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DECISION NETWORK PLANNING MODELS

by

Wallace Bruce Stewart Crowston

Submitted to the Graduate School of Industrial Administration on May 1,
1968, in partial fu'lillment of the requirements for the degree of
Doctur of Fhilosophy.

ABSTRACT

This thesis develops project planning models that allow the
possibility of specifying alternate ways of performing any of the jobs
in the project. The "job altcrnatives™” for any task may have different
times, costs, resource requirements and possibly different precedence
relations witbh other jobs in the project network. The problem is to

select the particular way in which each job wiil be performed and schedule

the resulting jobs so as to minimize the cost of the jobs plus the cost
associated with the completion date of the project,

The problem of selecting the optimal job alternatives in networks
witi: no resource constraints is formulated as an integer programming
probiem. One constraint is required for each set of joh alternatives

and one for cach possible path in the original project network. Aiguments

are dcveloped to show that a substantial number of che precedence con-
stralnts are redundant and may be eliminaced. To accomplish this re-
duction in problem size an algorithm related to the critical path
algorithm 1s developed to reduce cach network to an equivalent network
containing only job alternatives ard maximal distances bectween them,
Jobg with nc altexnative are eliminated.

Two branch and bound routines are then developed to solve the
problem, Onec of these Is tested on a serles of problems and {3 shovn
to be efficient. An integer programming algorithm is developed to
serve as a sub-routine in the branch and bouad algorithms. It is {ast
in that [t uscs the critical path algorithm to solve problems,

When tesource requirements are added to the tasks of the project,
and the total availability of rcsource per period {s constrained, the
problem of scheduling the jobs s0 as to minim{zc ¢(ompletion date becomes
extremely difffcult. Nine heuristic routins for the loading problem

e
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are developed and tested. Of these a serial loading rule, operating
on a job list ordered by late start, with no job bumping, proves
superior, Three methrds of generating combinations of job alternatives
to be loaded were ciami:ed. These were complete enumeration, pairwise
interchange and multiple pairs interchange. None of the methods pro-
vided good solutions in reasonable amounts of time.

To show the generality cof the planning modal developed the integer
programming formulation of the project problem was adapted to the m x n
job-shop scheduling problem, the single product assembly-line balanciag
problem and the problem of planning projects under incentive contracts.

The~is Supervisor: G. L. Thompson
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Chapter |

DECISION NETWORK PLANNING MODELS

The growth of interest in quantitative solutions to management
problems has resulted in a rapid development of planning models, based
on network representation of the aciivities to be performed. Process
charts have been used to show basic work elements in a single task and
the order in which they must be performed. Networks have been vsed to
show the required job ordering in large construction projects and net-
work based algorithms have been de 'eloped to find the total time
required to complete such a project.

Although the applications of the models are at different
levels of detail, they have many common characteristics. In each case
thare may be constraints in the problem that effect the ''time'’ at
which the individual planning units, elther work elements or jobs may
be performed. Thase may take the form of an explicit restriction that
a job must start on a particuler day or that the jJob cannot be started
before a given day., Alternately, a job may be constrained not to
start untll some prior job is finished. For example, the celiar walls
of a house cannot ba constructed until the footings are laid. This
second type of time constraints will be called ''precedence' constraints,
The graph of Figure i-1 shows a series of tasks S‘ to S, related by

7
precedence constraints which are graphically illustrated by directed

iine segment. In a particuler case, say , we lmply




2
that S, Is a predecessor of S, and conversely S, is s successor
of S;. The nodes representing planning units and the directed line

segments make up the network to which we have referred.

Figure 1=]

In addition to the precedence relations, planning units may
be relatad by a mutual dependence on a limited resource. In a process
chart of the man-machine variety, both the man and the machine are
considered to be resources and they may be physically restricted to
perform only one task at a time. Thus, If the man {s required to
perform both 83 and S, even though no technological constraint
exists between them, the jobs must be performed serially. That Is, he
must perform S3 then S“ of Su then 53' but not both together.
For protiems of practical Interast, the number of feasible sequences
may be large and the problem of find the ''best'' sequence on all
resources Is & difficult combinatorlial problem,

Finally, the planning units may be related technically by the

nature of the project that is bsing performed. It Is concelvable that
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in a construction project there may be two methods for performing &

particular job’wlth different costs and different performance times,
For example, |f wooden partitions are required, they may either be
purchased in an assembled form and be quickly installed or they could
bs fabricated on the site by carpenters. We call this kind of mutuelly
exclusive aiternative a '"job alternative' Interdeperdency because we
must choose betwaen the two methods of performing the task. Many
additional types of Interdependancy could exist between planning units.
Perhaps if the partitions are pre-assembled, then a particular design
for the electrical system is required. We will term all such relations
which are not the 'job alternative' Interdependency described above,
Yother'' interdepcndency.

This thesis will develop network mode!s that Include
precedance constraints and the possibility of resource constralnts.
Each model that is discussed Qlll include sets of mutuaily exclusive
tasks, that is ""job alternative' interdependencies or as we shall term
them, ''decision' nodes. In addition, 'other' interdependencies may be
Imposed on the sets of mutually exclusive tasks., The fuactional setting
>t the models will be the (construction) project scheduiing problem
but, In fact, the theory developed would be applicable to a wide range
of planning models.

In one chapter of the thesis, we will exanine the problem of
selecting from the sets of ''job alternazives' the particular jobs we

wish to perform. In terms of our original axample, this might be the

cholce of pre-assembled partitions. (f thers is a large number of




decision nodes in the network, there will be very many possille combina-
tions of decision Jobs that we can select. To evaluate a particuler
solution, that Is, the choice of a particular set of decision jobs,

one from each mutual}y exclusive set, we must evaluate the cost of the
Jobs plus the effect that the choice of these jobs have on the comple-
tion date and thus the completion cost of the project. We will call

the choice of a set of decision jobs a ''design'' problem and the calcu-
lation of the minimum time for completion of the project, given a choice
of decision jobs, an ''operating'’ problem. Note that it is necessary

to solve an ‘‘operating' problem to properiy evaluate any ''design'' and
that an optimal ''design' is one which minimizes the sum of job cost and

completion date cost.

The interaction of ''design'' and ''operating'' problsms can be
seen in many areas of planning. If we wish to establish warehouses in
a manufacturer's distribution system, the ''design’’ decision is the
selection of the quantity, size and location of the warehouses. To
evaluate such a ''design'' we must find the total cost of establishing

H the warehouses plus the minimum cost for ''operating' the warehouses.

The '‘operuting' problem is the optimal allocation of customer demands
to warehouses and warshouse demands to factories so as to minimize
production, shipping and Inventory costs.

The problem may be Illustrated graphically with the following
design problem. If we have two design variables, x and y, each
having feasible levels 1, 2, 3, all possible designs are represented

by peths In the tree of Figure 1-2. For each path or each possible




5
design, it may be required that we solve an operating problem. In a

facilities problem, for example, plant layout, this implies that we

determine the best method of scheduling production for each possible

Figure 1-2

layout. These illustrations suggest that if problems have many
discrete design variables or If the opsrating problem we must solve is
a complex one, the dctermination of an overall optimum solution may be
difficult. |If methods can be found to reduce the number of designs
that It is necessary to evaluate or if efficient methods can be found
for solving tihe operating probliems, then it will not be necessary to
solve design problems sequentially., {n this thesis, methods for the
elimination of some designs and methods for solving cperating problems
In the area of project planning will be developed.

Chapter |1 contains a review of a wide variety of planning
literature. The work |s categorized by the particular sets of con-
straints that arc to be found In the models. That Is, we consider most
comblnations of precedence, resource and both ''job alternative'' and
‘other'' types of Intercopendencies,

Chapter |l develops a mode! for project planning that




contains precedence constraints and both ''job altarnative' and ''other"

interdependency constraints, It is assumad that In the project there
are a number of competing methods for performing some of the jobs, each
method having a different cost, a different time, possibly different
precedence relations with other jobs and different interdependencies
with other jobs. All possible jobs are considered in the project graph
and then in the scheduling phase the job alternatives that minimize
totei cost are selected. A numerical problem is introduced here that
will be used to illustrate the material of Chapters (1, IV and VI. |In
Chapter |V methods are developed to reduce the original decision network
so that the problem may reasonably be solved with standard integer
programming techniques.

In the solution of a decision network, it may be necessary
to solve sub-problems that minimize the cost of the 'design'' selected
with no regard to the cost of the 'operating'' problem, that is, the
cost of the minimum completion date. Essentially, the sub-problem is
to find the set of decision jobs that meets the ‘'job aslternative' and
"other'' interdependencies with minimum job cost. Chapter V develops
an Integer programming algorithm specifically for this problem. Chapter
Videvelops two branch and bound algorithms which solve for the best
"design'' given the cost of the decision jobs, the cost of the completion
dete and the Interdependency constraints. They solve the ''design'' and
the operating 'problem' simultaneously. Computational results are
given for one of these methods.

In Chapter Vi wa consider the full model, that is, project




planning probiems with precedence resource and interdependency
constraints. To solve the ''operating' problem in models having no
limit on resource usage Is relatively straight forward. It is simply
a matter of calculating the lungth of the critical path and evaluating
the cost of that finish date. When we add resdurce constraints, the
problem of calculating minimum project length for any given design may
be a very complex combinational problem. In fact, for large projects,
given current techniques and reasonable limits computer time, It is not
possible to find optimum or minimum length projects. For this reason,
we develop and experimentally test severazl heuristic lcading techniques.
The best of these heuristics is then used as our ''operating' rule to
evaluate various designs. The designs to be tested are generated first
by complete enumeration, then by pairwise interchange and finally by
multiple palrs interchange,.

As we have stated ahove, many nlannina nrohlams can be
represented by the combination of constraints we have discussed. To
i1lustrate this polnt, !n Chapter Vill the basic integer programming
formulation of our decision network planning problem is used to formu~
late the job-shop scheduling problem and the assembly-line baiancing
problem. These formulations prove to be substantiaily more compact than
competitive formulations of the problem.., Finally, the mode! is adapted
to projects with more complex criterion functions, specifically the cost
structure of incentive contracts, Chaptsar [X contains & summary of the
work, conclusions and recommendations for further research,

Several terms that ara common in the literature of project
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scheduling, such as garly start, will be used frequently in the
following chapters. These terms are defined rigorously elsewhere
[}5, hﬂ s0 that we will review them only briefly here.

A '“path'' through a project network is connected sequence of

nodes (jobs) and directed |ine segments extending from one node to some

other. In Figure I-1 we have a path from §; through S2 and 55 tn
57. The nodes §,, S“ and S5 do not lie on a common path. The
length of any path is simply the sun of the job times for all jobs on
the path. We now define the ''early finish' of a job to be the longest
path from the first job in the network to the job under consideration.
“Early start' time is simply early finish time of a job less its job
time. The 'critical path' of a project is the longest path from the
first job in the network to the final job in the retwork and is
equivalent to the minimun numbe~ of days required tc complete the
project.

The "latest start' date for a job is defined as the day on
which the job must start if the project is to finish exactly on its
dus date. We may calculate the value of late start for & job by sub-
tracting the length of the lonyest poth from the job to the snd of the
project from the dus date of the project. Thus a job can begin no
earlier than the early start time because its predecessors must flirst
be completed and nc later than late start or it will deley the finish
of the project beyond the due date. The difference betwoen lote start
and early start time s defined as job “slack' time, the measure of
permissible delsy for a Job. Other terms more uniqusly related to the

models to be discussed will be defined as requlred.

AWt IV 44




3 >

i
i
E
E
|
|
|
|
|
|
|
i
|

Chapter |1
A REVIEW OF SELECTED PLANNING LITERATURE

The management planning literature, like many other araas of
mapagement activ!ty, is susceptible to many possible categorizations.
Perhaps the most obvious breakdown follows the functional area of an
industrial concern and within this is a sub-grouping by problem area.
Thus under the production heading we have extensive and largely indepan-
dent literature growing up around the 'job-shop problem' or the
""gssembly~line balancing problem'. In finance we have the '‘capital
budgeting of interrelated projects'.

A second categorization might be by solution technique. Here
is a list of functional Jrea problems best solved by linear programming;
this list requires integer linear programming and so on. This approach
is closely related to a third categorization, the one to be used as the
framework for our discussion. The third structure divides planning
problems by the type of constraint found in the problem. To be explicit,
we have defined in Chapter | time constraints, resource constraints and
Interdependency constraints as possible dimensions of planning problems.
For simplicity we will not discuss the dimension ''uncertainty', nor will
we consider motivational and social problems of planning.

The possible combinations of the three dimensions and therefore
cur subheadings will be simple timé constraints, simple resourcs limits,
simple interdependency, problems with time and interdependancy, with
tims 2nl coicurce conttralnte wleh arecedence 2nd interdependency and

finally models with all three characteristics. To be included in any




10

two or three dimension category the mode! must emphasize some interesting
interaction of the relevant dimensions.
The following symbols will bs used throughout this 1iterature

review and the rest of the thesis:

Sy an individual job or planning unit
| if task S5; Is to be performed
o= 0 otherwise
- | if task S; Is on the critical path

" 0 otherwise
¢ cq the cost or revenue of task $S;
% tg the time required to perform task 3
} U; the maximum length of task S; If t; 1is variable
g Ly the minimum length of task S; if t; Is variable
é aj the reduction in cost c¢; per unit increase in tj,
! t} the time to perform §i
{ Wy the early start time of task §S;
*‘ We the early start time of S¢, an artificial FINISH job
% that Is constrained to start after all other jobs in a
é project are finished
| 0 the desired completion date or due date of a project

J: = Wg = B0, W - 020

0 otherwise
. D - Weg, D - WegD>O
We -

0 otherwise

¢
kj the usage per time period of resource r by Job §j
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Kr the availability per time period of resource r
Pi the probability of job S; occuring
S¢ an artificial START job that must be completed before

any other task can be started

Simple Time Constraints
The basic PERT or CPh model !{03. by, hﬂ is taken as the
example of simple time constraints. If fob S; Is an immediate prede-

cessor of job Sm this relation will te shown symbolically as §; Stm»

and in mathematical programming notation as Wi+ t; £ ¥, . An

graphically as

alternate graphical notation in common use represents the jobs as lines
rather than 8s nodes and represents immedlate predecessor relations by
intersections of jobs rather than by directed line segments.

$ $
T “n,

The length of the critical path in any network, say that of
Figure | - 1, may be determined as the value of> Wg in a solution to
the following problem,

Minimize g

Subject to W+ oy & W
M4y &Yy
IR
g ¢ 2% Y
G+ 3K Y
v+t & v
Vo4 ts K Yy
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e + te & ¥y
1+ H<S

Here we minimize the length of the project, subject to a set
of time constraints. one for each immediate predecessor relaticn in the

graph.

The dual problem formulated by Charnes and Cooper [IS] defines
a variable v; for each job In the network. Then all jobs thet have no
predecessors are included in an equation of the form
Vi = 1
to initiate an artificial flow of one unit into tne network., For all
other jobs, not including S¢ , they constrain the flow in from the
predecessors of the joi. {= z-ximum of | unit) to equal the flow out to

immediate successois.

V3 - W+ vy = 0
ror the final node they establish a sink fnr the one unit flow.

- Vg = Vg = -]
Thase constraints guarantee that e set of jobs will be chosen that will
form s path through the network. Finally the criterion function is

N
! Maximize q t; Vi, N= tstal number of Jobs in the project
=

b

Thus we select the longest path in the netw.rk.

A third possible formylation would establish a censtraint for
each path in the network and constrein Wy¢ to be longer than all
paths . Since this approach implies complete knowledge of all paths,

it would be @ simple matter to selec.t the longest path directly.

ICSrensaeiiuymisali
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Simple Interdependency.

"Job alternative'' interdependency has been defined as a set of
mutually exclusive alternative planning units. Originally we considered
the units to be alternative methods of performing some job, but we may
also consider them different results of some stochastic process. A
natural source of such outcomes would be a research or development
project.

Eisner DO] proposes a network with decision nodes to

represent such situations.

O—<

If we arrive at decision node S; then outcome S;2 will

occur with probability Pi,l or SI,Z will occur with probability
P;'z where Pi,l -+ Pi,z = 1. Essentially he constructs a decision
tree with time value and job name labelling. Then using standard
probability calculations he obtains the probability of various network
outcomes and attaches to them the sum of the times from the relevanrt
path. We categorize this as simple interdependency becausc there is no
Interaction between times and probabilities.

Other work that can be classed as pureinterdependency
emphasizes salution techniques for 0,1 combinatorial problems rather
thar, the application of techniques to planning problems. Examples of

such articles are references [62, 68].

Simple Resource Constraints.

The general knapsack problam may be interpreted as an example
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of a simple resource constraint. We have a number of available
“‘planning units' which may be selected, each using some amount of a

scarce resource, or resources. The object is to select the set of

these units which will optimize a linear criterion function, subject

to constraints in the amount of eazh available resource. In our nota-

tion this may be written
Max ﬁ c; d;
[
m
Subject to ¥, k[ di € K" r=1, 2,..R
= 0 € d; 1 integer
Here again dj = | implies that a planning unit is selected (for the
knapsack) and d;= 0 implies that is is rejected. C; 1is the value
to us of unit Sj.
In his discussion of this problem, Dantzig [_2’4] points out
that linear programming solutions of this problem give values of the
di which will not all be O0-1 but instead have fractional values. |If
an integer solution is required, he suggests that rounding is usually
""gocd enough'' for most practical problems. For exact integer solutions
in problems of one constraint, he suggests the dynamic programming
approach of Bellman LS] |f problems have two or more constraints, he
suggests the use of linear programming with constraints added to elim-
inate fractional extreme points. More recently Glover [lo(;J and
Weingartner and Ness [7‘0] have developed truncated enumeration methods

for the solution of this problem. More gene.ally the large number of

Integer programming routines now avalilable may be applied to this problem.




Weingartner [75, 76) shows that the Lorle-Savage [52] capital
budgeting problem is essentially the knapsack problem as described
above. The cutting stock problem has been formulated by Gilmore and
Gomory (371 and Pierce [61]1 as a form of the knap.ack problem. To
begin we wi'll define a resource as one of the possible customer order
widths. Thus given customer orders for KF wunits of item r we must
schedule our cuts soastproduce at least KI units., The planning unit,
S;, is one pattern of cuts that may be made from a stock roll. Thus we
must enumerate all possible combinations of order sizes that might be
taken from each stock roll and define each different combination as a
separate unit S; =-- for, say, a total of m wunits. Then, if we wish
to minimize the stock rolls used and yet meet customer requirements, we

can solve the problem.

m
Min. 2. 4
I=l
m
Subject to Z k{ di £ KF' r=1,....,R
[
0< di € 1 integer

Gilmore and Gomory, and Pierce have developed special techniques for

the solution of large cutting stock problems.

Time and Interdependency Models.

The articles to be discussed in this section are typical of the
ganeral literature in the ciass of interdeperidency included. In terms
of our definitions, ''job alternative' interdependency is more common

than ‘‘'other'' interdependevicy. 1t Is true, however, that in the models
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with job alternatives generated by probabilistic research or production
outcomes, a Job whose sole predecessor may not be performed may be con-
sidered to be contingent on that predecessor. This, for example, Is
true of the article by Eisner (28] discussed above.

Elmaghraby [29] intrcduces a series of logical relations to
standard network formulations. Converting his work to our notation, we
have a planning unit or task S; with a probability of occurrence and
8 vector of parameters such as time, cost, etc., attached to it. We
now define logical relations that may exist between the planning units.
!. '"and" or logical intersection of two events, propositions or

activities. For example, unit S3 will occur if both events §,
and S, occur
d3 £ bdy + (1-b)ds
0<¢p<1
d; 0-1 integer
2, "Inclusive-or'" 1.e,, the union of two or more propositions. Node
S3 will occur if §; or Sy or both occur
d3 &di+ d,
3. Yexclusive or', often referred to as the ring sum. S3 occurs if
either 5; or 5, but not both occur.
dy 4 dz +dy =2
4., ‘'decision'' node, i.e., @ node at which the system may transfer
along one path or the other with known probabilities. Elmaghraby

uses this node solely for non-deterministic branches.

d2+d3$|




Note thot relations 1, 2, and 3 would be included in our

definition of "other' intevdependency and 4 wouid be considered as ''job
alternative' interdependency. A graphical symbol !s defined for each

Interdependency relation so that A set of tasks and the 2

between them may be expressed graphically. However, if the nodes &ara

given performance times and the <::}-—-—-’<::) relation is interpreted

as an immediate predecessor relationship, then it is only possible to

have interdependency relations between units that also have immediate
predecessor-successor relations unless new symbols are defined. This

is an unnecessary restriction introduced by his attempt to show all

relations graphically, As we shall see, a programming formulation has

no such restriction.

Given the model as described above, Elmaghraby suggests a

complete enumeration of paths and shows algebraically that for each

such path a time and probability of occurrence may be determined. He
concludes by combining path time and probability information for an

overall expected value for project compietion.

The problem of determining @ project cost function, that is,
total cost at various completion dates, for the deterministic case {s
discussed by Kelley and walker (43). The length of the project way
vary because for each job there is a series of ''job alternatives'
(actually a continuous lirear function) with increasing cost, ¢j, and
decreasing time, tj. The operation time for job $; is constrained
to be within the uy.per time limit U; and the lower limit (;, that is

0 Ly S gy
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and cost C; = b; - a;t;

where bj 1is the cost of job S; performed in time L;

and a; s the cost of decreasing t; by one time unit.

Then given an absolute due date, D , the objective function is
m
Min 3 b; - ajty
=l
Subject to precedence constraints, one for each link in the graph

Wi+t K Wy

and finally We £ D

Kelley refers to a form of the Ford-Fulkerson algorithm [33) for
an efficient solution to the problem., Fulkerson [35] presents a similar
algorithm in full detail. Essentially, he interprets the problem as
one of network vlow and solves the dual of this problem. The algorithm
begins by setting all jobs at their cheapest (longest) value and calcu~
lating the project length that results, setting D, (due date} equal to
this value, and crlculating the cost, P(D). Then D is decreased and
a new value of P(D) as well as W;, t; for all jobs is calculated.
The process is continued until a shortest feasible length for D s

obtained. It Is then possible to plot the project time-cost curves.
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Fulkerson points out that the breakpoints of this piecewise linear
function occur at integer values of time if the bounds on job lengths
are integers. The algorithm has been shown to be efficient in practical
applications to large problems [60]. In this formuiation it may be
assumed that the variation In job time and cost is a result of the appli-
cation of more or less resources to the job. Since there is no attempt
to restrict the amount of resource used at a particular point in time,
by all jobs, the model is not considered to have resou-ce constraints,
In some instances it may be unrealistic to assume a continuous
linear reiation between time and cost for & task in a project. For
example, if a job may be only performed by an eight man crew on regular
time, ¢r by an eight man crew on regular time plus two hours overtime,
there are two discrete ways to perform the job (two ''job alternatives')
and linear combinations of these methods may be technologically or
contractually infeasible. The problem of discrete ''job alternatives"
in the time/cost problem is discussed in references[]9, 26, 57, Sq.
Moder and Philips (58] summarize some work by Meyer and Shaffer [57] on
this problem. Their formulation is as follows:

Min, & cp; dij

Pl
t

S.t. precedence

Wi+t Sy,

or if a job alternative situation is involved

Wity di 2 digeeatin(i) dik(i) € W)
and Wp £ 0
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whers
! if Job Spj s performed
d -—
i
J 0 otherwise

This assumes that each job alternative
Slj, J‘I ooock(l)
has identical precedence and successor relations.

Finally, we require an interdependence constraint

k(1)
ZE dij= |

J1
0 éd!j < integer

A more general and more efficient integer programming formula-
tion is presented by Crowston and Thompson [19], 1967. This model will
be presented in detail later, but a short summary is included here.
The job alternatives are again represented by 0-1 variables, dijn
which for any particular job, are constrained

k{1)
2 dij =1
j=1
In addition, however, any set of alternative interdependence constraints

may be written on these variables.
djj +dpy €1
dij € dmn
d;j <dpn
etc,

Note that although resource constraints are not considered specifically

here, alternative interdependency constraints could be written to

T TS

1




constrain the total usage of a consumable resource over the life of the
project.

