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ABSTRACT 

This report contains a description of the models to be used in 
analyzing the capabilities of ground-based sensors in determining the 
mass of orbiting bodies, model coefficients, and the justification for 
their selection. Relations are derived for computing sensitivity coeffi- 
cients and their coupling to mass variance for the case of noisy, biased 
sensors (monostatic and tri-static radars, Baker - Nunn cameras), and 
for spherical and tumbling cylindrical satellites. 
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SECTION I 

INTRODUCTION 

This document is the second in a series of three theoretical reports 

prepared under Air Force Contract F19628-67-C0041. The first of the 

series, Technical Report Number 1 of the referenced contract, was concerned 

with the mathematical models and relationships necessary to perform a 

detailed maximum-likelihood/minimum-variance error analysis of the capability 

of ground-based sensors in determining the mass of a satellite-*"*.  It was 

specialized to account for the following restrictions: 

1) The sensors observed the satellite without error. 

2) The satellite was a sphere of 5-meter diameter. 

3) All the physical characteristics of the body except mass 

were known without error. 

4) All the error in the computed mass resulted from errors 

and uncertainties in the knowledge of the orbit-perturbing forces. 

The present report is a companion document, extending the theoretical 

development to remove the restrictions of perfect sensor observations and 

of perfect knowledge of the non-mass body characteristics. In addition, 

the body shapes are generalized from the sphere of the preceding report 

to include also one of a pair of cylindrical objects of length 10 meters 

and diameters 2 and 5 meters, respectively. The cylinders are free to 

tumble in a propellor motion, with the tumble axis perpendicular to the 

flight path. 

Since the analysis in many places depends upon the developments 

* Superscript numerals denote entries in the References Section of the present 
report. 



of the previous report , it is suggested that the reader have that document 

available for reference. 



SECTION II 

PERTURBATIONS TO TWO-BODY MOTION 

A. GENERAL EQUATIONS OF MOTION 

In general, 

dx/dt - f(x, t) + F(x, £ , u, t), (2.1) 

dj^dt - G(x, £, u, t), 

where 

x(t) - 

*1 
X 

X2 

xQ 
j   

Z 

\ 
X 

x5 t 

_X6. 
z 

(2.2) 

is the state vector describing completely the orbit at any time t, f is 

the vector of two-body accelerations 

f(x,t) = 

v4 

x6 

•vUXj^/r3 

•MX2/TT 

- Mx. JJ 

and F is the vector of non-two-body accelerations 

F(xj^, t) . LL l + LiJ • L±-\ 
LrdragJ L^solarJ Lrsun, moonj £o. 

(2.3) 



where 

r,   = atmospheric drag acceleration vector, 

5* , = solar pressure acceleration vector, 
-solar      * 

• • 
—sun, moon = gravitational acceleration vector due to the sun and 

moon taken as point masses, 

F    - gravitational acceleration vector due to the asphericity 
of the earth 

The vector ^ can be as large as a six-dimensional state vector 

which describes rigid-body rotation, having the Euler angles of the 

satellite as its first three elements and their time derivatives as its 

remaining three. The rotational excitation vector G(x, £, u, t) re- 

flects the possible coupling of the orbit to the rotation, e.g., through 

gravity-gradient torquing, and the coupling of the dynamic biases, as, 

for example, drag, to these rotations. 

The vector "& appears in F both because the rotations present changing 

cross-sectional areas in r,   and 'f ,  , and because of the conserva- 
—drag   —solar 

tive exchange of energy between the translational motion of the orbit 

and the rotational mation of the satellite about its center of mass. 

That is, if the satellite tumble-rate increases in a conservative field, 

the kinetic energy must come from sonevihere,  and that "somexvhere" is the 

translational energy of the orbit. 

This conservative coupling is investigated in Appendix I of this 

report, where it is shown that it is indeed possible to de-orbit a satel- 

lite in a non-dissipative environment using only torque devices. However, 

the minimum de-orbiting time is shown to be on the order of 10"' years, 

so this conservative coupling of fr to x can be, and is in (2.3), ignored. 



B.  TUMBLING MODE 

The mode of tumbling for non-spherical satellites is restricted 

under this contract to be a propellor-like motion, with the axis of ro- 

tation directed along the satellite's velocity vector. Since, also, the 

non-spherical satellites are designated to be cylinders, it is clear that 

the same cross-sectional area of a satellite is always presented to the 

atmospheric drag mechanism. As far as ?,   is concerned, then, it is 

not a function of the rotationsg(t). 

Since the sun and earth see changing aspect areas for this mode of 

tumbling, the direct and earth-reflected solar oressure vector V ,  is, & ' -solar  ' 

however, a function of H(t). 

Two things must now be done: the precise dynamics of |:(t) must be 

established or assumed, and the functional dependence of*r ,  upon 

fs(t) must be derived. 

1. notation Dynamics 

In order that the tumbling plane turn vdth the satellite velocity 

A 
vector, i.e., in order that the velocity unit vector i. always be normal 

to the tumble plane, as shown in Figure 1, below, torques internal to 

the satellite must be assumed. For simplicity, it will be assumed that 

these interval torques are such that the tumble rate, say ^, is a con- 

A 
stant relative to the normal i to the orbital plane. Because of the no:i- 

n r 

A 
two-body effects, i will move in inertial space, and so the tumble rate 

will not be inertially constant. Since the nutation rate of the orbital 

plane is relatively small, the satellite torques necessary to explain 

this inertially accelerating motion would also be small. In any event, 

the motion assumed is as valid as any other once the propellor motion is 



FIGURE 1. TUMBLING GEOMETRY 



presumed, and the results of the error analysis will at least be indi- 

cative of the importance of accurate signature data. 

The tumble model is, in algebraic terms, 

tit) =to + (t-to)i, (2.4) 

xdth the rotation state ? defined as the 2-vector 

1   (t) - [»]• 
If the errors in the constants ^ and "£ were to be modeled (a covariance 

matrix for them introduced in the estimation equations), then G in (2.2) 

would have to be explicitly written to express the dynamics of constant- 

velocity. Ilhile this is very simple to do, we will take the errors in 
I 

^  and ^ to be unmodeled errors and find, by the quasi-experimental 

means discussed in Section IV.D of Reference 5* the sensitivity coeffici- 

ents dv-i/djs. This xri.ll indicate the relative importance of signature in- 

formation xjithout depending on the reasonableness of any assumed value 

for a covariance matrix on {:. 

2.  Solar Pressure as a Function of Tumble 

The details of how t    , functionally depends on E are derived in 
-solar ~ 

Appendix II of this report.  In summary, the results are as follows. 

