

diffusion takes place, we restrict ourselves for the present (before 

considering a concrete problem) to the remark that the problem of the 

similarity of heat-conduction and diffusion problems Is here more com- 

plex owing to the accounting for the heat of friction and the possi- 

bility that the values of the Prandtl numbers Pr =-^, PraU(» = 5- and their 

ratio a/fl - Le, the Lewis number. 

It should also be noted that In the case of a motion with high 

velocity, owing to the commensurablllty of kinetic energy and heat 

content, the Integral condition expressing the law of energy conserva- 

tlon must be written In terms of the total excessive enthalpy. For 

example, in the case of a plane Jet of compressible gas we shall have 

(>0 = \ pu (Jo—«») dy~ const. (8.10) 
—00 

This equation is derived from the system of Eqs. (8.3) and (8.8) 

with the boundary condition for the plane Jet 

*• = () if y = ±oo. 
ay 

In the case of a small velocity Eq. (8.10) will of course pass 

over to the previous condition of conservation of excessive heat con- 

tent for an incompressible fluid. 

The condition of conservation of the Jet's momentum has the same 

form as in the case of an incompressible fluid: 

+•• 
/, =  \ puWy = const. (8.11) 

—00 
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For other cases of flow (fan-type, semlllmlted and other gas Jets) 

the corresponding integral invariants will be given together with the 

solutions of the concrete problems. 

t 
I? «  \   a c 

^? 
»^ xT^ 

■r/^ r 
Pig. 8.2. Schematic representation of influence of the parameter of 

compressibility »-(p^p) on the damping of a gas Jet. a) Transverse ve- 

locity distributions with «W-M«« b) transverse velocity distributions 

with "„,/"#=*■"■"»; c) variation of velocity along the Jet axis'•«•>i; »••-»:*.•<!. 

) 

Let us turn to the qualitative comparison of the laws of damping 

of a compressible gas Jet with different values of the ratio of gas 

Poo densities in the surrounding medium and the Jet: (o = —. Figure 8.2 

shows the two variants of this comparison. In the first (Fig. 8.2a) the 

transverse velocity distributions are compared for one and the same 

cross section (for the same value of x/dt  d  being the nozzle parameter), 

for three Jets with values of w > 1, w = 1 and w < 1 and the same value 

of the momentum flux J  .   In this case the ratio u /u     (with w = 0) will x mo 
be smallest for the low density gas Jet (w > 1) and highest for the gas 

Jet whose density is high compared to that of the surrounding medium 

(w < 1). The effective boundary layer thicknesses will behave inverse- 

ly: the thickness is greatest in the gas Jet of lowest density and 

smallest in that of highest density. 

In the second figure (Fig. 8.2b) the same velocity distributions 

are compared with the same value of u , i.e., for different distances 

(the corresponding values of x/d will be smallest for the low density 

Jet and highest if w < 1). In this comparison the effective thickness 
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of the Jet will be smallest in a Jet of gas of low density (u > 1) 

and greatest in the case of w < 1. The choice of the curves shown in   „^ 

Fig . 8.2a and 8.2b is easy to trace with the help of the dependence 

of the axial velocity of the Jet on the distance x/d  shown in Fig. 8.2c. 

Figure 8.2a corresponds to the cross section "a-a" and Fig. 8.2b to 

cross section "b-b." A variation of the parameter w exerts an analogous 

influence on the temperature distribution along the Jet and in its 

cross sections (with the Prandtl number remaining unchanged). 

From a qualitative point of view, we considered in detail the 

influence of the density ratio on the laws of velocity variation (and 

the variation of excessive temperature) as this problem is of great 

significance in principle and in practice. The qualitative image repre- 

sented in Fig. 8.2 is essentially the same also for turbulent gas Jets 

since it is based on a general and physically obvious situation: under 

otherwise equal conditions a Jet of less dense gas is damped I1" a denser 

atmosphere more rapidly than in the opposite case. 

8.2 ON THE ENERGY REDISTRIBUTION IN INTEGRAL-ADIABATIC FLOWS 

Let us, from a qualitative point of view, consider the curious 

phenomenon of a local redistribution of the total enthalpy which arises 

in fast gas flows (in particular in laminar and turbulent Jets of com- 

pressible gas) and also in the course of combustion in gases or on the 

surfaces they flow along, in the twisted gas flows of Rank-type tubes, 

etc. C-7» ••] 

In all cases of an essentially rectilinear* motion the nature of 

the effect, e.g., of a local redistribution of enthalpy and kinetic 

energy in adjacent gas Jets, is mainly determined by the ratio of the 

kinetic coefficients characterizing the intensity of the processes of 

molecular (or molar) transfer of momentum (y), heat (a) and substance 
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(D).  In the case where two (or all three) effects coact in the general 

process, the ratio of these coefficients, the so-called Prandtl number, 

is the criterion for the local distribution of total enthalpy. In this 

case one of the processes of molecular exchange, the heat conduction, 

will in all cases be prominent in its role of a factor that tends to 

smooth the temperature distribution (that of the enthalpy i  - cnT^' 

Two other processes, viscosity and diffusion, play the part of character- 

istics of heat liberation in the conversion of various forms of energy 

into heat content. In the case of a high velocity gas Jet, we are con- 

cerned with the conversion of kinetic energy in enthalpy and dissipa- 

tion of mechanical energy at the expense of the work of forces of in- 

ternal friction. In the other particular case, the burning of gas, the 

latent chemical energy is converted into heat content. The general case 

where both factors of "heat liberation," viscosity and diffusion, coact 

and where, at the same time, heat is removed from the region in which 

the energy conversion takes place (the surface of a burning plate placed 

in the stream of a compressible gas) is considered in Paper [**]. 

In all cases, in particular in that of a Jet flow of compressible 

gas, tlie physical nature of the effect will thus result in a peculiar 

"competition" of the local processes of energy conversion leading to 

the "appearance"of enthalpy (ö T)  on the one hand and to a leveling 

of its distribution by virtue of the thermal conductivity, on the other. 

Here we restrict ourselves to the case of a high velocity flow of 

a compressible, chemically inert gas. The Jet flow is assumed to dev- 

elop from a gas flow uniform with respect to velocity and temperature, 

in a particular case, from the state of rest. The efflux is allowed to 

occur in a space filled by a quiescent gas of the same temperature. 

Such a flow may of course be called integral-adiabatic. 

For greater illustrativeness we suppose conditionally that the 
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nonuniform velocity distribution In the Jet la the result of a local 

adlabatlc process. In this case It Is obvious that the stagnation tem- 

perature TQ  should be the same In the entire field of flow. The thermo- 

dynamic temperature T=T*~2ti  should of course be lowest In the gas 

Jets of highest velocity and, vioe versa,  highest In the slowest Jets. 

Let us now consider the kinetic Interaction of the adjacent gas Jets. 

Firstly, under the Influence of a temperature gradient conductive heat 

flows will arise. Secondly, under the Influence of Internal friction 

on the sections of velocity variation heat will be set free. 

In spite of the fact that the process as a whole takes place with- 

out heat exchange, which Is determined by the boundary conditions, the 

constancy of the temperature T0  at all boundaries of the flow region 

In the quiescent gas, the value of T.  will only be the same In the 

whole field of flow If an additional condition Is satisfied: the local 

equality (v ■ a) of the Intensity of the processes of heat liberation 

and heat removal. If this equality Is violated, e.g.. In the case where 

the heat conduction Is "faster" than the viscosity (a > y, Pr < 1), 

high velocity gas Jets to which heat Is supplied from hotter and slower 

flows will carry away the excessive total enthalpy (the sum of kinetic 

energy and heat content). Thus they behave as If they were enriched In 

t-tal enthalpy at the expense of the slower. Impoverished flows. The 

opposite case, the enrichment of the slower and the Impoverishment of 

the faster flows. Is encountered with the Inverse ratios (y > a, Pr > 1). 

Thus, In the case of Inequal transfer coefficient y and a  local 

extrema (maxima and minima) of total enthalpy will be observed In the 

field of flow. An example of this case Is shown schematically In Pig. 

8.3. 

The above qualitative Interpretation Is generally valid and also 

applies to turbulent Jets for which the "turbulent Prandtl number" Is 
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smaller than unity. 

The redistribution,  shown schematically in Pig.   8.3,  is verified 

by many calculations.   Considered from the quantitative point of view. 

Fig.   8.3.   Redistribution of total enthalpy in a high-velocity 
gas Jet.   a)  Pr < 1; b) Pr =  1;  c)  Pr >  1;  1) velocity;  2)  tem- 
perature;   3)  stagnation temperature. 

this effect,  namely the deviation of the  local value  of the total en- 

thalpy  (or the  stagnation temperature with o    ■ const)  proves relative- 

ly small.  For example,  for a laminar Jet with the Mach number M = 1 

the maximum deviation of the value of T-  from TQm in the initial sec- 

tion of an integral-adiabatic Jet  amounts to about  2%.  This effect will 

thus influence the dynamic problem only slightly  (Just  as in general a 

difference  in the Prandtl numbers)  while its influence on the thermal 

problem, particularly  for integral-adiabatic flows,  is high.   In the 

latter (measurement of temperature in fast gas streams.  Rank effect, 

etc.) the nature of the effects  is connected with the local redistribu- 

tions of enthalpy. 

Several examples  of calculations of Jets are given in the follow- 

ing. 

8.3.   THE PLANE  SOURCE-JET.   A.A.   DORODNITSYN'S  TRANSFORMATION 

We use the equations of the plane  laminar boundary  layer of com- 

pressible gas given in the previous section in order to solve the pro- 

blem of expansion of a free plane-parallel source Jet in a space filled 

by the same gas. 
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The system of Eqs.   (8.1)-(8,6) with the boundary conditions 

(8.12) 
£^0. .=0. ^-0 if „-0, 
u = 0, i« i«        IT y — ±oo, 

corresponding to the problem under consideration can hardly be Inte- 

grated Immediately. With the help of A.A. Dorodnltsyn's transformation 

of variables ['a] the Initial system of equations can be simplified 

considerably and reduced to a system of equations analogous to Eqs. 

CKMS) and (4.50) for the Incompressible fluid. In the general case 

(with p ^ const) these transformations have the form 

0 0 

which. In the case of an Isobarlc Jet flow pass over to the simpler 

transformations 

* = *• *-]£** (8.13) 
The derivatives with respect to the old ("physical" variables 

xt  y  and A.A. Dorodnltsyn's variables C»n are linked by the formulaj 

dx       öl ^ dx dr\'   dy       p*,^' KO.m) 

First we transform the continuity equation to the new variables. 

For this purpose, In the equations 

Poo    •* ' Poa 

\0 

which link the velocity components and the density with the stream- 

functions In the plane of the variables xtyt  we use (8.1^) to pass over 

to the variables 5,»i 

B = ^ *-£' + «£ = -£•      (8.15) 

Hence It follows that In the plane of A.A. Dorodnltsyn's variables C,n 

the continuity equation can  be written In the form 

c* + *i -0- 
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Transforming Eq.   (8.1) we obtain 

da    ,   / p        ,      dn\ du {    d fw  du\ 

Equations (8.5) and (8.6) are (with p^ const) equivalent to 

the following: 

P' = P„'co. fc-lTj« (8<l8) 

such that    jr-^oofirl      and Eq.   (8.17)  can be written In the form 
Poo VooJ 

du   .  - du d [( i •,B-1 flu 1 / Q   m ^ 

Equation (8.4) can be transformed In the following way: 

But since ~ = pc" MM == Pr • we have T^
-^ TT^^floof^-r * and the energy P ^ p j P<»ep Poo \ 'oo/ 

equation In the variables  C»n  takes the form 

-t+^-^[(fJ^]+-(4^(^,• (e-2°' 
The system of plane boundary layer equations (8.16), (8.19) and 

(8.20) obtained In the plane of A.A. Dorodnltsyn's variables remain 

so complicated that for a concrete problem. It may only be Integrated 

numerically. As It Is desirable to obtain an analytical solution to 

the problem of the plane source Jet, we restrict ourselves to the sim- 

plest case of a linear dependence between the coefficient of viscosity 

Vi and the enthalpy i. Thus we assume that n « J. In this case the sys- 

tem of equations considered Is simplified considerably: 

du   .   -du a1« 

df, + dij    u' 
(8.21) 

di   ,   ~ di m   . ..   lOuf 

A comparison of the first two equations of System (8.21) with 

the corresponding equations  (^.^5)  of the dynamic problem for an In- 

compressible fluid shows that they are Identical as to their formula- 

tion.  As regards the last equation of System (8.21)  it differs from 
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the energy equation (4.50) only by the presence of the second term 

In the rlghthand side. Its origin Is connected with the necessity of 

taking Into account the Influence of the heat of friction on the tem-     ( / 

perature distribution In fast gas flows. When a gas streams with a ve- 

locity considerably smaller than sonic velocity, this term will be small 

compared with the first term of the rlghthand side and can thus be neg- 

lected. In this case, the energy equations (4.50) and (8.21) also agree 

In their form. 

Note that In the plane of A.A. Dorodnltsyn's variables the equa- 

tions of the dynamic problem for a compressible gas can be Integrated 

Independently of the energy equation. The mutual relationship between 

the velocity and temperature distributions becomes apparent when we re- 

turn to the physical plane of the variables xty. 

The boundary conditions for the problem on the plane source Jet In 

new variables can be written In the form 

*.o, ;-o. |L.o lf,_.. 
._o, i-u if n-±.  '      " i 1 too. J 

The coincidence of the equations and boundary conditions of the 

dynamic problem mentioned above enables us to write Immediately a solu- 

tion to the system of the first two equations of (8.21) In the form 

«(tt,)-^^(fD)-4-l^^^^. 

;(i^—4r^(—»F+p,^i.|/g^SÄ. 
(8.23) 

Here 

»D-i/^. '.-jBP^y-p,.T«
,*i. 

; 

When we neglect the heat of friction (which, as mentioned above. 

Is admissible for flow velocities small compared to sonic velocity) 

we can write the energy equation In the variables C>n: O 
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uS■ + ?l^öao93i?• (8.2*) 

analogously to Eq.   (^.50)  for the incompressible fluid. 

Equation  (8.24) with the boundary conditions 

*     0   iftj-0,     \ 
^ ». (8.25a) 

(syiranetrical thermal boundary layer) or 

;+-•} (8.25b) 

(asymmetrical thermal boundary layer) has, respectively, the solutions 

[see  (4.56) and  (H.eo)]: 

i = h   if ti-.+oo, 
««=»1  if   Ti 

i = i« v-lPr 

(8.26a) 

«• = |-, + («i-«-,)]'(chq.i))-
,"d9x,[Y(ch'Pi)r

,"d«Pi,f.        (8.26b) 
*D .+00 

The symbol Q  in Eq.(8.26a) denotes the flux of excess heat content in 

the Jet, 

+• -H* 
Q = J pu^i — i^dy^p^ J u(» —i«)dn = const.    (8.2?) 

—00 —«o 

In order to analyze the results of solution, it is necessary to 

return from A.A. Dorodnitsyn's variables ^,TI to the physical plane of 

variables «,j/. This transition is carried out with the help of Eq, (8.13) 

and also (8.26a) or (8.26b). In fact, it follows from (8.13) that 

x-*. „J**,-?^*». (8.28) 

Consequently, in the case of the boundary conditions (8.25a) the 

transition formulas will read 

.-l. y-. + I-^^, (8.29) 
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or 

i = g,    «p = q»0 + -£-«-* J *VD 

j (ch9i,)! MTt 

(^•r-^/ST^^^^r)- (8.30) 

In the case of an asymmetrical thermal boundary layer, we obtain 

the transformation formulas from expressions analogous to (8.28): 

* 

o 

n 

or 

x = 6. 9=^<lq,«• (8.32) 

Using Eq. (8.26b) we find the sought relation between the inde- 

pendent variables: 

.-1, f-{f-f, + (i - l^)[T(ch^)■,f, rT( \ (chz^r,ds)d'- (8.33) 

Formulas (8.23), (8.26a), (8.26b) together with (8.30) and (8.33) 

yield a solution to the problem in the physical plane of the variables 

xtyi  knowing the succession of the values of the variable <pZ) we also 

know the succession of the values of the variable 9 and also «U. <PD) 

and HI, VD). 

An analysis of the results of solution shows that, as in other 

cases of Jet flows, a change of the values of Prandtl's number has hard- 

ly an influence on the velocity distribution but alters the temperature 

distribution essentially. An increase of tne Prandtl number Pr causes 

a slight broadening of the dynamic boundary layer and a strong reduc- 

tion in thickness of the thermal boundary layer. 

With asymmetric conditions for the thermal boundary layer a varia- 

tion of the parameter la/4, results in a distortion of the velocity     _ 

distribution which is symmetrical with respect to the axis Ox  (the lines 
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y - Ö or q) ■ 0) only If ig/ij - I. If t2A2 < ^ the velocity distribu- 

tion becomes narrower than In the Isothermal Jet (i^ - t^). If ^Ag > 

> 1 It Is broader. 

On the basis of the solutions obtained, It Is easy to determine 

the laws governing the variation of the Jet's Integral characteristics. 

In particular, the mass flow per second In a Jet with symmetrical or 

asymmetrical boundary conditions for the enthalpy Is given by the 

formula 

+00 -l-oo          

Gm = J Pudy = Poo J udt\'--- /"PK^»* 

which Is Identical with the analogous relation for the Incompressible 

gas. 

The volume flow rate for a symmetric thermal layer Is equal to 

—oo     —oo ^ 'L —** 

In the case of an asymmetric thermal boundary layer 

-00       • 

For a Jet of Incompressible gas {T-*0, -^--♦l) these two expressions 

yield 

Geinc« = 1/ 36—-^ I, 

Note by the way that at great distances from the source and In a 

Jet of compressible gas. G0?"-► CB.H^, (since the second term In the brae- * 

kets Is constant and the first Increases with x)\  In contrast to this 

gwii- displays no such tendency as both terms In the rlghthand side vary 

likewise as x Is Increased. 

The local Nusselt number 
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Is determined by the same formula as In the case of an Incompressible 

gas (see Section 4.3). 

An analogous method can be used to solve the problem of the fan- 

type, slightly twisted Jet of compressible gas with the two variants 

(symmetric and asymmetric) of boundary conditions for the temperature 

[**]. Without giving the solution we only remark that in the plane of 

A.A. Dorodnltsyn's variables, it agrees with the solution of the cor- 

responding problem for an incompressible fluid. As to the peripheral 

velocity component, its distribution in such a Jet will resemble the 

distribution of the radial velocity component. 

n 

fei 
i 1 MlA- V Vvr v 

ah 
1 A 

Mm       1 V x. 
•J   -i -i i 

ft 

^ 

1 i i I     s 

Fig.   8.4. Transverse distribution of the longitudinal and peripheral 
velocity components in a fan-type Jet of gas with asymmetric boundary 
conditions for the temperature.  1,   (i,/tB) - 1/2:  2,   (t,/t0) • It 3. 
(i,/i0) - 2, 1    * 1    * 

) 

2 

An essential difference in the behavior of Jets of incompressible 

fluid and compressible gas become apparent when we return to the plane 

of physical variables.  In particular, the temperature  (density) distri- 

bution exerts an inverse influence on the velocity distributions. This 

becomes particularly distinct if we consider the example of the fan-type 

or plane gas Jet with asymmetric boundary conditions for the temperature: 0 
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a velocity distribution which Is symmetrical In A.A. Dorodnltsyn's 

variables. In a jet cross section, becomes asymmetric In the plane of 

«,i/, and so on. 

To Illustrate these conditions we give some examples of calcula- 

tion of velocity and temperature distributions In cross sections of a 

twisted fan-type Jet of gas of low velocity In Pigs. 8.4-8.6. 

8.i| SOLUTION TAKING THE HEAT OP PRICTION INTO ACCOUNT 

Let us now consider the solution of the problem of a plane source 

Jet where the best of friction Is taken Into account. In this case In 

the Initial system of Eqs. (8.21), written In A.A. Dorodnltsyn's varia- 

bles, the energy equation must be replaced by the following equation: 

•£+'£—$+(^-»K? (8-3',) 
('o-'-f-'j-Is the stagnation enthalpy). 

i 
'S, I 

AM V, ̂
 
<r '"! 

/ K 
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i J A 
L / M v JA r 
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^s 
-J     -/ 0 I I i    .     * 

O 

Pig.  8.5 Transverse distribution of excess temperature In fan-type 
gas Jet.  1) Velocity Uj - i^); 2) temperature ($    . <  . p . oonat); 
3) temperature (^    , g ^ ) 
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Fig.  8.6.  Transverse temperature distribution in fan-type gas Jet. 
1) Velocity;  2-5)  Temperature;  2.  Pr - 0,6s  3. Pr - 0.75;  4.  Pr - 1.0; 
S,  Pr '2.0. 

To simplify the solution of the problem we assume that Pr - 1. 

This limitation proves unessential for the following two reasons. First- 

ly, the Prandtl number for air (and a series of other gase 0 Is suffi- 

ciently close to unity. Secondly, the Influence of a change of the 

Prandtl number on the velocity and temperature distributions has al- 

ready been considered above for the case of a Jet of low velocity; this 

Influence remains the same In qualitative respects also In the case of 

a Jet of high velocity. 

With Pr ■ 1, Eq. (8.31*) can be rewritten In the form 

(8.35) 

Comparing the first equation of System (8.21) with Eq. (8.35) re- 

sults, as already mentioned above, in the conclusion that i. is a linear 

function of u: 

... 

i, = Ci B +Ct. (8.36) O 
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o 
The constant £„ Is determined from the boundary conditions which 

we write In the form 

*•   U  '     A (8.37) 

Hence It follows that C, - i^. Since the boundary conditions (8.37) 

are Insufficient for the determination of the constant CJ  we must use 

an Integral Invariant which Is easy to derive. For this purpose, we 

rewrite Eq. (8.35) 

and with the help of the continuity equation ^._j.^!. = o it can be given 

the form 

^■[«(l0-l00)l + ^lP(i,-l00)l=V09^(l0-iw). 

Integrating it with respect to n from -• to +•, taking the boun- 

dary conditions (8.37) into account, we arrive at 

jL ^ ulf,-i»)dt|-0 

or 

P« 5 u(i,-f«)d»l.-^o-const. (8#38) 

Thus, together with the momentum of the Jet, the value of the 

flux of the excess total enthalpy is also conserved. 

Substituting the value of i0  from (8.36) in Condition (8.38) 

ciP* I u,*it-$»: 

and taking into account that   p^ C utdr\ = Jx, we obtain 

r « <?• w" 7- 

and, consequently. 

i-u—r + j-u. (8.39) 
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Since the dynamic equations and the boundary conditions for the 

velocity In the case considered are maintained In precisely the form 

of (8.21) and (8.22), the solution will also have the previous form 

(8.23). 

The expressions for the velocity components  (8.23)  and Enthalpy 

(8.39) constitute a solution to the problem of the "fast" jet of com- 

pressible gas In A.A. Dorodnltsyn's variables. To complete the solution 

It Is necessary to perform the Inverse transition. I.e., to return to 

the variables x,y. This may be achieved with the help of formulas analo- 

gous to  (8.28): 

and also Expressions (8.39) 

00  J X oo  J 

We calculate each of the Integrals In the rlghthand side of the 

latter equation, using the expression for the longitudinal velocity 

component of (8.23): 

Tu'*, - ^V* Jäh - T -rt*«1+*■*!»•»*»* 

o 

udvD- Ai-'hP{<fD) - iir'Hhfp. 

Consequently, 

^^-^z/^J-%^^D)^D+.      (M1) 

Formulas  (8.23)> (8.39) and (8.41) enable us to construct the 

velocity and temperature distribution In the physical coordinates 

x,y.  Figure 8.7, taken from a paper by Yu.T.  Reznlchenko C1*0] shows 
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the velocity distributions In functions of the nondlmenslonal para- 

meter .V 
^7i 

which characterizes the heating of the jet. The higher 

the temperature difference between Jet and surrounding medium 

7" — r« = -g-(» — »■«). the higher, under otherwise equal conditions, are the 

quantities Q0  and M  and the higher, as may be seen from Fig. 8.7, are 

the effective thicknesses of the thermal and dynamic boundary layers. 

"m -'m 
(1 

as 

n 
0.2 

^ Sv 
A 

\ 
2' W v ̂  
3 \s \ 

^ ̂
s N s 

0 I 4 4 4 w    u _» 

Fig. 8.7.  Velocity distributions In a   ■••[IMJJ.I where the heat of fric- 
tion has been taken Into account; ^  p» -1).   i.   M - 0; 

f. M - o,S; i,Km 1,0; I.■ ■ 1,1; «. M ->,0. 

Let us determine the expressions for the other Integral character- 

istics of a compressible gas Jet. 

As already mentioned, the mass flow In a Jet of compressible gas 

Is determined by the same expression as in the case of an incompressible 

gas. In o^her words, with the same momenta and characteristics of the 

surrounding quiescent gas the mass flows in Jets of compressible gas 

and such of imcompressible gas will be the same. 

The volume mass flow will be equal to 

but as from (8.39) we find ' ■ i — JJÜ. + ^^JLu, we have consequently 

Calculating the Integral, we obtain 
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We therefore arrive at the following expression for the volume flux 

In a Jet of compressible gas 

«.-f^'-ÄfS+Ä     (8-,,3> 

which differs from the volume flux In a Jet of Incompressible gas. 

At a great distance from the nozzle the second term In the braces may 

become negligibly small compared to unity such that 

Poo oo 

Expression (8.43) also enables us to estimate the Influence of 

the various parameters on the thlckr.ess of the Jet. The fact Is that 

an Increase of the parameters J„  and t_ with fixed values of the other 

quantities results In a decrease of the volume flux and, consequently. 

In a decrease of the effective thickness of the Jet. An Increase of the 

quantity Qot  however, has the Inverse effect. These conclusions agree 

with those drawn above. 

8.5. SOLUTION IN R. MISES' VARIABLES 

Let us Illustrate another method widespread In the theory of com- 

pressible gas Jets by way of example of the solution obltalned by D. 

Toose C11*] for a laminar plane source Jet of compressible gas. We are 

here concerned with a transformation of variables suggested by R. Mlses 

[ai2]. 

In order to Integrate the system of equations of a plane boundary 
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o 
layer of compressible gas  (with Pr ■ 1) 

pu-^+pv J» ay V1 dy}' 

iW+jiiP»)-*, 
(8.15) 

p'■ p.»'oo-   ir^i-   ^A'0■ '•""lo0) roo oo 

we introduce the new variables 5 ^Instead of x,y t where 5 - « and V Is 

the stream function defined by the equations 

d* 
-«• p«,      W   P»'~     «•* (8.46) 

The derivatives transform according to the  formulas 

»       #     JP_8 » 
a* a ^     Poo  ^ ' ay      Po.  ^ 

Passing over to the new variables, we rewrite the first equation 

of System (8.15) In the form 

du     d   /_. du' 
at -Voo^r?*)- (8.17) 

With similar boundary conditions for velocity and total enthalpy 

and Pr ■ 1 the energy equation has (as above) the solution 

Aio-Cju + C«. (8.18) 

The problem has thus been reduced to an Integration of Eq. (8,1?) 

and the determination of the constants of Integration (among them also 

Eq. (8.18) with the boundary conditions 

If ^-0, du 
1$ 0. ^-0 

du 0, U.-0. |J=0 If * = ±t,. 
(8.19) 

We represent the longitudinal velocity component In the form 

u^Ax'Fif),    «p-^tf*; (8.50) 

and, putting 

ß « + i AB* — JL (8.51) 

Equation (8.1?) can be transformed to the ordinary differential equa- 

tion 
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{FFy + 3l{a + i)<fF'-2(iP]~0. (8.52) 

A determination of the self-slmllarlty constant a and the con- 

stants A  and B  Is only possible with the help of an Integral Invariant 

which Is easy to obtain from (8.47): 

P« \ «*!>;= A«-const. (8.53) 
4. 

From (8.53)* taking (8.50) Into account, we obtain 

a"ß'    4-p-^     I7" \ **)• (8.51*) 

The numerical values of the limits of Integration of 92 will be deter- 

mined In the following after we have found the form of the function 

Fto). 

Consequently, we obtain from (8.51) and (8.5^) 
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.-,-J|. ""l^^' "ftt-      (e-55)        3 
Thus, In order to obtain the function Fly)  we must Integrate the 

very simple equation 

(FF'Y + 2{ifFY~0 (8.55a) 

with the boundary conditions 

The solution of Eq. (8.55a) has the form 

F-l-fP. (8-57) 

Since at the boundaries of the boundary layer (that Is, Bty =±oo) the 

longitudinal velocity component u must vanish. It follows from Eqs. 

(8.50) and (8.57) that the variable cp may only vary within the limits 

-1<9<+1. This yields /-\ (1—sflAp--!"' 
-i 

Let us turn to the determination of the constants C.  and C. enter- 

ing the expression for the total enthalpy (8.48). 

• 



~) 

It follows from the boundary conditions  (8.49) that In Eq.   (8.1l8) 

the constant C- - 0.  The second constant C^^  ö Is determined by an 

Integral condition which is obtained when in the energy equation (8.45) 

we pass over to the variables 5,"^   given by R. Mises: 

£(*'.)= v« £(«!$). (8.58) 

The integration of the latter equation yields 

p   C  Äi0ity=»Äi=» const; 

from which, when taking (8.48) into account, we find 

(8.59) 

and 

C ~* 

A • "I 

(8.60) 

We finally obtain in the variables K»i 

fo = «00 + ö1 U =- I«, -f  ,^-_L 2VU 
•r'Hl-if). (8.61) 

In order to transform Solution (8.61) to the physical variables 

xty  we use the first equation of (8.46), With the value of the coordi- 

nate x fixed we obtain 

(8.62) 

Prom the second equation of (8.61) it follows that 

u oo    "o« 

We therefore write Eq. (8.62) in the form 

(8.63) 
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Calculating the Integral, we obtain 

»-^^'■■^l+Ä'-^M'-M 

.1 

and,  finally, 

Prom the latter relation It follows that —1<9<-H with—oo<y<+». 

Together with (8.64) Expression (8.61) yields a solution of the 

problem on the plane source Jet of compressible gas. The corresponding 

velocity and temperature distributions are given In D  C'1']. 

At the end of this section, we want to establish the law of In- 

crease of the boundary layer thickness In the source jet. As the quan- 

tity that characterizes the half-width of the Jet at a given distance 

from the source, we choose this distance b  from the Jet axis at which 

the velocity Is equal to half the maximum value of the velocity In the 

cross section consl-ered. From the first equation of (8.61) It follows 

that 

and then we obtain from (8.64) the following law of variation of the 

half-width of the Jet: 

8.6. THE MIXING OP UNIPORM PLOWS OP COMPRESSIBLE QAS 

The problem of the mixing of parallel and antiparallel flows of 

Incompressible fluids dealt with In Section 5.3 permits a generaliza- 

tion to the case of the motion of compressible gas flows C11']. The 

solution of this more general problem Is considered In the following. 

The system of equations of a plane laminar boundary layer of com- 
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presslble gas 

du   ,        du »  / 9u\ 

io-o+i (P«') = = 0. 

«••£ +p"i 9i 1 
Pf 

P-'-^P'. J* = «
n. 

(8.65) 

must In our case be Integrated with the following boundary conditions: 

u^u,,   f«itwlthV "■ + •*. 1 (8 66) 
U m U,,      i a IjWlthy = — 00.  , 

We transform Eq.   (8.65)  and the boundary conditions (8.66) to a 

nondlmenslonal form, using as scale units the quantities connected with 

the nonperturbed flow moving In the range of y > 0: 

•-*. i-iv*. '"h ?-■£-. ?-*• 

(L — scale unit of length). 

When the pressure Is assumed to be constant In the entire field 

of flow, the equations can be written In nondlmenslonal variables In 

the form (we omit the bars on the nondlmenslonal quantities): 

9  /    du 9u   ,        du pu__ + pp 
9  (    du\ 

^(P«)+^(Pf)»0. 

p. = l, li = »". 

(8.67) 

In the energy equation the symbol W, denotes Mach's number for the 

nonperturbed flow In the upper semlplane, I.e., the ratio between 

flow velocity w. and the speed of sound In It. 

The boundary conditions for u  and i  In the range x > 0 in  non- 

dlmenslonal variables take the form 

u 

u = 

i-l, /-I If y" + oo,| 

= mu, i = m4 1 f y « — 00 ) 
(8.68) 
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(here '"•-"i^t "N"*}- ). 

We assume, as above, n » 3, and use the transformation to Dorod- 

nltsyn's variables 

l-s, ti-fprfy; (8.69) 

Equation    (8.67) and the boundary conditions  (8.68) then go over to the 

following equations: 

du    ,   "du       0*1* 
»s^ + ^-Sni' 

ST + Si"0« 
di    .   ~di        1   a*i   .   . .. »it/9u\* 

(8.70) 

r 

u-1,    /-i lf  Ti-+oot I (8.71) 
u => m«,   i — mi If   T|««—oo. * 

In Eqs.   (8.70)  »„pp + ag. 

In order to solve the latter system of equations we suppose that 

the longitudinal velocity component and the enthalpy are functions of 

a single variable: 

»(M)-/7'^),   i{l,i\)-itoD).   f«-^. (8.72) 

This problem can be reduced to Integrating the following ordinary 

differential equations: 

Fm + 2FF'~0, (8.73) 
r + 2PrPi' + Pr (x- l)M\{Fy - 0        ( 8. 7^1) 

with the boundary conditions: 

*.-«.  « = 1     if «PD-.+OO. 1    (8.75) 
F' = m,,, i = mi ^f   «p^ a —oo. J 

Equation (8.73) and the corresponding boundary conditions  (8.75) 

are analogous to the equivalent equation  (5.23) and the boundary condi- 

tions  (5*26) for the Incompressible fluid. Consequently, all tha results 

obtained In Section 5*3 from Eq.   (5.23) will also apply to the case 

considered: 
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0 
•~r («PD) = 1 + -J (««-1)(1 -erf^o). 

Tir(9i,F'-F)=.2-^=(mu-l)(5(orfz)d«-<pI,orf<pI)-Cl}. 
(8*76) 

For the stream function we have 

♦ (6.^-2/11^ + 1^-1) [^-^(erf^dx + C,]}.   (8#77) 

As regards the general solution of the  linear inhomogeneous dif- 

ferential equation (8.7^) for the enthalpy.  It can be represented as 

the sum of an arbitrary particular solution to Eq.  (8.71») and the gen- 

eral solution of the corresponding homogeneous equation: 

i'i + 2Pr Fi'i=*0. 

The latter equation has the  solution  (see Section 5.3)• 

0 

As a particular solution of Eq. (8.7^) we can take the function 

/(9) - - (x -1) A/J J If (s)]" K IF' (01,-',A) dt. 

The general solution of Eq. (8.71*) satisfying the boundary condi- 

tions (8.75) has the following form: 

«(q'i,)-l + i(mi-l)Il-erf(9i)/Pr)l+/(<pi,)-/(oo). (8.78) 

In the same form we would also have obtained the solution In the 

case of the Incompressible fluid if we had taken the heat of friction 

Into account In the Initial energy equation. The two last terms In Ex- 

pression (8.78) characterize the Influence of the heat of friction on 

the enthalpy (temperature) distribution. 

In order to estimate the character of motion of a gas and the tem- 

perature distribution In the mixing zone and to elucidate the Influence 

of the flow parameters on the flow pattern, we must use the equations 
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linking the characteristic values of the quantity 9,.-« and <P*"0 with 

the parameter m . These equations obtained from the conditions F' » 0 

and ^ - 0 with the use of Eqs. (8.76) and (8.77) have the form 

—~ ff!« 

/Tin • 

i-«rfe,M* 

•o 

(8.79) 

(8.80) 

To return to the physical parameters we must use the equations 

linking the variables xty  with A.A. Dorodnitsyn's variables %9i\i 

(8.81) 

Expressions (8.76) and (8.78) together with Eq. (8.81) yield a 

solution of the problem on the mixing of parallel and antiparallel 

flows of compressible gas. 

On the basis of the results obtained we shall now determine the 

nature of the flow in the mixing zone and the influence of the para- 

meters m, and M, on the velocity and temperature distribution. 

Fig. 8.8. The characteristic coordinates of the mixing zone of gas 

flows (»u-«.»*-o) as functions of the flow parameters, i.'^-ij."'i' *• ,,,•■,'0, 

Figure 8.8 shows the curves illustrating the characteristic quan* 
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D 

titles <Pu o and ^-o as functions of the parameters »i and m. In the 

physical plane of xty.  The value of the constant C- In Eq. (8.80) was 

here taken equal to C- ■ -O.05. This fact does of course not Influence 

the qualitative flow pattern with which we are here concerned. An elimi- 

nation In the choice of the value of C, were only possible by way of a 

comparison of the theoretical and experimental results. Such experimen- 

tal data for the laminar mixing of compressible gases are, however, not 

available. 

It follows from Pig. 8.8 that with certain definite negative val- 

ues of the parameter m an Inverse motion of the gas must arise, the 

width and position of the zone of this Inverse motion depending on the 

value of the parameter m.. As m. decreases this zone becomes narrower 
V 1* 

and shifts toward the line j/ ■ 0. 

-i 

Fig. 8.9. Distributions of sur- 
plus velocity In the mixing 
zone of two gas flows. 
J. M, m 0;   m{- 0,1; ». M, -10; mi -i 1,0; 
3.  M, m 0; mj «• S,0; 4. M, -^iilm, — 3,0. 

-4 

"t w,. 
0.8 A f 0.6 p\ s 

^ ■«♦ 
NJ 

^T OJt 

y//Kr 

Fig. 8.10. Distributions of sur- 
plus temperature In the mixing 
zone of two gas flows. 
(M. - 0); I. ft — 0,6; ». *t - i,0; 

J. Pr-2,0. 

0 

The Influence of the parameters m- and M, on the distributions of 

the excessive nondlmenslonal velocity g~^ Is shown In Pig. 8.9. We 

see from the figure that the effective width of the mixing zone grows 

as the values of the parameters m. and M. Increase. 

Figure 8.10 Illustrates the dependence of the temperature distri- 

butions on Prandtl's number. The nature of this dependence Is the same 
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as In other cases of Jet flows: the effective thickness of the ther- 

mal boundary layer Increases as Pr decreases and vice versa. 

Thus we have solved the problem of Investigating the velocity and   <* 

temperature distributions In the mixing zone arising In the Interface 

of parallel or antiparallel flows and the Influence on their flow para- 

meters . 

8.7. THE SEMILIMITED GAS JET 

At the end of this chapter which has been devoted to the funda- 

mental laws of the expansion of laminar jets of compressible gas, we 

consider one of the problems of semlllmlted gas Jets, namely the pro- 

blem of a Jet expanding along a circular cone. It Is of Interest as It 

Is one of the few examples of flows with axial symmetry to which A.A. 

Dorodnltsyn*s transformation of variables can be applied successfully. 

We maintain the position of the coordinate axes and the basic 

assumptions admitted when solving the problem of the semlllmlted Jet of 

Incompressible fluid (see Section 6.2): the source Jet of compressible 

gas Is slightly twisted. This permits an essential simplification of the 

compressible boundary layer equations which can be written In the follow- 

ing form C21»10*]: 
du   ,        du w*     dp   ,    d {    du\ 

w* .     dp p-Ctgö-gJ, 

Ji(p*tt) + ^(P*«') = 0, 

P - *-=- pi,    I* = c»n (/ - epT, ep « comt). 

The point Is here (as also In the system of equations (6.^7) for 

the Incompressible fluid) that In the first equation of System (8.82) 

we can neglect the terms — pü? and _ |P as they are small compared to the 

other terms of the equation. We shall see that this neglectlon Is Justl- 
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fled when we have obtained a solution which Is valid at large dis- 

tances from the source. 

Starting from the estimations which are usual In the boundary 

layer theory, we find from the second equation of system (8.82) that 

the pressure change Inside the boundary layer formed by the slightly 

twisted Jet Is of the order of the thickness of the boundary layer such 

that the equation of state can be rewritten In the form ip - const. 

If In addition to this we assume n ■ I we can write the Initial 

system of equations. Instead of (8.82), In the form 
du   ,        du        3 I   du\ !*• dp 

dtp   ,        dw   ,      uw        d I    dw\ 

^(piu)+^(pxi>) = 0. (8.83) 

P^+P^-pF^^^-^lSv)' 

(here, as usually, the symbol » Indicates that the respective quantity 

refers to the nonperturbed gas of the surrounding medium. 

The system of equations (8.83) must be Integrated with the follow- 

ing boundary conditions for the velocity components 

u = r = u;»0 if y = 0. j ^M) 
u = «; = 0    if  y=ooJ 

and the Integral conditions of conservation 

) 

^ piu1 \\ parudyj dy ** K = const, 

mm . «I 
(8.85) 

\ px'uwf \ pru dy\dy = N — const, 

which are derived analogously as In Chapter 6. 

As regards the boundary conditions and the integral Invariants for 

the thermal problem we shall consider them In three variants. Just as In 

the problem of the semlllmlted Jet of Incompressible fluid expanding 

along a cone. 
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a) The temperatures of the cone surface and the nonperturbed gas 

are the same: 
Ai, - 0 
Aio-0 

If   y = 0, 
If   y^oo, 

j pxu Ai'o \\ pxudy)rfy = /fV = const with Pr = 1 

(AI0 = I + ^-I00). 

r. 
(8.86a) 

In this case, we restrict ourselves to the simplest case of Pr 

the energy equation can then be written In the form 

1; 

b) The surface of the cone Is nonheatconductlng: 

d£-0   if    r-0. 
A» = 0   If     y=.oo, 

(8.87) 

(8.86b) 
2jtsin (0 ^ pxu Ai rfy = ^ = const 

'(Ai-Z-i«). 

c) The temperature of the cone surface Is constant and different 

from that of the quiescent gas far away from the plate: 

A<-A<, If  y = 0, Ai = 0 If y==ool    (8.86c) 
(Ai = i — loo, Ai» = i«, — i«,).     J 

When solving the thermal problem with Conditions   (8.86b) and 

(8.86c) we shall suppose that we  can neglect the heat of friction In 

the energy equation.  It can then be written In the form 

*%■ + *%-UW)- (8.88) 
Passing over to the plane of A.A.  Dorodnltsyn's variables 

1-«.   n~\f-dy, (8.89) 

we transform the Initial system of equations to a form analogous to 

that of the corresponding system of equations of motion and continuity 

for a semlllmlted Jet of Incompressible fluid expanding along a cone: 
" s 
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du  , ~du d*u 

dw   ,  ~dw   . uw a»w 
"äf + ^ij + T"^^' 

(8.90) 

and the energy equation: 

aAio  ,  ~dM0 d'Aio (8.91) 

or 

) 

aA» . ~«Ai 
(8.92) 

The boundary conditions and Integral conditions can be written In 

the form 
« « p = W = 0   If       T) =» 0, 
H = u; = 0 if       Tl=» oo 

r 
■^ = const, 

^ Vuw[\ludr\\dr\=*-~ = const; 

AJ, = 0   If   n = o, 
A»o = 0    if    r\~*oo, 

oo / 3 V JT 

\Su AeoI ^lu\dr[\dri = -f =. const; 

**Lo    if    11 = 0. 
Ai = 0    if     TI=»OO, 

OS 

2npfl0 sin a J S«Ai »f t] = ^ = const; 
a 

-0.   | 
"    OO.       J 

(8.93) 

Ai = A«w  if     n 
At = o    if   n 

(8.94a) 

(8.94b) 

(8.94c) 

Examples of calculating the velocity distributions in a semlllmlted 

gas Jet and the temperature distributions  (for three forms of boundary 

conditions) are shown in Pigs.  811-8.13 which clearly Illustrate the in- 

fluence of compressibility. 

A solution to the system of equations analogous to (8,90)-(8.92) 

with Conditions  (8.93)-(8.94c) has been obtained above  (see Chapter 6). 
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Fig.  8.11.  Velocity distributions in a 
semilimited gas Jet.  V^-T^ pr-i,o: 
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Pig.   8.12.  Velocity and temperature distributions in semilimited gas 
Jet on heat-insulated plate   (M-O; TJI^-I in conventional initial cross 
section).   1) Velocity  (Pr ■ 0.75);  2-5) temperature; i. Pr-o.5;   *. PF-O.TS; 

: 

«. Pr- 1.0; <• P'->,0. 

As regards the return to the physical plane of coordinates x  and y 

it is carried out in the same way as in the previous problem of the 

plane laminar gas Jet. 

The calculations of laminar semilimited Jets of compressible gas 

considered in this chapter can be expanded to the case of chemical re- 

actions (among them dissociation, recombination and the like and also ; 
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Pig. 8.13. Velocity (a) and temperature (b) distributions In semi- 
limited gas Jet along plate of constant surface temperature. 
(I a«    »»-«.n). i. TJTm~Q,tl, I. T^fr^-O.S; t. T^/r»-!.»;  tTJTmmi.H   I.TJTmmi.9. 

combustion reactions) taking place In the gas volume or at the surface 

of the body placed In the flow. A problem of this kind, however, goes 

beyond the limits of this book. We shall therefore restrict ourselves 

to referring the reader to a solution for a semlllmlted gas jet react- 

ing at the surface of a cone (see [7l]). This paper, as also other 

analogous papers, may serve as an example of some kind of bridge between 

problems of the theory of Jets on the one hand and the theory of hetero- 

geneous combustion, on the other. A feature which Is particularly char- 

acteristic of them Is the presence of two quite different courses of 

the process (before and after Inflammation) and the critical phenomena 

of transition between them. 
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23. 25, 32. 47. 4«.«M. 71,174. «2. 104. 114. 117. HI. 119. 1», 184, 

135, 160, 175, 212, 256, 257, 267, JM, 271. 272, 27», SIB, 824. 

- 213 - 



Manu. 

££pt Footnote 
No. 

l82 In a circular motion« the influence of the Prandtl number 
Pr in the energy-redistribution effect recedes into the 
background (see [193])• 

- 

- 213a - 

• 

— 



0 

Part Three 

TURBULENT JETS OP FLUIDS AND OASES 

This part of the book Is devoted to turbulent flows of viscous 

fluids and gases. Owing to the absence of exact equations of turbulent 

flow we must treat the problem In a way different from that In the pre- 

vious chapters. As an Initial qualitative model of concrete turbulent 

flow we use the solution of an analogous problem of the theory of lami- 

nar Jets (If It Is known). Thus, for self-similar turbulent Jets of In- 

compressible fluid, we can use all the equations (In nondlmenslonal form) 

and their solutions obtained by the method of the asymptotic boundary 

layer. The values of the constants will of course be different. Detail- 

ed data for such problems will be given In Table 11.1. 

The experiment Is, however, of fundamental significance for the 

development of the procedures of calculation In the theory of turbulent 

Jets. In the first chapters we shall therefore briefly recall the basic 

experimental data on the expansion of turbulent Jets. We shall also give 

the equations of the turbulent boundary layer. In this connection, we 

shall discuss the various methods of calculation. In particular, great 

attention will be paid to the so-called turbulent Prandtl number. 

A separate chapter Is devoted to th*> expansion of a turbulent 

(semilimited) Jet of Incompressible fluid along a solid surface. Exper- 

imental data proving that the boundary layer of a Jet becomes turbulent 

near the wall are discussed In detail. 

When calculating turbulent gas Jets our main attention is paid 

to the turbulent mixing in compressible gas and the calculation of self- 

si liar gas Jets on the basis of the supposition of similar momentum 

flux density (pua) distributions. 
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A wider method of calculation of the theory of turbulent Jets, 

the method of the equivalent problem of the theory of heat conduction. 

Is partially connected with the latter problem. We shall discuss In 

detail the fundamentals and the development of this method which con- 

sists of a unique semlemplrlcal linearization of the equations of a 

free turbulent boundary layer of fluid or gas. We shall describe th*! 

procedure of applying It to various problems. With the help of this 

method (when solving the "Inverse problem") new formulas are obtained 

for the calculation of turbulent friction and heat conduction. It Is a 

peculiarity of these formulas, which In the simplest cases take an In- 

termediate position between the well-known "old" Prandtl formulas and 

the "new" ones, that the expression for, e.g., the turbulent stress of 

friction, contains two terms. 