The length of the critica, path as defined in Chapter | ic con-
strained by a set of equations which represent paths in the network.
Paths which cannot become critical may be dropped from the problem,
Rather than generate 2 time/cost curve, they establish a due date, D,
with overtime penalty and undertime premium and solve directly for the
optimum set of jobs to be performed. It would be possible, however, to
solve a series of problems, setting progressively tighter upper limits
on the critical path (W D) and thus generate a time/cost curve.

The article also gives an outline of a heuristic technique for
sclving problems with time constraints and the ''job alternative' type
of Interdependency. It is assumed that all alternatives for a given
Jjob have identical predecessoi - successor relations and that the
fcllowing inequalities hold:

tyl <t oo <tig(i)
Cb|;> Chz coe > Cik (i)
The routine is described as follows:*
I. Technologically order the jobs
2. Set each decision node to the asiternative having lowest

cost.

3. Caiculate the critical path,

4. Reorder by Early Start

* Crowston and Thompson (19], pp. 20-21.
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5. Go to 7
6. Recaiculate the critical path starting at the position in the
ordered job list held by the decision node of step (10)

7. ldentify all decision nodes in the critical path

8. For all the .nodes of step (7) calculate the net reduction in total
project cost achieved by substituting the more costly alternatives

9. |If no alternative reduces overall cost, go to (12)
10, Find the alternative that gives the maximun cost reduction and
switch the relevant decision node to that alternative
11. Go to step (6)
12. Review all decision nodes that were previously chosen to see if
sufficient slack has been generated to allow the reintroduction of
a longer hut cheaper alternative. If no such opportunity exists,
go to (14)
13. Introduce the cheaper alternative found in step (12). Go to Step
(12)
14, HALT

The two smali problems tested by this routine gave the c¢ptimum
solution although, as the authors state, it will not always do so.

A routine originally published in the D.0.D. and N.A.S.A. Guide
PERT Cost [26] and in Alpert and Orkand [2], 1962, and extended in
Moder and Phillips follows a somewhat similar routine.* At step (8),
however, the replacement job chosen is the one with minimum incremental

cost per day, If job S;j were originally chosen, the measure would be

* Moder and Philips (58), pp. 109-122.
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Cim = €y

tij = tim where Sjn is the alterna-
time being considered. However, if this would cause the critical path
to shift, then, rather than use the incremental cost criterion, they

choose the replacement Job so as to minimize ICip - C;jl. Each

switch is followed by a review of previously selected jobs to see if

sufficient slack has been generated to allow a switch back to an original,
cheaper job. This is similar to steps (12) and (13) of Crowston-
Thompson. As the process continues, the cost of jobs chosen increases
and the project length decreases, mapping out a time/cost curve, but

not necessarily the optimum one.

Resource and Interdependency Constraints

Models in this category are essentially knapsack problems with
interdependency constraints added. For example, Weingartner [75, 76]
adds both ''job alternative'' and 'other'types of interdependencies to
the Lorie~Savage capital budgeting problem. The resource constraints
are budget limits on the capital expenditure by period. Thus in each
period we sun the capital requirements of the projects to be operating
in that period and constrain the total amount to be less than the
budgat limit. In cur notation his model is

m

Maximize 2, C; ¢

{=l

whare Cj; is the net present vaiue of project $;
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Subject to g k{ d; gKr r=1t1.....m

ixl
where K¥ is tne budget limit in period r and kf Is the cash used
by project S; in period r. The d; are again 0-1 va-iables. Any
linear constraints in the variables d; may be written to express
interdependency conditions. The model may then be solved by integer
linear programming,

In the latc: paper [75) Weingartner adds to this model a
time dimension by allowing a given project to be represented by a
mutual ly exclusive set of projects (job alternatives), one beginning
at each feasible starting day of the procject [Sgt' Sbt;i, S§t+2
.....]. This follows the practice of Marglin [56]. Even though time
is introduced inwo the model, no explicit provision is made for time
precedence constraints, a natural dimension of the capital budgeting
problem. In this article a new and reportedly efficient algorithm
based on the dynamic programming solution to the knapsack problem is
presented. Unfortunately this method will not handle the full range
of possible interdependencies due to a rescriction on the inclusion of
negative variables.

A very similar problem is discussed by Ront [61] and

te.ned the ''selection problem'. Explicitly, the problem he wishes to

solve Is
m
Minimize = cj 9
in]

1
Subject to 3. k| d; &K" ral.lR
i

e
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where the K are assumed to be integer and a set of linear Interde-
pendency constraints are written in the variables d; i=l...,m., For
example, the fact that a job may be performed by several resources or

resources in combination may be written as

where the k;j would differ for the various alternatives. Root solves
the problem by applying a theorem from symbolic logic to reduce the
total set of possible solutions. Then by costing each remaining

solution, he can select the one with minimum cost.

Time and Resource Problems

Many in ortant scheduling problems may be described as
time and resource constraint problems. Among these are forms of the
project scheduling problem, the job-shop scheduling problem, and the
assembly~-line balancing problem. The project scheduling problem, of
course, appears in conte.ts such as marketing and economic planning
(31) as well as production. All of these problems have been formulated
as integer linear programming problems but because of the high number
of constraints involved, these are not suggested as possible solution
methods for real problems. For example, Wiest [80) estimates that a
project with 55 jobs in 4 shops with a time span of 30 days would have
some 5,275 equations and 1,650 varfables, not including slack variables
or constraints added to assure an integer solution. As a result,
heuristic solution methods have heen developed for these problems.

The essential problem is that the leve! of resources is constrained by
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period and the jobs, given the usual time constraints, may shift
through time. Thus,in programming formulations, it is necessary to
include the possibility that the job may shift through time, and this
requires many variables and many constraints., Heuristic solution
techniques can handle this problem with concise bookkeeping techniques.
The solutions, however, are not necessarily optimal.

We will examine several heuristic approaches to the
resource-levelling problem in project scheduling. It is assumed that
in this problem the resources are not fixed but that the criterion
function is so related to period by period resource levels that we are
motivated to smcoth the dally resource usage. Burgess and Killibrew
(12) describe an iterative procedure that attempts to minimize the sum
of squares of daily resource usages. This criterion, while minimizing
the standard deviation from the project mean, still might allow ~ high
peak in any given time period.

The routine first technologically orders the jobs by
Early Start, and if jobs are tied, ranks the shortest first. In the
second stage the jobs are loaded, beginning at the bottom of the
technological list. Each job is scheduled as late as possible, subject
to the condition tnat the daily usage should not be too far above or
below the predetermined average daily resource usage. The late start
of cach job is strictly set by the assigned start time of its successors.
The cycle is repeated, each time attempting to reduce deviations from
the mean, until no further improvements are made. The best schedule

is then chosen.
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The method of Levy, Thompson and Wiest [50) concentrates
on reducing the peak usage of the project resource. Heuristics which
drive the solution to this goal would also work to meet the Burgess
criterion. The jobs from all projects to be simultaneously scheduled
are scheduled at Early Start and then the daily demand for ea~h resource
is plotted. For the first resource an initial trigger level is set,
one unit below the maximum usage. It is assumed that the resources
are ordered based on some priority system, perhaps daily cost per unit.
Then all the jobs contributing to the particular peak and in addition
having enough slack so that they may be scheduled beyond the peak are
listed. Then one of the jobs is chosen probabilistically, the proba-
bilistic weight being proportional to the job's slack time, and the job
is shified 3 random amount withir the slack, forward, The resource
peak again is calculated and a lower trigger level set. This process
continues for the first resource until no further improvement is
realized. Then freezing the lowest feasible limit for the first
resource, the procedure is repeated for the second resource and so on
through 211 recources. Now the jobs from each project are segregated
and again an attempt is made to shift them and reduce the aggregate
trigger level for all projects. Finally, when no further iaprovement
is possible, the final schedule and trigger levels arc stored and the
process is completely repeated. Due to the probabilistic element in
the decision rule, a new schedule will result. After several repeti-
tions, the best schedule of those generated can be chosen.

The next problem class to be discussed will be scheduling
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to meet stated resource constraints. The early solutions to problems

of this type were obtained with Gantt charts and their use in job=shop
scheduling continues. The resource constraint in the job-shop problem
will be the limit on machine availability and the time constraints are
provided by technological ordering of operations on a particular work
order. The criterion function may be to minimize completion time of the
whole job file as in the integer progremming formulations of Bowman [81,
Manne [54), and Wagner (73). Alternately, it might be the minimization
of idle machine time (identical to minimum final completion time for

the fixed job file case) as in Conway and Maxwell L18] or a complex
function of order delay cost as in Carroll (141,

Many heuristic approaches have been developed for this
problem [18, 20, 381 and in many of these approaches similar decision
rules are used singly or in probabilistic combination to dispatch jobs
from a queue to the machine. we will quote from a description of
several such rules: *

1. S10 (shortest imminent operation)
when a facitity is available, select that item in the queue
which has the shortest machining time on the facility.

2. LRT (longest remaining time)
Select the [tem which has the most total machining time
remaining.

3, J.S. (job slack per operation remaining)

* Crowston, Glover, Thompson and Trawick [20]), p. 2.
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Subtract the total remaining machine tire for a given job
from an arbitrary finish date, DD, Divide this slack by
the number of operations remaining. Select the item with
minimum job slack per operation.

L., LIG (longest imminent operation)

5. FIFO (first in, first out)
Select the item that arrived first in the queue.

6. MS ({machine slack)
For each machine calculate the total machining time remaining.
Select the job in the queue that goes to the most heavily
laden machine next. Break ties with S.,1.0.

Many other rules have been attempted to specifically meet
more complicated criterion than the minimization of overall completion
time, It will be interesting to note below that attempts have been
made to apply severa! of the simple rules to the project scheduling
problem, but that more complex rules have not as yet been translated
to the project problem.

Two main approaches have been su ‘ed for solving the
fixed resource problem in the project scheduling context. Neither
approach guarantees an optimum solution, nor consistently outperforms
the other. Representative of the first apprcach is an article by
Kelley f44], The routine may be summarized as follows:

1. Technologically order the jobs, calculate early start,
late start, and slack. Within the technological ordering, reorder by

stack, lowest slack first,




30

2, Start with the first activity and continue down the

list,
(a8) Find the early start of the activity.
(b) Schedule the activity at early start if sufficient
resou~ces are available. If resources are not avail-
able, two alternative routines are suggested cl, c2,
(c1) Serial Method: Begin the pb at the earliest time
that resources are available to work it for one day.
The job may be split if necessary.

(c2) Parallel Method: Find the set of all jobs causing
the resource violation and rank them by total slack.
Delay a sufficient number of jobs with the highest
slack so that those remaining on the list can be
scheduled.

3. Repeat step 2 for all jobs.

4. Repeat the whole routine with various orderings on the

technological list.

In addition to the possibility of allowlng job-splits,

Kelley suggests that we also allow resource limits to be violated by
small amounts. The basic heuristic in the original job ordering and in
the parallel loading technique is the use of job-slack (J3) as a
criterion for shifting jobs forwerd., This Is a reasonable approach
similar to that used by Levy [50],

The second approach, detailed in Moder and Philips (58]

uses Maximum Remaining Path Length, or equivalently Late Start, as a

O
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basis for delaying jobs (LRT). Note that if two jobs have a common
early start-time, both measures are cquivalent. That is, the job
delayed because of a higher slack would in the same way be delayed
because of a lower Late Start time. Some other features of the routine
are different than that suggésted by Kelley. A main feature is a list
of unscheduled jobs whose predecessors have all been schaduled, ordered
by Late Start, and an ordered list of finish times of scheduled jobs.
Thus the routine steps through time to only those days when a change

of resource usage is possible, On such a day it examines the list of
avallable jobs and ends either when the resources are exhausted or the
job file is completed. At this point it again jumps ahead. As we
implied at the beginning of this section, examples can be constructed
cto favor or penalize either of these approaches.

Finally, we will show that Salveson's [66) formulation of
the assembly-line balancing problem has the structurc of a time-resources
constraint problem. The resources, in this instance, are the work
stations and the work times at the station will be the resource level,
Then, if a precedence ordering exists between jobs, as would usually
be the case, a job may not be assigned to a work station unless all its
predecessors have previously been assiaoned to that work station or
earlier work stations. |In addition to the above statement, the problem
may be complicated by any of the interdependencias we have discussed.
For example, it may not be feasible to do a particular pair of jobs at
one station, and ther=fore, we must constrain the problem to prohibit

this. Also, it should be pointed out that '‘alternative interdependency'



32

relations would probably be the most efficient method of actually
formulating the problem. Finally, as in the other problems of this
section, it must be noted that practical problems must be solved by

heuristic methods (}2).

Models with Resource, Time and Interdependency Constralints.

Problems in this category abound in the industrial world.
Wherever there is an element of physical design connected with a
scheduling problem, then interdependency is an implicit part of the
problem, For example, we may consider the problem of an industrial
engineer attempting to design a job with the graphical technique of
man-machine analysis iﬁ]. There are several alternate ways for an
operator to perform each necessary function and operations when combined

may require less time than the sum of the same operations performed

singly. Finally, many possible orderings may be possible, although
some technological ordering constraints are involved in many problems.
Each production alternative may have an important effect on the sched-
uling problem. Similarly, design of construction projects will have
important scheduling implications.

Wwith the exceptlon of the Weingartner article [75]) which

coes not fully inciude the possibility of time ordering, no mode! was
found to include resource, time and both types of interdependercy con-
strainrts. It is true, however, that the job-shop models of Bowman 18]
and Wagner (73} could be easily generalized tc include this possibility.
The use of job alternative interdependency in heuristic programs (s not

uncommon .
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Two master's theses written in the Sloan School of Manage-
ment, M.1.T., expand the usual statement of the job-shop scheduling
problem to include the possibility of job alternatives, with two differ-
ent practical interpretations of what these alternatives might be.
First, a thesis by Russo [55] reports on a simulation of a job-shop
with the possibility of alternate job routing. In the usual simulation
we assume for a given job that the order of operation isstrictly deter-

mined, that is

da,1 +4d3.2

d3,1 + 43,2

dz" = d3’|




It is clear that this situation can be categorized as a time and resource

model, however, since his heuristics specifically detalled each alterna~
tive route, then calculated Information for local dispatching rules

based on the two alternatives and then decided between them, it is
included here. One of the most effective approaches he discusses, allows
all jobs in an alternate chain to enter queues for their respective
machines wher the predecessor of the alternate chain is completed. Then
in each queue the jobs from the alternate chain are ranked by a standard
dispatching rule. 'ile then allows that job to go first, which is selected
by the machine queue discipline,

Clermont [17) allowed for the possibility of sevcr-al
machines performing a given job. This more clearly resembles our job
alternative interdependency case. His results show that the heuristic
Russo found so successful only improved performance cf the simple dis~
patching ruies when the total machine ioadings were highly imbalanced.
In the case of balanced loads, switching actually decreased the perform-
ance of simple decision. For the balanced case only the simple switch-
ing heuristic 'switcn if the alternate queue is empty' consistently
improved performance of the simple dispatching rules. His results
also indicate that a dispatching rule "Covert' derivad by Carroll (14
completely dominates all conventional rules tested.

Job slternative interdependency is also found In scheduling
techniques designed for the 1yrge project problem. The series cof SPAR
programs by Wiest (80) will now be discussed. With each job he associ-

ates three operating ievels, maximum crew size, normal crew size and
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minimum crew size., Of coursc, the ' length is inversely a function

of resource level. The jobs originally at normal crew size are origin~
ally ordered by early start time, one possible technological order. Then,
as in the Moder and Philip routine discussed above, a sub-list is gen-

erated and continually updated of jobs available for scheduling. From

this list jobs are selected for scheduling with a probability inversely
related to the available stack ‘f the job. (f a job is selected to be
scheduled and the resources are unavailable, it is left to be schedule
in a subsequent period.

Several subsidiary heuristic routines operate within the
basie framework outlined above. If the stack of a job is low, an
attempt is made to schedule it at maximum resource usage. If the
resources are not available for this, a subroutine attempts to borrow
resources from jobs operating on that day with normal or maximum
resource. A second approach is to find jobs using the tight resource
and delay their start for one or more periods. This frees their
rescurces for the critical jocbs. Finally, if all elsc fails, the
critical job wouid be delayed one period. After the application of
these and other routines, a final schedule is produced. Since there
is a8 random element in the choice of jobs to schedule, it is suggested
that the process be repecated severa! times and the best schedule
selected.

An important addition to the program is 3 search routine
that progressively shifts the leve! of initial resources from solution

to solution in attempt to find those limits that will minimize the sum




36

of re-ource cost and project completion time cost.

Discussion of Constraint Categories

A: we have seen the categories chosen do not allow a
categorization of all planning models. In several cases a good
arauynent could e made against the allocation we have decided on.
Nevertheless, for several reasons, this particular categorization is
useful. It does suggest that more complex models may have relevance
in functional areas where they have not yet appearad. For example,
time precedence constraints would seen relevart to the capital budget-
ing problem, further use of alterrative interdependencies '~ the job-
shop prohlem and the assembly-line problem.

an even more fruitful use of such a framework will be te
suggest that researche:s examine a broad rangs of literature in their
search for suitable sclution techniques., Examples of this certsinly
have already occrrred. For examnle, Wiest [BOJ uses the Bowman |8
job-shop L.P. fornulation as the base of his project scheduling formu-
lation. A thesis by Kr'aht (6] attempte to relate heuristics in the
job=shop problem to heuristics in the groject scheuuling problem.
Finally, Wilson [82] shows how severa! line balancing algorithms may
be applied to resource leveling. Thiz comparison also allows us to
make some gencra! statements about the efficiency of various sdlution

techniques.
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Solution of Planning Models

For several categories of problems, algorithms have been
developed that are wmuch more efficient than any of the existing program-~
ming routines. For example, the longest path algorithm very quickly
determines the critical path of a simple time constraint problem.
Similarly, the Ford-Fulkerson technique efficiently finds the optimum
job lengths and job start times for a project given a fixed due date
and a bounded inverse linear relation between job cost and job time.

Thic, of course, is a special case of the time-~interdependency constraint

There is a second set of problems for which special
efficient solution techniques have been developed, but because of the
nature of the problem, the techniques may be considered as restricted
integer programming routines. In this category | would include the
truncated enumeration methods of Weingartner and Ness and that of
Glover applied to the simple resource (or knapsack) problem. Also
Root's aigorithm for the selection probiem, which is a combined
resource-interdependency problem, is in this group. We may summarize
the above cases, then, by saying that we may obtain optimum solutions
more efficiently with existing techniques than with programming
me thods.

We now shift in the specirum to those problems for which

optimum solutions are only available through programming methods., It




38

should be emphasized that no clear line can be drawn between problems

in this group and those in the previous one. An example of this would
be problems with pure interdependency constraints. We have stated

above that certain simple resource or resource-interdependency con-
straint problems ma' be solved with special computational methods. On
the other hand, if many resources were involved, it would be necessary to
turn to conventional integer programming techniques. Similarly, for
many large problems with pure interdependency constraints, the 0-1 tree
search algorithms wouid give the most efficient solutions., Finally,

the time~interdependency problem,when the job alternatives are discrete,
Is best solved by conventional integer programming routines [70].
Techniques &sre available, however, for this problem, as we will show
later, that will significantly reduce the number of required constraints
and the number of variables. In this regard, it is interesting to
observe that for integer programming problems in 0-1 variables, added
interdependency constraints, by eliminating branches in the feasible
solution tree, actually make problems easier to solve.

Heuristic routines are available for the above problems,
and we have covered several approaches to the time-interdependency
problem, given discrete jobs, no alternative interdependency and commor
precedence-successor relations for job alternatives. It can be shown
that existing heuristic methods are not at all appropriate for problems
with any reasonable alternative interdependency complications,

The final category finds combinations of time and resource

constraints and, as we have discussed, this grouping requires large
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numbers of constraints and variables for programming solutions., As a
result, these problems are solved almost exclusively in practice by
heuristic methods. As noted above some of the simpler job-shop problem
heuristics have been adapted to the project scheduling problem with
some success. This suggests that more complex heuristics, based on
variations of successful job-shop rules, should now be tested. When
job alternative interdependencies are added to the problem, as Wiest
[86] does, it is possible to build subsidiary switching routines based
on local (in the time dimension) resource usage information. If alter-
native interdependencies were added to the problem, such local informa-
tion might no longer be a sufficient base for a switching decision. In
fact, as we have seen, any purely heuristic method might have difficulty

approaching an optimum solution to this kind of problem.
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Chapter 111

DECISION CPM MODELS

The paper "~ hat will serve as the basis* for this chapter is
that of reference {191 by Crowston and Thompson. This decision network
formulation contains ''time'' constraints and both ''job alterna:ive' and
"other'' types of interdependency. The mathematical basis of Decision
CPM will be discussed as well as several alternate integer prugramming
formulations of the problem. A numerical problem is introduced in this
chapter (FIGURE I11-1) that will also serve as an example in Chapters

IV and Vi.

2. The Mathematical Basis of Decision CPM

This section will follow in part the article [2] by Levy,
Thompson, and Wiest, Let J:{S], $2, S3 J' be a set of job sets
that must be done to complete a project. Some job sets are unit sets
Si = {Sil} and other job sets have several members, $; = {?il' Si2,
$i3, ...}. In order to complete the project, one of the jobs from each
job set must be completad. Associate with each job set

(1) si=i o sl

k(i) wvarlables

*Sections 2, 3, b4 and 5 are taken essentially verbatim from
[19] al though a new numerical problem is introduced. Furthermore, this
chapter will assume that exactly one job alternative is selected from

each job set, that is
é(i)
dij = |
j= 1

40
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(2) dive oo )

having the property that

1 if job Slj is to be performed
(3) di’j=

0 otherwise

Since exactly one of the jobs must be parformed, then the mutually

exclusive or job alternative interdependence condition is expressed by

i)

“ME

If 211 job sets are unit sets (impiying condition (4) holds),
then all of the jobs in the project are independent and the project
reduces to the ordinary project of the usual CPM variety. If one or
more of the job sets have more than one member, then for each such set
a decision must be made as to which job of the set is to be done. 9Jnce
such a decision is made for each job sat, the result is ar ordinary C¢M
project.

It should be roted that the decisions may be complicated by
many other kinds ¢f conditions than (4), which may be of the mutually
exclusive or contingent kind. For instance, the following equations

give examples ot such interdependencies among decisions.

(a) dij + dpp = |
(b) djj < d

mn

{c) d‘j = dmn
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Note that (a) says that we cannot do both Sij and Spn (b)
says that we can only do S;; 1f we also do Spn ; and (c) says
that we either do S;; and Smn or we do neither. The above
discussion illustrates some of the possible complexity of problem

formulation that is possible within the Decision CPM framework.

In addition to the relations described above, there will be
precedence relations between the jobs of a decision project. Let 1 <<
denote a relation between pairs of jobs in J such that S;j << San
is defined for some pair of jobs S;j, Son and is read S;j is an

immediate predecessor of S .. The interpretation of this statement is

that all immediate predecessors of a job must be completed before that
job can be started. A decision project is the set J together with the
specified interdependencies and the relation <K defined on J.

The decision project graph of a project, G, is a planar graph
with nodes representing jobs and a directed line segment, connecting
two nodes S;j, Smn it and only if §;j; <KSpn holds. A path in &
is a set of nodes connected by immediate predecessor relations. A cycle
in G is aclosed path of the form §;;= K K. .. . K= a1 =
S;j. A project graph is acyclic if and only if it has no cycies.
Definition: S;j < Syy implies S;; precedes Sy, (or alternatively
Smn succeeds S;;) if and only if there is a sct of jobs aj, a, ...a,

n:> 2 such that

Sij= 31 < K23 . . . Kan= Smn

In other words, S;J precedes S, if and only if the:s is a path trom




S;j to Smn In the decision project graph G,

Assumption 1:* The precedes relation is asymetric, that is If S;j Sy

then it is faise that S"",<:Szj for all S;; and Spn in J. Defini-

tion: A relation that is transitive and asymmetric Is said to be a

preference relation.

Theorenat §1l-1: 1f assumption | holds, then the predecessor relation

is a preference relation, and the graph G 1is acyclic.

Al
Definition:; A technologically ordered job list J = (al, az . . . an)

is obtained from a set of jobs J "{é, b, ¢ ... .} by listing them so

that no job appears on the list until all of its predecessors have

already appeared.