Define: 

k  = specular reflectivity of satellite, 

k, = diffuse reflectivity of satellite, 

q = Earth albedo, 

X = ratio of earth radius to distance between satellite 
and earth center, 

B. = arc cos X , 

I = solar constant, 
s ' 

c = speed of light, 



pl 

A 
i = unit vector from center of earth to center of satellite, 
r 

i. = unit velocity vector of satellite r ° 

i  = unit vector from center of sun to earth, ss 
A   A 

cos a = -(i . i ), 

? q (a.    + a. )  cos a , | c. | < rr/2 - B^ 

>-qar , rr/2 - 3? ^ \c |  6     n/2 + B, 

0 , rr/2 + B^ ^ |c |  <:     rr 

P2 

(1 + >qa2) , |a|  4 rr/2 - 3^ 

(1 + >qass) , rr/2 - B^ £|a|  £  n/2 + B^ 

0 , rr/2 + B} <: jc |   <; rr 

a1 =(-.0417 + .5431 A)/3, 

a2 ={".0444 - 3.17(X -.77)3 + .0045 (X-.77) sin [l4.3(>—77)rr]}/3 

ass - a2 [l+ s - se3^' - e~T7 (2   !- sy) ] /2 

ar "Ks + (a>/2^ C s + 1 - s(l + s7")dJ} cos a 

OiA_^-,n ^3 j. fi-sin c)3]      _ (]_x"-).;/2 •% sin a 
x j 6 

f  >    [QlA-sin :)j + (X-si 

* (1-i-X2- 2>   sin a)3'2 

T = -4 + 9.3X 

y - (a-rr/2)/^ 

f i > y<c, 

l-i,   7>o, 

d - 3.7 + 59(>-.77)2 , 
A A 

sin©  = i    •   i.     , 
r        r    ' 

cos © - \/l-sin        , 
A ,A        A   -. , 
in      = (ir>^ ifJ/   cos©   ,   the normal to the orbital plane, 

S 



A    A    A A 
i = i.X i , the vector normal to i that defines the tumble plane p   r   n n r 

(see Figure l), 

A    . ~*     ~A 

i- = sin F i + cos T i 
3     >    P     r    n 

A    A 
cos a = i  • i  , 

s   ss   3 ' 
A    A 

cos a = i  • i  , 
r   r   3 

/ p    p 
cos 0 - (p1 cos ar + p2 cos zs)/yV±   + P2 

i 

2 
A = nR       ,   the cross-sectional area of a  sphere of radius R  , s r s 

2 A,   - nR      ,   the area of the base of a cylirder of radius R , be c 

A,  = 2LR ,   cross-sectional area nornial to the base of a cylinder of 
length L. 

Then the solar radiation acceleration is, for a 

Spherical Satellite: 

^solar = < Vc) (A/m) [(1 + V9) (Pl K +  P2 
4ss> 1  ' 

L J (2.5) 

Cylindrical Satellite; 

^solar = (Vc)   (Vm)    [[(VV   (l"kr}   |c°S 0 ' 

+ nkd/6 + (1 + kr/3)   | sin 0  | ] [Pl 4r + p2 xsJ 

+ [2 (\/V   (kr  'C0S ^ '+ V3)  _ W3)kr I sin 0 I 

" ^V6 J [   ?! C0S Cr + P2 C0S Gs ] ^3  J (2#6) 

Taking the "ballistic" coefficient with respect to solar pressure 

to be 

(I  /c) (A/m) , spherical case, 

u„= 
(lnom/c) (A-j/m) , cylindrical case, 

(2.7) 



where 

1=1   (R /r )2 , s   nom  es' es 

where R  is the mean earth-sun distance and r  is the actual earth-sun 
es es 

distance, it is clear from (2.5) and (2.6) that the ]f vector that repre- 

sents airo ,  /du„ is simply the terms in (2.5) or (2.6), respectively, 

enclosed in the large square brackets times (R / ra ) : 

terms in large square brackets in (2.5) or (2.6) I 

(2.6) 

10 



SECTION III 

ESTIMATION AND PREDICTION 

A. PRELIMINARY DETAILS 

Consider equations (4.1) and (4.2) from Reference 5, suitably 

modified to account for the tumbling of a non-spherical satellite: 

d(Ax)/dt = f(x, t) - f(x°, t) + F(x, t  , u, t), (3.1) 

A£ = h(x, 2) , b, t) - h(x°, 0, 0, t), (3.2) 

where Ax(t) is the Encke variation from the two-body orbit x (t) 

to the actual orbit x(t), f is the vector of two-body accelerations, 

and F is the vector of non-two-body accelerations, 

F(x,f,u, t) = 
-drag 

+ 
solar 

+ 
-sun, moon F —o 

developed in detail in that reference and in Section II of this report. 

The vector u contained in F represents the dynamic biases affecting 

the satellite. The first three of its components, 

•l(t) = 

u 

u 

u 

are "ballistic" coefficients which will be actively estimated. The 

remaining three of its components account for uncertainties in the 

oblateness forces F  due to errors in x and in the geopotential coef- 

ficients J. These are defined by the 3-vector 

Z2(t) "F^x, J) - Fjx, J), 

11 



where x = x(t /t ,) and J are the best estimates of x(t) and J at time 
—  —  ' n-1     — —      — 

t given all data upto and including time t -. To first-order accuracy, 

dF n   aF 

^2(t) = ffi  tA£(t) " ^WJ  + (dT) A"' (3-3) 

where r and Ar are the first three components (the position components) of 

x and Ax, respectively. The hats over the partial derivatives indicate that 

they are evaluated around r(t /t , ) and u(t/t _,). 

The 2-vector € (t) contained in F describes the rotations of the cylin- 

drical satellites to be considered in this phase of the study. Since there 

are no very obvious covariance matrices applicable to |: (t), it will be 

treated as an unmodeled parameter. In keeping with the discussion on sensi- 

tivity coefficients in Section IV.D of Reference 5> the study will there- 

fore seek the sensitivity matrix du/dj? in order to ascertain the impor- 

tance of errors in our knowledge of tumble position and rate. A detailed 

analysis of the tumbling mode called out in this study is performed in 

Section II of the present report. 

In (3.2), 

z = h(x, a , b , t) (3.4) 

defines the observations jz(t) on the orbit, where 

>)(t) = zero-mean Gaussian white noise, 

b = constant but unknown biases, 

Az(t) = z - z  , the difference between the actual noisy obser- 

vation and the noise-free observation of the two-body 

part of the motion. 

12 



Now, we can define the error vector 

e (t/t. ) = a (t) - i (t/t) for any vector a (t). In the special 
""*       cases where t assumes discrete values tR, the notation 

will be simplified to e^ (a/k). 

With the q-vector y_(t) defined as the column of variables which are to 

be actively estimated, i.e., 

Z(t) = 
Ax 

*L 

(3.5) 

the difference equation relating the one-step prediction errors to the 

prior in-step estimation errors is (equation (4.31)>  Reference 5) 

(3.6) 

i -y 

where 

e (n/n-1) = L(n, n-1) e (n-l/n-1)  + r— (n, n-l) e (n-l/n-1)  + u(n-l), *y      -y  '      ay 
-2       ^2 

$y(n, n-l) = 

$(n, n-l) 

T = t - t ., 
n   n   n-l' 

^(n,n-l) = the two-body transition matrix for the states x (see 

Appendix IV, Reference 5), 

x /« 
— (t, s)*J    |(t, a) 
dx 

6v da, 

2_(a)e 
-(a-s)/r, 

1(a) 1(a) 

13 



A      A 
3(a), jf(a) dr,   /du, and dr ,  /du, evaluated around the -drag ' 1     -solar  ~ 

best state estimate x(t/s), 

*Z 
-  (n, n-1) = /   J(t  s) 

n-1 * 

ds 

0 0 0 " 
0 0 0 
0 0 0 
1 0 0 
0 10 
0 0 1 
0 0 0 
0 0 0 

Lo 0 Oj 

c,(nll) «yn J^(tnJ s) 

0 

'n-1 
w1(s) 

0 
0 

ds, 

Wj(t) = zero-mean Gaussian white noise with power (2/T\) <T rf 

per unit double bandwidth in rad./sec. 

Finally the following definitions for covariance matrices will be needed. 