In the last chapter of this part of the book, we calculate the 

turbulent gas Jets on the basis of the supposition on the similarity 

of pu2 and mainly by the method of the equivalent problem. Here we give 

a detailed comparison of the results of calculation and the experiment- 

al data on the expansion of various (plane, axlsymmetrlc, submerged, 

parallel, etc.) turbulent Jets of fluid or gas, among them also non- 

self-slmllar ones. 
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Chapter 9 

EXPANSION OP TURBULENT JETS 

9.1 THE GENERAL LAWS 

An Investigation of turbulent Jets must be based on both the 

qualitative flow pattern taken from the theory of laminar Jets and 

the fundamental laws governing the expansion of such flows observed 

In experiments. At present, this way of treating the problem Is the 

only one which Is correct as we have no closed system of physically 

strict and well-established equations of turbulent motion at our dis- 

posal. The most advanced modern theory of turbulence, the statistical 

theory developed In the papers by A.N. Kolmogorov, L.D. Landau, A.M. 

Obukhov, W. Heisenberg, G. Bachelor, et al., does not dispose so far 

of sufficient data for a calculation of anlsotroplc turbulent motions 

(In particular, turbulent Jets), without using empirical constants. 

Taking Into account the complexity and oumbrousness of the apparatus 

of the statistical theory of turbulence [l>*»200] it is, as already 

mentioned, expedient to base our considerations for the present on the 

empirical flow pattern and the generalized, unexact but Illustrative 

so-called "semlemplrlcal" methods of calculation which. In addition 

to this, are easy to apply. Many of them have been developed In analogy 

to the methods we discussed In detail In the previous parts of the 

book for the laminar Jets. In addition to this, not only Individual 

methods of calculation but also the fundamental physical laws permit- 

ting the consideration of the problem of the expansion of turbulent 
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Jets as a separate and Independent class of motions of viscous fluids 

of gases again display to some degree (of course In another quantita- 

tive aspect) the fundamental properties of laminar Jets. 

In fact, when we consider the series of graphs represented In 

Pigs. 9.1-9.5 taken from various experimental papers, we find many re- 

sults which a^ree qualitatively with the analogous results obtained 

for laminar Jets. First of all, this holds true for the so-called simi- 

larity of the velocity distributions and those of the temperature dif- 

ference In the cross sections of turbulent Jets of Incompressible fluids, 

or the quantity pu2 In gas Jets. This similarity or, what Is the same, 

the universality of the nondlmenslonal distributions Is the same for 

the characteristic regions of the flow within a wide range of values 

of Reynolds' number calculated from the efflux parameters of the Jet. 

This enables us to speak of a self-similar flow In a more general sen 

than In the case of laminar Jets. In laminar Jets the transverse veloc- 

ity distribution In a source Jet, given In the coordinates ^ ~/(T) 

was also independent of the Reynolds number. The absolute position of 

a concrete distribution (I.e., the transition from the power function^ 

to the coordinate x) was, however, connected with the value of Re that 

entered the variable 9 (for example, at the boundary of a plane Jet 

where ,p = yl/^! etc.). In contrast to this, the expansion of a turbu- 

lent Jet Is, as shown by experiment, virtually Independent of the co- 

efficient of viscosity of the fluid*, etc. 

It must be noted that the relative distributions ~ = F[jj  and the 

analogous ones along the Jet obtained In experiments with various 

arrangements and drawn In real (nontransformed) geometrical coordinates 

are, as a rule, not In agreement with one another. This difference Is 

noticed not only near the nozzle Issuing the Jet where the Influence 

of the Initial conditions Is great, but also away from It. It Is ex- 
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Pig. 9.1 Velocity distributions In the plane of the Jet (E. Portmann's 
data C2**]). a) Distributions In different cross sections. 

M i 2    |      3    |      1    |     • 6     | 
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b) Universal distributions (x - 0.2-0.75m). 1) u, m/sec; 2) y, m. 

plained by the finer properties of the Jet's hydrodynamlc structure 

(level of pulsation, etc.). Influencing the latter (by way of nozzle 

profiling, arrangement of grids and the like) the Intensity drop along 

the Jet axis can be varied within well-known limits, the general charac- 

ter of the flow Is, however, maintained In this case. 

Prom the other peculiarities we see that for all free turbulent 

Jets the effective boundaries of the source Jet are rectilinear and 

that the thermal boundaries of the Jet are always a little broader than 

the dynamic ones. This fact Indicates that the effective coefficient o 

turbulent heat transfer (a-) Is always greater than the effective co- 

efficient of turbulent momentum transfer (üm). In other words, the 

ratio of these coefficients which Is usually called the "turbulent 

Prandtl number" PrT=X Is always smaller than unity. Disregarding the 
"T 
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Fig.   9.2 Universal temperature and ve- 
locity distributions in a plane jet 
(after data by H.  Reichhardt [2"]). 
1)  Temperature;  2) velocity. 
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) 

dependence on the values of the true physical constants of the medium, 

the turbulent Prandtl number is approximately equal to about 0.7-0.8 

(i.e., close to the physical Prandtl number for air). 

Another fact worth noting, a property possessed by all turbulent 

Jets: the distributions of the characteristic quantities (velocity, 

temperature, etc.), far away from the nozzle issuing the Jet, display 

the same universal character, regardless of the dependence on the ini- 

tial conditions of efflux. Thus, for example, at a distance of the or- 

der of 20 or more nozzle diameters, the distribution of the velocity 

u/u in the Jet cross section will be the same for the efflux from a 

round, square or triangular nozzle. This fact, which is established 

experimentally, shows that the conception of the source Jet is fully 

suitable to describe the laws of expansion of turbulent Jets far away 

from the nozzle. 

As already mentioned in the introduction, the property of self- 

similarity of a motion is in its physical mechanism akin to the so- 

called regularization of the temperature distribution in processes of 

unsteady heat conduction. It is interesting not only as a proof of the 
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Pig. 9.3. Universal veloc- 
ity distribution in round 
Jetlx/d - «2 + J»; M - o.t +0,6); 
(after data from [260]). 
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similarity of the leveling processes of momentum and the like in turbu- 

lent flows on the one hand and the heat conduction on the other, but al- 

so, from the mathematical point of view , as it is p sslble to use the 

equations of self-similar flow in the theoretical description of the 

process. 

We also want to indicate that experimental data on gas Jets, in 

agreement with those given in Pig. 8.2, speak in favor of a faster damp- 

ing of ve.''clty (and surplus temperature) in the case where the Jet ex- 

pands in a denser medium (e.g., hot Jet of gas in cold air), and vice 
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versa. As established In a series of papers [33, 50, 52, 58, 11^, etc.] 

In Jets of compressible gas the assumption of a similarity of the distri- 

butions of velocity and, particularly, of surplus temperature In the 

self-similar section of a Jet Is rather far from being real. The assump- 

tion of similarity of the distributions of "transferred substances," 

momentum flux density pu2, flux density of excessive heat content 

pcpuAf etc.. Is In much better agreement with the experiments. 

As already mentioned, the Influence of the parameter of compressi- 

bility (the ratio of gas density In the surrounding medium to density 

In the Jet, 0) = ^) on the distributions of velocity and surplus tempera- 

ture Is qualitatively the same as in laminar Jets (see Fig. 8.2). This 

proves once more the close relationship between the theories of laminar 

and turbulent Jets. For the latter, however. Pry < 1. in the thermal pro- 

blem of the turbulent Jet of fluid or gas It has therefore become unnec- 

essary to study the influence of Prandtl's number on the temperature 

Fig. 9.5. The universal dynamic pressure distribution for the Jet boun- 
dary (after data by Sh.A. Yershin and Z.B. Saklpov ['•]) with w ■ O^/PQ 
■ l-l4.5j isothermal air Jet, w ■ 1; Jet of combustion products, w ■ 
■ ^-5.3; efflux of hydrogen in air, w ■ 14.5. 

distribution, etc. Taking this difference into account, the solutions 

obtained for laminar Jets may serve as a model for the turbulent ones. 
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More than that, for self-similar Jets, the nondlmenslonal equations 

and solutions are Identical (with p  const). 

9.2 THE MICROSTRUCTURE OP TURBULENT JETS 

A detailed Investigation of the structure of pulsations In free 

turbulent Jets Is beyond the framework of this book. We only give some 

results of experimental Investigations of the field of the pulsation 

characteristics of turbulent Jets. A series of examples, taken from 

experimental papers dealing with the study of the mlcrostructure of 

turbulent Jets [■•»"•»ttt»tii.t«»,«te.j are shown ln Plg8t 9.6-9.10. 

Most of them were obtained by therraoanemometrlcal measurements In air 

Jets. Referring the reader who Is Interested in details of the experi- 

ment to the literature mentioned above*, we shall focus our attention 

to some qualitative results. 
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Fig.  9*6. Nondlmenslonal distribution of 
velocity pulsation in round Jet   («/d ■ 
■ 7.5-10.0 after data by O.S.  Antonova 
[li.lt]). 

s V V^ „ V** .. ar »■. 
r -H "«on 

3 1 24.1 24.2 
3 0 10.1 11.8 
K 1 26.6 24.1 
* 0 14.8 13.4 

- 222 - 

*m 



n ffi 

18 7 r^ 
^v ^ 

16 f   X 
<*r< 

* K -/ % u u 
12 

UJ ft* s s u^ — — ■" ■~~ "^—, ^H 
; r V V s, c 10 

^ «^ X K s _ _ —* 2   j 
8 

—w< 

M* 
— 

7^ 
1 

ft 'A/ /■ ^ ̂  3r "7 1 7 
^ b ̂  7 

2' 
I 

us A \ r" 
_ 

l   M 0.4 0. 6 0 1 t 0 1.2 1.4 Iß 1.8 2/)     OVWWWifi (11« (1 (« « 
/A yA 

1 '1 U^ u HiJ T T^ 1 
i B!   1» r " PK 

n— 

vl n K 
s. 1    1 iJ 

0 Ofi Ofl V Iß iß 2fi 2ß V 3ß w ♦.♦ ♦/ v 

C ^ 
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The most important results are due to the presence of a rather 

clear almost direct proportionality between the intensity of pulsation 

of the velocity vector and the derivative of the mean velocity with res- 
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pect to the normal to the direction of the Jet. This connection (also 

taiown for streams in channels and the like C111]) shows that L. Prandtl's 

empirical formula «'= ^j U is the mixing length) in a first approxima- 

tion corresponds to the true flow pattern. 

In a sufficiently good approximation we also have proofs of the 

proportionality between the pulsations of the longitudinal and the 

transverse velocity components. To Illustrate this we give a table with 

data for an axisymmetric air Jet. A comparison between the intensities 
i 

of pulsation of u' and v'  may be found in paper C2*0]. 

As regards the absolute level of pulsation, it reaches in a free 

Jet a value of the order of twenty per cent (of the local magnitude of 

the velocity in the middle part of the Jet), i.e., it is higher by al- 

most one order of magnitude than for flows in smooth tubes. The pulsation 

intensity, which increases along the Jet, passes through a maximum and 

then drops; in the cross sections the maximum of velocity pulsation coin- 

cides approximately with the inflexion of the mean velocity distribution 

curve. 
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Fig. 9«8. Variation of intensity of velocity and temperature pulsation 
along the Jet axis (after data by S. Corrsln and M. Uberoi C2'*]). 1-2) 
Pulsation of longitudinal velocity component referred to mean value of 
axial velocity (1) and Initial velocity (2); 3-1*) temperature pulsation, 
referred to surplus temperature on the axis (3) and in the outlet cross 
section (1). 
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Fig.  9.9. Transverse scale unit of turbulence as a function of the dis- 
tance  (after data by I.  Laurence  [2'0]). t//r0 - 1; M ■ 0.3; Re0 - 3.105, 

) 

In the self-similar sections of the Jet, we may also observe an 

approximate similarity of the distributions of pulsation characteristics 

(the rms pulsation and, with more spread, the values of the correlation 

coefficients). 

Another feature whose experimental verification Is of principal 

significance Is the linear dependence on the coordinate x (In self-simi- 

lar sections) of the transverse scale unit of turbulence, determined by 
00 "I ' 
r uiut 

the formula ^ = \^u,u.<fy. where ^„.u, =-7^=-7=r Is the correlation coefficient 

between the pulsating velocities u' and u' at two points of the Jet (In 

one and the same cross section). This observation shows that In a turbu- 

lent Jet there exists In fact a statistical characteristic parameter of 

the dimension of a length, a scale unit. Introduced as the Prandtl mix- 

ing length, L - ex. 

It Is also of Interest to consider the variation of the frequency 

spectrum of the turbulent pulsations In a Jet. We may see from a typical 

diagram of the spectral density of pulsation C280] that the main energy 

of pulsation, according to a rough estimation, must be In the range from 

100 to 600-700 he, while the whole spectrum covers a range from about 20 

he up to several thousands. 
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Measurements carried out with the help of frequency filters and 

also visual observations by means of a cathode oscillograph shows that 

the frequency of pulsation drops considerably as we approach the outer 

effective boundary of the Jet. In the direction of the ordlnate corres- 

ponding to half the maximum velocity value and, In particular, near 

the boundary of the Jet, we may observe with the help of an oscillograph 

the phenomenon of the so-called "Intermlttence" of turbulence [25»181» 

i»3»2oo, e c*]t that Is, an alternate (In time) succession of periods 

of virtually laminar flow patterns and such of turbulent ones. This 

fact might yield an explanation of the disagreement of the mean veloci- 

ty distributions in Jet cross sections near the Jet boundaries observed 

when comparing theoretical and experimental results, which is caused by 

an alternation of laminar and turbulent "viscosity." The influence of 

this intermlttence on the structure of the turbulent Jet (in analogy to 

the problem of the wake [i1*1»22«]) has at present not yet been taken in- 

to account comprehensively though it would be of great Interest. 

We also know [255] that in the case of the expansion of a Jet in 

a wake the level of turbulent velocity pulsation is much lower than in 

a free Jet. This is explained by assuming the parallel flow to exert a 

"pressing" effect. 

As regards the pulsation of temperature, it is (see the data by 

G.S. Antonova [11,20^] and [239]) much smaller than the velocity pulsa- 

tion (see Pig. 9.8) but it resembles the latter as to order of magni- 

tude and characteristic features. The differences in the u'  and T' 

pulsation intensities make it very difficult to separate in thermo- 

anemometrical measurements the temperature pulsations from the general 

indications, i.e., the pulsations of the electrical tension on the 

wires of the thermoaneraometer which react upon both the velocity and 

the temperature pulsations at the same time. Such a separation was 
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carried out independently In the papers by S. Corrsln and M. Uberol 

[2S9] and G.S. Antonova, L.A. Vulls and P.V. Chebyshev in 19i»9. 

Apart from the methodical significance, it is interesting for the 

understanding of the nature of these pulsations. On the basis of simple 

considerations on the origin of the pulsations as the displacement of 

various Jets of fluid it must be assumed that in the air Jet which is 

hot compared to the surrounding medium where velocity and temperature 

are maximum at the Jet axis, the correlation between u' and T*  must be 

positive. In the opposite case, in a cold air Jet, compared to the sur- 

rounding medium, where at the Jet axis the velocity is maximum but the 

temperature minimum, we must expect that the correlation between w' 

and T'  is negative. In fact, in the first case (Pig. 9.11a) the air 

stream hitting the anemometer wire from a central zone of the Jet car- 

ries along particles of higher velocity and higher temperature and the 

stream from the periphery such of smaller velocity and lower temperature 
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Pig. 9.11. Schematic representation 
of nonisothermal Jet. a) R _ > 0; 
 velocity; b) Rur < 0, 
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temperature. 

In the second case (Pig. 9.11b) the wire Is hit by an air stream of 

higher velocity and lower temperature (from the center) or, vice versa, 

of lower velocity and higher temperature (from the periphery).* 

This result, the dependence of the sign of the u'T' correlation 

on the relation between the velocity and temperature distributions, 

has been verified by experiments. Calculation shows that the sign of 

the correlation Is connected with the shape of the curve showing the 

voltage pulsation Intensity on the wire as a function of the temperature 

difference between wire and air the wire being warmer than the air (If 

ÄuT=r7=s-r7~>0 this curve Is an ellipse. If AttT<0 It Is a parabola). 

This has also been proven by experiment. Analogous considerations 

were also applied (and verified by experiment) to the dependence of 

the sign of the correlations of the w' and v' pulsations on the dis- 

tributions of the mean values of « and v. 

The measurements of the pulsation structure of turbulent Jets 
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show In this way that the averaged pulsation characteristics 

V^u7*, i/j/*, ÜV, YW*,  «//', L etc., are simply linked with the mean charac- 

teristics of the flow. This fact indicates that it is promising to 

develop the methods of the statistical theory of turbulence and that 

it is possible to use them even in near future in practical applications 

of the theory of turbulence of Jets. At present, we may only point out 

the Importance of systematic measurements of the pulsations, of more 

profound interpretations of the results of measurements of the mean 

values and of the collecting of data for a further development of the 

theory. 

9.3. THE EQUATIONS OF THE TURBULENT BOUNDARY LAYER 

Turbulent boundary layer equations written in terms of the mean 

values can be obtained on one of the following ways. by a transition 

from the Navier-Stokes equations to the Reynolds equations and a subse- 

quent estimation of the terms of these equations, or by Introducing the 

mean and pulsatory quantities in the Prandtl equation of the laminar 

boundary layer [212]. Let us briefly recall the second way of deriva- 

tion, first considering a Jet flow of incompressible fluid. 

We go back to the initial system of equations, ('I.S), which, when 

we use the continuity equation, can be rewritten in the following form: 

rau« , i a , t .i   dp <     i a / k flux 
y 

ra~      la        -i        ia/,kraw      wl\ 
p [ 07 (««o+^r ä7 (y*™) J = ^j^" äv \y  L^ ■" v J; • 

■t(lf*») + ^(^)-0. 

^[i(«y)+7i^)]-^7i(^). 

(9.1) 

Remember that these equations are written for a plane (k ■ 0) or 

\ axlsymmetric (k ■ 1) motion. 

- 229 - 



In the system of equations (9.1) we replace all the actual 

quantities (u, vt  w, p, T)  by the sums of the mean and the pulsatory 

quantities such that 

H = u-fa', v = v + v'  etc- 

(where, as usual, ^„^„o, üi = ü* + u5r, «T = ü»+iT»7 etc.). The physical 

constants of the medium (u, X, c ) are assumed constant, for the sake 

of simplicity. 

In the final form of the equations of the averaged quantities we 

take into account that the averaged motion is steady, the effects of 

molecular momentum and heat exchange are negligibly small compared to 

the turbulent pulsations) and, finally, we assume that ^^^j« as usual- 

ly in the boundary layer theory. 

Under these conditions (after a repeated application of the contin- 

uity equation) the equations can be written in the form 

/-aü . - aü\   dp ,   i   d , *   * 

(9.2) 

w*   dp 

\ -dw   ,  —dw   .    vw \        Id.,,     v 
p [U 7* +" T* +-7"J= ynu^' 
£(»»»)+■£ (1^-0. 

The quantities of the turbulent tangential stresses of friction 

and heat flux which enter Eq. (9.2) are determined by the formulas 

txv = — P«*V, TW = - pv'w',   j = — pcpw'F. 

The further way of solution consists of a choice of a concrete 

form of the dependence of the tangential frictional stresses and the 

heat flux on the coordinates and the mean values of velocity, tempera- 

ture and their derivatives, on the basis of some intuitive considera- 

tions verified by experiment. There exist, generally speaking, various 

methods for such a choice. We can write immediately the sought expres- 
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n 
slons for T and q or, Introducing the coefficients of turbulent trans- 

fer In their original forms. In analogy to the laws of molecular fric- 

tion and heat conduction: 

du I dw       w \ , «r     IQ."*) 

In the latter case, which goes back to Busslneskly (1877), the 

determination depends on the form of the expressions for the coeffi- 

cients of turbulent exchange, ut and Xt or VT = — and aT = —. Here 

we may speak also formally of a turbulent analogue of the Prandtl num- 

ber equal to the ratio vT/aT  (briefly the turbulent Prandtl number). 

Note however that for an Incompressible fluid the transition to formu- 

las of the type of Newton's law for the Internal friction or Fourier's 

law for the heat conduction Is In some way Justified by the fact that 

the molar transfer of momentum and heat Is observed in the case of the 

presence of a mean-velocity gradient and a mean-temperature gradient. 

In the case of a compressible gas and a variable density distribution 

this correspondence may be violated. The concrete form of the expres- 

sions for the coefficients of turbulent exchange (or turbulent friction 

and heat conduction) used when investigating Jet flows of incompressible 

fluid will be discussed in the following section. Here we restrict our- 

selves to indicating that, with the help of experimental data, it is 

possible to calculate some self-similar turbulent Jet flows of incom- 

pressible fluid within the framework of semiempirlcal methods. In other 

cases (e.g., a semilimited turbulent Jet) such a calculation is more 

difficult and can be carried out by way of a "Junction" of expressions 

applying to free and close-to-the wall turbulent boundary layers. 

These methods of solution prove inapplicable or very complex and 

cumbersome in the case of many nonself-slmilar Jet flows of incompres- 

sible fluids. If we consider, for example, such a problem of practical 
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Importance as the expansion of a turbulent Jet issued from a nozzle 

of finite dimensions, It has so far not been possible to solve It ef- 

fectively by means of some direct  semlemplrlcal method.   In these cases 

In engineering calculations we must have recourse to the relatively com- 

plex methods of constructing the jet In separate sections   (Initial,  In- 

termediate and final sections,  see  [4]), to an Immediate choice of the 

velocity and temperature distributions,  for example,  according to the 

well-known formula by H.  Schllchtlng   (see  [11]), or we  assume them given 

In the form of polynomials and the  like In the method of Integral rela- 

tions. 

Yet more complex Is the case of turbulent Jets of compressible gas. 

In this connection the following must be said.  If we apply systematical- 

ly Reynolds'  method of the representation of all actual quantities  (ve- 

locity components, parameters cf state, physical constants, etc.) In 

the form of sums of averaged and pulsatory components, we obtain, after 

having passed over In the boundary layer equations to the averaged quan- 

tities, a great number of terms containing mean products of pulsations 

of the velocity  components, the density, etc. 

The experimental data available at present are Insufficient for a 

well-founded choice of seml-emplrlcal expressions permitting the final 

formulation In the differential equations of at least a single averaged 

quantity  (without  Introducing a great number of empirical constants). 

Thus, as  shown e.g., by L.  Howard  [175], a decompot'tlon of all 

quantities Into averaged and pulsatory components, though It enables 

us to write equations, does not show a way of applying simple intuitive 

formulas permitting an effective solution of problems of turbulent 

flows of Incompressible fluids.  Therefore, in a great number of papers, 

one has introduced some restricting assumptions, e.g., not only the 

mean pressure but also the actual pressure are supposed constant which 
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permits the elimination of density pulsations, such pulsations are 

canceled Immediately, triple products of pulsatory quantities are 

neglected and the like (see [2, 4, 48 etc.]). 

The small effectl\eness of such assumptions Is connected with the 

fact that It Is Impossible to know beforehand the limits of their appli- 

cability to turbulent motions of compressible gas (limited velocity, 

temperature drop, etc.). 

Another way of calculation encountered in papers on the theory of 

turbulent Jets of compressible gas is based on the fact that a decom- 

position of the form 0='(i) + (D' applies to both the "original" quanti- 

ties (M, U, p, and T, etc.) and the "complex" ones, the flux density 

pu of the fluid [4l], the momentum flux density pu2and the flux density 

of excessive heat content pcpuAJ [50, 55], the stagnation temperature 

TV-r+'uJ/2cp etc. The usefulness of each of these assumptions separate- 

ly may, of course, not be estimated immediately by comparing the final 

results of the calculations with those of experiments. In addition to 

this we have at present only insufficiently reliable experimental data 

on compressible gas Jets at our disposal. A calculation of such Jets 

by semiemplrical methods derived from the classical procedures by 

Prandtl for incompressible fluids (the mixing length, etc.) is therefore 

connected with great difficulties. This may be explained by the fact 

that for an extrapolation of the method of calculation to the region 

of compressible gas Jets the single (necessary) condition of the re- 

turn at p » const is unsufflclent for a Justification of the mathemati- 

cal method of treating turbulent Jets of incompressible fluid. A series 

of attempts (not yet successful, of course) of developing a procedure 

of calculation of compressible gas Jets are contained in the papers by 

G.N. Abramovlch [7, 8, 11, 12 etc.]. We do not intend to consider them 

here but, at the end of this part of the book, we want to discuss the 
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calculation according to the method of the equivalent problem In the 

theory of heat conduction which. In the authors' opinion, Is most 

promising. 

A weak point of virtually all methods of calculating turbulent Jets 

of compressible gas (and the comparison of the theoretical results with 

experimental data) is the direct or indirect ignoring of the difference 

between the mean values of composite quantities and the products of 

means. For example, the usual method of calculating the velocity is re- 

duced to splitting the mean quantity pu2 in the quantity in the quantity 

p", determined by dividing p by RT and subsequent evolution. The quantity 

pu2 is usually measured by means of a Pitot tube which yields something 

as a mean of pu«, pu* and pu«. The difference between these values and the 

others in the calculations is, as a rule, not taken into account when 

processing the experimental data and comparing them with the results of 

calculations. In most cases, it is concealed by the spread of the exper- 

imental points and practically cannot be taken into account. In indivi- 

dual cases, in zones of steep temperature gradients (e.g., at the flame 

front in homogenous combustion of gas, etc.) this inaccuracy may result 

in noticeable not only quantitative but also qualitative distortions of 

the calculated velocity distribution. 

** 
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217     We are concerned with am evolved turbulent flow. With 
relatively small values of Re Its Influence may be no- 
ticeable near the nozzle; It may affect the Initial 
thickness of the Jet, the position of the "pole," etc. 

222     In particular, in the book [11] detailed data of G.S. 
Antonova [20] are given which refer to measurements of 
the pulsations of velocity, temperature and the correla- 
tion coefficients in a nonisothermal Jet. 

228     For the electric resistance of a wire heated by current, 
the case illustrated in Fig. 9.11a corresponds to the 
drop of resistance caused by cooling at high velocities 
and the increase of it because of heating by a high-tem- 
perature gas, and that of Fig. 9.11b corresponds to com- 
mon heating or cooling of a wire by Jets streaming against 
it. The sign of the correlation of the actions of u'  and 
T'  on  the wire is therefore opposite to the sign of the 
correlation of u'  and T*  in the stream. 
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Chapter 10 

TURBULENT MOMENTUM AND HEAT TRANSFER IN JETS OP INCOMPRESSIBLE FLUID 

10.1 ON THE COEFFICIENTS OF TURBULENT EXCHANGE 

A calculation of the flow pattern, the heat transfer and the like 

in the turbulent boundary layer, for example, in the case of a plane or 

axisymmetric nontwisted Jet is reduced to an integration of equations 

in terms of averaged quantities, of the form 

du   , du 1  d / v > 

<>y 

Tc-(y»«) + ^(^)-o, dx 
(10.1) 

In these equations the tangential turbulent  frictional stress T- 

and the turbulent heat  flux q_ are, generally speaking, unknown func- 

tions of coordinates, averaged velocities and their derivatives.  The 

expressions  for T_ and q    written formally according to Bussineskiy 

[212]  in the form of 

du . dT 
Tr =^T -^ , 9r = — A-r -^ (10.2) 

replace the one unknowns by others as the question of the expressions 

for the unknown quantities y_, and X_ remains still open. In the general 

case, they are variable in the field of flow, complex functions of the 

coordinates and the velocity variation. 

The assumption of the constancy of these quantities which permit- 

ted their treatment in analogy to the physical constants u and X, the 

molecular viscosity and the thermal conductivity, which, at first sight, 
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Is quite natural, proved Inapplicable In the general plan. Note how- 

ever (as this was explained much later) that for certain particular 

cases (ax1symmetric turbulent source Jet of incompressible fluid) this 

assumption results in a satisfactory agreement with experiment wherefrom 

the empirical constants y. and X are derived. 

The solution of the system of equations (10.1) requires another 

way since a transition to the Reynolds equations again means replac- 

ing the one unknowns (T and q_) by others (the quantities iTP, uTr etc.). 

It was therefore only for several decades that the semlempirical methods 

of the theory of turbulence, based on the ideas of L. Prandtl et al., 

resulted in a practical application of the turbulent boundary layer 

equations for the solution of the problem on the expansion of Jets of 

incompressible fluids. 

Since L. Prandtl's semlempirical theory of momentum transfer and 

J. Taylor's semlempirical theory of vortlcity transfer are considered 

in detail in a great number of monographs and manuscripts on the me- 

chanics of fluids and gases [11, 25, 130, 135, 151, 174, 175, 212 etc.] 

we restrict ourselves to a brief information dealing chiefly with the 

mathematical side of the problem. 

The well-known formula L. Prandtl suggested in 1925 [278] for an 

incompressible fluid 

«T-p^dJ-)'; «-«•• (io.3) 

was used by W.  Tollmlen [317] when solving problems on the boundary of 

Jet and plane and axlsymmetric sources by the method of the turbulent 

boundary layer of finite thickness. 

For the thermal problem an expression analogous to Eq.   (10.3)  for 

the heat flux will read as follows: 
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Maintaining formally the expression of Eq, (10.2) we determine 

the coefficients of turbulent transfer in Eqs. (10.2) and (10.3) in 

the following way: 

= ^- •'-£-"•*        (10.5) - *1 

(in Prandtl's method of momentum transfer the "mixing lengths" for the 

velocity I  and the temperature Iq  are considered identical). 

Formulas (10.3) and (10.1*) are the basis of the theory of the 

turbulent boundary layer of finite thickness. 

This method was developed in detail and applied in the papers by 

G.N. Abramovich [A] where the calculations are based on J. Taylor's 

method [4, 11] instead of that by L. Prandtl. It is well-known that 

the former yields the same result as Prandtl's theory for the solution 

of the dynamic problem. For the thermal problem Taylor's procedure has 

the advantage of different values for the velocity and temperature mix- 

ing lengtns. Formally this difference corresponds to a value of Pr-, - 

■ 0.5 of the turbulent Prandtl number. This value is in qualitative 

agreement with the results of experiments whereas Prandtl's procedure 

resulted in the physically wrong conclusion of the similarity of the 

temperature and velocity distributions in the Jet, the wake, etc. 

At the same time, as mentioned long ago [17**, 58, etc.] a calcu- 

lation according to Taylor's method also yields results inadmissible 

from the physical point of view. As an example may serve the recti- 

linear temperature distribution (with discontinuities of the heat flux 

values at the boundaries) in the problem of the turbulent boundary of 

8- incompressible fluid Jet. 

As regards the quantitative side of the problem, the equality 

Pr», ■ 0.5 is also in disagreement with many experiments on nonisother- 

mal turbulent Jets of incompressible fluid. The failures of Taylor's 
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method become particularly marked when one tries to generalize them to 

turbulent Jets of compressible gas. The remark Is general In a well- 

known way and refers to the application of the method of the layer of 

finite thickness to the thermal problem. In fact neither the assumption 

on equal thicknesses of the dynamic and thermal boundary layers nor ar- 

tificial ways of Introducing different thicknesses succeed, as a rule, 

In obtaining results for the temperature distribution which are fully 

satisfactory from the physical point of view. 

These disadvantages become particularly obvious In the calculation 

of compressible gas Jets. 

Much more convenient for the calculation Is the so-called second 

method by L. Prandtl [280] (applied Independently for one of the con- 

crete flows by B.Ya. Trubchlkov [196] In 1938). This method Is the ba- 

sis of a calculation of turbulent Jets by the method of the asymptotic 

layer. In order to pass over to this scheme we replace In Prandtl's 

formula (10.5) a derivative by a ratio of finite differences. I.e., we 

assume that 

du       "mit      Mmln        i.      i      - _. i ,    b~l~X, 

and finally, 
vr = ft(MmM—Bmln).     «r = 6, (limtx - «mln). (10.6) 

The first of these formulas was applied by H. Görtier [250] In or- 

der to solve a series of dynamic problems (parallel flows, plane Jet, 

etc.). 

It Is quite natural that any form of the expressions for the co- 

efficients v-  and aT  Is expedient Insofar as the form of the dependence 

of the transfer coefficients on the coordinates and the averaged veloc- 

ity Is "guessed" correctly for concrete flow problems. 

In his time It was Prandtl's great merit that, assuming In the 
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formula t ^—püV for the velocity pulsation u'~w'--'/^-. he replaced the 

quantity ^v which Is difficult to guess by the clear notion of the mix- 

ing length I.   In simple cases of a developed turbulent flow on a plate, 

In a Jet or the wake, we may conclude from dimensionality considera- 

tions that i ~ 6, where b  Is the characteristic thickness of the boundary 

layer. In self-similar flows along an Infinite plate b  ■ ö.J/. In a 

source Jet (and In the problem of the Jet boundary) b  - c?x.   The con- 

stants c. and og  must be determined by experiments. 

The disadvantages of the procedure based on Eq. (10.6) (as also 

of the first Prandtl method) are connected with the assumption of the 

equality of the effective thicknesses of the dynamic and thermal layers, 

which results In a similarity of the velocity and temperature dlstrlbu 

tlons. This Is easy to avoid If In Eqs. (10.6) for ü-, and a„  we take 

different values of the characteristic thicknesses (or different values 

of the factors of proportionall ' In the formulas of the form b  - k«, 

b    » fe x). This modification of the "ormulas is in fact not a logical q        q 

consequence of the transformation of Prandtl's first formula to the 

second one. These considerations, however, cannot be considered as essen- 

tial since proportionality formulas of the formVT~AT~ftt/are obtained 

for the self-similar flow as the result of simple consideration of di- 

mensionality. But as to the values of the factors of proportionality in 

these formulas, there is no reason for assuming them equal. 

10.2. CONSIDERATIONS OP DIMENSIONALITY 

Let us assume, for example, that in the case of a turbulent sourc 

Jet in the self-similar zone of the flow the coefficients VT = vr(*) 

and ar = aT(x)  depend only on the distance from the source. For a develop-' 

ed turbulent flow the dimension of the coefficient of kinematic viscos- 

ity can only be obtained in the form of a product of some characteris- 

tic length and a characteristic velocity. As the characteristic quantity 
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for the dimension we take the effective thickness of the Jet b -= b(r), 

as the characteristic velocity we choose the velocity at the axis of 

the flow. Consequently, 

VT (Z) = const b (x) um (x). 

In analogy to this, the coefficient of turbulent thermal dlffu- 

slvlty, a., by virtue of the same dimension considerations, must be 

proportional to the coefficient of kinematic viscosity, u_, such that 

ar -- const b{x)u,n{x). 

Generally speaking, the expressions for y_ and a-, contain differ- 

ent factors of proportionality, such that we could say that we are con- 

cerned with the transfer of quantities of vector or scalar character. 

Since the conception of the effective thickness of the asymptotic layer 

Is based on convention, a difference In the factors of proportionality 

corresponds to different dimensions of the thermal and dynamic layers. 

The problem whether the effective layer thicknesses are equal or 

different Is, obviously, solved by way of comparison with the experi- 

ment. It has already been pointed out in the previous chapter that in 

all cases of free turbulent Jets of incompressible fluid the thermal 

boundary layer is broader than the dynamic one; in other words, aT>vr. 

Thus, for the mathematical scheme of the asymptotic layer we must 

assume In problems of source Jets and the Jet boundary that 

VT^bUn]    flT = 6,ttm. (10.7) 
vT   b 

In this case, the turbulent Prandtl number PT = — ^ T" will be a 

constant quantity in a first approximation. 

The above considerations are based on a dimensionality analysis. 

It is therefore expedient to complete its application and establish 

the form of its dependence on the coordinate x  of the effective layer 

thicknesses and the maximum velocity u (and also the characteristic 

value of the surplus temperature A? ). Let us do this for three cases 
In 
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of turbulent Jet flows of incompressible fluid, namely a Jet boundary, 

plane and axisymmetric source Jets, under the supposition of universal- 

ity of the distributions of u  and AT in the Jet cross sections. 

As we are concerned with an evolved turbulent self-similar motion, 

the coefficient of molecular kinematic viscosity, v, does not belong to 

the given quantities which do not comprise any quantity of the dimension 

of a length, with the exception of the coordinate x. The conditional 

value of the ordinate y,   corresponding to the effective thickness b  of 

the layer must therefore be proportional to the coordinate x  in all 

three problems. We can therefore write 

b = Kx   «"«i bq ■» Kqx; p- ---- PIT = const. 
« 

We determine the law of variation of the characteristic velocity 

um = Hm(,T)   taking the integral condition of momentum conservation for 

source Jets into account.  For the Jet boundary it can be given imme- 

diately:   u    = u- » const; we also have A^^const.  In this  case the co- 

efficient  of kinematic viscosity VT —«,    and also aT~x. 

For a plane  source Jet   —f-= constx (/, = \ pu»dy = const),   hence we obtain 

Hm~-^   and the  coefficient of turbulent viscosity is \T-;bun = Kxum~Vlc 

and aT~V*- 
+00 

We find analogously that —?;c=-= consti(^ = \pcpuA7'dy=const). Consequent- 

ly, A7'm~um~^-. 

For an axisymmetric Jet 

-j- = const i*       (jx = 2n \ pu'y dy) , 
r  m p 

oo 

w£srm -
constx,    (^ =2n 5 pc'u ATydy) • 

0 

Correspondingly, um^A7,
m~-.    Since b~b(l~r,    the coefficients of 

turbulent kinematic viscosity and thermal diffusivity are constant for 

an axisymmetric Jet: 
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Vf = bum — const,    aT = 6,^m = const. 

The ratio of these constants again yields an empirical constant, name- 
vr 

ly the turbulent Prandtl number "'"ir* 

Prom analogous considerations of the fact that, If the problem 

considered Is well-defined. I.e., with the boundary conditions of all 

three cases, there does not exist a quantity that would permit the deri- 

vation of a characteristic dimension, it follows that the nondimension- 

al argument for the universal velocity distribution will be a composite 

quantity: 9 = const-^-. The conditions of self-similarity for the flows 

mentioned above are formulated in essentially the same way. 

We see from the derivation that these conditions are independent 

of the assumptions on the dependence of the coefficients vT  and aT 

on the coordinate x alone. In the general case, we may put vr =» /((^«m, 

and the expressions for u (x) given above remain still valid and the 

Jet boundaries also remain rectilinear. For example, for Prandtl*s first 

formula in the problem of the Jet boundary, the plane or axisymmetric 

source Jet, analogous considerations would have yielded correspondingly 

more general formulas of the form 

vr = A (9) x,    >'T - ft (<P) K*. vr = /a («p)W11 hq» = const -J- . 

It must be borne in mind that all these conclusions only apply to 

self-similar Jets since, for example, when we analyze the motion in a 

Jet of finite dimensions, the boundary conditions must contain the noz- 

zle diameter. In this case all conclusions on an unambiguous dependence 

of bt  w_. v„.  etc. on the coordinate x would become senseless. 
m I 

Analogous results based on the theory of dimensionality for self- 

similar Jets have been given by H. Squire [300] who went still further 

when replacing the derivatives by finite differences. According to 
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H. Squire T ~PH»1~ -~  and gr-^-y 

As regards the problem of the expansion of a turbulent Jet In 

a parallel flow, it is only the mixing zone at the boundary of two 

parallel flows for which the above conclusions remain valid with a 

characteristic velocity value of Mm-^ uoi—"05-= const, por a source Jeo 

(plane or axisymmetric) which expands in the wake, the conditions of 

the problem will contain an additional dimensional quantity, namely the 

velocity of the wake; when it is taken-into account, the initial condi- 

tions for, e.g., a plane Jet will contain the characteristic length 

When discussing the results it must be pointed out that the in- 

troduction of the conception of effective coefficients of turbulent 

viscosity and thermal conductivity and the choice of simple mathematic 

cal formulas for the determination of these coefficients are Justified 

for self-similar flows. In the general case of Jets of finite dimen- 

sions and the like, semiemplrical theories of the type of the mixing 

length or analogous mathematical procedures based on dimensionality 

considerations leave the problem of the values of the coefficients 

y_ and a„,, their dependence on the coordinates and the velocity, etc. 

unsolved and do not yield a closed mathematical system. 

A solution of the problems of the laminar boundary layer theory 

(e.g., the problem of the expansion of a Jet of finite dimensions, 

parallel Jets, etc.) is at present only connected with the overcoming 

of difficulties of mathematical nature. Unlike that in the theory of 

the turbulent boundary layer for the solution of complex problems on 

nonself-similar Jet flows one needs information on the structure and 

the dependence on coordinates and velocity of the coefficients of 

turbulent exchange (or immediately of the turbulent friction and the 

heat flux), which is not available at present. Precisely therefore 
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for the nonlnvestlgated turbulent Jet flows a preliminary solution of 

the corresponding problems on the expansion of laminar Jets results in 

the development of models qualitative in their way. 

10.3. THE SELF-SIMILARITY TRANSFORMATION FOR TURBULENT JETS 

Just as in the theory of laminar Jets, we again use the self-simi- 

larity transformation formulas in the form [57] 

u _ r (•rt   u  - Ax* 
"m    «p* 

<p = Byx*. 

^- = 0(9),  A7'm=rx^, 

In the previous section it has been shown that for all free turbu- 

lent Jets with self-similar flow the constant I ■ - 1, This important 

result also remains valid for the fan-type source Jet, plane and fan- 

type semilimited Jets and the like. This indicates that the effective 

boundary of the turbulent boundary layer (unlike the laminar one) in 

self-similar Jet motion is always rectilinear. It is obvious that the 

same result can be obtained from differential equations describing the 

expansion of a Jet of incompressible fluid. As always, the investigation 

of the differential equations of motion together with the integral con- 

ditions of conservation yields more than a simple analysis of dimensions. 

In the given case with the help of the differential equations and the 

integral conditions, it is possible not only to verify the values of 

the self-similarity constants o and 6 obtained above from dimensionality 

considerations, but also to determine the constants A  and 5. For turbu- 

lent Jets, however, the latter are determined accurately except for a 

numerical factor whose value is obtained by experiment. 

It is extraordinarily Important — as will be shown below — that 

the self-similar differential equations for turbulent Jet motions under 

definite conditions are identical with the analogous equations for lami- 

nar Jets (for the same types of motion). The values of the constants of 
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self-similarity, o, ß and y  and the constants A,  B  and r for the lami- 

nar and turbulent motions are here different. 

If we assume, as already mentioned, the values of the constants 

a and y equal to 0, 1/2, 1, respectively, for the Jet boundary, the 

plane and the axisymmetrlc source Jets, we obtain the ordinary differen- 

tial equations given previously in Table 7.1 for laminar Jets. 

For a plane source Jet, for example, the equations read 

F" + 2 {FF')' - 0, 9' l-.2Prr (FO)' = 0 

(with the same boundary conditions as in the laminar Jet). The values 

of the constants A,  B  and r entering the transformation formulas for 

the turbulent plane source Jet will be equal to 

|' «pVX    2 /*'    cp y  3?./, VKIJ^     
Y
J 

These values are connected with the numerical coefficient K  (en- 

countered in the formula b * Kx)  and the turbulent Prandtl number given 

by prT:=X. The value of one of the constants 'usually a =2 ß'1 = i/K  in the 
Kg 

case of the plane Jet) and also that of the Prandtl number is chosen em- 

pirically, by way of comparing the experimental and the theoretical ve- 

locity and temperature distributions. 

Under these conditions the problem can be solved. The universal 

distributions £"(9) and e((p) are obtained in the same way as in the 

case of laminar Jets with corresponding boundary conditions. 

Analogous results (the same ones as with laminar Jets, i.e., the 

form of equations and solutions) also correspond to the problems of 

the axisymmetrlc source Jet and the Jet boundary. The same also holds 

true for the fan-type source Jet. 

As already proven in the theory of laminar Jets, for self-similar 

flows. Immediately from the transformation formulas of the form 

r-- F'(ff), um= Axa, y = Byx*  the existence of an Integral equation of the 
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u9 ds = const,    3 =    ~ (10.8) 
<** 

results (and an analogous one for the temperature). Equation (10.8) 

applies likewise to laminar and turbulent self-similar Jets. For free 

Jets the exponent In (10.8) a  - 2  and the expression Itslef coincides 

with the more general condition of momentum conservation (Independent- 

ly of the assumption of self-slmllarlty). For turbulent Jets 6 ■ - 1. 

It therefore follows from Eq. (10.8) that the exponent of u  Is equal to 

a » - I/o In the case of a plane source Jet, 

a » — 2/o for axlsymmetrlc and fan-type Jets. 

Hence It follows that with a ■ 2 for free turbulent self-similar Jets 

a ■ - 1/2 and a ■ — 1, respectively, for plane and axlsymmetrlc (and fan- 

type) source Jets. 

More detailed data on free turbulent self-similar Jets are given 

In Table 11.1. As regards the semlllmlted Jets, for them (for both laml- 

nar and turbulent ones) o ■ 3/2. With 6 ■ — 1, for turbulent plane and 

axlsymmetrlc (also fan-type) Jets It follows from Eq. (10.8) that a  ■ 

■ - 2/3 and o ■ - l|/3, respectively. It Is, however, necessary to stress 

that the simple supposition of self-slmllarlty of turbulent semlllmlted 

Jets does not yield good agreement with the experiment. The d vergence 

Is caused by the differences In structure of the free and near-to-the- 

wall turbulent boundary layers. The values of the constant a given here 

are therefore only approximate though they apply virtually always to 

the outer parts of semlllmlted Jets. Owing to these considerations, 

the results for turbulent semlllmlted Jets are not entered In Table 11.1 

but considered separately. 

10.4 ON THE TURBULENT PRANDTL NUMBER 

One of the constants which are determined by experlement Is the      %^ 
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ratio of the effective coefficients of turbulent exchange, Prr = Jl^'g" 

This characteristic pareuiieters, unlike the molecular Prandtl number 

Pr ■ v/a, as also the coefficients u« and a„ themselves, does not be- 

long to the physical constants. This number characterizes the complex 

and actually hydrodynamlc phenomenon of the Interaction between the 

transfer of a vector quantity (momentum) and that of a scalar charac- 

teristic parameter (heat). As already mentioned, the supposition on the 

equality of v- and a^ (which corresponds to an assumed likeness of na- 

ture of the momentum and heat carriers In the turbulent exchange, the 

turbulent pulsations) which Is a natural supposition only at first 

sight. Is In contradiction with the experlement. For turbulent Jets, 

the latter always shows that VT<<*T-  AS regards the numerical value of 

Pr», It Is, when determined from experiments on the expansion of air 

Jets [237, 238, etc.], very close to the physical Prandtl number Pr for 

air (Pr^0.72). 

The similarity of the values of Pr and Pr», for air sometimes gave 

rise to the opinion that this agreement were not accidental. Though 

this assumption Is not based on any rational considerations, a final 

solution of the problem would require special experiments. Such experl- 

should be carried out with a fluid medium whose physical Prandtl number 

differs essentially from unity. 

This "decisive" experiment was carried out by Z.B. Saklpov [165, 

166]. In experiments on the expansion of a slightly heated axlsymmetrlc 

Jet of viscous oil with a physical Prandtl number of Pr ~ 10s and In 

—9 ' analogous experiments with mercury Jets for which Pr - 10  the dis- 

tributions of velocity and surplus temperature were measured carefully. 

The experimental results were evaluated In the form of the univer- 

sal distribution functions — = Flv)   and -AJL = (Hart. The distributions ob- 

talned had a form which Is usual for turbulent Jets (In particular, a 
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value of the constant « =-i- In the formula 9 --y- of <?ä0,08 for mercury 

and OSEO.O? for oil corresponded to It). 