Theorem™t 111-2: Assumption | holds if and only if it is possible to

A
list the job. in J 1in a technologically ordered job list J.

In addition to these definitions and theorems from reference {Lﬁ},

several additional conventions are necessary because of the fact that

some jobs may be eliminated from the decision project graph as the

result of decisions that are made, {f we decide to do one of the jobts

in 3 job set, then all immediate predecessor relations that the job

If we decide not to do that job,

satisfies must hold in the finae! araph.

“Note that this assumption differs from the correspouding

assumption in (49] in that the requirement of K-intransitivity is
omitted. For this reason theorem | of thnat reference does not hold

in the prese..t context.

wThe proofs of these theorems are exactly as in reference [5).
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then none of i1ts Immediate predecessor relations hold. In the decision
project graph, if we decide not to do a given job, then we must remove
that job togecher with all edges that impinge on it from the decision
project graph to obtain the final project graph. It follows from this
that if any job,. S;j has a sole immediate predecessor Spyn, and if
that predecessor is a member of a job set, it will be necessary to
create a dummy immediate predecessor relation between S;J and a job
which is a predecessor of Spn. If this is not done, then it would be
possible for the path containing S;j to be broken and S;j would
lose its project time ordering, Similarily a dummy immediate successor
retation must be established for jobs having only one immediate succes-
sor, {f that successor is a member of a job set. In addition it may be
necessary to create @ dumy relation between two jobs even if both have
several immediate predecessors and successors. If on any path, two
jobs are separated by a job which could be eliminated, and if it is
desired to maintain a technological ordering of the two jobs, a dummy
immediate predecessor relation must be established between them.

Fuor a glven project, when the jobs are technologicaliy ordered
and a!l planning decisions are made designating the jobs to be performed
in each set, the normal critical path analysis may then be carried out.
The usual concepts of early start, late start, critical path, etc.,
will apply to this reducad graph. These terms will be used throughout

the balance of the thesis without further definition.
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3. Decision Project Graphs

A graphical representation of the combined planning and
scheduling problem is shown in the decision project graph of Figure
111=1. In this graph the circular nodes represent jobs and the triangu-
lar node: introduce the mutualtly exclusive decision job nodes of a job
set, In addition to the precedence constraints implied by the directed
line segments, we impose several ''alternative interdependencies'’,

These are

(a)  dg) < dg,2

where (a) says that Sg,1 may only be performed if Sg , is performed;

and (b) says that S , and S;2.] must both be performed or both

not be performed. The problem, then, is to select the project graph

which minimizes total project cost.

4., Decision Graph Solution by Integer Progrumming

/
Consider job set (1) and its associated decision vari-

ables with constraints given by (2) (3), and (4). Besides these,
there may be any o, the other constraints descussed in the second
section of this chapter or other constraints showing various types of
complicoted interdependencies betwean jobs in the project.

Wita each job S‘, we assuclate a time, t;, and a cost,
i Also, we assume a reward of 'r' Jollars per day for each day under
O, the required due date of the project, and a penalty payment 'p' for

each day beyond O. As defined earliar, W * will be the number of
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‘Hther' interdependency constraints @
dg,1 S dg 2
de,2 & 9)2,2 FIGURE J1I - 1
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days after D that the project finishes and Wg~™ will be the number
of days before D that the project finishes. We can now formulate the

integer pragramming problem of sciecting that best project graph and

finding its critical path
R k(i)

. ! - +
MI!‘IZ ’Z‘ dijc;j-rwf +p wf
=] j=1
The first term calculates the cost of all the decision jobs
or job alternatives that are to be performed. It is governed by the

constraints

0 $dij <!

k(i)

jl ij = i=1,2,...,m
where dij is an integer. The second term is explained by the

constraint
+ -
df - wf+wf ~-D=0

where We is the early start time of Finish, the last jcb ia the pro-
ject, if df:> D, then the project is not compieted until after the
due date so that J;E: We - D and a penalty of pw: is incurred.

Uther constraints must hold because of the precedence
relations, For instance, if S; and 5. are unit set jobs and
§; LSy, we have

Wt &y

where W; s the early start time cf job S;. If S, is a unit job

set j and $;; s from a mylti-job set and sij <<§,,, then
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LU ES S <y

where M s u large enough number so that the (nequality does not
cons*rain the variable djj unless d;j=i. Thus all paths through
Jobs that are rot performed will be broken.

It is now possible to set up the problem of Figure Ill=1 as
an integer programming problem. Note that it is not necessary to include
the cost of unit set jobs in the functional or the finish node (S¢)
in the precedence constraints.

Min. 400 dg +200 dg , +0dg ; +200 dg 1+100 dg ,
F0d; ;#50d), (+0d)3,2+100d;5 +0dy5 2*0d;5
+
+‘50d|7’2TPWf - I'\&’{

St.

Precedence Constraints (link formulation)

6, € W
g QW
t3 S ¥
ty KW
S ¥,
K%,z
tr K ¥%,3

Mll-dg Iteg itigr £ ¥y

ty Ty K W
.H(l-d6'2)ft6'2+46'2 < Vo

“H(1-dg teg M3 < Mg

-H(1-dg 3h4tg g 3 < ¥




ty, Yy, <w8
gty & "o
t5+w5 R
tg¥s L Y,2
gy K ¥9,3
tg+¥g S Vg )
tgt¥g Vi3
-M(1-dg ;Htg 2,1 < Y3
-M(1-dg PM+tg, 7MMg,2 K Y1k
-H(1-dg SMtg 5P 3 € Yy
-M(l-d9’3)+t9’3+"‘9'3 < w]g,]
-M(1-dg 3)+tg 3+¥g 3 £ W52
tot¥e  $¥n
¥y € Mz
tgt¥o S Mz
tigt¥io Y
t‘3+“|3 < iy
tut¥yy <
-mll=dpy g it S
-M(1-dj, P12, 2M1z,7 € 16
-H(1-d o atyg g S “16
M(1-d g JHtyg ™5,2 € Yiz,
“M(-dyg My ¥is 2 S 7.2
M(1-dyy M7 17,0 € Vs

-H(l-d‘."z)}t”.i’u”.z < Vg
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o+ &V
'h(l'dl5,2)+t|5,2 é \flf
tg +Me & Vg
tig+W1g &V

+

Due Date w‘_. - wf +wW,=D

Interdependence

Job Alternatives
d¢,i+ 96,2 +96,3 =
dg |+ g g +dg 3 =]
di2,1+ 42,2 =1
di5,1+ 95,2 =1

dy7,2+ 97,2 =1

Other !nterdependency

991 L %.2

94,2 = 92,2

0 Sdu £

An alternate formulation suggestod in 1131 and the formulation
to be extended in this chapter, constrains the length of the critical
path by including one constraint for each possible path from S5¢ to
Sf. A typical path might pass through Sg, S|, ceey S‘j, veey, 5 and
S,. The constraint for this path would be written

ty+ ... K04 ) + ty o H(i-d )+t W
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The precedence constraints on the length of the critical path

for Figure t11-1 will now be shown in "path" form,

Precedence (paths).

tttydt oty =M(1-d) (irtyp yitye

tyetyrt o-Mldyy ()4tyg y+tyg

gty oM (1=dip P4ty gttyg
ty-Ml-dg rtg (wtoity gty Mli=d,) Mty 4ty
t)-M(1-dg I rtg rtyrtyo-M(i=dip )4ty ttyg
t1-M(1-dg 1 )+tg (+tystig-M(1=d|y JJ+ty; ottye
t)-K{1-dg alttg ottygaty-M(i=dyp ()+tyg 34t
t1-M(1-dg 2)+tg ottyg-M(I=dya |)ttyp 1+tyg
t=R(1-dg )4ty srtyg-M(1-dya )4ty a¥tyg
t1-M{1-dg 3)+tg 3rtigrty-M{i=djp {)etyg 1Htyg
ty-M1-dg 3)vtg 3atyo-Ml-dyp (Irtyy j4tyg

- - y . - - ]
t-M(I=dg ety grtyo-Hll=d), it ) 4ty

ty-M{1-dg 3}ttg grtgttigrey-M(i=-dip | Hregp 14tge
t)-M-dg 34 tg shtgityo-M{l-dyg 1htyg vttys
t)-M(1-dg 3)ttg s+tgrtyg-H(l-dip 2)4tjz 2ty
ti-M(1-dg 3}ty 3+tg-ti(l-dg 1)4tg 1+ty3rtintt)g
t1-H(i-dg 3)ttg yttgie zhtiyttig
tattyttgetypt)H{=dyp Drtig wrtgg
tartyttgrtyg-it(l=dig 1)+ g
tartyttgttig-H{l=a)p o)ty ottyg
tattyrtg-H{i-dg Metg eyt grtyg
tgetyrtgttyghtyy

-"(""dls,z)?ti5,2-"('-d|7,\)+t‘7,l"tls




-Hl1=diy 2)+tyg -M1-dyy 2)tt)7 24tig
M(-d1p 1 Ht7, 148
-H(1-d17 2MHty7 2htig
tyttintgttight) 1 -Mli-dig, etz 1486
tyttyttgtio-Hl-d1p |)+12 1tti6
tytuuttgitio-(1-dig oMty 24t16
typtirtg-Hli=dg )4ty 14ty a1t
tyttybtgity ity
t3itg-Hl-dg \Ittg yrtizrtiuityg
tyktg-Mlt-dgo)ttg 2itiuetie
tartgH(l-dg 3hbeg shtiuitig
tyeghll-dg shitg 3-Mil-dig gletys o
tyrte-M(l=dg 3)4tg 3-M(i-d|5 Jl4t5 2
-M(1~dy5 ) +ty5,2

t] 4= t7 4-t|° + t“

t) - Wl=dg 1) +tg,1 + t7 +tig + t)
t - M(I-d6,2) +tg 2+ tigt t
ty - Ml-eg 3) +tg 3 +t10+ 1y

t] - M(‘-d6,3) . t6,3 +t8+ t,o+t'|
52 T Tt Yot Yy

ta +t, +tg + g + by

We suggest that typically in the second formulation of the

precedence constraints (and it is also true of the first) many of the

< ¥
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g
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constraints - i1} be redundant. This may be observed in the constrain®s

representing the prodiem of this chapter.

develop an algorithm which will select and eliminate the redundant

constraints.

The next chapter will
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Chapter IV

Decision Network Reduc:ion

The previous chapter formulated the DCPM problem as an Integer
programming problem that included e!ther a constraint for every link in
a precedence graph or a constraint for every path in the network. For
the relatively small netwerk of Figure 11l-1, either approach gives
approximately forty precedence consiraints. In this chapter we will
show that in the 'path' formulaticn of precedence constraints, many ot
the constraints are dominated and, thercfore, -hat many of them may be
eliminated. It is also shown that the ''other' interdependency relations
may make some procedence constraints infeasible and thesz, too, may be
eliminated. Finally, an algorithm, is developed to reduce dezision
networks to equivalent networks contsining onily decision jobs and
maximal distance between them., This reduced network could be used to
generate a set of undomirated paths to be included in the 'ateger pro-

gramming formulation as precedence constraints.

2. Dominance Tests for Constraint Elimination

Given any dncision network, it is possible to order the jobs,
including the decision jobs, from S. to 3¢ <0 that no job appears
on the list until all of Its predecessors have sppeared., We may now
proceed down this technologically ordered list labelling the decision
jobs w(1), w(2), ..., u(k), ..., u(h) where h is the toal

number of decision jobs in the network. Thus we may uniquely specify
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any declision job smn as Su(l) I=1, «.cey h

If we now dziine P as the set of all paths from S$, to
S¢ in the network, P may be partitioned into the fu'lowing subsets,
P {90, rl, P2, .., P, ..., Pb}
such that
PO= {0 order paths, those containing none of the decision jobs}
pl = {lst order paths, those containing gne of the decision jobs}
o) = jth order paths, those contalning exactly | of the declsl0f}
jobs

-

b = bth order paths, those containing exactly b of the declslon?‘
pb =
Jobs

where b is the maximum number of decision jobs on any path from Ss
to Sf
It Is now possible to sub-partition P! into h subsets in

the following way.

1 1 1 1 1
Pa= {Pu('), Pu(z), cseey Pu(k), X PU(h) }

where Pl(k) Is that subset of pcths coniaining only one decision job

which is Su(k)

Similariy, tha 2nd order paths may be parti:ioned Into

h!
W tubsets as follows.
2 _ 2
rE {'u(n.uu’} = hee

J= ‘* '. l.'. h

end p) may be partitioned into
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h!
TSI subsets.

in total, the maximum number of subsetrs, ec~h containing a unique

combination of decision jobs wiil be

h! - h!
N R G g .0 -*—.—-— LI ] — h
b (h-2) 12 T (h=j)!j! tl=2

The actual number of subsets required would be much less
than this however. The set of interdependency relations from Chapter
1 k(i)

& 45 =
J=i
guarantees that many combinations of decision nodes are not feasible.

Now Pi(m)’ ceeey ulk), ..., uln)
is a set of paths containing a particular combinatior o' j of the h
decisicn jobs. For any DCPM problem, any solution, that is any selec-
tion of decision jobs to perform that meets the interdependency

constraints, will have one of the following mutually exclusive prop-

he i . . i
ert.es. Either all of the j decision jobs in Pu(m), ceen, ull), ..

u(n) are perforwned or at least one of them is not performed.

If one of them is not performed, then the precedence
coustraints representing all of the paths in this set will not be bind-
ing on Wy, the early start of the Finish node.

Tnat is if

du(m)* ...:'f'du(k)+ e e +du(n) < J

than ihe cunstraint representing any path in the subset will meet the

condition




ey

“N(1=dy(m)? T tym) = ceee MO=dy)) + ty) - -oee

H{1-dy() + ty() + T <O Swg
where T represents the sum of the times of non-decision job> on the
path.

If all the jobs in the subset are performed, then the finisk
day of the project, wf, wiill be constrained by equations representing
all paths in the subset. 3ince the constraints are identical except
that the value for 7T, the sun of* the times of the non-decision jobs
on a particular path, vary, it is only necessary to retain the con-
straint that has the maximum value for T, All corstraints representing
other paths in the subset will be dominated by the one chosen. Thus we
require only one path for -each possibla combination of (~~ision nodes.

Ve will term this path an ''undominated'' path,

3. Implementation of Dominance Tests for Path Elimination

This section will develop an algorithm based on the repetiive
appiication of the largest path calcu’ation to generate an undominated
set of paths in a dacision network. As stated above, the undominated
path will simply be the longest path in a subset of paths which all
contain a particular comhination of decision jcts. For example, In
the subset Pi(!) L= I, e Jo» if it is not empty, we mus?

calculate the longest path through jobs

Sev Sty Su(@) r Sek) tr Su()t S

which goes through no othar decision job. This is equivaient te
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findinc the lungest partial path connecting

Ss and Su(l)' Su(‘) and Su(Z)’ etc.

and combining them to form the complete path. Again each partial path
must not contain other dacision jobs since this would result in the
calculation of the longest puth through a different combination of
decision jobs,

A routine based on the usual longest path calculation (CPM;
was written to generate the maximal distances between all decision
rodes and S, Sg. The algorithm uses two time values for each job
in the retwork. The ''actual time! is the estimated completion time
for the job which remains constant throughout while the 'current time'

is cqual cither to actual time or -M, a large negative number. As we

shall see, if a job time is taken as -M , then no path through the j;ob

has a non-negative iength and all such paths will be ignored. A flow

chart for the algorithm will now be presented and reference will be

made to Tables IV-l, 2 and 3 which show some steps of the algorithm

for the decision network of Figure I11-1],

1. List the jobs of the decision network in tachrological order

2. Form & matrix witih @ row for each job in the network. Column !
will contain the job number; Column 2, the actual time; Column 3,
the job's predeces=ors, Couiunns &, 5 and 5, tha current time, the
early start time and the early finish time, respectively. (ie.
Table iV-!}

3. ldentify a!! Jecision jobs in Column 1. (in Tables V-1 brackets

are used)
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L, Set the current time, Column 4, for all decizion jobs at -M, for
a1l other jobs set the current time equal to actual time. Set
counter il=S,. Go to Step 8.

5. Beginning at 11, search down Column | for the first decision Job

balow I1, say this Is S (. Set 1= (.

6. Set the ear!y start, Column 5, for all jobs above Il at -M.

7. Set the current time of |l and the early start of Il at O.

8. Calculate the ear'y start time of all jobs beneath Il on the
technologically ordered job iist. I|f the early start value cal-
culated is negative, enter ~-M In the early start column. To
calculate the early start of the job directiy beneath i1, list all
the predecessors of the job and for each predecessor add the
predecessors early start ime to its current time. The largest
of these values, for all predecessors, is the early start time for
the job being considered. Then proceed to the rext job on the
technologically ordered list for the next early start calculation,

9. For all decision jobs, add early start time to actual time to
compute early finish time, Column 6.

10. For all cecision jobs beneath |1 on the technological list and for
Sf, record the early finish time If it is non-negative. These
times will be the longest sub-path from the finish of decision job
11 to the firish of the decision job being examined (the longezs:
path containing no other decision Job).

11. 1f U}l |s the last decision Job in the technological list, go to

Step 12. If not, 0 to Step 5.
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12, HALT,
This algorithm has been epplied to the problem of Flgure

I11-1 with results shown in Table IV-3, Each non-blank entry in this
matrix indicates the length of the maximal path between pairs of deci-
sion jobs dr between the Start and Finish nodes, Note that the entries
for line one, the maximal distances from 5S¢ to ali decision jobs, are
taken directly from Column 6, Yable IV-1. Similarily, the entries for
row two, the distances from S6,| to all decision jobs, are taken from
Column 6 of Table 1V-2, Blank entries in the matrix indicate that no
path not containing a decision job connects the to jobs. The output of

a program which generates data for the matrix of IV-3, and estimates of

computation times for vari.us decision networks are given in Appendix B.

L, Feastibility Tests for Path Elimination

Consider a particular suhset of paths
pim i= 1,2, ...,
For the conscraints representing these paths to constrain wg, the
following condition must hold
J

i-Zl‘ un =

This condition may be contradicted by the ''other' interdependency
constraints

ie. dU(l)+d 1

u(2) =

J
if the relation S du(;)'a.j can be shown to be infeasible, then
i= |

all paths in Pu(i) i=1,2, ..., j, that is all paths containing
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| 2 3 L 5 6
Job Actual Predecessors Current Early Early
Time Time Start Finish
S 0 0 0 0 0
| 12 S 12 0 12
2 10 S¢ 10 0 10
3 8 S 8 0 8
4 L 2,3 4 10 4
5 L 3 b 8 12
(6,1) L i -M 12 16
(6,2) 6 1 -M 12 18
(6,3) 8 | M 12 20
7 2 1,(6,1) 2 12 4
8 3 4,(6,3) 3 4 12
(9.1) 5 5.8 -M 17 22
(9,2) 10 5 -M 12 22
(9,3) 15 5 -H 12 27
10 10 (6.3),(6.3),7.8 10 17 27
1" 5 10 5 27 32
(12,1) [ 10,11 -M 32 36
(12,2) 5 10 -M 27 32
13 2 8,(e,M 2 17 19
4 8 (9,2),(9,3),13 8 19 27
(15,9) 9 93,5. -M 0 9
(15,2) 13 92,5, M 0 13
16 10 (12,1),012,2),14,{15,1) 10 27 37
(7, N (15,2),¢, -M 0 "
(17,2) 3 (15,2)s, -M 0 3
18 5 (I}'.I).(I'I.Z).S5 5 0 5
Se 0 16,18,(15,2}, 11 0 37 31

Table 1V-1

RBAPT # oottt
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R o g w0y 4w, -

1 2 3 L 5 6
Job Actual Predecessors Current Early Early
Time Time Start Finish
Ss 0 0 0 -M .-
1 12 S 12 -M .-
2 10 S¢ 10 - --
3 8 SS 8 -M -
4 N 2,3 N M --
5 4 3 4 -M --
(6,1) 4 ] 0 0 --
(6,2) 6 1 -M -M -M
(6,3) 8 | -M -M -M
7 2 1,(6,1) 2 0
8 3 L,63 3 -M -M
(9,1) 15 c,8 -M -M -M
(9,2) 10 5 -M -M M
(9,3) 15 5 - -M -M
10 10 (6,2),(6,3),7,8 10 2 12
1 5 10 5 12 17
(12,1) L 10,11 -M 17 21
(12,2) 5 10 -4 12 17
13 2 8,(9,1) 2 -M -M
14 8 (9,2),(9,3),13 8 -M -M
(15,1) 9 (9,3),5 M -M -M
(15,2) 13 (9,3),5, -M -M -M
16 10 (12,1),112,2),14,(i5,1) 10 -M -M
(7,0 N (15,2)5 -M -M -M
(17,2) 3 (15,2),Ss -M -4 -M
18 5 (17,1).,07,2),5 5 -M -M
S¢ 0 16,13,(15,2),11 0 17 17
Table (V-2
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Reduced Network Matrix

TO
6,1 6,2 6,3 9,1 9,2 9,3 12,1 12,2 15,1 15,2 17,1 17,2 S¢
s | 16 18 20 22 22 27 36 32 9 B3 on 3 3w
6,1 20 1y 17
' 6,2 19 15 15
6,3 8 22 18 23
9,1 20
9,2 18 |
FROM -
9,3 9 13 18
12,1 10
12,2 0|
15,1 10
15,2 1 3 0
17,1 5
17,2 L B 5

Table V-3




63

the combination of decision jobs.

Su(l) i=1,2, ..., j
may be eliminated from the integer programming formulation of the DCPM
problem. Paths not eliminated by the interdependency constraints will

be termed “feasible' paths.

5. Application of Dominance and Feasibility Tests to a GCPM Network

When the tests of the previous three sections are applied
to precedencs equations of the example Figure lll-1, the reduced set of

equations of Table IV-4 result. For example, the set P{‘z 1) contains
?

.

the 5 paths

tp +t7 ey -H=djp 1) +t21+ g < Ve
ty 4+t ptg+ tyy M-y J+ tyy 1+ 5 Ve
ty + by g+t Tty HU=d )ty 4 G KW
ty+ty g+t MUdy )ty r e Y
t3 4% 4tk Yot by Hdp )+t e K

ty by +tg+ tig “M-dyp ) g+t M

These may be rewritten

-M(l-dyy ) +38 K W
HO-dpp ) H83 S
-M{1-d;; |) + 46 < W,
-M(lvdlz.l) +4 g We

Mrd. . ) tah QW
12,1




-H(I-d9'3)

-H(l-dg o

'M("dis’z)

-M('-dls,z)

'M("dG.B)
My g
-H(I-dg.z)

-H(1-dg )

12,1)
)

-M(1-d

M-y, ,

-M(l-ds’l) -M({1-d
-M(!-d6 2) -H(1-d
-M(l-d6 3) “M(1-d

-H(l-djg )

-H(l-dlS’B
-M(l-d|7'|)
-M(i-d'7'z)
-M(i~diq )

-H(l-d]7'2)

) -M(1-d

12,2
12,1)

12,2)

!7,2)

H(1-dg 3) -M{1-dyg ;) -M(1-d; )

Table V-4

37 S v
+ 43 g
+ 42 g
+ 4o W,
+ 45 L
~+ 46 & W
4 42 < Hs
+ k3 Ve
+37 SV
T hs Ve
T 46 W
+ 56 (’wf
+29 W
—+ 21 Ve
+16 < W
+ 8 W
+ 52 W

64
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H(1-d), 1) 39 £ v

With -M(1-d;, |) + 46 W in the prcblem, the other 5 constraints

are redundant.

we will now give an example of constraint elimination by
feasibility tests.

The equation

-H(1-dg 3) ~ M(1-dg )+ 48 ' W, will hold only if

. =2
dg,3 T,

However, the interdependency constraints
99,1 < 6,2

and

96,1+ 9,2+ 9 3= !

violate this condition. Therefore, the equation may be dropped.

6. Lower Bound Calcuiation

The set of path constraints has now been reduced from one per
path in the original decision graph to one par combinaticn of decision
Jobs lying in a path from SS to Sf. The number may be even furthar
reduced because of feasibility tests on the interdependency relations.

