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PARALLEL CHANNELS WITHOUT CROSSTALK"

ABSTRACT

In this report, a study is made of information theoretic channels which are decomposable
into a number of parallel subchannels which will, in general. be dependent. For this
situation, two models are constructed in which each subchannel input affects only the
corresponding subchannel output (no crosstalk). 1n the first model (MC channel). the
lack of crosstalk is ensured by constraints on the channel conditional probability distri-
bution. The second model (MS channel) is a channel with an underlying state structure
with states independent of the input. Both models are memoryless. All MS channels are

MC, but the reverse does not hold.

The effect of subchannel dependencies on capacity and random coding exponent (RCE) is
investigated. 1t is proved that these dependencies cannot decrease the capacity of our
channels. However, subchannel dependencies may either increase or degrease the RCE.
It is also proved that the capacity of the channelis not less thanthe sum of the capacities
of the individual subchannels. When the state model is used, the above two quantities

are equal if the receiver has knowledge of the channel state.

A definition of partial state knowledge is given. It is proved that, when the receiver has
partial state knowledge, the resulting capacity and RCE are not decreased. For com-
plete state knowledge at the receiver, the capacity and RCE are not less than those ob-

tained for partial state knowledge.

A restricted class of MS channels is defined wherein all the subchannels are in the same
state during each use of the channel. these channels are called MSCC channels. For
these channels, a number of results are given, most of which concern the limiting be-
havior of the capacity per subchanneland the RCE as the number of subchannels becomes
large. The principal results are: (1) the capacity per subchannel has a finite limit; and
(2) the RCE has a finite limit if the rate per subchannel is kept constant and the constant
is sufficiently large. These results hold whether or not the state is known at the

receiver.

Systematic coding and decoding, using BCH codes and minimum distance decoding rules,
are considered for MSCC channels. Various coding alternatives are discussed, and for-

mulas are given for computing or bounding performance.
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Franklin C. Hudson
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* This report is based on a thesis of the same title submitted to the Department of Elec-
trical Engineering at the Massachusetts Institute of Technology on 5 May 1967 in partial
fulfillment of the requirements for the degree of Doctor of Philosophy. The report dif-
fers from the thesis principally in that Appendix F has been added and that the refer-
ences to M.1.T. course notes have been updated to references to a book by R.G. Gallager
which evolved from those notes.
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PARALLEL CHANNELS WITHOUT CROSSTALK

CHAPTER 1
INTRODUCTION

In a typiecal point-to-point discrete communieation situation (see Fig. 1), we have as input to
a transmitter a random message m which may take on one of K values. Corresponding to each
message value m;, there is a distinct waveform si(t) whieh is transmitted in response to the
message input. The transmitted waveform s(t) is corrupted by the waveform echannel (fading,

additive noise, attenuation, etc.), and a resultant signal r(t) is the input to the receiver. The

DISCRETE CHANNEL 3-63-T240
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Fig. 1. Discrete communication system model.

receiver then must decide which message was the input to the transmitter; its decision is denoted
in Fig. 1 as M. Discrete information theory generally deals with situations where the modulation
(transmitter), waveform channel, and receiver are considered as fixed, and the problems ad-
dressed concern the properties and proper utilization of the resulting combination. This com-
bination is called the discrete channel. Ior the purpose of propoerly utilizing the discrete channel,
we shall be willing to add both pre-transmission and post-reception processing devices. These
are usually called coders and decoders, respectively (see IFig. 2). Sometimes, the receiver will
have knowledge of the condition (state) of the channel, in which ease it is assumed that this in-

formation is passcd on to the decoder.

T[s-es-Taaim

CHANNEL
CONDITION
CODER M | DISCRETE DECODER
CHANNEL
A

Fig. 2. Discrete channel with coder and decoder.

Often, in practice, the transmitter, receiver, and waveform channel are such that the single
discrete channel may be profitably viewed as an aggregate of parallel subchannels. This situa-
tion is usually associated with modulation schemes where ecach subchannel corresponds to a trans-

mitter frequency interval which does not significantly overlap any of the others. We will, in




general, assume that our parallel subchannels are dependent but without crosstalk, The absence
of crosstalk implies that each subchannel input affects only the corresponding subchannel output,
Such a set of subchannels may, however, be dependent (i.e., the subchannel input-output pairs
are dependent in the usual statistical sense) if the natural disturbance (e.g., fading) affecting
them is itself not independent from subchannel to subchannel,

Some examples of the dependent parallel channel situation we have in mind are scatter chan-
nels (e.g., tropospheric and ionospheric scatter), channels with additive colored Gaussian noise
of unknown spectrum, and channels subject to jamming.

Multiple subchannels taken together are usually a less general type of single channel than
that which the physical constraints on the communication problem alone would suggest we con-
sider. llowever, the study of parallel channels is important for three principal reasons. In
the first place, many existing communication systems are built in a multiple-channel form.
These include HI systems, tropospheric scatter systems, satellite systems, and telephone
company equipment of various types. In such situations, the multiple-channel structure is
forced upon the user. A second situation is one which is thought to obtain in optical communi-
cation systems, llere, the bandwidths are so great that no method is presently available or
immediately foreseeable which would allow one to modulate across the entire channel bandwidth
at once, A division of the channel bandwidth into subchannels is a technological necessity., I7i-
nally, given certain physical constraints on a communication problem, a multiple-channel com-
munication system may always be a candidate for consideration as a solution., It may, in fact,
be the most general type of realization that one is able to analyze, but this will depend on the
behavior of the physical channel,

The communication systems we have been considering are point-to-point systems, where
all information originates at a single point and is to he ultimately received at a single point phys-
ically removed from the first. In what follows, we shall take the discrete information theoretic

point of view and always assume the discrete channel to be given,




CHAPTER 2
MODELS, DUALITY, AND SOME BASIC THEOREMS

A. PARALLEL CHANNEL MODELS

To model a time discrete channel in the information theoretic sense, we need to define
several elements. First, corresponding to the basic unit of signal duration implied by the time
discreteness, we define an input space X and an output space Y! We refer to a member x of
X as an input, and to a member y of Y as an output. Let Xl\ denote the space of sequencces of

inputs of length N, and YN denote the space of sequences of outputs of length N. We denote a

2 NT N
member of XN by x‘\ = (Xi’ 2l b xN), and a membcr of Y‘\ by y:\ = (yi' cea YN
=N

a set of conditional probability distributions or densitics? pN()TN/x ), N=1,2,..., on sequences

). Then, we define

of inputs and outputs of arbitrary length. Sometimes, a channel state variable is introduccd into

the description to account for the memory of the channel, if any. 1f the channel is memoryless,

N
+ N =N g
PNy /x ) =TT pytyy/xp N=1,2,...
i=1

and X, Y, and pi(y/x) suffice to specify the channel.

The parallel channel niodcls we shall dis-

o = 3- 6312t cuss assume that each input X; is decomposable
x o j__o y, into M subelements xli’ DEE XI\Ii which we shall
= 5 call subchannel inputs, and each output i is de-
. ot I . composable into M subclements Yo Yni
X eX, P . ye¥, which we shall call subchannel outputs. We
> * shall assume that the space of the kth subchan-
x,, o——rt - nel input (output) at "time" 1 is independent of
both k and i and denote it by XS(YS). Now, in
Fig. 3. Conceptual diagram of parallel channels. general, we can simply substitute (x,,, ..., xy,,)

for X and (y“, o, ylVIi) for ¥; in the probabil-

ity distributions which describe thc channel and we shall have a description in terms of subchan-
nel inputs and outputs. 1t will be convenient to make a simplifying assumption which will be in
effect throughout most of this report: the channel will be assumed memoryless. tlence, we shall
be interested in a channel description given by subchannel input and output spaces \g and Ys and
probability distributions of the form p(yi, s yM/xi, SR xM),§ X; € XS, ¥ € Ys (sce KFig. 3).

We have not yet finished imposing structure on our channel. Further structure is desirable
in order to model the physical channels we have mentioned in Chaptcr 1 and to restrict
the situations wc wish to consider in order to obtain meaningful results. Moreover, we

shall provide two structural descriptions (models) of quite different sorts and shall have

t In Chapter 1, we (tacitly) assumed Y = X. Here, we consider a more general situation.

To avoid the tedium of repeating the words “or densities" when the random variables referred to may be
either continuous or discrete, this may be assumed unless otherwise stated.

§1f, contrary to what is implied but not required by the notation, Y s L /%)) depends on fewer
than M subchannel inputs, we have a highly degenerate situation. We do not wish to consider such situations.



something to say about their relation to each other. The first model will be in the form of a set
of constraints on the probability distribution p(yi, 3 yM/xi, s 0 the second will utilize a

e

-,XM);

channel state structure to describe p(yi, ool o -V]\I/Xi' e sy xl\]

1. Model 1 - The MC Channel (M Subchannel, Crosstalkless Channel)

Suppose a set of M — k subchannel inputs and their corresponding outputs are not to be used
in communicating. These M — k inputs are set to fixed values. Ior purposes of communication,

we are interested in the conditional probability which relates the k inputs which are used to their

corresponding outputs. Denote the unused inputs and outputs by xi ,y]. (£-=1,...,M—Xk), and
gy
: B . M-k | Kk e
the used inputs and outputs by x. ,y¥. ¢ =1,...,k). (Note that {j,},° and {i,} are disjoint
T, £ =1 £ 4=1
sets and that their union is the set of integers from 1 to M.) What we wish is p(yi s Y /
X. een, X, ) L .
iy i
Now,
i . : = ¥ e \! 5 . =
p(yii,...,_}ik/.\i,...,)\M) Z Ly p(y1"""\]\’l/x1'""\!\]) . (2-1)
y. €Y y. €Y |
oS M-k °

As the notation implies, the ILHS of I£q. (2-1) is, in general, dependent upon all M subchannel

inputs x However, if for a particular p(yi, s i /.\'1, 2@ s ), kK and {jf}fl\il{k the

*Im ' XM
, then the values to which these latter are set

1 X
LLHS of I£q.(2-1) does not depend on x. , ..., X.

Jq IM-k
do not affect the used inputs and outputs in the least. If this is the case,

p(y.,...,y. /x,...,x )"p(y.,...,_y. /‘(.,...,X.) . (2-2)
i i 1 M Iy L/ i

We then say that there is no crosstalk between the used and unused subchannels. If this is the
case forallk = 1,...,M —1 and all {if};{ 1 then we refer to our channel as an MC channel. This
name is chosen for brevity rather than explicit descriptiveness, because we will need to repeat

it often. The condition we have derived can be stated very simply: A parallel channel with M

subchannels is an MC channel if a summation of p(yi, 5 - y,w/xi, it ) over all values of

X
i
1

the members of any subset of {yi}i]\_'1 destroys the dependence on the corresponding subset of

{XJ?ﬁi

Here, a terminological note is appropriate. We have assumed that the channel input is de-
composable into the same number of elements as the channel output. Ilence, we may refer to
a pair consisting of an input subelement and its corresponding output subelement as a subchannel.

The correspondence we speak of is only clear if the channel is an MC channel. In fact, we may

1 An integrotion is required if p(yI " ’YM/X] R4
ogoin,

M) is a density. We sholl not bother to stote this explicitly

1 In the discussion obove, the volues of ><i e need not be considered fixed. We could hove ossumed

1 M-k
at the beginning of the description of the MC channel that k subchonnels were used by user A ond the remoining
M —k by user B. If it is desired thot user B's input not affect user A's output, we get our MC channel model.



say that a channel is an MC channel if and only if there is some way to pair the input and
output subelements so that Eq. (2-2) is true for all k, 1 £k <.M — 1, and all {il}f:i, 1< il <M,
1 £2< k. The pairing need not be unique.

We summarize with the following definition: A memoryless channel consisting of M sub-

channels each with input space XS and output space YS and characterized by the conditional prob-

ability p(y,, ... ’yM/Xi’ Sy xM) is an MC channel if for each k, 1 £ k<M —1, and for each
.1k Lz :
{ipy, 1 Si;<M, 1 <I<K,
p(y.,...,y. /x,...,x )=p(y.,...,y. /x.,...,x.) ; [Eq. (2.2)]
9 i 1 M i, L/ L

Although the definition of MC channel we have used assures us that disjoint sets of subchannels
are mutually noninterfering however they are composed, the verification of the MC property is
rather tedious if the number of subchannels is large. In fact, the number z of diffcrent equations

of the form of Eq. (2-2) which must be satisficd is given by
M-1
S (I:f) . (Z-3)

)

k=1
Fortunately, this number can be reduced to M by making use of the following theorem.
Theorem 2.1.

A memoryless channel consisting of M subchannels each with input space XS and output

space Ys and characterized by the conditional probability p(yi, S yM/Xi’ Soras, xM) is an MC
channel if and only if for each i, 1 <i <M.
p(yi, cees Yioqr Yipar - ’yM/xi’ [ xM)
= p(yi, RETE S S ,yM/xi, RS STUTE ST xM) (2-4)
Proof.

(1) Necessity is proved simply by observing that Eq. (2-4) is equivalent to Eq. (2-2) for
k=M -1 and ii’ 2o ik distinct.

(2) To prove sufficiency, pick k, 1 £k <M. Let {if}szi be a set of k distinct integers
each satisfying 1 <i, § M. Let {jl}llyli_k consist of the remaining (M — k) integers satisfying
1< jp$M. Recall

ST
i i 1 M

= E E p(yi""’yM/xi""’xM) y [Eq. (2-1)]
ey

¥ ¥
IM-k S

€Y
y 8
If we assume the theorem is false, then for some integer q, 1 < q €M — k, the LHS of Eq. (2-1)

depends on xj . Now the sums on the RHS of Eq.(2-1) may be formed in any order.T Hence,
q

t This is true even if Y_is not finite; see, for exomple, W. Rudin, Principles of Mothemoticol Analysis, 2nd
edition (McGraw-Hill, New York, 1964), Theorem 8.3. If p(y;,... ,yM/x] AOE L ,xM) is o conditional density
ond integrals reploce sums, then the Fubini Theorem ollows us to integrote in ony order; see, for example,

H.L. Royden, Real Anolysis (Macmillan, New York, 1963), p.233.




\\ L. \\ 1 \‘ \‘\ R
=/ A L ¥ Ph p(yi,...,yM/xi,...,XM) . (2-5)
Y. N
I Jg-1 g1 IM-k g
From 15q. (2-4),
N % N R N
Y : ¥ %
I Jg-1 g+t IM-k
p(y,...,y. R R /x,...,x. o 4. T ) ; (2-6)
1 -]q-l Jq+1 M 1 Jq_l -]q+1 M
Since each sumimand on the RHS of £q. (2-6) is independent of x. , the sum, and hence the ILHS
°q
of I2q. {2-6), is independent of xi . Thus, we have a proof by contradiction.
Iq

We note that in the MC channel model, although we have defined subchannel inputs and out-
puts, the subchannels themselves are not identifiable. Our second model will have identifiable

subchannels.

2. Model 2 — The MS Channel (M Subchannel, State Description Channel)

Suppose we have a set of M subchannels each of which may be in one of a number of states.
We call the set of subchannel states A. Associated with each ¢ ¢ A, there is a subchannel con-
ditional probability distributionT p(y(g/n ), & € Yg, N o« Xg. We let a, denote the state of the

th

i~ subchannel, and @ = ((vi, e ) denote the state of the (whole) channel consisting of M

o 5
M
subchannels. We call a the channel state vector. We assume that a probability distribution®
p(ai, G ryM) on the subchannel states is given. This is equivalent to a distribution p(?}?) on the

(whole) channel state. I_,et§

PAYgo - o os Ypg/ Xgo - o o0 Bpyp)

= 3 R ¥ Plags 0 ay) P (Y4/%)) 0 Pq v/ Sy) - (2-7)
ozieA 'aMeA =
If we write p(y/x) for B g oo ’yM/Xi’ e XM) and p;y_(y/x) for pai(yi/xi) R paM(yl\]/xM)’
then Eq.(2-7) can be written in the more condensed form
ply/x) = 2 p(@)p.(y/¥) . (2-8)
" «@
aeAM

t These may be densities.
t This may be a density.