Prom the solutions for the self-slrallar section of the flow (source 

Jet) In the theory of the asymptotic layer and also that of the layer 

of finite thickness, it follows that the universal temperature and ve- 

locity distributions in a let cross section are mutually related by a 

formula (see Tables 7.1 and 11.1) of the form 

0 

"T 

This relation is suitable for the determination of the mean value 

of the turbulent Prandtl number Pr^. 

',0 wsßvnfi v a,*  oj     M V 

Pig. 10.1. To the determination of the turbulent Prandtl number (after 
data by Z.B. Sakipov [I65, 166]). 1) Prr « 1.0 (Prandtl method); 2) 

Pr- - 0.75 (experiment), xxx-oii, ooo-mercury; 3) Pr^ « 0.5 (Taylor 

method). 

. 

AT 
Figure 10.1 shows in a semilogarithmical s^ale äT^ as a function 

of u/u    obtained in experiments by Z.B. Sakipov with transformer oil 

and mercury. As seen from the figure, the experimental data fit quite 

well the straight line with the angular coefficient Prr«0,72-^0,75.' 

Thus, in these experiments, in the broadest range of values of :: 
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the physical Prandtl number direct results were obtained which prove 

that In an evolved free turbulent flow the turbulent Prandtl number 

is Independent of the physical Prandtl number. 

Somewhat earlier W. Forstall and E. Gaylord [242] studied experi- 

mentally an axlsymmetrlc water Jet expanding In a salt solution. In 

these experiments, the velocity and concentration distributions were 

measured In the cross sections of the self-similar part of the Jet. 

The experimental results, which were evaluated In the form of a depen- 

dence of the nondlmenslonal excessive concentration on the relative ve- 

locity, correspond to a value of the turbulent dlffusional Prandtl num- 

ber Pr^, d.f, ~ 0.7-0.8» whereas the physical dlffusional Prandtl number 

ls Prdlf * l0'« These results also agree with other more accurate data 

given by various autnors on the Intensity correlation of processes of 

turbulent transfer (diffusion, heat exchange, viscosity) In gases, 

among them also In the free atmosphere [298, 169]. 

All these results. In particular the direct experiments by Z.B. 

Sakopov, show that In the broadest range of physical properties of a 

fluid the so-called turbulent Prandtl number In a free turbulent motion 

Is always smaller than unity. Its numerical value lies obviously between 

0.7-0.8 such that a value of PrT«PrTflll4,ä0,75. can be taken as the mean. 

The agreement of this value with the physical Prandtl number of air Is 

quite accidental. More than that, as will be shown later, the value of 

l*rr»0,7S also applied approximately to turbulent Jets of compressible 

gas. This value Is a mean value for Jets. Detailed data on the distri- 

bution of the Pr», value over the Jet cross section (not only for differ- 

ent values of Prandtl's number Pr but also for air) are not available 

at present. 
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Chapter 11 

SELF-SIMILAR TURBULENT JETS OP INCOMPRESSIBLE FLUID 

11.1. ON THE METHODS OP CALCULATION 

The theory of turbulent Jets and Its numerous applications in 

engineering are based on investigations of self-similar Jet flows of 

incompressible fluids, which were first carried out by means of the 

method of the finite layer, using Prandtl's formula of the mixing 

length for the three simplest problems, namely the problem of the 

edge of Jet, the plane source Jet and the round source Jet (see 

[317]). 

At present we possess various methods in order to solve these 

problems semiempirically. Among them the following methods, which 

have already been mentioned previously, are worth emphasizing: the 

methods of the finite and asymptotic layers, the "constructive" meth- 

ods (upon which the solution of given velocity distributions, etc., are 

based), G. Reichardt's phenomenological theory, and others. A suffi- 

ciently comprehensive idea on these methods and their applications to 

concrete problems can be obtained from the original papers or review 

articles mentioned in the reference list. 

A detailed review on the various methods of calculating self- 

similar turbulent Jets may be found, for example, in the monograph 

by Q.N. Abramovich [11], in the book by Wai Shi-i [25], in manuscripts 

on the boundary layer [171*, 212], etc. 

This fact and the subject chosen for the present book render it 
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superfluous to enter Into details of these methods. Let us therefore 

only consider the results of solutions of various problems obtained 

within the framework of the theory of the asymptotic boundary layer 

as they permit the appllcallon of the final solutions of the theory 

of the laminar self-similar jets in the calculation of turbulent Jets. 

As regards the other methods, we restrict ourselves to some remarks 

of general nature. 

The essence of these remarks results in the following. 

In spite of the apparent differences in the premisses and the 

system of mathematical operations, the various methods of calculating 

the self-similar turbulent Jets are essentially general in the sense 

that they unite in themselves certain data which are derived immediate- 

ly from the experiment (represented by the empirical constants, and the 

one or other general aspects of the mechanics of viscous fluids. The 

latter are used in the form of differential equations of motion, inte- 

gral relations or, more approximately, in the form of a "guessed" uni- 

versal distribution. Similarity considerations are of decisive impor- 

tance in this respect as they verify the self-similarity of the flows. 

In the case of self-similar flows the various mathematical methods 

yield results which, in the end, resemble one another and which, within 

well-known limits of accuracy (mostly within the limits of spread of 

the experimental data) agree with the experimental results if the exper- 

imental constants are chosen correspondingly. These constants do not 

play the part of universal constants, their values may vary, generally 

speaking, within wide limits though, under the so-called "ordinary" 

conditions, they vary not very strongly. The latter fact enabled G.N. 

Abramovich [11] to introduce — with well-known success — a single 

constant for an approximate calculation of various self-similar Jet 

flows. 
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It Is obvious that the numerical values of the experimental 

constants which are introduced, for example, in the form of a "struc- 

tural constant" of the Jet, a, in the formula for the nondimensional 

variable y     -~    are different in different mathematical procedures. 

In order to compare them, it is expedient ^-o superpose universal dis- 

tributions of the form of -z: =■ /(?) such that two values of the relative 

velocity coincide: u/u    ■ 1 and, usually, u/u    ■ 1/2. As a rule in a 
W HI 

considerable part of the distribution (e.g., within the limits of 

0,25<-—<1) the different solutions agree with one another and with 

the experiment within the limits of accuracy of the latter. In the 

lateral parts of the distributions the deviations are more considerable. 

In particular, the method of the asymptotic layer, compared with the 

experiment, yields a somewhat delayed drop of velocity, temperature, and 

the like, in the Jet cross sections. But even this deviation remains in 

most cases within the limits of experimental accuracy (generally speak- 

ing, the Jet boundary layer which is thin near the boundaries will there 

influence the alternating character of the flow, as already mentioned.) 

These considerations show that we have no sufficient reasons 

speaking in favor of a unique choice of some semiempirical mathematical 

procedure and the rejection of all others. In individual concrete cases 

the one or another way of solution may prove somewhat simpler or more 

convenient. 

Considering what has been said in the preceding sections, the 

authors are of the opinion that the method of the asymptotic layer, 

which links the self-similar solutions for turbulent Jets with the 

physically strict theory of the laminar Jets, possesses a series of 

advantages, as it also describes correctly the relationships between 

the thermal and dynamic layers (when the empirical constant is chosen 

as PrrsK0,7-^-0,8) At last, and this plays a well-known part, the final 
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formulas in the theory of the asymptotic layer can often be reprssen- 

ted in the form of closed analytical expressions (and thus make it 

possible to avoid the approximate numerical constructions which are 

so often encountered in the theory of the finite layer, and their 

"Joints" within the framework of one and the same distribution, etc.). 

gj 0.4    0.6     0.8     1,0     1.2     1.4     1.6     I.B     2fi     &,  |4 
Mm 

Fig. 11.1. Comparison of calculated distributions of velocity difference 
in parallel flows. 1) After the finite-layer method (Au/A«im-b--(ii/»i/b)Vi)> 

Schlichting's distribution [11]; 2) the same(W. Tollmien [317]); 3) ac- 

cording to the asymptotic-layer method (H. Görtier [250]). 

) 

All this, of course, does not deny the value of other methods and 

the possibility of obtaining with them valuable and original results as 

such are described particularly in the papers [11, 25, 75, 130, etc.]. 

In order to illustrate this, we shall consider the individual re- 

sults of solutions of one and the same problem by different methods and 

compare them with the experiment. 

In Fig. 11, which has been taken from a monograph by G.N. Abramo- 

vich [11], the relative distributions of the surplus velocity in the 

cross section of a parallel flow -|ü_ =/(g), where S = -^-. are compared. 

Two of them were obtained by the finite-layer method and the third one 

by the method of the asymptotic layer. 

A comparison of the calculated velocity distribution curves for 

the Jet boundary obtained according to the methods of W. Tollmien and 
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H. Görtier with H. Relchardt's experiments (and other experimental 

data) shows satisfactory agreement In both cases with appropriate 

choice of the empirical constant. Thrre Is virtually no difference 

between the results of the methods. Analogous data could be given In 

a great number; they can be found In the papers [11, 25, 17^] etc. 

As already mentioned, we shall use the method of the asymptotic 

layer for the further calculations. With this method, the equations 

for the self-similar Jets and the boundary conditions, as also their 

solutions In nondlmenslonal coordinates are the same as in the case 

of the laminar self-similar Jets. Only the value of the constant of 

self-slmllarlty and the constants entering the transformation formulas 

will be different. 

For convenience, we use all these data for free turbulent Jets as 

complied In Table 11.1, which has been complied analogously as Table 7.1 

for the laminar Jets. It also contains data on the dynamic and thermal 

problems for source Jets and the mixing zone of parallel and antlparal- 

lel uniform flows which are dealt with In detail In one of the follow- 

ing sections. 

As regards the turbulent semlllmlted Jets, the next chapter will 

be devoted to it. Finally, It will be expedient to consider the expan- 

sion of turbulent Jets of finite dimensions, owing to the generality 

of the method, for both the incompressible fluid and the compressible 

gas at the same time. 

11.2. RESULTS OF SOLUTIONS IN THE CASE OF FREE JETS 

In this section we shall give loose data for the fundamental pro- 

blems of the expansion of turbulent self-similar Jets (free plane Jet, 

fan-type Jet, and axisymmetric twisted and nontwisted source Jets and 

the mixing zones at the boundary of two plane-parallel flows). All 

these solutions have the self-similarity transformation formulas in 
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common which read 

where 

um = ^i«, A/)m = /)i», Arm = r*», «p = ^-. 

(For the sake of convenient comparison with the results of other 

papers we shall write the Independent variable cp  In the form 

9 = Byx* m —^- . where   a = -g"   and P ^ — * •) 

The results of these solutions are compiled In the general 

Table 11.1 where, for convenience of use, the fundamental data of 

Table 7.1 for laminar Jets and the expressions defining the dependence 

on the coordinate x  of the Integral characteristics (flow rate G 

of fluid through Jet cross section, flux Q of heat content, kinetic 

energy Tlux Et  and the effective coefficients of turbulent transfer, 

v„  and am)  have been repeated. Though the value of the turbulent Prandtl 

number varies but little in the problem considered, the symbol Pr« 

(and not its numerical value which, as already mentioned, is approxi- 

mately equal to Prm s 0.75) has been maintained. 

The use of the formulas given in Table 11.1 In calculations makes 

it necessary to determine beforehand the value of the empirical con- 

stant a  by means of an experiment. Recall that for real Jets the self- 

similar flows, which are responsible for the concept of the source Jet, 

are only e'tablished at a considerable relative distance from the noz- 

zle. The choice of a concrete value of x/d  (d being the nozzle diameter) 

beyond which the flow can be considered as self-similar depends on the 

degree of accuracy required. 

Since the general condition of self-slmllarlty of a Jet flow is 

represented by an Inequality of the form 7>1, the flow, strictly 
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speaking, can be considered self-similar at distances of the order 

of several ten nozzle diameters; In practice, with lower accuracy, 

we can reduce the limiting value of x/d  to —15—20, and sometimes even 

to a few diameters. 

In the case where the source Jet distribution Is used for an 

approximate description of the real flow at relatively short distances 

from the nozzle It becomes necessary, apart from the constant a, also 

to determine the position of the equivalent (with respect to the momen- 

tum flux) source. The latter (the so-called "pole" of the Jet accord- 

ing to Q.N. Abramovlch's terminology [M]), generally speaking, lies at 

a certain distance «- away from the orifice of the nozzle of finite 

diameter (behind or In front of the outlet cross section). NOto that 

when we speak of the equivalent source Jet, we understand the flow from 

a source with the same total momentum J    as the flow of finite dimension. 

where u. Is the mean value (with respect to the momentum) of the veloci- 

ty In the nozzle's outlet cross section of the area 8.. In this case, 

the value of the coordinate x In the formulas of Table 11.1 must be re- 

placed by the sum « +«». where « Is the distance from Va*.  nozzle. 
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TABLE 11.1 

Free Self-Similar Turbulent Jets of Incompressible Fluid 

Scheme of Table 

1) Form of flow, 9) 
2) differential equations; 
3) boundary conditions; 10) 
4) transformation formulas;      11) 
5) constants of self-similarity;  12) 
6) constants of the transforma- 

tion formulas; 
7) integral conditions of con- 

servation. 
8) self-similar equations; 

the coordinate q).  corresponding 
to the value of u/u    - 1/2. 
boundary conditions; 
solutions; 
integral (fluid flow rate, kine- 
tic energy flux) and local (co- 
efficients of turbulent exchange. 

and aT) characteristics. 

Notes: 

In the lines 2,  3,  etc.  I refers to the  thermal problem and II to the 
dynamic one. 

In the lines 3,  *•, etc.  Ila refers to symmetrical boundary conditions 
for the temperature, lib to asymmetric boundary conditions  for the 
temperature. 

1 A      njiocKan crpya HCTO'IHHK 

2 
I du       du      dl     du\    du  .  dv     „     ,          „     . « 

•K + 'JJ-Iil'TJi): Fi + d-y"0'  (VT-*^-*) 
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dT        dT       d 1      dT\                         ,.. 

3 
I «>(*. 0)^0. ^ ^=0; u(«. ±oo) = 0 

lla 
dT 

= 0, 
V—0 

T{x,  ±oo)~T(0 IIu 
T{x. +oc) = rIl 

T{x. -«) = r, 
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TABLE 11.1 continued 
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TABLE 11.1 continued 
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A) Plane source Jet; C) parallel or antiparallel flows; D) axlsymme- 
trie source Jet; E) fan-type source Jet. 

—-—        -  • - ■    -     -——■—   ■    t ^^——^—^ — 

• 
If -s->l at the same time -j"^1, ^•••« *«'• since x0  and d 

are quantities of the same order of magnitude. 

In this connection we shall briefly touch the problem of the de- 

termination of the empirical constant a. Its value can be found from 

the experimental velocity distributions in the cross sections of the 

Jet and along its axis for source Jets. For the Jet boundary, it is 

of course sufficient only to use the distribution in the Jet cross 

section since here, as also in the case of j;^1' the coordinates x and 

«0 are virtually coincident. 

In the case of Msmm   from the experimental velocity distributions 

in the Jet cross sections we must select the corresponding values of 
u  i 

1/2/2  and xl/2i  the coordlnate8 of the points at which f^j-  In each 

solution a certain characteristic "half" value of qpv., corresponds to 
u    1 the value of — »-j which, for concrete flows, is given in Table 11.1. 

The constant a  is then obtained from the formula 

In the case where the pole distance x0  is equal to the distance 

x we can, using the transverse and longitudinal velocity distributions, 

determine the two empirical quantities x. and a  which permit an approxi- 

mate correspondence of the calculated distribution of the equivalent 

source Jet and a real Jet of finite dimensions. 
1   y>i. 

For this purpose, in addition to the formula * *"Zr {i + *j,     ln the 

domain of existence of an universal distribution, the empirical func- 

tion -^ "/(*). must be used which is represented in the form of 

— _—d—. Since the constant A  comprises the constant a  (see Table      -*> 

11.1) these two expressions permit the determination of both unknowns 
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x0  and a. 

The experiment shows that the approximate existence of universal 

distributions of velocity, surplus temperature, etc., are very general 

properties of turbulent Jets. This Justifies to a well-known degree, 

the application of the assumed universality of distributions at dis- 

tances of x commensurable with x« In practical calculations. 

To obtain an approximate Idea, we give the mean values of the 

empirical constant a In the method of the asymptotic layer and zhe 

analogous constant a.   for the system of the finite layer CO. 

For the Jet boundary o« a» ä 0,09-4-0,12; for the plane source Jet 

a « 0,10-4-0,12, correspondingly a» s» 0,09— 0,11; for a round Jet os» 0,045-1-0,055, 

correspondingly a»«0,066—0,08. Higher values of the constants correspond 

to nonunlform Initial velocity distributions; the consideration of thl 

nonunlformlty has been discussed by G.N. Abramovlch [$, 11]. 

The so-called pole distance x-  Is still less stable. We mentioned 

already that It may be both positive (pole In front of the nozzle sec- 

tion) and negative (pole behind the nozzle section). In G.N. Abramovlch's 

last papers [11] the Interesting attempt has been made to replace In 

the case of "upual" conditions the two constants (x./d  and a) by a 

single constant c«0,22, which enters the formula for the width of the 

Jet In the form b - Cx or  ^ = C". This constant applies satisfactorily 

to various Jets (plane and round, submerged and parallel) but, of 

course. It Is not really universal. This holds true In particular for 

the values of the empirical constants of the type of a  (or ak), and al- 

so for the value of the pole distance x0/d.  The latter Is due to the 

fact that the flow has been divided Into two sections (the Initial, 

corresponding to the Jet boundary, and the fundamental, corresponding 

to the source Jet) or Into three sections (Including an Intermediate 

one). These methods are not considered here since In the following 
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we shall discuss a more general method which permits the calculation 

of the continuous, nonself-slmllar deformation of the Inltla^. distri- 

butions (of velocity, temperature, pu2) up to the transition to the 

self-similar flow for a source Jet (see Chapter IM. 

Thus, the empirical constant a  entering the calculation accord- 

ing to the method of the asymptotic layer Is by no means a physical 

constant. It Is strongly Influenced by factors which are difficult to 

take Into account such as the characteristics of the pulsatory micro- 

structure of the Jet (mainly, but not only, the Initial Intensity of 

pulsations, the Initial level of turbulence), the nonunlformlty of the 

Initial distributions, and also the temperature and the like. 

In cases different from the "usual" one the value of a  and, to- 

gether with It, also the Intensity of damping of the Jet, vary consider- 

ably. For example, even In 1935, In a paper by D.N. Lyakhovskly and 

S.N. Syrkln [136] a value of a*a:0,27 was given for a twisted axlsymme- 

trlc Jet and this differs assentlally from the value a* «0,07 f0r "usual" 

conditions. In our own experiments a variation of the Initial pulsation 

level from about 1.5 to '♦.SJ was accompanied by a variation of the val- 

ue of a^ from about 0.065 to 0.08. In order to illustrate in this case 

the great differences between the real dependences of u /un  on x/d  we 

point out that under these conditions and for a strictly constant initial 

velocity distribution the value of x/d  ■ 10 amounts to O.'IS and 0.28, 

respectively (for comparison we give the value calculated according to 

O.N. Abramovlch [11]: with C ~ 0.22  it is equal to u /«„ - 0.38). 

This problem (on the variation of the value of the constant a) 

is also considered when investigating gas Jets. Altogether, It can be 

shown that with an appropriate choice of the empirical constant, the 

self-similar solution is a good approximation to real turbulent Jets 

if the inequality 4«->l Is satisfied. a      a, 
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Deviations from the latter, which are valuable In certain appli- 

cations, are always linked with a reduction of accuracy and a series 

of additional requirements, the necessity of taking the Initial condi- 

tions Into account, of the nonunlformity of the Initial distributions, 

the level of turbulence, and tae like. 

11.3. THE MIXING OP PARALLEL AND ANTIPARALLEL PLOWS 

In order to solve the problem of the turbulent mixing zone which 

appears at the boundary of two parallel or antiparallel flows (co-mov- 

ing or counterflows) we follow papers [51, 60], and use Prandtl's second 

formula for the kinematic coefficient of the turbulent viscosity 

vr = # (ui — ut)x, (11.1) 

and, taking this Into account, we can rewrite the system of equations 

of the plane turbulent boundary layer: 

O 

da    ,      du „ , v      d*u 
U sr +" air = ^ -u») *-äF • 

d*   ^ dy      u- 
(11.2) 

To this system, we add the equation of heat propagation 

(In these  equations «- and u« denote the velocities of the uniform 

flows, e=» f Z.fx<   wbere T. and T, are the temperatures of these flows, 

K and K    are constants to be determined by way of experiment). 

The boundary conditions  for the functions u(«,  j/)and 6(x, y) have 

the same form as with the analogous problem of the mixing of laminar 

flows: 

u ui u. fl = 0 1 f  us» — oa.   > u = «,,       e = 0 If y =• — oo. 

Let us put 

-J.-F». 9 = 9(9). ,- JL.;        (11>5) 

we then obtain Instead of the system of equations (11.2) and (11.3) 

In partlon derivatives the following system of ordinary differential 
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equations: 

F'" + IFF' - 0. 
e* + 2 PrT fV - 0 

(11.6) 

(11.7) 

jf-1, /"~0, 8=1  if «p 
f'^m,       1-0 if  f 

(here we used the additional relations: 

a« = 2*(l_,n). Prr-^-. m = -^j. 

These equations, together with the boundary conditions 

+ "' }   (11.8) 

agree with the corresponding equations and boundary conditions for the 

mixing of laminar flows given in Section 5.3. The expressions for /"(«p) 

and 9(9)' will therefore have the same form: 

f"=-£-=1 + -r(m-1H1-er,,rt'    (11*9) 

• --}M1+*rf^^ft (11.10) 

The expressions for the transverse velocity components and the 

stream-functions will differ from the corresponding expressions in the 

laminar problem owing to the different form of the variable q>: 

-?--^'_F=I^.(m_-i){J(6rf«)&-9Cif(p-C1}. (11JL1) 
0 

■JL-=q>+4-(m-1)(<P- J (erf2)rf« + C1 }. (n.12) 

«Ml 

Equations (11.9). (11.11) and (11.12) can be rewritten in the 

following form: 

^-(-£U--f (*+"'*).    (11.13) 

.isr=^ - (=fc- - 4- Hf-| (erf •) * + c,}. (n.i^ 

♦ = tt + ^-ip't'm-o - «»y + 4-a«-o»x*(l—»») X 

x{9-Werf«)rff-C, }.  (11.15) 

The difference between the righthand sides of Eqs. (11.13)-(11.15) 

and the corresponding equations of the laminar motion are caused by the 
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difference in the structure of^ and the factor a  entering q>. The 

-~v    first of the latter facts (I.e., the transition from 9 =-?L to <p = ^-) 

affects the dependence of v on f  and on «. As to the second 

(a - VW^) inatead of B - ^j/f). It corresponds to the Initial phy- 

slcal model of turbulent mixing. 

It Is essential that, by virtue of the assumption of the propor- 

tionality of the coefficient of turbulent viscosity to the difference 

ui'u2*  the <luantl-ty a  depends on m; 

) 

TCT-'"-"- (11.16) 
The latter Indicates In particular that the effective zone of the 

turbulent boundary layer In the plane xOy tends to zero In the absence 

of anlsotroplc turbulent mixing of parallel wakes of equal velocities. 

Let us now turn to the problem of the agreement of the solution 

obtained and the experiment. 

Since for the particular case of m - ö we have sufficiently relia- 

ble experimental data at our disposal [*», 11] etc.. It Is natural that 

we use them In order to "bind" the solution obtained. With this we mean 

firstly the agreement between calculated and experimental velocity dis- 

tributions and secondly the agreement between calculated and experiment- 

al positions of the neutral streamlines. 

Considering the first problem, the distribution of the longitudin- 

al velocity component u, we see that from Eq. (11.9) with m - 0 and 

cp ■ 0 it follows that ~  =0,5; with these conditions the experiment [4] 

yields sp^0-68- In order to obtain mathematical results which agree 

with the experiment, we use the above property of the boundary layer 

equations. On the basis of this property we can write the solution of 

Eq. (11.6) with m m 0  which satisfies the boundary conditions and the 

equation —«0.68 with » ■ 0 in the form 

JL = F' (q.*) - f (f + 0,33) - 4-C* + «rlCf + 0,33)].   (n. 17) 
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We generalize this solution for the case of m ^  0: 

^^2-- F (O --j-I1 + erfC + 0'33^ (11.18) (J 
Now we pass over to the problem of the stream-function.  Re- 

writing Eq.   (11.12) taking Into account Eq.   (11.18)  in the form 

f+xO*1-1)^0.33-    \   (erff)rfi + Ct},    (11.19) 

we see that agreement with the experiment (^ ■ 0 with <p ■ -0.185 

If m - 0 [51]) Is obtained with C2  - -0.6»). 

The expression for the streamfunctlon will therefore take the form 

_l--,,+4-(m_l){9_ J (orf «)«£,-0.17}   (11>20) 

or with m - Ö 

(-irL.-4-{»+ \  («")* + o,i7}.   (11_21) 

The transverse velocity component will be equal to 

(^rLÄ-
L=r?{,»,erf(,i> + 0'33)- J («»O^-o.i?} (11.22) 

or, with m - ot  to 

(jsM-"4-{,Pcr,('»> + 0.33)- \  (erf i)d,-0.17}. (11.23) 
0 

Figure 11.2 shows the distributions of the velocity u according 

to Eq. (11.18) and of the velocity v  according to Eq. (11.23). 

As we have no reliable experimental data for the case of m ^ 0 

at our disposal we assume for the following construction that C. - -0.S 

within the range of values of m. This assumption must of course be 

verified experimentally and if necessary another value must be taken. 

In any case, it does not cause distortions in the qualitative flow 

patterns considered below. 

In order to Judge the flow pattein we establish first of all the 

characteristic values "N-« and 9*-* corresponding to the vanishing of 

- 268 - 

3 

^ 

mmt 



"• 

Pig. 11.2. Reduced distributions of longitudinal and transverse ve- 
locities and temperature (calculated). 1) Longitudinal velocity com- 
ponent according to data [4, 317]; 2) longitudinal velocity component; 
3) transverse velocity component; 4) temperature. 

~) 

) 

the flow velocity u  and the stream function V respectively, with dif- 

ferent values of the parameter m. 

The results of the solution (obtained by graphical analysis from 

the equations F' - 0  and ^ ■ 0) are represented in Fig. 11.3 which 

shows the characteristic angles as functions of the parameter m. The 

flow pattern corresponding to this graph can be represented in all re- 

gions of variation of m in the form of a successive shift of the flow 

patterns shown in Fig. 11.4 a-e (see also Fig. 11.5). 

The first three patterns of Fig. 11,k   (0<m<l) refer to parallel 

motions whose nature is shown by the figures. 

The fourth case (Fig. 11.'Id) corresponds to a relatively weak 

counterflow which is accompanied by a partial inversion of the motion 

enclosed in a certain domain between the two neutral streamlines -^ « 0 

on either side of the ray on which the longitudinal velocity component 

vanishes. 

The last pattern (Fig. 11.'♦f) corresponds to a very strong coun- 
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terflow where the flow as a whole behaves as If It were streaming 

around a dividing wall. The transient form between these two flow 

patterns Is the case of "sliding1' streams (see Pig. 11.4t). 

Note that these flow patterns were obtained previously In paper 

[60] by way of constructing a solution "excessive" with respect to 

the momentum, which generalizes the result by Tollmlen-Abramovlch for 

the case of m - 0, 

It Is characteristic that In certain cases (Fig. ll.tatf,) the 

calculation Indicates the establishment of a circulating inverse mo- 

tion of the fluid In the field of constant pressure, which Is caused 

by the turbulent viscosity (and In the case of laminar motion, for 

which the flow pattern Is the same. It Is caused by the molecular vis- 

cosity). A more accurate calculation (of the Invezie flow) would re- 

quire the consideration of the pressure distribution caused by the curva- 

ture of the streamlines. 

As the above Investigation was based on the supposition that the 

pressure was constant throughout the field of flow. It is not uninter- 

esting to try an approximate estimation of the pressure differences in 

the two streams (at points which are far away from one another). 

For this purpose, we make use of W. Tollmlen's method [317] which 

consists of applying the second equation of motion (for the transverse 

velocity component) which had not been taken Into account previously: 

a»        a* i a»  i *»T 
tsr + 'Si- T'W~T~E'- 

Assuming that In a zero approximation ^. = o, we obtain for the 

first approximation 

dm «*»r 
■^ 2 TT- 

Using the expression  xT = pK {ux — ut)x-£-    we obtain ay 

-^- - pATiij (ii! — o,) -£■{? — vn, 
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Pig. 11.3. The characteristic values of 
the coordinates ,|,*-o and »u-o as functions 

of the parameter m. 

and consequently 

[f] r=~2ui (Bi -ut) K 
IF

' - ^X- 
Thus, with yj _♦ _ oo, y, -»• + oo we have 

Poo-A- 

or finally 

P- 
FP (m — ut)* I 

— 2K («l - «,)• 

= - AK. 

A numerical estimation [250] for m - 0 yields 4/1:» 0,0055. If we 

assume that the coefficient K  depends only slightly on m, the absolute 

pressure difference will increase as |m| increases in the range of 

m < 0.  But within the limits of variation of m which are of practical 

interest, the influence of pressure variations is negligibly small in 

the case of parallel flows. As regards the counterflows, we must ex- 

pect for them an essentially higher influence of the pressure distri- 

bution, though they are hardly investigated in experiments. 

The solution of the thermal problem from the differential equa- 

tion (11.7) and the boundary conditions (11.8) for a turbulent motion 

agrees with the analogous solution for the laminar motion. We may there- 
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fore write It In the form 

8(9) -:-f U + erf l(«p + 0.33) VFT]). {11.2H) 

Figure 11.2 shows the temperature distribution curve In the mix- 

ing zone, which was also calculated from Eq. (11.24). 

As we see from the figure, the conventional boundaries of the 

thermal boundary layer are somewhat wider than the boundaries of the 

dynamic layer, a fact which Is in agreement with the experiment. Just 

as In the case of the velocity distribution, the influence of the para- 

meter m is taken into account by the constant a. 

In this way, the problem of the turbulent mixing of two uniform 

flows is solved finally within the framework of the asymptotic layer 

method for both parallel and antiparallel motions. 

Let us briefly consider the solution of this problem by means of 

the method of the layer of finite thickness. 

n 

Fig. 11.4. Flow patterns of parallel and anti- 
parallel motions:     o)m-i:«o<«<i; 
«) m - 0; •) — 0,5 < m < 0; 9) m » 0,6; •) -co < m < -*,t. 

:.: 
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A. Kuethe's paper [258] contains a generalization of  W. Tollmlen's 

problem on the Jet boundary (m » 0)  to the range of parallel flows 

(0<m<l). Let us consider the possibility of extending this solution 

to the range of negative values of m [51]. 

Using Prandtl's first formula VT =» c»!1-|j- and assuming that 

u = mF {(f),  «P = ^-. and also jf"^* = e (q>) and  aT =. c?-1« -|^-, we obtain 

instead of the system of equations (11.6) and (11.7) the following sys- 

tem (with 0 = 20» and Prr = ■^-Y- 

F'{F"' + F) = 0 (11.25) 

and (11.26) 
(f-ey + 2 Prr FO' m 0. 

First of all, we shall consider Eq. (11.25) which can be split in- 

to two differential equations: 

F-^-O. (11.27) 

F"'(<p) + F(«p) = 0. (11.28) 

Equation (11.27) is of no interest as it describes the flow in the 

zone of constant velocity (u = mf^const). 

The boundary conditions for Eq. (11.28) read 

/?' = !, F' = 0    if (p = «pi. I       (11.29) 
F' ~m,    F" =*0   if q) « (pa. I 

The fifth boundary condition, which is necessary tn order to de- 

termine the three constants of Integration and the two boundaries of 

the mixing zone «p- and cp„ is in paper [235] given in the two variants 

F(9i)=<Pi (» = 0) with 9 = 9i        (11.30) 

m - "S^fSr with 9 = f..       (11.30a) 
or 

nuft — F (9») 

In the case of m - ö condition (11.30a) is replaced by (11.30). 

The first of these conditions has been used by Tollmien [317] 

for m - 0; the second one is T. Karman^ condition (uim-f-Hii;,= 0) the 

condition for the absence of external forces acting perpendicularly 
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to the main direction of motion. Note by the way that these conditions 

are both obtained from the Integral relation of momenta ^ 

\ ptfdy = p (jhuj -f ytul). 
m 

When we use (11.29) and the Inequality f(<h)f («|>|)< 0 to represent 

the Integral of the lefthand side of the latter equation In the form 

JF'*d<t » P(90F(<pi) + \P{<f*)F'(T,)|, 

we obtain finally (11.30a): 

* (9i) = «Pi + m^t — mP («p,). 

Thus we see that both conditions (11.30) and (11.30a) are con- 

tained In the Integral condition of momentum conservation for the cases 

m m o  and m ^ 0, respectively. It Is obvious that (11.30) cannot be 

applied if m ^ 0. 

Introducing »=9—«P». we can represent the solution to Eq. (11.28) 

In the form 

^(ip) = C1exp(-<p)-}-oxp(-|-){c1cos^'9 + C,8in^Iip}. (11.31) 

Using the boundary conditions  (11.29)  we can find the constants 

of Integration ?.,  ?.,  C    and the value of   A<p = 9,-91   as  functions of 

m.  The quantity Aip  Is then a tranbcendentlal function of m: 

exp [-j A9J + ezp (— Ä<p) (Väsin-j- A9 — coi—j- Af j 
m yr ~—yr T^—\   .      (11.32) 

coi *|" A9 + y3 sin —g- Ä9 — exp I 2" A9) 

Figure 11.5 shows a graph of ^p as a function of m from which we 

see that a solution of the problem, which satisfies Condition (11.29), 

only exists In the range — o'2l<m<l. Moreover, this solution Is not 

unambiguous*). 

It Is natural that In the range of values of m between zero and 

one the solution obtained by the method of the asymptotic layer must 
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Pig. 11.5« Dependence of &»-<».-*• on the para- 

meter m (calculated according to the finite- 
layer method. 

be relatively close to the results of paper [258]; as to the range of 

antiparallel motions (—0,21<m<0) it corresponds to the flow pattern 

shown in Pi^. 11.4,d (if we again restrict ourselves to the maximum 

value of Mp). The solution of the thermal problem obtained by integrat- 

ing Eq. (11.26) with the boundary conditions 

8 = 1 with f-fti \ (11.33) 
9 = 0 with «p = «Pi, ) 

Is represented by a straight line (with discontinuities of the heat 

flux values at the boundaries of the mixing zone): 

(11.34) 

We think that the impossibility of generalizing the solution [258] 

to the entire domain of negative values of m and also the ambiguousness 

of the solution and, finally, the linearity of the temperature distri- 

bution (11.3^) proves that the method of the layer of finite thickness 

is artificial also with this problem. As shown above, the method of 

the asymptotic layer does not display these failings. 

6= S^LSL, 
«pi —q>t 
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268     Note that the determination of the coordinate <n, corres- 
ponding to ^ » 0 with m ■ 0, Immediately from the velocity 
distribution (11.9) through an Integration of the flow rate, 
would yield ^^--o^a Cp ■ -0.55; If, however, the follow- 
ing approximations are taken Into account In the velocity 
distribution, the Integration results In the same experi- 
mental value f«^ --o,i8S, as accepted In the text. 

271*      The Innumerable multitude of solutions, however, corres- 
ponds to the problem of the edge of the Jet, since for the 
latter Aq» Is a solution to the transcendental equation 
cxp (3/2 A-oi-Käsiii^a^A^-cosd^J^A^^o. W. Tollmlen [317] and 

later on also other authors (A.Kuethe) chose the first 
root of this equation (which Is In agreement with experi- 
ment) without mentioning the existence of other roots. 

: 

;: 
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Chapter 12 

THE SEMILIMITED TURBULENT JET 

12.1. THE SCHEME OP A SEMILIMITED JET 

A semlllmlted Jet is the result of the efflux of a viscous fluid 

and its expansion along a solid surface In an unlimited space filled 

by a fluid at rest. The experiment shows that the flow in such a Jet 

near the nozzle becomes turbulent for the most part. This is true in 

the first place for the outer part of the Jet. In the boundary layer 

near the wall, as usually, in a motion along the wall a laminar layer 

may develop at first, which, at a certain distance from the orifice of 

the nozzle, becomes turbulent. The laminar flow is then maintained in 

a very thin laminar sublayer along the wall (see diagram of Fig. 12.1). 

Pig. 12.1. Schematic representation of the boundary layer of a turbu- 
lent semilimlted Jet. I - Laminar layer {Vj  - v); II - turbulent laye: 

along the wall (tfjj - yum);  III - free turbulent layer (»riI - x«m). 

The motion of the fluid in the boundary layer formed by the semi- 

llmited Jet is, as we see from this description, very complex: various 

forms of boundary layers coexist in it, those adjacent to the wall 

(laminar or turbulent) with the free Jet layers. When the Reynolds 

- 277 - 



numbers Re are not too high (as calculated from the maximum velocity x 

and distance from the nozzle orifice) the flow may, however, even be     *-% 

purely laminar since the presence of the solid surface exerts a stabil- 

izing Influence not only on the flow In the zone adjacent to the wall 

but also on the motion In the external part of the Jet, though there 

It Is much weaker. Thus, In Z.B. Saklpov's experiments [66], with val- 

ues of Re « 650 for the Reynolds number of the Issuing Jet, the motion 

In an oil Jet, streaming along a round rod, remained laminar. Without 

this rod, the flow near the orifice became mainly turbulent In the free 

Jet, even with Re numbers of the order of several tens. (With compara- 

tively small values of Re a considerable part of the flow near the 

nozzle remains approximately laminar even In a free Jet.) With respect 

to the order of magnitude of the Reynolds number calculated from the 

Initial velocity and the characteristic dimension of the nozzle, these 

observations agree with the data of paper [224] for the free Jet. 

As regards the turbullzatlon of the boundary layer adjacent to 

the wall, for It (besides the Initial conditions), as In the case of 

a uniform flow around a plate, we have the Reynolds number Re as the 

criterion, which Is calculated from the nozzle distance and the charac- 

teristic (maximum) velocity In the Jet cross section. The latter, as 

we see from the solution of the laminar problem, decreases as the noz- 

zle distance Increases, the number Re , however. Increases (since the 

product iif.,x~x
a+1 Increases with Increasing « and |fli|<l). This remark is 

only true for a plane-parallel semlllmlted Jets, as for a fan-type Jet 

It may happen that |a|>l. 

The complex structure of the boundary layer Is the reason for the 

difficulties of predicting the fundamental laws of Jet expansion. None- 

theless, we shall try to consider the problem on the basis of a dimen- 

sion analysis which applied to a plane-parallel semlllmlted Jet. 
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The outer zones of the Jet, as In all other cases of an evolved 

turbulent motion, must obey the general laws for self-similar Jet 

flows, I.e., the outer boundaries must be rectilinear (ß ^—1). This 

Indicates that the ordinate ^v, for the outer part of the Jet increases 

proportionally to the coordinate x.  Recall that y,h ~ r* ~ a?1: for a lami- 

nar plane, semilimited Jet. In the section where the wall layer is lami- 

nar, its thickness (characterized by the value of the coordinate !/'/, 

for the inner part of the Jet and, approximately, by the value of the 

ordinate, y  , which corresponds to the maximum velocity) must grow more 

slowly: for a laminar semilimited Jet p=—-I-, while p=—^. in the case 

of a uniform laminar flow streams around a plate. 

We base our reasoning about a probable law of variation of the 

maximum velocity u on the rough supposition that the coefficient vw tn ' ' i 

of turbulent kinematic viscosity is constant in a cross section of the 

Jet. In this case [with vT= vT(i)l the Integral Invariant conserved for 

the motion has the form 

K = jpuMjpurfyJdy m const 

or the simpler invariant for the self-similar flow (the particular case 

of Eq. (10.8) with *—y for the semilimited Jet) of the form 

00 

P = \u'f'dy ■=* const, 
o 

With ß " —1 we hence obtain a=_A and vT~J': 
3 

As shown previously, for a laminar Jet a=_l.. It is obvious that 

for the section of a laminar wall layer we must expect a variation of 

the maximum velocity according to laws similar to those of the laminar 

Jet, and after turbullzation — to those of the turbulent Jet. In this 

analysis, we did not take into account the part played by the laminar 

sublayer adjacent to the wall and the turbulent wall layer in which 
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VT~y"m. This simplification does not exert an essential Influence on 

the Integral characteristics of the Jet, as this can be concluded from 

experimental data. 

For a semlllmlted fan-type Jet (and also the turbulent flow along 

a cone) we give the value of the constant a of self-slmllarlty only for 

an evolved turbulent motion In which the Influence of the turbulent 

wall layer has been neglected. To this motion corresponds a value of 

the constant of self-slmllarlty of a = _At ß ^„^ and for a slightly 

twisted Jet e = —-l (for the peripheral velocity) and ,0=—^- (for the 

* r 

3 

( fr\r>   f'.hA    TIäTH nVio-nal     \TI 

pressure distribution In a Jet flowing along a cone). 

It will be shown that experimental Investigations of a semlllmlted 

turbulent Jet verify the above considerations on the two sections of 

the flow. I.e.; before and after the turbullzatlon of the wall layer In 

a plane Jet. 

12.2. TURBULIZATION OP THE BOUNDARY LAYER ADJACENT TO THE WALL 

Following paper [66], we shall consider briefly some experimental 

data on the transition of the laminar form of motion to the turbulent 

form In the boundary layer adjacent to the wall, of a semlllmlted Jet. 

Note that In experiments by F. Pörtmann [2Mi*], and In later experiments 

by P. Bakke [226] and A. Slgalla [297] such a transition could not be 

observed11). 

Its presence was proven by a systematic analysis of the curves In 

graphs showing y,  and u as functions of the coordinate x In A.T. Trofl- 
^ rri 

menko's experiments [191, 192]. In order to explain the apparent contra- 

diction special measurements were made with an air Jet and also (Z.B. 

Saklpov) experlements In various devices with semlllmlted Jets of air 

and water. The results of these experlements, which are described In 

detail In paper [66], showed that turbullzatlon of the boundary layer 

adjacent to the wall may occur, according to the conditions of efflux, 
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either Immediately at the orifice of the nozzle or at a considerable 

distance away from It, or this effect may even be absent In entire 

region of the Jet that was under observation. 

The first case where the flow In the whole space occupied by the 

Jet Is turbulent, except for the laminar sublayer, was observed as a 

rule with fan-type semlllmlted Jets and plane Jets, when the outlet 

nozzle had been made without a sufficiently strong "draw-In." It Is 

obvious that In these cases, the Initial disturbances together with the 

expansion of the Jet at the outlet result in a turbullzatlon which sets 

in virtually Immediately in the whole boundary layer. 

The second type of flow with turbullzatlon of the wall layer at 

distances of about 15-20 nozzle diameters away from the orifice at val- 

ues of R*«»(3-T-5)10* occurs when a fluid issues out of a nozzle with 

strong "draw-in." The initial disturbances are here reduced to a mini- 

mum and the laminar sublayer which forms at the wall is maintained over 

a considerable distance. 

Finally, the third type of flow, where the laminar wall layer ex- 

tends over the whole range of the flow, can be observed when the efflux 

conditions are such that no Initial disturbances arise and Re does not x 

reach the critical value. This was the case in F. Förtm&nn's experiments 

[244] and, apparently, also in a paper by W. Schwarz and W. Cosart [296]. 

Figure 12.2 shows y.   (for the outer part of the Jet) as a function 

of the coordinate x: for the first type of flow (water Jet discharged 

from nozzle with slight "draw-in," initial speed uo= 3,0  /sec) it is 

Fig. 12.2a, and for a flow with transition (sir Jet with M» 52 m/sec and 

water Jet with u«« 3,2 m/sec) it is Fig. 12.2b. 

Figure 12.3 shows the integral characteristics (total momentum 

J*   and the quantity *) along the Jet for all three types of flow. 
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As we see from the figures, the presence or absence of a transi- 

tion le expressed clearly by the form of the curves. 

As regards the shape of the curves jx{x) and K{x), It may be explain- 

ed In the following way. The condition K ■ const refers to an evolved 

self-similar flow In a case where the coefficient vT  does not vary 

across a section. This condition, however. Is only satisfied In a pure- 

ly laminar jet, whereas In the cases represented in Fig. 12.3, v- • v 

for the laminar wall layer vT~i/um   In the turbulent wall layer and 

vx — ium   In the Inner part of the Jet (see schematic diagram of Fig. 

12.1). 

This can also explain the shape of the curves K(x)  In various sec- 

tions of the Jet: the noticeable Increase of the quantity K  if the wall 
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Fig. 12.2. Dependence of the conditional ordlnate of a turbulent 
semlllmlted Jet on the distance to the nozzle cross section, a) Water 
Jet discharged from a nozzle with slight "draw-In;** b) water Jet (++) 
and air Jet (oo) discharged from a nozzle with strong "draw-In." 
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- 282 - 



( > 

Flg. 12.3. Dependence of the relative values of the Integral character- 
istics JjJn and X./KQ  from the distance to the nozzle cross section 

in a plane, turbulent semilimited Jet. a) Air Jet (experiments by 
P. Portmann [2M]; b) air Jet UA-OD) and water Jet (xx-oo) discharged 

from a nozzle with strong "draw-in" [66]; c) water Jet discharged from 
a nozzle with weak "draw-in" [66]. 

layer in laminar and the slight drop when it is turbulent. 

The value of the momentum remains almost constant in the case of 

a laminar flow in the wall layer, when friction is very small, and it 

decreases considerably when the boundary layer becomes turbulent. 

Pigure 12.4 shows the intensity distribution of velocity pulsations 

in an air Jet moving aloug a plate measured by means of a thermoanemo- 

meter (1 mm away from the wall), analogous data for a water Jet and, 

for comparison, the velocity pulsations of air in the turbulization 

zone of the boundary layer on a wing profile*). 

These and other observations described in the papers referred to 

prove without doubt that the effect we discussed above must exist in 
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Fig. 12.4. Intensity distribution of velocity pulsations In a turbulent 
seml11mlted jet of air (a) and water (b) at a distance of 0.1 cm from 
the plate [66]; c) the same for a wing profile [130]. 
Note: For water (Fig. 12.4b) on the ordlnate axis the pulsations of 
the fluid column of a mlcronometer are plotted. ] 

a turbulent semillmlted Jet. Quantitative results. In particular the 

values of the constants of self-similarity also speak In favor of It. 

In all cases of a turbulent semillmlted Jet the constant of self-slml- 

larlty was found to be equal to ß ■—i. 

In experiments referring to the first type of flow (turbulent flow) 

the constant — a as 0,60-f-0.62; almost the same value (—a « 0.73-t-0,78 for an 

air Jet and —as0,80-i-0,83 for a water Jet) was observed in the second 

section, that is, after the transition, in the second type of flow. 

Recall that the calculation yields -a ~ 0.67 for vT - hum. 

Finally, in the third case of a laminar wall layer (throughout 

the Jet or only in the first section of it) the value of the constant 

a amounted to -o«0,45-t-0,50 for Jets of air and water (In particular, :J 
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P. Förtmann [244] and A. Sigalla [297] gave -a = 0,5). The value calcula- 

ted for a laminar Jet is —a = 0,5. 

It is worth noting that differences in the flow conditions in the 

zone adjacent to the wall exert practically no influence (within the 

limits of measuring accuracy) on the form of the universal velocity dis- 

tribution. The latter are in all cases virtually coincident (see Figs. 

12.5 and 12.6). More than that, the very same universal distribution 

also applies with sufficient accuracy to the cross sections of a fan- 

type semilimited Jet. 
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Pig. 12.6. Universal velocity distribution In a turbulent plane semi- 
limited Jet [66]. 