We will now define set
M= {a!l teasible, undominated paths}
and set
H‘ = -{ the subset of paths in M that <ontain any of the decision

jobs in decision set Si , @ multi-job seti} Each path in M; contains
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exactly one of S'j, J=1,2, ... k(i) since we are assuming that
only one iob from each multi-job set may be selected. but they may also
contain other Jecision jobs,

We will now define a ''feasible solution' to a DCPM problem as
s selection of a set of decision jobs that will satisfy all '"alternative'
and ''other'' interdependancy constraints on the problem. This set of
decision jobs will, with the non-decision jobs, form a usual project
graph of the critical path method. Given the project graph resulting
from a "'feasible solution'', we state that one of the paths from M,
will be included in that graph. |f no such path exists, tken no path
through $; exists In the network. This would violate our assumption
that Sg Is a predecessor and S¢ s a successor to all jobs in the
project graph.

Each constraint representing a path from M; will be of the
general form

“H(=dpg) ceeeeieiienen HO-d I+ T & ¥

where T; ., is the length of path e in M.
If one of the paths from M; must be performed, then a

lower bound on Wg is the iowest value of Tl .

for all paths in M;.
Furthermore. If we celculate a iower bound for every decision node, we
may select the hiyhest of the icwer bounds as a lower bound on .

Any undom!nated, feasible pat. which is shorter than this bdound may be

eliminsted since it is redundant, given the bound cn We.
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An Appiication of Dower Bound Calculation

The reduced set of equations from Table V-l will be used to

illustrate the dominance tests described above. The only feesible paths

through 5S¢, that is the set M¢, are the following paths,

-M(l-d6’3) 4= 43

-M(l-dé") - M(l-d‘m) + 47

=

.“M(l'l‘6’2) - M(I‘dzz’z) + h3

IN N IS N

=

-M(I-d6,3) - M(l-dlz.l) “+52

The minimum of the T, e€s=l,....h, is 43 and therefore L2 is
’

a lower bound on the length of the critical path. Similarly, the lower

bound provided by M9 is &0, Mg s L2, MIS is 2] and H'7 is 8.

These calculations are shown in Table iV-5, The highest of the bounds

is then 43 and all paths shorter than or equal to this may be removed.

For this particular problem this reduction technique does not give any

further improvement. The final set of predecessor constraints may now

be written
(1) —+ 43 £
(2) -H(1-dg ) + 45 K
6 H(1-d), ) + 46 S ow
(- Hli-dg 3) -M(-dc )+ ke < P
(s) -ilindg ) MO-dyy ) + W1 & %
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N

(6) -H(i-d9.3)-ﬂ(l-d.‘5.2) -H(l-d”.z) 4+ 48 We

) H(1-dg ) Mli-dyy ) 4+ 52 K v

(8) -M(1-dy )-n(i-d . ) -M(i-d\, ) + 56 £ Ve

By celecting appropriate values for M and combining. these

may be rewritten

G 34, +4 £ W
(2) (W) 15d9’3+dl5,‘ + 39 £ We
() @ bdg | + 9dg 3+ 45 + 29 W

(6) (8) 15 44 13d ) +114)

<
¥yt SV

The final problem, now in reduced path form, may be solived by

any standard integer programming technique.




Computation of Lower Bound
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6,1

6,3

12,1

12,2

15,1

15,2

37

H

43
L2
4o
us
L6
L2

L7
3
52
L6
29
21

56

Lower

8cund

L3

40

L2

21

Table iv-§




Chapter V

A Network Algorithm for Restricted Types of Integer P.ograms

In the literature review of Chapter |1, we referred briefly
to several integer programming routines for probiems containing 0,]
variables. In our terms, these techniques could optimize planning
- problems with'job alternative'' and 'cther’' types of interdependency.
We will now develop an algorithm based on the calculations of the
critical path method which will solve certain restricted types of
integer programs. A numerical example of the algorithm will be given
and then the algorithm will be applied to a problem taken from the

decision jobs and interdependency constraints of a decision network.

2. The Network Algorithm

Consider the integer programming problem
(1) Maximize wb + by,
4

Subject to wa® S ¢
w ;? O , W integer
where b is arn m x | column ve.tor, bo Is a scalar, ¢ isa | xn
row vector and o0 and w are | x m row vectors with values assigned

to w so as to maximize cthe objective functicn subjec. to tha constraints

of (1). A% is an m x n matrix which meets the following assumption.
E Assumption i: All rows of A° contain a meximm of two non-2ero

entries and these are found in adjacent columns. The programming

m




problem may now be interpreted as a network probl

71

em in the following

way., For each variable w; i=1,2, ..., m define a set of

0-1 variables, one for each possible integer level of w;. These

would be

Wi'_‘ {wi"o, wi’l, ey wi’j, “es wi,k(i)}
J

where Wy j= ! if variable w; =
! 0 otherwise

and k(i) is the maximum possible value of w;
Tnerefore k(i)

25 wij =]
i o

)
and W, = jw
o

w

1

A feasible solution to the programming
consist of a chcice of exactly one variable from
sets such that the constraints of (1) are met.

Wl -

~~
z

problem will then

each of the following

“l, ............... ’ w],k(l)}

Wz = {WZ.O’ WZ’), ceveets e re vy Wz’k(z)}

Now let the w;:. be nodes in a network formed as fcllows.

J

Link each w, j= 1,2, ....k(1) to each W,

2J7

by a directed line segment. Then link each

d ., j= 1,2, ...., k(t) to each

oo JF 2, 000k(2)




dt_’_l,j, i= 1,2, ..., k(t+ 1)

where t= 2,3, ...., m=l
Since every variable in each set is linked to all veriables

in adjacent sets, the resulting network contains a path for all combira-
tions of integer values of Wis Wop  seeey W Since there are no
links within a variable set, the restriction k(i)

2 M=

j=o
is maintained. Thus every feasible and non-feasible solution is repre-
sented by a path in the network and every path is a feasible or non-
feasible solution. Here a feasible solution is defined as the selection
of a level for each of the w; variables that meets thie constraints
of (!). The network may now be modified to eliminate paths represent-
ing non-feasible solutions.

First ve will show how to calculate k(!), the maximum integer

value of variable w). Assume all variables w;, iI=2,3, ...., m

have the value o, that is w; ’°= l.

Then from the constraints in wA® < ¢ of (1) that have
orly positive entries, it is possible to calculate a maximun value for
wy, that is k(1). Siailarly, we may calculate maximum values for
all other variables.

We now have the graph




where at each level we have nodes representing all the
feasible integer values of one variable, and each of these nodes is
connected to 21l nodes of the suceedirg level (or variable).

The constraints of (1), wA® 5; ¢ may now be introduced
exactly into the network. From our earlicr discussion, it is known
that each path in the network represents & particular combination of
integer vajues of the variables, w.. and each path js therefore a

t

potential solution to the problem. For example, one path might be
- i} e oS

If such a solut’on (path) violates one of the constraints of (I), we

remove the path by eliminating particular d' rected line segments that
connect the integer levels of the two variables contained in the con-

straint., Assumption i guarantees that only two variables will he
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inwlved in the constraint and that they will be adjacent in the graph.
Graphical interpretations of certain constraints foliow.

#11 links between variables w; and w.

‘4] will be removed

with the exception of those now listed,

&

Where the sum of the values represented by the connected

variables equals ‘‘a'
(ii) A= Wiy

all links between variables w; and Wil will be removed with the

exception of those now listed.




~3
L

wi+l,k(i) where k(i) 5; k{i+l)

When all the constraints of (1) have been introduced into the network -

(by link elimination), we will term the resulting graph a ''feasible’’

network.

Thaorem 1: Every path in the feasibie network is a feasible solution

to the problem and every feasible solution may be represented by u path

in that network.
PROOF: Betwcen each level of the granh, non-feasible links

are removed, |f the constraining equations have been interprated

correctly, remaining links connect feasible pairs of variables. i
Now assume a path exists in the reduced network from the set

of variailes w; to the set w,  and variables W) g
»

Wy pr s

Wy, o are on that path. Variable set Wy may only be combined in
constraint equations with variable set w, if considering all the

the combinatinn of w is feasible

constraints on w W W, .
1’ 2 1,a’ 2,0

then Wl,a may appear in any solution that contains W2 be The
argument may be extended to W3s oWy and finally to W

Therefore any path in the reduced network is a feasible
solution,

Now assume a feasible solution exists for which a path does
not cexist. This implies that between two adjacent variable sets w;,
W there is no connecting link in the rnetwork betwecen the variables

from these sets which are in the feas:bie solution, that is between
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Wi ar Wiy b Since links are only removed if in combination they arc
’ »

infeasible under the constraints, then a solution containing "i,a and
w; 1,b is not feasible. Therefore every feasible solution must be
represented by a path,

Theorem 2: If éach node, wij' of the network graph is evaluated at

ib,

;» the solution to maximization problem is the longest path in the

network,

PROOF: By Theorem | every path is a feasible solution to the
problem. Since Wij represent the original variable w; at iiteger
level j, the value of Wij in the functional will be jb; where b;
is the contribution of a unit of w; to the functional. The gath
length for any solution is simply the value of the functional. The
variables on the longest path 3i¢ those that give an optimum solution
to the maximization problem. Similarly the solution to a minimizaticon
problem r wy be found by determining the shortest path.

The familiar rules of Critical Path Scheduling will calculate
the longest path in network. In this context the early start (E.S.)
for a variable wij is interpreted to be the maximum value of the
criterion function for variables w; to w; | that may be feasibly
combined with " (maximization). late start (L.S.) is the
maximun feasible value of the criterion function less the maximum value
of the criterion function for variables i to  w, that may be

feasibly combined with i

In addiiion the ''slack'' values calculated by that technique
y q

have mcaning in this context. The slack values of a job indicates the
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differunce in length between the longest path on vwhich the job is found
and the longest path of the network. Since in the integer programming
problem, the path length is equivalent to the value of the functional,
and a solution is any path in the reduced network, the slack value
indicates the minimum change in the functional which will be realized
if Wis is brought into the solution. Thus the "slack'' values are
exact evaluations for every Wi that is, for every variable w, at
every feasible level, These evaluations may be calculated for either
maximization or minimization problems. As we would expect, evaluators
for variables in the solution will be 0.
Theorem 3: If the variables in a problem which meets Assumption | may
be listec so that no constraint exists between w;, Wi i=1, ...,
m-1 then the optimum solution to a problem made up of the variables
Wy . . . W, and the coastraints relating to them and the optimum of
problem containing the variables Wig] o+ v W will together give an
optimum solution to the combined problem and the problems are independent.
PROOF: Let the optimum sciution to the fiist problem be a

path wy ., Wy . . . w; . and the solution to the second be
’ N

14

Since no constiaint exists between Wi, all

. o e W . W.
il,a m,b i+l

nodes are connected. Therefore the longest path in the complete net-
work will consist of the lcagest patn sbave the level w..; Plus the
longest path beiow w;. This wiil be the sum of the individual solu-
tions to the two problems.

For purposes of the algorithm it is possibie to have any sct

of mutually exclusive variables, rather than a serices of mutually
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exclusive levels of the same variable in each variable set of the graph.
Assumption | must hold for the set of variables in their relation te
other sets of variables however. We alsc note that the contribution

of the variable to thez functional need not be a )linear functicn.

3. A Numerical Example

Max. 6,(' + 7x, + 8x3 —i-le‘

St. X| <: 4
3x!+‘+x2 $|0
X2 + % L

X) 4 X3 T 6
X, ;; 0, "nteger

The maximum values for the variables, determined from the constraints,

are

Figure V-1 illustrates the beginning graph and Figure V-2 the graph
with links removed to satisfy the constraints. In these networks, the
variables when listed in the order X3s Xy Xy, and X0 satisfy
Assumptionl. The optimum solution consists of those variables for
which E.S5.= L.S. It is possible that several such sclutions wou!d
exist. In Figure V-2 these variables are ssen to be W) o "2,!'
w and w that is W = 0o, w,=1, w3=6 and w, =o0. The

3,6 4,0 <

value of the functional for this soiution is (6){o) ¥+ (7) (1) 4+ (8)(6)




FISURE V - 2
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+ (2) (0)= 55. 1In addition, we see that variable x3 at levels o, 1,
and 2 is infeasible since variabies W30 Y3 g w3'2 lie on no
complete path. Finally, we can calculate that the best solution con-
taining variable x, at level o (”2.0) would have a functional
value, (48-53)= -5, five units lower than the optimal solution of
55.

L. Violations of Assumption 1

'f Assumption | is violated, it may be possible to adapt the
algorithm to the resulting problem. |If to the problem of Section 3,
we add the constraint x <_x|, then Assumption | is violated. Since
X is involved in constraints with the three other variables, it is
not possible to list the variables so that all constraints involve
adjacent variabiles. Thc prcblem may still be solved in several ways.

(i) Detfine a new variable xﬁ representing all possible

combinations of variables x, and Xy, These are x2'°, xz’l, x2'°.
2 ,0 L,o 4,1
Constraint Xp Xy I rules out x&! The resulting network and

&1

its solution is shown in Figure V=3, The functional is now valued at

53 with

(ii) The technique of truncated enumeration may be used on
thet part of the problem which cannot be introduced into the graphical
network, A straightforward branching strategy would be t. select

ip turn the variables that (a) appear In constraints and  (b)
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V-3

Figure
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cannot be listed in adjacent levels in our gracn, At each level we
would develop the node with the maximum evaluation (Maximization). At
each node the hounds would be calculated using our problem network with
the network modified to represent conditions on the path ~f the enimera-
tion tree, above the node in question. The problem of this section

will now be solved with this procedure (that is x, x) 1s added to

the problem of Figure 1V-2).

7 ,;\ L8

‘b, )1

///>~:? k‘*’) bounded
////// 53 Y A

not feasible not feasible

Therefore the selection of X = 0, x]== 1 gives an optimal

soluticn of §3.

5. Appiication to a DCPH Problem

The method of this chapter has been devuloped to nandla

problems arising in Decicion CPM petworks., A project havirg six

cgecision sets might give the following problem.

Minimize ox| + 10x; +-20x3>+ oxy + 7xg + 9x¢

Ol7+ X8+ }Zﬁxs f OK]O + NO(” = le‘z
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ox)3+ 6x), + ox)g + 13x)¢ + k
Subject to "'job alternative'' interdependency

Job | X| 4 X3 %3 =1
Job 2 x,++x5+x6.-.-.l
Job 3 X7 4= %g 4+ xg = |
Job &4 10 ¥ x”_fxlz-:l
Job 5 X134+ X4 = |

Job 6 x‘5+x|6=1

and ‘'other'' interdependency.

If the job sets are ordered 6, 1, 2. 3, 4, 5, then all coiastraints may
be inciuded in the first network. Figure V-4 illustrates the reduced
graph and the evaluations of the variables. The minimum cost solution
to this problem is x's.-_-. 1, X2 =1, xl‘:l. X3 =1, xmzl and

X 3= 1 for a total cost of 10,
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Chapter V!

Branch and Bound Algorithms for the DCPM Problem

In Chapter 11! the DCPM problem was formulated as an integer
programming probiem but for large probiems this approach would require
substantial computation time. Forthis reason, it was decided to
examine the applicability of restricted enumeration solution techniques.
These methods, under the general name 'branch and bound' have been
used for solving a series of .ather difficult cominatoria! probiems.

The applications include the travelling salesman problem [27, 5{} .
a version of the plant location proklem [78], truck routing [6i]

and production sequencing problems [42, 47, 6(]. This work has
demonstrated that for a wide range of problems these techniques are
efficient.

The work ''branch'' in this context refers to a specific
decision rule for enumerating a tree of all possible solutions to the
problem. The ''bound' term implies that at each node of the tree a
maximum value (for maximization problems) oV the criterion function is
calculated. This bound on the value of the criterion function for a
nartial solution may indicate that no optimal sofution will be found
that contains the particular partial solution and therefore search on

the path may be terminated, Alternately, the calculation may show that

the partial solution could be contained in an optimal solution to the
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problem and that the path (solution) should be developed further.

Two truncated znumeration schemes for the DCPM problem dis-
cussed in Chapter Ill will be presented here and experimenta! results
for one of the schemes will be given. The first apprnach, the ''recuced
constraint'' algorithm, assumes that the set of precedence constraints
are reduced by the dominance, feasibility and lower bound tests of
Chapter 1V, The second approach, the ''fixed order' algorithm assumes
only that project informaticn such as job times and precedence rela-

tions are available.

2. Reduced Constraint Algorithm

This algorithm will be based on the assumption that a reduced
set of path constraints has been determined from the problem to be
solved. For the numerical example of Chapter (V the resulting ccn-

straints are shown by Table Vi-1, ({f, for example, iob $ is

9.3

performed, then the minimum length of the critical path would be 45
days. Since the lower bound on project length calculated in Chapter
IV was 43 days, the reduced constraint matrix assumes that We will

be at least 43 days.

The problem we must solve then is

(1) Minimize & k{i) - +
P C‘. d .- pwf -+ fo
=l j=l Joij

Subject to

Precedence: As given in the reduced constraint matrix
+ -

Que Date: ”f'”f - Uf =D




87

k(i)
Interdependency: é dU =1 I =1,...,h
J1

plus ''other’ interdependency constraints.

“Node[6,T 6,2 6,3 2,1 9,2 9,3 12,1 12,2 15,1 15,2 17,1 17.2

Cost|400 200 0 200 100 O 50 0 100 0 0 150

52
56

Reduced Constraint Matrix

Table Vi-=1

The bounding process involves a separation of the full
problem into two serially related subproblems. we first solve to find
the minimum total job cost at a particular point in the tree, consider-
ing only decision jobs accepted, dij = |, and decision jobs excluded,

dmn= 0, to that point in the tree. |If 5, s the set of jobs
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accepted and SE the set included

h k(i)
(2 c,= 2 5 oy 4y
izl j=
Subject to
ACCEPTANCE  dj = | s,j={sA}
EXCLUSION  d_ = o smn-.-{sE}

Interdependency k(i)
2
j*

plus ''other' interdependency constraints.,

An optimal solution to this problem is the selection of a set

of the decision jobs which includec all of the jobs in 35,, none of

the jobs in Sp meets all interdependency constraints and minimizes

job cost (. If no such solution exists, then that point of the tree

may be labelled as infeasible and no further search is required. If a

solution is found, then we can state that no set of decision jobs can
be selected, given existing constraints, that will have a lower total

job cost than CJ.

We have now calculated minimum job cost at a particular point

iii the tree and we now show that it is possible to add to it Cp, which

is a lower bound on penalty cost tor the date of project comoletion.

Given the constraints implied by the jobs in S, and S

and given
the information from Table VI-!, it is possible to calculate a minimum

length for the critical path of the project. Ffor example, if Sp

contains job Sq 3 and Sg contains job 5,5'2, then we must do jobs
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15,1
two jobs Introduce a path U6 days long into the network. Thus we car

59,3 and $ ( jZ—,: dlS.J =] ), From Table IV-1 we see that t- se

calculate a lower bound, Cp, of due date penalty or premium. Thus
the lower bound on total cost, Cy, for the partial solution is
CJ-+-CP. In addition, if it is found that the complete solution to the
job cost minimization problem also gives a path length resulting in
cost Cp, we may terminate further search down the p ‘th. The optimum
solution containing the partial path has been found since we have a
complete solution with minimum job cost and path length, given our
previous selections.

The general branching strategy to be used here is as follows.
From the set of all declsion paths, the set of paths with the maximum
number of accepted and excluded jobs, Pp, will be taken. For each of
these patn Pp a minimum bound will be calculated and the path with
the minimum lower bound will be selected for further elaboration. Once
the path has been chosen, a decision rule is required to select deci-
sion jobs that will be examined at the next stage. The general
approach to be used here is similar to that used by Eastman [?7] and
later by Shapiro [67] in the travelling salesman problem. At each
node of the problem they solve an assiginznt problem on the cost matrix,
The solution that resuits may imply several sub-tours, rather than a
complete all-city tour. For exampie in a five city problem the solution

1-4, 4-1, 2-3, 3-5, 5-2

contains two subtours, 1-4-1 and 2-3-5-2. Shapiro takes the smallest

of the tours, i.e. I1-4, 4-1 and branches on these variables




90

infeasible

In this noxation (I-4) implies that the route selected will inc)ude
—

a trip fromcity 1 tocity 4 and <E§§> implies that such a trip
will not be made. Since the combination of 1-4, L-]1 constitutes a
subtour, by problem definition they both cannot appear in a feasible
solution. Thus either the condition "not 1-4" or '"not 4-1'"" {ur both)
must hold. If it is possible to cluse all nodes leading from 1-h and
K:T , then all solutions have been discevered and bounded.

This suggests the following branching strategy for out
problem. At a particular rode of the tree, solve the following integer
programming problem as in (2)

g k(i)
Minimize Cj‘“ cij dij

i=l j=1

Subject to

Acceptance dU =1 Sij= iSA

Exclusion d — o S -
mn mn

Interdependency

k(i)
< ij

i

plus "other’ interdependency constraints.
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A solution to this problem will consist of the cheapest feasible
selection of the decisicn jobs. It is then possible to test in the
original decision graph for the length of the critical path associated
with this selection of decision jobs. Alternately, if the reduced set

of path constraints exist, for example see Table VI-1, the length of

the critical path may be determined directly from that set of equations.

In addition, we may identify those variables on the critical path of
the network. These critical path variables then form one branch from
the new node, and each variable, individually excluded, forms the
alternate paths from the node. Any solution to the problem must con-
tain either the set of all decision nodes on the original critical
path, or have at least one of them excluded. |f, for example, at a
particular node on the tree, the cheapest feasible set of decisions
contained S6,l and SIZ,I and both of these jobs were on a critical

path of 47 days, we would branch as shown below

,/

/T\

Si2, 1\ S6,l
J $12.1
\, , 2,1

In tha application of the idea to the DCPM problem, the combination of

—

jobs on the critical path, say 56 P SIZ | is feasible rather than

infeasible as in Shapiro's problem., However, although it is feasible,

5
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it is never necessary to develop that particular node further, Given
the exclusions and acceptances to that point on the path, we solved a
programming problem to minimize the total job cost, C;., The minimum
cost feasihle set of jobs is then tested in the matrix of Table Vi-] to
determine project length, project length cost Cp’ and the set of jobs
on the critical path. Given that we do the set of jobs on the critical
path and that prior acceptances and exclusions be enforced, i-e total
cost can not be less than Cp-+ Cj and the solution that gives C

p

Cj is a feasivle solution to the probiem. Thus the node is completely
developed.

If at any stage of the development of the tree, all new paths
generated are bounded by a previous compiete solution or are infeasible
or if a complete solution has been opotained, it is necessary to wove
backwards up the tree and pick new paths to develop. Again we find
the unbounded paths that have the maximum number of job acceptances

and exclusions and of these select the one with the minimum bound. This

implies that we move up the tree to the first open node. The algorithm

will now be presented in flow chart form, then applied to the sample
problem of Figure Ili-1.
Step 1. Reduce the network by the dominance feasibility and lower

bound tests of Chapter tV to obtain the reduced constraint matrix.

Step 2a. Solve an inteqger programming problem to find the minimum cost
set of decision jobs that will meet al!l interdependency constraints,

Set the value of Cp to eyual the cost of this solution. Go to Step 3.

Step 2b. Select the complete solution and the job cost C(; caiculated
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at Step 7 for the path to be elaborated.

Stzp 3. Calculate the length of the critical path, Nf, assocliated
witi the decision jobs selected at Step 2. This may be determined
gither from the original project graph or from the reduced set of
constrsints. Let CP-= -rWg” 4 pWe given We - Ve 4+ W = D, Thus
Cp is either the early premium or late pen.lty acsociated with finish
day wf and due date °. Now establish one branch from the first
node which includes the complete solution of Step 2, that is a particu-
lar set of decision jibs. with a total project cost of op +C, =»Cp.
Step 4. Establish alternate branches from the current node by adding
nodes which specifically exciude each of the decision jobs on the
critical path determined at Step 3.

Step 5. For each excluded decision job, S solve an integer

ij*
programming problem, (2), which minimizes the total sum of job cost

c considering all jobs excluded to that point on the path. The

jr
problem may have no solution and, if so, the path may be immediately
terminated.