§1f p(cl,. el ,cM) is a density, the sums over a become integrals.

1700 19




A memoryless channel consisting of M subchannels each with input space XS and output space

YS and characterized by the conditional probability p(yi, e yM/x1, 5pe defined by Eq. (2-7)

N XM)
is called an MS channel (see Fig. 4).

e

/
e pa‘(y1 L | I

DEPENDENCE

|

|

|

|

| Py /x) Y
P —— 022 2 ———=9. 2

Foerenoence
Fig. 4. The MS chonnel.
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M

p(y‘,...,yM/x‘,...,xM)=ﬂ%A...GE‘A e

Suppose that we chose instead the apparently more general model where the sets Ai’
M

i=1,...,M of subchannel states were allowed to be different. In fact, letting A = |y A
i

can represent this situation as an MS channel. Hence, these two models are equivalent and we

p we

have chosen the one which is notationally a trifle more simple.

Some relations between the MC and MS channels will now be given. Referring to Eq. (2-7),
one may see that a summation of any y; over YS destroys the dependence of the summed expres-
sion on X5 Ibecause p2 pa.(yi/xi) =l ifor-all a, € A, and X € XS . Hence, by Theorem 2.1,

yifYS i
we see immediately that every MS channel is an MC channel.

Although the fact is somewhat surprising, it is not true that every MC channel is an MS
channel. A counterexample is discussed in Appendix A.

The emphasis in this work will be on MS rather than on MC channels, which latter are of
doubtful engineering interest when they cannot be modeled as MS channels. We shall, however,

assume the more general MC channel model when a result follows naturally from this assumption.

B. DUALITY BETWEEN TIME AND PARALLEL DIRECTIONS

The mathematical descriptions of a memoryless parallel channel bear a strong resemblance
to those of a single channel with memory. In both cases, we start with base spaces XS and YS

for the basic indecomposable inputs and outputs. An input to or output of an MS or MC channel

is a member of the product space XgM or YSM. Similarly, if we have but a single channel, a
sequence of its inputs or outputs of length N is a member of XSN or Xé\ The MS and MC chan-

M - M

nels are characterized by a conditional probability distribution defined over Y = X XS Insofar

as one is interested only in transmitting a sequence of inputs of length N,Jr a single channel with

t N may be the black length of o block code, or large enough so thot N times the basic unit of signol durotian
is equal to the lifetime of the equipment.



memory is sufficiently characterized by a conditional probability distribution defined over
YsN X XSN This is not to say that there may not cxist simplecr characterizations in particular
cases.

The purpose of mentioning the duality between time and parallel directions is twofold: f{irst,
it enables us to borrow results obtained for single channels, possibly with memory, to use for
our parallel channel model; second, some of the results obtained here will apply to single chan-
nels with memory.

We may define channels with memory to correspond to our MC channels: a channel with no

intersymbol interference (N 1I channel) is defined as one for which given any integer i, 1 £1 <N,

>_: p(y1,...,yN/x1,...,xN)

yi€Ys

'p(y1’""yi-i’yi+1"'"yN/Xi""’Xi-i’xi+1""’XN) . (2-9)

The correspondence between NII and MC channels is made clear by Theorem 2.1. We may also
define the time analog of the MS channel: let A be a set of channcl states; p,(§/n), £ € Yq,

n € Xs’ « € A, a conditional probability; a, denote the channel state at the ith time instant and

p(ozi, e, (yN) the probability distribution over channel state scquences of length N. lLet
p(yi, ) "’yN/Xi’ . ..,xN)
oY
= E 2 p((yi,...,a/N) pai(yi/xi) p(y,\,(yl\'/x‘.\') . (2-10)
a, €A (YN€1\ ' 2

A channel with conditional probability distribution given by kq.(2-10) is an MST channel.

Now, all MST channels are NII for the same reason that MS channels are MC. All NII
channels are not MST. Basically, the same counterexample which was used to show that all MC
channels are not MS can bc used here. (See Appendix A.)

For N1I channels, if k,f are chosen so that 1 £k <£ <N, then p(yk, R yl/xk, e xl) is

independent of the input distribution p(x1, ..., X\ )and is characteristic of the channel alone.t

)
N
Thus, for purposes of block coding, we may take N as the block length and obtain a sufficient
and uniquec characterization of the channel.I

For NII channels, we may also define stationarity. An NII channel is stationary if for any

integers j, k, and £ satisfying 0 <j<j+£<N, 0<k <k+ £<N we have

p(yjH’ o ’yj+l/xj+1’ T Xj+l) - p(y];H, T ,y];”/x];H, T X];M)
whenever
Yeti = Vi s st
and
xléﬂ-—xj” 1<ige . (2-11)

t This statement will appear subsequently in its "parallel" form. It may be proved by applying Eq. (2-9) and
Theorem 2.1 to the calculation of plyl, ..., yp /XKy« %p)-

t Since no stationarity condition has been imposed, there is no guarantee that the channel will remain the same
from block to block,



In othcr words, only the length and values of an input-output sequence matter, not the starting
point.
IF'or MST channels, if the distribution of ai‘s is stationary, then the channel will be stationary

as well.

C. MUTUAL INFORMATION AND CAPACITY

We now wish to examine the effect of subchannel dependencies on the mutual information
between input and output of a channel with independent subchannel inputs, and to ompare this
mutual information with the mutual information between input and output of the individual sub-

channels. A comparison is implied between an original channel with dependencies and a derived

channel without them. Suppose we are given a channel with subchannel inputs Xgoooos Xpp sub-
channel outputs y,, ..., Y and conditional probability distribution P(yyse s yl\l/xi' Ty xM).
Suppose, too, that we are given an input probability distribution
M
PR pigd = [T By))
1M
where p.l(£ ) is a single-subchannel input distribution, i - 4, ..., M. Furthermore, let Z and
X.
i
_X denote summation over all but the ith input and output, respectively. Then, the single-
N
i
subchannel conditional probability distributions pi(yi/xi), 1 i< M, are given by
py./x.) = d yoy B patt e o et S e P X ) (2-12)
R Ut p.(x.) ~ & 1’ N | 177 ’
1" 1" = =%
Xi Xi

We define a dependence-removed (DR) channel with conditional probability distribution given by

M

Py Y/ % Xy = I pylyy/xp (2-13)
1=

Theorem 2.2.
Taking the usual definition of mutual information?

M

: _r 5
il SRR S TR, 2

M)>/ 1(X.; Yi) . (2-14)

i=1

If we denote the mutual information between input and output of the dependence-removed channel

by II)R(‘\P L, ‘\I\I; Yl’ Do YM), we have
M
$ UG Y = Iy Xy Yy Yyg) (2-15)
i=1

t The use of X; ar Y;, i=1,...,M, as an argument of the infarmatianal expressions implies that on expression

which is o function of x. ory, is overoged over XS or Ys'



Proof.

First we note thatfr
(X Y)) = HIX)) - H(Xi/Yi) i=1,...,M (2-16)
and
Xy, oo n X Yoo, Y ) = HIX, ,XM)—H(Xi,...,XM/Yi,...,YM) L2417

These expressions hold for both discrete and continuously distributed variables. Since the sub-

channel inputs are independently distributed,2

M
E e o, W= 0, TR - (2-18)
i=1
We have also that
H(X,, . ..,XM/Yi, 256 M) S H(Xi/Yi, . R H(Xz/Yi, e Yo Xy)
ot H(XM/Yi, cen Y Xy X y)
Since for any random variables3 U, v, W,
I(U/ VW) £ H(U/ V)
we obtain the inequality
M
Bl s el iy sp T B IR - (2-19)
i=1

Hence, combining Eqgs. (2-16) through (2-19), we get

M

7 S -
AP S (> T A

(5 S A
i=1

as required. The proof of I£q. (2-15) is an immediate consequence of the definition of IDR'
Note that for an MC channel the values of pi(yi/xi) computed from Eq. (2-12) are independent

of the input distribution p(xi, ..., % ). Hence, corresponding to each MC channel there is a

unique dependence-removed channe¥ This is not true, in general.

In the remainder of this report, we will have frequent need to compare constants defined as
maxima of functions of several variables and to compare functions of one variable defined as
maxima over the remaining variables of functions of several variables. This comparison, which
will usually take the form of an inequality between two non-negative quantities, will be facilitated
by the two theorems which will be stated below. First, it will be necessary to explain some
notation and give a definition.

A probability measure over an input space consisting of a finite number K of points can be

represented as a vector p in K-dimensional Euclidean space R.

t Numbered references appear at the end of each chapter.
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Suppose we have a parallel channel eonsisting of M subehannels. If pi(xi), it b ey NI
M

are probability distributions over XS, then I pi(xi) is a produet distribution over X = XSM
=1

Theorem 2.3.

Let P be the set of probability distributions over a finite produet spaee XSM, and D the
set of produet distributions over XéM. I.et p and R be real variables with 0 < p €1, and

S ¢ P. Let f and g each be eontinuous real valued funetions of p, '13, and R. Define

Fy(R) = max f(p, p, R)
0<pst

EGD

Gp(R) = max e(p, p R)
o< pst

Eer)

FP(R) = max f(p, 5, R) {.’»
0<p<si

5_613

GP(R)f max g(p,;, R}
0<pst

5€P
Then,
(1) FD(R), GD(R), FP(R), and GP(R) are all finite.
(2) Suppose f £ g forall 0<p €1 and p € D; then

FD(R)§GD(R)SGP(R) (2-20)

and F},(R) < Gp(R) if f <g for all 0 <p <1 and p €D.

(3) Suppose f £ g forall 0 <p <1 and 5 ¢ P; then Eq.(2-20) holds and,

in addition,

F(R) S Fp(R) S Gp(R) . (2-21)
I"urthermore, FP(R) < GP(R) if f<gforall0Lp <1 and 3 (a2

The proof is given in Appendix B.

Theorem 2.4.

ILLet P be the set of probability distributions over a product spaee XSM, and D the set of
produet distributions over XSM. Let p and R be real variables with 0 <p £1 and p € P. Let

f and g each be real valued functions (funetionals) of p, p, and R. Define

 This implies that X isa finite set, and M a finite positive integer.

ol



F_(R) = lL.u.b. f(p, p, R)
0<pst
peD

G(R) = l.u.b. glp,p, R)
0 pst
peD

F_(R) = l.u.b. f(p, p, R)
0gpst
peP

GP(R) = l.u.b. gip,p, R)
Ospst
peP

Then,
(1) If f<gforall0<p £1and p e D, we have

FD(R)SGD(R) \<GP(R) ; (2-22)

(2) If f<gforall0<p<1andpe P, Eq.(2-22) holds and, in addition,

FD(R)< /i (I{)$GP(I{) 3 (2-23)

P
The proof is given in Appendix B.
Theorem 2.5,

Suppose we are given an MC channel, with XS finite. Denote the capacity of the dependence-
removed channcl by CI)R’ the capacity of the ith subchannel [with conditional probability distri-
bution given by Eq. (2-12)] by C P and the capacity of the original channel (consisting of M
subchannels) by C. Then,

(2-24)

Proof.

Sincc the pi(yi/xi) are unique, the verification of Eq. (2-24) is straigl‘lltforward. First, the
capacity of the depcndence-rcmoved channcl is achieved with independent  subchanncl inputs
(i.e., a product distribution maximizes the mutual information). Hence, thc equality part of
Eq.(2-24) comes from Eq.(2-15). Let us usc a superscript 5 to make explicit the input dis-
tribution which is involved in the calculation of mutual information between input and output of

our channecl. Then, since

e e A s .
(ER= rPa,\I (‘\1"""\1\/1’\1" ,\M)
p&P
and
(DR' Ela.\ II)R(‘\i"""\M’ \1,...,\1\1)
peD

Igs.(2-14), (2-15), and Thcorem 2.3 give us the inequality part of Iiq. (2-24).

12



Theorem 2.6.

Suppose we are given an MC channel. Let C, C
holds.

DR’ and (‘i be as above. Then, Eqg.(2-24)

Proof.

The proof is analogous to that of Theorem 2.5. Theorem 7.2.2 replaces Theorem 4.2.1 in

Ref. 4, and our Theorem 2.4 replaces Theorem 2.3.

Hence, whether or not XS is finite, the capacity of an MC channel cannot be increased by removal
of its dependencies.

Obviously, this result applies to NII channels as well. However, if it is the capacity per
use c of an NII channel that we are concerned with, conditional probability distributions arc

defined on YSN X XSN for all positive integers N, and we define

c = Tirm a
N—»oo N
and
G
: DR
(& = lim —-
DR N N
Then,
1 =
> 1i — = =
¢ z lim N Z Ci DR (2-25)
N—>o e

so that the capacity per use of an NII channel is not decreased by removal of its dependencies.
If the channel is stationary, the middle expression in Eq. (2-25) is simply the capacity for one-
shot use of the channel.

To abbreviate the description of channel examples in the remainder of this report, we will
agree to call an MC channel with M subchannels, X = {1,...,L} and T, = {4, :.,'QF, =n
M X L X Q channel.

Both the inequality of Eq. (2~14) and the inequality part of Eq. (2-24) may be strict. This

can be shown by the following example of a 2 X 2 X 2 channel:

00 01 10 11

oo |5/8|1/8| 1/8|1/8

01 |1/8 |5/8|1/8 | 1/8
Y152 . / . 4 Plyy¥,/%4%;)

10 | 1/8 | 1/8 | 5/8 | 1/8

11 |-1/8 | 1/8 | 1/8 | 5/8

13



This cxample is T\IST as well as MC. Capacity (0.452 bit) is achieved by the following input dis-

tributiont p(xy, xZ):

p(00) = p(01) = p(10) = p(11) = 1/4 . (2-26)

The dependence-removed channel is:

00 01 10 14

l
00 | 9/16 | 3/16 | 3/16 | 1/16

01 {3/16 | 9/16 | 1/16 | 3/16 o
yiyz 1» f_ e pl)}{(yiyz/hi\z)

10 | 3/16 | 1/16 | 9/16 | 3/16

1 1/16 3/16; 3/16 | 9/16

CDR(O.378 bit) is also achieved by the input distribution kq. (2—26).I Hence, the inequality part

of Eg. (2-24) may be strict. Since Eq. (2-26) is a product distribution, both C and C are

achieved with independent inputs. Thus, the hypothesis for Theorem 2.2 is obeyed a:ﬁ{thc in-
equality in Eq. (2-14) may be strict as wecll. A continuity argument shows that kq. (2-14) may
still hold for dependent subchannel inputs.

The example we have been discussing may also be used to show that for dependent subchannel

inputs neither Egs.(2-14) nor (2-15) need hold. For the input distribution p(xy, xz) given by

p(00) = p(11) = 1/2
p(01) = p(10) = 0

we have
I(Xi, .\IZ; Yi’ YZ) = 0.262 bit
2
\! = R N e L .
2 I(‘\i’ \i) 0.379 bit
1]
II)R(‘\i’ }\2; X 1 3 2) = 101,329 biit;

One might be tempted to conjecture that an MC channel always achieves capacity for inde~

pendent subchannel inputs. The following examplc of a 2 X 2 X 2 channel disproves this conjecture:
XyX,

00 01 10 11

00| 0.5 0 0| 0

01 01 0.5 0| o )

10 0 0105 0

111050505 | 1

f See Exc:mple 1 in Chapter 3,-p. 17.
t Theorem 4.5.1 of Ref. 4 provides the means of proof,
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One may verify that this is an MC channel (it is MS as well). Capacity (0.806 bit) is achieved
only by the following distribution p(xy, xz):

p(00) = p(01) = p(10) = 2/7 ;  p(11) =1/7

Since pi(xi) and pz(xz) are both given by p(0) = 4/7 and p(1) = 3/7, capacity is not achieved by
independent subchannel inputs.