1) UQ  - 44  m/sec 
2) u0  - 52 m/sec 
3) w0 ■ 13, 8  m/sec 

*») u0 - 2.7 

5) w, 3.2 

Air Jet; 

water Jet; 

  velocity profile calculated for a laminar Jet. 

« s 

4P 

12.3. CALCULATION OP A SEMILIMITED JET 

The experimental values of the constants of self-similarity given 

In the preceding section are close to those which are obtained from di- 

mension considerations or direct calculations for self-similar Jet, un- 

der the assumption of t>- - fcu . In this case, however, the calculated 
i tn 

velocity distribution in a Jet cross section -^ ^ Ffr) should  hava been 

coincident with the laminar one shown in Table 7.1. This distribution 

(dashed line lit Pig. 12.6) resembles only qualitatively the experiment- 

al one. When we compare the maxima of the curves, we see that the outer 

parts of them coincide virtually; they also agree with the distribution 

for a plane free turbulent Jet (in the coordinates ^-^ F(^-))  for the 

outer part. 
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The inner part of the distributions, both the experimental and the 

calculated ones for vm * bu  , and even the position of the velocity 
i ffi 

maximum, differ essentially. This difference, which has almost no In- 

fluence on the self-slmllarlty constants of the Jet, can be explained 

(as also the shape of the function/^)) by the structure of the boundary 

layer adjacent to the wall. NOte that It has already been Indicated In 

F. Förtmann's first paper [21*il] that a calculation of the velocity dis- 

tribution In a turbulent semlllmlted Jet must be built up by way of 

"Joining" the various solutions for the outer and Inner zones of the 

Jet's boundary layer. As already mentioned, the solution for the froe 

turbulent Jet applies to the outer zone; for the Inner zone an exponen- 

tial distribution Is recommended In paper [244] and, with particular 

detail. In paper [246], which Is typical for r. turbulent boundary layer, 

for example, "the law of one seventh" for the Blaslus zone. An analo- 

gous calculation Is contained In the monograph [11]. 

These calculations are based on correct representations of the 

Initial conditions with respect to the different structures of the In- 

ner and outer parts of the turbulent semlllmlted Jet. As regards the 

"law of one seventh," It applies approximately to flows In the turbu- 

lent boundary layer adjacent to the wall. In the case of a laminar wall 

layer, the Inner part of the distribution Is of course In no connection 

with Blaslus' law of resistance. In this case, the qualitative features 

of the anlsotropy reminds us of the well-known problem of the laminar 

flow In an annular channel with a characteristic asymmetry of the logar- 

ithmic velocity distribution (a displacement of tne maximum to the In- 

ner wall). 

For an evolved turbulent flow In all zones of a plane Jet a re- 

latively simple approximation method (already mentioned above) can be 

developed on the basis of the following suppositions. We assume flrst- 
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ly that the constants of self-slmllarlty are o=--|-, p=-l and suitable 

to describe the entire flow. Secondly, and this Is the main point, we 

develop an Interpolation formula for the coefficient of turbulent vis- 

cosity. For this purpose, we assume that near the wall, according to 

Prandtl, v^~/,J^~v^ since /~y •«> ^ « const (the velocity distribution 

Is almost linear). Away from the wall. In the Inner part of the Jet, 

vT= to«,»--«•'•.   For the layer as a whole we put 

vT = /(<p)6om, 

where f(cp) Is the Interpolation function which. In particular, may be 

taken as equal to /(<p) = 1—e-c»'; the coefficient C  plays here the part of 

the second empirical constant. 

The self-similar differential equation will under these supposi- 

tions take the form 

1/ (<P) r (q.)!' + /' («P) r (9) + 2f'• (<p) =- 0 

\p 

» 

with the boundary conditions 
^ =. F - 0 If 9 =• 0, 
JPaaO     If  9 =• oo. 

The numerical solution of this equation with the above form of 

the Interpolation function f{^)  and a value of the constant C » 30 

agrees satisfactorily with experiments for an evolved turbulent flow 

[66]. To this solution corresponds the solid line In Fig. 12.6. In a 

wider range of experimental data, the value of the constant C would In 

fact prove to be a function of the Reynolds at present, however, such 

a precise definition would be premature as we have no reliable experi- 

mental data. 

Other variants of calculation suggested In paper [246] or [11] 

are not discussed here because of their complexity and the preferable- 

ness of the continuous Interpolation procedure. „ 
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Finally we want to remark that Just this interpolation method 

was used successfully by V.R.  Aubarikova and A.T.  Trofimenko  [24]  for 

the solution of the thermal problem  (with the boundary conditions 

'---0        at u  = 0)  of a semilimited turbulent Jet.   Data on the heat 

transfer in semilimited turbulent Jets are also contained in paper  [143] 

and others. 

As regards the calculation of a turbulent  fan-type semilimited Jet, 

which in particular is Interesting as a model of motion arising in the 

efflux of a round Jet  streaming perpendicularly against  an obstacle,  an 

analogous  interpolation procedure  can be applied to  it.   In this case, 

ß = -1 and,  in a first approximation, a = -4/3.  This value corresponds 

to the  supposition that u-, = bum.  Note that in papers   [296,  297] the ex- 

perimental values a = -1.12  and  ß ■ -0.94 are given. 

In any  case,  for a turbulent  fan-type semilimited Jet   |a|   >  1, 

approximately   a«—(1,2-4-1,3)    (in contrast  to a = -2/3  for a laminar Jet). 

Detailed investigations  of this type of a turbulent Jet flow are 

indubitably interesting for both theory and practice. 
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Chapter 13 

SELPSIMILAR TURBULENT GAS JETS 

13.1. ON THE MECHANISM OP TURBULENT MIXING IN OASES 

The extension of the ideas and methods of solving selfslmllar 

problems of the theory of turbulent Jets of incompressible fluid to 

analogous flows of compressible gas requires preliminary discussions 

of, at least, two problems. We are here concerned with the qualitative 

representation of the process of turbulent mixing in gases and the pro- 

blem for which flow characteristics the presence of universal distribu- 

tions (in the cross sections of self-similar gas Jets) may be assumed 

with high probability. 

Though they are of different generality, both problems are link- 

ed with each other and with the choice of the mathematical character- 

istics which determine the evolution of turbulent Jets of compressible 

gas. 

Recall that the turbulent mixing of an incompressible viscous 

fluid is connected with an instability of the interface of parallel 

streams. An illustrative idea on the mechanism of the appearance of 

turbulent mixing in the interface of such flows can be obtained when, 

following L. Prandtl, we apply the Bernoulli equation to the two neigh- 

boring fluid streams. Let us assume that in one of them a local random 

extension occurs. It will be accompanied by a decrease of velocity and 

an Increase in pressure in this stria (in the perturbed cross section). 

At the same time, in the same section of the neighboring stria, a con- 
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strlctlon occurs, the velocity of motion In It rises and the pressure 

drops. Perpendicularly to the Interface of the striae a force will 

arise, namely the pressure gradient, which favors a further growth of 

the perturbed Interface. As a result, with appropriate relations be- 

tween the forces of Inertia and the forces of viscosity (preventing per- 

turbations), the random buckling will be amplified until a "neck" forms 

which may then tear and some fluid may pass over from one stria to an- 

other. These transitions (in agreement with the continuity equation) 

will occur in the one and the opposite direction. As a result, the in- 

terface becomes broader, thus forming the zone of turbulent mixing. 

These qualitative considerations have been verified qualitative- 

ly in a well-known theorem of hydromechanics, the theorem of the abso- 

lute instability of a tangential discontinuity [122]. 

Let us try to transduce this procedure to the flow of two adja- 

cent striae of compressible gas. Note that also in the case of a = 

■ const In the Bernoulli equation for an incompressible fluid a pres- 

sure variation is connected immediately rot with the velocity (the kine- 

matic characteristic of the flow) but with the value of the dynamic pres- 

sure, pu2. 

In a compressible gas a change in the cross section of a stream 

tube causes a change of opposite sign of the flux density pu  (mass ve- 

locity) of the fluid. Since the relative velocity of motion of a gas 

in the two mixing elementary striae will be subsonic, the signs of 

variation of linear velocity, mass velocity and dynamic pressure (momen- 

tum flux density pu2) agree when the stria widens, i.e., all these 

quantities decrease while the pressure Increases. In contrast to this, 

in the zone of constriction of a stria the pressure drops and the val- 

ues of u, pu, and pu2 grow. In other words, the qualitative picture of 

the stability losses of the Interface remains the same as in the case 

- 291 - 



I 

of the incompressible fluid: In both cases the appearance of a trans- 

verse pressure gradient which disturbs the stability of the Interface 

Is connected with a difference In the values of the quantity p«2 [50]. 

Applying this to a gas jet discharged Into a space filled by a 

gas of another density, In the general case, where the values of the 

velocity and the density of the gases In the Jet and the medium sur- 

rounding It (In a parallel stream) are different, we may suppose that 

turbulent mixing will occur the more Intense the greater the difference 

between the local values of pu2, and not of u or p Individually. 

In a first approximation also the opposite conclusion must hold 

true, namely that there Is no Intense turbulent exchange (Ignoring the 

Isotropie turbulence and, of course, the molecular mixing) when the val- 

ues of pu2 are the same In the two mixing parallel flows. In spite of 

different values of velocity and density separately*). 

The assumption of the decisive role of p«2 In the turbulent mix- 

ing of a gas Is faced by another widespread point of view [11, 217, 218], 

according to which In all cases. I.e., In both an Incompressible fluid 

and a gas, turbulent mixing Is chiefly caused by differences of the 

values of the mean velocities. As regards the difference In the densi- 

ties. It may be given the part of an additional factor In this scheme, 

a factor which Intensifies the turbulent exchange. 

The conclusions which can be drawn from these two conceptions un- 

der definite conditions are exactly opposite. Let us Imagine that two 

parallel flows of gas of the same velocity but different densities, 

and thus ♦1th different values of pu2, produce a zone of turbulent mix- 

ing. Its existence Is due to the density difference. Let us now assume 

that, without changing the density values, a difference In the velocity 

values Is created additionally, which Is L     . that the values of pu2 
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which Is the main cause of the Instability, the mixing Intensity must 

be diminished. If It Is, however, the difference In the velocities 

which Is the principal cause of turbulent exchange, the mixing Intensi- 

ty must Increase. 

In this thought experiment, one and the same effect yields quite 

opposite results In the two schemes considered. 

In spite of the fact that we know of a considerable number of 

experimental observations which, for the most part, speak In favor of 

pu2 playing the decisive part In processes of turbulent mixing of gas- 

es [11^,193], It was necessary to carry out special tests which should 

yield more complete proofs of the validity of this assumption. 

Such experiments were conducted by I.E. Palatnlk on the expan- 

sion of a Jet of hot gas in a colder parallel flow [64] with three val- 

ues of the ratio between the gas temperature T.  in the Jet (combustion 

products) and the air temperature T^  in the wake. Figure 13.1 shows 

the experimental curves of the dependence of the quantity ATn^Tm—Ta, 

divided by its initial value ATW^V-Too for an axisymmetric Jet, with 

one and the same value of TtfTmss3.   As we see from the figure, the 
AT curves   *  for three different nozzle distances, possess a clearly 

marked maximum in the range of a value of y*^*.«!. The value of ■—* 
(put), A To 

characterizes the mixing Intensity; the more ^Ii*.   differs from the ini- 

tial value (which is equal to unity), the more intense is the mixing. 

AT On the other hand, the maximum of the value of —!J corresponds to 
u"   j (Pu*)    p 

minimum mixing.   Under conditions where  -^~'1»   and the ratio 7—sF—— 
*■, (pi«»)i  pt 

AT* 
being essentially different from unity, the value of -JJ? droops rapid- 

ly. If we go from this value (righthand side of Pig. 13.1) along the 

curve toward the origin of coordinates, the value of ^* will grow 
AT» 

and the intensity of turbulent mixing will drop until a ratio of 
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Pig. 13.1. Mixing of parallel gas Jets of different densities (with 
TJO/T,• a r •]. o o o *M - M:   xxx «K * I.*: 

-^r «i-        is  reached.  As mentioned above.  If differences In the ve- 

locities were the principal cause of turbulent exchange, the value of 
AT. must drop and the mixing intensity must rise (when moving in the 

same way along the curves). This, however, is contradictory to the ex- 

periments. 

With a further moving along the curves toward the origin (in Pig. 

13.1) the quantity zl*   decreases, which is in agreement with the assump- 
*"• 

tion of pu2 playing the main part (but without experimental data for 

the right half, the figure might also be explained by an increasing in- 

fluence of the velocity differences). 

The experimental results discussed (partly represented in Pig. 13.1) 

justify the assumption that under these conditions the differences in 

the values of momentum flux density pu2 play the principal part and we 

make use of this in practice, when calculating the evolved turbulent 

exchange (neglecting effects of molecular nature). 

This conclusion cannot be considered an exhaustive answer without 
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a detailed investigation of the turbulent structure of the flow and 

an explanation of the possible connections between the characteris- 

tics of turbulence (intensity of pulsation, dimensions of the vortices 

at the interface, the characteristic frequencies, etc.) and the physi- 

cal properties of the mixing gases whose influence may be considerable 

at relatively small Reynolds numbers in the initial region of the flow. 

In any case,the limits of its applicability must be established accord- 

ing to experiments. As regards the nature of the relatively intense mix- 

ing of flows possessing the same velocities, for its explanation it is 

essential that the qualitative image of turbulent mixing considered at 

the beginning of this section refers not to the average but to the non- 

stationary actual motion. A transition to a coordinate system moving 

with the average velocity (which is the same for both flows) will there- 

fore not remove the turbulent exchange as can be seen at the first 

sight. In fact, even with equal mean values of the velocity, the dif- 

ference of the actual values of pu2 is maintained which would not exist 

in a system at rest (for example, in a container filled with two paral- 

lel layers of gases of different density which are at rest while the 

container may be either at rest or performing an inertial movement). 

It is at present one of the main tasks in this field to develop 

effective approximation methods of calculation whose accuracies must 

correspond to the technical and laboratory experimental data on inves- 

tigations of Jets. The mathematical methods chosen must, of course, 

tend to agree with the physical representations and the results of 

physical experiments*) as well as possible, apart from the requirement 

for their simplicity, illustrativeness and the like. A detailed analy- 

sis of the influences of the various factors must be carried out by 

way of experiment as they are often concealed by the considerable 
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spread of the experimental data. 

These considerations, which refer to the present level of In- 

vestigations of the turbulent motion of a compressible gas. Indi- 

cate that extreme care Is necessary when the methods of calculation, 

Individual approximations and the like are extrapolated beyond the 

limits verified by experiment. 

13.2 THE UNIVERSAL DISTRIBUTIONS OP pw2 AND OTHER QUANTITIES 

Let us now turn to the second of the problems stated In the pre- 

vious section. We shall try to find out which of the characteristics 

of a turbulent flow must describe the properties of selfsimilar Jet 

flows of compressible gas. For example. In the case of a turbulent gas 

source-Jet, I.e., the motion at a great distance from the nozzle, with 

a noticeably variable density distribution and, consequently, such one 

of the absolute temperature, we shall Investigate whether, as in the 

case of the turbulent flow of an Incompressible fluid, the velocity dis- 

tributions In the Jet cross sections can be assumed universal. 

Recall that no characteristic dimension exists for a turbulent mo- 

tion produced by a source-Jet. Therefore, as In the case of p ■ const, 

the nondlmenslonal coordinate describing the self-similar motion may 

only be the ratio y/x. 

Let us briefly discuss the result of an attempt of developing non- 

dlmenslonal distributions of the characteristics of a compressible gas 

Jet under the assumption of similar velocity distributions ^-"A(-j-)- 

From the conditions of momentum flux conservation 

iM~{7*yfiy   (ft-0:1) 

It follows that besides the relative velocity u/u also the relative 
m 

density distribution 't'"M'f") muBt be universal and, with constant 

pressure, also the absolut*» temperature distribution-^-«/,(-*-). This, 
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however.  Indicates that the distribution of the surplus  temperature 

T     Tm 

AT        T-Tm       T^-J£ 

cannot be universal, as the ratio Too/fm depends on the single co- 

ordinate x. 

Considering the second Integral Invariant, namely the condition 

of conservation of the flux of surplus heat content Q = \pejibTds,  we see 

that the condition Q -  const, cannot be fulfilled if the surplus tern- 
AT* 

perature jf-   is not a universal function of y/x  (as velocity and den- 

sity are). 

Thus, on the one hand, in order to satisfy the conditions J    ■ 
iC 

= const and Q  ■ const it is necessary that the relative values of the 

integrands are universal functions of the variable y/x  while on the 

other hand all the three quantities (u, T  and AT) cannot possess uni- 

versal distributions at the same time. 

All these contradictions are avoided if, following the papers 

[50 etc.], one assumes that not the velocity and temperature distribu- 

tions are universal separately but the distribution of the momentum 

flux density pu2 and also that of the flux density of the surplus heat 

content pvtpLT   etc. 

In fact, when we put Tjiir"'^TJ' we satisfy immediately the condi- 

tion J    ■ const and obtain in addition to this the law of decline at the x 

Jet axis: (pu,)m~x-<*+»'~a««, where ot = —1 in an axisymmetric source-Jet 

and a ■ —1/2 in a plane one. We then also obtain -i^fL—_■= f PM. Here 

the condition Q  ■ const is satisfied and, moreover, the law of varia- 

tion of (pu^A^W along the axis of the Jet is obtained: in an axisym- 

-2 metric Jet this quantity is proportional to x  and in a plane one to 

-J -x 
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The supposition on the similarity of the distributions of the 

momentum flux density and the surplus heat content enable us to avoid 

the difficulties with the derivation of universal functions for self- 

similar Jet motions of compressible gas. If we assume that the turbu- 

lent exchange In a compressible gas Is due to a difference In momentum 

flux density pw', and not In p or u separately. It Is quite natural to 

suppose that the distribution of this quantity pu2 In a self-similar 

turbulent gas Jet will not depend on the Initial efflux conditions, 

that Is, It will be universal. The very same will also hold good for 

the other "substantlals": the flux density of surplus heat content, of 

the surplus total heat content (calculated from the stagnation tempera- 

ture for high velocities of motion), the surplus mass flux In the dif- 

fusion problem, and the like. It Is precisely these quantities which, 

besides pu2, enter the Integral conditions of conservation. 

Let us now discuss It from the physical point of view In which con- 

clusions on the laws of expansion of turbulent gas Jets the supposition 

of the universality of the distributions of pu2, etc. will result. 

Prom the condition (pll•)m~I,• It follows that In the case of the ex- 

pansion of a gas of lower density In a denser atmosphere, 1th other- 

wise unchanged conditions, the velocity will decrease more rapidly along 

the axis, and In the opposite case (efflux of denser gas Into a medium 

of lower density) more slowly than when the densities are equal"). 

This conclusion applies to the velocity distributions In the Jet 

cross-sections which result Immediately from the universality of the 

distribution of CTT; • 

Analogous conclusions are also obtained with respect to the dis- 

tributions of surplus temperature along the axis of the Jet and also In 

Its cross-sections. 

All these effects which are connected with the compressibility 
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in turbulent gas Jets are qualitatively the same as In laminar Jets 

(see Fig. 8.2). 

The supposition on the similarity of the distributions of pw2, 

etc. In self-similar turb dent Jet flows of gas, continued logically, 

results in the identity of the universal distributions, e.g., 

-flp » fa)t      where 9 
mjg*   ?or  both gas and incompressible fluid 

(T=/(9) ln the particular case of a Jet with p ■ const). This sup- 

position may be extended to all mathematical laws for turbulent exchange 

in gas Jets. This results in the possibility of using data referring to 

the well-known self-similar turbulent Jets of incompressible fluid In 

order to calculate analogous gas Jets. For this purpose, it is first 

necessary (case p ■ const) to represent the momentum flux density, that 

of the heat content, etc., as functions of the reduced coordinates. 

The question which remains open in this connection is that for the 

intensity of variation of the experimental constant a  of the "Jet struc- 

ture," which enters the universal variable 9=^~,   in the transition 

from incompressible fluid to gas. It is not clear, in particular, whe- 

ther the quantity a, under otherwise equal conditions, depends explicit- 

ly on the density ratio of the gas in the Jet and that in the surround- 

ing space, etc. Recall in this connection that the constant a  has no 

universal value which is conserved for a definite type of Jet and with 

p ■ const. Its value is determined by the influence of various factors 

which are difficult to take into account, macroscopic (shapt. of nozzle, 

nonuniformity of Initial distributions, etc.) and conditionally micro- 

scopic characteristics (Intensity of turbulence, initial ratio of the 

pulsations of the longitudinal and the transverse velocity components, 

the scales, etc.) and, finally, of physical parameters as the ratio of 

the densities, viscosities and the like, of the Jet and the surround- 

ing medium. It is obvious that only an analysis of reliable experiment- 
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Flg. 13.2. Distribution of stagnation 
temperature for the boundary of a tur- 
bulent Jet. 

al data permits a progress In this complex problem. The simple solution, 

namely to choose a priori  the value of one of the composite constants 

and Its dependence on the density ratio, cannot be unambiguous In the 

wide range of experimental conditions. Both considerations allow the 

conclusion that In the case of a high level of Initial turbulence the 

difference between the a-values for gas Jets of different densities will 

be very small, with a medium level It will be noticeable and If the Ini- 

tial level of turbulence Is low, the a-values will differ considerably. 

A more precise quantitative formulation of this conclusion will follow 

when we compare calculation and experiment. 

It is essential that, Independently of the Influence of the para- 

meters of compressibility on the value of the constant a  (directly or 

indirectly, e.g., through the elevation of the level of turbulence in 

the process of heating, combustion, etc.), an appropriate choice of 

this value as a rule results in a better agreement of the universal 

laws (the distributions of pu* etc.) with the experiments and with one 

another, for different density values. 

Among the physical laws of turbulent transfer in gas Jets, one 
:: 
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should also mention the effect of local redistribution of total energy, 

which has already been discussed in connection with the laminar flow. 

In all investigations known to the authors the so-called turbulent 

Prandtl number for a Jet motion (in practice also in other cases) is 

smaller than unity. Hence it follows that in an integral-adiabatlc gas 

jet, that is, in the case of efflux of gab where the temperatures in 

the tank and the surrounding medium are the same, the stagnation tem- 

perature distributions in the Jet cross-sections (and also along the 

Jet) cannot be constant. The energy in the faster striae of the gas 

mup4" increase at the expense of energy losses of the slower striae, etc. 

Calculations of this kind carried out under various assumptions 

on the velocity and temperature distributions [47, 48] verified the 

presence of a local redistribution of total enthalpy in turbulent gas 

Jets which at present is universally recognized. 

In this connection arises the necessity of verifying also in this 

respect the calculation on the scheme of similarity of pu2. Without 

entering into details, we restrict ourselves to indicating that this 

way of calculation [6l] and [145, 146] showed that also in this respect 

the method of similarity of pw2 yields physically correct results. By 

way of example, we have shown in Fig. 13.2 the distribution of total en- 

thalpy in the boundary layer at the edge of a turbulent integral-adia- 

batlc plane Jet. Considered from the quantitative point of view, the 

effect of redistribution is hardly essential for the dynamic problem, 

for the thermal problem, however, it may be important in principle to 

take it into account. 

13.3. CONSIDERATIONS OF DIMENSIONALITY 

Let us now discuss the nature of the basic laws governing the self- 

similar turbulent Jet flows of compressible gases. For this purpose, as 

before, we make use of dimension considerations which we apply to the 
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same concrete cases of motion In the mixing zone of a uniform flow 

with nonmovlng gas, and the expansion of source-jets (plane and axl- 

symmetrlc). In each of these cases, using the Initial given quantities 

we express the characteristic quantities as functions of the given 

parameters and the coordinate x, accurately, except for a certain non- 

dlmenslonal function A») ■/(«)• which Includes numerical factors. 

To begin with, we consider the problem of the edge of a plane- 

parallel Jet. In this problem, there are two Initial quantities: the 

momentum flux density In the nonperturbed Incoming flow, (pu2)0, and 

the gas density In the quiescent surrounding medium, p^, which, as al- 

ready mentioned, are completed by the coordinate x. 

Taking the dimensions of the given quantities (pu2, p, x, etc.) 

Into account and allowing the conventional sign ~ to comprise const 

/(<p)> we can formulate the expressions 

of turbulent friction 

tr — pu1 ■ coMt A (f) p^t 

of turbulent viscosity 

and of turbulent kinematic viscosity 

If we take to the given quantities also the flux density of sur- 

plus heat content (and In the case of high velocity of motion, the to- 

tal heat content cpTo- epT + ^),  we obtain from the same considerations: 

the heat flux density 

? - — ^T ^ ~ puepAT m const /, (9) puc„Af, 

the turbulent thermal dlffuslvlty 

flr~VpS(p^)i«. 
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and the turbulent thermal conductivity 

With this, the distributions of the momentum flux density and the 

heat content are determined by universal functions of the coordinate cp : 

Ä-'■»>■-AT-™- 
When we, as before, introduce a cross-sectional element 

dsi*{23iy)kdy,   for the source Jets, we can unite the axisymmetric ik = 1) 

and the plane ik  «■• 0)  source Jets in a single scheme. The given quan- 

tities are now the quantity J , the gas density p in the nonperturbed 

medium and, for the thermal problem, the flux density of surplus heat 

content Q-^puc^Tdi. 

Using these quantities and also the coordinate x, we obtain for 

the turbulent friction 

the turbulent viscosity 

the turbulent kinematic viscosity and the thermal diffusivity 

VT -.x-i/sF*- 
the turbulent thermal conductivity 

and the flow rate of gas 

ITS 

The distributions of     P**     and   , *""*»t       in the Jet cross-sections 

will be  universal  functions of the variable cp, where 

(pH1)* ~ /«i- (»+» „a (pBCpATV — $!-(»♦«. 
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These formulas are very general. In particular, the well-known 

Prandtl formulas for turbulent friction in an incompressible fluid 

agree with those given here. In fact, with p ■ const,   I * ox  and 

*IL~ÜS.F{fi)    the formula tj.-p^-Jj-)* for the round Jet (B,—j-), yields 

as above 

while 

Tr-conftF
,(^)-j-, 

vT»con«t. 

It should also be noted that the expression for the flow rate of 

the gas in the JetC-^VpJ*&*xcan be rewritten in the form 

c 
^7 

if we introduce the conventional for the initial section of the equiva- 

lent gas Jet of finite dimensions, namely, p0 and u0 and *—(j-«0»db,i where 

d0 is the characteristic dimension of the outlet cross-section of the 

nozzle, C»- p«Mft and /, - p*ü*. 

The expression for the rllatlve flow rate of gas in the Jet, which 

holds true at a considerable distance away from the source, shows that 

the mass of gas added per second from the surrounding medium to the Jet 

will grow in a linear proportion to the distance in an axlsymmetric Jet 

and proportional to the square root of the relative distance x/d0  in a 

plane Jet. In both cases the coefficient of proportionality in the for- 

mula for G/G0  is equal to the square root of the density ratio P./p« 

This indicates that the relative "ejecting capacity" of the gas Jet is 

the higher the lower the gas density in the Jet compared to the gas 

density in the surrounding medium. 

In the outstanding paper by P.P. Ricou and D.B. Spalding [285] ex- 

perimental data are given which have been obtained in direct measurements 

of the mass adjoined. As we see from Fig. 13.3 (for a round Jet) the ex- 
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Fig. 13.3. Dependence of the relative rate of gas flow in the Jet on 
the distance and the density ratio for the Isothermal efflux of various 
gases Into air (after data by P.P. Rlcou and D.B. Spalding [285]. a) 
1 — Efflux of air (c/o,- o.six/d,); 2 — efflux of propane and carbon dioxide 

efflux of hydrogen <c/c.-1.2 */*): b) universal curve (C/C, - 0.26 x/d,); 

(c/c,. 0.S2 (x/d.) 
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perlment verifies the dependence derived. The results of paper [285] re- 

sult in a formula for the rate of gas flow in the form 

lr-0.32-M/lf. 75—".«■■ar^ p. 

The expressions we obtained here for the particular case of the mo- 

tion of an Incompressible fluid agree of course with the formulas given 

previously. 

Let us now try to use the expressions derived in order to explain 

the Influence of the parameter of compressibility, © = — on the non- 

universal) velocity and temperature distributions. This is particularly 

easy for the distributions In the Jet cross-sections. 

In this case ^ = f^ (the density on the axis of the source Jet 

is taken as the characteristic density value of the Jet). For the edge 

of the Jet, it is obvious that 0 = 00=—, where pn is the gas density _   Pi \J 

in the incoming flow. The necessity of knowing also the ratio of the 

gas densities in the Jet and the surrounding medium becomes obvious 
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from physical considerations. So we also assume the quantity u0, the 

velocity of the Incoming flow, given. 

Finally, for the transition from universal laws holding true on 

the Jet axis to expressions which determine the variations of velocity 

and surplus temperature along the axis we shall also assume that the 

Initial values of density p0 and velocity «0 are given (for the equi- 

valent Jet of finite dimensions). It should be stressed In this con- 

nection that the Idea of assuming p0 and UQ given results from the ten- 

dency to simplify the analysis of the Influence of the compressibility 

of gas on the velocity and temperature distributions and we never re- 

quired previously, when the general law were established. 

Prom the similarity of the distributions of pu2 In the cross sec- 

tions It follows that 

and hence 

With 9 given, the ratio u/u will be higher or smaller than the val- 
ue of {*")•"■«*" ln an Incompressible fluid according to whether w > 1 

(Jet of densar gas, e.g., cooler) or u < 1 (e.g., hrtt Jet, gas of lower 

density). 

In the first case, the velocity distributions are displaced away 

from the ordlnate axis In the second case they lie closer to It. The 
Ar 

very same also applies to the distributions of ff-  In the cross sec- 
PM* tlons, since from the universality of the distributions of ^j"  and 

f^      It follows that 

£-(^J^/£-/^>.(fV 
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(for simplicity we give it for o    ■ const). 

In the case of the efflux of a gas Jet with high velocity the 

distribution of the flux density of total heat content is universal. 

The conclusion as to the surplus temperature we obtained here will 

therefore remain in force for the distribution of the excessive stagna- 

tion temperature (in the general case, the surplus total enthalpy). 

From the qualitative point of view the influence of high velocity 

(more accurately, the Mach number) is analogous to the influence of 

a higher gas density in the Jet. 

In order to determine the laws of variation of velocity and sur- 

plus temperature along the axis of a compressible gas Jet we use the 

expressions 

«S,  (p«•,)« p. (<) iL 

and 

u»   (P«»). Pm  V «• /,.«„„» 

AT, (puc_Ar)o pmum V"ÄTr^_colwt V  pm • 

If a gas of lower density streams into a denser atmosphere the 

velocity drop on the Jet axis occurs more rapidly than in the case of 

equal densities. On the other hand, a dense Jet of gas is damped more 

slowly. 

Thus, in all cases of self-similar flows of gas, both along the 

Jet axis and In the cross sections, the decrease of velocity and sur- 

plus temperature occurs more intensely if the gas density in the Jet is 

lower than in uhe surrounding medium, and less intense in the opposite 

case compared with the turbulent mixing in the case of equal densities. 

This indicates that a Jet of denser gas, as it is more "inert," exists 

as such over a greater distance from the nozzle orifice. In the limit- 

ing case of p ■ » the Jet behaves like a solid rod moving in a medium 
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of low density; the velocity along the axis and In the whole cross 

section Is the same as In the Initial section. This result agrees 

completely with ihe  qualitative scheme shown In Pig. 8.2 for laminar 

gas jets. 

It must be borne In mind that a full-value comparison of the two 

cases of efflux of a gas Into a space filled by a gas of equal or dif- 

ferent density Is a difficult task. As we see from precisely this 

Pig 8.2, a density which varies within the region of the flow changes 

both the longitudinal and the tran sverse velocity and temperature dis- 

tributions of pu*,pucpAT   etc., are not subject to such a great influence 

of the compressibility parameters (together with other factors not taken 

into account). With an appropriate choice of the structural constant a 

the distribution of pu2 is as a rule universal. The problem of compar- 

ing the effective thicknesses (particularly in the initial part of the 

Jet) determined according to the velocity distribution must therefore 

be approached with great care. This may in fact explain the lack of 

coordination in this problem, sometimes even in the determination of the 

nature of influence of compressibility on the basis of one and the same 

experimental data. 

13.4. THE MATHEMATICAL PROCEDURE OP SIMILARITY OF pu2 

The calculation of self-similar turbulent Jet flows of compressible 

gas. Just as such of Incompressible fluid, may be carried out on the 

basis of various semiempirical mathematical procedures. Each of them is 

based on one or several assumptions which are usually extrapolated from 

the region of p « const. As examples we may mention the supposition of 

the similarity of the velocity distributions or Prandtl's modified law 

of the thickness increase of the mixing zone in the papers by G.N. 

Abramovich [7, 11» 12], the transition In the theory of the mixing 

length to A.A. Dorodnitsyn's variables, suggested in his time by V.Ya. 
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Eorodachev and L.Ye. Kalikhman, the successive iteration of solutions 

on the basis of the method of small perturbations [25], etc. 

For the agreement between the results of calculation and experi- 

ment, empirical constants are taken from the latter, owing to which 

the verification of the usefulness of the mathematical procedure becomes 

somewhat conditional. In fact, in those cases where the calculation re- 

sults disagree with the physical conditions (for example, when the meth- 

od of the mixing length is transferred to the plane of A.A. Dorodnitsyn's 

variables, etc.), the inapplicability of individual procedures becomes 

evident. In the absence of an obvious contradiction, the choice of the 

optimum mathematical procedure loses the unambiguousness and becomes 

somehow subjective. 

From the viewpoint of practice, the ■ '"ulation of self-similar 

turbulent gas Jets can be simplified consider^ ly if, as shown above, 

the expressions of the universal distributions of the quantities 

pu*, pucpAT1 etc., as functions of the variable (p in the cross sections 

(and of the coordinate x  along the Jet) and of the integral character- 

istics J    and Qt  are assumed to be the same as in the general case of x 
a variable density distribution and in the particular case of p = const. 

Let us take this as an initial supposition. The procedure of the 

subsequent calculation may be illustrated by way of example of an axi- 

symmetrlc source Jet. To define the problem concretely, we consider the 

problem of the efflux of a hot (or cold) - relative to the surrounding 

medium - gas Jet with Mach numbers M << 1. In order to simplify the 

formulation as much as possible and to approach the case p ■ const, we 

introduce new variables [50, 58]. We denote the fundamental variable by 

and express the other physical quantities In terms of it: 
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(or /•-= KTcpAfo for a motion at high velocity). Analogous variables 

must be Introduced In the equations of turbulent diffusion In gas Jets. 

Linking the new variables Ut  V,  J,  etc. with the old ones'«, pt»=p«CpAr, 

we arrive at the formulas used In the previous section: 

AT 
ÄTZ 

or 

etc., for the distributions In transverse cross sections, and obtain 

analogous formulas for the variation of " /u* etc., along the Jet axis. 

For these calculations It Is necessary to determine the dependence 

of p /p on the variable o (or pA/p for the Jet axis on the coordinate 
m Um 

x) whereafter all results In an algebraic reduction. For this, let us 

consider, e.g., the formula 

^-/?«(f). 
In which we substitute 

lb l-ir  1—r1- 

The ratio ?=. will be considered to be a given parameter of the problem. 

The equation 

T-£-('-^)|/>«<») J 
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after a transformation, will then take the form of a quadratic equa- 

tion in the quantity r=|/£=L: 

From this equation we obtain 

'-('-£)4±-/('-£K+£- 
r ('-^-V^-ftr 

The "plus" sign In front of the square root corresponds to the 

case of T
=
-<1I I.e., a case where the gas density on the Jet axis is 

Pea 

minimum (e.g., the efflux of a hot gas Into a colder and denser medium), 
p 

the "minus" sign corresponds to the case of "^"^ the gas density on 

the axis Is maximum (e.g., a Jet of cold gas discharged Into an atmos- 

phere of less dense hot gas). Here, with ■5=-<l also r < 1; with 

■jp->*  at the same time also r > 1. 

In an analogous way, we also determine the variation of the ratio 

■£- along the Jet axis. If pn Is the Initial value of the gas density 

In the Jet. Here to,, we obtain from the analogous quadratic equation 

•?->l  with |t>l and, correspondingly, "S-<^1 with 5~<1, 

rm Poo 'B "^ 

Somewhat more complex Is the calculation In the case of a Jet of 

high velocity. Let us Illustrate this by way of example, considering 

Aft the distribution of -jjr- In the cross section of a round Jet. We have 

and since 
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We finally arrive once again at a quadratic equation 

Pm . x — i .,« /*»  P"» _ /< i w —i ■*«  Pm^ , / P" o 

or 

\      *        P«B'     Poo     *      ▼ 

and hence 

(-^-.-£)l[-/-^^|; 
(where x"T*j* 

Pm 
Note that with given value of the ratio p^ the Increase of Mach's 

number M results qualitatively In the same final result (when calcula- 

ting the velocity distributions, etc.) as a precoollng of the gas In the 

Jet. 

In this way, also here a calculation of the function Tom(«) Is ana- 

logous) the calculation can be finished. 

13.5.TRANSFORMATION OP THE EQUATIONS 

As shown above, the mathematical procedure of calculating turbu- 

lent gas jets Is based on the supposition that In self-similar flows 

the universal distributions of momentum flux density pu2, of surplus 

heat content ipuepAT  and mass paAc are described by one and the same 

nondlmenslonal expressions, functions of the argument '^.X. We are 
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interested In the "price" of obtaining such a result for an earlier 

phase, that Is, which assumptions are necessary for this. In other 

words, we are Interested In the possibility of such a transformation 

of the system of equations of a turbulent boundary layer of compres- 

sible gas to new variables U,   V,  etc., such that the form of the equa- 

tions and boundary conditions In the new variables remains unchanged 

compared to the Initial equations and boundary conditions In the old 

var ables, u, v, etc., for the Incompressible fluid. 

It Is obvious that, having carried out this transformation, we 

can go still farther and apply the apparatus of one of the semi empiri- 

cal theories (e.g., the method of the asymptotic boundary layer used 

In this book) to the transformed system of equations. In this case, 

the final formulas In the new variables must also remain unchanged. 

Following [55, 58] we first discuss the fundamental physical 

assumptions which we shall use. For simplicity we restrict ourselve 

to the case of a nonlsothermal Jet of low velocity. We shall consider 

In detail the particular features of the case M^l 

In the case of an evolved turbulent motion these assumptions re- 

sult in the following: 

1. In the transformed equations all terms which refer to effects 

of molecular transfer (containing the coefficients of viscosity and 

thermal conductivity) will be considered as negligibly small compared 

with the analogous terms referring to molar turbulent exchange. 

2. We shall adopt approximately that the gas density p is only 
cout 

a function of the temperature: P~—f (note that with M«<1 the limita- 

tion -^■'KU  is sufficient; in the case of M^l we need the more rigid 

condition of p = const). 

3. Assuming that, as already indicated, the main part in turbulent 
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exchange is played by the pulsation of the "fused" quantifies pu2, 

etc., we shall apply with the new variables Ut  Vt J,  etc., a separa- 

tion of the averaged and pulsatory values of the quantities. 

k.  The motion will be considered as steady on the average, for 

both the mean values U,  etc., and the averaged pulsatory characteris- 

tics of the form of UT  etc. 

For the sake of generality, we shall demonstrate the transforma- 

tion of equations to the new variables with the Navier-Stokes equations 

as an example, though an analogous transformation of the boundary layer 

equations is a little simpler. It should, however, be noted that the 

simplest way of arriving directly at the sought result consists in a 

transformation to the new variables and a subsequent averaging of 

Euler's equations. This would mean to omit a priori  in the equations all 

those terms which represent the influence of molecular transfer (viscos- 

ity and thermal conductivity). In spite of the fact that in the given 

case, the final result remains the same, we shall proceed in a stricter 

way and discard the terms of molecular nature not at the beginning but 

at the end of the derivation, i.e., after the averaging. 

The system of the equations of motion, continuity and energy (with- 

out volume forces and heat sources and with M << 1) we can write the ex- 

pressions for the actual quantities in the form 

w + i^ü-0' (13.1) 

(summation, as always, over repeated subscripts). 

When we Join the equations of motion and energy  (each one separate- 

ly) with the continuity equation and pass over to the new variables 

^1-Vpo«,/-KpcpA7'     etc., we obtain 
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_d 
dt 

(13.2) 

Note for the following that from the energy equation written for 

T: 

at   P^T^TS;)* 

after averaging and neglecting the molecular effects in the averaged 

motion, it follows that ^«0 and also 
dt 

^»„(smce'-£.££). 

Applying the operation of averaging with the equality Ufi^o, taken 

into account and also ■gjT — u (which results from the continuity equation) 

we finally arrive at the following system of equations: 

v&--£-4;Wi>'  '-1.2.3. 
Tr a7 (13.3) 

At a first sight, the system of equations (13.3) in the new varia- 

bles coincides with the analogous system for the incompressible fluid 

in the old variables ut   y, etc. It is obvious that if we replace in 

this system the terms _ ulUj   and '_£/> by the semiempirical expressions 

for turbulent friction and heat flux (e.g., in the form of a linear re- 

lation between the turbulent stress tensor Tm. . and the tensor of the 

"deformation rate" —), we again obtain a corresponding generalization 

of Reynolds' equations for p « const to the case of a compressible gas. 

If instead of this, we pass over from System (13.3) to the corres- 

ponding system of the turbulent boundary layer equations we may apply 

also to them an arbitrary semiempirical method (the mixing path method 
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In Prandtl^ or Taylor's form, the method of the asymptotic layer and 

dimension considerations, etc.). In this case, an arbitrary concrete 

problem on self-similar Jet flows solved for an Incompressible fluid 

Is generalized to the case of a gas by way of an algebraic conversion 

of the final solution (I.e., a replacement of ut  v,  AT, ... by Z/, 7, 

J, ...).The results of such a transition when returning to the velocity, 

etc., has been discussed above In detail. 

The method of similarity of pu2 for self-similar Jets, In parti- 

cular, the supposition of the decisive part of the momentum flux densi- 

ty transfer etc.. Is closely related with the method of calculation with 

the help of the equivalent problem of the theory of thermal conductivi- 

ty to which we shall devote the next chapter. In this method, which 

permits the extension of the approximate solution of the problem of a 

turbulent Jet of fluid or gas to a nonselfsimilar flow, taking Into 

account the Influence of the Initial distribution and Its subsequent 

continuous distortion, the results for the self-similar region are ob- 

tanned by means of a limiting transition with i-*oo. The results of the 

calculation, their comparison with experimental data and the discussion 

of the less carefully Investigated problem of the values of the experi- 

mental constants and the Influence various factors exert on them will 

therefore be considered expediently after we have become familiar with 

this method. 

« r 
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292     Here and In the following we consider the case of absence 
of mass forces. 

295     Unfortunately, this experiment Is extremely limited (see 
[200, 217, 269, etc.]). 

298     Here and also In other places (see note on page 23^) the 
mean value pu2 was considered to be approximately equal to 
p«2, etc. 
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Chapter I1» 

THE METHOD OP THE EQUIVALENT PROBLEM OF THE THEORY OP THERMAL 

CONDUCTIVITY 

11.1. ON THE LINEARIZATION OP THE PREE BOUNDARY LAYER EQUATIONS 

Among the various mathematical semiempirical methods applicable 

to self-similar turbulent Jets of Incompressible fluid a somewhat Iso- 

lated place Is taken by the methods of calculation which are based on 

a replacement of the boundary layer equations by linear equations of 

the type of the heatconduction equation. Beginning with the choice of 

the empirical expressions for the velocity distribution in an axisymme- 

trical source Jet of the form — »exp^-tf" ], which are particular solu- 

tions to the heatconduction equation on the basis of a formal resemblance 

of the curves [153, 158, etc.], up to more or less successive integra- 

tions of an equation of the type of the heatconduction equation for the 

dynamic pressure [IM, 282, 283, 322, etc.], these methods become more 

and more widespread at present. 

The advantage connected with the transition from nonlinear, par- 

tial differential equations to linear ones is, of course, beyond any 

doubt. But the physical and mathematical fundamentals of tnis replace- 

ment and the laws for their application require a careful consideration. 

The phenomenological (intuitive or "inductive" as it has already 

been called" theory of the type of the theory of thermal conductivity 

suggested by H. Reichardt [282], which is most completely developed, 

is discussed in relative detail in monographs which contain sections 

devoted to free turbulence [11, 200, 212, 214], though some orthodox 
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researchers of the boundary layer Ignore it.  As a rule,  discussions 

of Reichardt^ theory result in stating that, on the one hand, its 

application is successful but that  it is physically  (and also mathe- 

matically)  unfounded on the other.   Recall in this connection that for 

the derivation of the fundamental equation of this theory  one intro- 

duced an arbitrary  "law of thermal conductivity" for the momentum 

transfer,  reading 

u» = —A(«) ^-. 

For self-similar problems the coefficient of "thermal conductivity" 

Afc) is chosen from dimension considerations : A(x) = Cx,   c  being an em- 

pirical constant. In H. Reichardt's first papers, the calculation was 

carried out for several cases of self-similar flows of incompressible 

fluid, turbulent Jets and wake, which were solved previously by other 

semiempirical methods. With appropriate choice of the constant C  the 

calculation was led to satisfactory agreement with experiment and with 

other solutions. 

In P.^'. Melent'yev's paper [144] a physically interesting attempt 

was made of considering the scattering of momentum flux density p«2 

(in self-similar Jets of incompressible fluid) as a probable process 

with the normal distribution function for random processes. The choice 

of the latter predetermines the reduction of the fundamental equation 

(of momentum "diffusion") to the form of a heatconduction-type equation. 

A full value derivation of this equation on the basis of the modern 

statistical theory of turbulence which would be of great interest, is 

not available. 

In some papers one arrives at the heatconduction-type equation for 

the dynamic pressure by way of an arbitrary unjustified neglection of 

terms in the boundary layer equation (terms of the same order as those 
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left over) and a subsequent artificial selection of an expression for 

the turbulent viscosity v„.  These papers will not be discussed here.      <«» 

As regards the application of the "heat-conduction" equation In 

calculations. In a series of papers [322, etc.], the authors consider 

problems on parallel flows and the like which are not comprised within 

the framework of self-similar Jets. Here too the absence of a rational 

theory results In nonjustlfled simplifications. Is contradictory, essen- 

tially with the basic laws of fluid mechanics. For example. In Indivi- 

dual papers In the equation 

and In the boundary conditions a transition to parallel or antlparallei 

motions Is carried out by way of replacing u by u*±utl,  though the ac- 

tual motion does not agree with this: from the physical point of view 

the efflux of a Jet In a quiescent or moving fluid Is not equivalent, 

from the mathematical »ne, we are concerned with problems with differ- 

ent boundary conditions. It does not correspond to experimental results 

and dimension considerations either when the expression for the coeffi- 

cient A{x)='Cx,   which applies to source Jets, Is transferred to a flow 

In an obviously nonselfslmllar region (e.g., a Jet of finite dimensions). 

In this case, from the parameters describing the motion the character- 

istic dimensions are discarded. 

In spite of all these remarks Indicating the absence of a firm 

base for both the formulation and the application of a linear homogen- 

eous equation of the type of the lieatconductlon equation Instead of the 

nonlinear equations of the turbulent boundary layer, such a replace- 

ment results In most cases In a qualitative and, with some degree of 

accuracy, also quantitative and satisfactory agreement with experiment. 

Especially for self-similar Jets of Incompressible fluid and other 
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semlemplrlcal schemes the agreement with experiment Is achieved by 

choosing a single empirical constant. This fact, naturally, drew atten- 

tion to discussions of the method, attempts of giving it a basis and to 

various applications. 

In a series of papers [114, 149, 150, 193, 199] many examples of 

such applications of the heatconductlon-type equation are given. In 

these papers, in order to simplify calculation, successful use was 

made of computers, hydrodynamic and hydrostatic integrators, static 

electro-integrators [34, 35, 1^2, etc.] and recently (for the axi- 

symmetric problem) numerical solutions were obtained with the help of 

the so-called P-function tabulated by J. Masters [264]. 