Step 6. For each exciuded decision job, Si" use the job alternative

interdependency constraints k(i)

dij =1 to see if the series of

i=
exclusions have forced the ''acceptance'’ of some decision jobs. Given
the "acceptances'', the original project graph on the reduced set of
path constraints will enable us to calculate a minimum bou~d on the
length of the criticai path, We. Use W¢ (o calculate a lower bound

on comp,etion date cost, Cp. For each decision job excluded, add the
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job cost of Step §, Cj, to the minimum completion date cost calculated
above, Cp, to determine a minimum bound on tota! cost Lp=(; + Cp.
Step 7 Record the full solution to the progreaming problem of Step 5
and calculate the critical path length associated with each solution.
Step 8. Test all paths from the last node for feasibility, complete
solution or bounded solutlon.

{a) If the program of Step £ has no solution, then the path
being tested is infeasible and no vYurther search on that patr is
required.

(b) If for any path the bound of Step 6 ic equal to the com-
plete solution cost of Step 7, then we have a complete solution to the
problem and no lower cost /il be found down this particular path. |If
the total cost of the full soluvtion is less than the cost of the
existing best solution,update the existing best with the new value.

(¢) 1f the lower bound calculated in Step 6 is higher than
an existing complete scluticn to the problem, the path is bounded and
need not be considered further.

Step 9. Choose from the feasible, unbounded partial paths at the
current node the gpath with the minimum cost bound. If a tie exists,
chaose the path with th. maximum number of forced accep:ances. Go to
Step 2b.

1f no reaslble, unbounded partial path exists, then the node
is closed and we backtrack one level in the graph. Go tGVS:ep 8.

1f all rodes in the network «re closed, then the problum fs

solved and the current best solution is the cptimal solutiorn,




3. Application of the Reduced Constraint Algorithm

The steps of the algorithm will now be iilustrated with the
DCPM problem of Figure V11-1 with D= U5 days, r = $20 and p = $40.
The complete solution tree for the problem is shown in Figure VI-2,
Step 1. Table VI-1 illustrates the reduced set of constraints for the
sampie problem,
Step 2. The integer programming aigorithm of Chapter V will be used
to solve the problem of selecting the minimum cost, feasible set of
decision jobs. Figure Vi-1 shows the initial programming network
modi fied to include the 'other' interdependency constraints. The
minimum cost solution is 56,2’ 59'3, SIZ,I' SIS,Z and 817,'
with 2 cost of CJ:= $50.
Step 3. With the jobs given in Step 2, we find from Table VI-1 that
the critical path is 56 days long and it contains decision jobs 59’3,
15,20 and Sy3 4. C = (56 - 45) (40) = $L4O. The total cost for the

p
solution C-i. = 5y t440 = $490,

cT
<T <:: Solution
C.P. jobs | other jobs :
sLg0
9,30 15,2 5!7.‘156.3’ Sm.l,

complete solution

Step 4. wWe now establish alternate branches exciuding all jobs on the

critical path of Step &,




SOlufl‘ 13 S
vn 9,3

S

12,1

50 (15,1Y-30 50 15.2\50
100 0
50 17,1Y50 50 7,2\ -100

FI1QURE VI-1

Cost:

$59
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exclude Sij

9 $490
complete solut’on

Step 5. For each excluded job, ET], we determine the remaining

minimum cost, CJ, feasible solution. The values would be obtained

by removing the node E?; from the grapi. of Figure VI-1 and recalcu~

lating the shortest path.

o
150 | 150 200
Step 6. FOF each exclusion calculate the minimum bound for the length

of the critical path. I!f we exclude 59 3 then we force the accept-
ance of no job and theretoire the minimum length of the critical path

would be the absolute winimum, 43 days. This gives a reward of

(45 - 43)(20) = -$L0, If we reject SIS 2 then we are forced to
accept ng T However, no path that includes oriy decision job
S is longer than L3 days. Therefore tihe minimum completion cost

15,1

is avain -9%40,
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Cy
% |
200 e
-4o_ |
$110 $110 $160

Step 7. Compuie the complete cost for each node developed in Step 5.

5. : c W
Sij Soluticn j ¢ Cp CT
Sg 3 Se.30 Sg.20 Sig,1” Sig.20 Sig,q 150 52 280 430
$15,2 s 5 5 s s 150 52 280 430
(5,5 1) "6.3% 9,30 izir Y1570 17, 5 3
I
(5. ) S6,3+ Sq.3+ Si2.10 Syg.gr Sy7,2 200 52 280 U8o

——— —

Step 8. All three paths g;j3, SIS,Z' SI7,I are feasible and all
but ET;'I are unbounded, The minimum cost solution available costs
$430.

Step 9. Select node 59'3 for elaboration since it is tie with SIS.Z
for minimum bound.

The final solution as shown in Figure VI-2 contains jobs

56.2' 59'1. 5‘2.2. 515.2 and 517'| with costs, CJ 1-Lp:= Cr,

300 - Lo = $260.
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L, Fixed Order Algorithm

The second scheme proposed works directly from the matrix of
Table IV=3, the reduced network matrix, which shows maximal distances
between decision Jobs in a decision greph. For convenience this table

will be reproduced as Vi-2,

Reduced Network Matrix

6) 62 63 9) 92 93 12) 122 151 152 17} 172 | s,
Ss 16 18 20 22 22 27 36 32 9 13 N 3 37
&) 21 17 17
62 19 15 15
63 8 22 18 23
91 20
92 18
93 9 13 18
12) 10
122 10
15) 10
152 o3 0
17 5
132 5

Table Vi-2

It contains implicitly a reduced set of project paths that exist in the
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original network Figure !ll-1 ., In this algorithm the order of
selection of decision sets is strictly determined, that is for our
problem an ordering of decision set 5S¢, 59, SIZ’ S‘5 and 5,7
might be chosen. In elaborating a particular decision set, the paths
to be considered are simply all possible decision jobs in the set under
consideration. At S; we consider branching on all Sij ) j=1,2,
«eo,k(i). This involves a feasibility test to see if the new job 51
is consistent with jobs previous!y chosen on the path given the '"other"
interdependency constraints, A feasible path is then selected for
elaboration based on a calculation of a total cost bound for each
feasible path, As in the first algorithm, the path sciected will
always be from the most fully developed paths so that .. always push
directly down to a complete solution or halt because a path is bounded,
then backtrack up the tree closing open nodes as we find them.

At any node in the tree. it is possible to calculate
directly the total cost of decision jobs assigned on the path to that
point. If we add to this the total cost of minimum cost jobs in
decision sets from which no assignment has been made, we have a lower
pound on total job cost CJ. In our problems the costs for jobs in
each decision set have been normalized, that is the smallest cost is
subtracted from all costs, so that the total minimum cost for unassigned
sets will always be zero.

At the node under consideration, it is also possible to

calculate a minimun length for the decision path under consideration.

A project graph can be constructed from the information of Table Vi-2
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as we have done in Figure VI-3, The reduced graph is broken at all
unassigned decision nodes, and the longest path algorithm is applied

to find the shortest possible length of the network given previous
assignments, This value is a lower bound on project length and may be
used to calculate €, -~ minimumn completion cost. Cyw C, + Cp glves

)

a lower bound for the particular path under ccnsideration.

! ohor awa
T [

€alVm.,
i T

Y -
L4 VI e

he alge
Step 1. Normalize the cost of all jobs in decision sets by subtracting
the iowest cost for any mob in a set from all jobs in that set.

Step 2. Apply the routine of Chapter IV, Section 3, to find a reduced
network containing only decision jobs and maximal length paths between
decision jobs,

Step 3. Sequence the decision sets in a fixed order.

Step 4. Elaborate the first decision set in the fixed order list, for
which no assignment has been made and calculate total job cost, Cj,
for each resulting path. The integer programming algorithm of

Chapter V will find the minimum cost solution, given iaterdependency
constraints and decisicn job acceptances. !f no feasible solution
exists, then search on this path may be terminated.

Step 5. For each newly developed path, find a minimum bound for the
length of the critical path, W,, and evaluate the cost of this path
length as Cp. The reduced network from Step 2 may be used to compute
minimum project length. As in the algorithm of Chaprer IV, Section 3,

we break ihe reduced network at all decision johs, then introduce only

those decision jobs accepted on the partial path which is under
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consideration, A critical path calculation which ignores all unaccepted
decision jobs then gives a low:r bound on project length. A lower

bound on the cost of the partial path will then be C;=C, +Cp.

Step 6. Record the full solution to the programming problems of Step 4
and calculate the critical path length associated with each full solu~
tion using the methods of Step 5. Compute the total cost of sach
solution.

Step 7. Test each newly developed path fur feasibility, complete
solution and bounded partial solution.

(a) A path may be ercluded based on a2 feasibility test of
Step 4.

(b) If for any path “he cost of a comlete solution from
Step 6 is equal to the lower bouna calculated in Step 5, no further
development is necessary. No other so'ut:on on this path can have a
lower total cost. |f the total cost of the full solution is less than
the cost of the existing best solution, update the existing ''best"
with the new value,

(c) If the lower bound of Step 5 is higher than an existing

complete solution to the problem, the path is bounded and need not be
considered further.
Step 8. (a) Choose from the feasible unbounded partial paths at the
current node, the path with the minimym cost bound. Break ties with
random selecticn. Go to Step 3.

(b) If no feasible, unbounded, partial path exists, then we

backtrack one level in the graph. Go to Step 8(a).
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(c) If no open nodes are found, HALT, The optimal solution

Is the current best solution.,

5. Application of the Fixed Order Algorithm

The steps of the algorithm will now be illustrated with the
DCPM problem of Figure Ili-1 with D =45 days, r =~$20 and p = $40.
The complete sclution tree for the problem is shown in Figures Vi-4, 5,
Step |. The Jub cests in this problem are normalized.
Step 2. Table Vi-2 and Figure Vi-3 illustrate the reduced network.
Step 3. Choose sequence 59, 56' Sras SIS' 5'7 al though any
sequence is permissible.
Step 4. Elaborate the three alternatives for decision job 59 and

for each calculate Cj the minimum job cost for a feasible solution

containing SS,J'

__.J_

9.3

Step 5. Cailculate the minimum path length associated with each partial
path. From Figure VI-3, we can Jetermine the longest path through

59 ) and onty 59 p s L2 days lcng. Similarly, bounds on and

*9,2
59 3 may be caelrulated as 40 and LS5 respectively. The associatad

values for Cp would be =360, -3510G and 0. Therefore, the totasl
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lower Lounds, CT' are $340, S50 and $50,

l//—-
k\ ~~ 1] P

\ \ ¢ |
— \\,/“ .

150

59»;\\.:ff1. R S 2 )i-100 39:;> -
L340 N 50 e

—

Step 6. The comnlete solutions of Step 4 are

Acceptance Solution Cy We Cp C~
59,1 Sb,z' 59’!, 5‘2'2, 515,23 Sl7,l Ly 4y 4o 360
59’2 5695' 59’2, 512’1, 515’2, S'?,] 150 52 280 430
Sg.3 Sa.3, S9,3 Si12,1» Si5,20 S17,1 50 56 0 490

Step 7. Choose either or 59 3 for fuither elaboraticon since

S
9,2

they have identical lower bounds of $50,
Twe optimal solution is shown in Figure Vi-4 to be 56 2

59'2, 512,2' 5.2 and Sl7,i with & total cost of $260.

0. Computatinnai Resu'ts with the Fixed 0:der Algorithm*

The efficiency of this algorithm for any given probiem will

depend on the fixed crdcr estabiished fur the decisior sets. 1n aur

* The computational results reported in this section were obtainad
with the collaboration ot M. dagner. The details of four[poqpetitlve
algorithms, aleng with computional results, are giver 'n 23:. The
programs used are t.sted in Appendix E,
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example, the fact that 59 , 56’ and S:z appeared at the head of

the list coupled with the inlerdependency constraints on these job
sets, allowed substantial truncation bascd on feasibility tests, We
may also cbserve from this example that a combination of 56,‘ and
SIZ,I always gave a good project completion cost bound since they
allowed a long path to form in the network (52 days). This, of course,
could be observed directly in Table VI-1. This suggests that we might
cut search time if decision sets that appeared on long paths were
placed at the front of the fixed order list. This would certainly be
in the spirit of the first algorithm presented. In order to measure
criticality of the decision sets, the following procedure was used.
Step 1. At each decision set, the cheapest decision job was chosen.
Step 2. The resulting CPM problem is solved and the slack for each
job calculated.

Step 3. Sequence the decision sets in increasing order of slack
measured for the member of that set in the CPM problem,

The algorithm wae tested on 10 problems of approximately 210
jobs and 15 three-job decision sets each. The total number of combina-
tions of decision jobs would therefore be 3'522 1.5 x l06. Character-
istics of the 10 jobs are given in Appendix A,

Each problem was sclved twice, the first time with a simple
technological ordering of decision sets, and the second time with the
stack ordering described above. Computational results are given in
Table VI-3. The algorithm was programmed in Fortran IV for an 1BM 7094,

The program was run under a time-sharing system -- the time reported
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derived from the system interval timer and do not include swap times
imposed by th: time-sharing system. Times required to obtain the
reduced network matrix are not included here, but reported separately
in Appendix B, In addition to the times reported, these problems
required 2-6 seconds for reading data and performing certain initiali-
zing functiors in preparation for the application of th. branch and bound
procedure. The computation times reported are exactly repeatable.
Computation results show an impressive superiority for
choosing decisions based on initial slack. Ratios of computaticn time
as high as 50:1 were found. In addition, the absolute amount of time
required by the algorithm using a slack ordered list suggests that the

algorithm is erficient for these problems,




Problem

Number

(Appendix A)

Ordering
Heuristic

111

Optimal Soiution

Found

Proven

Computation time (sec.)

o —— i+ A, ot A A

78 Technological 330-T 330-T
Stack 6.4 9.8
79 Technological 73.7 213-T
Slack 16,4 36.8
80 Technological 5.0 167-T
Slack 13.8 23.5
81 Technological 139.4 261-T
Slack 101.3 130.5
82 Technological 7.7 141=T
Stack 12.8 26.6
83 Technological 4.3 18.5
Siack 1.8 2.2
84 Technological 40.8 73.2
Stack 5.8 9.4
85 Technological 2.2 5.6
Slack 2.0 2.4
86 Technological 98-T 98-71
Slack 2.2 2.4
37 Technological 81.0 95-T
Stack 1.6

T - computation terminated beforc compietion

Table Vi-3




Chapter ViI

RESOURCE CONSTRAINED DECISION NETWOKRKS

The decision networks we have considered in previous chapters
have included precedence and interdependency constraints. To evaluate
a particular design, that is a particular soiution to the problem, it
was simply necessary to calculate the length of the critical path for
the resulting network. Then the profect cost could be determined
exactly. |If resource constraints are added to this problem, it is no
longer a simple matter to find the mirimum length of tha project.
Branch ard bound techniques have been proposed to solve the problem
exactly, but for oroblems of reasonable size, the computation time is
exzessive. Johnson [_42 ] reports that a 120 task, single resource
problem ran 79 minutes without proving an optimal solution. In a five
decision set problem, we would have 35 = 243 possibie solutions to
evaluate in this manner.

For this reason it was decided to evaluate proposed solutions
to the decision problem by loading them under the 1imited resource with
a "good'" heuristic rule. The heuristic to be used should t» efficient
so as to keep computation time within reasonable limits, but it should
provide tight schedules. In th's ‘hapter we will examine nine possible
heuristic lcading rules and chocse the best of them for use in solving
resource constrainad decision mcdels. We then examine three technigues

for choosing an optimal set of decisions. These include complete
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enumeration, pairwise switching and muitiple pairs switching.

2. Project Scheduling Heuristics

A graphical technique for prcject scheduling was first
proposed by Gantt [}Q]. In this technique each resource is shown as a
bar on a bar chart where the horizontal dimension is time. Each task
can then be identified as a rectangic of resource use continuing for a
specific length of tiime. Precedence relations between tasks and a
loading heuristics determine the relative position of the tasks in time
and the completion date of the project. Given this visual display, it
is possiblejfor small projects)to experiment with various sequences that
satisfy the precedence constraints, so as to determine the optimal,
that is minimal length, schedule.

For large projects this graphical technique is inefficient.
Not only is it difficult to attempt many sequences, but it would require
much time to keep iob infornation up to date. Therefore, in most
current applications, a computer mode! of the Gantt chart is maintained.
With a computer system, it is relatively easy to up-date project infor-
mation as jobs are completed, calculate job slacks and test various
loading bheuristics., As we have discussed in Chapter Il, various
heuristics have been proposed for the locuing problem [?, 25, 43, bk],
but there has been little comparison ~ade of tne effectiveness of these
rules. The rules to be tested here are those that can be implemernited
quickly and that have been weli regarded in pravicus work. They are

all basically serial loading techniques. The jobs in the prcject are
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ordered first in technological order, then within technologyical order

by a secondary measure. The loading routines take the first job on the
list, schedule it at its early start date, then proceed down the ordered
list scheduling each job in turn, The particular sequence of jobs in
the list will, therefore, strongly influence the completion date of

tne project. Two routines which wi'll be discussed below modify the
serial loading slightly to allow a previously scheduled job to be
shifted forward.

Nine rules are tc be tested here. These consist of three
basic job sequences within the technological order, each sequence
loaded by three heuristic programs. The three orders to be tested are

1. random

2. increasing early start

3. increasing late start
The three serial routines, LOADC, LOACN and LOAC will now be presented.

LOADC takes each job as it appears on the technologically
ordered list and places it in the schedule at the earliest possible
time. The start time of any job will be constrained by the finish
time of its predecessors and availability of resources. The flow chart
for the routine is as follows.

1. Technologically order the jobs.

2. Solve for the critical path of the network. Find
Early Start, Late Start and slack for each job.

3. Select the job sequence to be tested (random, E.S., L.S.

within the technological order) and reorder the jobs.




L, Set i= 1 where i denotes a position on the ordered
job list.

5. Calculate ESi, the Early Start day of the job in the
ith Position on the list. Since the list is technologically ordered,
all predecessors of the job will be scheduled and Early Start can be
calculated in the usual way.

6. Attempt to schedule the job in the :th position on day
ES;. |If the job cannut be scheduled because of insufficient resources,
go to Step 8. If it can be scheduled, do so.and set i= i+ 1.

7. If all iobs have been scheduled, go to Step 9. |if not,
go to Step 5.

8. ESi4= ESi‘f 1. Go tc Step 6.

9. Halt.

Routincs LOADN and LOAD are similar to LOADC excent that
previously scheduied may be shifted forward to reduce the denmind for
resources ua a given day. A flow chart for LOADN will now be presented.

1. Techéologically order the jobs.

2. Soive for the critical path of the network, Find Early
Start, L-*> Start and Sltack, (SL), for each job.

3. Select the job sequence to be tested and reorder the jobs,

L, Set i=1 where i denotes a position on the ordered
job list.

5. Test to see if the job in the i, position is scheduled.
If¥ it is scheduled, set i =i +1 and go to Step 5. If 't is not

scheduled, go to Step 6.
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6. Calculate E5;, the Early Start day of the itep Job.

7. Schedule the job in the 1., positior of the ordered
list to begin on day ES;. |f more than the available rescurce are
requi red, measure the excess resource required, then go to Step 9. |If
suf'iclent recources were avialable, set i= 1 41,

R. If all jobs have been scheduled, go to Step 15. If not,
go to Step 5.

9. List all jobs scheduled to cperate on day ES‘ which use
ot least as much resource as the excess resource measured in Step 7.
0f these jobs, select the ur= itk maximun job slack, SL. Assume this
job holds pofition | on the ordered list.

10. Remove trom the schedule any successor of job j which
has been scheduled.

1. Set ES. = ES; +1.

J

12. Attempt to schedule job ; or day ESJ. If the job
canrot be schedulad because ot insufficient resources, go to Step 13,
If it can be scheduled. do so and set i== j4+ 1. Go to Stap 8.

13. SLJ=3L -~ 1.

T, ESJ,= ESJ+ 1. Go *o S:iep 12,

16. Hslt,

in the LOADC routine discussed earifer, all resource confilcts

were rescl!ved by shifting the job currently being scheduled forward.

LOAON mcdifies this so that given excessive demands for resource on a

given day, the job with the greatest amount of slack was shifted
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forward. The routine LOAD which was tested is identical to LOADN ia
the flow chart above, except that Step 13 is omitted. This means -hat
the slack of @ job is not reduced as it is shifted forward.

The niine heuristic loading techniques tested are illustrated
by the following matrix.

LOAD ING HEURISTIC

LOADC LOADN LOAD
Random
JOB L S
L.S.
ORDER
£.S. |
e —— L

3. Experimentation with Project Scheduling Heuristics

Sixty-five projects viecre generated for this series of tests.
These projects varied in size from 40 to 232 iobs, in length of the
critical path rrom 54 to over 200 days, in scheduled length, aiven
resource constraints, from 6U to over 600 days. Spucific characteristics
of individual projects arc given in Appendix A. The operating results
of the heuristics programs are given by problem number in Appendir «.

The results may be summarized briefly as fellows. 0f the
nine rules tested, the LOADC code operating on 3 LS ordered list was
clearly superior to all other heuristics. Tables VIl-l and Vil-2 show
that in 56 of the 65 probiems tested rhis routine gave the shortest
project complecion time and that in 47 of the 56 cases no other routine

found the minimum length schedule. Furthermore, Tabie Vil-3 shows that
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on no occasicn was the worst schedule generated by this particular
combination of job ordering and loading routine. An examination of
particular project results in Appendix C 1is interesting, The differ-
ence between the best and worst solution in many cases Is as high as

30 percent to 50 percent of the best _chedule achieved.

In general, the late start ranking is superior to either
random with = technologically ordered list, cr an £.5, ordered list.
The LOADC loading method is superior to LOADN and LOAD for L.S. order-
ings, but the evidence is not so clear for either a random or an E.S.
order. The test results cliearly show that the use of LOADC loading
routine on 8 list of jobs ordered by L.S. will provide good soiutions,
relative to the other heuristics tested. This method will now be used
to evaluate alternate solutions to the resource constrained decision

network problem.

LOADC LOADN LOAD
RANDGM L L L
L.S. 56 10 2
E.S. L 3 2

Results of 65 projects

Number of ''best'’ schedules

Table Vii-1
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LOADC LOADN LOAD
RAND OM 0 1 0
L.S. L7 3 0
E.S. 2 0 [

Results of 65 projects

Number of unique best scheduling

Table Vil=2
LOADC LOADN L.OAD
RANDOM 7 2 16
R 0 i 20
E.S. L 1 21

Results of 65 projects

Number of worst schedules

Table VIi-=3

4, Tetal Enumeration

The technique may be explained as the evaluation of all

feasible combinations of the decisiun variables in a combinatorial

problem,

In general, the method is nnt useful because of the large
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amount of computer time required tc solve problems. We use the method
here on a series of 10 small problems in order to hzve some means of
evaluating the heuristics we propose to use on the resource constrained
decision network problem.

The problems to be tested have three active resource cetegories,
L0-60 jobs, S decision sets of 3 jobs each. Thus, there are 35== 243
possible combinations «f decision jobs to be tested in each problem,
The routine iteratively activates a combination of five decision jobs,
one from each job set, then calculates the critical path in the result-
ing project network, orders the jobs by late start and loads then under
specified resource limits. The cost of the decisicn jobs in a particular
combination and the resulting length of the project are recorded.

Teble Vil-4 reports the computation times for the complete
caumeration routines programmed in Fortran IV and run under a time-
sharing system on an 3% 7094, The times reported are derived from
the system interval times and do not include swap times imposed by the
time-sharing system. The best solution found is also reported.

As explained above, the scheduie iengths are heuristically
determined so that for any combination of decision lobs, we almost
certainly are not reporting the optimal schedule. It is our point,
howaver, that large problems of the type we are attempting to solve
cannot practically be solved by existing algorithms. To illustrate
this point, we nute that since the running time for our 3° problem
s approximately 129 seconds, a problem with |5 decision sets would

require at least
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35 60x60

= 212 hours

if we were to enumerate all passible solutions and solve them heuristi-

cally. This number can be multipiied by 30 to id0 if the project has

60-100 tasks and we wish an optimal loading for cach design. Appendix

D reports all undominated solutions and a distribution of critical

path lengths and resource constrained schedule lenyths for the projects.
We now report a technique that will substantially reduce the

search required =~ but, as will be explained, will rot guarantee that

the best set of decision jobs are selected.