For any vectors a(t) and b(t), 

Cov [|(t), b(tl] - E^a(t) b^t)] - E[a(t)J E^bT(t)j , 

where E( ) denotes mathematical expectation and (  ) denotes matrix 

transpose- 

Cov [|(t), a(t7j - Cov a(t) 

and 

Pab(nA, = Cov[a(„) .t(nA), j,(B) _%n/q   _ Cov[£a(n/k); %(nA)1 

The covariances on the environment are 

Q  (n) = Cov u(n), 

R-^(n) - Cov >(n), 

hi = Cov b 

u 



with 

Cov [w(n), u(m)] » Cov [i»(n), a(m)] = 0, m/n, 

and all cross-variances among u, •, and b identically zero. 

B. MINIMUM-VARIANCE DERIVATION 

1. Fundamental Expressions 

The derivations depend upon three basic expressions: the one-step 

prediction error equation already presented as (3.6), a linearized obser- 

vation equation developed from (3.2), and the in-step estimation equation 

which develops from the linear regression solution to the minimum-variance 

problem. 

The linear regression solution is characterized as 

frn/n) = ftn/n-1) + B (n) [ Az(n) - A^(n/n-l)] (3.7) 

where B (n) is a gain matrix to be determined and where, from (3.2), 

Az(n) - Az(n/n-l) = h£x, >J., b,t] - hJ^^r^T^t^ 

-  h["2&(n/n-l), 0, 0,tj + hJ^£^Qr^7^ - 3#8 

After a first-order expansion around x(n/n-l), the latter can be written 

as 

A, 
Az(n) - Az(n/n-l) = H (n)f z(n) - z(n/n-l)] + H^(n)^(n) 

+ H^njb 3.9 

15 



where        H (n) = 
7 

I 0    0    0 

H(n)   i   :   :   : 
10    0    0 

ah 
H(n) -   — dx 

Hn (n) =    dh 

H^n) =   dh 

eb 

x = x(n/n-l) 

x = x(n/n-l) 

x = x(n/n-l) 

Subtracting ;jr(n)  from both sides of (3.7) and employing (3.9), 

we find 

e(n/n) -    fl - B (n)H (n)j    e  (n/n-l) 
J L       y     y    —i   ~~y 

- By(n)Hb(n)b. 

By(n)Hn(n) ^ (n) 

(3.10) 

16 



2.    Computation of Optimal Gain B (n) 
«/ 

As discussed in Reference 5j the minimum-variance gain matrix is 

found by setting 

trace |AP  (n/n) A| = min. (3-11) 

No matter what the form of the weighting matrix A (in Reference 5 we 

happened to assume it diagonal), the minimum estimation variance obtains 

from the solution to 

dP  (n/n) - 0. 
yy 

Since, from (3.10J 

P (n/n) = [i-E H ] P (n/n-l) [i-B H ] T + B HJL,„(n) H„TB,r
T 

yy     L y yJ yy       y y    y \ Vr  ^ y 

+ B H,R.JiTB T -  [i-B H   ]P . (n/n-l)H,T B T - B H, P T, (n/n-l) [I-BHJ 
T 

y b Tab ID    y        L      y yJ   ybv  ' b      y y b y bw u      yyJ, 

(3-12) 

where B and the H's have argument (n), it can be shown in the manner of 

Reference 5 that the optimal gain is 

By(n) = [P^ n/n-l )Hy
T(n) + P^n/n-DH^n)] ^(nJP^n/n-DH^n) 

+ H^ MR^ (n)H^(n) + H^n^H^n) 

+ Hy(n)Pyb(n/n-l)Hb
T(n) + yn^n/n-l^n)] " . 

(3.13) 

17 



Note the covariance matrix P , (n/r-1) that appears here.  If, as in the 

perfect sensor case, we. are to generate the estimation covariances recur- 

sively, two new expressions oust be derived in addition to those that were 

needed for perfect sensors: P , (n/n-1) as a function of P ,(n-l/n-l), arid 

P . (n-l/n-1) as a function of B (n-l) and P , (n-l/n-2). 
yb  ' y      yh  ' 

3.     Prediction Covariance Computations 

5 
Directly from the perfect sensor case      , 

* 2 

+ gf (n, n-l)P       (n-l/n-1) &V    n x)      . Q   .    _. 
2 2V2 5^ U>  n 1;      + V       }   ; (3.13) 

[3y dF "I 
yn, n-l) + — (n, n-l) ~2 (n-l)J PyJ(n-l/n-l) 

dy. 3F 
+ avl <n> "-1) aT <**> PJJ, (3.14) 

where F      = Cov (^J),   the covariance of the geopotential coefficient 

errors. 

T 
Multiplying (3.6) by b and taking the expected value, we compute 

the additional prediction covariance needed for this real sensor case: 

18 



P , (n/n-l) 
r A    1 

=     • (n,n-l) + dJL  (n,n-l) S (n-1)  P (n-l/n-1). 
L J 3v0     ay    J * (3.15) 

4.  In-Step Covariance Computations 

Upon substituting the optimal gain B (n) defined by (3.13) into 
J 

equation (3.12), we can rearrange terms and make the appropriate can- 

cellations to obtain 

P^n/n) = [i - By(n) Hy(n)] Pyy(n/n-l) - By(n) ^(n) Py
T
b(n/n-l) 

(3.16) 

This is to be compared to (4.41) in Reference 5. 

Vie  can post-multiply (3.10) by e  (n/n) = y? (n), use the definition 
V2 

for y9(n) provided by (3-3)>  and take the expectation: 

A   fl 

P  (n/n) = [i - B (n) H (n)] [?    (n/n-l) 34 '(n) 
7^2  ' L  7       y J LTY W 

P (n/n-l) ^o 
yJ    aj 

(n)l - B_(n) H,(n) P^Jn/n-l) f^o (n) 
J *      ay 

(3.17) 

ivhere the argument (n) on the partial derivatives indicates evaluation 

at the point x(n/n), and 

3F —o    = 
dZ 

aF  ! coo 
f^looo 
-  1000 

000 
000 
000 

Equation (3.1?) is to be compared with (4.42) of Reference $. 

The matrix P   (n/n) does net differ from its perfect-sensor form: 
V2V2 
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A AT 

Pv v <"/*> • W <»>PrIW
n) 5? (n) 

2 2       - - 
A >S •!» 

+ -g2 (n)PJ(J 3=2 (n) +n(n/n) + H
T(n/n), 

where 
A AT 

TT(n/n) = -^ (n) PrJ(n/n) ^ (n). (3-18) 

However, a new matrix need be computed for the right side of (3.15). 

T Post-multiplying (3.10) by b , we can calculate 

P (n/n) = [I - tyn)  H (n)] Pyb(n/n-l) - B (n) ^(n) R^ 

(3.19) 

to complete the error-analysis recursions. 