Since Theorems 2.2 and 2.5 deal with channels without a prescribed state structure, they
naturally havc nothing to say about the situation where the channel state is known to the receiver.
Suppose, howevcr, we are given an MS channel. If we consider the "output" in the state known
case to be a doublet (y, @) € (Y,AM), then we sce that this is just a special case of the general
channel with state unknown to the rcceiver. Furthermore, since the channel state is independent
of the input and the conditional probability distribution corresponding to a single channel state
(a product distribution) satisfies the MC constraints, the channel with doublet output is MC.
Hence, Theorems 2.2 and 2.5 hold for MS channels whether or not the channel state is known to
the receiver

We conclude Chapter 2 with a theorem which applies only to the situation where the channel

state is known to the receiver.
Theorem 2.7.

For an MS channel whose state is known to the receiver during each transmission, the

channel capacity is equal to the sum of the individual subchannel capacities.

Proof.

If thce receiver knows the channel state, the applicable conditional probability for the channel,

corresponding to the state ‘oz, is

By Gra/®p) o oePle. (G foe)
(1/11 1 onMM

Thus, the MS channcl with state known at the receiver is already a dependence-removed channel.
We have from Eq. (2-15)

M

S o, . .

2, Ip;::(Xi; Y,) = Ip*(ki, coa X Y, Yp) (2-27)
i=1

where the channel state 3, and input (product) distribution
M
i SRS xM) = H p%‘(xi)

i
i=1

arc now both made cxplicit paramectcrs of the informational expressions. Averaging over the

channel states, we have

T Theorem 4.5.1 of Ref. 4 shows thot the distribution given yields copocity, Corollory 2 to this theorem stotes
thot there is o unique output distribution corresponding to copocity. Since the transition motrix for the chonnel
is nonsingulor, the input distribution must be unique os well.

1 There is no difficulty posed by the foct thot we use on ougmented output in our definition of mutuol informotion,
Since chonnel stote is independent of input, 1(X; YAMy = 1(X; Y/AM),
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.
\‘ l 7
) p(air < :aM) iy Ipik (XI' &1)
o, €N =GN =il b

- - )
= ) pla) L5 (X Xy Yoo, V) (2-28)
EGAM
which becomes

M N B
YooY pieat lixXs vos ) pa)1%(X X0 ¥ Yoo (2-29)
23 Yoy i i P' O i i P* SRR R VT 1000 Ty :
i=1 w.€eA ! - M

1 a€eA

Given a dependence-removed channcl, the nutual information betwcen input and output for
any joint distribution on the subchannel inputs is never greatcr than that corresponding to the
product distribution with the same single~subchannel marginal distributions as the original joint
distribution.’ Hence, for the purposc of discussing capacity, wc nced only consider independent
subchannel inputs. The capacity C' of the MS channel with state known at the receiver is then

obtained by maximizing the RHS of Eq.(2-29) over all product input distributions p*. THence,

ST ) p(E)lg,;;(xi,...,x S, - g

et - M’ M
EGAM
M @
. :
= max }_/ L pi(ai) 1{):‘::1(\’ ;XA
P" i1 a.en .
1
g v “i
= L omax ) ople) Do(Xp Y (2-30)

i=1 Pi' o eA :
i
But, the last expression in Eq.(2-30) is clearly just a sum of individual subchanncl capacities

G

"1' with the state known at the rcceiver. llence,

M
cr= Y ¢ 2e5il
e o o (2-31)

jred

as required.
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CHAPTER 3
STATE REPRESENTATIONS AND BOUNDS
FOR MUTUAL INFORMATION AND PROBABILITY OF ERROR

A. STATE REPRESENTATIONS

The formula for the conditional probability of the output Yy ¥M of an MS channel given
the input Xgooea Xy is given by Eq. (2-7) which is rewritten below:
(y / = Y 13- N
p‘yi,...,yM,xi,...,xM) 73 & p(a1,...,aM)
aieA aMsA
S ) o /x .
Xpai(yi’ki) pam(y\»[/ )"I\f[) s (3 1)

The definitions of Chapter 2 apply to all the expressions in this formula (see p. 6). Suppose we

are given a conditional probability distribution p(yi, 60T yM/x1, ..., X,,) which can be expressed

M
in the form of the RHS of ¥q.(3-1) and is therefore the conditional probability distribution as-

sociated with an MS channel. Is the representation unique or are there other sets of subchannel

conditional probabilities ry({/n ), v € T, and probability distributions p(y1, . ) such that

' YMm

p(y1,...,yM/x1,...,xM)= L L 2 R
yie‘l‘ yM€F

X T (Y, /%) v (Yaa/ %)

v, V1% vy TM M

The answer to this question is that the representation Eq.(3-1) is not, in general, unique. This

may best be shown by an example,

Example 1

Let p1(§/n) and pz(g/n) be given below:

1 172

/e 172

/2
/
p,(E/7) p,(E/m)

Let p(ai, az) be given by

p(1,1) = p(2,2)=1/2 p(1,2) =p(2,1)=0

Then the representation for p(yiyz/xixz) can itself be represented by the diagram:

7



(1,1 (2,2)

pla) 172 172
1
0 0 0 L )
. 172 172
1 Y 5 Y,
1
1 1 1 1
172
p;’(y/x)
1 172
o 0 0 0
1/2 172
*2 % % Y
1
1 1 1 1
172
p(yiyz/xixz) can be represented by the matrix
X1X2
00 01 10 1)
I
00 | 5/8 1/8 1/8 1/8
o1 1/8 5/8 1/8 1/8
Y ’—
"2 4o 1/8 | 1/8 | 5/8 | 1/8
. } S — I SR |
11 1/8 1/8 1/8 5/8 |
Now, let ri(i/n), e, r4(£/n) be given below:
5/6 172 1
0 0 0 0 0—————0 0
1
176 1/6 172 172
1
1 1 1 1 1 1 1
5/6 172
r,liflqi rziffql ralffq) rq(f/-r;)

Let p(yi,yz) be given by

p1,3) = 3/4
p(2,4) =1/4
p(yi,yz) =0 unless (yi,yz) = (1, 3) or (2, 4)

18



The diagram for the representation is:

¥ (1,3) (2,4)
P(_.) 3r4 1/4
5/6 172
0 0 o 0
1/6 176 1/2 172
x
1 % ) '3
1 1 1 1
5/6 172
p—=(y/x)
Y
1
g O 0 0
1
X y X ! Yy
2 2 2 2

One may check directly that this new representation yields the same probability distribution
p(yiyz‘/xixz), and hence the same matrix, as is given above.
To conclude this example, we give yet another representation for the p(yiyz/xixz) given by

the matrix above. Let Si(g/n) and sz(g/n) be given below:

.1(6/7;) .z(e/n)

Let p(ﬁi,ﬁz) be given by

p(t, 1) = 5/8 p(1,2) = p(2,1) = p(2,2) = 1/8

The diagram for the representation is given below:

B (N (1,2) (25 (2,2)
p(B) 5/8 178 178 1/8
1 1
0 0 0 0 0 0 0 0
1 1
* noX A N 1Y
1 1
1 1 1 1 1 1 1 1
p—=(y/x)
ﬁ 1
) L 0 0 0 0 0 0 0
1 1
*2 2 % 1 2 %2 2% R
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We note that the channel states used here are "pure" channels, i.e., given the input and the
channel state, the output is complctcly determined. The "burden of randomness" is placed en-
tirely on the channel state probability distribution. Thus, in some sense, this last representation
is a "canonic" representation. The existence of canonic representations is not peculiar to the
channel example given above. For any MS channel with finite input and output alphabets, there
always exists a rcpresentation for which in each channel state the subchannel conditional prob-
abilities are all either 0 or 1, and hence for which the channel state probability distribution
supplies all the randomness. This fact is proven in Appendix D. There is often more than one

canonic representation for a given MS channel.

B. ENTROPY

The notation of channel representation leads naturally to the idea of channel entropy. If the
input-output statistics of a channel are given by an expression of the form in I2q.(3-1), one might

wish to define the entropy H of the channel represcntation by the formula

_ \t \!
Risi= O i o p(ozi,...,aM)logp(cyi,...,aM) : (3-2)
aie/\ (YMG/\

If we compute the entropies of the three representations in Example 1, we obtain, in order,

1 1 1 1 i
== logg o =  lamg g = 1 bt
3 3 1 1 :
5 5 3 1 . :
”3 =~ 1og2 3 g 1og2 5 1.549 bits

Thus, the entropy of a channel representation is not determined by the channel's input-output
conditional probability distribution alone. Therefore, we may not simply associate the quantity
given by lq.(3-2) with the entropy of the channel. We note, however, that the entropy is both

non-negative and continuous in p( Cyseen ). Hence, among all representations of the channel,

o
M
there must be at least one which gives a smallest value for the entropy of the representation,

Despite the problem with uniqueness, the entropy of a channel reprcsentation is, in some
instances, a simple and natural quantity to use in bounding the mutual information between its

input and output. This fact will be demonstrated in the sequel.

C. NATURAL STATE REPRESENTATIONS

It should be clear at this point that it is impossible to decide which channel representation
is a "natural" one from the input-output probabilities alone. The naturalness of a channel repre-
sentation will depend on the relationship between the states o of the mathematical model and
the processes which take place in the physical channel. The choice of a natural state represen-
tation is important because we will often talk about the situation where the receiver has knowledge

of the channel state. If the representation is natural, this knowledge may usually be obtained

t We will limit our discussion of channel entropy ond its properties to coses where the stote distribution is discrete.



through measurement of some physical quantity. Generally, the models we shall use (e.g., the
first representation of lixample 1) are natural ones for a set of fading subehannels with equal
energy orthogonal signaling on each subchannel. 'The observable which the reeeiver may use

to obtain state (corresponding to depth of fade) knowledge is reeeived signal energy.

D. BOUNDS ON MUTUAL INFORMATION

We now proceed to derive some relations involving the mutual information between the input
and output of a channel with diserete states. The channel is not neecessarily MS,
Theorem 3.1.

Suppose we have an input random variable x which may take on values in a space X, an
output random variable y which mayv take on values in a space Y, and a discrete collection G
of channels g, each with input alphabet X and output alphabet Y. If probability distributions
are given over G and X, and x and g are independent, then

UX; Y/G)—HG) SUN; V)<Y, Y/G) (3-3)

where H(G) is the entropy of the probability distribution over G. 1If G is not diserete, the right-

hand incquality in Eq.(3-3) still holds. The situation is shown schematically in Fig. 5.

3-63-T21411)

Fig. 5. General channel with state structure.

Proof.
UX; YG) = I(X; Y) + UX; G/Y)
UX; YG) = U(X; G) +I(X; Y/G)
But I{X; G) = 0, since x and g are independent. Thus,
UX; Y/G)=1X; Y) +UX; G/YY . (3-4)
Also,
0<UX; G/Y)SH(G) . (3-5)

The right-hand inequality in ¥Eq.(3-5) holds if G is discrete. Combining Eqgs.(3-4) and (3-5),
we have Eq.(3-3).
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Now we may interpret lXq.(3-3). In the first place, g represents a "channel state" in just
the sense we have been using this term. IHence, the rightmost inequality of IXq.(3-3) implies
that knowing the channel state increases the mutual information between input and output. It is
a somewhat disguised form of the statement that mutual information is a convex downward func-
tion of the channel transition probabilities.

['rom our assumptions, it is clear that

ply/x) = L plg) pg(.v/X) & L p(g) p(y/xg)T
geG geG

IHence, H(G) is the entropy of a channel representation, and the leftmost inequality of 12q. (3-3)
states that we need subtract only this entropy from the upper bound to 1(X; Y) to obtain a lower

bound. H(G) is thus a measure of the tightness of the bounds.

E. RANDOM CODING BOUND

Coding is a subject we have not discussed, as yet. For a discrete channel without parallel
structure, a random coding bound is derived by choosing a probability distribution over all input
letter sequences of length N, picking the requisite number of code words independently at random
according to this distribution, computing an upper bound to the probability of error given that
a particular message is transmitted, and averaging over the ensemble of possible codes. Since
the bound thus obtained is independent of the particular message chosen, it is a bound to the
average probability of error for the code.

In the discussion to follow, the bounding technique of (‘.allager11 will be used; we shall state
some of his results below. [irst, we must give the notation and assumptions. IL.et XN be the
set of all sequences of length N that can be transmitted on a given channel, and let YN be the

-N

set of all sequences of length N that can be received. We assume that both X7 and Yl\ are finite

sets. Let p(f/)?), for \; € YN and x € Xl\, be the conditional probability of receiving sequence

y given that X was transmitted. We assume that we have a code consisting of W code words,

that is, a mapping of the integers from 1 to W into a set of code words X Ay x’w, where

;m € XL\; 1 <m<W. We also assume that maximum—iikelih(l)\lod decorlin;; is performed at the
receiver, Finally, we define a probability measure p(x) on X and use Pem to denote the average
over the ensemble of codes of the probability of error, given that the mth code word was
transmitted.

Now we state the following result of Gallager‘,2

1+p
= , | ) -1/
Pem s Ll 3P L L p(x) ply/x) ALty (3-6)
gD L
for any p, 0<p < 1.
If we make some further assumptions, we can simplify the bound of Eq.(3-6). Il.et ETERRRE N
be the individual letters in an input sequence x, and let AT AN be the letters in an output .
1

t Here and in the remoinder of this report, we will freely use the nototionol convention that pt(u/v) = p(u/vt).

I Numbered references oppeor at the end af each chopter.
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sequence }—; We now assume that the channel is memoryless and time invariant so that

ply/<) = [I pty /x) 13-

and that the probability distribution p( ;) on input sequences factors into a product of individual

letter probability distriputions as follows:

N
px)= [I pix) - (3-8)
n=1

Then, a bound on the ensemble probability of decoding error PC, which is independent of the

probabilities with which the code words are used, is obtained in the form

P, < exp |- NE(R)] (3-9)

where E(R) is called the random coding exponent and is defined by the equations

J K 1+p
Efo,P)=-In Y | Y pk pi/lo/ 1P (3-10)
j=1 Lk=1
and
E(R) = max [—pR + 14:0(p,5’)| ! (3-11)

p,P

We have assumed that the channel input alphabet consists of the integers from 1 to K, and that
the channel output alphabet consists of the integers from 1 to.J. The maximization in Iiq.(3-11)
is over all p, 0 < p <1, and all (input letter) probability vectors p.. R is the rate in natural
units (i.e., W = exp [NR]).

Now, the question arises of what to do about the parallel structure of a channel if such struc-
ture exists. In the first place, Gallager's bounds in kEgs.(3-6) and (3-9) apply without change to
a channel with parallel structure if we understand that a "letter” (xn or yn) in the sense used
above is an M-tuple which is composed of the inputs to or outputs of the M subchannels of an
arbitrary M-input, M-output channel. Then, if each subchannel input has an I, letter alphabet

M. We note that these

and each subchannel output has a Q letter alphabet, K = LT\I and J = Q
statements do not depend on the assumptions of kEgs.(3-7) and (3-8). Although (Gallager's bounds
are fully applicable to the situation we wish to study, some further structure will have to be
imposed so that these bounds will be productive of insight in spite of the additional complexity
of our channel model. Some of this structure is already implicit in our MS channel model. 1In
addition, we will make notational changes which will facilitate the explanation of some of our
results. [Let the rate per subchannel RS be defined by

R

H. %25y (3-12)

Define

EM(RS) = E(R) (3-13)
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where there are M subchannels and FE(R) is given by 1ig.(3-11). Then, we have from Eqgs. {3-13)

and (3-9) that

P S anpl-NE AR - (3-14)

N
Now, let us consider a special case,  Suppose that the NS channel consists of M identical
and independent subchannels,  then, Theorem 5 of Gallager™ implies that ]',\](H\,) may be further

decomposcd so that

l'I\I(HS) : Nll‘li(lis) {3-15)
where
Q[ 1. 14p
I~?1(l') 5 AN pl In L L pe) plyg /Mi i (3-16)
p,pl‘ gEd L=y '

and the maximization is performed over all p, 0 p < 1, and all probability vectors p-g defined
on the subchannel input alphabet.  All the quantitics in Iiq. (3-16) refer to a single subchannel.