5. Pairwise Interchange

The pairwise interchange technique is a vachod of partialiy
enumerating combinations of variables in a problem. We will illustrate
the method in terms of a simple DCPM problem. {f the decision network
contains three decision nodes S,, Sz, S3 with respectively threes,
two and two iob alterratives, then Figure Vil-1 shows an enumerated
tree of all possible combinations of the variables.

A palrwisa enumeration scheme would begin with one decision
Job from decision set S,, one from S, and one from 53. In our
routine the job with the lfowest cust in each set is selected as &
starting solution. Assume the initial solution is S"‘, Sz“ and
53.'. The pairwise interchange routine begins with one of the decision

jobs, say Si, and {rerates it through all possible alternatives,
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S, ., 5 and 5 while holding al} other jobs as they were in
1, 1,2 1,3

the initial solution (S, ,, 53']). Then the first decision job is
’

29 then S3

are iterated through their possible alternatives. The combinstions of

returned to its original setting S,'l and then job S

jobs examined are shown in Figure VII-2, Note that each solution con-
tains only one job that is different than the set of jobs in the initial
solution &nd in total we examine only four solutions in addition to the
initial solution.

For each combination of decision jobs, the initial solution
plus the set of four combinations generated by the pairwise interchange
routine, the project is scheduled using the heuristic discussed In
Section 2 of this chapter. For each of the fcur schedules, the sum of
job cost and completion date cost is calculated. The combination of
jobs with lowest tota! cost is compared to the cost of the .nitial
solution if it is lower, this combination b. ~mes the new "Initial"
solution and jobs in that sclution are exchanged. The process continues
until no Iimprovement is found.

The ten problems tested by complete enumeration were tested
again with the pairwise interchange routina. The cost of the best
solutions generated, along with computation times, are given in Table
Vii-4, Complete details of the solutions are given in Appandix D, A
review of results shows that for each of the ten projects, the optimal
solutions were found and that, in every case, the solutions stepped
from one undominated solution to another,

For comparison with a later heuristic two, fifteen decision
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set projects weie attempted. The solutions obtained to these problems
are shown in Table Vil-k, It will be noted that these problems ran 268
and 465 seconds. These times suggest that & more efficient technique

Is required for large problems.

6. Multiple Pairs Switching

The pairwise interchange routine when applied to a five
decision set problem, three jobs per set, examines ten alternative
solutions, then accepts the best of these for further exploration. In
some instances, several good exchanges are discovered on the first pass,
but only the best exchange is accepted. Then, in the second set of
pairwise exchanges, a previously discovered change is found to be good
and at the ernd of the second pass, it is accepted. This snggests that
a more efficient routine should, at each stage, accept all exchanges
that appear to be beneficial.

The routine developed proceeds as follows. It begins by
applying 8 simple pairwise switching routine to al) decision variables.
The base solution used Is simply that which contains the cheapest job
from each decision set. For each new job brought into the solution, we
caiculate a project langth based on the loading heuristic described
eariier in this chapter., The total cost of this sclution I5 compared
to the previous lowest cost solution and the difference Is defined as
a price for the decision job.

when all decision jobs not In the starting solution have been

evalusted in this way, we have 'prices'’ for al! decision jobs. The
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implicit price of Jo%s in the originel solution is, of course, zero.
Now, using the alaorithm of Chapter IV, with job prices as defined here,
we can solve fcr the best set of jobs to perform. A solution might
imply that ore or more variables are tb be siv'tched. This design can
then be eviluated by our loaaing heuristic and a total cost can be
calculated. If this cost is lower than our previous optimum, we
recalculate job 'prices' with a pairwise interchange routine, otherwise,
we stop. Results of this algorithm for our tweiva problems are shown

in Teble Vii-4 and in more detail in Appendix D,

7. Discussion of Results

Table Vil-4 compares the computation times and quality of
solutions for the three routines applied to the full problem. For small
probiems (five decision sets), the complete enumeration routine takes
approximately 5-9 times as long as pairwise interchange methods. Palr-
wise interchange techniques take approximately the same time as the
multipie pairs approach. !n eight of the ten problems examined, both
the pairwise interchange and the multiple pairs exchange method found
the optimal sclution as proved by complete enumuration. In one of the
remaining two problems, the pairwise interchange routine found a better
solution than multiple pairs.

For large problems (fiftuen decis on sets), the pairwise
interchange rcutine took longer but found superior solutions to the
multiple p&irs method. For these problems, it was not practical to

enumerate all possible designs and so the optimal solution is not
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known as computation tir:s for these probierns of 6 to 1] minutes suggests

that even the simple routines 'culd not be practical for large problems.
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Chapter ViII

APPLICATIONS OF THE DCPM MODEL

The décision nodes of the DCPM mode! have been primarily used
throughout this thesis to represent job alternatives in the discrete
time-cost tradeoff problem. This chapter will show that the decision
nodes may also represent any given job performed at different points ir
time, or at different physical lncations and with these inteipretations,
the mode! may bz used to formulate the resource constrained project
scheduling problem and the single product assembly line balancing
problems as integer programming problems. In addition, the application
to project time cost trade-off problems will be extended to projects

under incentive contracts with non-linear cric:erion functions,

2. The mxn Jeb-Shop Schedu!ing Problem

This formulation assumes that the job-shop problem has been
solved heuristicaily [20, 2&] and that a feasible finish date W¢, the
early start of artificial finish job S¢ has been determined. For each
job, 4;, 1t is tnen possible to calculate an sarly start E5; and an
early and & late finish time, EF; yLF;, wusing the usual rules of the
critical path method.

If the critericn function is to mii imize the make span for

the fixed job file under consideration, then job S; must begin on day

ES; or !ater and mu.t finis™ on or before LS;. A start before ESi

128
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is not possible given precedence constraints and similarly a finish
later than LF; would delay the completion of the project beyond W,

Since We is a feasible solution, a schedule that delays wf cannot

be optimal.

Subscripts:
f machines f=1,2,...,m
t day t=1,2,...,0
! job i=1,2,...,f

Pi= {set of '—mediate predecessers of job I}'

Lir ‘Eset of all jobs performed on day 1 on machine r]’

Variahles:

il
m

d:: job i beginning on day j Si,....,LS'

1 if the job is performed

0 otherwise

Constraints:

Afd number of machines of type f available on day d

t time length of job i. It is assumed that each job
requires only one machine.

ES. . the start time associated with each job alternative
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Constraints:

1) Interdependence

LS;
:i. d'J:= 1

. ' f=1,.0.,m
J=ESi

each job will be performed once and only orce.

2) Resource Limits
2 d

t=1,...

Machirnz capacity wili not be exceeded on any day

3) Precedence Constraints

LSp

LS,
S (€5,;  t,)4, - Z (€5;;3d;; all pEP, = 1,...,5

A job cannot be star‘ed until all its predrces<sors 3:e completed.

Criterion:
Mininize

LS
51 ES¢;
= J
J=ES¢

This criterion function atremnts to minimize the day on which the

artificial finish job, S¢, begins. This effectively minimizes the

day on which all jobs are finisied un ali machines,




131

This formulation is related to that of Bowman [8] and may be
extended to the rescurce constrained project in the same way that Wiest
LSO] has extended Bowman's model. The project formulation may also be
extended to the resource constrained discrete time-co:t trade-off
problem by ‘expanding the decision set “or ecch job to include several
(k(i}) job alternatives.

Wiest [80] has estimated that a project with 55 jobs in &
shops with a time span of 3" days would require 5225 equations and 1650
variables. {If job splits were not allowed, the number of equations
would rise to 6870, The formulation suggested here requites an inter-
dependency constraint for each job (55), a resource canstraint for each
resource for each day ( x 30 120) and a constraint for each precedence
relation (100 - 500). We car then estimate that this formulation wouid
require 300 - 700 constraints -- apgroximately onr -tenth of those with
Bowvman-Wiest formulation. ! this formulation there would be at least
one variable for each duy of slack in the original heuristic schedule.
This number would ks substarntially below the figure 1650, estimated by
Wiest. An astimate in the rarje 50-200 would not seem unreasonable here,
The exact number of constraints and variables will, of course, depend
on the srecific problem,

It is difficult to make an exact comparison with Manne's
formulat:on [Sh] since his approach is not suitabie for the rescurce
constrained projec. problem. He implicitly assures a resource level
of one by his use of non-interference constrain:s, He does estimate

thet = job file of ten tasks to be neifo' &d on five machines would
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require 250 variables. There would be a constraint for each precedence

reiation and two constraints for each pair of jobs which must use every

machine, This would involve approximately 500 constraints for his

problem,

3. The Single-Froduct Assembly-Line Balancing Problem

This formulation will again assume that the combinatorial

problem has been solved heuristically [72, 77] and an urper limit

Mmax has been set on the number of stations to be used.

Subscripts:

J - stations

j=1, "'Mmax
i - job i=1,...,5¢
Sij - job i performed at station j
P.= {set of immediate predecessions of job i 3‘

Lj:'-iset of all job alternatives (Sij) that may be

performed at station j._}
Variables:

dlj job I performed at station j ]

dij= él if job is performed at station j

I3
\p otherwise
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Constraints:
C

t

Constraints:
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cycle time -~ maximum amount of work a station may perform

time length of job |

1) Interdependence
djj =1 i=1,...,5
j=1
each job must be performed once and only once,
2) Resource limits
SZEL tidijéc j= I,...,Mmax
[ il
only C units of time can be performed at any
station
3) Precedence
M
Smax qax pEP;
)_.- Jdpj £ Z Jdi_j
J':l _j:‘ i = lizt""sr
A job cannot be allocated to a stetion unless all
its predecessors cre assigned to that station or
an earlier one,
Criterion:
Minimize Mnax
AN
j=1

waxn
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Here we attc.pt to minimize the number of the station in
which the final job, S¢, appears. This effectively minimizes the
total number of stations used.

For the 11 ju- , co'lem of Jackson [A\Zl with C= 10 and an
initial heuristic solution of six stations, this formulation would
require eleven interdependency constraints, six rescurce constraints
and fourteen precedence constraints for a total of 31. The maximum
nunber of variables would be 66, but this could be reduced by an ES-LS
argument to approximately 39. This is a substantially smaller prob'em

thaa competitive formulations.

L, An Application of Decision CPM to Incentive Contracts

Recently several government agencies have changed their
contracting procedures from predominantly cost-plus~fixed fee to
incentive fee contracts, The incentive contracts are written so that
tne maximum fee obtainable decreases as cost of the project increases
{59} and the per cent of the maximum fee actually paid decreases with
decreasing performance. Performance poiits may be awarded for success-
full performance or quality tests, and for meeting a series of
specified due dates (or mile stones) within the project network. A
sample contract fee -“ructure is shown in Figure Vill-1,

A manufacturer foced with a time-cost trade-off probiem
within an incentlve contract has an especially difficult problem. If
a job is ''crashed', i¢ is possible that extra points will be earned as

a result of meeting s particular due date. At the same time, the
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increase in project cost will cause all 'points' to be slightiy
devalued. The following integer programming* problem is solved
iteratively to determine the optim al selection of jobs to be per-

formed. The exact procedure will be described after the model is

presented.
Subscripts:
i job sets i=1,...,m
j decision jobs in a job set i=12,..., kii)
Variables:
¢ i= L2 k()

The alternative ways of performing job S;

1 if job i 1is performed by alternative Sij

dU

0 otherwise

wij the early starting time of job Sij

SN
Sm £ Fm={the set of all jobs that are given due dates_S—

S¢ § Pijz{the set of all jobs that precede job SU 4§

-+

Wn the number of days after D, that S, is completed

W the number of days before Dm that S Is completed

* This problem was originally fo;mulatcd by the auchor, then
applied to an actual problem by E. Smylie [69].
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Constan.s:

the time required to perform S‘j
C‘J the cost of Sij

due date given to job 3

] maximum project cost

P point loss for each day avter Dm job S, Is completed

m daily poirt reward for eariy complestion of job S,

Constraints:
Interdepzndence
k(i)
S! di; =1
j=

Pre~edance

As in [l9] if §; precedes S5 = and S‘ is a unit set

job, the precedsice relation is shown

H; “+ ti é 'vlm

and it is a multi-set Job

and if Sij precedes S

-n(u-a;j) +t; + HU < W

Resource (Sudaet) Constraint:
n

k
22 :g c;jdi} <8

iml juml




Due Date Constraints:

T -
Wp = Wy + Wy =D

Criterion:
- +

Maximi ze ii s = P
™3

This fornulation maximizes the number of performance points
obtained subject to cest limits on the complete project. initially,
the problem is soived without a budget constraint to determine the
maximun available points and the cost associated with this solution.

8 is then set cne unit below the cost focund above and the problem is
resolved.

The routinre is applied iteratively until the minimum cost
point is reached. At each solution the combination of performance
peints obtained and budget cost will allow total fee to be calculated.
Figure VIl-3 shows a series of such points with an optimal solution

marked. This apprcach has been applied to an actual oroject by Smylie

[69] and is reported by Crowsion and Smylie [22].
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Chapter IX

Sumiary and Corclusions

Our original goal was to determine efficient procedures for
the solution of design problems in situations where the desian could
only be evaluated in term: of optimal operating decisions for the
system, The study was confined to the area of project scheduling
although the models we used were related to many other planning problems,
The relationship between these problems was shown in the literature
review of Chapter 1.

The articies reviewed there were categorized by the type of
constraint found in the mode!. These included time or precedence
constraints, showing the sequence in which the jobs were to be per-
formed, or putting time constraints on the start or finish time of a
particular job. The use of resource constraints implied that the jobs
required resource inputs to be performed and that the avaiiability of
the resource was limited in each time perind. Finally, interdependency
constraints between individual {asks ware introduced. One particular
type of interdependency, that is, the mutually exclusive relation
between sets of jobs, was developed In some detail throughout the
thesls since the job alternatives could be used to represent design
eiternatives in a planning problenm,

Models with simple time constraints, the usual Critical Path

problem, could be solved optimally with longest path algorithm., Froblems
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that involve simple interdependency reiations form a speciai class of
0 - 1 integer programming problem. Tree search schemes have been
developed for this class of problem. With time and interdependency
constraints in a model, ac we have in DCPM, the literature suggest a
standard integer programming routine is required,

When resource demands and constraints are added to a model, it
becomes a difricult problem to solve it optimally., For example, given
time and resource constraints on a set of tasks, it is a difficult
combinational problem to find the sequence of jobs that minimize
piroject length., Branch and bound techniques have been developed for
small problems, but large problems must be solved heuristically. Only
a few models inciude all three types of constraints that we have dis-
cussed, and these are solved heuristically.

The design problem that is the central concern of the thesis
is the problem of selecting which jobs to perform, from a decision set
of mutually exclusive alternatives., The optimal set minimizes the
total of job cost and project completion date cost. This problem is
formulated in Chapter 11l as an integer programming problem, It is
shown in this chapter that the number of precedence constraints required
for any network wouid be one for each precedence link, or one for each
path in the network., This number could be so large that the problem
could not be solved by current integer programming routines.

In Chapter IV dominance, feasibility and lower bound tests
are developed to eliminate many non-binding precedence constraints from

the integer programming model. This is equivalent to the elimination
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of many paths, which can under no condition become critical, from the
decisfion network. The remaining set of paths which may become the
critical path are termed the ''reduced constraint' set. An algorithm

is developed to implement the dominance tests referred to above. In a
decision graph, the algorithm determines the longest path between all
pairs of decision jobs, if any path exists, and eliminates all paths
but the longest one. The result is a '"reduced network'’ containing only
decision jobs and maximal length paths between decision jobs.

If we consider the set of tasks in any OCPM problem and the
set of interdependence constraints defined on that set, we observe
large numbers of mutually exciusive relations, ''job alternative' inter-
dependencies, and some number of constraints between individual members
of job sets, ‘'other' interdependencies. In Chapter V an integer program-
ming network algorithm is developed to efficiently solve the problem of
seiecting the minimum cost set of decision Jobs given these types of
interdependency constraints. The optimization technique used is the
"longest path'' calculation of the critical path method applied to a
network in which each patn through the network is a feasible solution
to the integer programming problem. The length of each path is exactly
equivalent to the value of the criterion functicn for the solution the
path represents. In this algorithm, the usual “slack’’ measure of the
critical path method mey be interpreted as the dual evaluation of
variables which are not in the solution., When the structure of inter-
dependence in a problem doas not &ilow the algorithm tc be directly

applied, it Is shown that it may be coupled with a brench and biand




algorithm to solve the probiem,

In Chapter VI two branch and brand routines are developed to
solve t-e DCPM problem. Both of these use thé algorithm of the previ-
ous chapter to handle the intecrdependency constraints, In the first
routine at each node, we calculate the minimum cost job selections,
given job selections and rejections to that point on the tree and
determine the criticai path given these job selections. The branching
decisions are made sc &s to progressively break all critical paths, by
prohibiting the use of decision jobs on the path., The second algorithm
sets a fixed order in which the decision sets will be considered, and
at each node, evaluates all alternatives within that set. Given any
selection of alternatives, a lower bound on total project cost is given
by the sum of job cost, for thcse jobs previcusly committed, and a
project completion cost, based on a finish date determined from the
reduced network, with only the jobs that were previously committed
active in the network.

The second routine was coded and tested with two different
orderings of the job sets. The first fixed order was simply a tech-
nological order taken from the position of the decision sets in the
orig:nal network. The second fixed order was arranged so that the
decision sets were listed in order of increasing slack. This silack
was determined by choosing from each decision set, the cheapest decision
job ard solving the resultinu critical path problem. The slack on these
jobs was then determined and its value used to rank the decision sets.

In every case, the slack order was superior to a technological order
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and the superiority ranged from 5:1 to over 50:1, Using the slack order
problems of fifteen decision nodes or 1.5 x 106. possible designs were
solved In 1.6 to 130 seconds. This suggests that large decision networks
may be solved efficiently with this routine.

In Chapter VII, decision networks with resource limits were
introduced. Before the combined ‘‘design', 'operating'' problem was
attempted, it was necessary to determine a good ‘‘operating' rule, or, in
this case, a heuristic loading rule for sequencing projezt jobs under
limited resources. Several rules from the literature were tested and
of these a serial loading rule, operating on a job list ordered by late
start, with no Job bumping, proved superior.

This rule was then used in combination with three tree search
techniques. These were complete enumeration, to provide proof of the
optimal solution, pairwise interchange and multiple pairs exchange.

The pairwise interchange was superior to multiple pairs routine in

that the computation times were approximately the same but the solutions
were superior. In ten problems the pairwise routine solved eight
optimally. It was concluded that none of the techniques were efficient
for large problems,

In the last chapter, the decision network integer progremming
formulation was aoplied (0o the m x n Job shop scheduling problem, the
single product assembly-line halancing problem and the DCPM incentive
contrast probiem. For the tirst applications, the tormulation was
markedly more efficient than the one existing integer programming formu-

lations used as a basis of comparison. The last formulation was
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interesting in that the model was applied to a problem with a non-linear

criterion function.

Suggestions for Future Research

The research questions that have arisen in this study fall
into three broad categories. First we will suggest specific areas for
development of algorithmic and heuristic reoutines for the solution of
related problems. Then we will discuss the need for additional tests
of the models developed here on actual problems and, finally, we will
discuss the extension of these models to other planning problems.

It is clear that much more work remains to be done on the
development of truncated enumeration schemes for the DCPM problem;

We have suggested two here and tested one of these. It would be
desirable to develop other appro~zhes to this problem, specifically
one that could opsrate on the original network and save the time
required by our network reduction scheme. All models could then be
tested against a range of DCPM problems. 1In Chapter Y we developed
an integer programming routine for restricted types of problems, and
suggested that it could be .nupled with a tree scarch scheme for more
complex probiems, |t would be useful to develop a program for such &
combined mode! and test it on a series of prechlems,

The area that requires *he most work would be the solution

of resource constrained decision networks. We have attempted several

methods that give reasonable soiutions, but use excessive amounts of
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time. A routine patterned after the first branch and bound scheme of
Chapter VI would have some hope of success. In this application, the
critical sequence as defined by Wiest would appear to be useful in the
branching rule, rather than the critical path used here.

One application of the DCPM model [69] has been attempted
and, in that instance, the network reduction rules suggested here were
extremely powerful in reducing the size of the network that had to Le
considered. This experience suggests that many real networks have
large areas with substantial slack, so that large reductions is possible.
If this is true in general, then the network reduction notions of this
thesis may be extremely useful to managers even though they do not use
full range of optimization techniques suggested here. If a large
problem is reduced to a small one, then the manager's heuristics may
perform better.

Finally, we believe that these models will be usefui at the
detail level of job-planning, that is, to the optimization of man-
machine and related process charts and to the most aggregate level of
policy-making within a firm. Wherever there is a variety of things to
be done, connected with the types of constraints we have discussed
throughout this thesis, our models, or some version of them, should be
relevant. we hope, then, that this research will influence the

development of a wide range of planning models.
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APPENDIX A

Problem Generation

The problems used throughout this thesis were generated from six
basic precederca networks. We shall label these Type A, B, C, D, E and
F. All problems of type A contained an identical tree structure (precedence
ordering) and identical decision jobs. The job lengths, job coste and
resource usages for all decision jobs in all projects were predetermined.
All these nodes contained exactly thiee alternatives, All other job
times and resource usages were randomly determined for all non-decision
jobs in all problems. Finally, the c.at of all non-decision jobs was set
at zero since these costs were constant.

The subroutine, HYPO, used to generate the final project from the
basic networks is shown at the end of this Appendix. The following table
glves some data on the precedence networks. This is number of unit jobs,
number of decision sets, number of precedence links.

Decision Precedence

Network Jobs Sets Links
A 34 ) 72
B 46 5 87
c 49 5 92
D 49 5 92
E 171 15 364
F 202 15 343

Table A-2 will present details on projects used throughout the thesie.
The Liiformation includes network type, ctitical path (given cheapest deci-
sion jobs), resource limit, total resource usage (cheapest decisicn job

solution) and project deadline information where relevant,
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PROJECTS
Problem Type Critical Resource Total Resource Usage
No. Path Limit Res. 1 Res, 2 Res. 3
1 A 61 12 899 514 5719
2 A S0 12 715 403 463
3 A 57 18 747 332 266
4 A 66 18 919 85 81
5 A 70 18 815 217 68
6 A 63 12 891 580 654
7 A 53 15 526 286 265
8 A 64 12 1,031 225 263
9 A 62 15 875 93 56
10 A 62 12 765 523 580
11 A 58 12 769 67 18
12 A 54 12 713 549 410
13 A 67 12 73€ 206 102
14 A 62 12 519 199 142
15 A 62 12 750 58 48
16 A 60 12 942 674 678
17 A 58 12 723 208 24
18 A 58 12 709 83 36
19 A 63 12 928 749 638
20 A 64 12 538 162 403
21 A 56 12 785 0 94
22 A 55 15 766 468 717
23 B 75 12 1,254 713 952
24 ) 74 15 1,027 775 811
25 B 63 18 999 770 700
26 B 4 12 861 296 0
27 B 70 15 732 346 199
28 B 88 18 934 307 364
29 B 67 12 851 136 143
30 B 79 15 975 164 117




Problem Type

No.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
a9
50
L)
52
53
54
55
56
57
58
59
60

Wiom 9o 0O O 0 0O 0O D% 000 o

M ™M M M 9N MM N ™ Ny W

N " =

-~

Critical
Path
n3
67
61
63
67
69
61
58
63
63

Resource
Limit
18
12
12
12
15
15
15
18
18
18
12
12
12
10
18
12
18
12
12
15
15
15
18
12
14
12
12
18
12
12

Res.