Besides this the theory of a method was developed [63, 65] which 

was called the method of the equivalent problem of the theory of thermal 

conductivity. The difference between this method and the initial scheme 

(H. Relchardt et al.) consists in tne fact that it is reduced to an 

essentially ordinary (but also continuous in its form) approximate 

mathematical transformation of variables. We are in this case concerned 

with a linearization of the problem which is achieved by a peculiar re- 

placement of the variables in the turbulent boundary layer equations. 

I" this replacement', - and this is the peculiarity —, the connection 

between the new and the old Independent variables is chosen according 

to experimental data. A transformation of this type and the pertinent 

transition from the physical plane of variables to the effective one 

(in which the equations are linear) can be applied to Jets of incompres- 

sible fluid or compressible gas, to complex Jet flows, parallel Jeus, 

Jets of finite dimensions, etc. In the particular case of self-similar 

Jets, a single empirical constant is taken from experiment. In more com- 

ples nonselfsimilar Jets, the volume of information taken from experi- 

ment is higher. A rational application of the method is in concrete 
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cases determined by a peculiar optimum of this Information and the 

subsequent simplification of the calculation. The application of 

the method proved very fruitful, for example. In the calculation of 

the problem of diffusion combustion of gas (see Chapter 17) which Is 

Important In practice, and others. 

Thus, other than the first Imperfect attempts of reducing the 

problems of the theory of the free turbulent boundary layer to the 

solution of a heatconductIon-type equation, which required the Intro- 

duction of additional (as a rule, physically voluntary or mathematically 

unjustified) hypotheses and assumptions, the method considered Is as 

much founded as other semlemplrlcal methods of calculation. Its appli- 

cation permits an essential widening of ths field of mathematical pro- 

blems of the theory of turbulent Jets of fluid or gas and even - when 

the Inverse problem Is solved [65] - permits In principle the determina- 

tion of approximate laws governing the turbulent friction and the heat 

exchange In nonselfsimilar Jets, I.e., there where the usual formula 

(of the "mixing length") Is known to be Inapplicable. 

1*1.2. REPLACEMENT OP VARIABLES POR SELF-SIMILAR PLOWS 

Let us write the Initial fundamental equations of the laminar or 

turbulent boundary layer of compressible gas In the following form: 

(IH.D 

Let us assume that an Introduction of the new Independent varia- 

bles 

6-l(«,»). »i-»i(«. r) 

for the dynamic problem and 
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for the thermal problem makes it possible to reduce the system of 

equations (1^.1) to equations of the form 

» , .x * , ^ (11.2) 

and 

with boundary conditions transformed correspondingly. In such a general 

form, the problem of an analytical determination of the functional re- 

lationship between old and new Independent variables Is obviously hope- 

less. In the case of turbulent motion. It Is yet worse since the ex- 

pressions for the turbulent frlctlonal stress and heat flux. I.e., for 

the functions T_ and qT  In the Initial equations are unknown In the 

general case. 

We shall therefore begin with simpler cases, where the problem Is 

easy to solve [65]. As a first example, we consider the problem of 

the expansion of laminar source Jets (plane or axlsymmetrlc) of an 

Incompressible fluid. Solutions of these problems were already discuss- 

ed In detail and are compiled In Table 7.1. Therefore, omitting the 

transformations, we give side by side the two solutions for each of 

the problems: the first one Is the same as before, on the lefthand side; 

the second has been transformed to an equation of the heatconductlon- 

type, on the rlghthand side. 

I. Solution obtained by the     II. Solution obtained by the 
method of the asymptotic layer, method of the equivalent problem. 

Plane source Jet 
Initial equations   J 

«r"«F 

Boundary conditions 

JJ-o^,* n-o. 
»•-0 with  «l-±«o 
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Intenral Invariants 

/.- J »V»- consi T O 

Self-slmllarlty transformations 

•i" —j.    Pi"—"ji 

Self-slmllar equations 
r + Z(FF7 - 0. I C»' + 2(i|KD)' =- 0 

Boundary conditions 
/-0, F-l ■Ifh v-o, <D = 1 -.h  ♦-0, 
F'-O with V-ioo (D-0 Mth    ^ = ± 00 

Solutions of. the eauatlbns 

r- ePf a>-exp(—^ 

Comparing the two solutions, we require that the expressions 
Ml 

for the relative velocity u/u and ^ coincide. I.e., we assume that 

the expression of ^'(f) Is equal to that of V^Wi-   From the equation 

^-«P ("*) 

It follows that 

t-KSEWfT 

From the condition u^x) « iWl), !##., i4x«. »iijS«« and the last equa- 

tion, we obtain the final transformation formula for the variables 

■ 

I (^-i*(l^ 
Thus, the new variables which reduce the Initial system of equa- 

tions of the laminar boundary layer of Incompressible fluid to a para- 

bolic equation In canonic representation, are, for the problem consider- 
:: 
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ed, given by the above formulas. This Is easy to verify by way of 

direct substitution. 

Note that after we have solved the heatconductlon-type equation 

In the I, i\  plane and have returned to the physical x^-plane, we can 

also determine the second velocity component   i>» — ^ dy.  with the help 

of the continuity equation. 

It attracts our attention that the transformation sought for the 

given problem has the form  I ■ l(«), r\ — TI(X, y), which Is a general property 

of transformations for self-similar equations. 

Let us also give a brief comparison of the two solutions for a 

laminar axlsymmetrlc source Jet of Incompressible fluid. 

1 

Initial equations, boundary conditions and Integral Invariants 

du   .     9u        v   8 l    9u\ 

w 
r-0. Owlthy-0, 

0 with F-»i 

\ u'y dy m const =/, 

jp-Owlth'I-O, 

u;»0 wltht)« oe, 

j ujurfri = const«/( 

Self-similar equations and their solutions 

^■-1. y-Owlthf-O, 

4-0 wlthf: 

JL ■ LlÜ J 1 

«'-rwitht-o, 

O-Owltht- «t 

From this we see that the conditions of substitution of the varl- 

)    ables for the laminar axlsymmetrlc jet, which reduce the self-similar 

equations and their solutions to Identity and which are obtained In the 
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usual way (lefthand corner) In the physical space of x,y and through 

the equivalent problem of the theory of thermal conductivity (right- 

hand column) in the "linear" space   I, i\, have the form 

In this case too, j-{(«), n-i|(«,y). 

In this way, for two cases of a self-similar laminar Jet flow, 

we can give (or rather find from a comparison of the solutions as 

shown above) formulas for the substitution of variables which trans- 

form the equations of the problem to a unidimensional (linear and homo- 

geneous) equation of the heat conduct ion-type, in canonic representation. 

Precisely the same can be done with other problems on self-similar lami- 

nar Jets. It is essential that the form of the transformations is con- 

nected with the boundary conditions of the problem. For example, with 

plane or round Jets the formulas of substitution of variables obtained 

for the source-Jet efflux in a nonmoving medium are inapplicable in the 

case of a Jet which expands in a parallel flow (this would also be ob- 

vious from the fact that the problem of parallel Jets cannot be reduced 

to a self-similar one). 

Let us now turn to the application of the method of the equivalent 

problem of the theory of thermal conductivity to self-similar turbulent 

Jet flows. Since in the theory of the asymptotic layer the equations of 

the self-similar Jet flows and their solutions written in nondimenslonal 

variables agree for laminar and turbulent motions, the above transforma- 

tion formulas of the self-similar variables t —t(f)are *&* same for tur- 

bulent self-similar Jets of incompressible fluids: 

For a plane source Jet ^ - V21nehaf, 

for an axisymmetric source Jet ^• 4 i/fo(1 +4^). 

The values of the self-similarity constants a, and 0, also re- 
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main unchanged for the heatconductIon-type equations; In particular, 

-^    In all cases pt«l.! a fact which Is very Important (this results 

Immediately from the form of the canonic equation of dimensions which 

are not characteristic under the conditions of the self-similar problem 

such that the nondlmenslonal variable ♦~,^|)* 

The values of the constants of self-slmllarlty (and also the con- 

stants A  and B) are, however, different for the left-hand sides which 

refer to the turbulent self-similar Jets. Since In all cases, the con- 

stant 3 ■ —1, an equating of the quantities um  and ulm  yields I — «' 

or t " «• as the general law of transformation of longitudinal coordi- 

nates for self-similar turbulent Jets. 

As regards the second formula of substitution of variables 

i) »t|(x, y),   it can be found In each case from the formulas linking cp and 

^ and also ^ and m%  We can thus also here obtain a final solution of 

the problem of substitution of variables resulting In a heatconductlon- 

type equation. The solution of the latter. Just as one of the Initial 

equations, contains a single empirical constant which enters, for exam- 

ple, the formula \ — e&. 

Thought with this the mathematical part of the problem Is exhaust- 

ed. It Is expedient to compare the two formulas of solution of self- 

similar equations (for example, Fft») =-rar- and 'V<S>{&) — exp (—f) for the 

plane source Jet and analogous formulas for other problems) and thus to 

find the approximate transformation which Is more suitable for practical 

purposes. 

In Fig. 14.1 we have compared the two solutions for plane and 

axlsymmetrlc source Jets In the coordinates C*^rfe] or «" " ^(IT) 

As we see from the figures. In both cases (and also with other self- 

similar problems) the curves obtained Immediately from the boundary 

layer equations are very similar, even after the transition to the 

1 
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Pig. 14.1 Universal velocity profiles of plane (a) and round (b) source 
Jets. 1) By finite-layer method; 2) by asymptotic-layer method; 3) by 
equivalent-problem method. 

equivalent problem of the theory of thermal conductivity. In practice, 

as this can be seen from a comparison with experiment, the differences 

between the curves are within the limits of scatter of the experimental 

points. The curves which correspond to the solution of the equivalent 

problem agree even better with the experiment. 

Since the comparison with experiment is achieved by means of the 

choice of an empirical constant, the actual agreement of the curves in 

Fig. 14.1 prompts the approximative substitution of the variables of 

the form't~f or, taking 1V1 "-x. into account, of nesy. The empirical 

constant enters here the coefficient of proportionality in the equality 

This approximate result, namely the formula of substitution of 

variables for self-similar equations of turbulent jets of incompressible 

fluid, might have been predicted earlier, on the basis of dimension 

considerations. In fact, since the equation ß » -1 corresponds to line- 

ar effective boundaries of the jet (*~p*~«), the equation ß, ■ -1/2 

(i.e., i,—!^.—VT5 results in a proportionality of the effective bound- 
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arles of the Jet: ,K~'Fv.- The latter equation (taking Into account 

that y\~x)  can be satisfied If we put if/,= n'/,  or generally tf«i|. 

Thus, with an accuracy corresponding to the spread of the experi- 

mental points, the formulas of the approximate transformation to the 

equivalent problem of the theory of thermal conductivity for self- 

similar turbulent Jets of Incompressible fluid have the simple form of 

I-a»,  i|-y. ♦-*• 

li».3. THE GENERAL CASE OP TURBULENT JETS OP PLUID AND GAS 

Let us now generalize the results obtained In the last section to 

self-similar Jets of compressible gas firstly and to nonself-slmllar 

turbulent Jets of fluid or gas secondly. The latter will correspond to 

the most general case of application of the method of the equivalent pro- 

blem of the theory of thermal conductivity. At the same time, we show 

types of problems for which the application of this method Is effec- 

tive and establish the forms of expressions for the turbulent stress of 

friction and the heat flux In the nonselfslmllar region In agreement 

with the chosen form of transformation. 

Por self-similar Jets of compressible gas. It Is natural to use 

the same form of substitution of variables as In the case of the Incom- 

pressible fluid as this could be shown by the above considerations. 

The difference consists of the fact that from the equations 

9*%+ <*%'?£&*). 
(IM) 

one must pass over to the equivalent equation» for pw2 of the form 

$M->4-(*»4p). (».5) 
^\   where i~ aP,i\»y.  The constant a  Is obtained from experiments. 
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Analogously, from the equation 

with the substitution of the variables Ei-^erz*! ir«? one must pass 

over to an equation of the heatconductlon-type for the flux density 

of surplus heat content; In the case of a high-velocity Jet both equa- 

tlons can be formulated for the total enthalpy (^f» ■ ^ + y): 

^^•»-y^l^HiAf^J.     (14.7) 

Having obtained a solution to heatconductlon-type equations. It 

Is easy to pass over to formulas for the velocity and the surplus tem- 

perature with the help of an algebraic reduction, analogous to that 

given In the section dealing with the calculation according to the meth- 

od of similarity of pua, etc. In this respect, the method of the equiva- 

lent problem applied to self-similar turbulent jets o." gas does not 

give any new aspects. 

An effective application of this method Is connected with an approx- 

imate solution of the nonseif-similar problems of the theory of turbu- 

lent jets of Incompressible fluids and gases. Precisely this, namely 

the possibility of calculating a jet of finite dimensions with arbitrary 

form of the Initial distribution of pu* and puepAf (velocity and sur- 

plus temperature with p ■ const) of the jet expanding In a parallel 

flow (without the supposition of small perturbations) etc.. Is the 

main advantage of this method. 

In the general case, we are concerned with the determination of 

the formulas of substitution of variables for the transition from 

Eqs. (14.4) and (15.6) to Eqs. (11.3) and (14.7) with the essential 

difference that the expressions for turbulent friction and heat flux 

are unknown for nonself-slmllar motions. In fact, none of the semlem- 

plrlcal formulas used previously for the calculation of selfslmllar 
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jets can here be applied. 

Since the Initial boundary layer equations belong to the class 

of nonlinear parabolic equations. It Is natural to assume that the 

general formulas for substitution of variables of the form 

6-l(«,if), ti-i|(«tir). 

and the more particular formulas of substitution of variables of the 

form 

l = l{x)t   T|-»l(*.ir) 

prove to be applicable to transformation of Eqs. (14.4) and (14.6) 

to the canonic form of (14.5) and (14.7). The concrete form of the 

formulas of substitution of the variables may In each of the cases 

given be chosen by way of comparing the solutions of the linear heat- 

conduction-type equations with the experimental distributions of p«2 

and pucpAf in the coordinates xty. 

In this form (general or particular) the transformation, which 

requires the establishment of a mutually unambiguous correspondence 

of the variables K»  n with the true coordinates xtyt  might only be 

valuable In practice after a detailed experiment has been carried out, 

as the result of a gathering and generalization of the vast experiment- 

al and theoretical material. 

At present. It Is much more effective to choose the narrower path 

of using still less general approximation formulas for the substitu- 

tion of the variables. Let us assume that for a certain class of Jet 

flows of fluid or gas (the experiment shows that the flows mentioned 

above belong to It, I.e., the jet of finite dimensions, the jet In the 

parallel flow and the like"» the conditions of substitution of variables, 

which result In equations of the type of the heatconductlon equation, 

read 

l-l(«), I»». 
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and also 

for Eqs. (1H.5)  and (I1 7)> respectively. In this case. It Is possl- 

ble, from a comparison of the results of a particular experimental 

Investigation with the analytical solution, for example, by way of 

comparing the experimental dependence ^^"'(l) and the theoretical 

one !p!!3£ « f (J3) to establish a relation linking C and x. If the sup- 

position of I**? corresponds to the given problem. In the case of a 

combination of the coordinates x and £ the experimental distributions 

of pu* In the Jet cross sections must coincide more or less accurately 

with the calculated curves. In this case the above form of transforma- 

tions Is effective since the empirical admixture Is relatively small. 

The more data we possess on the function I ■ l{x)  for the various pro- 

blems, the more successful are the possibilities, though only at first, 

of precalculatlng approximately the laws governing the expansion of 

Jets. 

Note that an analytical (or, with the help of Integrators, numeri- 

cal) solution of heatconductlon-type equations Is developed with the 

same boundary conditions with which Eq. (1^.4) should have been Inte- 

grated. The results from the fact that the coordinates n and y  and, 

consequently, also the boundary conditions with y - 0 and. y - «• and, 

correspondingly, with n ■ 0 and n ■ 0B> coincide. 

The same holds true for the "Initial" conditions with x * 0 (or 

x ♦ •) since £ ■ 0 and ( -»> « corresponds to the value x - 0  and x ■*■ <*, 

In this case the solution of the linear equation, which permits a super- 

position of the particular solutions, has great advantages compared with 

the Initial nonlinear problem. 

If C ■ £(*) Is known from experiment It Is easy to reduce the 

solution obtained In the variables K»y  to the variables x and y.  This 

- 332 - 

O 



"• 

} 

■ ' 

function has an especially simple form In the region of motion far 

away from the source.  In this case, the flow Is self-similar and, 

obviously, we must pass over from the equation of the form of 5 ■ C(«) 
2 

to one of the form of 5 ■ ox    which contains a single empirical cons- 

tant. 

At the end of this problem, we again have to carry out an analo- 

gous procedure to find the relation linking the coordinates  C_, and x 

for the thermal problem, using the experimental function Sgg    = F (-7) 

After the combination of C», and x the transverse distri- 

butions of  pucpAf   coincide  (»i«y.   If this transformation corresponds 

with sufficient accuracy to the flow given).  In order to solve the 

thermal problem, however, other ways may also prove to be convenient, 

for example. In the theory of Jets of Incompressible fluid,  the way of 

direct Integration of the linear equation of heat transfer, with the ve- 

locity distribution obtained from a solution of the dynamic problem and 

knowing the additional empirical constant Pr^,. But also for a solution 

by the method of the equivalent problem it is possible to achieve an 

essential simplification if,  instead of measuring in the experiments 

the value of (puepAT)mon the Jet axis the form of the relation linking 

the "longitudinal coordinates" Cm and C Is postulated. For example, 

in the case of self-similar Jets of fluid and gas the ratio C/Cy 

which might be considered as an analogue to the turbulent Prandtl number 

in the method of the equivalent problem, is approximately constant and 

even numerically close to the ■«'alue of   frr (f-«0,7-+*0,8). 

Examples of solutions and a comparison with experimental data will 

follow in the next  chapter. 

14.4.  THE TURBULENT STRESS OP FRICTION AND THE HEAT FLUX 

For this class of Jet flows, for which only the longitudinal coor- 

dinate x must be transformed while the transverse coordinate Is invar- 
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lant, we can,  following [65], given the corresponding expressions for 

the turbulent stress of friction and the heat flux. 

In fact,  let  us set equal Eqs.   (ll.l) represented In the form 

i(p"') + 7-^ V*4 - 7 ^ i^r (*. if)l.    (i1». 8) 

where t-(x,y) Is a generally unknown function of the coordinates, and 

the canonic equation 

Prom the equality of the derivatives -^(pu1) In the two equations we 

find 

This two-term expression for the turbulent stress of friction Is 

Interesting from the physical point of view as besides the "gradient" 

term It also takes Into account the convectlve one*. 

Since 

^--•5^(py*B)d,f' 

results from the equation of continuity, we can give Eq. (14.10) the 

form of a product of ^ - /(») by a function which depends on , and y. 

When processing experimental data, the latter may be obtained from an 

analytical solution of the linear heatconductIon-type equation where 

the boundary conditions have been taken Into account, and the deriva- 

tive dK/dx  is obtained from experiment. Analogously, by way of compar- 

ing the equations of heat transfer In the form 

i (pw^7') + 7 ^ (irtKMf) - 7-^ [yV». V)l    (14.11) 

and 

^(pK^^-i.^^n^-^^.^^.CpBCpAJ')!  (14.12) Q 

we obtain a two-term expression for the turbulent heat flux 
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Just as T-, the quantity q-  consists of two terms, the terms of the 

"gradient" and the convectlve transfer. 

The same expressions can be obtained for turbulent diffusion and 

also for the flux of total enthalpy (If cAJ" In Eq. (14.13) Is re- 

placed by CpAf«). 

The expressions obtained refer to submerged gas Jets and. In the 

particular case of p ■ const, to Jets of Incompressible fluid. 

In order to calculate a Jet moving In a parallel flow (with the 

velocity u^) the heatconductlon-type equation for the excessive momen- 

tum flux density pu(u — u,»), Is used as It satisfies the condition of con- 

servation. The expression for turbulent friction Is changed correspond- 

ingly: Instead of puz  It contains the term pu(u — ««,)• As shown In the 

evaluation of the experiments (s-e below) It Is, however, possible to 

use as an approximation method suitable In practice the formulas of 

the dynamic problem given In the text In order to calculate parallel 

Jets; for the application of these formulas It Is sufficient to measure 

the distribution of the single quantity pu2 (when we pass over to the 

quantity p«(" — Mo»)' we must also measure the temperature). 

Let us also use Formulas (1^.10) and (14.13) In order to formulate 

expressions for the turbulent viscosity y- and the thermal conductivity 

\T  assuming that these characteristics are both finite In the whole 
du field of flow.  Dividing the expressions for T« and qT by    g^   and 

i£.;    respectively, we  obtain for the coefficient of turbulent viscosi- 

ty 

^-^■(pa^ + pr-nk (14.14) 

and for the coefficient of turbulent thermal conductivity 
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^T = ^r (pi«cpAr)^L + pw,,^,. (lH. 15) 

For an incompressible fluid, these equations can be simplified a 

little and take the following form: 

) 

for the coefficient of turbulent kinematic viscosity and 

«'-(' +Äf) if +'»AT        (I»-") 
for the coefficient of turbulent thermal diffusivity. 

The ratio of these expressions defines the so-called turbulent 
Prandtl number. 

In order to estimate to what extent these expressions for the 
tranfer coefficients and the quantity T- correspond to the known 
laws of turbulent transfer of momentum and heat in free Jets of incom- 

pressible gas, the ratios 
TTm«i 

and —I— are compared in Pig. 1^.2 
VT mas 

as functions of the coordinate 9»^- for the cross sections of an axi- 

symmatric turbulent source Jet of incompressible fluid. 

As we see from the figure, the curves calculated according to 

Eqs. (I^.IO) and (1*1.16) are relatively close to the curves which refer 

to the method of the layer of finite thickness and Prandtl's formula 

TT — pcV (jj^), on the one hand and  the calculation according to the meth- 

od of the asymptotic layer and Prandtl's second formula TT = p*»«"^) on the 

other. This, however, was to be expected since the universal velocity 

distribution calculated by the method of the equivalent problem of the 

theory of thermal conductivity resembles the universal distributions 

corresponding to this scheme (see Fig. 14.1). 

Let us give yet another example of calculating the turbulent 

stress of friction by means of the two-term formula (14.10). 

Figure 14.3 shows the distributions of the relative quantity of 

turbulent frictlonal stress calculated by I.B. Palatnik according to 

experimental data* by B.P. Ustimenko [199] for several cross sections 
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Flg. 1^.2. Distribution of turbulent tangential stress of friction 
(a) and effective kinematic viscosity (b) In cross section of source 
Jet. 1 - After the old Prandtl formula; 2 — after the new Prandtl 
formula; 3 — according to the method of the equivalent problem. 

' ) 

of a plane turbulent air Jet discharged from a nozzle of finite di- 

mensions. The curves In this figure (In contrast to Pig. 14.2 we consi- 

der here a nonself-slmllar flow) show clearly the displacement of the 

maximum of T_ toward the Jet axis with Increasing distortion of the 

Initial velocity distribution (which is uniform at the outlet of the 

Jet). An analogous example for an axlsymmetrlc gas Jet will be given 

later (In Section 15.5) when comparing the results calculated by the 

method of the equivalent problem with experimental data. 

The expressions given for TJ, and q-  Is of Interest, particularly 

with respect to nonself-slmllar Jets. As regards the formulas for the 

coefficients v-  and a«, they may be applied as additional ones to the 

expressions for friction and heat flux, of course with the exception 

of those points In the flow where the derlvates ^ or |? vanish while 

Tj, or qT  are nonzero. Without pausing to consider this In detail, we 

only mention that from Eqs. (14.16) and (14.17) In a case where, for 
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Pig. I1».3. Distribution of the turbulent 
stress of friction In the cross sections 
of a plane  jet of finite dimensions. 

TABLE A 

M i 1 1 4 

t» 0.6 1.5 7 »*• 

simplicity, the second terms can be neglected,  an approximate expres- 

sion results for the  conventional effective turbulent "Prandtl number" 

ryTäT 
(11.18) 

In the self-similar section of a plane or axlsymmetrlc source Jet 

I —«•. IT-cr*1,-^-«0,8; moreover, u — CAf)", where n s 1,5, Thus, Eq. 

(11.18) yields PrT<l and, roughly approximate PrrasOJ which agrees 

with experiment. 

This estimate also shows that the method of the equivalent problen 

of the theory of thermal conductivity applied to the well-known self- 

similar turbulent jet flows of Incompressible fluid yields fully satis- 

factory results. 

As shown later, an approximate agreement between calculation and 

experiment Is also maintained for gas jets, even nonself-slmllar ones. 
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Finally, we shall discuss the qualitative conditions of appli- 

cability of the method of the equivalent problem of the theory of 

thermal conductivity and, yet more briefly, the substitution formulas 

for the variables 1= £(*), r\ssy.   Iti a few words, these conditions com- 

prise two points. Firstly, we are concerned with an evolved turbulent 

exchange, i.e., flow conditions in which the molecular effects of 

transfer are negligibly small compared with the molar ones. Secondly, 

and this point predetermines the possibility of maintaining the trans- 

verse coordinate if»r\    when passing over from the physical space to 

the effective one in which the equation of turbulent transfer is line- 

ar, the condition of applicability of the methods of the boundary layer 

theory. In particular, we are concerned with the practical isobariclty 

of the flow and the smallness of the transverse velocity component re- 

lative to the longitudinal. 

An extension of the approximate limits of applicability of the 

method of the equivalent problem mentioned here to other types of tur- 

bulent Jet flows (and similar ones) of fluid and gas requires great 

care. With this question, it is the experiment which gives the decisive 

answer. There exist, however, certain possibilities of such an exten- 

sion.  In this connection, it is of greatest interest to generalize the 

method to twisted (first of all slightly twisted) Jets, the considera- 

tion of a weak pressure field in complex Jet flows and the calculation 

of Jets in a limited space. It is possible that in this case, the heat- 

conduction-type equation must be written for the sum of the dynamic and 

the static pressure (or the total pressure^. The attempts of such a 

generalization of the method known to the authors are still insuffi- 

cient in order to Judge their effectiveness and reasonableness. In some 

cases (semillmlted Jets, antiparallel Jets, etc.) it is certainly nec- 

essary to complete the empirical material in connection with the prob- 
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able renunciation of the Invarlance of the transverse coordinate. 

Let us still mention a well-known advantage of the method which 

is connected with its applicability to, e.g., the flow of supersonic 

(partly not yet calculated) Jets. The question is that the transition 

from the physical plane of the flow to the mathematical plane of (I« l) 

may be carried out beginning with an arbitrary Jet cross section (which 

need not be the orifice cross section). For example, with a noncalculat- 

ed efflux, the "initial" section (« ■ xüty  and correspondingly 1 = 0, TJ) 

is naturally allowed to coincide with the (virtually isobaric) end cross 

section of the gasdynamic part of the Jet. The same holds true for other 

cases where the initial part of the Jet cannot be taken into account. 

As an example, we may mention the flow with the Junction of two (or sev- 

eral) parallel Jets which intersect at a certain angle, etc. In all 

these cases which are important in practice an effective application of 

the method of the equivalent problem of the theory of thermal conduct- 

tlvity can be made possible by em appropriate choice of the mathematical 

origin of coordinates, the experimental function l(x)   and the Initial 

distribution (e.g., of pu2) in the chosen section, which is basic for 

the calculation. Since for the solution of the heatconductlon equation 

we have effective methods of calculation (and auxiliary tables) at our 

disposal, it is relatively simple to realize with the help of the ini- 

tial distribution of the function investigated. 
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[Footnotes] 

For PI«(U-I«OO) i.e., for a Jet In a parallel flow. 

In the general case, these two terms are quantities of one 
and the same order of magnitude since In the estimation us- 
ual In the boundary layer theory the quantity £ must be tak- 
en to be of the order of 62 which results from Eq. (1^1.5). 

See also the article by Z.B. Saklnov and Zh.D. Temlrbayev In 
the collection [IS1»]. 
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Chapter 15 

CALCULATIONS AND COMPARISON WITH THE EXPERIMENT 

15.1. SIMILARITY OP THE DISTRIBUTIONS OP A LAMINAR PLOW 

In this chapter, we shall compare the results of a calculation 

carried out In continuing the considerations discussed In the pre- 

vious chapters with various experimental materials on turbulent flows 

of fluid and gas. We shall do this first for the case of self-similar 

flows, In order to obtain an experimental verification of the assump- 

tion on the similarity of the pu2 distributions. The principal aim of 

the comparison between the results of a calculation and the experiment 

is, however, to study the applicability of the method of the equivalent 

problem of the theory of thermal conductivity to various turbulent Jet 

flows: plane and axisymmetric Jets of finite dimensions expanding in a 

quiescent medium or a parallel flow, with various forms of the Initial 

velocity distribution, finally, with equal and essentially different 

values of the densities of the gas in the Jet and that in the surround- 

ing medium. Such a relatively broad comparison with experiment proves 

to be expedient in order to study the peculiarities of the method and 

to establish (in a preliminary plan) the limits of its applicability 

as well. In connection with this, with the experimental data given be- 

low, we often consider one and the same problem on the basis of exper- 

imental results of two or several authors. 

The assumption of universality of the distributions of dynamic 

pressure pu1, in turbulent Jets of compressible gas permits, as shown 
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Pig. 15.1 Distributions of the values of velocity, surplus static tem- 
perature and total temperature for the edge of a gas Jet (Pr« ■ 0.75). 
a)  Velocity;  b) temperature  (M ^ 0). 

M t 2    |     1            4 6          •          T 

".-•oo/* 0.1 0.1        0.»          t S         1          10 

c)  velocity;  d)  stagnation temperature(„..Ss.i) 

e)  velocity;- 
M « j 0 

M ■ 1; f) stagnation temperature M ■ 4 

M 1 1 a 
«■-»OB/«* O.t 1.0 6.0 

above, the final solution of calculations of the distributions of ve- 

locity, temperature, etc. 

Considered from a qualitative point of view, the results of such 

a calculation yield a physically correct image of the expansion of a 
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Flg. 15.2. Distributions of values of ve- 
locity and surplus (static and total) tem- 
perature In the cross sections of a plane 
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gas Jet In a medium of different density. 

Here we must also add the Inequality Pr„ < 1 which entails a more 

rapid drop of surplus heat content along the Jet axis, compared to that 

of the dynamic pressure. In agreement with this, the effective thick- 

ness of the thermal layer exceeds the thickness of the dy amlc layer. 

These general properties of turbulent gas Jets already mentioned 

previously become particularly clear when applied to the self-similar 

sections of Jet flows. A great number of theoretical examples for the 

Initial and the fundamental sections of Jets Is contained In a number 

of papers In which the pu2 similarity method has been used [114, 193, 

etc.]. 

By wky of example. Figs. 15.1-15.3 show the corresponding pressure 

and temperature distributions In Jet cross sections for various efflux 

conditions (described In the text to the figures). They characterize the 

Influence of the two compressibility parameters: the ratio of the gas 

densities In the medium and a low-velocity Jet (»•=-£ for the edge of 

POD 
the Jet and u*"— for plane and axlsymmetrlc source Jets) and the 

Initial value of Mach's number N In a Jet of high velocity. The value 

of the turbulent Prandtl number was assumed to be equal In all cases 

and given by ?rT  ■ 0.75. 

These graphs have been obtained by calculations based on the 

assumption of universality of the distributions of pu2 and pucpAT (or 

pucpAfo for high velocities) In the Jet cross sections. The solutions 

of the corresponding self-similar problems for the case of p ■ const 

obtained by the method of the asymptotic layer are considered to be 

the Initial solutions. 

The calculations carried out are limited by the values u ■ 10 

or 0.1. The first of them coincides virtually with the limiting case 

of u - », for which 
In 
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Fig.  15«3«  Distributions of the values of velocity and stagnation 
temperature In the cross sections of an axlsymmetrlc Jet  (Pr. - 0.75)• a) w        1;   
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for plane and round source Jets. In the second limiting case of (w-K)) 

with 

Prr . 0,75; 

where again (■pjr-)     "-1 for plane and round source Jets. Analogous 

formulas for u/u0  and '.ii- with «Q - 0, or WQ ■ • refer to the Jet axis. 

Recall that the comparison of the velocity and temperature distri- 

butions shown In Pigs. 15^1-15.3 for various efflux conditions Is con- 
Ar 

v ntlonal. As already mentioned, the curves of »/u or ^y- as func- 

tions of the coordinate <p which coincide In any of these graphs, refer 

actually to different cross sections: If u > 1 the cross section Is 
In 

closer to the nozzle. If w    < 1 It Is farther away from It. Therefore 

(see Chapter 13) they do not characterize directly the effective thlck- 
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nesses of the Jet. A more complete comparison, taking Into account 

the variation of u and ATm along the Jet for self-similar source Jets 

would be In connection with additional conventions which are unnecessary 

when the calculations are based on the method of the equivalent problem 

of the theory of thermal conductivity. 

This remark has general character, the effective thicknesses of 

the Jet (with respect to the dynamic pressure and. In particular, with 

respect to velocity or temperature) can be determined In a calculation 

of self-similar Jets and from experimental results with Insufficient 

accuracy. This Is, first of all, due to the Influence of the Initial 

conditions: the nonunlformlty of the distributions, the Intensity of 

pulsations, the poor approximation In the case of the efflux of super- 

sonic Jets, etc. The results of this kind of calculations are there- 

fore unsuitable for comparisons, both with one another and with experi- 

ment and are here not considered. 

A great number of examples of experimental proofs of the similari- 

ty of the pu2 distributions and also, but not so many, of the pucpAf 

distributions are given In the papers [58, 96, 98, II*, 186, 193] chief- 

ly for the efflux of hot Jet Into the atmosphere of a colder gas, the 

Isothermal efflux of a light gas In a heavier atmosphere (or vice versa) 

and finally the efflux of fast gas Jets (with M < 1). The similarity of 

the pua distributions In the case of supersonic gas Jets (In the shock- 

wave-free part of the flow) was ascertained by many researchers (I.P. 

Glnzburg and his coworkers, et al.), for steam Jets It was shown In 

paper [33], etc. 

In the past years, the researchers' attention has been attracted 

by Jets of very high temperatures obtained with the efflux of gas from 

plasma or other burners. In this range of temperature values with which 

we are concerned In this case. I.e., from several thousand to several 
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ten thousand degrees of a so-called low-temperature plasma [11, 31* 

etc.], the physical phenomena arising In the gas Jet are very complex. 

This Is, In fact, the case of a complex, multi-component mixture In 

which dissociation, lonlzatlon and recombination processes take place 

and where gas radiation etc. may play a certain part. Under the condi- 

tions of a Jet motion these processes have hardly been studied experi- 

mentally. 

In this connection, the first Investigations of high-temperature 

Jets carried out by Q.N. Abramovlch and coworkers [11, 31, 82, 83] de- 

serve great attention. Some general results obtained In them are Indubi- 

tably of Interest In both principle and practice. The point Is, first 

of all, the possibility of obtaining an approximate description of the 

process by way of choosing an equation of state for the pseudo-one-com- 

ponent gas in the form of a power function linking the enthalpy and the 

density [82, 83] 

where A  and n are empirical constants which depend on the nature of the 

gas. 

The calculations carried out showed that Taylor's method of calcu- 

lation was not suitable as it yielded physically incorrect results (non- 

zero stress of friction at one of the surfaces of the boundary layer of 

finite thickness, etc.). This conclusion agrees with the remarks on the 

contradictions connected with the use of Taylor's method, which we dis- 

cussed already above. 

Using the same mathematical method of the layer of finite thickness, 

the authors of [31, 82, 83] Introduced different mixing lengths (dynamic 

and thermal) and took their ratio as an empirical constant (Pr7 - 0.5)* 

It can be assumed that it would be somewhat better to use in analogous 

calculations the method of the asymptotic layer and a value of 
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Pig. IS.1*. Universal graphs of variation 
of the dynamic pressure along the Jet axis 
(a) and In a cross section (b) of an axl- 
symmetrlc gas jet (o.e»<m<u,t data from [114]). 

) 

Prr s 0.7 ♦ 0.8. 

It Is also Interesting that V.A. Golubev' data [82, 83] prove 

the presence of a similarity of the pu2 distributions In the boundary 

layer at the edge of a plane high-temperature Jet. This result was the 

final result obtained In a calculation which was based on quite differ- 

ent assumptions (boundary layer of finite thickness, accounting for 

the pulsations of the composite quantity pu according to E. Van Drlst 

[41] etc.). We see that the assumption of an approximate similarity of 

the pu2 distributions for the self-similar sections of low-temperature 

plasma Jets agree satisfactorily with the experiment. In any case, the 

supposition of similarity of the velocity under these conditions Is ra- 

ther far from reality. As regards the laws of variation of the flux 

density of surplus enthalpy In plasma Jets, the Investigation Into this 
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Flg.  15.5.  Distribution of the value 
At-VjepT,       for the edge of a nonlso- 

thermal  (data from [114],  o<«,<5.*). 

problem has only begun.  Note that the distribution of the quantity 

i>u£i-   may be influenced noticeably by radiation.  It is the merit of the 

papers we referred to that they Indicated the possibility of a transi- 

tion to a new field of investigations of mathematical methods and repre- 

sentations of the theory of turbulent Jets, which Justified themselves 

under "usual" conditions. 

As regards the comparison with experiment of the mathematical re- 

sults obtained under the supposition of similarity of the distributions 

of pu2 and  pucpAf, we give, in addition to Pig.  9.5, the graphs of Pigs. 

15.'♦-IS.5, referring to the efflux of a heated Jet [111,  187]. 

We see from the figures given that, with an appropriate choice of 

the constant a, the distributions of pu2 and pue,Ar are approximately 

similar. 

In a series of cases  [11] it is possible in a good approximation 

to achieve coincidence with a virtually universal distribution, of the 

primary velocity distributions, again by way of choosing an empirical 

constant. Thus, in many cases, both suppositions (similarity of the pu2 

distributions or similarity of the u-distributions) may be used in en- 
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Pig. 15.6. Variation of p«£ along the axis of a round Jet. 1) With a 
fine grid arranged at the nozzle orifice; 2) efflux from tube ("one- 
seventh" distribution); 3) calculation efter G.N. Abramovlch 
(«.•«.e-o; «a; see [11]); 1) efflux from "Jrawn-ln" nozzle; 5) turbullzer 

arranged In the wide part of the nozzle; 6) efflux of hot Jet (a)0 ■ 3.6); 
7) hot gas Jet r.• «oo«K. •,• u; see [31]). 

Note: In the Inset In the upper right corner the values of the empirical 
constant a  are given as depending on the Intensity of the pulsations. 

glneerlng calcudatlons, though, as shown above, the procedure based on 

the similarity of pu2 similarity) Is more convenient also from the point 

of view of practice. Thus, for example. In the Initial section of paral- 

lel nonlsothermal Jets, coincidence of the curves for different values 

of the ratio pw2 Is achieved by means of choosing one constant a  for 

each of the curves. This Is possible since, as shown by experiment, 

[96, 150, etc.], the quantity ^ ~ t;'
8«0,7 with y - 0  (In this case 

U =Ypu).    Unlike this [217, 218], the construction of a universal ve- 

locity distribution requires the Introduction of two empirical constants 

for each of the curves which are necessary for the coincidence of the 

different values of """" with v - 0 firstly, and for the usual trans- it  «oo 

formation of the transverse coordinate, secondly. 

It Is essential that the construction of universal distributions 
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of pw2 requires the Introduction of the empirical constant a  whose 

value cannot be predicted beforehand. It can only be shown that the 

numerical value of a  is influenced considerably by a series of factors. 

Under otherwise equal conditions the initial degree of turbulence is 

of principal significance (under conditions where in the outlet sec- 

tion of the nozzle the transverse component of the mean velocity is 

virtually vanishing). The significance of this factor is great not only 

for turbulent- gas Jets but also for turbulent Jets of incompressible 

fluid. A characteristic example is shown in Fig. 15.6, namely the 

curves of variation of (pu2) along the axis of a submerged Jet. The 

upper three curves refer to an isothermal Jet with uniform Initial ve- 

locity distribution but different conditions of initial turbulence. The 

two lower curves refer to nonisothermal Jets with different heating 

(about 1200oK and i*500-500oK). Details of the experiment are given in 

the text to the figure. 

As we see from tne latter, the influence of the initial conditions 

on the intensity of attenuation of the Jet (according to the value of 

the constant a)  is very high^. A still greater influence on the "scatter" 

of the Jet is exerted by the presence of a transverse velocity component 

in the initial section of the Jet. Moreover, a noticeable effect is al- 

so exerted by a nonuniformity of the initial distributions of 

pu*. pucpAf etc. (velocity and temperature for incompressible fluid) which 

has been taken into account in a series of papers [11, 178, 190, etc.] 

by introducing additional coefficients. 

Under the conditions of a nonrated efflux the value of the constant 

a  is strongly influenced also by the degree of nonratedness of the ef- 

flux, i.e., the gasdynamical history of the turbulent Jet. As regards 

the immediate influence of the density ratio u on the constant a, it 

is disputable for an evolved turbulent motion. It is obvious that the 

■• A 

•) 

- 352 - 



i 

indirect Influence of this parameter exerted via the Initial level of 

turbulence is considerable. In particular, a heating of the gas by a 

flame raises the level of pulsations essentially [64] but the difference 

in the values of the constant a  are very small in a wide range of the 

heating degree, although a transition from an isothermal Jet to a Jet 

consisting of combustion products (Fig. 15.6) is accompanied by a 

steep Increase of the value of the constant a.  As will be shown below 

(see Section 15.5) with a slightly raised initial level of turbulence 

the differences in the behavior of isothermal and nonisothermal Jets 

(heated by flame) are virtually vanishing. 

Summing up we see that the problem of the  influence of the various 

factors on the value of the empirical constant a  is investigated in- 

sufficiently, in spite of the huge experimental material on turbulent 

Jets. In essential, only the first attempts are made to exert an active 

Influence on this flow characteristic which has a complex and not at 

all unambiguous nature. On the basis of general considerations one may 

prove (and this is in agreement with many experiements) that, with an 

increased initial level of turbulence, the differences in the values of 

a  become smaller. It is therefore valuable in practice, with "usual" 

conditions, to work with the universal constant suggested by Q.N. Abram- 

ovich [11] (the corresponding curve has been plotted in the same Pig. 

15.6). 

It would be of great interest to compare experiment and calculated 

formulas based en the similarity of pu2 for velocity distributions 

in the limiting cases of an infinitely lare or infinitesimal value of 

the density ratio of the gases in the Jet and the surrounding medium. 

Unfortunately, reliable experimental data are not available for such a 

comparison. Note, however, that the material given in papers [11, 80] 

on the efflux of water in air and air in water agree qualitatively with 
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what has been said above. 

15.2. A PLANE JET OP INCOMPRESSIBLE FLUID 

Let us consider some examples of plane turbulent Jet flows of in- 

compressible fluid which may Illustrate the calculation according to 

the method of the equivalent problem of the theory of thermal conduc- 

tivlty, and compare the results with experiments. By way of example 

we consider three types of flow described In a paper by B.P. Ustlmenko 

[199] and, Investigated In paper [322], the expansion of a plane Jet In 

a parallel flow. 

z*- 

-t, •*»■ 

/-^ i 

Pig. 15.7. Schematic representation of turbulent Jets. 

a) Jet of finite dimensions; b) complex Initial distri- 

bution; c) two Jets. 

The solution of a heatconduction-type equation 

with the initial condition 

pa«-/(y) -th (-0 

and the boundary conditions'-^p—0 with y ' 0  and (»•-►O with y-*», where 

l = l{x),    can be represented in an analytical form by [188] 

Let us apply this well-known solution to the flows shown schemati- 

cally in Pig. 15.7a for a Jet with uniform initial velocity and tempera- 

ture distributions and in Pig. 15*7b a Jet with an initial distribution 

of the form of a "step." In the first case the solution reads 

- 35^ - 



where p = l., j=i,/ is the half width of the silt; an analogous form 

possesses the solution of the thermal problem (also in the case of a 

uniform initial distribution of the temperature difference) when 

written in terms of the reduced coordinate 5 instead of C™. 

In the second case 

) 

£-^[(n.-1,.rf(^)_m.,rt(4^)+.rf(i^)f. 
where '»»■•■^» 

Experiments were conducted (see [199]) with an air Jet leaving a 

slit nozzle with a speed of ^10-80 m/sec; in order to study the thermal 

problem, the air was preheated such that its temperature exceeded that 

of the surrounding medium by 10-15°. To study the "stop" Jet, experiments 

were made at various velocity ratios i» = —. The relation linking the 

physical coordinate a: and the reduced coordinate C (and that for x  and 

C™) the experimental and theoretical dependences of velocity and surplus 

temperature along the Jet axis on the distance x/l  and on the reduced 

coordinate f = jr were compared. 

The data shown in Pigs. 15.8 and 15.9 apply to the flow patterns a) 

and b) of Pig. 15.7 and prove the satisfactory agreement between the 

theoretical and experimental velocity and temperature distributions in 

the Jet cross sections. Just as in other cases of experimental data pro- 

cessing according to the method of the equivalent problem, this agree- 

ment is achieved by a combination of the coordinates Y^  and m/l$  i.e., 

such a deformation of the theoretical coordinate which allows the theo- 

retical and experimental distributions to coincide on the flow axis. 

In this way, the method of the equivalent problem permits in a 

good approximation a continuous deformation of the complex initial dis- 
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Flg. 15*8. Distribution of surplus heat content In the cross sections 
of a plane turbulent Jet.  calculation; oooo experiments [199]. 
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Fig. 15«9« Comparison of the theoretical velocity distributions with 
experimental data for a complex Jet (m - 2).  calculated; oooo ex- 
periment [199]. 

trlbutlon. We should also note that In the first of the cases consid- 

ered the ratio p Is almost constant and equal to 0.8. As already men- 

tioned before. In the method of the equivalent problem this ratio plays 

the part of the peculiar turbulent Prandtl number. 

At great distances from the nozzle the velocity and temperature 

distributions correspond to those of a flow produced by a source Jet. 

In this case, the transverse distribution will be universal; a solution 

of the form 
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will correspond to It; here 9 = ■^•- The value of the constant a  is 

chosen from experimental data. 

It Is also worth mentioning that in the paper referred to, it 

has been tried to apply this method to the problem schematically 

illustrated in Pig. 15.7c. In this case, however, a coordinate trans- 

formation 1= l{x),i\ = y  with the origin at the point x * 0  only yields • 

qualitative agreement at short distances from the nozzle [199]. This 

result was to be expected from general considerations since the "adher- 

ence" of the Jet observed in real flows causes an inevitable deforma- 

tion not only of the longitudinal but also of the transverse coordinate. 

A detailed experimental investigation of such a flow with respect to 

the distribution of mean velocity, pressure and pulsations given in 

papers [266,291, 292] explains the inapplicability of the simplest forms 

of variables transformations to such a flow. 

The example given is characteristic, on the one hand, as it 

shows the llmitedness of the method of the equivalent problem (in its 

s imp lest form: \ — g(x), T, ^ y). 

On the other hand, if one uses the same method (in the same form) 

not for the whole Jet flow produced by two parallel Jets but only for 

the section after their fusion (i.e., the theoretical origin of coordi- 

nates | B'O is about two nozzle diameters away from the nozzle), the 

agreement between calculation and experiment will be quite satisfactory. 

In this case, it is, of course, the distribution in the chosen 

cross section at («0. which is considered to be the "initial" one. 

~\        In this way, the above example illustrates partly but nevertheless 

effectively the possibility of applying this method to a very complex 
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Jet problem. 

In the paper of a group of authors [322] a calculation after 

H. Reichardt was applied to the processing of experimental data on 

the expansion of a plane turbulent jet of Incompressible fluid In a 

uniform parallel flow. The same problem was studied carefully by V.G. 