The filtering process is the same as in the perfect-sensor case, 

except that the P .matrix recursions are new and the microscopic de- 

tails of the other recursion relationships reflect the observation- 

noise and bias statistics. 
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SECTION IV 

SENSOR MODELS 

Three basic sensor types are to be studied under the subject con- 

tract for their performance in mass determination. These are (1) mono- 

static radars, with observation vector 

i(t) = 

Range 
Range-Rate 
Azimuth 
Elevation 

= h(xj 2l> k> t)^ 

(2) tristatic radars, with observation vector 

i(t) 

Range 
Range Difference 
Range Difference 
Range-Rate 
Range-Rate Difference 

_Range-Rate Difference_ 

= h(x» 3 >  k> t)> 
\ 

and (3), Baker-Nunn cameras, with observation vector 

•<t) = 
[Right Ascension 
Declination 0 = h(*> a» k> t) 

The detailed functional relationship between the observations and 

the states are presented in Appendix III, where the partial derivatives 

with respect to states, noise, and biases are developed. Note that all 

the sensors are affected by time biases, and the Baker-Nunn cameras are 

affected by a-c time fluctuations as well. 
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APPENDIX I 

THE COUPLING OF SATELLITE TUMBLING TO ITS 

ORBITAL MOTION IN A CONSERVATIVE FIELD 

12 3 Various writers '   have considered the problem of the motion of a 

non-symmetrical satellite in the gravitational field of a major planet. 

Although the satellite may nominally be travelling in a stable orbit, there 

is obviously an interaction between the equations which govern the rotation"! 

motion of the satellite about its center of mass and the equations of orbital 

motion. In some cases, interest in this problem centers about the advantageous 

use of this interaction for purposes of gravity gradient stabilization; in 

other instances, there is concern about the possibly detrimental effects of 

this coupling such as excessive tumbling of the satellite, or even significant 

distortion of the orbital path. 

It is one of the purposes of this appendix to show that, in almost any 

practical situation, these detrimental effects are entirely insignificant. 

Furthermore, the perturbation of the orbit due to the lack of spherical 

symmetry of the satellite can almost always be ignored, and the rotational 

(tumbling) equations can be solved with insignificant error under the assumption 

that the center of mass of the satellite is moving in a pre-computed orbit. Using 

this assumption, the tumbling equations for the satellite will be derived in 

a form which is useful for computational purposes. 

In the following derivation, it will be assumed that the satellite is 

a body of revolution, or at least that two of the three principal moments of 

inertia are equal. The results, however, leave little doubt that the above 

claims are equally valid for a body having all three principal moments of 
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inertia unequal. 

In Reference 1, it is shown that the gravitational torque N exerted on 

a body in an "inverse square law" gravity potential field is given by 

N- -(3/(/r:) irx Jtr, (1.1) 

where (x) denotes the vector cross product, and 

M,^  gravitational constant; 

r = distance between centers; 

A A A   A 
i = unit radial vector expressed in an 1,, i , 1 coordinate 

system which is fixed in the body; 

A   A   A 
J - inertia matrix of the body with respect to the 1,, i , i,. 

coordinates. "* 

If the i,, i , i coordinates are directed along the principal inertial axes 

of the body, then J is a diagonal matrix having diagonal elements equal to 

the principal moments of inertia. 

Let co denote the angular velocity vector with components equal to the 

angular velocities about the principal axes. Euler's equations of motion 

describing the rotation of the body have, in this coordinate system, the 

well-known form 

Jco f co x JOJ = N, (1.2) 

where the dot denotes differentiation with respect to time.  In the case of a 

body of revolution, we take 

10     0 

0    10 

_ 0    0    I-AI 

(L3) 
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where AI is positive for long cigar-shaped bodies, negative for saucer-shaped 

bodies. 

Let the orthogonal matrix S represent a rotation through an angle p 

about the symmetric principal axis of the body, and set w = SX, or 

co = 

cosp sinp 0 

-sin(3 cos(3 0 

0 0 1 

X. 

If the angle (3 is allowed to vary with time, then u> = SX + SX, where 

s--p 
sinp -cosp 0 

cosp sinp 0 

0 0 0 

We also introduce the skew symmetric matrix Si,  defined as 

Jl = 

0 
"°3 

W3 
0 

-^2 ul 

w. 

-w. 

so that we can write u x Ju =/2<JOJ.    With this notation,   (1.2) becomes 

•   • 
J(SX + SX) + ilJSX = N. 

T    9 
Since J obviously commutes with S, S and S, this latter equation can be 

put into the form 

JX + LJX = S N, (I A) 

with 
,TJ5  „T L = S S + S/iS.  If X , X , X are the components of the vector X, 
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we find 

L = -(P-X3) 

p-x. 

-X, 

0 

and 

LJX = (ip - AIX ) -K 

0 

(1.5) 

T A     A 
With respect to equation (I.1), note that S (i x Ji ) is simply the 

A      A 
vector i x Ji expressed in the rotated coordinate system having unit vectors 

A      T'A 
J = S i (n = 1, 2,  3)-  In this system, the inertia matrix J still has 

the form (1.3); hence, 

TA     A       .A   A .A 
Ji = Ii - AI(i • Jo)jo r    r    x r d3/J3 

A in (JT* J2* Jo) coordinates, and 

STN - 3AAlr"3(^.  J3)(^rx J3) 

3AAIr -3 
(ir* J2^VV 

-(ir« J1)(ir* J3) 

0 

(1.6) 
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Equations (l.4), (1.5) and (1.6) show that X = 0, or X (t) = X (0). 

If we now let r = (i • j ), n = 1, 2, 3, we can write the equations of 

rotational motion in the following simple form. 

H?VW •*?[-$]• 
d  x1 \ (&\-a 
dt x2j-\.     ^ ^ . L .r3 

Let us now relate the equation (I.?) to a coordinate system, 

(n,p,q), having unit vectors with inertially fixed directions, and an 

origin moving with the satellite. Assume that the satellite is travel- 

ling in a simple elliptic orbit. (This will certainly be valid for 

sufficiently small time intervals; moreover, we intend to show that 

(1.7) 

the perturbation of the orbit due to tumbling is actually negligible over 

a period of many orbits.) Define the orthogonal unit vectors i , i and i 

as follows: 

A   A 
i = l at the instant the satellite is passing through perigee; 

i = unit vector in the direction of instantaneous velocity at perigee; 

i = unit vector normal to the orbital plane, in the direction of the orbit 

momentum vector. 

If v is the true anomaly, then in this fixed-direction system the 

vector i has the representation 

x = 
r 

" COS V 

sin V 

0 • 

(1.8) 
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FIGURE 2. TUMBLING GEOMETRY 
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Figure 2 shows the orientation of the satellite in the fixed system, in 

terms of both the fixed i., i , i- body coordinates and the rotating 

Jn* J5> Jo coordinates. The angle p has been chosen in such a way that the 

unit vector j, is in the (q,n) plane. It is clear that 

X = Y sin a angular velocities along C3^/J2/$J. 

(3 + Y cos a 

In (n,p,q) coordinates, we have 

Jl = 

0 

cos Y 

sin Y 
%- 

sin a 

-cos a sin Y 

cos a cos Y 
%- 

cos a 

sin a sin Y 

-sin a cos Y 

(1.9) 

(L10) 

and we find 

r, = cos Y sin v «= i • 1, 
1 r Jl 

r„ = sin a cos v - cos a sin Y sin v r  J2 

r_ = cos a cos v + sin a sin Y sin v = i • j. (1.11) 

If a and e are, respectively, the semi-major axis and the eccentricity of 

the orbit, it is well known that 

r , a(l-e^) 
1 + e cos v * (1.12) 
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Noting finally that (AIX -lp)« (AI-I)X + if cos a, it follows from equations 

(1.9), (I.11) and (1.12) that the tumbling equations (1.7) can be written 

in terms of the physically meaningful angles a,Y and v, and the constant X . 

It is of particular importance that, in their final form, these equations are 

entirely independent of the angle p, which in the case of a body of revolution 

is an unobservable quantity. 