1,279
1,355

696
1,051

914
1,044

999
1,075

600

985
1,392
1,082
4,723
4,700
4,561
4,164
2,456
2,333
4,268
4. 704
2,185
4,350
5,101
5,849
3,936
3,645
4,397
5,227
2,322
4,467
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Total Resource Usage

1

Res. 2

78
988
302
130
601

136
690
427
185
785
432
4,230
578
298
3,954
1,666
1,695
341
4,048
1,397
560
4,445
3,622
4,162
3,258
3,610
661
1,627
456

Res. 3

114
974
351
121
738
232
121
782
412
122
1,034
510
4,063
579
357
3,265
1.229
1,726
362
4,054
1,996
467
4,043
2,465
3,R46
3,158
3,536
684
1,808
491




152

Pcoblem Type Critical Recsource Total Resource Usage

No. Path Limit Res. 1 Res, 2 Res. 3 Reward Due-Date Penalty
6" F 100 15 4,383 3,616 3,826

62 F 95 15 2,32¢ 1,429 1,594

63 F 100 15 4,401 485 421

64 F 113 18 4,638 4,080 3,953

65 F 103 12 2,226 1,223 1,565

A D £9 18 1,155 466 732 40 70 50
67 B 87 10 1,079 522 543 50 135 50
68 D 67 10 1,212 298 269 30 145 100
639 D 76 12 1,392 785 1,034 30 142 60
0 C 76 10 1,111 494 621 50 134 35
71 3 78 13 1,191 1,054 895 50 105 80
72 B 63 18 99¢ 770 700 10 50 100
73 C 67 12 1,354 988 974 10 160 20
74 A 53 10 523 118 0 10 66 200
75 B 63 18 999 770 700 30 76 oV
75 F 102 12 4,397 3,610 3,536 30 470 70
77 E 202 12 2,333 1,695 1,726 30 280 50
78 E - - - - - 150 136 50
79 E - - - - - 150 186 50
80 E - - - . - 150 187 50
81 E - - - - - 150 195 50
§2 E - - - - - 150 185 50
&3 F - - - - - 150 150 50
34 F - ~ - - - 150 90 50
85 F - - - - - 150 97 50
86 F - - - - - 150 92 50

o)
~d
-

)

[}

t

(]

L]
—
wn
<

100 50




HYPO MADTRN

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
0c190
00200
00210
00220
00230
00240
00250
06260
002740
pozeo
00200
00300 C
00310
00320
00330
003L0
0C350
003C0
00370
00380
couao
00410
ooLz20
S0L30
0ouLo
annse
00LCO
0uL70
G6OLED C
00690
0050C
nosl1o
40520
0us530
GO540
00553
§0560
005706
00580
00590
00600

04/21 1356.5 153

SUBROUTINE HYPO (CP,IP,K,TIM)
DIMENSION CP(260,25),1P(50,15),K(30),TIM(15)
PRINT &4
4 FORMAT (35H PUNCH ISEED I5,VRES,VM1,TIM5=-7F5,3)
READ 1,1SEED,VRES,VM1,(TIM(1),1=11,15)
1 FORMAT(15,7F5.3)
PRINT 37
37 FORMAT(13H PUNCH K1lu-1I5)
READ 18,(K(1),1=1,14)
13 FORMAT(1LI5)
PRINT 3
3 FORMAT(15H PUNCH IFILE 15)
READ 5,IFILE
S FCRMAT (15)
DO 7 11=1,300
READCIFILE,C)(TIM(C12),12=1,10)
6 FORMAT (10F5.0)
TF(THI(1).EQ.0.) GO TO ©
crP(11,12)=1
IF (TIM(2).EQ.0.) GO TOC 16
CP(11,12)=3
16 K(1)=K(1)+1
DO & 13=1,10
CP(I1,13)=TIM(L3)
CONTINUE
CONTINUE
9 CONTINUE
REWIND IFILE
CALL SETUF(ISEED,USEED)
PICK UP DJ INFQ
12=1
K1=K(1)
IPi12,1)=1
no 10 11=1,K1
cpP(11,18)=1
cP(11,22)=CP(11,1)
IF(CPCI1,12).%0,1.) GO TO 10
12=12+1
'P(12,2)=CP11,1)
IPC12,15)=CP(11,2)
IP{12,3)=CP{11,2)
iPgiz,1)=12
tp{12,18)=CcP(11,12)
cCP(11,23)=t2
10 CONTINUE
K(5)=12-1
HoW PRED RFLATION-ASSUME ALL 3
IP(2,4)=1
IP(3,u)=1
NAQIRIDED!
1S=12-5
DO 13 13=2,1S5,3
16=13+3
18=13+5
DO 12 1L=16,18
DG 11 15=1,3
17=15+3
IPCIG,17)=13+15-1
11 CONTINUE

~Jj Co




00610 12 CONTINUE

690620 13 CONTINUE
00C30 1F=12+1
Qoeho DO 14 11=1,3
00€50 12=11+>
00¢€G60 IPCIF,12)=1F-tL+l1
00670 14 CONTINUE
00cCso0 {PCIF,1)=IF
00690 TIM(1)=.07
00700 TIM(2)=.21
00710 Titi(3)=.34
07240 TIM(L)=,57
0073%¢C T11i25)=,79
QU740 TIM(G)=.8C
00750 TIM(7)=.92
QU760 TIMN(E)=,97
Qo770 TIM(9)=.99
007480 Ti11(19)=1.0
i 0u790 K1Ll=K1l-1
t 008060 DO 330 1=2,K1L1
; 00310 IECCP(1,12).NF,1,) RO TO0 330
00829 CALL RANNOF(USFED, VRAN)
0Cs3"° Do 320 1Tn=1,15
90840 T=TI(ITH)
006650 IE(VRAM=T) 321,321,320
0023460 320 CONTINUF
00570 %21 COMTINUE
008e0 cPit,3)=1n
00890 330 CONTINUFE
eoage TIN(1)Y=.04
QCn1o0 TIH(2)=.12
cno20 TIN(3)=,22
Q6930 TiN(L)=.3¢%
oeota TIN(5)=,4¢E
0ca9s50 TIN(g)=.Ch
00940 TIN(7)=.78
o970 TIM(8)=,C08
CuLaco TI(9)=.90
Qv 990 TiC16)=1.0
01GCO TIH(15)=1.0
01010 0o 360 1=2,K1L1
01626 (ECCPr{,12).MEL 1) GO TO 330
SRR CALL PAPNRE(USFEED, VRAN)
g1o4L¢ 1F(YRAN-YRES) 370,450,850
01050 370 COMTINUF
graca CALL DANNOF (USFED, VRAM)
61070 po 300 102=11,15
gl1038¢6 T=TI1(1002)
Q1u90 [E(yPAN=T) LGC,000,3°0
01100 390 CONTINUF
£111¢ BOC COMTINUT
plize FG2=1G2=0
21154 L10 CONTIHUT
glity ALl LAMSOF(USFFD, VPAN)
gli156 po L20 tTh=1,10
¢ 01140 T=T12(1TH
! n1176 IF(VRAN-T) 430,450,420
g11en L2 coONTINuE
1190 30 coMTINUL




01200
G1210
01220
01230
01240
01250
01260
01270
01280
01290
01700
01310
01320
R 5,283+1,

560

W50
380

17

600
15

CPCI,IR2)=ITH
CALL RANNOF(USEED,VRAN)
FF(VRAN-VM1) 370,380,380
CONTINUE
CONTINUE

PRINT 17,K1
FORMAT (15)

00 15 1=1,K1

PRINT 600,(CP(1,d),.=1,15)
FORMAT(15F5.0)
CONTINUE

*RETURN

END

155
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COMPUTATIONAL RESULTS - REDUCED MLTWORK ALGORITHM

The iterative application of the longest path algorithm as des-
cribed in Chapter IV-3 gives maximal distances between all decision jobs,
The time required for this troutine un six baxic networks is shown below.

NETWORK COMPUTATJYON TIME
Sec,
1.7
12.5
15.3
14.7
38.5
35.2

mom o QO W >

A sample output from the program for network A follows:

Decision Jobs Maximum Path Length
From To (days)
l(SS) 3 1
1 4 1
1 5 1
1 9 11
1 10 11
1 11 11
1 12 8
1 13 8
1 14 8
1 26 14
1 27 14
1 30 14
1 S 33
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¥aximum Path Length

Decision Jobs

From

(days)
11

To

26

(2]

- - O
— et N
~ O Fxa
[ B e TR 7
[2a B 20 I o |

16
16
16
35

26
27
30
S

g I3 33

26

26

V- Y- T O
N N 3 ~l
~ O o fxo
N ™M ™ (7]
N N o

29

10

31

11

16
16
16
35

22

12
12
12
12

23

24

17
17
17
36

22
23

13

13
13
13

24
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Decision Jobs Maximum Path Length
From To (days)
14 22 18
i4 23 18
14 24 18
14 SF 37
22 SF 11
23 SF 13
21
24 SF
26 SF 15
27 SF 17
30 S 20
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APPENDIX C
PROJECT LOADING HEURISTIC RESULTS

Problem Problem
No. Order Load-C Load-N Load No, Order Load-C Load-N Load

1 Random 104 104 124 12 Random 59 62 61

L.S. 97 113 113 L.S. 59 61 61

E.S. 109 112 110 E.S. 62 61 62

2 87 95 105 13 67 67 67
° 82 97 67 67 67

78 92 92 68 67 67

3 66 64 64 14 77 74 69
60 76 79 63 63 71

60 66 62 68 63 80

4 94 g3 33 15 78 90 94
78 83 87 62 79 67

93 95 99 74 74 78

5 84 70 70 16 94 89 89
70 81 1o 76 79 86

73 71 70 73 93 84

6 111 111 115 17 66 62 62
102 112 128 60 60 62

107 113 130 63 66 66

7 63 61 61 18 62 58 58
57 58 61 58 63 60

63 58 61 59 58 58

8 92 86 93 1¢ 117 138 144
84 84 116 116 120 129

86 102 146 118 120 150

9 111 104 110 20 75 78 80
96 99 101 73 13 92

92 99 83 74 83 88

10 87 86 33 21 96 99 99
71 84 97 87 90 133

78 80 105 92 89 89

11 76 88 83 22 86 86 91
72 73 73 76 32 112

69 73 103 78 95 107
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Problem Problem
No, Order Load-C Load-N Load No. Order Load-C Load-N Load
23 Random 181 178 184 35 Random 95 90 92
L.S. 148 167 167 L.S. 84 89 89
E.S. 157 162 i72 E.S. 89 98 928
24 128 113 i3l 36 89 91 91
98 112 140 87 90 89
115 109 145 96 98 122
25 101 986 119 37 82 88 87
77 83 97 81 ol 85
88 85 110 88 94 127
26 138 122 122 38 79 90 94
102 8 123 75 83 84
116 123 177 83 96 94
27 87 87 97 39 64 63 63
72 74 74 63 63 63
87 84 85 64 63 63
28 99 92 92 40 68 68 68
92 92 92 68 71 73
99 99 99 77 81 77
29 113 122 141 41 167 160 174
96 103 122 153 160 189
97 97 97 170 171 232
30 107 163 108 42 131 131 133
N 84 102 111 119 156
100 106 112 132 143 138
1 123 112 114 a3 603 000 632
83 97 99 568 595 911
160 104 109 614 612 817
32 170 206 209 A 627 623 729
155 162 159 601 619 672
167 169 1790 611 640 764
33 89 94 94 45 337 370 351
72 81 83 298 329 431
81 26 10¢ 327 344 3155
34 120 117 137 46 5435 513 827
109 115 175 500 564 723
112 167 130 534 549 639
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Problem Problem
No. Order Load-C Loas-N Load _ No. _ Order Load-C Load-N Load
47 Randon 233 223 255 59 Random 261 267 321
L.S. 211 203 214 L.S. 237 265 324
E.S. 230 241 242 L.S. 250 298 321
48 307 308 K1 60 466 445 651
294 309 382 432 428 489
313 330 368 430 456 559
49 451 476 552 61 379 410 493
417 454 607 363 358 454
433 490 644 369 379 486
50 435 447 522 €2 197 245 230
416 448 520 164 199 235
440 497 540 190 193 271
51 262 256 258 63 333 371 378
245 247 253 321 359 441
271 276 286 325 348 388
52 353 385 403 b4 323 306 410
338 347 562 318 343 333
353 379 493 333 357 382
53 398 399 482 65 153 183 195
349 409 490 147 164 176
168 h15 478 149 188 128
54 5473 5673 625
531 581 762
556 592 713
35 453 488 663
410 471 5773
NS 509 574
56 HH8 470 765
W47 47 588
S 874 S84
57 490 9951 a7
WY W42 634

502

vy e
277

Sl

Jod

ul i

335
Jie

9%
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AFPENDIX D

COMPUTATIONAL RESULTS - RESOURCE CONSTRAINED
DECISION NETWORK PROBLEMS

This Appendix reports experimental results for three routines,
total enumeration, pairwise exchange and multiple pairs exchange applied

to resource constrained decision network problems.

Undominated Solutions

Critical pPath Project Length Cost Daecision Jobs
69 79 250 81’3 52’3 S3'3 84’3 85'3
62 76 300 51’2 82’3 83,3 84.3 85'3
62 73 350 Sl,2 52'3 33,3 54,2 85,3
50 71 500 Sl,l 52'2 S3’3 54,3 85'2
50 70 550 Sl,l 52’2 S3’3 84’2 55'2
49 69 850 S S S S

1,1 52,1 53,1 S4,3 S5

Critical Pach Project Length
Leugth Number Length Number
49 24 €9 4
50 24 70 9
52 60 71 21
58 18 72 44
60 18 73 25
62 18 74 30
09 54 75 26
72 27 76 13
77 24
78 39
79 8

Time 259 sec.
Tota! Enumcration Problem 66




Undominated Solutions

Critical Path Project Length Cost

87
87
87
87
87

153
149
145
143
137

Critical P

Length
68
87

Time 10 sec.

ath
Number

162
81

250
300
350
450
550

51,3 52,3

51,3 52,3

S1,2 S2.3

51,1 52,3

51,1 52,3
Project Length

Length Number

137 1
138 1
139 4
140 2
141 4
142 2
143 5
144 4
145 10
146 10
147 15
148 12
149 13
150 12
151 13
152 15

Total Enumeration Problem 67

e i . e

Decision Jobs

53,3
53,2
53,2
53,2
53,1

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

54,3
54,3
54,3
54,3
54,3

15
18
13
14

- —
O W
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5,3
5,3
5,3
5,3
5,3




Undominated Solutions

Critical Path Project Length Cost

67
57
57
55
£7
55
53
53

169
169
152

Critical path

Length

47
0
53
55
57
67
68

Time 145 sec.

Number

Total Enumeration Problem 68

72
36
18
18
18
54
27

250
300
350
400
450
500
600
750

Decision Jobs

S1,3 52,3 53,9
51,2 52,3 53,3
512 52,3 53,3
51,2 52,3 53,2
S1,1 52,3 53,3
51,1 52,3 §3,2
S51 82,3 53,1
51,1 S21 S3n

Project Length

Length Number

142 2

143 2

144 5

145 5

146 6

147 8

148 8

149 11

150 13

151 10

152 15

152 9

154 13

155 11

54,3
54,3
S4,2
84,2
S4,2
54,2
54,2
S4.,2

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
174
176

5,3
5,3
5,3
5,3
5,3
5,3
5,3
5,3




Undominated Solutions

Critical Path Project Length Cost

76
76
76
64
62
60

153
149
147
145
143
141

Critical Path

Length

Time 345 sec,

56
58
60
62
64
76
78

Number

72
36
18
18
18
54
27

250
300
350
400
450
550

51,3
51,3
51,3
51,1
51,1
51,1

Decision Jobs

52,3 53,3 543

52,3 53,3 54,3

52,3 53,2 Su3

52,3 53,3 54,3

52,3 53,2 54,3
s S

52,3 53,1 S4.3

Project Length

Length

141
142
143
144
145
146
147
148
149
150
151
153

Number

18

9
18
12
20
45
14
36
18
33
16

4

Total Enumeration Protlem 69

168

5,3
5,2
5,2
5,3
5,3
5,3

A
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Undominated Solutions

critical Path Project Length Cost Pecision Jobs
76 141 250 81'3 52’3 53’3 84’3 SS,B
76 139 300 51,3 82’3 83.2 84,3 55'3
76 137 350 S],3 82’3 33,2 Sa.2 55,3
56 136 400 51,2 82’3 53’2 54’2 85’3
56 135 450 Sl“l 52,3 83'2 54’3 85’3
56 133 500 Sl,l 82’3 83’2 S‘h2 55'3
56 131 600 51'1 82’3 83’1 84;2 85’3
Critical Path Project Length
Length Number Length Number
53 48 131 1
54 24 133 3
55 36 134 3
56 30 135 5
6l 18 136 8
76 81 137 10
138 11
139 17
140 13
14° 18
14 19
143 15
144 19
145 18
146 14
157 15
143 13
Time 354 scc., 149 g
Total Enumeration problem 70 150 12
151 5
152 5
15) p)
154 4

156 2
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Undominated Solutions

|
E Critical Path Project Length Cost Decision Jobs
% 78 115 250 81’3 82'3 83.3 S,"3 85’3
| 78 109 300 Si2 S23 53,3 S4,3 553
E 78 108 350 81.2 52.3 53’2 34,3 85,3
i 78 107 450 81'2 82’3 83’1 84.3 55’3
78 106 500 sl’2 82,3 83'1 84.2 85’3
Critical Path Project Length
Langth Number Length Nuiber
59 108 106 3
70 36 107 3
74 18 108 21
78 81 109 12
| 110 11
E 111 9
| 112 25
| 113 20
| 1i4 48
115 18
116 22
| 117 11
? 118 14
119 6
120 7
; 121 6
{ 122 4
; 123 2
| 124 1
Time 304 sec,
Total Enumeration Problem 71
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Undominated Solutions

Critical Path Project Length Cost Decision Jobs

63 77 250 81.3 82’3 83’3 54'3 85’3
63 72 300 Sl,2 82,3 83.3 84’3 85’3
63 71 350 81’2 82'3 83,2 54'3 85'3
63 70 400 51’2 82’3 53'2 54.2 85’3

Critical Path Project Length

Length Number Length Number

47 108 70 8

52 36 71 17

53 18 72 34

63 81 73 42

74 37

75 27

76 25

77 24

78 18

79
80 2

Time 228 sec.

Total Enumeration Problem 72




Undominated Solutions

Critical Path Project Length Cost

67 155 250
67 149 300
67 147 400

Central Path

Length Number
46 4
47 4
48 16
51 24
53 24
54 36
56 18
58 18
64 18
67 54
68 27

Time 364 sec.

51,3
51,3
51,3

Decision Jobs

52,3
52,3
52,3

Project Length

Length

147
143
149
150
151
152
153
154
155
156
157
158
159
laC
16.

Number

2

13
13
29
34
34
38
25
18
17

7
7
3
1

Total Enumeration Probiem 73

53,3
S3,2
53,1

54,3
54,3
54,3




Undominated Solutions

Critical Path Prcject Length

53
43
41

40

Time 129 sec.

69
68
63
62

Critical Path

Leng*h

38
40
41
42
43

X
-t

Number

54
9
9
9

81

81

Cost

250
350
450
550

1.3
51,2
S11
51,1

Decision Jobs

)3
)3
52,3
52,3

S
S

MN

Project Length

Length

62
63
65
66
67
68
69
70
7
72
73
7%
75
76
77
78
79
80
81
82
83

Iptal Fanumeration Problem 74

Number
3
3
3
9

12

6
12
15
21
15
21
18
21
15
18
18
1

[P - Y

[P+] o

53,3
S3,2
$3,2
53,1

4,3

54,3

5. .
4,3
S

4,3

17
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yUndominated Solutions

Critical pPath Project Length Cosi Decision Jobs
67 77 250 51’3 52’3 53’3 34,3 55’3
63 72 300 51,2 82’3 83'3 84,3 55.3
63 71 350 81‘2 82.3 93'2 34’3 85’3
63 iC 400 51’2 52’3 53’2 54,2 55’3
critlcal Path project Length
Length Number Length  Number
47 108 70 8
52 36 71 17
53 18 72 34
63 81 73 42
A 37
75 27
76 25
77 24
78 18
19 9
80 2

Time 278 sec.

Tota! Enumeraricn Problem 75




Pairwisc

Problem 56
Due Date 70

Decision Jobs

53,3
53,3

52,3
52,3

51,3
51,1

54,3
54,3

wrchange Results

Premium 40
Schedule Length

79
73

55,3
Ss.3

OPTIMUM SOLUTION - NOT FOUND, TTME 36,8 sec.

551 S21 5391
Froblem 67

Due Date 135
Decision Jobs
S1,3 52,3 %33
S1.0 S2,3 %33
St 51,3 San

S: 3

54,3
54,3
54,3

35,1 63

Premfium 50

Schedule Length

55,3 152
55,3 145
35,3 147

OPTIMUM SOLUTION - FOUND TIME 56 sec.

Problem 68
Due Date 145

Decision Jobs

S1.3 52,3 (a3
St1 52,3 55,3
S1.v %2, B33
S11 52,3 a2

4,
4

3
)3
4,2
4,2

S
S
S
S

Premium 30

Schedule Length
85’3 169
65.3 154
55,3 147
SS 2 145

OPTIMUM SOLUTION - FOUND TIME 68.5 sec.

Job Cost

250
400

850

Job Cost

250
400
550

175

Penalty 50
Total Cost

700
550

450

Penalty 50
Total Cost
1,150
902
650

Penalty 100

Job Cost Total Cost
250 2,650
400 1,300
450 650
500 500




Pairwise Interchange Results

Problem 69
Due [Date 142
Decision Jobs

51, 52,3 83,3 54,3 Sss
S1,0 52,3 83,3 843 553
5110 82,3 S3,2 S43 S5

Premium 30

153
145
143

OPTIMUM SOLUTICN - FOUND TIME 59.2 sec.

Problem 70
Pue Date 134

Dacision Jobs

S1,3 52,3 83,3 S4,3 Ss)3
S1.3 523 S42 Sa3 S5
51,3 23 S3 2 Si2 55,3
s <, s

1,0 52,3 52 a2 Pays

OPTIMUM S0LUTION - FCUND TIME 70

Problem 71

Due Date 105
Necision Jobs
S

Zl
w

1,2 S22 S3.3
1 2,3

2
Sv2 Sp3 M2 S4z Ssp

OPTIMUM SOLUTION - FOUND TIME 48
Protlem 72
Due Date >0

Decision Jobs

513 52,3 533 S43 0 Ps,3
Sy2 Sz %53 Say Pss
Sy.2 S20 S320 Sa3 Usy3
S %23 S32 Sz Ssn

OPTIaM SOLUTION - RUND TIME 41

Premium 50

Schedule Length

141
139
137
133

sec,

Premium 50

Scheduie Length Job Cost

115
109
108

Premium 10

Schedule Length  Job Cost

77
12
/1
70

scc.

Schedule Lergth Job Cost

250
430
450

Job Cost
250
.0
350
50(

250
300
350

250
300
30
400

176

Penalty 60
Total Cost
910
580
510

Penalty 35

Total Cost
{35
475
455
450

Penalty 80

Total Cost
1,054
520
590

Penalety 100
Tetal Cost
2,930
2,500
2,450
2,400




Pairwise Interchange Results

Problem 73

Due Date 160 Premium 10
Decision Jobs Schedule Lepngth Job Cost
81’3 82.3 83’3 84’3 55’3 155 250
51’3 82‘3 53‘2 84'3 85’3 149 300
OPTIMUM SOLUTION - FOUND TIME 34.4 sec.
Problem 74

Due Date 66 Premfium 10
Decision Jobs Schedule Length Job Cost
13 52,3 53,3 Sa3 553 * 250

OPTIMUM SOLUTLION - NOT FOUND TIME 18 sec.

Si1 52,3 S32 S43 S5 63 450
Problem 75
Due Date 70 Premium 30

Decision Jobs Schedule Length Job Cost
Si,2 S2,3 S33 S43 Ss3 7 250
Sia S S35 Su3 Y53 72 300
S1.2 52,3 532 S43 Ss.3 n 350
S, S53 S32 Sea S5a 70 400

OPTIMUM SOLUTION - FOUwL TIME 54.5 sec.

Penalty 20
Total Cost

200

190

Penalty 200
Total Cost
850

420

Penalty 60
Total Cost
670
420
410
400
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pairwise Interchange Resuits

Problem 76
Due Daté 70 Premium 30 Penalty 70
Schedule Length Job Cost Total Cost
482 836 1,676
473 932 1,142
465 936 836

OPTIMUM SOLUTION - JNKNOWN, TIME 7%? sec.