Bespalova with the help of a hydraulic Integrator [3^, 35]. Without 

entering Into details and giving the solution we restrict ourselves 

to the remark that for the difference P«'—(p«")» the equivalent equa- 

tion and its solution remain the same as in the case of the efflux of 

a Jet into a quiescent medium. The connection between the reduced co- 

ordinate £ of the linearized space and the real coordinate x  (and the 

velocity ratio m =-£*-)  for each of the values) will be different. 

Figure 15.10 shows ,? as a function of x/l  for four values of m 

obtained from a comparison of the theoretical solution with experiments 

described in paper [322], In Pig. 15.11, we see that the distributions 

calculated (with the help of a hydraulic integrator [3^]) for the cross 

sections of a plane Jet expanding in i medium at rest or in a parallel 

flow agree satisfactorily with experimental data [244, 322]. 

Note that the solutions (and also the experimental data) for a 

flow away from the nozzle, where the difference between the velocity 

values in the Jet and the surrounding parallel flow are small, is in 

good agreement with the results of a calculation according to the meth- 

od of small perturbation. 

The examples given here are sufficient to Judge the effectiveness 

of the inethod of the equivalent problem of the theory of thermal con- 

ductivity when applied to calculating plane turbulent Jets. 

15.3- AN AXISYMMETRIC JET OP PINITE DIMENSIONS 

We shall now extend the conclusions obtained above to a free tur- 

bulent axisymmetric Jet of Incompressible fluid issuing from a nozzle 
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Flg. 15.12. Schematic representation of a free turbulent Jet. a) Case 
of constant initial velocity; b) efflux from long tube; c) efflux from 
concentric nozzles. 

of finite dimensions. 

As In the previous section, our main interest is devoted to the 

investigation of the continuous deformation of the velocity (and temper- 

ature) destribution. In this field, the problem cannot be solved by the 

usual semlempirical methods of Jet calculation. 

Concrete examples of flows taken from the experiments by I.B. Pal- 

atnik [1^9, 150] are shown in Fig. 15.12 a-c. They correspond to the fol- 

lowing problems: efflux of a Jet with uniform initial velocity distribu- 

tion and an evolved "tubular" (according to the law of "one seventh") 

Initial velocity distribution with a uniform temperature distribution in 

both cases, and also the efflux from two concentric round nozzles (ex- 

periments by S.B. Stark [178] and I.B. Palatnik [150]). 

The solution of the equivalent problem of thermal conauctlvlty 

with the corresponding boundary conditions for the above forms of flow 

was obtained by combining the analytical solution (for the axial values 

of velocity and temperature) and the solution obtained by means of a 

hydrodynamic Integrator (transverse distributions). The first of them 

(on the Jet axis) was used in order to establish the sought connection 

between the reduced coordinate 5 and the nozzle distance x/d. 
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We know a solution [188] of the heatconductl->r-type equations for 

pu2 

iw-Tibi <***>] 
and an analogous one for puepAT: 

with boundary conditions of the form 

»-MV). AT1 = Af,^) ,1th *=0.n<tO<y<r1, 
B = u, (y), AT" = Af, (y) w 11h « = 0 -ndr, < y < r,, 
du        dAT      A . ^.   «^ A     A -^---^--0 With *>0.ndy-0, 

AT,   du dbT      n ^ A 11 = Ar =-^-"-^-= 0     with a:>0'ndy—»i 

For example, for the momentum flux density or the flux density of the 

surplus heat content, we can write 

0  0 

ti(a,)Jt{la.)ada+ 

+ ]zt (a) /, (Xa) a da] ezp (-X«t) /c W) X dX, 

where Z'(ä: or f = ¥^&" 
(In this case In the expression for B  the variable C must be replaced 

by ET). 2i(y) and «o(y) denotes the function of the Initial momentum flux 

density distribution or the flux density of surplus heat content, which 

are given by the boundary conditions; ./-(Xo) Is a Bessel function of 

the first kind and zero order; the Integration with respect to a Is 

carried out over the nozzle area; y » y/*i* 

The functions obtained when comparing the theoretical and experi- 

mental curves of variation of pu* (and puepAT) along the Jet axis are 

shown In Pigs. 15.13 and 15.11*. In Pigs. 15.15 and 15.16 the correlation 

between the coordinates 5 and x  are shown. It Is worth mentioning that 

the function 1(x) obtained for a Jet Issuing from concentric nozzles Is 
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Fig. 15.13. Momentum flux density distributions in the cross sections 
of a round Jet [1^9]. a) According to the diagram of Pig. 15.12,a; 
b) according to the diagram of Pig. 15.12,b. 
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virtually the same even if the ratios of the nozzle diameters and the 

velocity values are different. 

In the figures given the experimental transverse distributions of 

velocity and temperature in the flows investigated are compared with the 

theoretical results obtained by the method of the equivalent problem 

(solid lines in all figures). In all cases, the coincidence must be 

considered to be fully satisfactory. 

It should be noted in particular that the Investigation into the 

efflux of Jets from concentric nozzles is of immediate interest in prac- 

tice, for combustion and furnace engineering and the like. The possi- 

bility of a detailed calculation of velocity and temperature distribu- 

tions on the basis of the modest experimental data (applying to the 

Jet axis) therefore indicates the promising aspects of an application 

of the method of the equivalent problem to investigations of this type 

of flows. In this connection, V.A. Adamovich's results [21, 22] of in- 

vestigations into the aerodynamics of metallurgical furnace burners. 

This author studied the Initial v^iocity and temperature distributions 
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(with p ■ const) of air Jets Issuing from coaxial tubes In experiments 

which were more complicated than  those mentioned above. V.A. Arutyunov 

simulated the mixing of three flows: gas Jets Issuing from two coaxial 

tubes (central and peripheral) and the parallel flow surrounding tne 

first ones. V.A. Arutyunov [21,22] could show that a processing of the 

experimental data according to the method of the equivalent problem In 

all cases Investigated yielded positive results, obtained by means of 

a single experimental function C ■ C(x)(and for the flow away from the 

nozzle by a single empirical constant) which resulted In a good agree- 

ment between calculated and experimental velocity and temperature dis- 

tributions. It was shown that In practice, within a well-known range, 

one can use a single general function 5(«). Finally, as also In other 

papers, the ratio C/C™ proved to be equal to about 0.8. 

It Is obvious that for direct Jet burners with arbitrary Initial 

velocity distributions, the application of the method of the equivalent 

problem Is quite rational. 

The data given In this section refer to Jets of Incompressible 

fluid. As regards gas Jets, In the case of the efflux of a jet In a qui- 

escent medium, a particular case of Its expansion In a parallel flow, 

detailed data will be given In Section 15.5 devoted to the problem of 

a gas Jet In a parallel flow. It Is expedient only to consider one case 

of Jet Issuing Into a quiescent medium as an exception. This Is the 

case of a gas Jet (hydrogen plasma) of a very high temperature. 

Figure 15.17*a shows experimental data by N.Q. Zabudklna on the 

dynamic pressure distributions for different distances from the nozzle, 

obtained for such a Jet with an Initial value of the temperature of 

f« a 5200° K and a velocity of Mat 620 m/sec. In this figure, the ex- 

perimental data are represented by empty circles. The solid lines rep- 

resent the theoretical functions obtained by the method of the equlva- 
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Flg. 15.17. a) Distribution of dynamic pressure In a plasma Jet. 
(Experiments N.Q, Zabudklna) 0000 experiments;   calculation 
according to the method of the equivalent problem. 

b) dependence of 5 on x. 
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lent problem of the theory of thermal conductivity. The "key" of the 

transition. In the form of the dependence of the reduced coordinate C 

on «, Is shown In Pig. 15.17, b.  As we see, with a value of the compres- 

slblllty parameter «• —-j-*-™ "^ at 14, as also In other cases of a Jet of 

finite dimensions, the method of the equivalent problem (with a deform- 

ation of the longitudinal coordinate alone) Is well suited for a calcu- 

lation of the flow. It Is also characteristic that at a considerable 

distance from the nozzle, we can use the simple relation V\  =» ex,  where 

• 2f 0.05, I.e., the order of magnitude of the constant o  Is precisely 

the same as In experiments with flame heating and a value of u which is 

essentially lower. 

In this way, the data by N.G. Zabudklna verify the above assump- 

tion that for low-temperature plasma Jets the method of the equivalent 

problem remains applicable. Before we pass over to the problem of a 

Jet In a parallel flow, the main topic of this section, we shall consi- 

der the application of this method of the equivalent problem to a three- 

] 
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dimensional Jet. 

15.H.  THE THREE-DIMENSIONAL JET 

As already mentioned, the method of the equivalent problem of 

the theory of thermal conductivity can be used not only in order to 

treat two-dimensional (plane and axisymmetric) Jets, but also for 

three-dimensional, spatial problems. In this case, the method in Its 

simplest form which is therefore most convenient for practice, results 

in the seeking of an experimental connection between the physical 

space and a fictitious space in which the equations are linear, for 

the longitudinal coordinate e(x) alone. Having obtained this relation 

from experiment (for example, from the distance dependence of the dyna- 

mic pressure pu2 along the Jet axis) the other two coordinates n and 

C must be considered to be, in a first approximation, coincident with 

the corresponding coordinates y  and 2. 

We are thus concerned with the transition from the system of equa- 

tions of the three-dimensional boundary layer 

with the boundary conditions 

pt?~ 21 =* Ft{y, z) with * = 0, 
pu» 

pi?-*o      withy-*». «-*», 

to a two-dimensional heatconduction-type equation 

fyu*     ypit*  1  tßpu* 
-ST' 

where  »«»(x)   ti —«,  C"'.    w^th the a alogous boundary conditions 

P«»l-^»(n. t)wlth6-0, pü1—Owithtj^oo, l-*oe. 

Note that the initial system of equations of the boundary layer 

is not closed since  for the three velocity components we only have two 

equations.  In the transition to the effective space we obtain a single 

equation for the determination of the fundamental longitudinal velocity 
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component u. As also In the Initial boundary layer equations, the 

additional application of the continuity equation does not permit the 

determination of the two transverse velocity components v  and w.  This 

peculiarity of the three-dimensional boundary layer equation Is well 

known (see, e.g., [135]). For the problem considered here It Is, how- 

ever, sufficient only to determine the fundamental velocity component u. 

A solution to the heatconductlon-type equation may be obtained by 

the method of summation over the sources In the form 

Ä - «■??'•<»• «> -»[- *-*&-*]** 

Remembering the comparison with the experimental data where the Initial 

distribution Is uniform, we represent the solution In the form 

& - f [-(^r)—(f7r)][-(f^)—(irr)]- 
For (pwa) as a function of the coordinate 5 we have 

This expression Is suitable for a comparison with experiment and the 

establishment of the relation between thp coordinates t and x.  Note 

that for large values of 5 (self-similar region of flow) this expression 

can be simplified and represented In the form 

(pul), -•' —T •">> J- > li ■*••• S — 41*. 

Let us now turn to the experiments conducted by I.B.. Palatnlk and 

D.Zh. Temlrbayev [15*3. In the experiments one studied the dynamic pres- 

sure dlst Ibutlon In air Jets discharged from rectangular nozzles with 

different values of the side ratio. The quantity y3, was taken as the 

characteristic geometrical dimension of the nozzle, where S - 4bot b 

and o being the sides of the rectangle along the axes y and s. Data by 

V.A. Turkus [195] were partly also comprised In the processing. As we 
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Pig. 15.18, a) Variation of u along the axis of a Jet issuing from a 
nozzle of rectangular cross section (data by I.B. Palatnik and D.Zh. 
Temirbayev [I?1*]), oooo experiments;   calculation according to the 
method of the equivalent problem; b) C as a function of x. 
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Pig. 15.20. Experimental (•••) and calculated ( ) according to the 
method of the equivalent problem — curves of constant value of the 
dynamic pressure In the cross sections of a Jet Issuing from a rec- 
tangular nozzle (n « 2 [69])^ 
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Note: The corresponding values of u /u-6 are given for each curve. 
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see from the experimental data, with *o/K5^20 the flow becomes simi- 

lar to a self-similar flow (the value of xjVS   Is different for noz- 

zles of different geometry. I.e., of a different value of the side 

ratio n » h/o.  Figure 15.18 shows the experimental curves of the dyna- 

mic pressure drop along the Jet axis for several values of n (the noz- 

zle dimensions are given In the text to the figures). If In the range 

of «/|^3>»1 all curves tend to unity, which corresponds to the equiva- 

lent round Jet, they differ essentially between one another. Using the 

connection between the coordinates 5 and x (see Fig. 15.l8,b) we can 

compare the dynamic pressure distributions In the Jet cross sections 

with the solution of the heatconductlon equation. Such a comparison 

was carried out. The results for one value n - 2 (nozzle No. 2) are 

shown In Pigs. 15.19 and 15.20. Analogous data were also obtained for 

other nozzles. In the first of these figures, we see the u dlstrlbu- 

^ r tlons. In the second the curves of constant value of u at different 

distances from the nozzle. The solid lines have been drawn according 

to the solution of the equation (taking the relation between 5 and x 

Into account), the dots give the experimental data. As we see from the 

figures, the method of the equivalent problem can be applied without 

any doubt to Investigations of three-dimensional Jets. Later on, this 

was proved by I.B. Palatnlk In experiments with Jets Issuing from a 

nozzle with a cross-shaped orifice. 

Though It Is not unexpected, the result obtained Is significant 

In principle. 

15.5. AN AXISYMMETRIC QAS JET IN A PARALLEL FLOW 

The problem of the expansion of an axlsymmetrlc Jet In a parallel 

flow (for example, the Jet of combustion prod'.cts from a flying Jet 

engine) has attracted great interest. In particular, the applicability 
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to it of the method of the equivalent problem of the theory of 

thermal conductivity was verified in a series of papers [69, 1^9, 150, 

321] in which the techniques of experiment and data processing were 

further developed and  improved and the region of variation of the 

fundamental parameters of the process was enlarged. At present, we 

may say that this verification has been carried out rather carefully 

for subsonic Jets issuing into a gaseous atmosphere of high density. 

In this case, the low density of the gas in the Jet was chiefly the 

result of heating by flame. The variation of the compressibility para- 

meter o» =— was therefore limited by the values 0<u><5.   The experi- 

mental data given below and the results of their processing according 

to the method of the equivalent problem are chiefly taken from detailed 

experiments carried out by L.P. Yarin [67, 15^']  and V.Ye. Karelin (115, 

151*]. In the first-mentioned papers (as also in previous papers, see, 

e.g., [150]) the dimensions of the orifice cross section of the noz- 

zles for the Jet and the parallel flow surrounding it were relatively 

small (inner diameter ^20 mm, outer diameter ^300 mm). In a later ex- 

periment by V. Ye. Karelin [69, 115] an arrangement was used with larg- 

er dimensions (tube diameters 50 and 600 mm) which permitted a higher 

accuracy and reliability of the measurements. 

I-i L.P. Yarin's paper, dealing with the efflux of hot Jets (ini- 

tial temperature 300-1520oK with Jet velocities of up to 80 m/sec and 

a velocity of the parallel flow of up to 20 m/sec), the influence of 

the parameter m, the ratio of the dynamic pressures in flow and Jet (in 

the previous sections the symbol m denoted the velocity ratio but in 

the following, we shall use it as "* == |^^)> and tlie compressibility 

parameter u on the laws governing the evolution of the Jet are esta- 

blished. Finally, the possibility of applying the method of the equi- 

valent problem (in its simplest form) to such a flow was verified. 
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Analogous data In a more detniled form were obtained In a paper by 

V.Ye.  Karelin [69>115].  Before we turn to these data, we must mention 

that  It  followed from L.P.  Yarln's experiments that, with a given val- 

ue of the parameter m, the decline curves of the quantities pu" — (pu1)«, 

and  pucpAf on the Jet axis are virtually coincident for all hot Jets. 

In contrast to this,  analogous curves for a practically isothermal Jet 

differ from the others.  This  also indicates that the expressions  for 

the transition from the physical coordinate to the reduced one in the 

case of hot jets were of the form  I — fc(x, i») for values of w >  i  and with 

u 3r J   (and the same values of m) the relation between C and x was dif- 

ferent  from the others. 

It was suggested to explain this difference by differences  in the 

level of initial turbulence in cold and hot Jets.  In favor of the latter 

speaks especially the fact that in hot Jets, regardless of the depen- 

dence on their degree of heating (with given value of m), the pu2 

curves on the Jet axis were virtually coincident.  Of course, the heat- 

ing of the gas was assumed to result in a higher level of turbulence 

compared to the cold Jets.   As will be shown below, V.Ye.  Karelin's ex- 

periments verified this  [69,115]. 

Figure 15.21 shows the experimental results on the decrease of 

momentum flux density and surplus heat content  for three values of the 

parameter u and m * 0  (efflux into quiescent air).  For the same  condi- 

tions, the corresponding functions C(x) and €m(x) are shown. Just as in 

the other figures we had again a ratio of   S/SrasO.S. 

Analogous data for parallel Jets  (the curves showing pu* — (pu1)« 

and pepu(f — fao)   as functions of x/dQ for one value of the parameter uO 

have been plotted in Fig.   15.22. The data given characterize the in- 

fluence of the two parameters of the problem, a> and m. 

The next two figures,  15.23 and 15.2^,  are devoted to a comparison 
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Pig. 15.21. Variation of momentum flux density (a) and surplus heat 
content (b) along the axis of a submerged nonlsothermal Jet. (Experi- 
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(c) 1, 2 and 3 - calculated curves of Vl. Vfr and K/KT  as functions of x, 
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Pig. 15.25. Distributions of Su-t is momentum flux densities 
P^IS-.PU(U-U00)/P.U.(U,-U(X)) and flux densltle of heat content 

•««„AT-#«,,cr-T«»***,(Tt-r«,)  along the Jet axis (a and b) and in the cross 
section (c and d). Experiments by V.Ye. Karelin [69, 115], w ■ 1.2, 

M i 1   |   3 4 6 

m 0 0.04 0.10 | 0.17 0.»   1 

000 experiments; 
valent problem. 

calculation according to the method of the equi- 

) 

of experimental data (dots) and calculations according to the method 

of the equivalent problem (solid lines) for the distributions of the 

momentum flux density differences between Jet and surrounding flow and 

the flux density of surplus enthalpy. Without entering into details 

which are clearly Illustrated in the figures and the texts to them, we 

see that in all cases investigated, the agreement between experiment 

and calculation is fully satisfactory. In connection with this, the 

following may be remarked. 

It is essential that when C is a function of x, the transverse 
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distributions of   Alpu1)   (and puepbT)   both calculated and measured, 

agree with a sufficient  degree of accuracy.  Under this condition, 

the relation between ^ and x Implies the parameter m.  In other words. 

In agreement with the physical  content of the problem, the ratio be- 

tween the quantities  (pu»)«   In the flow and (pu2)0 In the Jet enter 

the formula for the transition from the real space to the effective 

space.  Precisely this makes It possible, when returning from the 

solution of the heatconductlon-type equation to the real flow, to 

take the peculiarities of the  latter Into account:  the curvature 

of the conventional boundaries  of the Jet, the drop In attenuation 

intensity of the Jet as the value of (P«
2
)Q in the Jet approaches 

the value of   (p«*')»   in the  flow, etc. 

Let us now turn to the results of the paper by V.Ye.  Karelin 

[69,  115].   In these studies  (also ander the conditions of a flame 

heating of the central Jet) the  initial temperature was allowed to 

vary between  300° and 1200oK,  the velocity in the Jet was up to 100 m/ 

sec, the  value of m =»•gar   was between 1 and 4.2.  In order to eliminate 

the influence of initial turbulence on the pw2 distributions and to ob- 

tain a single universal distribution in natural coordinates  (i.e., with- 

out the introduction of any empirical constant),    in the paper mention- 

ed use was made of an additional device turbulizing the gas constituting 

the main Jet.  This additional  Lurbulizer was made in the form of a tubu- 

lar honeycomb  (of tubes of a diameter of about 15 mm).  In each tube a 

small vortex generator was arranged such that neighboring vortex genera- 

tors produced whirls of opposite directions.  In order to estimate the 

effect of action of the turbulence generator, we point out that with 

weakly heated air (u 2? 1.2) thermoanemometrlcal measurements yielded a 

value of the order of 9% for the inten sity of velocity pulsations, 

compared to a value of about 2.5% without turbulence generator.  In the 
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Flg.  15.26.  Distributions of the values of P^U and '""v"    in a parallel 
jet («-•.«.•-w i-."J).      000 experiments;    calculation according to the 
method of the equivalent problem.  A) With turbulence generator. 
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Flg. 15.27. Distributions of the values of velocity Au'um-«00 and tem- 
perature jf^ZzI*      In a parallel Jet m = u,t7. »"I.23;  rm-o1i7. » - u r. «»j. 

(Lines: calculations according to the method of the equivalent problem.) 
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Pig. 15.28. Conventional "half-width" as 
a function of the distance determined for 
various parameters [69,115]. 

m m 0.17, 1* - 4,1»;  
m - 0, •* — 4,1. 

presence of a turbulence generator all the curves of P"4 — (pw*)», pu(" — »v). 

Including those of the cold Jet, for each value of m and different 

values of w fuse to form a single universal curve. In the absence of 

a turbullzer. Just as with the data given above, the Isothermal curves 

differ essentially from the curves for the heated gas. To all appear- 

ance, the assumption on the direct Influence of the pulsation Intensity 

on the law of decline of pu2 in the Jet Is confirmed thereby. On the 

other hand, It was shown Independently that with a sufficiently high 

level of turbulence, the parameter w has virtually no influence on 

the distributions of momentum flux density and surplus heat content in 

gas Jets (in any case within the limits of measuring accuracy). In 

particular, under conditions where all curves coincide i.e., with 

elevated initial turbulence, the distributions of pu(u — «<») an(i 

pucpiT — TtJ   are similar in the self-similar sections of Jet flows but, 

consequently, there is no similarity between velocity and surplus tem- 

perature separately in Jets with values of u which differ essentially 
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from unity. More than that, for such aelf-slmllar sections, the value 

of the empirical constant a  will be one and the same. We shall Illus- 

trate all this with the help of experimental data (first for flows with 

turbulence generator). 

By way of example, we show In Fig. 15.25 the distributions of the 

relative quantities pu(u - u«) and pucp(f - f») on the Jet axis and In 

cross sections for different values of m and one and the same value of 

u. The solid lines have been drawn after the results of solutions of 

heatconductlon-type equations. Figures 15.26 and 15.27 show the distri- 

bution of the same quantities (dots: experiments, curves: calculations 

according to the method of the equivalent problem), the surplus veloci- 

ty and the temperature. Their comparison permits the establishment of 

the laws of variation of these quantities, the conventional Jet boun- 

daries determined according to various features, etc. Note that the 

latter problem is of great interest. In connection with this, we show 

in Fig. 15.28 for two values of m and about the same values of u 

the dependence of the conventional "half-width" of the Jet (i.e., the 

ordinates of the points at which the value of, e.g., pu(u — u«) is equal 

to half the maximum value of this quantity in the cross section given) 

on the distance. The graphs given show clearly to which a high degree 

the values of j/, determined in different ways differ from one another 

and in which a complex and uninterpretable way they depend on the para- 

meters of the problem, particularly in the first part of the Jet. As 

regards the total conventional width of the Jet (e.g., the ordinate 

y1/100  etc')» we can see from Pigs. 15.26 and 15.27 that its determina- 

tion from any of the characteristics would be very Inaccurate. This 

can be explained by differences in the problem on the influence of the 

parameter w on the Jet boundaries and its treatment by various authors. 

The last two figures, 15.29 and 15.30, are devoted to the comparison of 
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Flg. 15.30. Distributions of the value «~ep*T on the Jet axis [115]. 
(Denotations see Pig. 15.29). Dots: experiments; calculations 
according to the method of the equivalent problem. 

experimental data obtained under the same conditions, but with or 

without a turbulence generator inserted in the Jet. This has been 

discussed above. The solid lines in these figures represent the re- 

sults of calculations according to ehe method of the equivalent pro- 

blem. Thus, even with evolved turbulence and a universal distribu- 

tion of pu(u-iico) (right) and with separation of the Isothermal curves 

(left in Pigs. 15.29 and 15.30) the calculation, with an appropriate 
:: 
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functionJ = J(x)—(taken from experiment), describes correctly the 

deformation of the distributions of momentum flux density and heat 

content In the entire range of variation of the parameters w and m. 

By way of example, we show In l7lg. 15.31 C and 5», as functions of x 

for the parallel flow shown In Pig. 15.26. According to their shape 

and the ratio £/£» these curves do not differ from the many curves 

shown previously. 

The successful application of the method of the equivalent pro- 

blem to data on parallel gas flows yields a basis for their use and 

calculations according to the formulas given In Section 1^.^, for the 

distribution of tangential frlctlonal stresses. The results of this 

calculation for a Jet Issuing Into quiescent air are shown In Pig. 

15.32 for two values of the parameter w (Isothermal and limiting, 

for these experiments, heated Jet). The curves of 

—     T  . 

represented In this figure for three values of the nozzle distance that. 

In our opinion, there Is a real possibility of calculating the stress 

of friction, and of a subsequent systematic processing of the data 

according tc the various Jet flows, on the basis of the method of the 

equivalent problem. This Is, of course, an empirical calculation. A 

similar but much less accurate result is obtained by a simple "Inver- 

sion" of the boundary layer equations. I.e., they are used In order to 

calculate the frlctlonal stress distribution from the given distribu- 

tion (taken from experiment) of pu2, etc. But the considerably simpler 

determination of the quantity of friction (and also of the heat flux) 

on the basis of detailed experimental data, with the help of the two- 

term formula of the method of the equivalent problem permits the devel- 

opment of more complete representations of the transfer laws In turbu- 
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lent gas Jets. This problem belongs to the field of further Investi- 

gations. 

15.6. SOME REMARKS 

Let us consider some results. 

First of all. It should be noted that the various experimental 

data given and their processing by means of the method of the equiva- 

lent problem verify the expediency of the application of this method 

to the calculation of turbulent, plane, axisymmetric and spatial jets, 

submerged and parallel, with constant and variable densities, arbitrary 

form of the initial distributions, etc. The experimental material also 

illustrates the foundation of the method discussed prevloualy and its 

difference from the previous modifications and, first of all, from 

H. Reichardt's method. The weak point of the latter, besides the un- 

foundedness of the basic equation, is the linearization of the boun- 

dary layer equations (already mentioned in literature, see, e.g., the 

book by I. Hintze [200]), the identification of submerge^, and parallel 

flows (for the surplus quantities) and the like in the physical plane 

of flow. This results in a direct contradiction with experiment and 

an ignoring of the actual peculiarities of the various problem. 

In contrast to this, the method of the equivalent problem keeps 

to the real nonlinear flow with all its peculiarities and takes them 

into account when choosing from experiment the mathematical "key," 

the transition function to the effective space in which the flow, in 

a well-known approximation, may be described by a linear equation of 

the type of the heatconduction equation. In this case, one and the 

same solution to this equation corresponds to a great number of real 

flows in a physical plane, which is connected with the effective 

plane by appropriate equations, in the simplest case by the single 

expression 5 _ j(z). An arbitrary peculiarity of the real problem, the 
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form of the Initial distribution, here Including the properties of 

the parallel flow, the "history" of the flow. I.e., the form of the 

nozzle, the presence of a turbulence generator, etc., all this has 

finally an Influence on the experimental relation linking 5 and x. 

In particular. In gas Jets, when returning from the effective plane 

to the physical one, we also have a correlation between the formally 

Independent equations for the dynamic and the thermal problem. 

Let us also mention that the presence of a set of curves I = £(*), 

and 5T = lT{x)   for different flows, enables us - and such attempts have 

already been made In the papers cited - to use the method of the equi- 

valent problem In approximate Interpolation calculations for recalcu- 

lations. I.e., for the development by way of calculation, without a 

direct experiment, an approximate flow pattern for nonlnvestlgated Jet 

motions. This possibility will Increase undoubtedly when more and more 

experimental data are collected. But this must not give the Illusion 

that this method Is "universal," especially In Its simplest form. In 

a series of cases of complex flows, semlllmlted Jets, antiparallel 

Jets, the appearance of dynamic effects resulting In a fusion of paral- 

lel Jets, their "adhesion" to surfaces of solids, and the like, the 

simple variant of the method (Invariant coordinate y)  may only yield 

a qualitative flow pattern. To obtain the quantitative pattern. It Is 

necessary to expand the volume of empirical Information. The expedien- 

cy of a further expansion of the field of applicability of the method 

will then depend to a high degree on whether we can find rational 

forms for It. In certain cases. It will be effective to pats over to 

the coordinates S = l(x), ri = ^ where V' Is the streamfunction. 

It Is probable that In various concrete cases, even the Ideas of 

a rational form of calculation will diverge. I.e., the relations be- 

tween the data taken from experiment and those from the theoretical 
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Pig. 15»33. Comparison of the distribu- 
tions of pu Au and Apu2 in the Jet cross 
section (m.o.i:--2: -5- - * t'")). 

solutions will differ. 

As shown above, in all cases studies the value of the ratio S/C™ 

proved to be smaller than unity, of an order of about 0.8. By the 

way, this means that the calculation according to the method of the 

equivalent problem, in agreement with experience, results in the fact 

that heat transfer occurs more rapidly than momentum transfer. This 

indicates that in ,integral-adlabatic gas Jets, there exists a local 

redistribution of total enthalpy. The character of this distribution 

corresponds qualitatively to the case where the Prandtl number is 

smaller than unity: the faster striae becomes enriched in energy at 

the expense of the slower ones. Examples of such a distribution were 

given previously. 

It should be borne in mind that in the previous sections we used 

two ways of processing the experimental data on the momentum flux 

density for a Jet expanding in a parallel stream. In the analysis of 

V.Ye. Karelin's experiments (Pigs, 15.25-15.32) the quantity pu(u - "„)• 
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was chosen as the basic characteristic, a quantity which Is encoun- 

tered everywhere. This choice Is quite correct as It Is precisely 

this quantity which enters the Integral condition of conservation of 

the form 

\ p« (u — UOB) ds =* const, 

which results Immediately from the heatconductlon-type equation (by 

way of Integrating It across the Jet). In earlier experiments (I.B. 

Palatnlk et al.) Instead of puAu the quantity Apu« = pu« — (pu*)«,. was In- 

troduced In tha  analysis. Though this Is not strict (as no conserva- 

tion condition can be written for Apu1 It Is convenient for practice 

as the determination of Apu" in experiments Is not connected with any 

additional measurements, except for the quantity pu2. 

It Is essential that within the limits verified experlmantally the 

difference between the nondlmenslonal distributions of the quantities 

pii(u — u«) and pu* — (pu1)» are Insignificant. By way of example, we com- 

pared In Pig. 15.33» the urves of both characteristics, ^Xu and 

"Äpü*. for a nonlsothermal Jet. The comparison shows that the differ- 

ence between them (especially In heated Jets) Is within the experiment- 

al limits of accuracy. Thus, though we consider the processing with 

respect to puAu more correct In principle and sometimes, for example. 

In a hot burning Jet expanding In a parallel flow (see Chapter 17) It 

Is the only possible way, we must not give up the approximation method 

convenient In practice. 

The experimental data given refer to subsonic gas Jets. We see 

that the method of the equivalent problem also applies to calculations 

of the mixing zone In high speed Jets (comprising -upersonlc ones). 

This Is verified by Individual experimental data on gas Jets given in 

the literature referred to and also In a recent paper [33] dealing 
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with Jets of hot steam. A systematic verification and generalization 

of experimental data on supersonic gas Jets within the framework of 

this plan has so far not been carried out. 

It should also be noted that In the papers mentioned, which deal 

with the application of the method of the equivalent problem, the 

method of calculation according to a heatconductlon-type equation has 

been Improved. In the first papers [3**, 1^9] the main mathematical 

aids were often only Integrators of various types. In spite of ti -Lr 

clearness, the Increased experimental accuracy rendered It necess ry 

also to Improve the mathematical procedure. An aid well known In prac- 

tice for the development of solutions to the axlsymmetrlc problem .nay 

be the tables [264] mentioned above. 

In particular, when we Introduce In the calculation the actual ini- 

tial distribution of pu2 (which. In the general case, Is nonunlform) 

etc., even the accounting for relatively small deviations, e.g., from 

a rectangular distribution. Improves the agreement between theoretical 

results and experiment (especially near the nozzle) as shown by V.Ye. 

Karelin [69, 115]. 

Summing up we may say that the method of the equivalent probleTi, 

though It Is of course not universal, undoubtedly has well known advan- 

tages compared to other semlemplrlcal methods of calculation. 

Of course, this does not mean that not other methods of calcula- 

tion must be used in a series of cases in which it is unnecessary to 

know the detailed velocity and temperature distributions (and their 

continuous deformation under the conditions of nonself-slmllar Jets). 

In connection with this, besides the widespread mathematical methods 

developed by G.N. Abramovlch [11] it is worth mentioning the method 

of the layer of constant thickness applied in the theory of turbulent 

Jets. This way of calculation of turbulent Jets is connected with the 
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use of Integral relations derived successively In the papers by A.S. 

Qlnevskly [75-79]. In the past years A.S. Qlnevskly applied the method 

of the Integral relations to the solution of a great number of problems 

on the expansion of free, turbulent. Isothermal and nonisothermal Jets 

of fluid and gas. 

Using the well known Integral relations by V.V. Qolubev, A.S. 

Leybenzon et al. and approximating the velocity and temperature distri- 

butions (or the distributions of frlctlonal stress and heat flux, see 

Section 4.2 for laminar Jets) It Is possible In a series of cases, by 

means of the Introduction of the corresponding empirical constants, to 

achieve satisfactory agreement with the experiment. A weak point of this 

method, apart from that Indicated In Chapter 4, Is the fact that 

Prandtl's formula for the tangential frlctlonal stress T^p/^-j-) Is ap- 

plied In the case of a compressible gas Jet. At the same time, the meth- 

od of the Integral relations. Just as also the calculations based on a 

direct assignment of the distributions of velocity, etc.. Is valuable 

In practice as It makes It possible somewhat to Increase the number of 

problems of the theory of turbulent Jets, which arc accessible to cal- 

culation. 
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352 Analogous data are contained In the papers  [183].  See also 
Section 15.5. 

358 As already mentioned, from the physical point of view. It 
would have been more correct to use the quantity 
p u  (u — «,„) as the "surplus momentum" for a Jet In a 
parallel flow. For the problem considered this yields vir- 
tually the same results as obtained by more  cumbersome cal- 
culations. 
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Part Pour 

SOME SPECIAL PROBLEMS 

The last part of this book has been devoted to the discussion 

of some essential problems of the theory of Jets of viscous fluid and 

gas and their application. These problems are closely related to those 

considered In the preceding sections but which, at present, are less 

far developed. 

We shall discuss In particular (pre-eminently In the experimental 

plan) Individual complex jet flow which are very Important In practice, 

namely the antiparallel flows and Jets streaming around bodies. The 

method of solving such problems theoretically have not yet been devel- 

oped sufficiently. The chapter devoted to them will therefore mainly 

contain experimental data and their generalizations. 

A separate chapter has been devoted to the diffusion heating of 

gas. The method of the theory of Jets Is here applied to the calcula- 

tion of laminar and turbulent combustion of previously nonmlxed gases. 

It can be shown that an application of the method of the equivalent 

problem of the theory of thermal conductivity developed In the preced- 

ing part of the book Increases essentially the possibilities of calcu- 

lation In one of the fundamental fields of the gas dynamics of combus- 

tion, namely the theory of the turbulent burning Jet. 

In the last chapter we made an attempt of classifying the solutions 

of a series of problems on the expansion of Jets of electrlcilly conduct- 

ing fluids which are Interacting with a magnetic field. As there Is ab- 

solutely no experimental material available, the solution of these pro- 

blems has mainly methodical significance as this Is shown by the speci- 

fic nature of the magnetogasdynamlc consideration on the one hand and 

Its connection with the general theory of Jets, on the other. 

:: 

.1 

:: 

- 396 - 



J 

Chapter 16 

) 

SOME COMPLEX JET FLOWS 

16.1. PRELIMINARY REMARKS 

In the preceding parts of the book, we considered the simplest 

and idealized cases of jet flows of viscous fluids and  gases. This 

cype of problems, dealing with the expansion of source Jets, plane, 

fan-type and axisymraetric, free and semilimited Jets and the like, 

are fundamental for the investigation of real Jet flows. The circle 

of problems which can be analyzed theoretically from a single point 

of view is enlarged considerably when we take into account the finite 

dimensions of free Jets, the continuous deformation of arbitrary ini- 

tial distributions, the expansion of the Jet in a parallel flow, in 

short, all what is connected with the method of the equivalent pro 

blem. But also here most of the quite different Jet flow problems im- 

portant in practice are without the framework of investigations. 

In the various fields of engineering one encounters peculiar pro- 

blems of Jet flow investigations which are mostly connected with such 

complex and hardly studied questions as, for example: 

1) the laws of expansion of a Jet in a flow whose direction with 

respect to tJ'e flow is arbitrary; 

2) the collision and intersection of Jets; 

3) the expansion of a Jet in a limited space; 

I) the expansion of strongly twisted free or limited Jets (for 

example, in a cyclone chamber [114, 193] etc.); 
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r. 
5) the Interaction of Jets with solids. In particular, the Jet 

flow around bodies, the effect a Jet exerts on an obstacle and many 

others. 

An Investigation of these problems Is often of Immediate Interest 

In practice. This explains the Interest which complex Jet flows meet 

In the literature on applied gas dynamics or In monographs and arti- 

cles devoted to concrete technical Installations. 

As a rule, we are concerned with the experimental Investigation 

of the problem, the gathering of data In the one or other measuring 

range of parameters specific of the system's conditions and others. 

As regards the generalization of the experimental material and the 

classification of the results obtained, this Is, to an essential de- 

gree, a future task. We therefore refer the readers to the numerous 

experimental data contained In, e.g., the papers by M.A. Gllnkov [81], 

Yu.V. Ivanov [107-111], D.N. Lyakhovskly [136-li»l] and others, and the 

detailed reference lists given In these papers (partly entered In the 

literature Index at the end of this book) we restrict ourselves to a 

very brief consideration of a few examples of complex Jet flows. As 

the latter, we choose Individual acute problems which are also charac- 

teristic, taken from the circle of Investigations carried out under the 

leadership of one of the authors. In this connection, we think of the 

problem of Jet expansion In an antiparallel flow and the flow In the 

wake behind a body located In a uniform flow or Jet. 

These problems, as we shall see In the following, are closely In- 

terrelated. Though their theoretical solutions (by means of the same 

semlemplrlcal methods) are not available, a general representation of 

the qualitative flow structure can be obtained by means of a roughly 

approximative way of "constructing" the flow (by the method of super-      «I 

Imposing Jets, addition of dynamic pressures and other qualitative 
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procedures applying quite unaccurately to the motion of viscous 

fluids). 

As regards the other cases of complex Jet flows which are no 

less Important In practice, they will not be considered here In 

agreement with the general layout of the book. We shall also not 

touch the problem of two-phase Jets, the problem of'Jets carrying 

along solid or liquid particles [36, 37, 205, 206] or other special 

problems of the theory of turbulent Jets and their various applica- 

tions. 

16.2. ANTIPARALLEL JETS 

A detailed qualitative representation of the character of mo- 

tion arising on the efflux of a Jet against a uniform stream can be 

obtained If one has recourse to the superposition of motions (which Is 

Incorrect In the case of viscous fluid flows). In practice we have 

several ways of doing this, for example, by adding the stream functions 

of Jet and flow or, what Is essentially the same, by means of a geo- 

metrical addition of the velocities of the two conditionally Indepen- 

dent flows. Finally, somewhat better (but also qualitative) results 

are obtained when the dynamic pressures are .dded. 

These ways of a "constructive" buildup of complex flows and other 

similar modifications as a rule transfer correctly the fundamental 

specific peculiarities of a complex flow, for example, the formation of 

a reclrculatlon zone In a nonpotentlal flow around a body or an oppo- 

site source Jet. Recall In this connection that a series of flow condi- 

tions for the problem on the mixing of two antiparallel flows was ob- 

tained previously [51] when the problem was solved by the superposition 

method. 

Thus, the question Is the obtaining of a preliminary pattern of a 

complex flow. As regards the comparison with experimental data, for the 
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problem considered here (antiparallel flows) the Introduction of a 

single empirical constant Is only sufficient for the approximate des- 

cription of the laws of flow along the Jet axis.  In order to achieve 

full agreement between the calculated flow pattern and the actual mo- 

tion, it would be necessary to Increase the number of empirical con- 

stants taken from experiment. The same Is true In essential for the 

application of the method of the equivalent problem of the theory of 

thermal conductivity.  A successful application of this method to anti- 

parallel Jets requires the transition to more complex formulas of trans- 

formation of variables of the form   6 ^K«).*!-^) (or even of the form 

I - 6(*)i »l =" »K*.   If))-    The development of an effective method of calcula- 

ting antiparallel Jets Is therefore still Incomplete. At the same time 

this problem Is acute for the combustion and furnace techniques, etc.. 

In particular. In connection with the problem of the Jet stabilization 

of a flame In a high-speed flow. This  fact also stimulated the Investi- 

gation of antiparallel Jets [114]. 

Figure 16.1 shows by way of example experimental data on the ex- 

pansion of an axlsymmetrlc air Jet In an unlimited counterflow. Besides 

the velocity distributions In the flow cross section, the figure also 

shows the characteristic curves bounding the reclrculatlon zone, the 

.1 

1 

Flg. 16.1. Velocity distributions In 
cross section of axlsymmetrlc Jet expand- 
ing In a counterflow. 1) m/sec; 2) m. 
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Pig. 16.2. Construction of flow pattern for a Jet 
In a covmterflow (after the data of Pig. 16.1). 
a) Addition of velocities; b) addition of dynamic 
pressures. 1) m/sec; 2) m. 

i 

Pig. 16.3. Velocity and pressure distributions In 
a plane Jet expanding In a counter flow with 
m - -0.6  (see L127]). 
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Flg. 16.4. Diagram of flow being the 
result of two antiparallel streams 
(or antiparallel fan-type Jet). 

n 

lines of zero longitudinal component of velocity (u > 0) and zero 

streamline (^ ■ 0). 

For the purpose of comparison we show In Fig. 16.2 the flow pat- 

terns calculated for the experimental conditions of Fig. 16.1, con- 

structed by means of an addition of velocities (Fig. 16.2, a) and of 

dynamic pressures pu* (Fig. 16.2, b).  From the qualitative point of 

view the agreement of the results Is obvious. 

We may see from partial results of the Investigation that the 

relative length x0/d of the counterflow zone Is proportional to the 

ratio u0/um where u0  Is the efflux velocity of the Jet. The latter, 

however, follows from dimension considerations. 

Owing to the curvilinear shape of the trajectories, the motion 

Investigated (Jet In counterflow, antiparallel Jets) Is connected with 

a noticeable variation of pressure and. In Individual sections, with 

a commensurablllty of the longitudinal and transverse velocity compo- 

nents. Generally speaking, owing to these peculiarities, the methods 

of the boundary layer theory can only be applied under certain condi- 

tions to the problem of antiparallel Jets. In contrast to this, a more 

0 
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"quiescent" complex flow, as the expansion of a Jet In a parallel flow, 

can be described satisfactorily, not only qualitatively but  also quan- 

titatively, by   'superposition" methods.  Just as by the method of the 

equivalent problem. 

The most careful experimental investigation of the motion connec- 

ted with the expansion of a plane Jet in a uniform counterflow was car- 

ried out by T.P.  Leont'yeva and B.P.  Ustimenko [127] from whose paper 

the above Fig.  16.3 was taken. 

An analogous way  of "superposition"  can be used for the  construc- 

tion of the qualitative flow pattern    produced by two antiparallel 

plane Jets  (of equal initial momenta),  or for an axisymmetric flow pro- 

duced by a convergent  fan-type Jet.  A schematic representation of thid 

pattern is  shown in Fig.  lö.'-l. 

An Investigation of such Jets, their interactions  (e.g.,  the ac- 

tion on a free Jet of transverse striae, etc.) are of great Interest in 

practice, in particular for gas Jets. 

16.3.  PLOW PATTERN  IN THE WAKE BEHIND A BODY 

It is well known that the motion in the wake behind a body of a 

badly streamlined shape, far away from it, has a marked Jet-type charac- 

ter and (in the case of laminar and turbulent flows) can be  calculated 

by the method of small perturbations.  We do not give here these solu- 

tions as they have been considered in detail In many monographs [11, 

130, 171»,  191 f 212, etc.] but deal with the flow in the wake immediate- 

ly behind a badly streamlined body. 

A systematic pattern of such a flow was constructed by the method 

of "superposition" of the fictive turbulent momertum flow and the uni- 

form flow [58]. As we see from Fig. 16.5, the flow is characterized by 

the zone of backflows, with the same limiting surfaces ^  «  0 and u « 0. 
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For the region of an evolved turbulent flow (with a value of 

the Reynolds number of the order of Ä« ^ 10*-<-10*) a c iculatlon by 

means of the above method permits an estimation of the length of the 

backflow zone In the uniform flow around bodies of various forms. The 

theoretical results agree qualitatively with the experiments and when 

a single empirical constant is Introduced, the agreement Is even quan- 

titative. 

For a plane flow, the reduced length of the backflow zone Is equal 

to 

-7--TC' 

where c Is the drag coefficient a »0,35. 

For axisymmetric bodies 

These formulas describe with qualitative correctness the influence 

of the geometrical shape of the body on the character of the flow around 

the body and, particularly, on the length of the backflow zone. For exam- 

ple, in the case of bodies with smooth surfaces placed In the flow (cyl- 

inder in transverse flow C«li0-»-l,2, and sphere c ■ 0,5) the zon 

length is equal to }«1,3 and J«l,2. respectively. 

The crisis In the flow around a cylinder or sphere Is accompanied 

by a drop of the drag coefficient which, as resulting from the formulas, 

causes a corresponding reduction of the dimensions of the backflow zone. 

In the case of bodies with sharp edges (plate In transverse flow, 

C«2,0, and disc {»1,1) the relative zone length is equal to j«2 

In the first case and £»1,9 In the second. I.e., It is considerably 

higher than with bodies of smooth surfaces. 

A qualitative verification was also achieved for ehe conclusions 

on the self-similarity of the averaged flow, the independency of the 
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baakflow zone dimensions on the velocity of the incoming flov« etc., 

which results immediately from the calculations. 

Note that at first these results which prove the correctness of 

the average turbulent motion in the wake behind the body were contra- 

dictory to the previously widespread idea of a supposedly total chaot- 

ic state of this motion. 

An analogous scheme was used by S.I. Isatayev [112, 193] in order 

to construct the flow pattern for a Jet flow around a body. It was 

shown in particular that the length of the backflow zone in plane and 

axisymmetric motions is proportional to the distance between the pole 

of the Jet and the badly streamlined body [112]. 

In the limiting case where this distance is allowed to grow un- 

limitedly, the formulas obtained were reduced to the above expression 

for the uniform unlimited flow around bodies. More than  that, this 

simple calculation permitted the prediction of another characteristic 

peculiarity of a Jet flow around a badly streamlined body, namely the 

possible appearance of an "open" flow pattern for an infinitely long 

backflow zone. This effect is actually observed with sharp-edged bodies 

placed in a Jet flow. In the case of bodies with smooth surfaces, in 

contrast to this, the possibility of a smooth and virtually potential 

flowing around them, of a turbulent Jet, results from the calculation 

and was verified by experiment (see below). 

The dependence of the length of the backflow zone on the distance 

between a badly streamlined body and the Jet nozzle is shown In Fig. 

16.6 for a plate and a cylinder. 