The kinetic energy of rotation is given by 

T = (l/2)XTJX = (l/2)wT(SJST)(o = (l/2)o)T(JSST)a) - (l/2)wTJco.      (1.13) 

Differentiation with respect to T produces 

T = XTJX, (1.14) 

which may be regarded as either the rate of increase of the rotational energy 

of the satellite, or the rate of decrease of energy in the orbit. Premultiplying 

T T 
(l«4) by X , and noting that X LJX = 0, we find 

•   T T T - rsi 

= 2M  AI r3 ^lVVl^ 
(I,15) 

r^ 

where the latter expression follows from (1.6). 

In order to justify the previous statements concerning the tumbling rates 

and the perturbation of the orbit due to tumbling, it would be sufficient to 

show that the change in T over a period of several orbits is negligible both 

with respect to the total orbital energy and the implied change in tumbling 

rate.  The direct computation of the energy or the energy rate, however, would 
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essentially require the solution of the nonlinear tumbling equations (1.7)> and 

this problem is extremely difficult if not intractable. 

Consider, instead, the following hypothetical situation. Suppose that 

the satellite is equipped with a set of torque rockets which can produce 

arbitrary rotations, but no translational motion, of the satellite. Suppose, 

in addition, that these rockets are either pre-programmed or controlled by an 

intelligent being in such a way that the total decrease in orbital energy 

over a pre-specified time interval is maximized. It is assumed that the rockets 

are capable of producing both continuous and impulsive outputs, so that there 

are no inertial limitations on the possible rotational motions of the satellite. 

Since the equations (1.7) no longer govern the satellite rotations, (1.15) 

does not represent the rate of increase of rotational energy, but (1.15) is 

still the correct expression for the rate of decrease of orbital energy. Further- 

more, the maximum decrease in orbital energy under the artificial motion 

described above is an upper bound for both the actual decrease in orbital 

energy and the actual increase in rotational energy under any natural motion 

of the satellite. 

Since we are still assuming motion in a nominal elliptic orbit, we can 

treat T, a andy as functions of time tor, equivalently, as functions of the 

true anomaly v. Noting equations (1.9) and (1.12), we rewrite (1.15) as 

dT = 3M(l+e cos v?3 AI rjr,, da - r±  sin a drl (1>l6) 

dv   aJ(l-0J L  dv dvj 

where r,, r„ and r are still given by (I.ll). Our plan is now to integrate 

(A.16) between specified values of v, and to maximize the resulting expression 
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with respect to the unknown functions a(v) and Y(V). For simplicity, we will 

work with the absolute value |Al|. Without displaying all of the cumbersome 

details, we state that the functionY (v) which produces a maximum for this 

integral is simply y(v)  = n/2. This can be obtained either as a solution of 

the Euler-Lagrange equation which is associated with this variational problem, 

T A        A 
or by recognizing that X  (i x Ji ) is largest when the angular velocity 

A     A.  . . , . ,. 
about an axis in the direction of 1 x j„ is a maximum, and this occurs 

whenY = TT/2. 

Setting Y (v) = rr/2 in (1.16), and substituting for r2 and r , we obtain 

dT „ 3/4 (1+e cos vr   |AI| sin 2 (a-v) da (1.17) 

dv  2a3(l-e2)3 dv 

Integrating this expression between limits v, and v , we are left with a simple 

calculus of variations problem in the single unknown function a(v).  The 

associated Euler-Lagrange equation is algebraic, and leads to the result 

-2(1+e cos v^ (1.18) 

and 

tan2(a-v) = 3e sin - 

From (1,18), we compute 

da(v)      ,   ,   3e(e+cos v)  
2 2  ' 

dv (3e sin v)    + 4(l+e cos v) 

.   _/       x  _ 2(1+e cos v)  

[(3  e sin v)2  f4(l+e cos v)2 ]1'2 
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Clearly when e <4/7> we must choose the positive sign for sin2(a-v), since 

the expression for da/dv is positive for all v in this case. Actually, a 

closer analysis shows that the positive sign should be chosen for all e<l, 

but the simpler observation is sufficient for practical purposes. 

At the endpoints of the interval of integration, if the angle a(v) does 

not satisfy equation (l,18), an impulse from our hypothetical rockets can 

be used to bring the satellite into position.  Inspection of (I.17) leads 

to the conclusion that, if the integration is performed over an integer 

number of orbits, the maximum contribution to the integral due to endpoint 

effects is given by 

T <f^3. (1.19) 
ep a3(l-e)3 

Substituting the expressions for sin2(a-v) and da/dv into (A.17) and 

integrating over a single orbit, we find 

AT  < 3ft TT I All F(e), 

orbit '  a3(l-e2)3 

where 

F(e) =1     f 2(1+8 cos v)4[(3e sin v )2 + Ul+e coa v)2 + 3e(e+ cos v)] dv 
n J0     [(3e sin v)

2 + 4 (1+e cos v)2]3/2 

The following table shows the results of a numerical integration for the 

function F(e), as well as a tabulation of the values of 1 + 2e . 
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e F(e) 
2 

1+2 e 

0 1.000 1.000 

0.1 1.021 1.020 

0.3 1.184 1.180 

0.5 1.503 1.500 

0.7 1.970 1.980 

1.0 2.939 3.000 

Hence,  we have the very simple estimate 

AT      K   3^TTlAll(l+2e2) 

a3 (1-e2)3 orbit "" (I.-20) 

Combining the results (1.19) and (1.20), we obtain the following upper 

bound for the decrease in orbital energy, and the corresponding increase in 

tumbling energy, over a period of n orbits. 

|AT( s i ^ mIAII [    (l+e)3 + nTT(l+2e2) 
"~     3 ,,    2,3 (1-e2)3 

(1.21) 

Since the total energy of the orbit is, initially, h = m/(/2a, where 

m is the mass of the satellite, the fractional change in orbital energy per 

orbit (neglecting endpoint effects) is no greater than 

Ah < 6rr  [All  (l+2e ) 

h " a2  m   (1-e2)3 
(1.22) 
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For the extreme case of a cylindrical satellite having length L and radius 

R«L, this becomes 

Ah^n (k)2 L2±Z£1    . (I.23) 
h    2 \a/  (1-e2)3 

n 
For an earth orbit, we must have a(l-e)> 2 x 10 ft. Also, for 0<e<0.8, 

the inequality (l+2e )/(l+e) (l-e)<2 is valid. Hence, over the stated range 

for e, we have Ah/h<10-"^, , where L is the length, in feet, of the cylindrical 

satellite. 

Assume now that the decrease in orbital energy over a single orbit 

corresponds to an increase of I(Aco) /2 units of energy due to a change in the 

angular velocity of the cylindrical satellite about some non-symmetric 

principal axis.  In this case, we must have 

(A")2< r
6^ - = Mi mil (i.24) 
[a(l-e)] 3  I    (1+e)3 

Noting that |M|/I<1 for any cylinder and (l+2e2)/(l+e)3< 1 for e>0, we 

take >L(= 1.4 x 10  ft. "7sec. and the above inequality for a(l-e) to obtain 

(Aw)2<;33 x 10~6 rad.2/sec.2 (1*25) 

for a complete orbit. This estimate is extremely conservative, since the 

satellite cannot tumble end over end and simultaneously maintain a configuration 

which causes the orbital energy to decrease at each instant. The main value 

of the estimate (1.25) is in demonstrating that, over the small portion of an 
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orbit which lies within the range of a single tracking station, the net 

change in angular velocity due to gravitational effects is rather small. 
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APPENDIX II 

PERTURBATIONS ON CYLINDRICAL SATELLITES 

DUE TO SOLAR RADIATION PRESSURE 

A.  GENERAL 

There are three components of solar radiation force acting on a 

satellite: 

(1) That due to energy impinging directly from the sun and re- 

flected from the earth. 