Problem 77
Due Date 280 Premium 30 Penalty 50
Schedule Length Job Cost Total Cost
294 836 1,536
284 878 1,078
268 1,070 710

OPTIMUM SOLUTION - UNKNOWN, TIME 441.0 sec.




l

i79

Multiplc Pairs Interchange Results

Problem 56

Due Date 70 Premium 40 Penalty 50
Decision Jobs Scnedule Length  Job Cost Total Cost
81’2 82,3 83’3 84’3 85,3 79 250 700
S 71 550 600

11 S22 532 S42 Ssp3

OPTIMUM SOLUTION - NOT FOUND TIME 40.9 sec.

<

Sl,l SZ,l 83’1 54,3 §5,1 63 850 450
Problem 67

Due Date 135 Premium 50 Peralty 50
Decision Jobs Schedule Length Job Cost Total Cost
S13 S23 533 43 S5 3 152 250 1,150
Sl’1 52,3 S3’1 84’3 55,3 137 550 650
OPTIMUM SOLUTION - FOUND TIME 38.6 sec.
Problem 68

Due Date 145 Premium 30 Penalty 100
Decl sion Jobs Schedule Length Job Cost Tetal Cost
51,3 52,3 83'3 84’3 85’3 169 250 2,650
Sl,l 82’3 83,1 84'2 55'3 143 600 540

S S 145 500 500

Spr Y25 53,2 Sa2 53

OPTIMUM SOLUTION - FOUND TIME 52.8 sec.
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Multiple Pairs Interchange Results

Problem 69

Due Date 142
Decision Jobs
51,3 52,3 S3,3 S43
51,1 52,3 S3,1 54,2
51,1 S2,3 53,2 Su3

OPTIMUM SOLUTION - FOUND TIME 59.7 sec.

Problem 70
Due Date 134
Decision Jobs

51,3 52,3 S3,3 543
S1,3 52,3 S3,2 Sup2
Si,1 82,3 S32 S4p2

OPTIMUM SOLUTION - FCUND TIME 60.4 sec.

Problem 71

Due Date 105
Decisfion Jobs
S1.3 82,3 S33 Sup3
S1,2 S2,3 53,z 43

Premium 30 Penalty 60
Schedule Length Job Cost Total Cost
85'3 153 250 910
85,2 141 650 620
85’3 143 450 510
Premiuvir 50 Pentlay 35
Schedule Length Job Cost Total Cost
85'3 141 250 495
85,3 137 350 455
I
85’3 133 500 450
Premium 50 Penalty 80
Schedule Length Job Cost Total Cost
1 5
85’3 115 250 1,050
SS,3 108 350 590

OPTIMUM SOLUTION - FOUND TIME 48.6 sac,
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Multiple Pairs Interchange Results

Problem 72

Due Date 50 Premium 10 Penalty 100
Decision Jobs Schedule Length Job Cost Total Cost
81,3 82’3 83’3 84’3 85’3 17 250 2,950
51’2 82’3 33’2 84’2 55'3 70 490 2,400
OPTIMUM SOLUTION - FOUND TIME 43.3 sec.

Problem 73

Due Date 160 Premium 10 Penalty 20
Decision Jobs Schedule Length Jsnb Cost Total Cost
51’3 82‘3 53’3 85.3 85'3 155 250 200
81’3 82’3 83'2 54’3 55’3 149 300 190
OPTIMUM SOLUTION - FOUND TIME 50.4 sec.

Problem 74

Due Date 66 Premium 10 Penalty 200
Decision Jobs Schedule Length Job Cost Total Cos:
81’3 82,3 S3'3 S‘,ﬁ3 85’3 69 250 850

OPTTMUM SOLUTION - NOT FOUND TIME 22.8 sec.




Multiple Pairs Interchange Results

Problem 75

Due Date 70 Premium 30 Penalty 60
Decision Jobs Schedule Length Job Cost Total Cost
51’3 52’3 83’3 84’3 85’3 77 250 670
81,2 82’3 53’2 84’2 85'3 70 400 400

OPTIMUM SOLUTION - FOUND TIME 37.5 sec,.

Problen 76
Due Date 470 Premium 30 Penalty 70
Schedule Length Job Cost Total Cost
482 836 1,676
548 1,689 1,029
441 1,739 867
OPTIMUM SOLUTION TIME 468 sec.
Problem 77
Due Date 23C Premium 30 Penalty 50
Schedule Length Job Cost Total Cost
254 836 1,536
270 1,681 1,381
276 1,2C8 1,088
267 1,304 914

TIME 380 seoc.
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APPENDIX E

Branch and Bound Program Description

A. Main Program, Subroutines and Tapes:
One, Bonnie, Clyde, Five
The program will call tape .99. to find the number of the

problem tape. Format (I4)

B. Problem Tape:
1. First Line LIM, TIME, BON, TLEX, LAST, IJND, JY

Fermat (15, 3F5.0, 3I5) where

LIM = Number of Decision Nodes
TIME = Due Date

BON = Peralty
TLEX = Premium

LAST = Node Number of Artificial Tinish Job.

IJND =1Number of "other'" Interdependency Constraints

JY = Number of Decisfion Nodes with More than Three Alternatives.
¢, Loat "LIM 4+ JY'" Lines
Job Number, Job Number, Job Number, Cost, Cost, Cust
Format (315, 3IF5.0, IS).
If there are not exactly three alternatives then in the
last position of the line put the difference between the number

and three.




3. The next scet of lines show precedence relaticns {n the
reduced network,
Predecessors Number, Successor Number, Time Format
(216, P4H.0)
4, A line with zero {n column 1
5. Next IJND Liunes,
"Other' Interdependency Constraints
Key, Job Number, job Number
Format 315
Key: 1 for #
2 for >

3 for =

J

-
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ONE MADIRN

ONE PADTRM 05/?22 1429.2
pop1n DIFERSION BPATH(5000) , KLIST(200,2),00ST(200),KRN(G00,2),TB1(10)
nonan NINMFESTON FRO(GOO),RD(S,550),TB?(10),T33(16),LPATH(IO), J(50,2)
00C30 DIMENSIAN IN0((2
00040 corres ”PﬁTH,BD,TBI,TBZ,TRS,TCOST,K,LIM,COST,Ter,BON,TLEX.LM,M,JY
06050 CALL RSCLCK
wC0GO RFAD (92,100) KFILF
nonTn 1n0 FOPMAT (L)
50030 130 £OPAT (315,3F5.0,15)
30000 140 EOPMAT (214,FL,0)
anlon HCHiM=1
f0110 TCOST=0
an120 AN (KFILF,290) LI, TIMF,BON, TLEX, LAST, 1JND, JY
n0130 JY=JYy+L M
NH1L0 LFt=3%JY
06150 KENF =1 F!'+2
na1cn po o101 )1 -1,KECF
00170 101 Kp1STOL,2)=0
£p1Ino0 KLISTOLF+1,1)=1
ee1nn KLISTCLFM+2,1)=LAST
562006 LE =1 FI-?2
n0210 290 FOPUAT (15,3F5,0,315)
60223 H=1
na230 no 10t g=1,LFM,3
Q0260 L=1+42
90250 RTAD (VFILE,IBP)(KLIST(J,l),J=I,L),(COST(J),J=I,l;,iﬁ(ﬂ)
ag2ee ti=ti+1]
n270 1e(CIN{p=-1)-09) 238,239,239
o628n 238 DOO1%2 t=1,7
ARG IS
DRIV E(ENST (oYY 169,150,158
nn31e 150 [E(ROSTrr)y~=-rosT(1))191,152,182
00229 151 KIFPP1=r0ST ()
CCI30 KTESP2=KLISTON, 1)
anaLe COST()=r0T (1)
Gosneg ESTM, 1) =vLtsTi1,1)
20300 COST(IY=KTFI'P]
SRR AS VLIST(Y,1)=KTr’p2
(SRR 152 ooNTINeE
tnhnan LG OTOOST=Troc[4rpST ()
TOEOD SOC=00TT00)
fOLIn SR TN B ORI AN N
noanan rOSTNY=00GT ()Y -G00
LReIe KY=K1 15T, 1)

ok 1re ?'PATH(V‘-‘);%.}T\!\;:;|t._“;_'_:\
aenee P AL S
pALen poytT o ETLT

nu 7 JORCPTAT ()

NEE IR Y Pt 1Y =S Y el

L R A R A DAL
SETANCA N t=1

MR 170 Rean v pprr 1oy Y, e, renihy
RS IFLLYY 1o, e

AT 189 ¥UNCE, 1 AT

A N, D =t aTHILT)
seean I=tel




|

 anr70

00520
n0s590
nnangp
neCcl1o
60620
00c3n
0G40
03Cs1,
NNERN
90670
20650
apean
anyeg
00716
¢0720
0073¢

G740

nQ750
007€0
00770
00730
n0790
0G50"
00819
20320
508230
0oenn
noeso
NOSARO
anNsg70
60280
602%9
6GeCH
30910
84029
00930
00940
00250
N09€0
00970
n0ase
9n99e
21000

01010

019020
3.633+1,500

114

183

310

320

321
322

329
270
175
181
182
124
185

190

1000

€0 Tn 179

LEX=1-~1

IF (1JyMn) 128,175,100

M=(Q

an 779 t=1,1JND

RFAD (KFI1E,270) KFY,11,12
”0 TO (310,320,320) ,KFY
M=M4]

1J(,1)=MPATH(11)
1.0(M,2)=MPATH(12)

0 T0 329

DO 328 K=1,3
IMIKE=(MPATH(11)/3) 234K
IF(COSTCIMIKFE)) 328,321,321
ITCIMIKF=-MPATH(11))322,328,322
M=Ma1 )
1J(M,1)=IMIKF
131, ") =MPATH(12)

COMTIMUE _

GO TO (329,329,325) ,KEY-
13=12

12=11

11=13

REY=2

60 TO 320

CONTIMNUF -

FJND=M

FORMAT (315)

DC 190 1=1,LEX
KOMP=KRN(],2)

IF (KLIST(¥xOMP,2)) 182,181,182
KLIST(KOMP ,2) =]

pN 185 J=),LEX

I+ (KRN(J+1,2)-K8BD(1,2)) 185,124,185
KRP(1,2)=J+1"

GO TO 190

CONTINUF

Krn(1,2)=0

CONTINUE

CALL JORTM(KTIMF)

PRINT 1000,KTIME

FORMAT (10R TIMF USFD,I15)
CALL rPM (XKRD,FRD,KLIST,1d,1JND,i0)
CALL JOBTM(KTIME)

PRINT 1000,KTIME

CALL EXIT

END

187
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!
! BONNIE MADTRN 188 :
i £ BONHIE MADTRN 05/22 1417,0 g
; § i
[ & 00010 SURROUTINME oPM (KBM,FBD,XLIST,!J, 1UND,1N) |
g & 00020 DIMFMSIOM [N(€2),START(5009),SLNGTH(60,1C),SL(19) %
t,, 00030 DIMEMSION MPATH(509€C) ,PD(3,650),C0ST(2007,TB1(10),LISTRM(100) ]
¢ 000LD DIMENSION TR2(10),L!VE(35C),FBD(600),1J(50,2) ;
{ £ 00050 DINEMSION IFEAS(10),n(200),LISTEM(10),LPATH(10),TB3(10),KDC(60) !
& ooo€o DIMENSION LOUT(6C),KBD(6060,2),LSTD!J(62,2),KLIST(200,2),KZERO(GS0) _ .
. § 00070 COMMOI **PATH,BR,TB1,TB2,TB3,TCOST,K,LIM,COST, TIME,B0N, TLEX, LM, M, JY
© 't 00080 LOCATE(HDUN, KDUM) = (24 L1M) # (MDUM=1) +KDUM
. & 00109 READ (80,10)  (EDCCI),1=1,LIM)
CL0011C 10 FORMAT(3012)
. £ 00120 KLMETH=5000/ (LIM+2)
: 60150 PO 20 1=1,KLNGTH
. 00160 20 KZERO(!)=1
1 60170 BN(1,1)=0
00150 RD(2,1)=0
00196 RD(3,1):0
00230 LEMP=1
00240 KNTP=1
00250 MENN=]
00260 LPLAC=1
00270 M=1
00280 LIVE(1)=1
00290 LM=0
00300 1PN=0
00319 BES2MN=0990009,
00320 MPATH(1) =0 |
00340 KEOP=34(JY)+2 .
00350 N(KEOP-1)=1
00560 KSTOP=KFMP-2
00370 DIKENPY=1
00380 70 FOPMAT (15it)
00390 KZTOP=0
00400 KZPLAC=1
00310 1000 GO TC 7000
00L20 1900 LH=LOCATE(M,0)
00430 1QUIT=3-10%:411)
0CL50 cO TO 3000
00500 2010 IF(LL-1) 3700,2100,2015
00510 2015 DO 2020 N=1,Li
00520 LT=L).=M
00530 DO 2019 L=1,LT
70540 LP1=LISTEM(L)
00550 LP2=LiSTFM(L+1)
00550 IF (T23(LP1)-TR3(LP2)) 2019,2019,2018
£ 00570 2018 LTEMP=LISTEM(L)
;00580 LISTFM(L)=LISTEM(L+1)
i 00599 LISTEM(L+1)=LTEMP
00600 2019 CONTINUF
00G10 2020 CONTIKUF
00620 2100 MPATH(LM+2}=1
00630 M=LISTFM(1}
00610 L=LPATH(N) +LM+2
N0ES50 MPATH(L) =1N+N
00660 START(L)=SL(N)
nneso IFCLPATM(NM)=LSF) 2109,2110,2110
00690 2109 L=LPATH(M)+1
L4 i <o ORI
. o
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SN IR AT

s Lo

0700
00710

00720
0740

0750
060769
00770
00860
00870
00880
00890
n0990
00910

- 00920

009%"
00940
n09s50
00960
00970
003880
0case
31000
01010
01020
1330
01050
010¢0

¢1070

01080
01090
01100
01110
01130
01140
01150
01160
N1186
01190
31200

RIGE ]

'l -

Olz?n
(1230
51«40
01250
;1260
;1270
01280
01290
n1300
N1310
31320
n1330
1340
n1350
Ni%6n
01370
n1460
61470
01480
n1490
715090

2115
2110

3000

3060
3334

3050

3051

3055

3070

3035
3026

3080
3120

DO 2115 1=l ,LSF

JeLM+ 142

MPATHIJ)=LSTNIJ(1~-1,1)
START(J)=SLNATH(1~1, M)
BD(1,M)=TR1(:!)

BD(2,M)=TR2(N)

BN(3,M)=TR3(N)

IF¢LL-1) 3700,3700,3000
KOUNT=LPLAC+1

DO 3080 M=2,LL

KNTR=KNTR+1

KZPLAC=KZPLAC+1

IF (KZPLAC-XLNGTH) 3050,3050,30€0
PRINT 3334, LEND,KZTOP,KZPLAC
FORMAT (181 LFND KZTOP KZPLA®,315)
KZPLAC=1

MEMR=KZFPC(KZPLAL)
LMEMD=LOCATE(MEMD, C)

MPATH(LMFNi1+1)=MPATH{LM+1)+1

MPATH(LMEND+2) =1

KM=L{1STEM(M)

LISTFE(N)=MFND

IF (“PATH(LM+1)) 3051,3051,3055

MPATH(LMEND+3) =1 N+KN
START(LMEND+3; =SL(KN)

GO TO 3086

LSP=LSF+2

J=0

DO 3085 1=3,LSP

KB =LMEND+

{F(I-LPATH{KNM)=2) 3070,3065,3070

MPATHCKRY =1 N+KM
START(KR)=SL(KM)

G0 TO 3085

J=d+l

MPATH(KB)=LSTDIJ(J,1)

START (P )=SLNGTH(J, KN)

CONTIHIUE

RDC1,MEND) =TR1(KN)
BP(2,MENP)=TR2( N)
BNDC3,MEND)=TR3 (KN)

CONTIMUR

IF (KOUMT=LENDP) 3120,3120,3155
KTEMP=0

N0 315N LPUSH=KOUNT,LEND

MIKFE=LENN+LL-1-KTEMP

MEL={END=-KTEMP
LIECMIKE)=LiVE(HFL)
KTEMP=KTEMP+1

DO 3200 M=2,LL

MIKE=KOUNT+M=2
LIVECHMIKF)=LISTEM(N)
LENN=LENNLL-1

MPATH (LM+1) =MPATH(LM+1)+1
IFZLL) 5000,5000,L4000
JF(MPATH(LM+1)=L11)10060,2125,2125
IF(BN{3,M)=BESRIN) 2156,2130,5000
IRN=IRMN+1

LISTBMCIBN) =M

60 TO BI3E

BESRND=BN{3.M)
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015190
01520
01530
N1540
01550
N1560
01579
01580
01590
01600
01610
01620
81630
01CLo
01650
01650
01670
01680
01690
017900
01710
01720
(1730
01740
01750
01760
01770
017360
€1770
01500
01819
01820
01§30
01340
01850
01260
01870
01330
01590
01900

01910
01920

01930
01940
01950
01060
01970
¢1980
01990
02000
02010
02020
02030
020140
02050
02060
02070
02080
02010
02160

L03€
3333
4050
4060
4100

4150
L4151

5000
5901
500°
5C10
5011
5020

5030
5035

70C0

3000

3011

9210

0250
0260

8220
8230

"030
.1050

1PH=1

LISTEMCIRM) =M

CALL JORTM(MTY)

PRINT 3333,LEND,MENP,BD(1,M),8D(2,M),BD(3,M), MTI
FORMAT (224 LFND MFMD ROUMNS TIMF,215,2F10,1,15)
IF (LPLAC-LFND) 4100,4060,4060
LPLAC=1

G0 TO 4150

LPLAC=LPLAC+]

1FCLEMD=-IEN) 6000,6000,4151
M=LIVE(LPLAC)

LM=LOCATE(M,0)

IF (BND(3,1)~RESBNE) 4000,4000,5600
IF (LENP-LPLAC) 5001,5001,5005
LFLAC=]

GO0 TO 5011

DO 5010 N=LPLAC,LEND
LIVE(H)=LIVE(N+1)

LEND=LFND-1

{F(KZTOP-KLNGTH) 5020,5030,5230
KZTOP=KZTOP+1

GO TO 5235

KZTGP=1

KZERQ(KZTCP)=M

co TO 4150

MIM=MPATH{LM+1)
INS(KDC(MIN+1)=1)*3
KM=MPATH(LM+1)+2

MIN=KNC (1 IN+])

GO TO 1900

Li=0

KSTOP=KFNP=-2

DO 8011 1=1,KSTOP

D(1)=0

LSF=0

IF (KM=2) 9260,9200,9210
DO 9250 L=3,KN

MIKE=LM+L
1=MPATH(MIXE)
LSF=LSF+1

LSTDldgLSF,13=I
LSTNIJ(LSF,2)=KLIST(!,1)

DC1) =1

LSF=LSF+1
LSTNIJ(LSF,1)=KEOP
LSTRIJ(LSF,2)=KLIST(KFOP,1)
DO 9900 K=1,17UIT

10=1N+K

D(10)=1

NO 8220 t'=1,LSF

IF (KLIST(10,1)-LSTDIJ(),2)) 8230,8220,8220
CONTINUE

LPATH(K) =|

JEC1JNN) 2n30,8800,8030

IF (¥kM=2) 880G,8800,8050

po 8300 1L=1,1JND
IMIKF=1d01,1)
IMEL=10(11,2)
TOST=NCIMIVEI+N(IMFL) -2,

IF (TOSTY 8300,7900.83Nn0

199
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5 12116 3300 COMTINUF
,% 12120 £S00 IR0=1-1
5 32130 IFC(180) 8805,5810,8805
| 12140 £805 DO £30C 1Z=1, IR0
o "2150 MIKE=1M+2412
; 32160 8806 SLMOTH(1Z,K)=START(MIKF)
% g n2170 8810 CALL TOME(KRD,KLIST,D,FBD,LSF,LSTDIJ,!,10,SLNGTH,SL)
P )2180 AKOST=rOST(10)
52199 CALL MOMFY (CKOST)
L 02200 1F(TR3(K)=-BESRMN) 9400,9400,9500
;02210 9400 LL=LL+1
32220 LISTEM(LL) =K
nN223%0 G0 TO 9900
82240 9500¢ CONTINUE
J2250 0900 D(10)=0
02260 GO TO 2010
n2270 6000 DO 6020 1K=1,IBN
12280 1=LISTRM(IK)
© 92290 MIKF=LOCATE(!,0)+2
© 12300 JPO=LIM+2
© 02310 PRINT €070,RD(1,1),8n(2,1),RN(3,1)
i 12320 PO 6025 J=3,JPQ
£ 12330 MIKE=MIKF+1
12340 NIKE=MPATH(MIKF)
i . 12350 €N25 LCUT(J)=KLIST(NIKE,1)
: 02250 £020 PRINT 6050,1,(LOUT(J),J=3,JPQ)
12370 DO 6030 N=1, BN
12380 6030 PRIMT GOGO,BESRNMD,LISTBN(N)
12390 PRINT 6071,KNTR
32400 €071 FORMAT(5H XNTP,15)
12410 6050 FORMAT (1X,14,5H PATH,1116/(11X,1016))
2420 GOGC FORMAT (1X,F10,1,5X,th)
12430 G070 FORMAT (1X,74 BOUNDS,3F10,1)
12440 PRINT €999, (KDCC1),1=1,LIM)
12450 6999 FORMAT (114 NODF ORDFR,151L)
J2L60 RETURNM
2470 END
.08342,783
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no11o
00120
00120
90140
€150
co17¢C
00160
662190
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0c21¢
00220
00230
no2u0
08250
ne37n
00389
doLGo
goL1o
00L20
0NL30
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G0L 00
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004690
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nR/22  1nin .0

SURROUTIMNE TArr(ren, KLIST,n,FRND,LST,LSTDL, IMSERPT, IN,SIMCTH,SL)
DIMEMSION S METU(GO,10),SLI10)

DIMENSION NE2NN),LSTPII(62,7),KLIST(200,2) ,KPN(ROD,2) , LPATH(1N)
DIMENSION TLMATH(200),TRI(1M),EBD(GNO),MPATHI(5000),BN(3,650)
DIMEMSICN TR3{10),TR2(10),00ST(200)

COMMON MPATH,RD,TR1,TR2,TB3,TAOST,K,LIM,COST, TIME,RONM, TLEX, LM, M, JY
MIKE=3%JY+2

NGO 150 1=1,M1K"

) TENRTH(T) =0

ID0=1MSERT~1

IFCIRO) 120,137.12¢C

DO 125 1=1,1R0
KN=LSTNIJ(1,1)

TLMNETH(KO) =SLMGTH(T, K)
=180

LET=LST+1

DO 200 J=INSFRT,LST

IF (J-INSERT) 130,135,130
1=1+1

MOW=LSTRIJ(T,1)

GQ TN 155

NOW=10

KNOW=KLIST(MOM,2)
ITEST=KRN(¥MOM, 1)

IF (PCITESTY)Y 300,300,250
F=TLMETHCITFEST)+FRD(KIOW)
'FO(TLNGTH(NOMYY=F) 250,300,300
TLNCTH(MM ) =F
KHOW=prnepEmrne, 2)

IF (rtoy) 1re, 200,100
COMTIMUF
TRI(K)Y=TLMCTH(MIKF)
LST=L5T~-1

Do 90n I=1MSERT,LST
KO=LSTPIJ(1,1)
SLNGTH(l,K)=TLNGTH(K°)
SLIK)=TLNATH(10)

RETURM

EMD
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00010 SURROUT {NE MCNEY(CKOST) FIVE MADTRN
00020 NIMENSION MPATH(5000),BP(3,650),TB1(10),TB2(10),TB3(:0),C0ST(200)
00030 COMMON MPATH,BD,TR1,TB2,TB3,TCOST,K,LIM,COST, TIMF,BON, TLEX,LM,M,JY
00040 TB2(K)=BD(2,M)+CKOST
00050 A1sTB1(K)-TIME
00060 1F(A1) 4650,3670,9670
00070 9650 AlsTLEX#Al
00080 GO TO 9680
00090 9670 Al=BON#Al
00100 0680 T33(K)=TB2(K)+A1+TCOST
00130 RETURN |,
00140 END , .
©,900+,316
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