From Iiqs.(3-14) and (3-15), we have

b - SN — N Y -
1(‘\(.\p[ .\I\ll,i(l{s)l S (3-17)

1t should be strongly emphasized here that this result depends on our coding simultaneously in
the "parallel” and "time" directions, According to Gallager's Theorem 5, once of the conditions

for the maximum required in the definition of B (H%) is that cach subchannel letter be chosen

independently of the other subchannel letters at ﬂnt instant of time, and independently of all
subchannel letters at other instants of time. A code word mayv be thought of as a matrix with
M rows and N columns. Nach element of the matrix is a letter in the subehannel input alphabet.
IZach column of the matrix is a letter in the (whole) channel input alphabet.  ‘TThe bound of
Eq.(3-17) assumes each matrix element is chosen independently of the others, Clearly, each
output word may also be thought of as an M X N matrix with elements equal to letters of the
subchannel output alphabet.

In what follows, we shall generally be studying MS channels whose subchannels are not in-
dependent, although the MS channel itself is memoryless. Thus, we shall obtain bounds of the

form of kq. (3-14).

F. STATE KNOWLEDGE - SOME GENERAL CONSIDERATIONS'

When dealing with a channel that has a state structure, one naturally expects that knowledge
of the state at the receiver will be advantageous, both in terms of increasing the capacity and
decreasing the probability of error. 1t would also be expected that partial knowledge of the state
at the receiver is better than no knowledge, but not as good as complete knowledge,

In dealing with capacity, we may work directly on the mathematical expressions involved,
The situation with regard to probability of error is somewhat different. flere, we know that

receiver knowledge cannot increase the probability of error because the receiver uses this

T The remarks and results in the remainder of this chapter are nat limited ta channels with parallel structure,



knowledge optimally (i.e., it computes the likelihoods of code words based on what state knowledge
it has). Since one of the options available to the receiver is ta ignore any state knowledge it may
have, the optimal receiver must do at least as well as this. This same inequality must apply

to the ensemble probability of decoding error because it applies to each member of the ensemble,
However, we do not generally compute this probability of error; we compute the random coding
exponent (RCE). Wec would hope that an inequality between ensemble probabilities of decoding
error for two categories of receiver state knowledge would be reflected in the opposite inequality
between the corresponding RCE's. This is indeed the case, but it is necessary to pursue the
mathematical properties of the RCE in order to prove it.

Suppose we have an input random variable x which may take on values in a space X, an
output random variable y which may take on values in a space Y, and a collection G of channels
g, each with input alphabet X and output alphabet Y. By complete receiver knowledge of the
channel state, we mean that the receiver knows g. By-partial receiver knowledge of the channel
state, we mean that the receiver knows some observable t ¢ T' which is related to g.I We shall

assume that a distribution p{(xygt) on X X Y X G X T is given, and that

ply/xgt) = ply/xg) (3-18)
and

plgt/x) = plgt)S . (3-19)

The first assumption, Eq.(3-18), is consistent with our terminology of "partial" and "com-
plete" knowledge, i.e., once g is known, t becomes irrelevant for the computation of p(y/x).

The second assumption, Eq.(3-19), is equivalent to the statement that the pair (g, t) conveys no

information about x. Equations (3-18) and (3-19) taken together imply
p(t/gyx) = p(t/g) . (3-20)

This assures us that the receiver need not consider t if it knows g (see Ref, 4),

In the remarks following the proof of Theorem 3.1, it was noted that the effect of state knowl-
edge in increasing mutual information was related to the convexity (downward) of the mutual in-
formation as a function of the input-output conditional probabilities. The following theorem on

convex functions will be useful in the sequel.
Theorem 3.2.

Let f be a convex downward function of transition probabilities p(y/x), and assume that a
probability distribution p(xygt) on X X Y X G X T is given such that Eqs.(3-18) and (3-19) are

satisfied. Then,

t None of the spaces X, Y, G, ond T need be finite or even discrete. We will proceed os though oll the spoces
were discrete, ond remork thot on oppropriote replocement of sums by integrols covers the other coses, until we
reoch Theorem 3.6 which requires G to be finite.

I For exomple, if we ore deoling with o single foding chonnel with binory input ond output olphobets ond equol
tronsmitted energy ollotted to 0 ond 1, g would be the bit crossover probobility, ond t would be the energy of the
received woveform.

§ Assumptions in Egs. (3-18) ond (3-19) ond oll the stotements in the porogroph preceding them sholl be in effect
for the remoinder of this chopter.

25




Elpy/x)]< Y pt fipv/st] < Y plg) £ [ply/xg)] . (3-21)
el geG

If f is convex upward, the inequalities in Iiq.t3-21) are reversed,
! p
Proof.
ply/xt) = L plg/tx) plyv/gtx)
geGa
= ), plg/t) ply/xg) 2-22)
geGy

from Iigs.(3-18) and (3-19). Also,

ply/x) =~ ply/st) plt/x) = ply/xt) p(t) (BB
BT tel
from Iiq.(3-19). Hence,
flply/x) < Y plt) £ [ply/xt) (3-24)
t&T
from convexity of f and kq.(3-23), and
fIply/xt)] < O plg/t) £ [ply/xg)| {3-25)
geG

from convexity of f and Egs.(3-22). Inequality (3-25) implies

Yopt) f[pty/xt) < Y N pt) plg/t) £ iply/xg)]
teT teT geG
< Y P fipty/x)l . (3-26)
geG

llquations (3-24) and (3-26) are equivalent to kq. (3-21).

G. STATE KNOWLEDGE, MUTUAL INFORMATION AND CAPACITY
Theorem 3.3.
T M-SR BT S UE, /6 (3-27)
Proof.

Since the mutual information is a convex downward function of the transition probabilities,

this follows directly from Theorem 3.2.

Theorem 3.4.

Denote the capacity of the channel when the receiver knows neither t nor g as C, the
capacity when the receiver knows t as (‘t, and the capacity when the receiver knows g as C .

g
Then,

cgec sC, . (3-28)
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Proof.

Since Eq. (3-27) holds for all input distributions p(x), Theorems 2.3 or 2.4 give us Eq.(3-28).

This concludes our discussion of the effect of channel state information on the mutual in-

formation between input and output and on capacity.

H. STATE KNOWLEDGE AND RANDOM CODING EXPONENT (RCE)

We shall begin this section by deriving some mathematical expressions involved in the def-
inition of the RCE when an auxiliary variable v € V, independent of the input, is known to the
receiver.

We note that the RUS of Eq.(3-6) is independent of m. Hence, it is a bound on the ensemble

probability of decoding error and is independent of the probabilities with which the code words

are used. If, during an input sequence of length N, the variable v assumes the values Vi e Vg
then we assume the conditional probability relating input and output sequences to be given by
N
py/x =[] p, (yy/x) - (3-29)
v ) n

To obtain the RCE [EV(R)] corresponding to receiver knowledge of v, we must substitute Eqs.(3-8)
and (3-29) in Iq. (3-6), replace (W —1) by W = (‘.RI\

the negative of the natural logarithm of the result by N, and perform a maximization. Thus, if

, average over the distr‘ibutionT of 7 divide

we define
N
4V > B 1 pRN SE = B w
EXp,p,R) = =g Infe L p(v) 2 & [T ptx)
s Sarst MFa bosd
N 1/1+4p)14p
P =
< | 1] P, (_yn, .\n) (3-30)
n
=1

where \'N is the set of all sequences of v's of length N, Ve \fN, we have
EY(R) = max E'(p,p,R) . (3-341)
0<pst
i)’d?‘

We shall assume
j =i {3
p(v) = || p(vn) . 3-32)

This corresponds to the assumption of time invariance and memorylessness if v is the state

variable. Substituting Iiq.(3-32) in Iiq.(3-30) and reducing the result, we get

t We will now ossume v discrete, X=1{1,...,K}, ond Y=1{1,...,J} for purposes of nototion. Similor results
moy be obtoined if ony or oll of these ossumptions ore dropped.
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1+p] N

Y Y p(X) pv(y/x)1/1+p

— 1 -
EV(p,pR)=—xIn {’R Y pwy ¥ [ Y
vev yeY LxeX
J K 1+4p
») . 1/1+
=—pR-1n 12 pv) ) | > pk pvu,/k)/ ? (3-33)
- veV i=1 Lk=1
Define
J K 14p
= A w ) o 1/14
Flio,p = » pivy 2 | Y pik) pvu/k)/ P : (3-34)
veV j=1 Lk=1
Thus,
E"(p, p,R) = —pR — In F'(p, p) (3-35)
We may also define
J K 14p
-~ ) \ /1t
Blo, R = —pR—1n { 3 [ 3 pky pri/it/ e (3-36)
j=1 Lk=1
and
J K 14p
- : » R
Flo,p) = . | Y plk) pli/iyl/1e (3-37)
j=1 Lk=1
Thus, we have
E(p, p,R) = —pR — In F(p, p) (3-38)
(3-39)

and
E(R) = max E(p,p, R)
0<p<t
i;(P
Now, we may easily show that I¥ is a convex upward function of the conditional probabilities

included in its definition. Suppose
(3-40)

pli/k) = Y, pv) p(i/K)

ot
veV
Hence,
N 1/15p] 140
Flo,p = ), 1) pl| 1 piv)p(i/k) (3-41)

1 k=1 veV

j
By applying Eq.(C-3) (Minkowski's inequality) to the inner two sums of the RHS of q.(3-41),

we get
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K 1+4p
3 N ;i 1/1+

5oy L e Y pv e /] TP

j=1 k=1 veV

J K i+p

SRS 1/1+ /14

>) 2|2 mk)MV)/ pr%u/m 1+

j=1 veV Lk=1

3 K 1+p
] 1 2 " 1/1
= X Y | X et p(i/k) /4tp (3-42)
veV J_i k=1

as required.
Theorem 3.5.

If E(R) is the RCE eorresponding to no state knowledge at the reeeiver, Et(R) and Eg(R)
are the RCE's eorresponding to receciver knowledge of t and g, respectively, and Eqs. (3-29)

and (3-32) hold for t, g, or a blank replaeing v, then

ER) < EYR) < E&m) . (=2
Proof.

By the convexity upward of I¥ and Theorem 3.2, we have

>

s ot = 5
FE(p, p) < F(p, P) < F(p, P)

Henee,

—pR —1n F(p, p) < —pR — 1n Fl(p, p) € —pR — 1n 1'8(p, D)

By Eqgs.(3-35) and (3-38), we have

E(p, p, R) < El(p, p, R) < 18p, p, R)

Our result follows from [qgs.(3-31), (3-39), and Theorem 2.3 (or Theorem 2.4).

It should be emphasized that not only must the state variable g and partial knowledge variable
t satisfy Egs.(3-18) and (3-19), but sucecessive values of g and t must be independent and iden-
tieally distributed. In addition, the single-letter conditional probability of the ehannel must
depend only on the value g or t assumes during the transmission of a single letter. If all these
assumptions hold, we shall say that the channel with eomplete or partial state knowledge is still
memoryless and time invariant.

We avoided making these additional assumptions in Theorems 3.3 and 3.4, but the results
there are "one-shot" results. 1f the additional assumptions are made, the results become "per-
transmitted-letter" results as well.

We have devoted a fair amount of space to showing that state knowledge increases the RCL,
a result whieh is analogous to the result that state knowledge increases mutual information. In-
eluded in the mathematieal statement [lq.(3-3)] of this last fact is a bound on the magnitude of
the inerease. We shall now derive an analogous result for the case of the RCII.  Our notation

and assumptions remain the same.
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Theorem 3.6.

LLet G, the set of channel states, contain S elements, and l'et the channel with or without

state information be memoryless and time invariant.
the maximum required in the definition of Eg(R). Then,

EER) — p' In S < E(R) < E&R)

Proof.

From Eq.(C-1),

1/14p
/1 ) . 1/14 ol /A
i/ 1o - Y plg) Poli/k) < 7 p(g)/ ppg(J/k) it
geG geG
Hence,
J K 1/14p 14p
YY) opw| Y pe Pg(i/K)
j:i k=1 g€G
J K 14p
3 A 1/1+ \ B 1/14
s L lZ pgt/1te > Mknghﬂd/ p
j=1 LgeG k=1
J K 14p
A4p © . 1/14 /14
=g 2 L L s /A5 0 pﬂdpéﬂk)/ &
=1 LgeG k=1

Using Iiq. (C=-2) on the sum over G, we get

J K 14p

1+ y v A 1/1+ o ca1/14
s X | L 5 e /1403 k) pyli/k) e
i=1 Lgea k=1
i K 14p
14p v ! o4/14
<8P ) 1L gre| ) MMPQMM/ P
j=1 lgeG k=1
J: K 1+p
e
5" Y w3 |3 eeo et/
geG j=1 Lk=1
= 8PF8(p, p)
Hence,

where we use Eq.(3-34) with g replacing v in the last step.
F(p, p) < sPrEp, )

and
128(p, p, R) — p In S < E(p, p, R)

Suppose
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Let p' be the value of p which achieves

(3-44)

(3-45)

(3-46)

(3-47)

(3-48)

(3-49)



E&R) = E8(p',p',R) . (251

Then,

EBR)-p' InS < E(p',p', R) < E(R) . 35y

Since 0 < p' £ 1, we havc immediately

EB(R) - In S < E(R) (3-52)

which becars a strong resemblance to the left incquality of Eq.(3-3). Ilquation (3-51) contains

the left inequality in Eq.(3-44). The right inequality comes dircctly from Theorem 3.5.

1t is important to note that p' is implicitly a function of R and is the value of p which achieves

the maximum in Iq.(3-31), with g replacing v.

I. SUBCHANNEL DEPENDENCIES AND RCE

1t now seems appropriate to remark that there is no RCE counterpart to Theorem 2.5. Sub-
channel dependencics may cither incrcasc or decrcase thc RCE. An examplc will illustrate this

fact.

Example 2

Let pi(g/n), pz(g/n), and thrce state distributions q, r, and s be given below:

0o 0 .

p‘(E/'q) pZ(E/'q)

a(1,1) = q(2,2) = 1/2 q(1,2) = q(2,1) =0
rid; 1) = B(1,2)= 72, 1) = B2, 2) = 1/4
S(H, 2= SS2 et 12 s(1,1) = s(2,2) =0

Each statc distribution leads to a differcnt 25 channel. We note that the channel corresponding
to r has indepcndent subchanncls. 1t may be vcrified that the "r channcl" is the depcndence-
removed channcl dcrived from either the q or s channels. The input distribution which achieves

the maximum required by the definition of the RCE is the same for all three cases:

p(00) = p(01) = p(10) = p(11) = 1/4
This may be vcrificd by using Gallager's Theorem 4 (Ref. 5). Thc curves of EZ(RS) Vs Rs for
the three cascs are given in Fig. 6. Since the curve for the indepcndent subchanncls case lies
between thc other two, we sce that subchannel dependencies may cithcr increase or decrease

the RCE.T

tIn foct, the s chonnel has o zero-error copocity equol to its copocity of 1 bit.
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CHAPTER 4
THE COMPLETELY CONSTRAINED CHANNEL

A. DEFINITION OF CHANNEL

An important limiting case of the MS channel is the class of MS channels with the property
that during the transmission of a single input letter all the subchannel states are the same. We
will call such channels completely constrained {MSCC) channels. For MSCC channels, Eq.(2-7)

becomes

PY oo /X oon Xy = 0 Bla) bty /%) - by lypg /%) (4-1)
a el
where we will always assume p{a) >0, o € A. Because of the complete dependence of the sub-
channel states, the MSCC channel has some very striking properties; in fact, these are proper-

ties of sequences of MSCC channels {L"M};’lﬂ, defined as follows:

(1) A, the set of subchanncl states, is the same for all M.
(2) pla), @ € A is the same for all M,

(3) For thc Mth channcl CM in the sequence, p(yi, .. /x1, X

oY ) is
given by Eq. (4-1). A L

B. EXAMPLES OF MSCC CHANNELS AND THEIR PROPERTIES

To illuminate the definition of sequences of MSCC channels and provide specific examples
of their general properties, we will discuss two examples.