(2) That due to the reaction of specularly reflecting radiation 

from the satellite. 

(3) That due to the reaction of diffusely scattering radiation 

from the satellite. 

As noted in Appendix I of Reference 5, if the incident radiation 

approaches from the direction i.  shown in Figure 3 below, then the 

pressure exerted normal to x. is 

E- (Is/c)l =P^., (II.l) 

where I is the irradiance and c is the speed of light. When p_ impinges 

upon a differential surface area dA, the differential fcrce due to the 

incident flux is 

dF. -•$. (p • dA) =%   (I /c) (i. • dA),       (II.2) -xn   1 ^       — x      s' \        — 

while the differential force due to the flux being reflected back from 

the surface is 

A A 
dF __ = -i  _ (I /c) (i  _ • dA), (II.3) —refl    refl v r    refl   - •" 
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FIGURE 3.  TUMBLING CONFIGURATION 
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where i ... is the unit vector in the direction of the reflected flux and 
refl 

I is the irradiance in that direction, 
r 

The net solar force due to direct solar radiation is the integral 

of (II.2) plus (II.3). 

Mow, the total pressure £ at the satellite consists of a part di- 

rected from the sun and a part reflected from the earth. For simpli- 

A 
city, this pressure vector will be resolved into components in the i 

and i  directions, i.e., radial from earth and sun-to-satellitc, re- 
33 

spectively. This pressure vector can be written as 

£ = (Is/C) (Pl ir + p2 i^), 

where, to a good approximation, 5 

(II.4) 

PT     = 

Xq (a.. + a. ) cos a 

Xq a 

| a | < rr/2 - B^ 

-Bx4|a| *    , 

rr/2 + Bx £ |c | ^    n 

rr/2 - Bx 4 \a | fr    rr/2 + B^ 

P2 = 

given that 

(1 + \qa2) 

(1 + Xqasg) 

|a|   4  rr/2 - B^ 

rr/2 - E^^Jal   £   rr/2 + B^ 

, n/2 + ^ £ (a |   < n 

q = Earth albedo, 

X = ratio of earth radius to distance between satellite 

and center of earth 

K = arc cos X, 
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^ =(-.0417 + .5431 A)/3, 

a2 -{.0444 - 3.17(X -.77)
3 + .0045 (X-.77) sin [I4O(^-.77)TTU/3 

ass = a2 [l+ s - se
sr>' - e^y  (2 + ay)] /2 

ar ={ass + (&l/2) [ S + X " s(l + sy)d J} C0S a 

+ ( >2 COA-sir: a>3 ±  (X-sin a)3]  - (l-X2)-/2 

*    (l+\2- 2* sin a)3/2 X } 
sin a 

t- = -4 + 9.3^ 

y = (a-n/2)/^ 

f i > y< o, 

(-1, y>o, 

d=3.7 + 59(>-.77)2 . 

B. NET RADIATION FORCES 

1. Incident Radiation 

Neglecting the reflection effects, the impinging energy will 

A 
produce a net force in the i. direction defined by the integration of 

(II.2) over the surface A of the satellite: 

v I dF.  - c 
-in  •*- f k-**+ f % 

u>b '1 

dA- 

(II.6) 

where 

A^ --  nil ,   the area of the base of a cylinder of radius R , 

A, = 2LR , cross-sectional area normal to the base of a cylinder 

length L. 

A 
Taking the unit vector i„ to be normal to the base of the cylinder, (see 

Figure 3), and defining 

A   A 
cos 0 = -(i • i ), 
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where     i0 = sin E    i   + cos %  i , 
3 '      P *    n 

lire find that (II. 6) becomes 

F^ - £ (^   |  ccs 0   |  + A±   |  sin 0   |   ). (II.7) 

2. Specularly Reflected Radiation 

Consider a ray of light which is reflected from an increment 

dA of surface area according to Snell's Law. If the ray impinges at 

an angle 0 £ Y     - rr/2 with the normal, then it will leave at an angle 

Y     with the normal, ac shown in Figure 4 below. If the specular 

d A » iA dA 

dA 

FIGURE 4.  SPECULAR REFLECTION 

reflection coefficient is defined to be k , then the reflection ir- 

radiance is I = k I , and the integration of (II.3) yields 

-refl    r* i  „, (i  „ • dA) + I     i  „ (i refl v rcfl   —'        refl v 

"b side 

dA) 

Now, over the base of the cylinder, 
(II.8) 

where 

A 
dA = i, sign (cos 0)  dA , (II.9) 

M4-1 'x- sign (x)=J~ 

'+1 , x>0 

the sign function being necessary to distinguish whether the top base 
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A 
of the bottom base of the cylinder is exposed to the light. If i. 

is the normal to dA, it is clear from Figure 4 that 

W " *i + 2(oOE "a> V (II'10) 

But from Figure 3 we see that 

cos Y      =     Icos 0 I > 

so that (II.10) becomes 

i  „, = i. + 2 I cos A I sign(cosd) ) i0 (II.11) rell   l    '   r        r        j> 

= i.  + 2cos <p  i„ . 

Hence, over the base area, 

i  „ • dA = ( - I cos <t>\    +    21 cos <t> I ) dA refl    - 

cos <P\  dA. (11.12) 

Combining (II.11) and (11.12) in the first integral in (II.8), we have 

/ Ken. (W • dA) = \ icos *K*i + 2 cos * V- 
Ab 

(11.13) 
Now, integrating over the side surface of the cylinder, we note that we 

can decompose p_ into two parts: One part tangential to the longitudinal 
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A 
l3 

- P SIN   0   i2 

iA>(cos a) i|+ (SIN a)f2 

FIGURE 5.    SPECULAR REFLECTION FROM CYLINDER WALL 
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axis and one part normal to that axis. Figure 5 provides the details. 

Only the normal part of £, that having direction cosine - sin <f)/  i , 

appears in the dot product 

A       A    A   /\ 
irefl ' *A ~~\  '  V 

so that 

*Tefl " "A 
A      A       . . 
i n • ifi = sin (0 sin a, 0 < <p < rr, 

(II.14) 

A A 
where a is the polar reference angle to i.. The full unit vector i „, 

also is needed. Referral to Figure 6, below, where the origin has been 

moved to the surface increment dA of the previous figure, provides 

irefl • (sin 0)(sin 2a) 3^ - (sin 0)(cos 2a) i 

- (cos 0) i . (11.15) 

Substituting (11.14) and (11.15) into the second integral in (II.8), 

we find 

/  ^refl (*refl * *$  =  /  [(sin 0)(sin *> *L 

side 

- (sin 0)(cos 2a) i - (cos 0) i J (sin 0)(sin a) R Lda, 

= - A1 (- sis-J f2 + (cos 0)(sin 0) ^)f 

*i sin ^ r /  ^ A  AT 

0 < 0-c n. 

(11.16) 

44 



FIGURE 6. GEOMETRY FOR DIRECTION 

COSINES OF i  „ , SPECULAR CASE. 
refl' 
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The net specular reflection force now follows  from putting (11.13) 

and (11.16) into (II.8): 

£refl = " kr p  ["{^1  cos ^ " (A]/3)|sin 0|]   i. 