The peculiarities of a Jet flow around bodies are so unusual and 

significant in practice that they deserve a more detailed discussion 

)    on the basis of experimental results. 
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Flg. 16.5* Schematic representation of the formula 
of a circulation zone behind the body, a) Notion In 
"turbulent flow;" b) motion behind a body, simulated 
by point discharge of momentum. 
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Fig.  16.6. Length of the backflow zone as a function of the distance 
between nozzle and body [112,  113]* 
1) calculation,  ,     *  -__ „„,..*..     3) calculation,  , b)  for a circular 
2) experiment,    > a; ror a Plate»     U) experiment,     >        cylinder. 
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16.4.  JET PLOW AROUND A BODY 

Let us report briefly on the most  Important results of a compre- 

hensive experimental Investigation carried out by S.I.  Isatayev [112], 

which deals with the study of uniform flows and turbulent Jets stream- 

ing around badly streamlined bodies. 

tf   W       U       Jfl *p 

Pig. 16.7. Uniform flow streaming around a circular 
cylinder (data from [ll1!]). 
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Flg. 16.8. Velocity distribution on the wake axis In uniform flow (1) 
or Jets (2 and 3) streaming around a plate of dimension D, at a large 
distance, equal to ht  from the orifice [112, 113]. 1) 0 - 50 mm; 
2) Dm lb mm,   b/D  - 32; 3) 0 - IS  mm, b/D  - 24. 
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Flg. 16.9. Velocity and pressure distributions In 
the wake behind a cylinder placed In a Jet flow 
(D  - 40 mm,   w« - 57 m/eeo  [112]), 
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Fig. 16.10. Pressure distribution on the surface 
of a cylinder placed In a Jet flow [112]; D ■ 73 mm. 
u m  23-67 m/eeo. 
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As shown in papers [59, 112, 111], in a Jet flow around bodies 

with sharp edges, two characteristic types of flows may take place, 

closed and open ones, which may pass over to one another when the 

position of the body in the flow Is changed. When the body approaches 

from a very great distance (flow around as in the case of a uniform 

flow) the Jet nozzle (to a distance of '♦-5 nozzle diameters for a plate 

and 3-4 for a disc) the dimensions of the backflow zone will increase 

smoothly at first and then impetuously until the flow has become 

closed. This is then maintained independently of a further approach. 

When the body is displaced in the opposite direction, i.e.. when 

it is removed from the nozzle orifice, the reformation of the open 

flow pattern to the closed one occurs with a considerable retardation, 

i.e., at a greater distance (of the order of 7-8 nozzle diameters for 

the plate and 5-6 for the disc) from the nozzle than when the closed 

flow pattern changes over to the open one. Thus, the change of the flow 

patterns occurs with a peculiar "hysteresis" (it is essential to know 

the history of the flow in order to ascertain the flow conditions). 

This is a curious effect which, as shown by experiment, is self-similar, 

that is, it is independent of the initial velocity of the Jet. The flow 

in the region of the hysteresis is unstable and the type of flow around 

the body may be changed by the influence of relatively small perturba- 

tions. 

In Figs. 16.7-16.11, in order to illustrate the conditions, we 

give some data characterizing the Jet flow around badly streamlined 

bodies (Pigs. 16.9-16.11) and, for comparison (Pigs. 16.7-16.8), the 

uniform transverse flow around a circular cylinder. The experimental 

data corresponding to the curves in the figures are given in the text 

to the latter. 

It must be remarked that, as to their physical nature, these ef- 
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Pig. 16.11. Drag coefficients of a sphere 
as a function of the Reynolds number. 1) 
Uniform flow around it [152]; 2) jet flow 
around it [113]. 
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Pig.  16.12. Schematic diagram of "adhe- 
sion" of Jet to solid wall. 
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fects, especially the potential flow around a badly streamlined body 

(cylinder, sphere) produced by a turbulent Jet, resembles effects 

mentioned in literature. These are the "adhesion" effect of the Jet to 

the front sheet of a nozzle which D.N. Lyakhovskly denoted incorrect- 

ly- "kinematic ultradiffuser" [1393 and other effects reported in 

American literature [232] as the Koand [sic] effect (named after the 

inventor). By way of example, we show the adhesion of a Jet to a solid 

surface shown schematically in Pig. 16.12. In these cases and other 

analogous cases, the explanation of the effect observed is connected 

with the dynamic flow pattern, i.e., the pressure distribution. In the 

absence of symmetry, the Inleakage of fluid from the "tapered" region 

is accompanied by a stronger rarefaction tnan from tne unlimited space. 

The pressure drop thus arising may, although it is small in absolute 

magnitude, cause a curvature of the Jet ana its adhesion to the surface. 

The same occurs, for example, j.n the case of the adherence of two 

parallel piane Jets issuing at a certain distance from one anotner 

(this flow was mentioned previously). The possibilities of partially 

calculating such a flow according to the method of the equivalent pro- 

blem were indicated above. They also refer to other analogous cases. 

We see from the examples given that the nature of the effect, strictly 

speaking, is without the framework of the boundary layer theory as it 

is connected with a violation of pressure constancy across the layer. 

But this does not hinder an approximate calculation of the effect (see, 

e.g., [232]). 

Another interesting fact is that in all cases of adhesion of a 

turbulent Jet to the surface of a body the further flow is determined 

by the laws of the semilimlted turbulent Jet. In particular, the veloc- 

""\     ity distributions in the cross sections of such Jets agree virtually 

with the universal distribution given above (see Pig. 12.6). 
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The Jet  flow around bodies, the Interaction between Jets and 

many related problems are of great significance in practice, for the 

active control by processes occurring in the boundary layer  (improved 

flow around a body, prevention of break-off, etc.  see  [232]), and al- 

so for the development of effective procedures of furnace devices, 

burners and stabilizers, ventilation devices, etc., and finally of 

highly-economical heat exchangers, drying and other apparatus which 

use, for example, the potential Jet flow around badly streamlined 

bodies of the type of a cylinder with sharp reduction of drag (see Pig. 

16.11). 
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Chapter 17 

THE AERODYNAMICS OP A GAS TORCH 

17.1.   THE DIFFUSION TORCH 

One of the main applications of the theory of compressible  gas 

Jets is  the problem of the applied theory of combustion,   first   of all 

the aerodynamics  of a burning gas Jet. 

As always in the problems of the gasdynamics of combustion [67, 

70,  114], we must  distinguish between two  statements  of problem:  the 

gasdynamic formulation, where the chemical reactions are assumed to 

take place at an infinitely high rate, and the  stability problem, the 

theory of the thermal conditions of combustion, taking the kinetics  in- 

to account. 

Applied to the gas torch the first way of considering the problem 

is  connected with the assumption that the process of combustion Is lo- 

calized to very narrow,  in the limiting case infinitesimally thin 

zones,  the so-called flame  front.  Outside  these zones, in the entire 

surrounding space, the processes of momentum, heat and mass transfer 

are the only ones that  take place. 

We shall here restrict ourselves to this statement of problem of 

gas combustion,  still reducing it further by additional assumptions. 

In the  following we shall only consider the straight Jet  flame  of gas- 

es not mixed beforehand, which is produced when one of the components 

of the  combustible mixture   (usually the fuel gas) issues  in an unlimi- 

ted space filled with the other component   (usually the oxidizing agent, 
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e.g., air). 

As regards the second limiting case of the gas torch, the com- 

bustion of a premixed uniform gas mixture, we shall not consider it 

here. In this connection, we restrict ourselves to the following re- 

marks. 

Firstly, it must be noted that the intense torchlike combustion 

of a homogeneous gas mixture. Just as in the case of the burning of 

separate components, takes place in the flame front. In this way, as 

shown by Q.N. Abramovich [4, 11], also this field is well accessible 

to the applied theory and methods of Jet calculation. 

Secondly, and this prompted us to renounce in this book a consid- 

eration of the aerodynamics of the homogeneous torch, in order to ob- 

tain a closed system of transfer equations in a homogeneous torch we 

must have an additional kinetic condition determining the position of 

the flame front. 

The unsatisfactory state of the modern theory of propagation of 

turbulent combustion does not enable us to give this condition in a 

sufficiently effective form. Any detailed discussion of this problem 

is not within the framework of the present book. 

In contrast to this, in the case of the so-called diffusion torch 

of nonmixed gases, as shown in a series of papers [58,62,67,70,95,97, 

99,100,103], we have a closed system of transfer equations which, to- 

gether with the boundary conditions, permit the determination of not 

only the distributions of velocity, temperature and of the concentra- 

tions of primary agents and combustion products, but also the position 

of the flame front without any additional hypotheses. 

In the theory of diffusion combustion of gas one of the first 

papers published in this plan was the paper by S. Brooke and T. Schuman 

[231*]. These authors considered the combustion of gas under the condl- 
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tlons of parallel motion at the same velocities of uniform (plane or 

axisymmetric) streams of nonmixed components of the combustible mix- 

ture: fuel plus oxidizer. The one stream is considered to be surround- 

ed by the other. The surface of combustion (the flame front) appear- 

ing in the zone of gas mixing, assumes a closed form (with respect to 

the axis) when the component moving in the center of the burner is 

supplied in an insufficient (compared to the stoichiometric) quantity 

and it is open in the opposite case. For the regions lying on both 

sides of the flame front the equations of molecular diffusion were in- 

tegrated in this paper for the mixture of the respective component and 

the combustion products. The results obtained were "Joined" at the 

flame front which was determined from the condition of zero concentra- 

tion of reagents at the front and stoichiometrical ratio of the diffu- 

sion fluxes of the components streaming to the front. The velocity of 

motion of the gases, as already mentioned, was taken to be the same, 

the flow was considered free from turbulence. The authors therefore 

had to solve the simple equations of unsteady diffusion in the coordi- 

nates ' =* f-t y  where v0  is the velocity (without sources as the com- 

bustion was assumed localized in the front). The influence of the aero- 

dynamics of the flow and the temperature distribution (the diffusion 

constant and other quantities were assumed constant) were completely 

ignored in this case. The solution obtained and its experimental verifi- 

cation were at this time significant in principle for the development 

of the ideas on the diffusion combustion. 

A more advanced statement of the problem of diffusion combustion 

of gases must comprise an integration of the whole system of equations, 

the equations of motion and continuity, energy and diffusion, with the 

corresponding boundary conditions. The main part is here played by the 

mixing process of gases which, naturally, is determined by the aerodyna- 

- 415 - 



mlcs of the  flow.  The developed procedure must apply to both laminar 

and turbulent gas  combustion under the assumption of an infinitely 

high rate of the  combustion reactions.  Attempts of calculations of 

this kind were made repeatedly,    by various authors  [11,97J103,208, 

228,290]. They all based their considerations in some way on the idea 

that the mixing plays a decisive part.   "Burning — a consequence of mix- 

ing," this thesis  contains in essential the whole real state of the 

theory of diffusion combustion. 

But the development of a full value procedure of calculation was 

impeded by the  lack of sufficient  information on the processes of gas 

mixing.  An essential progress may be achieved by the application of 

the methods of calculation developed in the theory of Jets. 

According to the order of treatment  chosen in this book, we shall 

first consider the laminar diffusion combustion by way of the example 

of the combustion in the mixing zone of two parallel gas wakes, fuel 

and oxldizer, moving at different velocities  (nonperturbed flow).  As 

the second example of application of the methods of jet theory to pro- 

blems of the aerodynamic theory of the torch we consider the combus- 

tion of a gas  in the flame front  of an axisymmetric turbulent diffu- 

sion torch.   In order to solve this problem, we again use the method of 

the equivalent problem of the theory of thermal conductivity. 

For the sake of simplicity and convenience, the description of 

effects will be  somewhat simplified in both examples.   In particular, 

though this is not a principle of the torch model investigated, we 

shall not take  into account the effects of thermo- and barodiffusion, 

the variation of physical constants  including specific heat in the re- 

action process,  etc.  This approximative statement of problem is ap- 

proached more closely by the combustion of components diluted by an 

inert gas  (combustion in air).  It may also be used as a qualitative 
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picture of the reaction taking place in a highly exothermal binary 

gas mixture (e.g., oxygen and hydrogen). 

17.2. LAMINAR DIFFUSION COMBUSTION 

Let us consider the following problem (see diagram of Fig. 17.1). 

Imagine that along a plate, on either side of It the gas flows. I.e., 

the components of the combustible mixture, move along (without fric- 

tion) with different values of the velocities. Beginning at point 0, 

where the plate has its end, the region of gas mixing is formed which 

contains the region of steady burning. In the calculation, the gases 

will be considered to be compressible with equal and constant physical 

properties, except for the viscosity. The viccosity is assumed to be a 

linear function of the temperature. We shall s.lzo  neglect the pressure 

change in the flame front owing to heat release and change of the num- 

ber of moles in reaction. All these simplifications, as also the neg- 

lection of thermal diffusion, etc., mentioned before, do not cause in 

principle distortions in the qualitative pattern of the effect. When 

they are taken into account for a binary mixture, the expressiona ob- 

tained are more cumbersome. As regards the chemical reaction rate, it 

is taken to be so high that, in a schematic representation of the ef- 

fect, the combustion zone may be represented in form of a mathematical 

surface, namely the flame front. The supposition is fundamental in the 

diffusion theory of gas combustion. Experiments show that it is fully 

sufficient for an Intense, evolved combustion of gases. On the other 

hand, in such cases where this assumption is no longer Justified, in 

general doubt may be cast on the stability of intense combustion. 

In order to solve the problem (carried out by Sh.A. Yershin and 

L.P. Yarin) we use the method described in detail in Chapter 8 where 

it was applied to laminar gas Jets. In particular, for both problems 

(inert mixing and combustion) the solution of the dynamic problem on 
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Pig. 17.1. Schematic representation of diffusion 
gas torch in the mixing zone of two parallel flows. 
I — Fuel and combustion products; II — oxidizer and 
combustion products;  f — f  flame front. 

the mixing of parallel gas flows maintains its form. We shall there- 

fore consider the way of solution only briefly, for details which are 

not specific of combustion we refer the reader to Section 8.6. 

The initial equations transformed to the plane of A.A. Dorodnitsyn's 

variables are written in nondimensional form (using the denotations giv- 

en below and omitting for simplicity the bar on the nondimensional quan- 

tities: *, ij, fl etc., see below). 

To these equations belong (see Eq. 8.70) for M z Q). 

du    . ~ *u   fl*«  9»    , jff 

the equations of motion and continuity, 

„ « . ~ «  i « 

the energy equation, and 

rC 

. Pr «■• «n* M-1.2. 

the diffusion equations (for each component). 

(17.1) 

(17.2) 

(17.3) 
4t 
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The denotations are defined as follows (we give the new and the 

old ones as well, the latter being repeated for convenience): 

ui+u,'   *       p, •       d* "J + Ui     V        2  ' 

jn = J5.- R-« JSL- F-* a=l.fla=^V
rK"l/^i^tr»-^i.' 

TM 

•»—^5 «1-^—lf(/-«.2). '-^J^-T 

S = x; TJ = J My (6, T) 

Pra«» =" "B- 

are Dorodnitsyn's variables,  Z is a characteristic 

length (eliminated in what follows).  Subscripts:   «$»   refers to the 

flame front,  1 and 2  (or j, where j ■ 1,2) denote the given values of 

the variables   (apart from the concentration of the components)  in the 

incoming flows and at infinity for the first  (fuel)  and second  (oxi- 

dizer) regions,  respectively.  For the concentrations  c .,   j » 1,2 are 
3 

variable values, o, and o„ are given values for the same regions. 

The boundary conditions fcr the velocity of flow will be the same 

as in the case of no combustion and mixing of inert gases. For the en- 

thalpy and the concentrations of the components, besides the conditions 

at infinity we also give conditions for the flame front, which are funda- 

mental for the problem considered and analogous problems. For the enthal- 

py this condition will be its constancy in the front where its value is 

maximum for combustion (in the general case, radiation and other losses 

are taken into account which are here 'Onored). For the reagent's con- 

centrations the condition in the front surface (with 6 = S*. 1 = 11«) is that 

they are equal to zero, firstly, and that in the diffusion flows reach- 

ing the front the ratio is stoichiometric, secondly. The use of these 

conditions together with the others enables us to solve the problem 

finally and not only to calculate the velocity, enthalpy and gas con- 

centration distributions (of the components and the combustion products) 

in the whole field of flow, but also to determine the position of the 
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flame front. 

The boundary conditions for nondlmenslonal variables   (as In the 

equations we omitted the bars)  can be written In the form J 

O-J-^J, 1 = 0, «i»! «ith IJ-OO. 
l>0, 

(17.^) a - J-^JJ- ; / - 0, e, - 1 with TJ - — oo, 

/#-i, e^-0, -A^I^-^SL0 •"- S = S«: n-ti*] 

where ft is the stoichiometric reaction coefficient. 

Note that among the given parameters of the problem whose varia- 

tion and its influence on the mathematical results is of greatest in- 

terest, there are two: the ratio of the flow velocities m = — and the 

ratio of the gas densities, initial and behind the front: 
D      T ü). = J. = ^,     which characterize the thermal effect of the reaction 

(approximately mj - I» ..-     '  cp -»i i    9      where Q is the thermal effect 

per unit of the mixture).  The influence of these parameters will be 

shown by means of the calculation examples given below.  It is essential 

that, qualitatively, it is  the same also in the case of a turbulent 

diffusion torch. Let us now turn to the solution of the problem. 

Since the latter is self-similar in the plane of A.A.  Dorodnitsyn's 

variables, we introduce a generalized variable,   ^D=
~YI   and seek the 

solution in the form 

■ -^(«PD). «- %{fD\ c} - «|(f j), / -1, 2, (17.5) 

where the functions /•f Qi  and n., in the same approximation as in Chap- 

ter 8, are determined by the usual differential equations of the form 

r(f-)+.f./<fa)r(fÄ)-o.       (17.6) 

«•(*1,) + -Hp/? (**)«'ft*)-0, 

with the boundary conditions ^^j«-2= f^i»^ 
•' 
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^-■^qrr.  F" = 0«   e> = 0'  «i-lwlthf»-"00. 

^-■STT.  8.-0.   «.-1 
e#-i, «» = 0,    /=-!, 2, 

1/1^9^ = —oo;  (       (17.7) 

with»* " Vi^- 

As also In Chapter 8  (and yet earlier. In Section  (5.3)  the solution 

of the equations Is represented by expressions.  Let  us write these 

solutions  In terms of dimensional variables: 

It— Mt ^-(1+erf (9^1, Ml —«i 

i-i,        l-erf(<p0 ypT) i~-it        l+erf(yp yfT) 
«#-«i       l-erMip^ypT) '      «♦-»•      I+WM^D* VfT) 

»~        1 - erf (9^ Vfr„^ ««. =    ^ 1+ erf (9^ / Pr,,^ 

(17.8) 

(17.9) 

(17.10) 

The equations (17.8)-(17.10) Include the value of the coordinate (po« 

the flame front, which has not been determined hitherto.(When formulat- 

ing these solutions and determining the constants of Integration we did 

not make use of the condition defining the ratio of the components' 

flows at the front.) 

Equation (17.8) describes the velocity variation In the whole field 

of flow. Equations (17.9) and (17.10) give the variation of enthalpy 

and concentration, respectively and refer to both the region of fuel 

(equations on lefthand side) and that of the oxldlzer (rlghthand side 

equations). The Influence of the various parameters on the real distri- 

butions of flow velocity, temperature (enthalpy) and concentrations 

will be explained In detail after returning to the plane of the physi- 

cal coordinates. 

For the return from the plane of A.A. Dorodnltsyn's variables to 

the plane of flow we apply, as usually, the expressions for the rela- 

tions between the variables 
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• r       0 

Since the expressions for the density distributions In the Jet cross 

section are different for the two zones, the final formulas of calcula- 

tion linking the values of the nondlmenslonal coordinates 9 - -jk and 

BBS. JL. will be written separately for the two regions: v   rf 

+ 7=r(«P(-'Pi,Pr)-l)]}        (17.12) 
Wlthq)fl#<q)D<oot 

+ 1<PD erf (f p KF) - 9^ erf (9D«/Pr) + 

+ -^(exp(-^Pr)-exp(-9j)#Pr))l}     (17.13) 
With—oo<q)I)<q)1^ 

(here, as usually for the combustion In air or other typical combusti- 

ble mixture, we assumed 9»<0)^The coordinate of the flame front <p# Is 

determined analogously as the quantity cp^ from the equation 

1 -n       (17.14) 

The value of (p.* depends In Its turn on the values of the parameters 

chosen In the calculation through the  front  conditions ""^•"^"L^flßi^-I , 

which, taking the above solutions Into account, assumes the form 

erf^KP^-Trl. 
where pL-Q-g-jj-. 

In this way, the solution of the problem has been finished. 

In Fig. 17.2 we show examples of distributions of surplus tem- 

perature and velocity for three values of the compressibility para- 

meter id for one and the same value of m « 0 (one of the gases, the 
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Flg. 17.2. Velocity and temperature dis- 
tributions in laminar diffusion combus- 
tion Of gas . 0 - 4; Pr » frnil^ - t;  m - 0;  T, ^ T«; 

a. _ _ • - i, 
« — 10. 

) 

oxidizer, is at rest). In Pig. 17.3 the same data are used and the 

dynamic pressure distribution is shown for three values of the para- 

meter m and the single value w ■ 8. The other data referring to these 

examples of calculation, are given in the texts to the figures. 

As we see from Pig.' 17.2, the increase in specific heat release 

in the front (i.e., the temperature ratio and the corresponding densl- 

ty ratio 0^ = ^=^-) results in a shift of the flame front toward the 

resting gas; in this case the velocity distribution becomes less steep. 

We see from Pig. 17.3 that the displacement of the flame front 

position in the opposite direction occurs when the velocity values ap- 

proach one another (when the value of m increases). 

As already mentioned, these qualitative results which indicate 

the influence of the fundamental parameters on the position of the 

combustion front and on the form of the distributions of the character- 
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Istlc quantities also hold true for turbulent combustion. As a cur- 

ious detail of the effect (which also refers to turbulent diffusion 

combustion) we mention the shape of the pu2 distribution curves In 

the cross sections of the burning Jet. As we see from Pig. 17.3> for 

values of m which differ essentially from zero, a peculiar "well" ap- 

pears In the pu2 distribution, which is caused by the fact that a 

sudden density drop takes place at the front, which is due to the heat 

release, the elevated temperature and the like. The front surface plays 

the part of something like a density "sink". For m - 0  this well is 

practically insignificant since the front lies in a zone of very low 

values of velocity (and pu2). 

17.3 THE TURBULENT TORCH. CALCULATION ACCORDING TO THE METHOD OF THE 
EQUIVALENT PROBLEM 

In spite of the clear statement of problem and the way of its 

solution which, in principle, is also clear, the development of the 

aerodynamic calculation of the turbulent diffusion gas torch is connec- 

ted with a series of difficulties. In essential they were decisive for 

the imperfection of the methods of calculating turbulent gas Jets. The 

calculations carried out by various authors were therefore extremely 

limited in the final results. Even when we do not mention the unidinen- 

sional calculation of Jet and torch in paper [201], in investigations 

which are more accomplished from the aerodynamic point of view, the 

calculation also was reduced to a determination of the torch length 

and its position in the initial section of the Jet. As shown in detail 

by Sh.A. Yershin [9I*,95] the "Joining" of solutions which were obtained 

separately for the Initial and the fundamental sections of the torch, 

did not yield satisfactory results. If, however, in torch calculations 

a more detailed Jet model is used, with a division into three sections 

(initial, transient and fundamental), the calculation is so cumbersome 

A* 

., 

« fc 
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Pig. 17.3. Distributions of velocity, dynamic 
pressure and temperature In laminar diffusion 
combustion of gas.  »- 4; * - pr^-i; « - r. 
T, - T,i   —— m - 0; m— 0,4;      m — 0,1. 

Pig. 17.1*. Diagram of diffusion gas torch. I 
Puel plus combustion products; II - oxldlzer 
plus combustion products; f-f flame front. 

- l»25 - 



^ # 

that It Is not effective either. 

Under these conditions It Is most expedient (and this was proven 

by the first attempts made In the papers [91t,228, etc.]) to use the 

method of the equivalent problem of the theory of thermal conductivity 

which enables us to calculate the continuous deformation of all dis- 

tributions. 

The most difficult and aprlorl unclear problem was here reduced 

to proving the applicability In the entire real space occupied by the 

torch and separated by the flame front Into two zones (see diagram of 

Fig. 17.'O of one and the same form of transition to the linearized 

space, which was already used successfully when calculating the gas 

Jets, namely the simplest form of transformation  l—K«M*l''  The 

generality of the turbulent transfer processes In gas Jets without com- 

bustion and In the presence of combustion localized In he flame front, 

spoke In favor of this assumption. The decision, however, was reserved 
» 

for experiment. As shown below, a comparison between the theoretical 

and experimental results proves satisfactory agreement. In this con- 

nection, we give a brief sketch of the course of the calculation. 

Let us first formulate the physical statement of problem. The 

space occupied by the turbulent torch Is divided Into two zones accord- 

ing to the diagram of Pig. 17.'t. In one of them (Inner zone) fuel and 

combustion products are concentrated, the other (outer zone) contains 

air plus combustion products. 

These zones are separated by the surface of the turbulent flame 

front averaged with respect to time. This surface Is characterized by 

a maximum value of temperature, which Is close to the theoretical val- 

ue for complete combustion (losses taken Into account). The calcula- 

tlon was based on the assumption that In this surface, and only In It,     km 

a practically Instantaneous combustion takes place of the combustible 
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components. The fuel and oxldlzer concentrations In the flame front 

are therefore considered to be equal to zero. The fluxes of fuel and 

oxldlzer supplied by turbulent diffusion to the flame front where they 

burn are therefore In stolchiometrlcal equilibrium. In addition to the 

diffusion of substance to the flame front and away from it, turbulent 

heat transfer takes place in the torch on either side of the front, 

and also a fundamental process of dissipation of initial momentum flux 

which determines the entire course of the phenomenon. 

Let us give a brief schematic representation of the torch calcula- 

tion and, in the next section of the book, a comparison of theoretical 

and experimental results, following essentially the papers by Sh.A. 

Yershln and L.P. Yarin [98,99,100]. 

In order to calculate the momentum flux density distribution and 

the distributions of heat content and substance, we must integrate 

differential equations of the type of the heat conduct ion equation (for 

the axisymmetrlc problem) 

The subscript i suffixed to the function z  and the coordinate 5 

in Eq. (17.15) refer respectively to the quantities pu2 if i - 2, to 

fmcpAr=« pucp(r—r*) with -* » 2  and finally, to puAc = pu(c — c») with i « 3. 

In the latter case (t ■ 3) we are concerned with the fuel concentration 

in the inner zone of the torch and that of the oxldlzer on the outer 

zone. In both cases Ae = c —c# = c, since ^ = 0 for both the fuel and the 

oxldlzer in the flame front surface. 

Though, generally speaking, the coordinates C. are different for 

different "substances" we assume that approximately £i ^ 0,75$, s 0,75|,, 

i.e., the effective values of the turbulent Prandtl numbers are assumed 

to one another (the thermal and the diffusion Prandtl numbers) and equal 
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to about 0.75. In this case the only task of the experiment Is the 

determination of the function t = W*) which Is obtained from a com- 

parison cf the calculated and experimental curves of variation of the 

quantity (pua) on the Jet axis. 
HI 

The equations given above must be solved, as In the case of lami- 

nar combustion, separately for the outer and Inner zone of the torch, 

such that the corresponding boundary conditions are satisfied on the 

Jet axis, at Infinity and In the Interface, I.e., the flame front. The 

latter does not refer only to the equation for pu2 since the distribu- 

tion of this quantity does not possess a small discontinuity at the 

front (as the temperature does). 

In this way the dynamic problem Is separated from the other pro- 

blems and Its solution Is derived from the calculation of the submerged 

gas Jet of finite dimensions (In the absence of combustion). 

For the sake of completeness we give the boundary conditions. 

I. In the Inner zone of the torch (fuel plus combustion products) 

with 1-0, 0<y<r# 1,-1« 

(In this zone s, ■ puo, o  being the fuel concentration). 

II. In the outer zone (oxldlzer plus combustion products) 

wlthS = 0, r0<y<oomd''««h 0<g<oo, y-^oo 

(here »- ■ puo,  o  being the oxldlzer concentration). In addition to this. 

In the flame front 

wlth6 = S«, y = y» if-«, = 0: 

where -g^   denotes derivatives with respect to the normal to the flame 

front, the subscripts I and II refer to the Inner (fuel) and the outer 

(oxldlzer) zones, respectively. Moreover, from the condition of symmetry 

of the flow on the axis we have with y = 0 «i = 0. 
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We seek the solution of the system of equations (17.15) in the form 

of 

«( = a1+6i(I>(6t, y), (17.16) 

where the function 

r,T 
»«..») = üH S .«(-f+'-d'**)'**.        (17.17) 

" t 

At the outermost point of the torch we have 

<D = «D (6* m,x, 0) = 1 - exp (-^-^l-), 
•*♦ mix 

since the flame front is an isothermal surface. 

Integral (17.17) is solved numerically. For an axisymmetric torch 

with uniform initial distributions it is convenient to use th^ so- 

called P-functions tabulated in a paper by J. Masters [264]. 

The solution of the system of equations (17.15), under these con- 

ditions, will read for the simplest case of constant and equal specific 

heats of the gases 

(^- = <l>(6..y). (17.18) 

— for zone I (17.19) 
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r~r 
.— /v^'Jrt' 

— for zone II (17.20) Vr5-(«-^.(Urt+ 

With given flame  front  coordinates  U, y*   the solution obtained 

permits the  construction of the velocity, temperature and concentra- 

tion distributions In the torch  cross  sections. 

When we differentiate the expression for the concentrations ob- 

tained and transform the result, we obtain an equation determining 

the coordinate l%mu I.e.,  the length of the torch In the  linearized 

space 

i 

/—(-id;) 

•zp hjsrH 
(17.21) 

The results of the calculation prove that the reduced torch length 

VR within a wide range of variation of the parameter ß Is a vir- 

tually linear function of this quantity. This means that for a given 

fuel that true torch length /* ~ Vfl^i ~ ro   Is proportional to the nozzle 

diameter, where the proportionality factor Is determined as a whole by 

the stolchlometrlc conditions (by the same parameter). 

This result Is In agreement with the experiments of various authors 

conducted In order to determine the length of the evolved turbulent 

diffusion torch. 

* r 

j 

;: 
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Pig. 17.5. Distribution curves of dynamic pressure 
(000) and temperature (AAA) in torch cross sections 
(solid line: flame front surface) [100] 
IT, - ISOO'K. c, - 0,085 «l/M, u. - «1 Mjam). 
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The calculation of a torch In the £, y  space can thus be finished. 

17.i*. THE TURBULENT TORCH. COMPARISON WITH EXPERIMENT 

By way of example we show In Fig. 17.5 the experimental pu2 and 

temperature distributions measured In several cross sections along a 

turbulent gas torch. 

The middle parts of the graphs shown In Fig». 17.6-17.9 show the 

experimental and calculated (solid lines) distributions of pu2 and 

temperature In torch cross sections. As we see from these figures, the 

agreement between calculation and experiment, with the function t(x) 

(see Fig. 17.7) chosen from experiment. Is quite satisfactory. 

^ ^ 

Fig. 17.6. Variation of dynamic pressure along the 
axis of a turbulent diffusion torch (u0 - 40-70 m/sec, 

T0 - 1100-130O
oK, concentration of propane-butane gas 

cn - 0.055-0.120 kgfAßf [100]). 

I 
u 

I« 

I 
**, 

Fig. 17.7. Effective coordinate C as a function of 
the length of the gas torch [100]. 

$ 
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Pig. 17.8. Variation of pu2 In the cross sections of a turbulent 
diffusion torch (with different values of x/dg).    calculation 

O«A*D experiment [100]. 
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Pig.  17.9.  Temperature distributions in the cross sections of a tur- 
bulent torch (with different values of x/d0).    calculation; 
o -experiment  [100]. 
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In particular, as seen from Fig. 17.7, the transition from the 

linearized space to the real space, according to L.P. Yarin's data 

[100], is governed by the same relation between the variables as in 

the case of gas Jets without combustion. For an approximate calcula- 

tion it proved possible to neglect insignificant deviations from 

linearity in the very beginning of the torch and we can put K|i»ßi*. 

whereßi =J),039-i-0,043,or, approximately, ßi3=:0,04. With this value in one of 

the experiments a torch length of L/d0szi2.  was obtained. 

In Fig. 17.10 this experiment corresponds to the middle curve of 

the torch contour. For It and two other experiments in the same figure 

we compared with one another the calculated lines of the flame front 

and the experimental points corresponding to the maximum temperature 

values in the torch cross sections. 

A great number of analogous graphs of distrib tions of p«2, tem- 

perature, concentration and torch contour are given in the paper by 

L.P. Yarln [100] mentioned above. 

The effectiveness of application of the method of the equivalent 

problem to the calculation of the diffusion torch is not unexpected 

according to what has been said above. But irrespectively of this, the 

possibility of precalculating satisfactorily the complete aerodynamic 

structure of a torch with so little empirical Information is, in our 

opinion, very essential for the development of a theory and of mathe- 

matical methods of the aerodynamics of the torch. 

From the physical point of view, this result proves the corrobora- 

tlon of the fundamental premises of the gasdynamic theory of the torch. 

For an evolved tense turbulent torch it can be verified in this 

way that it is possible in the calculation to neglect the finite dura- 

tion of the chemical reaction and also the influence of the coefficients 

of molecular transfer of the various gases*. Experiment and calculation 
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Pig. 17.10. Contours of flame front surfaces in a 
gas torch for various Initial concentrations of the 
fuel [100] (propanebutane gas): 

We«,  T.-lioO'K. c.-0,011 
- 12Ö0'1,      c, -  oTl»     n%r. 

  calculation according to the method of the 
equivalent problem (      «/*".      = m/sec;  mtm =   kg/kg) 

also show that the mechanisms of turbulent transfer In gas  Jets with- 

out combustion and in the burning torch are the same. 

Note that with the problem considered, which deals with the dif- 

fusion submerged torch, the flame  front is very close to the effective 

boundary of the Jet determined according to the dynamic pressure dis- 

tribution (Fig.  17.8).  As a consequence of this calculation one could 

have Introduced a curve of variation of pu2 in the cross sections 
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which drops monotonlcally from the axis of the torch to its peri- 

phery. If the flame front were in the central part of the Jet, for 

example In the zone of ,-^-^0.5. this character of the curve would be 

disturbed and one could observe a pu2 minimum near the front. This 

might be a consequence of a separation of density and velocity in the 

composite term pu2, as the flame front plays the part of a peculiar 

"well" of the density alone. 

This case IB encountered when considering a diffusion gas torch 

expanding in a parallel flow [99]. An evaluation of the experiments 

shows that when in the calculation a monotonlcally decreasing quantity, 

the surplus momentum, has been introduced In the form of pu(u — u«,). and 

one formulates for it a heatconduction-type equation, etc.. I.e., when 

for it the whole system of calculation according to the method of the 

equivalent problem is maintained, this yields good agreement between 

the theoretical and experimental results [15^]. 

In this way, and this is very important, the mathematical proce- 

dure also applies to more complex problems (torch in parallel flow, etc.) 

Finally, we must indicate that, starting from the aerodynamic mod- 

el of the torch and completing it by the assumption of a finite rate 

of chemical reactions, it is possible, within the framework of a quasi- 

heterogeneous approximation, to treat the problems of flame front sta- 

bility [67,220] and of the inherent completeness of combustion under 

given conditions. At the same time, taking the finite reaction rate 

into account (here not considered) one succeeds in obtaining all char- 

acteristics which are of interest in practice. 

The results obtained in this section, which determine, in parti- 

cular, the conditions of torch collapse, again prove the promising as- 

pects of the Jet model developed for the investigation of the process- 
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es of gas torch burning. 
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Chapter 18 

JETS IN MAGNETOHYDRODYNAMICS 

18.1. THE AXISYMMETRIC JET OF A CONDUCTIVE FLUID 

In the last time one of the new promising fields of the mechanics 

of fluids and gases arouse great Interest, namely the magnetohydro- 

and gasdynamics. It is therefore expedient to devote the last chapter 

of this book to a brief discussion of the theory of Jets of viscous 

electrically conductive fluids expanding in a magnetic field. This 

discussion, which does not pretend to be comprehensive, restricts it- 

self to describing the various types of MHD Jet problems a? plying to 

the model of a quasi-neutral, continuous and Isotropie medium moving 

with subrelativistic velocity. 

Initially, following in essential paper [235], we consider the 

example of a magnetohydrodynamic generalization of the solutions of 

the Navier-Stokes equations completed by the corresponding equations 

of electrodynamics. We do this for the L.D. Landau problem on the ex- 

pansion of a laminar axisymmetric Jet of viscous conductive fluid in 

the presence of a magnetic field. Furthermore, we compare the solutions 

of several Jet problems within the framework of the theory of the mag- 

netic boundary layer (of first and second kind, according to the term- 

inology by V.N. Zhigulev [101]) for high values of the magnetic Reynolds 

number Rem. Finally we consider the problem on the expansion of Jets 

of conductive fluids with low values of Re . Note that the problems 

chosen are not connected with any concrete applications of magneto- 
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hydrodynamics, but are of great theoretical Interest In connection 

with an Illustrative representation of the specific properties of Jet 

motions of viscous conductive media. 

Let us turn to the generalization of L.D. Landau's problem which 

was considered In detail In the first part of this book. Imagine a 

thin tube (see Pig. 18.1) being one of the poles of a magnet. The sec- 

ond pole. In the form of a tube of very large radius (theoretically 

—•-KJO) which Is arranged coaxlally with the first tube. Is allowed 

to extend forwardly, In the direction of the flow, to an Infinitely 

great distance from the source. The 

pattern of the magnetic lines of force 

corresponding to the aforesaid. Is also 

shown schematically In Pig. 18.1. 

We now superimpose on this pattern 
Fig. 18.1. Diagram of the 
lines of force of the magne-   the fluid flow produced by a source Jet 
tic field.   In the ab- 
sence of motion; with     of viscous fluid Issuing from the tube. 
Jet motion. 

As the magnetic parameter, we Introduce 
V 1 

the so-called magnetic Prandtl number Pfm = —• where v and  v«»""55   are 

the coefficients of kinematic viscosity  (the usual and the magnetic ones) 

M    and o are the magnetic permeability and the electric conductivity, n 
respectively,  of the fluid*.  Remember that the value of Pr    Is usually 

very small,  approximately of the order of 10    -10    .  The magnetic 

Prandtl number will therefore play the part of the small parameter In 

the problem considered. Owing to the  smallness of Pr    the value of the 

magnetic Reynolds number R*» « — will also be small, even for a "strong" 

Jet  (see preceding part) for which the ordinary Reynolds number Is 

great. 

Owing to this fact, and to the fact that the magnetic lines of 

force and the streamlines of the fluid Intersect essentially at small 
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angles (which are very small In the axial zone of flow. I.e., exact- 

ly where the velocity reaches Its maximum values), the interaction 

between flow and field is weak in the problem discussed. In other 

words, it must be expected from general considerations that in a 

first approximation the character of the Jet flow will differ only 

insignificantly from the analogous one, in the absence of a magnetic 

field. The fields with and without motion must also be very similar 

to one another. This qualitative result corresponds to the solution ob- 

tained in a paper by Cheng-Sheng Wu [235]. Let us discuss it briefly. 

Having the material contained in the first part of the book at 

our disposal, the solution given below may be considered as a certain 

generalization of the solutions to the Navier-Stokes equations consid- 

ered preciously for a Jet of incompressible nonconductive fluid. 

For the established motion of a viscous incompressible electrical- 

ly conducting fluid the fundamental equations of continuity, motion (in 

addition to the electromagnetic volume force), the equations of induc- 

tion and the condition that the magnetic field is free from sources, 

are written in a vector form: 

div «=» 0, 

rot|rott> XV — ^-rolHx H\ = vArot«, 
rot^Vmrotfl" —1> x -Hl-O, 

dlv H = 0. 

(18.1) 

Passing over to a spherical system of coordinates we assume, as 

in L.D.  Landau's problem,  for an axlsymmetric self-similar motion 

rB=.v^.    r.-v^ (18.2) 

for the velocity  component, and in the  corresponding problem consider- 

ed additionally 

::> ».-'/p^. *-Vp*-     (l8-3) 
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for the vector components of the magnetic field strength. 

Since the vectors v  and H  are solenoldal, the nondlmenslonal 

functions In Eqs. (18.2) and (18.3) satisfy the equations 

F(e) = -/(a)ctge-m 1 (l8 k) 
ff(e) = _h(e)ctge-Ä'(8).j 

Integrating the equation of motion, taking Eq. (18.^) Into ac- 

count, we obtain after several transformations the ordinary differen- 

tial equation 

<D' (8) + 3ctge.<D' (9)- 20' (8) - 0, (18.5) 

where 4(6)  is a new function: 

o(e) = ne)+^«(e)-|/«(9)--/(e)ctg9 + c» ac^h ■ 
Prom the induction equation we obtain analogously 

fc'(9) + (h(9).ctger=Prm(/(9)V(e)-/'(9)A(9)l. (18.6) 

In this way, the problem is reduced to the integration of two ordi- 

nary differential equations   (18.5) and (18.6) which, together with Eq. 

(18.4) with the correspondingly boundary conditions, determine the fields 

of v and H. 

As  in the case of a jet without magnetic field  (see first part)  a 

concrete motion can be separated when the values of the constants a,  b, 

a in Eq.   (18.5) are given.  Prom the three cases given in paper [235]: 

1) a * b * o - 0 generalized L.D. Landau problem [122], 

2) a " b ' -2o generalized H. Squire problem [303], 

3)a"0"ö,  b^O generalized problem on the fan type Jet, which 

correspond to the Jet from a thin tube, the Jet  from a hole in a wall 

and the  fan type Jet, respectively, we consider for brevity only the 

first one. 

The  solutions of Eqs.   (18.5) and (18.6) are  sought in the form of 

series with respect to the small parameter Pr  : 
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/(8) - /o (8) + Pr,^ (0) + Pry.ie) + .... J 
/t(e) = /lo(e)+PiBl/»1(8) + Pr«mA,(e) + ... J     (18.7) 

In these series the zero approximation coiresponds to the flow 

of a nonconductlve fluid. In this case, a magnetic field has no In- 

fluence on the motion and the motion does not affect the field. In 

this case we have 

) 

h—^/;-/octge = o. 

/«'o+(AoCtg9)' = 0. 
(18.8) 

The solution of the first equation from (18.8) corresponding to 

L.D. Landau's problem was considered previously In detail. From the 

second equation, we obtain an expression for the vector compoments of 

the magnetic field strength In the absence of a Jet (static field): 

The equations of the first approximation where the interaction 

between motion and field is taken into account have the form 

/'i-(/o + ctge)/1 + M1 = 0.1 (18.10) 
h\ + (Ä, ctg 8)' + hK- /o/«',= 0. J 

The solutions of this system of equations cannot be given in a 

simple closed form. We therefore give (in a series of graphs) the final 

results of calculations as obtained in paper [235] mentioned. 

In Fig. 18.2, the solid lines represent the lines of force of the 

magnetic field and the streamlines of the nonconductlve fluid (zero 

approximation) for one value of the parameter of the dynamic problem, 

L, for the "strong" Jet (L - 0.99).  The dashed lines in this figure 

represent the results of numerical Integration of the equations in a 

first approximation (18.10). In this and the following figures the val- 

ue of the magnetic Prandtl number is equal to Pr ■ 10"^, i.e., it is m 
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Pig. 18.2. Magnetic lines of 
force and streamlines In a 
"strong" Jet 
(t-O.N. Pf,,-!«-); M 

Pig.   18.3.  Streamlines In a Jet 
of conducting fluid 
Pr -lO-«; J — L - 0',»; «- L - O.JlC-J: 
  H - 0; H «tO. 

relatively high. The corresponding mathematical formulas are not given 

as they are too voluminous. 

In Plgure 18.3, we give for comparison the results of an analogous 

calculation of the streamlines for two values of the Jet parameter L. 

As we see from the figures, In all cases the perturbation of the 

motion by the magnetic field and the pertui^atlon of the field by the 

motion of the conductive fluid are Insignificant In a first approxima- 

tion. This result agrees with what has been said above. 

In paper [235] the Influence of a magnetic field on the temperature 

distribution In a Jet Is calculated In the same approximation (and al- 

so In the absence of an applied electric field). When we neglect the 

energy dissipation (Joulean and viscous), which corresponds to the gen- 

eral statement of problem, the differential equation of heat propaga- 

tion is the same as that which corresponds to L.D. Landau's problem 

(nonconducting medium or absence of field). Under these conditions, 

the influence of the magnetic field on the temperature distribution 

- * 

Z 
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will be an indirect one, through the variation of velocity.  The 

final expression for the temperature distribution will read 

T-T. * 
(T~T~)„ = «»p[-Pr\(Prm/. +Pry, + • ■ ■)<&]• (l8.ll) 

We see from this that in a first approximation the deviation from the 

problem without interaction is small. 

Analogously one calculates the influence of the magnetic field 

on the motion produced by a Jet issuing from the opening in a plane 

wall or by a fan type Jet (which is also insignificant in a first ap- 

proximation) . 

18.2. THE EQUATIONS OP A MAGNETIC BOUNDARY LAYER 

According to the terminology by V.N. Zhigulev [101], with high val- 

ues of the magnetic Reynolds number Re , the region in which the in- 

fluence of the magnetic field on the motion of the conducting fluid is 

concentrated principally will be called the magnetic boundary layer. 

Following paper [101] we shall also distinguish between two kinds of 

magnetic boundary layers. 

In the first of them the magnetic field strength vector lies in 

one plane with the velocity vector and the angle made by them is small. 

As usually we may refer ourselves to a plane or an axisymmetric Jet 

flow of incompressible conducting fluid. This case will be called the 

magnetic boundary layer of the first kind. 

In the second case, the vector R  is normal to both velocity com- 

ponents, i.e., it is directed along the s-axis in the plane of flow 

(or along the axis <p in the axisymmetric case). This layer will be 

called the magnetic boundary layer of second kind. 

The magnetic boundary layer equations are obtained by the method 

of estimation, where, in addition to the usual estimation of velocity 
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components and coordinates (»x~l, PV~6, X~1, y —fi, v.—fi1)  we assume 

for the vector components of the magnetic field strength Hx~ i, Hy~6, 

and also vm — 6*. 

Let us estimate the terms of the initial equations of magneto- 

hydrodynamics  [121,122] which we give for brevity in vector representa- 

tion 
p (t>V) t, = _ Vp + ^ (K V) H +Div T, 

div r = o, 
rol(üX «■) = —vmAJ5r, 

divA = 0, 

div(cpft» — - grad T — vtoivxv\ + —/• = 0. 

(18.12) 

In the first of these equations and in the following we use the 

symbol p = p +1 iimtf• to denote the sum of hydrostatic pressure p and 

magnetic pressure pm ^ L^fp in the energy equation j denotes the elec- 

trie current density. 

Derivingthe equations of a plane steady magnetic boundary layer 

of first kind we assume the field H plane; H (Hx, Hv, 0). Aftei a corres- 

ponding estimation we obtain (»« s «, »„= »)  : 

du du d*u -Vi+ti»^»^). 
dp 
= 0  (p+-!^- = const), 

il-uil-o dHx i atf»-o 
dx ^ dy -"' dx  ^   dy  ~V' 

dT      X d*T  ,   . tdu\t     v. 

(18.13) 

dT   . dT      i. d*T  .      / »u \«      vm 

In order to derive analogous equations  for a plane magnetic boun- 

dary layer of second kind we assume the magnetic field directed along 

the axis 0«: Zf(0,   0, H,). In this case  (with B^ - ff) we obtain by means of 

estimations 

< r 
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du du 9*11        1   dp 

f-0   (p+^mA/»-const). 

dx    h  d»       U' 
a// .    dH _    aw 

tt äF + " «7 _ Vm v ' 
ar .      ar     x ö«r .    / a« \«    vin 

(18.14) 

In both cases of a plane magnetic boundary  layer for a Jet motion 

the total pressure p    is  constant throughout the  field of flow.  The 

variation of the static pressure p is then determined by the law of 

variation of the magnetic field strength both along and across the 

boundary layer. 