Example 1

Let A = {1, 2}, p(1) = p{2) = 1/2, and T == {0,1}. Let pi(yi/xi) and pz(yi/xi) be the
binary symmetric distributions with crossover probabilities equal to zero and one-half, respcc-

tively. Then, the Mth channel in our scquence may be represented as in Fig. 7.

pla} 172 172

S M
Du(y/x) ’ SUBCHANNELS

0 ————0 [¢] [¢]
172 172

§ ——— 1 1
172 B

Fig. 7. An MSCC channe! — Example 1.
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Fig. 8. Capacity per subchannel vs number of subchannels for (a) Example 1,
and (b) Example 2,

[+ 1 2
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Fig. 9. An MSCC channel —Example 2.
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Now, we will introduce some further notation which will be in effect for the remainder of
this chapter.
Associated with the Mth member of a sequence of MSCC channels, we have a capacity C

M
and a random coding exponent EM(RS). We define the capacity per subchannel CsM by

SM = M . (4-2)

Wec introduce the convention that when the channel state is known at the receiver, the corre-
sponding capacity and RCE will be represented by primed guantities [e.g., Ci\/l’ C'SM, EM(RS)],
and when it is unknown at the receiver, by unprimed quantities,

Plots of Com and Clp. Vs M for Example 1 are found in Fig. 8(a).

Example 2

Let A = {1,2}, p{1) = p{2) = 1/2, and YS = XS ={0,1}. Let pi(yi/xi) and pz(yi/xi) be the
binary symmetric distributions with crossover probabilities equal to zero and one-quarter, re-
spectively. Then, the Mth channel in our sequence may be represented as in Fig. 9.

Plots of C_p, and Cl,, vs M for Example 2 are found in Fig, 8(b).

M
C. CAPACITY THEOREMS FOR MSCC CHANNELS
Theorem 4.1.

When the channel state is known at the recciver, the capacity per subchannel [defined by

Eq. (4-2)] is the same as thc capacity of a single subchannel standing alone, i.e.,
Com =€ - [E56)
Proof.

The rcsult follows directly from Theorem 2.7.

Theorem 4.1 is illustrated by the two horizontal lines in Fig. 8(a-b). However, an MS chan-
nel necd not be MSCC for the theorem to hold; it holds whenever the individual subchannel capac-
itics (with state known at the receiver) are all cqual. This last is certainly true if for each @ € A

the probability that the ith subchannel is in state ¢ is independent of i.

Theorem 4.2.
If
H=- L pla) logpla)
e
is finite, then
N}Lrg Copp™ €4 = (4-4)

Proof.

Applying Theorems 2.3 or 2.4 to Eq. (3-3), we get

Cl—H<C

M & G

M M
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IHence,

c
M _d,

M MS™M ™M

Applying Eqgs, (4-2) and (4-3), we get

@ =i

— =Lz 2l
17 M S i

sM <

Hence, passing to the limit, we obtain Eq. (4-4) directly.

The curves of Fig. 8 illustrate the limiting property of C which was just proved. We note

sM
again that the channel nced not be MSCC for the theorem to hold; in fact, Eq.(4-4) may obtain

even if a discrete entropy H does not exist. (See Appendix E.)

D. FURTHER PROPERTIES OF EXAMPLES 1 AND 2

Just as the capacity theorems were illustrated by previously given curves, so we shall pro-
vide curves relating to the RCE's of our examples to illustrate the theorems which are to come.
The data on which the curves are based are as follows.

For M =1, 2, 5, 10, 20, 50, and 100, we computed EI\I(RS) and EE\I(RS) for equally spaced
eriG!

values of Rs from zero to C sM" The spacing was 0,025 bit. Furthermore, for each such

computation, the valuc of p S\Ix\'qhich achicves the maximum required by the definition of E,’\l(Rs) or

EM(RS) is provided as output, The input probability vector which, for the case of M subchannels,
achieves the requisite maximum is the probability vector with cach of its 2:\I components equal to

(1/2)M (sec Ref. 1),

In Figs. 10 through 23, the curves plotted from the data are:

Example 1
Fig. 10 E (R} vs R_ for M = 1, 2, 5, 10, 20, 50, 100
Fig. 11 Ef(Rg) vs R for M =1, 2, 5, 10, 20, 50, 100
Fig. 12 Ef (R~ Ep(R ) vs R for M = 1, 2, 5, 10, 20, 50, 100
Fig.4:3) EM(RS) vs M for Rig, = 0 to 0.3 in steps of 0.025 bit
RS = 0.3 to 0.45 in steps of 0.05 bit
Fig. 14 EM(RS) vs M for Ry = 0 to 0.3 in steps of 0.025 bit

RS = 0.3 to 0.45 in steps of 0.05 bit

Fig. 15 (state unknown) Maximizing p vs M for RS 0 to 0.45 in steps of 0.05 bit

Fig. 16 (statc known) Maximizing p vs M for RS = 0 to 0.45 in steps of 0.05 bit

tNumbered references appear at the end of each chapter.
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Example 2

Fig. 17 EM(RS) vs R_ for M =1, 2, 5, 10, 20, 50, 100
Fig. 18 E{ (R} vs R_for M =1, 2, 5, 10, 20, 50, 100
Fig. 19 Ef(Ry) —Ey(R) vs R for M =1, 2, 5, 10, 20, 50, 100
Fig. 20 EM(RS) vs M for Rs = 0to 0.2 in steps of 0.025 bit
RS = 0.2 to 0.3 in steps of 0.05 bit
Rs = 0.3 to 0.5 in steps of 0.1 bit
Fig. 21 EE\I(RS) vs M for RS = 0 to 0.2 in steps of 0.025 bit
Rs = 0,2 to 0.3 in steps of 0,05 bit
Rs = 0.3 to 0.5 in steps of 0.1 bit

Fig. 22 (state unknown}) Maximizing p vs M for Rs = 0to 0.55 in steps of 0.05 bit

Fig. 23 (state known) Maximizing p vs M for Rs 0 to 0,55 in steps of 0.05 bit

We will refer to these figures in subsequent sections of this chapter.

E. RANDOM CODING EXPONENT (RCE) FOR MSCC CHANNELS

We shall now undertake to prove a number of general properties of the RCE's of a sequence
of MSCC channels. We begin with a definition.

Corresponding to each subchannel state «, there is a unique subchannel conditional prob-
ability distribution pa(g/n), ¢ e Ys’ ne Xs' This defines a channel with a capacity Ca. If there
exists a € A with p{a) > 0 and

C {Ca all o € A (4-5)

then we say that there exists a worst subchannel state a. {We have, in fact, not even assumed

that A is purely discrete, but only that a has a positive probability, as opposed to a positive
probability density.)
Theorem 4.3.

Suppose there exists a worst subchannel state a, with probability of occurrence p(a). Then,

for all R_ > C_, we have
s a

EuiRg) < Ep(R ) € —Inpla) (4-6)

for all M.

Proof.
Recall that, when the receiver knows the channel state,

P_ < exp [-NEj(R)] . (4-7)
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Fig. 15. Maximizing p vs number af subchannels

(state unknawn) — Example 1.
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This is just Eq. (3-14) for the state known case, Since Eq.(4-7) is derived using maximum-
likelihood decoding at the receiver, it is also true for maximum a posteniori probability (MAP)
decoding when the inputs are equiprobable. Recall, too, that F’e is an average probability of
error over an ensemble of codes.

For a particular code, with block length N, the probability of error p(e) satisfies
ple) > ple,a™) = pla™) ple/a™) (4-8)

N . . .
where a refers to N consecutive occurrences of the worst state a. Since our channel is

memoryless,

p(a™) = (plany™ . (4-9)
Define
H(e/a") - —p(e/aN) Inp(e/a™) = {1 — p(e/a™)] In[1 —ple/a™)] . (4-10)

Then, letting W = exp[NMRS] be the number of (equiprobable) code words, we have2

H(e/aN) + p(e/aN) In(W—1) ;NM(Rs — Ca) . (4-11)
Thus,
NM(R_—C.) - H(e/a) NM(R_ —C )
p(e/aN) S s a S s a’ _ _In2
= In(w—1) NMRS N}\/IRS
and
R -C
s a In2 N
R, = NVR, <ple/a)g1 . (4-12)

Since inequalities in Egs. (4-8) and (4-12) hold for each code in an ensemble, they must hold after

being averaged over the ensemble of codes. Thus,T Eqs.(4-7), (4-8), and (4-9) become
ip(a)]N P, N<P_ < exp|~NE! (R )] 4-13
e/a SEES p Mg (4-13)

and Eq. (4-12) becomes

Rs_Ca_ 2 . p N4
R NMR S Te/a ™ : (4-14)
From Eq.(4-13), we get
1
EM(RJI< —Inpla) — lnPe/aN (4-15)

for all N, Passing to the limit N —» «, we get

A, A\
EM(RS) < —1lnpla) — 1&11_120 (T\I_ lnPe/aN) . (4-16)

From Eq. (4-14), we obtain

; 1
lim (5 InP_, N)=0 | (4-17)
e N e/a

t We denote the ensemble averages of p(e) and p(e/cN) by Pe and Pe/cN'

4i9)




Thus, Eqs.(4-16) and (4-17) combine to give us

Ej(R) < —lnpla)

as required. By Theorem 3.5 [F‘iV[(Rs) is denoted E8(R) in the statement of the theorem], we

have also

v RY) (4-18)
for all M.

We note that Ca = 0 in Example 1, and Ca = 0.1887 bit in Example 2. Hence, the bounded
behavior of the RCE's is seen in all the curves of Figs. 13 and 14, and in those curves in Figs, 20
and 21 for which Rs > 0,1887 bit,

It will now be convenient to restate some of the results of Chapter 3 in MSCC channel nota-

tion, and to provide further definitions which will be useful in the sequel. Following Eq. (3-34),

we define
& J K 14p
. - na1/14p
Fido,B) = ), pla) ), p(k) p, (i/K)
el j=1 Lk=1
M 1+p
) n y 1/1+
= Z plar) Z L plxy, ..., xp) [ pa(yi/xi) /1tp . (4-19)
a el AOTRERFD AV R TR S i=1
Then, we define
EQ)M(p, p) = —lnPiVI(p, p) (4-20)
i oy = — ! S =
Ep(e. P, R pPMR_ + El(p, p) (4-21)
and
E! (R )= max E! (p,p R.) (4-22)
M'"'s 0<p<A M s
;CP
where, again, P is the space of all input probability vectors. If we define
M 1+p
>y ) 1 /14p
R E ) Y Pl ) T1 b, (ve/x) (4-23)
Yoo ¥ LXp v s Xy i=1
then
Figlo.B) = 2, pla)F e, 0) . (4-24)
ael
Finally, we define
anM(p, p) = ~In Fal\/l(p’ ) : (4-25)
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If M =1, E becomes }_; (a subchannel input probability vector), and we shall generally drop the
5 g i p

M subscript on Eo and FaM' Thus, an(p, ps) =E {p,p),+and Foz(p’ ps) = Fai(p' p) are

oM
quantities relating to a single subchannel.

oa 1

Theorem 4.4.

Suppose there is a worst subchannel state a, and RS 22 Ca' Let inI be the value of p which
achieves the maximum required by the definition of Ei\/I(Rs) [Eq.{4-22)]. Then,

lHm p! =0 (4-26)
Mow M
and
Won ((ptle 40 =0 (4-27)
Pl -
M->e0

Proof.
From Eqgs. (4-6), (4-21), and (4-22),

- ! = - -
pMR_ + El,.(p, p) < —Inp(a) (4-28)

0<p<1, peP. Thus,

»

forallRi. > @&
S a
E (P p) < —Inpla) + pMC (4-29)

for all0< p< 1, p ¢ P. Equations (4-28) and (4-29) combine to give
—pMRS + Eé)M(p, p) < —lnp(a) + pM(Ca - RS) (4-30)

-

forall 0< p< 1, pe P, and RS > Ca' Since EM(RS) is non-negative, Egs.(4-30), (4-21), and

(4-22) combine to give

0< Ei\/l(Rs) £ —lnpla) + pi\/IM(Ca — RS)

and thus we obtain

, —Inp(a) 3
OSPMS MER_-CJ fAt

From Eq.(4-31), we get Eqgs.(4-26) and (4-27) directly.

We note that the proof could just as well be carried through if inI were the value of p which
achieves the maximum required by the definition of EM(RS)‘

The behavior of P just proved is illustrated in the curves of Figs. 15 and 16, and in those
curves of Figs, 22 and 23 for which Rs > 0.1887 bit. Since the slopes of these curves are all
minus one for large M, they suggest that indeed inIM is equal to a constant independent of M
for M sufficiently large. However, the constant is smaller than that suggested by the rightmost
expression in Eq. (4-31),

Although the assertions of thc theorem just proved are technical in the sense that they are
not subject to immediate physical intcrpretation, their consequences are quite striking. One

such conscquence is given by the following theorem.
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Theorem 4.5.

If there exists a worst subchannel state a, RS > Ca’ and A 1is finite, then,

lim [E{(R)-E (R)] =0 . (4-32)
N>

Proof.

The result follows directly from Eq. (4-26) and Theorem 3,6,

The result of Theorem 4.5 is illustrated in Figs. 12 and 19. For the examples computed,
Eq. (4-32) appears to hold at all rates. Note that the difference in RCE's is not monotone in M.

Since the difference Ei\/l(Rs) = EM(RS) approaches zero with increasing M, under the con-
ditions stated, it is natural to ask whether either term (and hence both terms) approaches a limit
under similar conditions. This question will be answered in the affirmative after some labor.

First, it will be necessary to study the properties of the input probability vector }_;M which
achieves the maximum in Eq, (4-22)., Now, from Egs.(4-20), (4-21), and (4-22), we have

E{ (R )= max [-pMR_—InF!, (o, p]
M'"'s 0<p<t 5 M
;GP
= max [-pMR_ —In min FM(p,S)] . (4-33)
0<p<t ° peP

Thus, we shall be concerned with the properties of probability vectors (distributions) which

minimize Fj,(p, p).
Definition.

A distribution p over a product space VM is said to have permutational symmetry if

CViine S Vel = DUV oee am Vi 1) (4-34)
By i (e M :

for all permutations {jf}%q:1 of the integers from 1 to M,

Theorem 4.6.

For an MSCC channel, the min F'\/l(p’ S) may, for any p, 0 < p <1, be achieved with an input
p
distribution having permutational symmetry.

Proof.
Let

Fivl(p,ﬁ*) = min Fiv[(p,i;) (4-35)

S

2

where ;‘5* is implicitly a function of p and M, and we may write

-

PR o xM)
Define
ol O ¢ S | B oL R ¥
S L T YU T IIS ‘)""<"J‘1""'XJ’M> LR
PAE :
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where Z denotes the sum over all M! possible permutations of the integers from 1 to M. For

I2XL:

any permutation {jlz}llzw=1 anc any input distribution p(xi, SE8 xM), we have
M y 1+p
l 1 '1+p
¥ y p(xji, . ij) [T p,ly,/x)
Ypoooo Yy Xy Xy it
M i fipl] P
= S % (xx ) (v. /x)
= ~ PN G U RRCARE WA A
Yoo ¥y EXpe oo Xy i=1
. ‘ M { | R
= R e e O 8 .
=) L p( Iy JM> .H pa(yJi/J-)
Vis o pone 1) b i=1
I M Im
M 1+p
3 kY 1/1+
= D_, L p(xi,...,xM) il pa(yi/xi) /1+p
Yyr oo Y Y¥ -0 Xy i=1
Since F(Y ,w(p, p) is a convex downward function of P
i M / 1+p
sy 1 ¢ N N 1/1+p
P T Yy bXyp XV i=1
M 1+p
_ oy Y y 1/14p
= ., ), pix,, X pa(yl/ 1)
Ygreo s ¥pp VX v o0 Xy 1=t
S P‘am(p, p) alla € A

where we use Eq. (4-37) with p = p*. From Eqgs. (4-38) and (4-24),

-1 —

Fule, p7) < Fiylp, p*)

But, by Eq.(4-35),

—

i 1 =
Fiyle, p¥) < Fyqlp,p)

Hence,

1 g S 1 _':;< — 3 i =
Fylp.p™) = Fylp, p*) = min Fy(p,p)
peP

as required.