+ 2 cos 0 ( Ab|   cos 0|  - (2^/3) |sin 0\j lJ . 

(11.17) 

3. Diffusely Reflected Radiation 

For the case of diffuse radiation, the reflected energy obeys Lambert's 

Law. As developed in Appendix I of Reference 5, the differential reaction 

force is normal to any increment of area dA: 

d4efl=i ^3) (kdIs/c) (±±    •    dA), 

where k, is the diffuse reflection coefficient. Again 

(11.18) 

/ dW+  / F ^ =  / dF  „ -+  /     dF -  • (H.19) 
—refl       -refl    /      —refl 

b side 

For the base, 

/ 

d4efl    =-(2/3)(kdIs/c) Abcos0i:3. 
Ab 
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For the side, (II.14) can be used to obtain 

/ d4efl = " (2/3)(kdIg/c)(sin 0) J     [(cos a)^ 
side ° 

A   -t 
+ (sin a)i   J   (sin a) R L da, 

= -A1(TT/6)(kdIs/c)(sin 0)i2, 

A1(n/6)(kdIs/c)(ii + cos 0 ?3). 

Hence, for diffuse reflection, 

*refl = (kd p/3)   [("V2)^i +PTTV2) " 2Ab)^cos 0£31   '     (n-20) 

C.  FINAL RESULTS 

Combining (II.7), (11.17), and (11.20), and upon dividing by the 

mass m, we obtain finally, after using (II.4) to substitute for £ 

f        $ \ (or i±), 

^solar = (Vc)  W>   [ KVV  (1-kr}   lC03 $ ' 

+ r^/6 + (1 + k^/3)   I sin 0 I ] [Pl $r + p2 ^sJ 

+ [2 (y^)  (kr I cos 0 |+ kd/3) - (4/3)kp I sin 0 I 

" V6 ] [   ?1 C03 cr + p2 C0S as ] ^ J • (11.21) 
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where 
A A 

1=1        '   x        , 
S S3 3 

cos a    = i      •   i„    ) 
r        r 3 

/—2 21 
cos 0    = (p1 cos ar + p2 cos ag)/ ^ j^    + p2 

The last identity follows  from the fact that 

cos 0    =   -i.     '        i, 
i 

and from (II.4), which yields 

A 
li =(PX ir + P2 ±s5 )/jV* + p 2 ' 
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APPENDIX III 

OBSERVATION EQUATIONS 

The notation used in this appendix in some cases contradicts the 

definitions for the same symbols used elsewhere in this report and in 

Reference 5. This occurs because particular symbols are commonly ac- 

cepted to mean one thing in orbital mechanics, and something entirely 

different in radar technology. 

The symbol definitions within this appendix which are to be inter- 

preted locally only are the following: 

R = range 

R = range-rate, 

A = Azimuth, 

E = elevation, 

a - right ascension 

O = declination, 

r = station location in inertial geocentric coordinates, 

AR.= range differences, i • 1,2, 

AR.= range-rate differences, 

<p ,9 = defined forms of station latitude and longitude. 
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A.  MOKOSTATIC RADARS 

The monostatic radars to be evaluated in this study aeasure range 

R, range-rate R, azimuth /, and elevation E. Given the state vector x(t) 

and the station location vector 

x 

z _ 

in inertial coordinates,   and given the inertia! spin rate of the earth 

a) ,  '.re can \jritc explicitly the entries of the nonostatic ol-servation e 

vector 

z(t) h (x, %  b,  t), (TTI.1) 

These are 

H=   \l (x-xJ2 + (y-7J2+ (z - z  )2  , 

R (1/R) [ (x - xs)(x + o)eys) + (y - ysKy - w^)  + (z - zg)z ], 

,,,1 
A = tan 

E = tan 
(III.2) 
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where 

• i« 

.1' i 

sin ty cos 0    sin <p sin 0   - cos cp 

- sin 0* cos ©' 0 

cos (!)  cos 0    cos f sin 0        sin<p 

X -  X 

7 - ye 

z - z 

2 _,    _ 2 _,       2 
sin?    =zg//  V + V + 1i ' (latitude) 

sinO'  =78/\/xB
2 + y! 

L -  2 
s 

(longitude) 

Then 

dR/dx 

eR/dx 

(1/R) 

(1/R) 

x - xg, y - ys, z - zg, 0, 0, 0^  , 

R(x4ueys) - R(x-xg),    R(y-<oexg) - R(y-ys) 

a R 

* • 
Rz - R(z-z  )  v      s 

R '   X"V y-ys' Z"Zs 

dA/dx 

dE/ax 

1 j- 
2/   »• i\2        (-xIM 3in 0 ' - y''' cos 0*   sin 9 ),  (x*      cos 0 ' 

y " ' sin 0 ' sin 9 ), y " ' cos f , 0, 0, 0 J   , 

I" (cos 0* cos (p - (z " 7R2)(x-xg)J , 

[sin 0' cosp - (zM,/R2)(y-ys)}   , 

(sin 9?- (z"7R2)(z-zs)}   , 0, 0, oj    , 

V R2 - (z'M)2 

(III.3) 
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•which are to be used in 

H = 

"dR/dx" 

dR/dx 

aA/dx 

dE/dx 

The noise matrix II is the 4X4 identity matrix 
1 

1 

and the bias matrix H, is the 4X8 array 

1 

H. 
b ^s 

ah 

at 

which associates idth the bias 8-vector 

Range Bias 

Pange-Rate Bias 

Azimuth Bias 

Elevation Bias 
1 

(HI.4) 

(III.5) 

(III.6; 

(HI.7) 

x Station Location Bias 

y Station Lacation Bias 

z Station Location Bias 

Clock Bias 

Now, the station location biases are given in an earth-fixed coor- 

dinate system and are constant in that system.  Defining the earth-fixed 

1 111 
system r = column (x ,  y , z ) used in .Appendix III of Reference 5> wc 

have that 

r = T(t) r1 - PNG r1, 
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where P, N, and G are orthogonal matrices that account respectively for 

the earth's precession, nutation, and rotation about its polar axis. 

Note that — is composed of the rows 
dr 
—s 

3R/dr£ 

3R/3rc 

dA/drc 

aE/6r 

-dL/dr, 

-1_  [ [R(x + UT) - R(x-x )] , 
R2 L 
[?.(y-coex) - E(y-yg)], [R& - ft(a-B8)] 

-3A/or, 

-3E/3r, (III.8) 

where _3_ is the 3-clement roxv vector in _3_ 
3r 3x |j>£ ! 3r J 

The timing-bias part of (III.6), ah/at, is a column array of the 

following scalar partials: 

where 

an/at — 

aft/at   = 

dA/dt   = 

aL/at   = 

* = 
"x4 
x5 
ut./ u    0 

(aR/ar) t + (aR/ars) rs , 

(aft/ax) * + (aR/ars) rs , 

(3A/3r) t + (3A/3rJ * , 

(3E/3r) r + (fiE/dr) rs , 

(III.9) 

-7c 

r —s OJ 
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B.  TRI-STATIC RADARS 

The tri-static radars provide a range and range-rate measurement 

R and R from one site, and the differences AR, = R-R, , AR = R-R? , 

•   •  •    •   .  • 
AFL =8 - R, •>   AR = R - R calculated with respect to the ranges and 

range-rates R,,  R. and R,, R to two other sites. The observation 

vector is now 

S(t) = 

Ft 

AR, 

R 

AR: 

h (x, ty  h,   t), (III.10) 