As also previously in the theory of the  laminar boundary layer, 

we restrict ourselves to self-similar motions  and study the form these 

equations will possess.  For this purpose, we extend the exponential 

formulas of self-similarity transformations to the magnetic field 

strength. 

For the magnetic boundary layer of first kind we put 

u = Ax' F' («p), 
ff, = //*-/.'(«p), (18.15) 

so that from the condition of vanishing divergence of the velocity and 

magnetic field strength vectors we obtain 

;.) 

Hv = —^-i-«»-» l((o-ß) h + p«pÄ'l. 

Calculating the derivatives and substituting them together with 

(18.15)  in Eq.   (18.13) we obtain a system of self-similar equations of 

the magnetic boundary layer of first kind in the form 
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p  2vAÜ ^"' + 2^K« + l)/?/;"-2aF'«l =^2^ir(a + i)^._2a,fc'«l,        (18.16) 

(18.17) 

« » 

2vB« 

with the condition 

<x = (D = 2ß + l. (18.18) 

linking the values of the constants of self-slmllarlty. 

As regards the equation of heat propagation. It cannot be reduced 

to a self-similar equation when Joulean heat (or the heat of friction) 

is taken into account. 

Let us now derive analogous self-similar equations and the condi- 

tions linking the constants for the magnetic boundary layer of second 

kind: 

Fm+^s* K« + !)FF' - fc^I = 0' 

*' + W Prm K* + ^ Fh' - 2(oF'Ä1 ==s 0- 

(18.19) 

(18.20) 

Here, as always with a laminar boundary layer, a = 2ß + 1, but, un- 

like the case of the equations of the magnetic boundary layer of second 

kind, the constant a> of self-similarity (the exponent of £') is in no 

connection with the others. 

The self-similar equations obtained will be used in the following 

sections in order to solve some concrete problems. 

18.3. SOME REMARKS 

For the purpose of a general Judgment of the influence of a magne- 

tic field on the Jet flow of a viscous conducting fluid, we first consi- 

der for the case of the equations of the magnetic boundary layer of 

first kind the limiting c^se of a highly viscous high electric conduct- 

ivity fluid for which Pr ■ •». Note that this case is rather of theoret- 
m 

leal interest since in technical applications (disregarding the field 
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of astrophysics)  the magnetic Prandtl number Is usually much smaller 

than unity. 

Assuming Pr    = <» we exclude at the  same time from consideration 
Tfl 

Joulean dissipation and, owing to this, we are able to elucidate in a 

pure form the influence of the mechanical effect, the action of the 

electromagnetic volume force. 

With Pr = « Eq. (18.17) results in a similarity of the distri- 
m 

butions of velocity and magnetic field strength and in a coincidence 

of the magnetic lines of force and the streamlines: h'~F',  h=F. 

This result is a particular case of the general theorem on the freez- 

ing of lines of force in a perfectly conducting fluid. 

Using the conditions of similarity in Eq. (18.16) we gi/e it the 

following form: 

/;,"+w(1-   -f l)W'-2aF'«l = 0.      (18.21) 

where the symbol 5 denotes the parameter of the problem 

~ M*1 (18.22) 

It is easy to see that, introducing the new independent variable 

9 = (l—5)«p and the denotation F = F(y),  the latter equation can be trans- 

formed to 

?'+2^a + 1)7i7?"-2a^"l=0-       (18.23) 

Equation (18,23) corresponds identically to the equation consider- 

ed in Chapter k for a laminar plane boundary layer of conducting fluid. 

This indicates that for concrete self-similar jet motions (mixture of 

uniform flows, plane source Jet, free and semilimited Jets and the like) 

the expressions determining the nondimensional transverse velocity dis- 

tributions for all values of the parameter O<5<1, will be one and the 

same: 
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This function also determines the distribution of the longitudinal 

magnetic field component 7.— = - In the Jet cross section. 
''.nil   um 

When we compare the u/u distribution as a function of the varia- 
m 

ble  for various values of 5, we see that the effective thickness of 

the Jet rises as the parameter S  Is Increased (with S + 1  and —-»!). 
"m 

As regards the velocity drop along the Jet axis. It will also be the 

more Intense the higher the value of the parameter S which is expressed 

by the value of the constant A In the formula Mm ~ Ax*, with the highest 

admissible value of S ■ I, we obtain 4 « Ö, which corresponds to the 

limiting case of a degenerate Jet (zero flow rate of fluid). The physi- 

cally obvious condition of the existence of the Jet (G > 0) will be used 

as a criterion for the reality of the solutions consider'- " n the follow- 

ing. 

The results here obtained for the plane motion also remain valid 

for the axlsymmetric Jet motion with the same condition of Pr ■ ». 

To raise the lllustratlveness we shall briefly consider one of the 

examples (plane source Jet with Pr ■ ") In what follows, after a dls- 

cusslon of the more general problem of a plane source Jet with a finite 

value of Pr . Other examples of solution (In the Mlses variables) with 

Pr ■ ■ are ^Iven on papers [105, 106]. 

We give without derivation the final formulas which determine the 

solutions of several particular cases and the values of the constants 

At   Bt   and H  entering them. 

In the case finite conductivity. I.e., when Pr Is different from 
tn 

Infinity., the distributions of velocity and magnetic  field will not be 

similar,  but with symmetrical boundary conditions a qualitative  "analogy" 
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of the u and H    distributions still exists and also the character of x 

the Influence of the magnetic field (the parameter 5) on the motion 

will be analogous. In particular, for flows with finite conductivity, 

the limitation of the values of the parameters S o<5 < l will remain 

In force. The physical meaning of the parameter S  will be explained 

In the following. 

All what has been said here refers to the magnetic boundary la 

of first kind. It Is senseless to discuss the analogous case ol 

for the magnetic boundary layer of second kind as the dynamic equ. 

(18.19) does not contain any terms which are connected with the magn 

tic field (the magnetic field has no Influence on the motion). 

The fact that the dynamic problem Is Independent of the Induction 

equation and the fact that Eq. (18.20) Is solved after the determina- 

tion of the velocity distribution Indicates the direct analogy between 

the equations of the magnetic boundary layer of second kind and the sys- 
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tern of equations of the dynamic and the thermal boundary layers for 

a nonconducting fluid. 

In addition to this, Eq. (18.20) is itself Identical with the 

equation of heat propagation in a nonconducting fluid. The presence 

of this analogy, with similar boundary conditions for the temperature 

in the thermal problem and a magnetic field strength ff » Ä in the 
m 

MHD problem permits the application of all solutions of the thermal 

problems compiled in Table 7.1 in order to describe the magnetic field 

distributions. 

This curious "magneto-thermal" analogy, which also applies to the 

axisymmetric magnetic boundary layer of second kind, is conserved for 

all values of the magnetic Prandtl number Pr . The latter, as also the 

ordinary Prandtl number Pr in the thermal problem, characterizes the 

ratio between the effective thicknesses of the dynamic and the magne- 

tic boundary layers. 

This analogy Is of course inapplicable to the magnetic boundary 

layer of first kind. The difference between them is due to the fact 

that only In the equation of the magnetic boundary layer of second 

kind the magnetic field strength plays the part of a scalar quantity. 

In this case, th? lines of force (which are directed parallel to 

the axis 0    in the plane of motion or in concentric circles lying in 
m 

pla.ies normal to the axis of symmetry of the round Jet in the axi- 

symmetric case) will neither be bent nor stretched. The only dynamic 

effect which is connected with the action of the magnetic field will 

be the appearance of a gradient of magnetic pressure _ _ Pm1**   (in equll- 

ibrlum with the hydrostatic pressure p). 

As regards the influence of the magnetic field on the heat trans- 

fer (which appears when Eqs. (18.19), (18.20) and the energy equation     *» 

are solved at a time), it will be considered by way of a concrete 
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example. 

Note that, finally, the considerations of this section of the 

book (and to a certain degree those of the wnole chapter dealing with 

MHD jets) may be transferred, at least qualitatively, to turbulent 

MHD Jets of Incompressible fluid. This applies particularly to the 

"magneto-thermal" analogy for the layer of second kind and to the 

limiting case of an infinitely large "turbulent magnetic Prandtl num- 

ber" which is interesting for astrophysical applications (turbulent 

motions of perfectly conducting gas). 

Remember in this connection that with the assumption of an asympto- 

tic layer vr-—i4-3 the equations of self-similar flows and their solu- 

tions for laminar and turbulent jets agree with one another (see Tables 

7.1 and 11.1). 

A more complete dlscusüion of these problems would be beyond the 

framework of the present book. 

18. J». THE MAGNETIC BOUNDARY LAYER OP THE FIRST KIND 

By way of example of the magnetic boundary layer of first kind 

we consider the problem of the proprgation of a laminar plane source 

jet of incompressible conductive fluid, under the assumption that the 

magnetic Reynolds number Re is finite but nigh so that it is Justified 

to apply the approximation of the magnetic boundary layer [315]. 

The initial equations for the problem on the plane source Jet are 

Eqs. (I8.l6) and (18.17). The boundary conditions read 

^ = 1, F = ä = 0 with 9 = 0. 1 
r^/i^O wlth9 = ±oo.J       (18.25) 

We complete the boundary conditions as usually in the case of 

free source Jets, by the integral conditions of conservation 

-H» 
J (pu« _ ,imW«) dy = const, (18.26) 
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which is obtained by Integrating the first equation of System (18.13) 

across the boundary layer, using the condition of zero divergence of 

the vectors v and H.  Taking the equality a = ai derived above into ac- 

count, we obtain from this 

a = (o = -T, P--T. 

As we see from the latter equations, the values of the constants 

of self-similarity, a and B, are the same as in the case of the lami- 

nar plane source Jet of nonconducting fluid. 

The constants A, B and H are determined in the following; for 

this purpose we make use of the fact that Integral (18.26) for the 

self-similar problem can be written in the form 

+00 

^ fi^-^L- ^ h'«d<p = const, (18.27) 

from which it follows that each of the  Integrals in Eq.   (18.26)  repre- 

sents a constant quantity.  In other words,  in the problem considered, 

the total flux of mechanical momentum and the total flux of electro- 

magnetic momentum are conserved separately. 

We use the denotations 

P-«« 
+«• 

/.- ^ 5 **** = const. Jrra = i^- \ h** = const.        (18. 28) 

The problem is thus reduced to an integration of the system of 

equations 

Fm + (2FF'Y-2Shh' = Q,] 
h' + 2Prm{Fh 

-2Shh' = QA 
' — F'h) = 0,\ (18.29) 

which are obtained instead of  (18.16) and (18.17)   if we use the val- 

ues given above for the  constants  of self-similarity and if we put 

Jl-6v (18.30) 
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As to Its physical meaning the parameter 5= ^-""T''   enterlng 

the first of Eq. (18.29) Is a measure of the ratio between magnetic 

momentum flux and mechanical momentum flux or the ratio of total magne- 

tic energy to total kinetic energy. It may also be expressed as the 

ratio between the conventional Initial values of the square velocity 

of the Alfv^n waves, y^ m **"*   and the square velocity u2 of motion 
P m 

along the axis of the Jet. 

The ratio S = 
v* 

differs only by a numerical factor from the 

ratio of the squares of the conventional initial values of V2    and 
AO 

u* when the  latter is determined by the following equation: 

+<» +00 

In this  case 

v* 
+00 

 nn "   Ä AO 
+00 
I h'*Wdv 

In the case of similar distributions with /"(«p) = A'(<p) we alto have 

v* 
S = So = —4?; this case  (o - »)  wm be considered below. 

) 

Pig.   18.4.  Distributions of velocity and longitudinal 
magnetic field component,  a)   Pr    = 2;  b) Pr    - 4  [315] 
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Flg. l8.5. Diagram of the streamlines and the 
magnetic lines of force in a Jet. 

^ >\ 

0.5 
^ A X. 

> 

\ 
k ̂v^ 

^ N ^■v, 
^ 

0 / i f J 

Pig. 18.6. Velocity distri- 
butions in the Jet. , s_0. 
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Fig. 18.7. Distributions of longi- 
tudinal velocity component for var- 
ious values of the parameter SV,m» 

= 00), i. S •> 0; f. S = 0,2 J. S = 0,b; 
t.  S-0.7. 

: 

It should be noted — and this is essential - that a solution to 

the problem considered will only exist if 0< 5 < 1. The lower limit, 

S m o  corresponds to a Jet of a nonconducting fluid, the upper limit, 

5 - i, to the limiting value of magnetic momentum. 

Prom Condition (18.28) and Eq. (18.30) we obtain the values of 

the constants 
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The results of a numerical integration of the system of equations 

(18.29) with the boundary conditions (18.25) are contained in the papers 

[315, 316]. 

Let us here give some of them. 

Figure 18.^ shows the curves of the relative velocity ■£-=F'{<f)    and 
11 

the magnetic field component „-^^'»'('P) for various values of the para- 

meter 5 with Pr = jf and Pr «4. rn m 

To render it clearer, we show in Fig. 18.5 a schematic diagram of 

the streamlines and the magnetic lines of force. From the qualitative 

point of view, these graphs verify the solution of L.D. Landau's general- 

ized problem. 

In Fig. 18.6 we compared the relative velocity distributions for 

Pr « i and for a perfectly conductive fluid. This comparison shows 

that the numerical solution [315, 316] deviates only insignificantly 

from the analytical solution for infinite conductivity. The influence 

of the parameter 5 on the distribution curve of the longitudinal veloc- 

ity component is shown in Fig. 18.7 for the example of a = ». 

18.5. THE MAGNETIC BOUNDARY LAYER OF SECOND KIND 

To illustrate the solution of the equations of the magnetic boun- 

dary layer of second kind, we consider by way of example the problem of 

the expansion of a plane laminar semilimited source .Ht of a conducting 
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fluid [89,90]. 

The initial self-similar equations of the problem are Eqs. 

(18.19) and (18.20) completed by the energy equations 

^ + lär U* + *)FF' - 2otF,l - 0' 
h' + l£m Prml(« + *) Fh' - 2<*F'hl - O. 

0. + P, W +  ^ ^JggL (*')• = o. 
PV7»-:roo) ^  x '      i 

(18.31) 

T-T. 
(Here e = T Jlr". ^w ls the constant value of the plate surface tempera- 

ture H = H» h{<f), Hv   
is the constant value of the magnetic field strength 

on the surface of the plate.) 

The dynamic problem, which is 

represented by the first equation 

of System (18.31), with the corres- 

ponding boundary conditions 

F = f ^0    with ,p = 0, /" = /w = o with 

cp = », and the integral Invariant 

Pig. 18.8. Schematic represen- 
tation of semilimited Jet of 
conducting fluid 

\ pu'kdy = const, 

is solved independently from the oth- 

ers. When deriving its solution, 

which was given previously, we find the constants of self-similarity, 

o ■ -1/2, ß ■ —3/1*, and the constants A  and B (see Table 7.1) used in 

the integration of the other two equations of System (18.31). 

Vfe chcose the boundary conditions for the problem on the basis of 

the following physical statement (see diagram in Fig. 18.8). 

Let us assume that an electric current flows in the direction of 

the Ox  axis through the plate whose outer surface is insulated against 

the moving fluid (such that the electrical contacts can only be at the 

front and rear edges of the plate). The magnetic field induced by the 
o 
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current  Is directed along the Oz  axis. 

The boundary cciditions  for the magnetic field and the temperature 

therefore have the  form 

h = 1, 9 = 1 withq> = 0, (18.32) 
;, = 0, 9 = 0 with 9=» 00. 

The solution of the induction equation 

h' + PrmFh'~0, (18.33) 

obtained by transforming the second equation of System (18.31) has the 

form 
• »00 1 

h^) = l-lexp[-Prmydz)dz[]ox?[-Prm\Fdz)dzJ.        (^^i,) 

As  regards the nonuniformity of the heat propagation equation ob- 

tained from the last equation of System  (18.31) 

9' + Prf-9' + 4 *     Jk        (/.')«= 0. (18.35) 

its general solution  is represented in the  form 

e((p) = 1 —[Jexp(—Pr jFdz)rfzl[5exp(—Pr Jfdzjdz]' — 

Pr tf«        •     J!_ ' JL. (18.35') 
-^^Tv-T^hY'^lihr   "mdz]dz. 

0 0 

In this way the problem is solved. 

The solution of the induction equation (18.33) in the form of 

(18.34) corresponds to the above-mentioned analogy with the thermal 

problem in a nonconducting fluid (neglecting the heat of friction). 

The solution of the energy equation (18.35') consists of two parts. 

The first of them, which contains two terms, is independent of the pre- 

sence of a magnetic field; the second is determined by Joulean dissipa- 

tion whose action on the temperature distribution is analogous to that 

of the heat of friction. 
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Pig. 18.9. Influence of the magnetic field on the 
temperature distribution In a semlllmlted Jet 
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Flg. 18.10. Influence of a magnetic field on the 
heat transfer M. ,. w.-n Pr-n 

». Nm = 1; Pr =. 0.5;/? JV = 0,5; 
^"=1: 4. N_-0.5; Pr-0,5. 

The graphs In Pigs. 18.9 and 18.10 Illustrate the influence of 

the magnetic field on the temperature distribution In the semillmlted 

Jet, and on the heat transfer [89,90]. The first of these figures needs 

no explanation. From the second we see that in the problem considered 

the heat transfer is the more Intense the higher the energy of the 

magnetic field but, '.ompared with the heat transfer in the case of a 

nonconducting fluid, the increase in heat transfer is the smaller the 

larger the value of the magnetic Prandtl number Pr^. 

Results analogous In nature may also be obtained in other cases 

of self-similar Jet flows applicable to the theory of the magnetic 

boundary layer of second kind. 

18.6. JETS WITH SMALL VALUES OP THE MAGNETIC REYNOLDS NUMBER 

In the case of very small values of the magnetic Reynolds number 

Re << 1 in problems of applied magnetohydrodynamics an approximation 
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method of solution has become widespread. In which the Induction equa- 

tion is not taken into consideration. In this case, it Is only the us- 

ual boundary layer equations which are integrated. I.e., the equations 

of continuity, motion and energy, where two of them are completed by 

terms describing the influence of the magnetic field on the flow of a 

conducting viscous fluid. 

With this statement of the problem where the magnetic field is 

given, with respect to both magnitude and direction, we neglect the in- 

duced magnetic field. It is natural in this case to consider the Jet 

"low of a conducting fluid in a direction normal to the magnetic field 

applied. In this case, the interaction between fluid and field is ob- 

viously maximum. 

In connection with this, let us turn to the problem of expansion 

of a plane laminar source Jet in a transverse magnetic field [91] which 

was considered for the first time by H. Jungklaus [253] (see also [274]). 

The equations of motion and continuity and the equation describing 

the propagation of heat are written in the following form: 

du du d'u        3u'      .       du        dv 
d*  ^" dy       * dy* p   "  ■*•  [dx ^[dy ~    • 
dT dT w . «rt. 

+ »*^-•-53r+:S1*,», 
(18.36) 

In the first of these equations, the second term of the righthand 

side represents the electromagnetic volume force per unit mass 

FtH m tlwüp
X //)«, .„„. H (0, Hv, 0). J(0,0. /,), 

where j = ö^m(,t x H)  is the electric current density. 

The new term in the righthand side of the last equation   (new 

as compared to the  usual problem) represents the  separation of Joulean 

heat  per unit mass: 

1»* *  ' 
* * 
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The boundary conditions for the velocity In Eq. (18.36) Is 

maintained In the same formulas In the case of the Jet of nonconduct- 

ing fluid: 

v.O, |j = 0wlthy = 0, 
(18.37) u = 0     wlthy = 4:oo. 

Just as In other cases of source Jets, the solution of the problem 

will be sought for the self-similar flow. Besides the ordinary trans- 

formation formulas for the velocity of motion and the coordinates 

±=F'Wtum = Ax;if = Byx> (18.38) 

we also use a power function to describe the dependence of the applied 

magnetic field on the coordinate x: 

H = H0x»,   //„= const. (18.39) 

Let us first consider the dynamic problem. As regards the thermal 

problem. It Is, as In the other cases, more convenient to consider It 

thereafter, taking Into account the different boundary conditions for 

the temperature. 

The equations of motion and continuity are transformed with the 

help of the above self-slmllarlty transformation formulas to an ordi- 

nary differential equation 

F" + 3(a + \)PP' — foF'*-NF' = 0       (18. 40) 

with the boundary conditions 

F(0) = 1. F(0) = f'(oo) = 0 (18.41) 

In the derivation of Eq. (18.40), in order to make it independent of 

the coordinate x, we assumed ß = a~i and, moreover, w = ß, as this is 

usual for plane laminar source Jets. In addition to this, for the re- 

lation between A  and B  (as one of them is arbitrary) we assumed A/B*  » 

= 6v  and, finally, we used the denotation N = fi3tt,m -0. As to its physical 

meaning the parameter N  characterizes the magnetic effect on the motion 

- 463 - 



— TI'+TT)-. ("-«S) 

- un - 

z 
(nove that always ^>0). 

In order to determine the value of the constant a entering the 

expression for the law of velocity decrease on tha Jet axis um =» Ax; 

we Integrate Eq. (18.40) across the Jet, between the limits 9 = 0 and 

^ a« 00. Here we put 

After the substitution of the expression obtained for the constant a 

(which here depends on the magnetic parameter N9  which is specific for 

the problem considered on the Jet in a magnetic field) in Eq. (18.40), 

the latter can be rewritten in the form 

[08 -, 

FF'-2F'« + 3i_-rrU 0.(18.43) 

J 

This equation is a generalization of the equation for a plane 

source Jet of nonconducting fluid. In fact, with N * 0,  Eq. (18.43) 

passes over to the equation 

F- + 2(F/!w + ^)-0. (4.47) 

whose solution under the same boundary conditions was considered in 

Section 4.3. 

It is eai-y to prove (e.g., by substituting) that the solution of 

this equation (for the case of N m 0) 

F(if) = (cW (18.44) 

is also a solution to the generalized equation (18.43). 

Using here Solution (18.44), we obtain from Eq. (18.42) the final 

expression for the constant a as a function of the magnetic parameter 

B: 

:: 



1 

^ 

We also write the constant ß (and the constant u Is equal to It) In 

terms of the parameter N: 

9 = «=,«^! •+^. (18.46) 

In order finally to solve the problem we must also determine the 

values of the constants A and B (the quantity H0 characterizing the 

applied magnetic field Is given).  For this purpose. Just as with other 

problems, we have recourse to an Integral condition. As already men- 

cloned, the exponential self-slmllarlty transformation formulas (18.38) 

predetermine the validity of an equation of the form 
SB 

X ^ J u3/« dy m const, (18. 4?) 

where g » 8+A[,..  With i? ■ 0 Eq.   (18.47) passes over to the condition of 
■  2(2 + *) 

momentum flux conservation In the projection on the x  axis. Let us 

reckon the constant K  defined by the above equation (18.47) to the 

given parameters of the problem*. In this case the solution of the pro- 

blem will be unambiguous and all constants needed are determined unam- 

biguously as functions of the magnetic parameter N.  From Eq. (18.47) 

we obtain 

..[*M(n^,) ]-•» 4-*.       (l8-w 

Let us also formulate expressions for the rate of fluid flow through 

the Jet cross section, the momentum flux and the flux of kinetic energy 

-dlnate « and N: 

oo                               «                                         4-ff         \ 

G~{pudy ~£-p\r{<i)dV'X'->~xa . 
•                      • 
7                           - — 

(18.49) 
«•                                          ««IN 
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The whole problem has thus been led to a final solution. In this solu- 

tion to each value chosen for the parameter N a certain definite value 

of the constants a,  ß. A, B, etc.  corresponds. 

As already Indicated, the value N * 0 corresponds to the case of 

a Jet of nonconducting fluid  (or the absence of an applied magnetic 

field).  The range of the physically reasonable values of N Is there- 

fore limited by the minimum value of S .    ■ 0. Physical considerations, 

already mentioned above, also permit the establishment of the upper 

limit,  i.e.,  the maximum value of the parameter Nt such that from the 

solution the domain can be separated which corresponds to the physical 

problem on the motion of a source Jet in a transverse magnetic field. 

On the assumption that the fluid flow rate in the Jet must not decrease 

we obtain i-^_ ■ M from the first formula of (l8,l»9) and, consequently, max 
0<tf<4. 

In the table contained in the test we have compiled the values of 

the characteristic constants of the problem, which correspond to differ- 

ent values of the magnetic parameter s  within the limits given. 

1 

O 

N *-» ■ M Y 

1    o -v» -»/• 2 rü 
i        1     ' -•/. -v« •/• -V« 

2 -•/. -v» s -v« 
4 

-JV.I 3 "/» -•<(-1 
In the last  column of this table we also find the values of the 

constant of self-similarity, y» entering the expression for the  surplus 

temperature on the Jet axis: A TV, = IV.    These values of y are obtained 

from the solution of the thermal problem for two variants of boundary 

conditions for the temperature:  symmetrical, with velocity conditions 

(see Table case a) and asymmetric  (for which T =»0   case b). 

Let us briefly consider this solution which applies to the self- 

- i»66 - 

0 



^p 

n 

similar approximation for a flow far away from the source. Return- 

ing to the third equation of (18.36) we note that the term entering it, 

which describes Joulean heat, decreases more rapidly than the others as 

the distance from the source Increases, as mi.y be seen from the solu- 

tion. For the range of the self-similar solution it can therefore be 

neglected. With this simplification, the problem can be solved in the 

self-similar approximation, also with respect to the temperature dis- 

tribution. 

We denote as usually 

Ar = Arm9(q>). Arm = rx'.       (18.50) 

The two variants of the temperature boundary conditions are the follow- 

ing: case (a): 
6 m 1 wi,h 9 = 0,   1 

0 = 0 with 9 =-f.00; ) (18.51) 

case (b): 

9 = 1 »uh «p = -f 00, 1 

8 = 0 WKH 9--00. j (18.52) 

Let us first solve the problem for case  (a) with the boundary condi- 

tions  (18.51)  which are symmetrical with respect to both velocity and 

temperature. 

The  self-similar equation of heat propagation in this case reads 

e' + 3Prl(l+«)/;,e'-2TF'ei = 0. (18.53) 

In contrast to the dynamic problem, the thermal problem in the 

statement considered has a general integral invariant,  namely the con- 

dition of conservation of the  flux of surplus heat content: 

Q~ \ pepuATdy = coiwt. (18.51) 

In agreement with it we obtain 

9cpA \i 
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With these conditions the solution of Eq. (18.53), taking the boun- 

dary conditions Into account, assumes the form 

0(9) = If m* (,+■,', - (ch^-T) ".      (18.56) 

It Is Interesting to remark that, unlike the usual ("nonmagnetic") 

case of Jet, In the problem considered with a Prandtl number equal to 

unity, the velocity and temperature distributions will not be similar. 

It Is obvious that the distributions of u and AT will only be similar 

If the value of pr^M     *)-». 

For the second case of boundary conditions It follows  from phy - 

slcp.l considerations that, as in the common Jet, we must assume T=0 

and r = fi — r» = const. 
■ 

Prom the equation 

e' + 3(a + l)Pr(F9)'-0 (18.57) 

with the boundary conditions  (18.52) we obtain 
■ 

e(9) = [5(ch«p)   K    *'   d<f]    J(clnp)   K    *'     d<f.       (18.58) 

In this case the flux of surplus heat content is proportional to the 

flow rate: ^,- c ~ x«-» ~ «TT 

The solution obtained for the problem of the expansion of a plane 

source Jet of conducting fluid in a transverse magnetic field with small 

values of the magnetic Prandtl number refers to laminar conditions of 

motion.  The influence of the  field on the laws of Jet expansion result- 

ed chiefly in an alteration of the law of velocity decrease along the 

Jet axis with increasing nozzle distance. The electromagnetic volume 

force, which arises on the Intersection of the lines of force of the 
t 

magnetic field by the conducting medium, it directed against the ini- 

tial momentum of the Jet thus decelerating the motion. With low values 

of the magnetic Reynolds number (lu^ ■< i) and neglecting the Influence of 
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the Induced magnetic field, we may. In a first approximation, extend 

the self-similar solution obtained to the turbulent motion of fluid o v '    In a Jet. Here, of course, the question of the value of the empirical 

constant a  entering the expression for the reduced coordinate q> (and 

through It also the constant A,  etc.) Is still open. More than that. 

It can only be shown by experiment whether It is possible with the help 

of a single empirical constant to account for not only the decelerating 

action of the magnetic field on the flow, but also another character- 

istic field effect, namely the quenching of the turbulent pulsations 

[121,123]. Without entering Into details with respect to this problem, 

we restrict ourselves to the same approximation as used in the theory 

of self-similar turbulent Jets of incompressible fluid (Section 11.2). 

In other words, as we want to obtain at least an approximate image of 

the expansion of self-similar turbulent Jets of conducting fluid, we 

—v     assume as in the "nonmagnetic" case 

vT=6ttm~*-»~x"»(P = —!)•        (18.59) 

Under this supposition, we can again use the advantage of solving the 

problem by the method of the asymptotic boundary layer such that the 

nondimenslonal equations of self-similar Jets and their solutions re- 

main unchanged, applying to both laminar and turbulent motions. The val- 

ues of the constants of self-similarity, the laws of velocity variation 

along the Jet axis, of the Jet's effective boundary, etc. are, of 

course, different in these two cases. In particular, for turbulent, 

self-similar Jets we must assume 8 ■ -1 and correspondingly, 

SP"^-^*"1 as the effective boundary of the turbulent source Jet is 

a straight line, Just as in the "nonmagnetic" case. The constants a 

and u will depend on the value of the magnetic parameter n  as in the 

""t    laminar Jet. Determining the relation between them in the same way as 

above. In the case of the laminar Jet, we obtain for the turbulent Jet 
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2+3/y     _ —r~- (18.60) 

In this case the Integral equation has the form 

]? =■ \ i»->/" dy «« const, 

and consequently 

t*a* 

i-WQC/f*^]^. 

Also calculating the coordinate dependence of flow rate, momentum flux 

and kinetic energy flux 

t-tN t-«W        I>-tW 

we obtain from the first of these expressions the range of values of 

the magnetic parameter in which the fluid flow rate will not decrease: 

0<iV<4. (18.61) 

As already shown in the discussion of the results for the laminar Jet, 

this limitation corresponds to the physical statement of the problem on 

a source Jet of conducting fluid expanding in a transverse magnetic 

field. In particular, ilf - 0 corresponds to an ordinary Jet. 

As regards the form of the velocity distribution curve of a tur- 

bulent Jet, as already mentioned, its expression in nondlmenslonal form 

remains quite the same as with the laminar Jet (or with laminar and tur- 

bulent "nonmagnetic" self-similar Jets): 

JL-.f-^-ch-'f. (18.62) 

~. 

1 

We can generalize analogously the solution derived above for the ther- 

mal problem of a laminar Jet to the thermal problem of the turbulent 

Jet of a conducting fluid with R*m<l and the corresponding boundary     '* 
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conditions. Such a generalization, which has not been £i.ven here for 

the sake of brevity, may play the part of an approximate image of the 

temperature distribution. Just as in the dynamic problem. A more com- 

plete Judgment on the admissibility of the approximate expression 

VT = 6T«m. and on the values of the empirical constant a s j in the 

presence of a magnetic field, etc. can only be obtained as the result 

of experiments. 

It must be finally noted that the method of solving self-similar 

problems on the expansion of Jets of conducting fluids In a transverse 

magnetic field with small values of the magnetic Reynolds number may be 

also applied analogously to other problems, for example on the semi- 

limited Jet (plane and fan type), on the free fan type Jet and others. 

It is a general feature of these solutions that the self-similar solu- 

tion of the problem does not exist for all values of the magnetic para- 

meter and, as in the examples considered, and to each value of the mag- 

netic parameter (within these limits) there exists its solution, its 

values of the constants a, u, etc. 

In this connection it is expedient in the last Section of this 

Chapter to consider the solution to this problem on the plane source 

Jet in the transverse magnetic field with R«m •< 1, without any supposi- 

tions on self-similarity. Note however that, from the physical point of 

view, the results do not differ from those obtained above. 

18.7. PLANE JET IN UNIFORM MAGNETIC FIELD 

For comparison with the results obtained in the preceding section, 

we again consider with small values of the magnetic Reynolds number 

R*m •< 1  the problem on the expansion of a plane source Jet in a given 

uniform transverse magnetic field. Just as previously we shall not take 

)     the Induction equation into account. The motion in the Jet will first 

be considered laminar and then (under the same suppositions as above, 
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v- * bu  ) we generalize the results obtained to turbulent motion. 

Since the assumption on the uniformity of the magnetic field applied 

Is contradictory to the self-slmllarlty of the flow (In the solutions 

given above the constant u vanished nowhere), the final solution of the 

problem Is connected with numerical calculations and its expansion In 

a series with respect to a small parameter. This solution (and some 

numerical Illustrations of It) was obtained In R. Plskln's paper [275]; 

we shall report briefly Its contents In the following (using the de- 

notations chosen In this book). 

The equations of motion and continuity are represented In the form 

«« .  «* v *«  SiS u  -4.--0 (18.63) 

with the boundary conditions for the plane source jet 

9*    A   «  . 

' 1     (l8-6io Wlthu« 4-oo. I 

»-0, ^-Owlthy=0 

The magnitude of the magnetic field //o = #o„ Is assumed constant. As the 

parameter of the problem we choose the quantity 

i^SU.Sia^.M«,        (18.65) 

where umt^Ax-'i'     Is the maximum velocity (on the axis) of a nonmagne- 

tic free plane laminar Jet (with #.. « 0 or o ■ 0). Note that, accord- 

ing to the physical meaning, the parameter Introduced represents the 

ratio between the square Hartmann number 

H. - Mte/i 

and the hydrodynamlc Reynolds number 

determined from the velocity u 0  In the case of H0  « 0,  The quantities 

referring to a Jet of nonconducting fluid are denoted by the subscript 
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"0". For this case, we obtain from the above relations 

The values of the constants A  and B were obtained in Section 4.3 Ip 

the form 

A       Uüt      B       HAS* 

We represent the streamfunction for the flow with i?^ ^ 0 in the 

form of a power series of the parameter   F« AT-^: 

♦ -Tr^ ißf^H (18.66) 

According to the usual formulas (u «*♦ t p =, __ *♦) we then have for r.he 

velocity components in the Jet of conducting fluid 

3 *■. 

00 

+ 

u=Ax'i, %Vt*fKm> (18.67) 
mi 

oo es 

S WAW- S WM«Mi      (18.68) 

We substitute these expressions in the initial equation of motion and 

equate the coefficients of equal powers of the parameter N  (or, what 

Is the same, the coefficients of the same powers of x). As the result 

we obtain a system of ordinary linear differential equations for the 

determination of the function /"«(f). 

For the zero approximation 

P7 + 2{F,F',+ F?)-0. (18.69) 

For the first approximation 

F? + IFfl -SF'tF'x + Sffo + 4ito + F^ - 6F; - 0      (18.70) 

etc.   (The higher approximations are so cumbersome that we do not give 

them.)  The boundary conditions corresponding to these equations read 
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F,, = F; = Owlthq» »0.    F'n = 0 with 9 = ^ »• (18.71) 

The zero approximation equation obviously corresponds to a Jet of 

nonconducting fluid for which 

JL = /?;(*).   F',=-ch-««p. 

The solution In first approximation. In agreement with the expansion 

used, has the form 

where ri(<p) Is a function determined by numerical Integration of the 

first approximation equation (18.70). The values of ^,(9). corresponding 

to the series of values of the coordinate 9 In the Interval between 

9 ■ 0 on the jet axis to 9 « 3*4  (which corresponds approximately to 

the effective boundary of the Jet), have been taken from paper [275] and 

are compiled In the following table: 

1 « '                            1 
• F,(») « FjW • 

1 

I  0'0 -0,7500 1.2 +0,0001 2.4 +0,0331      j 
0.2 -0,6023 1.4 .+0,0388 2,6 +0.0258 
S'l -0,5442 i.e +0,0535 2.8 +0,0195      ! 

(   0.« -0,3617 1.8 +0,0547 3,0 +0.0108 
0,8 -0,1965 2.0 +0,0402 3,2 +0.0080      = 
1.0 -0,0751 2.2 +0,0412 3,4 +0.0058 

Let us give some Illustrations. Figure 18.11 shows the distribu- 

tions of the longitudinal velocity component which are drawn for the 

first approximation with three values of the parameter AT = 0, 0.2 and 

0.5. The first of them corresponds to a Jet of nonconducting fluid; 

the velocity values u ^ on the Jet axis corresponding to it are used 

as a scale for all curves in Pig. 18.11. We see from the figure that 

the velocity on the Jet axis In the whole cross section decreases more 

rapidly as the magnetic parameter N  Increases (with one and the same 

O 

0 

o 
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Pig. 18.11. Magnetic field effect on velocity 
distribution in plane Jet [275]. 
•) 1. fT- 0; 1. * - o.l; *. w - 0.6; Ö) 
1) Laminar; 2) turbulent Jet. 

• 

~) 

value of x). The value of the transverse velocity component at infini- 

ty also decreases; it determines the injection of liquid in the flow 

and. In connection with this, also the flow rate in the Jet with N      0 

relative to the Jet of nonconducting fluid. In a first approximation 

these quantities (i;^ and G)  can be estimated from the expressions 

(18.72) j-SS-Äl-yMcV.. ^Ä1_^.^A. 

We see from the latter formula that for the first approximation the val- 

ue of the parameter Tt  characterizing the increase in rate of flow must 

be within the limits 0<"iv<*/i- From the qualitative point of view all 

these results agree completely with those given above for the self-simi- 

lar laminar Jet of conducting fluid. 

Let us now turn to the case of a turbulent Jet, assuming that, as 

mentioned already, the coefficient of turbulent kinematic viscosity is 

given by the same formula as in the case of the self similar Jet of non- 

conducting fluid: v« ■ b»u  . We also assume for the source Jet (i.e., 

the flow far away from the nozzle, though it is not self-similar owing 
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to the uniformity of magnetic field) for ghe generalized coordinate 

<p = Byx'1,  i.e., ß ■ -1. 

The expansion parameter for the turbulent Jet will depend on the 

x coordinate according to the law 7fT = N&,  where, as previously 

A' - av&Hl/pA,    whereas «mo - Ax-v, 

Having recourse to an analogous expansion of the streamfunction 

and the velocity components in series of the small parameter 1L,, we 

obtain the equation in zero approximation which is identical with the 

equation for the laminar flow, and the equation in a first approxima- 

tion 

F7 + 2F,P'l - 6/^; + 6/fo + AF'^ + 2/fo - 4*; = 0   (18.73) 

etc., for the higher approximations. 

The results of calculation for the first approximation are also 

given in Pig. 18.11. In the case of the turbulent Jet, in the relative 

coordinates chosen, the influence of the magnetic parameter which re- 

sults in a damping of the Jet more rapidly than with H. * o,  proves to 

be a little weaker than with a laminar Jet. This conclusion becomes ob- 

vious from Pig. 18.11b where we compared the relative values (scale: 

value of velocity on the axis of a Jet of nonconducting fluid) of the 

maximum velocity as functions of the parameter ÜT. Prom the qualitative 

point of view, the damping effect of the magnetic field applied is the 

same in both cases, the laminar and the turbulent Jets (with the assump- 

tions adopted on the turbulent viscosity). 

The results given are of well-known independent interest. They 

illustrate clearly not only the specific nature of the problems of magne- 

tohydrodynamics but also the generality of the methods of solving them; 

these methods are developed in the first parts of the book for the cal- 

culation of Jets of nonconducting fluid. The further development of the 
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theory of Jets of conducting fluids, as one of the sections dealing 

^     with applied gasdynamlcs, must be connected with experimental Inves- 

tigations of these flows. 

REFERENCES 

89. 90. 91, 101. 105, 106. 121, 122. 123, 235. 253. 274, 275. 286. 315. 316. 
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Pag 
No. 

^pt [Footnotes] 

435     It stands to reason that we are here concerned with a torch 
where the degree of combustion Is very high, almost complete- 
ly. 

440     All denotations In the SI system of units. 

465     This relationship Is conventional. With given values of o, 
y , p, and v, three quantities (iV, At  and K)  are Interrelated 
büf two equations. Therefore, when one of them Is given, the 
two others can be determined (within the limits of existence 
of the solution). 

3 

- 177 - 



SUPPLEMENT ON THE OCCASION OP PROOFREADING 

(To Section 15.5 "Axlsymmetrlc gas Jet with parallel flow of Chapter 15 

"Calculation and comparison with experiment") 

In experimental papers published at the end of 1964 by American 

researchers data are contained on the expansion of axisyrametric turbu- 

lent gas Jets in a parallel air flow. The experiments were carried out 

with Jets of various gases, hydrogen, carbon dioxide, etc. Without giv- 

ing here the results of a detailed comparison of the experimental and 

theoretical data, we restrict ourselves to some remarks. 

In Alpineri's article {Alpineri L.J.,  Turbulent Mixing of Coaxial 

Jets, AIAA Journal, Vol. 2, Vol. 2, No. 9, 5^-63, 196A) data are given 

which characterize the turbulent mixing with various values of the ra- 

tio of velocities in Jet and flow u^/u. and of the ratio of mass flow 

densities Pool<co (according to our own denotations). The results of com- 

parison prove clearly that the mixing intensity is minimum when the 
p »' parameter m ° CB * tends to unity. I.e., when the momentum flux densi- 

ties pu* are the same in Jet and flow. In contrast to this, with the 

same values of the velocity ^s«l (or with ft»*«» - t\  the intensity of 

turbulent mixing is very high (and it varies monotonically when these 

quantities pass through a value equal to unity). By way of example 

we show in a table (see below) the values of the relative gas concen- 

tration on the Jet axis in three cross sections, for different values 

of the parameter m (ordered according to its growth). The data com- 

piled in the table correspond to the right branch of the curves in 
« 
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AtnJ&e, 
• 

ripiiMeqiHiie 

1 i-« «15 «20 

i   *.» 
1     3.2 
!    10,7 

1    33 

0,96 
0,8 
0,55 

0,14 
0,10 
0.06 

0.75 
0.6 
0.3 
0,07 
0,05 
0,03 

0.57 
0.4 
0,2 

0,04 
0,03 
0,01 

1.29 
1.54 
2,12 

0,8 
1.05 
1,51 

0,86 
1,05 
1,51 

13.5 
17,6 
25 

«O.ttfCO.) 

%16 (II«) 

AaHHMe c 
pnc. 10 

rrarbH An* 
IIHRbepH 

2 

1) Notej  2) data from Pig.  10 of Alpinerl's 
article. 

-) 

) 

Pig. 13.1 of this book (beyond the maximum, I.e., with m > 1).  They 

Indicate the validity of the assumption that the decisive part In the 

process of nonlsotroplc turbulent mixing of gases Is played by QU*. 

In spite of the considerable spread of data an analogous result was al- 

so obtained by Zakkay et al. (Zakkay  7., Krause E.t   Woo S.D.L.,  Tur- 

bulent Transport Properties For Axlsymmetrlc Heterogeneous Mixing, 

AIAA Journal, Vol.2, No. 11, 1928-1937, 196^»). It should also be noted 

that In recent experiments by Sh.A. Yershln, In the range of m-values 

between 0.2 and 5 for the efflux of hot Jets In a parallel flow the re- 

sults obtained are the same as given In Pig. 13.1, Including the efflux 

conditions with equal values of velocity and mass flux density. 

Alpinerl's data also permit the conclusion that the Intensity of 

turublent mass transfer (turbulent diffusion) Is higher than the Inten- 

sity of turbulent momentum transfer. In other words, the so-called tur- 

bulent diffusion Prandtl number Pr-, ..- (or the turbulent Schmidt num- 

ber 5-), as also Pr-, for energy transfer, are smaller than unity. The 

approximate value of ^Ii Ä ^L also lies within the limits of 0.5 and 1, 

In the papers mentioned the authors tried to find an empirical 
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expression for the coefficients of turbulent transfer, remarking 

that the usual Prandtl formulas (with a - const) are Inapplicable 

for a compressible gas. At the same time Alplnerl (following Ferry, 

Llbby et al.) had recourse to a linearization of the boundary layer 

equations and their reduction to an equation of the type of the heat- 

conduction equation in the effective plane of the variables I = l(x) 

and  (streamfunction). The evaluation shows that the data by Alplnerl 

et al. are in good agreement with the mathematical model developed In 

the test, i.e., with the method of the equivalent problem of thermal 

conductivity, in other words, the transformation to a parabolic equa- 

tion in the effective plan? of £=*£(*) and f|»yls admissible. 

The considerations and conclusions of the Chapters It and 15 are 

thus verified within a wide range of variation of experimental condi- 

tions. 
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1. V 

2. I/« 

cp 

3. «* v. w 

4. P* p. f,   T0 

5. U« v. X,   a. 

LIST OP MAIN DESIGNATIONS 

is the vector of velocity. 

are Cartesian coordinates. 
are cylindrical coordinates  (Part 1). 
are cylindrical coordinates  (Parts 2 and 3). 
are spherical coordinates  (w ■ cos  6 — 
Part 1). 
are the velocity components along the 
«, r, (p axes (and also along the x, y3   a 
axes In Division IS.1*). 

are the pressure, the density, the temper- 
ature, and the stagnation temperature of 
the fluid or the gas. 

are the dynamic and kinematic viscosity 
coefficients, the heat-conduction coeffici- 
ent, the temperature-conduction coefficient, 
and the diffusion coefficient (with "T" 
subscripts, e.g., v™, effective turbulent 
values). 

are the specific heat constant pressure, 
the specific gas constant, the adiabatic 
exponent. 

op To    are the enthalpy, and the stagnation 
enthalpy. 

are the magnetic permeability, the mag- 
netic viscosity, and the electric conduc- 
tivity. 

are the Mach number M, the Reynolds number, 
Prandtl number, and the Nusselt number. 

are the magnetic Reynolds and Prandtl 
numbers (Chapter 18), 

are the frictional stress, and the heat 
flow. 

are the momentum, enthalpy, moment of 
momentum and kinetic energy flows, and the 
mass flow rate of the fluid. 

13. B ■ u H, H, j       are the magnetic induction, the magnetic 

6. op. Rt    K   ' ov 

7. i - opT,   i o ■ 

8. V 

9. M. Re,  Pr, Nu 

10 Re, n>  Prm 

11 T, <7 

12 J» Q«   H> E>   G 

■ 

I 
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field strength, and the current density 
(Chapter l8). 

14. a,  B,  Y»  <S>  e> 0 * B/ot are constants   (power exponents)  In similar- 
ity transformations 

15. A,  B,   C3   Dt  r,  Hy  etc.  are constants. 

16. 5,  n are the Dorodnltsyn variables  (Chapter 18) 
Independent variables In the equivalent 
problem method  (Chapter I1*,),  etc. 

are the reduced coordinate   («p ■ Byx  )  and 
functions of the coordinate cp. 

u =    are parameters  (also m *   (p«2),,,,/?«2)  In 

§15.5). 

Is the stream function. 

Is the Prandtl mixing length. 

are the magnetic Interaction parameters 
(Chapter 18). 

Is the stolchlometrlc reaction coefficient 
(Chapter 18). 

are the reduced variables (Chapter 13). 

Is the unit tensor. 

MAIN SUBSCRIPTS 

when the Jet leaves the nozzle (also for 
the stagnation parameters). 

on the Jet axis. 

» In the surrounding medium (In particular. 
In the comovlng flow). 

T means pertaining to turbulence. 

w at the wall surface. 

^ at the combustion front (Chapter 17). 

17. 
etc. 

18. 

"  P«/P 

19. «P 

20. I 

21. Nt   S 

22. n 

23. Ut   V,   J3   T, r 

2k-   6ik 

m 
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