(4-37)

(4-38)

(4-39)

(4-40)

(4-41)

We note that the essential property of the MSCC channel which allows us to prove the result

is that the subchannel state distribution p{« gree Qg

be demonstrated by a minor modification of the proof of Theorem 4.6,

T See Ref.1, Theorem 4,
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Let Pr be the space of all input probability vectors with permutational symmetry. We have
shown that for an MSCC channel,

min F} (p,p) = min F} (p,p) (4-42)
peP pePr

for all p, 0K p < 1.
Definition.

If p(n) is a probability distribution on Xs' and

M
Blat - o o5 Xpg) = 1 px,) (4-43)
i=1
then we say p(xi, ST xM) is a product distribution. Let D be the set of all product distributions.t

Clearly, D C Pr' If: Es is the probability vcetor corresponding to p{n), p is the probability vector

), and Eq. (4-43) holds, then we shall write

corresponding to p(xi, co Xy

»

= - M
p =( ps) . (4-44)
We shall also write E ¢ D. Finally, we shall denote the set of subchannel input probability vectors
by U.
We shall now examine the properties of functions from which EM(R) is derived if E ¢ D. From
Egs. (4-23) and (4-43),

1+pl M
- _ a) 1/1+p
F, mlp.p) = Z Y plx,) pa(yi/xi)
Yy v %y
=5 VL
= -4
(F, (o, p I . (4-45)
Henceforth, we shall assume that X_ = {1,...,1.}, and X, ® {1,...,Q}. Thus, we have
Q L / 1+p
i e LdtEp 4-46
E_bon) = > ¥ p(£) p,,(a/8) . ( )
q=1 =1
Using Egs.(4-24), (4-45), and (4-25), we have
= - M
Fyle.p) = Z pla) [F(p, p,)]
o €N
= E pla) exp [—Man(p, ES)] (4-47)
o el

for allp e Dand all p, 0< p < 1. More generally, Eqgs.{(4-24) and (4-25) yield

FiV[(p,E) = Z p(a)exp[—anM(p,E)] (4-48)
o €A

forallEePand allp, 0<p < 1.

1 Nate that this is a mare restrictive definitian than in Chapter 2, because here we ask that all the individual
subchannel marginal distributions be the same.
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Because of the functional form of an(p, ES) and the fact that the sums used in its definition
are finite, all derivatives of an(p, SS) with respect to p are continuous with respect to p and
the L. + 1 probability vectors involved in the definition of an (one subchannel input probability
vector and L subchannel output probability vectors, each conditioned on one input). Hence, by
an argument identical to that used in the proof of part (1) of Theorem 2.3, there exists a positive

constant B(L, Q) for which

"o | ¢ g1, Q) (4-49)

for all p, 0< p < 1, all subchannel input distributions p(£), and all conditional probability dis-

tributions pa(q/f).

Theorem 4.7. (Gallager)

Consider a channel with X = {1, ..., K}, Y = ., J}, and transition probabilities pa(j/k),
1<j<J, 1<kg<K, Let p =[p(1),...,p(K)] be an mput probability vector, and assume that the

average mutual information

K J y
— 3 = - P(J k) 4-50
oM P) = plk) p,,(i/K) In " (4-50)
=4 J= % 1) p J/l)
1=
is nonzero, Define
J K / 14p
b 1 . 1/1+p v
E omiPP) =—In Y, | ) piw p,, (i/k) : (4-51)
j=1 Lk=1
Then, for p >0
EoamloP) = (4-52)
anM(p,p)>0 for p >0 (4-53)
9E (p,p)
_eell P 5 for p > 0 (4-54)
p
8E_ . {p,p)
oo M'"™’ _ o
— =L, mp) (4-55)
p=0
2 —
3"E (p,p)
M k]
——— <0 (4-56)
ap

with equality in Eq. (4-56) if and only if both of the following conditions are satisfied:

(1) B, (j/k) is independent of k for j, k such that p(k) P, (i/k) # 0.

(72 E p(k) is independent of j.

P (i/K)#0
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This is Theorem 2 of Gallager,’ so the proof will not be given here. If IozNI(E) = 0, input and
output are independent.3 Thus, pa(j/k) = pa(j) if plk) # 0 (1 < j<J). Then, using Eq.(4-51),
we have Eoon(p’ E) =0 for all p > 0.

Note that if the channel referred to in Theorem 4.7 is MSCC, the definition of Eoon by
Eq. (4-51) is consistent with the definition of Eoon by Egs. (4-23) and (4-25)., Note, too, that
all the results of Theorem 4.7 apply to a single subchannel as well as to the whole channel, In

our notation, this means that the results hold if all M's are deleted and we make the following

changes:
i=a
le, =en

For E‘; ¢ U, definel

EN(t, pg, R) = —tR_ —In > pla) exp[—tL_(p)] (4-57)
o €A
and
EN(RJ) = Lu.b. max EN(t,BS,RS) i (4-58)
0<t<o f)’qu

Theorem 4.8.

- (a) Suppose there exists a worst subchannel state a, and Ca < RS < C'i' Then, there exists

a positive number tO with

EN(RS) = max EN(to, Pg» RS) ! (4-59)
pSeU

(b) If, in addition, there exists a single-subchannel probability vector Es with

Coz = Ioz( ps) alla € A (4-60)
then,
: = ad ¥ s 2
EN(RS) t,R —In ), pla) exp| t C,1 (4-61)
o €A

T See Ref. 1, p.é.
iNate that far each Bs and R I pla) exp{t [RS - lo(_ﬁs)]} is the mament generating functian g(t,IES,RS)

ae
assaciated with the randam variable R — | (b’s) Since by Eq. (4-57) EN(f,b’s,RS) =—In g(f,b’s,Rs), same af the
properties af EN(t,p. ’Rs) which we shall derive may be abtained fram the theory af moment generating functians.
See, far example, Cﬁwpter 8 of Ref. 2.
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where to is given implieitly and uniquely by

z pla) Coz exp[—toCa]
o el

R =
> Tz pla) exp [—toCa]
a el
Proof.
(a) All that really needs to be proved is that

EN(R ) # lim sup max EN(t,p_,R )
S — S S
t—>o0 pssU

From Eq. (4-57),
EN(t, by, R) < —t [R, —L(B_)] —Inp(a)
< —t(RS - Ca) —1np(a)

for all ;s e U, If we define

In p(a)

RS—Ca

t:,': = —
t > t* implies

EN(t, P RS) < 0 = EN(o, Py RS)
for all ;s ¢ U, Thus, we have proven Eq. (4-63).

(b) Using the definition of Ca, we obtain

_rpax _ _ S‘\ . - _ _ . . .
pSGU tRS In ), pla) exp| tIa(pS)] < tRs In Z pla) exp| tCa]

a €A €A

for all t > 0, with equality if

IQ(ES) =C, alla e A . [Eq. (4-60)]

Thus, if Eq.(4-60) holds, we have from Eqs. (4-57) and (4-58) that

EN(R) =Lu.b. {~tR_—In ) pla) exp[—tC ]

=l u b,
5= aeh

=—In[g.Lb.{ ) pla) exp[t(R, —C)]

Ogt<o |
= o €A
Let
o(t) = ) pla) exp [HR —C )]
€A
Then,

(p'(t)=92 = ) p(a)(Rs—Ca)exp[t(Rs-—Ca)]

i e
a €A
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(4-63)

(4-64)

(4-65)

(4-66)

(4-67)

(4-68)

(4-69)

(4-70)



and

2
p"(t) = i—t‘f = pla) (R, —C_ )" exp[tR_ —C )] (4-71)
a el
From Eq. (4-70),
@'(0) = RS = Z pla) Ca
a €A
:RS~C!1 <0 . (4-72)
From Eq. (4-71),
"ty >0 (4-73)

for all't > 0, Thus, ¢(t) is strictly convex downward and must, by Egs. (4-72), (4~68), and
part (a) of this theorem, have its g, 1. b. at its stationary point. Thus, setting <p'(to) to zero,
wc obtain Eq. (4-62),

For B ¢ D, define

B o e oML (3 X
I:M(p,p, Rs) p’VIRS In ), pla)exp]| pMIa(pS)] (4-74)
a el
where p = (ES)M, and
E (R )= max E.{p,p, R . (4-75)
M VLA
0<p<t °
peD

Theorem 4.9.

Suppose therc cxists a worst subchannel state a, and Ca < Rq < C'i. Then, if tO is defined

by Eq. (4-59), and p(M) is the value of p which achieves the maximum in Eq. {(4-75), we have
for M >t
o

EM(RS) = EN(RS) (4-76)

and

p(M) = to/M . (4-77)

Furthermore,

lim EM(RS)

EN(RS) : (4-78)
M-—>oo

Proof.

A comparison of Egs. (4-74) and (4~75) with Egs. (4-57) and (4-58) makes Egs.(4-76) and

(4-77) obvious consequences of Theorem 4,8, Equation (4-78) is a consequence of Eq. (4-76).
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Define

ek
e
[

max E;] (p,g,R )
0<p< 1 M s

S(‘ D

max [-—pMRS — In FM(p, S)]

0<p<t
3(D

= max [—pMRS — Inmin Fiv](p,g)] . (4-79)
0<pgt peD

This definition differs from that of E:\G(Rs) only in that the maximization over input probability
vectors is over D rather than P,
Note that Eq. (4-33) and Theorem 4.6 imply

E:.(R) = max [-pMR_—1InF! (p,p)]
M s 0gp<t S M
pePr
= max [~ pMR_~1In min Fiw(p,_ﬁ)] : (4-80)
0<p<t ﬁePr

Equations (4-74) and (4-75) imply

E.(R.) = max {~pMR_~1In ) pla) exp[-pML (P} . (4-81)
M s 00 S &~ a' s

SUS G

SSeU

Theorem 4.10.

(a) If there exists a worst subchannel state a, and C‘a 3 RS : (."1, then

(R )=ENR) . (4-82)

. =
lim E M{Rg S

(R)= lim E
Misw A SC e,

(b) Suppose there exists a single subchannel input probability vector ES satisfying Eq. (4-60),

Associate p(¢) with ;s and assume that the subchannel conditional probability distributions pa,(q./f)

satisfy
pa(q/f) is independent of ¢ (4-83)
for q, £ with p({) pu(q/f) # 0 and all @« ¢ A. Assume, too, that
Y p(£) is independent of q (4-84)

£:p,(a/0)#0

for all @« ¢ A. Then, there exists a positive number £ defined by Eq. (4-62) such that M >ty
implies

it (RS) = i BrGRO . (4-85)
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Proof.

(a) From Taylor's theorem and Theorem 4.7, we have for any 0 “p < 1, p ¢ P, and 6 €u
: S ]

2
2 & 5 (p.p)
- e e p o M : >
Eamipop)=pl plplt 5 ——m——r € PL pplP) (4-86)
ap w(p)

where 07 ¢(p) - p L1, and
£ Las %
20 l‘on'(p‘Ps)

% e . 4 >
L(m'(p' 1)5) B [)[“ ( ps) i ) (e
ap &lp)

where 0 7 £(p) “ p < 1. From Eq.(4-49) and Theorem 4.7, we get
()2}50 (p, p;)
B(L, Q)¢ — 45— 0 . (4-88)
op

‘Thus, from Egs, (4-48) and (4-86),

—»

o e NG
F M(/). p) - 1 pla)exp [—p[(vl\!( p)lt . (4-89)
a €A

From Eq. (4-80). for purposes of minimizing I}y (p, p), we may assume p ¢ P . Making this

assumption, we define

T : =
pi(x;) = P Plegs -0 ) (4-90)
X,
i
Since p ¢ l)r" we have
pi(xi) = p(.\:i) Flli 1< i€ . (4-91)
Detine
M
})l)l{(\:l"x\l) = H P(\l) (4-92)
i=1
and associate I—;DR with pl)R(xl’ - xM). and ';s with p(xi). Then, by the remark following
IEq. (2-29),
M[(y(ps) >I“,M(p) ; (4-93)
By l2gs. (4-89) and (4-93),
' Ty - A} ) — 4
Fyle.p) = 2 pla) exp pMI (p )] (4-94)
el

for all p, 0<p <1, and all p ¢ Pr" From Eqs. (4-79), (4-80), and Theorem 2.3, we get the

left inequality below:

I-IM(RS)( lij\l(R ) < FM(RS) . (4-95)

S

The right inequality is obtained from Egs. (4-80), (4-81), (4-94), and Theorem 2.3.
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Let p, E’S be such as to achieve the maximum in Eq. (4-75). From Eq. (4-95),

0<EM(RS)—EM(RS)< EM(RS)—EM(RS) : ' (4-96)
From Eq.(4-79),
Ey(R) - E (R)<E(R)—Ey [7 (p0M R (4-97)
M' s M 7s' T TM''s LR A B - S
From Eqgs, (4-20), (4-21), (4-47), and (4-87),
- M - M aZan(p’Es)
20 [P (B, R] = —pMR_ —In Y pla) exp ~pML_(B,) ~ £y é (e
s ap t(p)
for all p, 0<p <1, and Es € U. Using Eq. (4-88), we have
= \M S - 5%M
—Ej [ (pD™, RIS PMR, +In{ ), pla) exp[-FMI (P} + £5= BIL. Q) . (4-99)
aelA
Thus, using Eqs. (4-81) and (4-77), we get
2 t2
= - = M M _ o
LM(RS)—EM[P,(P'S) ; RS]€ > B(L, Q) = >N B(L, Q) . (4-100)
Combining Eqs. (4-96), (4-97), and (4-100), we get
tZ
B <E _F o -
0< E‘M(Rs) = EM(RS) < EM(RS) EM(RS) < 2M B(L,Q) . (4-101)
Thus,
1\11'1m [Epg(Ry) — EjR I = lim [E(R)-Ey(R)=0 . (4-102)
— 0 M~
From Eqgs.(4-78) and (4-102), we get Eq.(4-82), as required.
(b) Equations (4-67), (4-74), and (4-75) imply that for Es satisfying Eq. (4-60),
E,(R) = max Ey lp, (p)", R . (4-103)
)\ s 0<p<t S s
Equations (4-83), (4-84), and Theorem 4,7 imply
2 —
9"E_ (p,p.)
ow S - (4-104)

ap
for all p. 0 p < 1. From Eqgs.(4-74), (4-98), and (4-104), for Es satisfying Eq.(4-60) and all

p. 0< p<1, we have

= - M . = VI
Env o (p )™, Ro) = Efpfp, (), RJ] (4-105)
Hence, by Egs. (4-95) and (4-103),

- o . | )
E (R ) —BY (R =10 all M . (4-106)

Thus, for M }to, Eqgs. (4-76), (4-78), and (4-106) give the result,
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The curves of Fig. 14 illustrate both parts of Theorem 4,10, In this case, the r;q of part (b)
is given by 55 = (1, 1). The curves of Fig. 21, corresponding 1o RS > 0,1887 bit, illustrate part (a)
of the theorem, Part (b) of Theorem 4.8 applies to both exanmiples, with ;;S = (3.4

Corollary 1.
Suppose A is finite, Under the assumptions of part {a) of Theorem 4.10,

\11121” Ey(R) = EN(R)) . (4-107)

Proof.
Combine Theorems 4,10 and 4.5,

The curves of Figs, 13 and 20, corresponding to Rs > 0.1887 bit, illustrate the corollary.