If the three sites are located respectively at 

s *sl" 
r      = —s 3TB £BI   = ysi 

z 
L   3-1 -ZslJ 

"s2 
7s2 
Zs2 

then R and R are the same as in the monostatic case, whereas 

AR.  = R - \/(x-x . )2 + (y-y  . )2 + (z-z . )2, 
I       V   si    w 'si       si 

AR.  = R - 
l 

k -   i   r (x~. 
R-AR. L 

x .) (x + CJ y . ) 
SI C s: 

+ (y-ysi) (y-<oexsi) + (*-«sl) i], 

i - 1,2. (III.11) 
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The state partials dR/dx and dR/dx are clearly the same as before,  but 

e(AR.)/5x =        1 [[(x-xj  (R-AR )  - (x-x    ) R]   , 
1 R(R-AR.)     LU        ° X S1 

[(y-7s) (R-AR±) - (y-ysi) R]   , 

[(z-Zg)   (R-AR..)  - (z-zsi) R]   , 

0,  0,   0      , 

a(AR.)/ax^[j:^^e^) -J^j   .  **Vsi    +   ^Aj (x-xsi)    1.  , 
LL R2 R-ARi (R-AHJ2 J 

R(y-wexs)-R(y-ys)    _    fr-w^    +    (R-ARj)   (*-*sl) 

R-AR. 
l (R-AR..)' 

Rfc-ft(»-«B)   _       fc      +   (^V (^si) 
R' 

R-AR. 

-X-X x-x   . s     - 
l-AR. J L 

y-3 

(R-AR.) v        i' 

z-z _isxi,r s  -  sin 
-AR. J    L   R R-AR. J 

z-z  . 

i" 

i • 1,2. 
(III.12) 

These are row entries in 

dR/dx 

d(AR_)/dx 

a(AP2)/ax 

aR/dx 

a(AR1)/ax 

a(AR_)/ax 
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The noise matrix ft- is now a 6 x 6 identity matrix, and the; bias 

matrix H, is the 6 x 16 niatrix 

H :h |"i i 5.T(t) 
L    ! ^s 

ah 

dAr 
* T(t) ! AT(t) i    ^ 

dArg2    ,  at 
(III.H) 

where 

ah 

IF 

cR/dv 

d(AP1)/3rs 

3(AR )/3r 

3E/dr 

a(ARn)/or v    1 '   —s 

a(AR2)/9rg 

oh 

5(AP1)/aAr 

0 

,£sl 

aC^/aAr 

o 
-si 

ah 

3Ar " 
-8 2 

c 

0 

a(AP2)/dArs. 

a(AR2)/dAr ̂
2 
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dF/at 

a(AR1)/at 

ah a(AR2)/at 

at aR/at 

d(ARL)/dt 

a(AR2)/at 

Lou, the surveys for the three stations ar~ such that the master 

station at r is located by geodetic survey.  Its position has survey 

]   1  1 

biases in the earth-fixed system (A*, Y , Z ).  The slave stations ar: 

surveyed relative to the master: 

r . 
—S"i 

/'r . , i 
-si 1, 2, (III.15) 

with the relative biases on the relative position vectors Ar . inde- 
—si 

pendent of and much smaller than the absolute survey bias or. the nast 

station. 

The bias vector is the 16 x 1 array 

AR 

s 

R   Range Bias 

Range Bias 

AR   Range Bias 

R        Range—Rate Bias 

Axt*.      i^ange—ii.at e i^ias 

ii.aiige—i.at e Bxas 

Master Station Location Bias 

Raster Station Location Bias 

faster otation Location Bias 

ixx.        Slave 1 Relative Location Bias 

Ay   Slave 1 Relative Location Bias 

2 

1 x. 

1 
y 

"i 
X 

Z 

, 1 

> 
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^z Blave 1 Relative Location Bias 

ax 31ave 2 relative Location Bias 

ay Slave 2 Relative Location Bias 

, 1 
^lave 2 Relative Location Bias 

]lock Bia^ 

Upon putting (III.13) into (III.11), defining 

... "'  i.-a... , 

r„—an. , 

and talcing derivatives, we find, for the range variables. 

-3R/3r , 

(III.16) 

"(^J/SiL = ^:./3r, + c(aR .)/3(ar .)  , 
_i_     5 o X        uj. 

KaT:.)/a(ar .) - (l/ll. ) [~(x-x... ) , (y-y . ) , (a-Z .)]  , 
X        Dl X    L_     O_L ol SI  J 

(III.17) 

where the second equation results from expanding ATI. into R-R. and 

noting that -SR./dr    -  3(aR.)/3(ar .).  Tor the range rates, 
1  —S        X       Si 

3R/3r ~ as given in (III.8) , 

8(aR,)/ar - 3R/dr. + 3(aR.. )/3(ar .) 
-u      O O X Q X 

!(AR.)/3(Ar .) - 1  r[R.(x-Kjy) - R. (x-x . )], 
1 '  v —Sl'    <-   lv    C*"     lv    31 J ' 

Q^cx) - \(y-3rBl)] , 

[R.z - B.(z-zs.) ]    ] 

R.' 
l 

(III.18) 
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The time derivatives for 3h/3t are 

on/et = (an/ar) f + (aR/ars) £s    , 

d(A?u.)/dt = [d(AR.)/8r3 £ + [3(S.)/^]r 
•A- X _1_ w> O 

+ [d(AR.)/3(^rsi) ] A*si 

afyat - (aft/ax) x L (afc/3r ) L    > 
D —O 

a(uf..)/at «  [a(AR.)/ax ] x + [a(afL)/ar ] r3 

+ [a(if,..)/6(Ar .)] it . 
(III.19) 

C. BAKER-im'II CAIERA3 

The Baker-Kunn cameras record right ascension and declination of 

the target.  These are, respectively, 

a = tan"V i^s\ -t 
\  x_xs / 

6  = Sin~t "IT ) 
(III.20) 

•.-/here V is the right ascension of Greenwich, the "Greenwich Hour Angle." 

The observation vector is 

z = |J]- h c* ^ t). 

3c* 

The partial derivatives are as follows: 

/ax =    l       [   7"ys    , _^_   ,   o, o, o, o 
2 / \2        x-x sec   <X     _ (x-x^j s -• 

a x /»        -(z-O 3 d/dx = s 

RJcos <5 ^7 
(x-xs) , (7-7B) > (z~z

sy 

0,   0,   0       , 
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for 

H = 
a<*/dx 

a 6/dx 
(III.22) 

The noise oatrix,   since a fluctuating time error is assumed for this case, 

is now the 2 x 3 array 

Hn 1    0   I  3<*/at 

0    1   !  dS/dt_ 
(HI. 23) 

/here 

and 

-ooi/ars - 3«x/3r    , 

- 3 6 /oro = 3 o/dr    , 

a*/at - (a<x/3r) r + (a<*/ar ) *   - ay/ai 

erf/at - (a<5/ar) r + (drf/arj *   , 
(III.24) 

where, to a high degree of accuracy for orbital durations on the order 

of years, 6 JT/dt = OJ = const.  These are also used in the 2x6 matrix 

Hb = 

' ah       / v 1    0   I JZ_    T(t) 
o   i ! ar 

aw/at I 
\   a<5/atj ' 

xvhich corresponds to the bias vector 

Right Ascension 3ias 

Declination Eias 

x Station Location Bias 

7 Station Location Bias 

z Station Location Bias 

Clock Bias 

(III.25) 
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