Again, part (b) of Theorem 4.8 applies to both examples with };S = (1 1)

Theorem 4.11.

If for each p, 0< p <1, there exists a single p.'S ¢ U with
min I‘O’(p, ps) = }‘a(p, 1)'5) (4-108)
p_el
s
for all @ € A, then
o) - B L
MIRg) = Ep(RQ) (4-109)
for all M.
Proof.

Theorem 5 of Gallager (sce Ref. 1, p.10) and our Egs. (4-20) and (4-45) imply

e -5 -~ M
min ch?\’l(p’p) = min F M(p,p) = [wmm' I'G(p. ps)] . (4-110)
peP peD pScI
Equations (4-108), (4-44), (4-45), and (4-110) imply
M

min FHM(p,p) :FaM[p’( 's) 1 (4-111)
peP

for all @ ¢ A. Thus, from Igs. (4-24) and (4-111),

= —- M
: 1 — i
il Fufe.p) = Fy o (p) ]
pel
= min Fl\q(p,g) (4-112)
peh

and from Egs, (4-33), {4-79), and (4-112) we have our result.

For both Examples 1 and 2, Eq.(4-108) is satisfied for all p, 0« p < 1, if Ss = (1, 1), Thus,
Eq. (4-109) holds for our examples,

One might wonder if Eq. (4-109) holds for all MSCC channels. The answer, although far
from obvious, is that it does not. An example which demonstrates this fact is discussed in

Appendix F.
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Thus far, we have considered only the case where there exists a worst subchannel state a,
and @ <R _<CY Now, ifR . >IE.,
a s 1 S 1

b

SatRg) = (R = 0

for all M, by the converse to the coding theorem, It remains to investigate the behavior of
' r 1
EM(RS) when RS < Ca and RS <Cy.

Theorem 4.12.

If there exists a subchannel input distribution Es and a positive number I, for which

= Ol ales =
Ia(ps) >l RS all v € A (4-113)
then,
Ep(Rg) = = as M == . (4-114)

If, in addition, A is finite, then

E (RS)—-oo as M — : (4-115)

M
Proof.

By Egs. (4-87) and (4-88) for Bs satisfying Eq. (4-113), all p >0 and all @ ¢ A, we have

2 3°E__(p,p.)
: 2 _ = P o« s
an(p, Py RS) = pIa(ps) + 55 ————ap i
2
>pl- 5 BILQ . (4-116)

Hence, by Eqgs, (4-20), (4-21), (4-47), and (4-116),

2
E4 e, (SS)M. Rl >-pMR_—In } pla)exp [—pMI+ IR TS )
o €A
2y
>pM(I-R_) — £ B(L Q)
Let
I-R
* = min [1 ——S—]
2] ’ B(L, Q)
Then,
2
(I—R )
o w (M M . - s -
Eyr [pv,(ps) . R > min (1 RS), B Q) . (4-117)
Clearly,
2
Mo = g
S min (I—RS), m - o as M — = : (4-118)

Thus, Egs.(4-22), (4-117), and (4-118) imply that Eq. (4-114) holds. If A is finite, Eqgs.(3-52)
and (4-114) combine to yield Eq. (4-115).
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The curves of Figs. 20 and 21, corresponding to Rs < 0.1887 =1, illustrate the theorem

).

[
(™

[Py = (3.

Theorem 4.13.

Let A be finite. If for each subchannel input distribution ;s there exists 8 ¢ A with

Iﬁ(ps) <RS (4-119)
then,
EM(RS)\< Eiv[(Rs)sd (4-120)

for all M, wheref

d = max {—Inpla)} < = . (4-121)
ael

Proof.
Let
Ep(RY) = Efylp', p', RY)

where ;‘ is chosen to have permutation symmetry, Using Egs.(4-33) and (4-89), wec have

| —
Eiv[(Rs)<—p'MRS—1n 2, pla) exp[—p'IaM( pH (4-122)
o €eA

If ES is the single-subchannel marginal distribution corresponding to p', Egs. (4-122) and (4-93)

imply

EM(RS)S—p'MRS—ln Z/ p(a)exp[—p'MIa(SS)]

a €A
Then, for B satisfying Eq.(4-119) for this particular }_;s’

El(R)< —p'M (R =1 (SS)] —Inp(p) < —1np(p) . (4-123)

B
Thus, using Eq,(4-121), we have

1
EMRS) <d
independently of ;s’ and hence independently of M. The remainder of Eq.(4-120) is provided by

Theorem 3.5,

Theorem 4.13 extends the conditions under which the conclusion of Theorem 4,3 holds {with
substitution of d for —lnp(a)]. One would expect that a similar extension is possible for Theo-
rems 4.4, 4.5, 4.8, 4.9, and 4.10. This is indeed the case. Of course, some modification of
the proofs of these theorems is required.

We shall close this chapter with a result on monotonicity.

t Recall that p(a) >0 forall a e A.
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Theorem 4.14.

EM(RS) is a monotone nondecreasing function of M,

Proof.

First, note that Eq. (4-56) implies that an(p, BS) is a convex upward function of p for each

BS € Uand o € A. By definition of convexity,

M - 1 —- M -
TEE an(p,ps) b e an(o' pS)S an(M el ps) . (4-124)

By Eq. (4-52), this becomes

= pM -
I\/lan(p,ps) <M+ 1) Eooz(M =T ,ps) (4-125)
for all p, 0K p <1, @« € A, and Bs € U, From Egs.(4-20), (4-21), and (4-47), we have
Bt o (P, R ]=—pMR_—1n > ple) exp[-ME_ (p, p_)] (4-126)
M s g S o "’ Fs ’
a€eA
Define p',;'s by
Bu AR ) =Bt [ (R B (4-127)
M M NS e ’
Then,
~ - —
EM(RS) =—p'MR_—1n }_, p(oz)exp[—Man(p',p's)] (4-128)
ael
and
M = M+1 ~ S p'M
Evies [0 1.¢Py) . Ryl =—p'MR_ —1In ). pla) exp[—(M + 1) E, ‘w57 Pl (4-129)

a €A

Since 0<p' <1, 0<p™/(M + 1) < 1 also, and by Eqgs. (4-125), (4-128), and (4-129),

e

pM_ = M : -
Byt [ 10 (Ps) s Rgl < e Ep{p. P Ro) = By (RQ)
~NHs

peD

ST

Note that if E,'VI(RS) = EM(RS), the monotonicity above carries over to EM(RS). It is not
known whether E]'VI(RS) is always monotone for MSCC channels. I would conjecture that the answer

is in the negative, However, since

BZE

k, =y _
ek 5y 0
ap
for 0<p <1 and ; defined on Xsk, we may derive in a manner analogous to the derivation of
Eq. (4-125)

E . P)<SUIE o/t p)
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for £ an integer. Thus, again proceeding as in Theorem 4,14, we get
EM(RS) >E'I(Rs)
and
! 1
EM(RS) ZEk(Rs)

whenever M = k/,

For our examples, EM(RS) = EM(RS). Thus, the monotone behavior of their RCE's may be
observed in Figs. 11 and 18,
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CHAPTER 5
SYSTEMATIC CODING FOR COMPLETELY CONSTRAINED CHANNELS

A. INTRODUCTION

Our study of coding for parallel channels has thus far been confined to an exploration of the
properties of the applicable random coding exponent (RCE). This exponent presupposes maximum-
likelihood decoding, as has been previously stated. For any given code, with code words used
equiprobably, maximum-likelihood decoding yields the minimum probability of error. Unfor-
tunately, the amount of computational effort required to perform maximum-likelihood decoding
is a positive exponential function of block length. Thus, for long codes, this effort becomes
prohibitive.

Fortunately, for a class of block codes known as BCH codes [which class includes the Reed-
Solomon (RS) codes], the computational effort involved in decoding can be reduced to a practical
level through the use of minimum distance decoding techniques. The use of these techniques
will, however, involve some sacrifice in performance relative to maximum-likelihood decoding.

In this chapter, we shall examine a class of procedures for BCH coding on a channel with
parallel structure. For the case of an MSCC channel, we shall develop a set of formulas which,
in combination, will enable us to calculate or bound the probability of error associated with each
procedure. Although general results concerning performance will not be given, some examples

are computed out at the end of the chapter.

B. CODING ALTERNATIVES

The presence of a number of parallel subchannels presents us with a number of coding alter-
natives. One of the decisions which must be made in choosing among them is to decide on the
number mJr of subchannels to be coded on at once. Such a decision implies that the M subchan-
nels will be divided into M/m sets of m subchannels each. I'or each such set, a code letter
will be defined as the m-tuple consisting of the m subchannel inputs in the set at some one in-
stant of time, i.e., a code letter is a member of XSm If we choose the code alphabet to be Xsm,
we shall classify our coding technique as simple. However, we may wish to increase the reli-
ability of individual code letters by choosing the code alphabet to be a proper subset of Xsm, in
which case we classify our coding technique as compound.

The code letters corresponding to each set of m subchannels are then encoded to form code
words of length N (this is done, separately, for each set). Each set of m subchannel outputs
is then separately decoded (although there may be state knowledge used in common by all sets).
An error is considered to have occurred if a decoding error is made in any of the sets.

The distinction, defined above, between simple and compound coding may be made more
graphic by referring to the following diagram which shows a code word of length N on M

subchannels:

T We assume m divides M,
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In eompound eoding, we eode in the parallel direction (with dimensionless rate less than

unity) before eoding in the time direetion. In simple eoding, we eode in the time direction only.

Simple Coding Example

Let M=10, m=2, N=3, and X_ = {0,1}. Then,

0 0 1 1
" s ) are the four possible code letters.
0 1 0 1

O 4 10
< > is one of the 64 possible code words.
T )

Compound Coding Example

Let M =10, m =2, N= 3, and X_ - {0,1}. Let

0 1
< > and < > be the only two permitted code letters.
0 1

0o 1 1
< > is one of the eight possible eode words.
(0T (R

C. DIMENSIONLESS RATE

Obviously, we shall be interested in comparing the performance of various eoding teehniques
on partieular MSCC channels. To make the eomparisons meaningful, we must define our input
and output parameters with some care. We have already done this for the probability of error,
i.e., an "error" means the same thing regardless of the value of m. Suppose XS is a set eon-
sisting of 1. members, and that on each set of m subchannels we define Wm code words of
length N, with

1<W_ <L . (5-1)

Then, for some real number r satisfying

0F<G IR S (5-2)
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we have

W, = oy (5-3)
m

We shall call r the dimensionless rate. If we consider each M/m-tuple of the above code words

to be a code word on the whole ehannel, then

s M/m _; rMN _
WM = (Wm) ERl (5-4)
Since the RIS of Eq. (5-4) is independent of m, we may define
log, W
LL m
T TN (5-5)

as the appropriate input parameter. The dimensionless rate is related to the rate per subchan-

nel Rs by
Rs =rlnkL (5-6)
where Rq is in natural units.

D. BCH CODES AND SIMPLE CODING SCHEMES

The properties of BCH eodes and various decoding schemes for them are developed and de-
seribed in a fairly extensive literu":\tur‘e.i-?’Jr In a BCH eode, the eode letters are equal to (iso-
morphic with) the elements of a finite (Galois) field with q elements GF(q). Sueh fields exist
whenever q = pn, where p is a prime and n is a positive integer. Hence, if a BCIH eode is to
be used for simple coding over m subehannels of a channel with parallel structure and subchan-
nel input alphabet {1,..., L}, we require L™= pn for some prime p and positive integer n.

The requirement ean be met if and only if for some prime p and positive integer Kk,

k

L=p (5-7)

Then, n = km. Thus, we must restrict our discussion to situations where the subchannel input
alphabet size is an integer power of a prime.
If there is a Galois field GF(q) with q elements, then for any positive integer £ there exists

an extension field GF(ql) with ql elements. Let

N = ql =1
A sequence (u\I—i’ SO uo) of code lettersI may be represented by a polynomial u(t) of degree at
most N— 1
N-1 S
u(t) = uN-‘lt +... 4+ U, ui ¢ GF(q)

Pick y ¢ GF(ql) so that y is primitive, and pick d a positive integer less than N. Let the code
words of a code of block length N be given by the set of polynomials of degree N — 1 or less with
eoefficients in GF(q) whieh have y,yz, opioe ,yd-i as roots. A eode generated in this way is defined

as a BCH code. If £ =1, the code is an RS code. If r is the dimensionless rate of the code

t Numbered references appear at the end of each chapter.

I Note that the usual subscript order for the letters is reversed here.
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T W e (5-8)

For RS codes,
(d—1)=(1-r)N . (5-9)

The actual value of the ratio of (1 — r) N to (d — 1) for BCH codes with £ # 1 may be obtained by
making use of the faet that (1 — r) N is equal to the degree of the polynomial which is the least-
common multiple of the minimal polynomials for the (d — 1) field elements y, ... ,yd_i. This
can be a tedious calculation. Note, however, that for q = 2, we have

21 ~r) N

7 (5-10)

(d-1)>

.'.

and the parameters of a number of such binary BCH codes are tabulated by Peterson.
We note that the parameter d of a BCH code is not necessarily the same as its minimum

distance, although it serves as a lower hound to the minimum distance.

E. STATE INFORMATION AND RELIABILITY

We shall restrict our consideration to those channels for which, for each o ¢ A,

Y, P, /) = f(e) (5=
q:q#¢
independent of £. This will have the effect of making the probability of correct decoding by a
minimum distanee algorithm independent of the code word sent, and thus greatly simplify the
calculation or bounding of code performance. The symmetry requirement, Eq. (5-11), is usu-
ally met in practice.

The probability of correct decoding will, in general, be affected by the choice of m in the
simple coding and decoding schemes described above. It will also be affected by what state in-
formation is available at the receiver and how it is used. As was pointed out in Chapter 2, where
the physical channels we are modeling are fading channels, it is usually possible to obtain par-
tial state information at the receiver by making an energy measurement. (We may also obtain
this information by using some of the channels as test channels.) This information will often
enable us to assign a number representing reliability to each received letter. Suppose m sub-
channels are coded at once, and the reliability bm of an m-tuple received at a particular instant
of time is defined as the probability of its being correctly received conditioned on whatever state
information the receiver possesses. If the receiver has complete state knowledge, we have
from Eq. (5-11)

bta)= [t -1 . (5-12)
Suppose the receiver has partial channel state information represented by knowledge of a random
variable g, for which

pla/fa ) = plq/fa) P, (q 't) (5-13)
and

pllap) = p0) plaB) . (5-14)

1 See p. 166 of Ref. 1.
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One can readily show that Egs. (5-11), (5-13), and (5-14) imply

Y p(a/e8) = gg) (5-15)
q:q#4

independently of £, with

gB) = ) fla)pla/B) . (5-16)
o €A
We then have
]m

by (8) = [1 — g(6) (5-17)

F. MINIMUM DISTANCE DECODING

Let Xs = Ys, and A = ernN = YsmN be the set of possible received sequenccs. lL.et g be a
function defincd on A X A with
g(%,y)=gly,x)20 allx,y € A
g(X,x)=0 allx € A
and
g(x,z)<gx,y)+gly.z) allx,y,z € A

Then, g is a distancc function. A minimum distance decoding scheme is one which decodes a
reccived word _}; into the code word % for which g(?\f,?) is minimum.

The simplest choice for g(;,_);) is the Hamming distance, which is simply the number of
code letters in which x and _); differ. The Hamming distance treats each code letter equally and
makes no use of rcliability information. Decoding with a Hamming distance is also referred to
as crrors-only decoding. Efficient algorithms exist for errors-only decoding of BCH codes.
Thesc algorithms succeed whenever twice the number of code letters received in error is less
than d, where d is the codc parameter.

If the rcceiver has partial state information, it is no longcr logical to use a distance func-
tion which trecats all received letters cqually. One may, for cxample, establish a reliability
threshold e 0 Iy 1, and erase the ith received letter if its reliability brin(B) satisfies

bo(B)S T, - (5-18)

One may then define g(;,-gr) as the number of non-erased positions in which X and ; differ. This
distancc is called the Elias distancc. Decoding with this distance is called erasurcs and errors
dccoding. Efficient algorithms exist which succeed whenever the number of errors e and num-

ber of erasures k satisfy
2e + k<d (5-19)

Finally, define v(xi, y.l), X. € X:l, and ¥; € Xsm by

i
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v(xi,yi)
1 i_fxi%yi . (5-20)

Then, if brln is the reliability of the ith received code letter, and h(t), 0 < h(t) £ 1, is a monotone

nondecreasing function of t, 0. &t < 1, we may define g(_.\:,§) by

N
i ; G i . ~
gix,y) 2 h(bm) v(\i, yi) ; (5-21)
i-1

+

Decoding with this distance function is called generalized minimum distance decoding." Efficient

algorithms exist which are successful when the transmitted word X and reccived word —); obey

N

= : W i
2g(x,y)<d-N+ ) h(bm)
i=1
Since explicit analytical error bounds do not exist for generalized minimum distance decod-

ing, we shall confine our analyses to decoding with erasures, errors, or both. It should be
pointed out, however, that when bm(ﬁ) may take on many widely separated values (e.g., 1.0,0.9,
0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1, 0.0), generalized minimum distance decoding should promise
sufficient advantage over erasures and errors decoding to justify the numerical calculation of a
bound in a practical situation.

Note that the Hamming distance is obtained from Eq. (5-21) by setting

h(t) =1 all €, 8L

~

The Elias distance is obtained by setting

G. SINGLE-LETTER ERASURE AND ERROR PROBABILITIES

We are now in a position to compute the single-letter error, erasure, and correct reception

probabilities (pe, p., and P respectively) for an MSCC channel when the receiver has knowledge

e
of g, and m subchannels are coded at once. Let I' be the set of all possible 8. For conven-

ience, we shall assume that 3 is a discrete variable. Define FS C T as the set of 8, for which

b Blen, . (5-22)
Then, let
= 3
p, = L P (5-23)
BeFS
Po= O P {t—[1-gpN™ (5-24)
BeT

t See Ref. 2, pp. 12-24,



P, =1-Pg— P, (5-25)

where fs is the complement of I‘S.

For the special case of complete channel state knowledge, we may define AS as the set of «
for which

B, () £ (5-26)

and Ks as the complement of As' Then, Eqgs.(5-23), (5-24), and (5-25) hold if @ replaces g,
f(a) replaccs g(B8), and A replaces T.

For the special case of no channel state knowledge,

pg = 0 (5-27)

) ple) {1—[1—f)]™)

@ eA

Pe

5 1—pC 5 (5-28)

H. PROBABILITY OF CORRECT DECODING

Using the probabilities derived in Sec. G above and Eq. (5-19), it is possible to calculate the

probability Pc(m) of correct decoding of a single set of m subchannels:

RS NI Lk N-£-k

Bl L TR (N-I—kp PePst!—Pe—py) ' (22
2,k:
2404+k<d

Equation (5-29) assumes erasures and errors decoding, but reduces to errors only or erasures

only if PL € 0 or P = 0, respectively.

I. CHERNOFF BOUND

It is often difficult to evaluate Eq. (5-29). To evaluate conveniently the performance of BCH
codes, we shall need to use the Chcrnoff bound.4 Let ug, 1 <1< N be a set of independent iden-

~

tically distributed random variables with meanu; let € > 0 and X = u + ¢; let a_y(t) be defined by

{1 for t >0

a_y(t)=
0 fort<o : (5-30)
Then,
N [ N
< T W £
i 22 N L Y4 =A E aylNy 4 yy—A
=4 | =21
[ N
= b _
S a_y LY NA : (5-31)
L i=]
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For any s > 0,

a_y(t) < exp[st] . (5-32)
Thus,
N N
E a_, E u,— NAJ| < Ejexp|s L u, = NA (5-33)
i=1 i=1
and
N N
W T =
E jexp|s| ), u; — NA = B H exp[S(ui—)\)] (5=84)
i=1 1=
B N
= (E {exp[s(u—)\)]}) ({5= 815i)

where we use the fact that the u; are independent and identically distributed. Thus, if

D(s,A) = —1n { E(exp[s — A]}} (5-36)

we have for s > 0,
Y u, >A) < exp[-ND(s,A)] . (5-37)

The bound is tightest for s satisfying
% E {exp[stu—2)]} = E{(u—A) exp[s(u—A)]} = O

or

_ E(u exp[su])
A Efexplsu) Ca
"

Since A > U, a unique positive solution So to Eq. (5-38) is guaranteed to exist' if the variance of

u is positive.
J. CHERNOFF BOUNDS FOR ERASURES AND/OR ERRORS DECODING

Theorem 5.1. (Chernoff Bound for Errors and Erasures)

Suppose we use a BCH code of block length N and parameter d over a channel with erasure

probability pg, error probability Pes and probability of correct reception P Let

P.t Py tpP, =1 (5-39)

P, > 0 (5-40)
and

P . WY (5-41

pe pS N - o - )

T This is praved in essentially the same way as the similar result in part (b) of Thearem 4,8 in Chapter 4,
E(exp [sul) is the mament generating functian assaciated with the random variable u.
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Then, the best Chernoff bound to the probability that decoding will fail, Pe, is given as follows:

Pe < exp[—ND(d)] (5-42)
where
So Zso
D(d) = sot— ln(pC tpse pe ) (5-43)
and
—p(t—1) /[ps(t—i)]z Pt
s = 1n + . pre . (5-44)
o Zpe(t —2) 2pe(t ==a2) pe(2 t)
Proof.

By Eq. (5-19), the probability of error in decoding is at most the probability that 2e + k > d.

Now, define random variables ug, 1< i1g< N as follows:

u, = 0 with probability P,
u; = 1 with probability Py
u; = 2 with probability Pe

These N random variables will be assumed to be independently distributed. Clearly,

N
Pi2at kadi=Pl = ) w3t (5-45)
s N i) i~ o :
i=1
The RHS of Eq. (5-45) may be Chernoff bounded as per Egs. (5-36), (5-37), and (5-38), where
A= t. Now,

. o #Sp 5-46)
E(e ) = pC + pse + pee ( _
s u s, ZSO
E(ue ¥ ) =pe®+2pe ) (5-47)
s e
Thus, by Eq. (5-38),

So Zso 2
pge i Zpee

b= S g (5-48)

o o
p(\ + pse ¥ Zpee

s
Equation (5-48) is a quadratic in e ©  When it is solved and the natural logarithm is taken, the

RHS of Eq. (5-44) results. From Eq. (5-36),
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so(u-t)]

u
")

So Zso
= sot — 1n (pc + p.e + P )

D=—-InE [e

s
= +s t—lnE(e
0

Theorem 5. 2. (Chernoff Bound for Erasures Only)

Suppose we use a BCH code of block length N and parameter d over a ehannel with crasure

probability Py and probability of correct reception (1 — ps). Suppose

, d _
O<p,<g=t<t . (5-49)

Then, the probability that deeoding will fail, Pe' is bounded as follows:

P_ < exp {—N [t Inp = (1 -t Inld —p)= Ht)]} (5-50)

where
Ht)==tInt— (1 —t)In(1 —t) . (5-51)
Proof.

s
The proof proceeds as that of Theorem 5.1 up to Eq. (5-48), which is now linear in e 2

Substituting the value of S, obtained in Eq. (5-36) gives our result.

Theorem 5. 3. (Chernoff Bound for Errors Only)

Suppose we use a BCH code of block length N and parameter d over a channel with error

probability p and probability of correet reception (1 — p ). Suppose
VP p y 5

. d
0% 2, Xt & . (5-52)

Then, the probability that decoding will fail, Pe, is bounded as follows:

P sexp {-N[-%mp —tt-Hmu-p)- K/ (5-53)
where H(t) is given by Eq. (5-51).

Proof.

This is really a corollary of Theorem 5.1. We set Py = 0, P, = 1-— Pa in Eq. (5-44), and
substitute the result in Eqgs. (5-43) and (5-42) to obtain our result,

K. BOUNDS ON TOTAL PROBABILITY OF DECODING FAILURE

We have one further topic we must explorc before proceeding with the analysis of simple
coding sehemes on some speeifie MSCC ehannels. Earlier, we agreed to count the decoding as
being in error if a deeoding failure oecurs in any one of the M/m = S sets of m subehannels
eaech, where m subchannels are encoded at onee. If the probability of error Pe(m) is computed
or bounded above for each such set, separately, then the total probability of error PC may be

estimated by the use of the union bound. Thus, if for eaeh set of m subchannels,
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(5-54)

we have

-ND

P, < SP_(m)< Se (5-55)

Since, at each instant of time, all the subchannels of an MSCC channel are required to be
in the same state, we would normally expcct that errors in the various subchannel sets would
tend to occur together, and thus that a better estimate than the union bound exists. Suppose @

is a sequence of N subchannel states, and Al\ is the set of such sequences. Then, we have

Pe=1— ) pla) [t - Pgm/a)° (5-56)

o €N

where Pe(m/(_y’) is the probability of decoding failure on a single set of m subchannels when the
sequence of subchannel states was «. Equation (5-56) is obtained from the elementary rules of
probability after noting that when thc state vector o is given, thc subchannels become independ-
ent of each other. The principal limitation on the use of Eq. (5-56) is the fact that cven though
Pe(m/a) depends only on the number of each subchannel state in the sequcnce E, it is not gen-
crally easy to compute or bound. Equation (5-56) is most easily used when Pe(m/&.) is equal

cither to zero or to unity for all . Then,

Pe = Pe(m) allm . (5-57)

This situation occurs in crasures-only decoding. Egquation (5-57) reflects the fact that decoding
will fail if there are d or more erasures, and that the same number of erasures occur for each

set of m subchannels because our channel is MSCC.

L. ERROR EXPONENTS FOR SOME EXAMPLES OF MSCC CHANNELS

We shall now compute error bounds for simple BCH coding on some particular MSCC chan-
nels. The subchannel input and output alphabets will be binary, and the numbcr of subchannels M
will be scven. Since seven is prime, we shall have only two simple coding alternatives to con-
sider: first, to code and decode on all seven subchannels simultaneously, using an RS code for
which the alphabet size is 27 = 128, and block length is 27 —1=127; second, to code and decode
each subchannel separately, using a binary BCH code of the same block length. The relationship
among d, r, and N for the RS code is given by Eq. (5-9); for the binary BCH code, the relation-
ship is obtained from Table 9.1 of Ref.1. The results we need are summarized in Table I.

We define a new exponent, B(r), by

. InS
B(I‘) - D[d(r)] - 127 (5'58)
and an upper bound to the total probability of decoding failure ﬁe by
f;-fexp[—127B(rH : (5-59)
Hence, we have
P_< exp[-127B(r)] = '159 . (5-60)
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TABLE |
RATE AND MINIMUM DISTANCE
FOR SOME BINARY BCH CODES
(N =127)

r X N d rX N d
120 3 57 23
113 §) 50 27
106 7 43 29
99 9 36 31
92 1 29 43
85 13 22 47
78 15 15 55
71 19 8 63
64 2]

== =

3-§3-1232

045

040 -

P < exp[-1278r1] - B,

Blr)

Fig. 24, Exponent vs dimensionless rate for Reed-Solomon code — Example 1,
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Example 1

M=7 State Known at Receiver
a 1 2
pla) - 1/2 1/2
o] ) o] 0 L [}
pa(y|/xi) 1/2 1/2
1
1 1 1 1
1/2

We note that the erasures-only bounds are applicable here, and B = 1/2. For the RS code,
r < 1/2 implies that Eq. (5-49) holds and we may compute a positive error exponent using
Egs. (5-50) and (5-51). The result is plotted in Fig. 24.

Now, we consider a binary BCH code on one subchannel of this channel, and note that the
expected number of erasures is 63.5. Even the lowest rate binary BCH code given in Table |
corrects at most 62 erasures. Ilence, the probability of decoding failuce exceeds 0.5 for all

positive rates. Thus, coding over all subchannels at once is clearly a superior procedure here.

Example 2
M=7 State Unknown at Receiver
a 1 2
pla) 1/2 1/2
Y | Sic
0 0 0 0
Pe ¥y /%)) c c

¢=0.05,0.10, 0.15, 0.20

For the RS codes,

P, = 13 [1—(1—c)7] . (5-61)

For each value of ¢, Egs.(5-52), (5-61), and (5-9) tell us at which rates a positive exponent
may be expected. If Eq.(5-52) is satisfied, the exponent is the expression in square brackets in
Eq. (5-53). These exponents are plotted in Fig. 25 for ¢ = 0.05, 0.10, 0.15, and 0.20 (curves
labeled S).

For the BCH codes,

P, =c/2 . (5-62)

IFor each value of ¢, Kgs.(5-52), (5-62), and Table I tell us at which rates a positive exponent
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Fig.25. Exponent vs dimensionless rate for Reed-Solomon (S) and binary BCH (B) codes
on several MSCC channels — Example 2.

mayv be expected in the bound for I’(‘(l Yoo I Eq. (5-52) is satislied, the exponent D{r) is the ex-
pression in square brackets in g, (5-53).  We plot the exponent $3(r) given by Eq. (5-58) when-
ever it is positive; plots are shown in I1ig. 25 for ¢ = 0,05, 0,10, 0.15, and 0.20 (curves labeled 13).

We see from the curves that, for ¢ = 0.10, 0.15, and 0.20, the binary BCH exponent is
greater than the RS exponent at all rates.  Hence, a binary BCH code would be our choice for
these examples. In addition, the binary BCH code is easier toimplement. If ¢ = 0.05, it appears
as though the favored code depends on the rate. (Note that the curves for the binary BCH codes
serve only to connect the data points and have no meaning between them. Thus, the RS and bi-
nary BCI codes may only be compared at the data points for the latter.)

Now, we can examine the reasons why we have obtained the above results. Whenwe increase
the number of subchannels coded over at once, two things happen.  First, the alphabet size in-
creases, with a resultant increase in the code parameter d for a fixed dimensionless rate and
block length N. The largest value of d Jor a fixed dimensionless rate and block length s that
given by Eq. (5-9) and is achieved for an alphabet size one greater than the bltock length. Second,
the probability of a code tetter being received in error (or erased if the receiver has state knowt-
edgel increases [see Egs. (5-17), (5-22), (5-23), and (5-24)], with a resultant increase in the ex-
pected number of errors anderasures, bxample 1 is a special case in that the erasure probabil-
ity remains the same regardless of how many subchannels are coded over. llence, the increase
in alphabet size is entirely beneficial, and the RS code is superior. In Example 2, the increase

in error probability with the number of subchannels coded over is the dominant effect for ¢ = 0.10,
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0.15, and 0.20. Unlike the situation in Example 1, we can only determiine this after making a
calculation.

In general, we would expect the optimal number of subchannels coded over at once to lie
somewhere between 1 and M. The determination of this optimum number (which may depend
upon the rate), in more general situations than we have considered, involves considerable labor.
This labor is primarily due to the difficulty of finding the precise relationship among code pa-
rameter, dimensionless rate, and block length for non-binary, non-RS BCH codes. Inequality
(5-8) is of some help here. If assuming (5-8) were satisfied with an equal sign, we compute
our exponent and find it to be greater (for the same block length) than that for a RS code, then

we are secure in concluding that the RS code is not best.

M. COMPOUND CODING

The problem mentioned above, of an increase in code letter probability of error with in-

creasing number of subchannels, has an obvious solution — to code across the subchannels be-

T

fore coding along them. This is what we have called compound coding." The number of channel

code letters A (i.e., the number of possible input M-tuples, at a giveninstant of time)is given by

A-17M
for some 0 < r, <1 The number of channel code words W is given by
r,N r,r,M
w=a?2 -1 1¢

for some 0 ¢ rs < 1. Thus, rr, for compound coding is comparable to r for simple coding.
Compound coding does not seem to be an attractive technique for MSCC channels. In the
first place, we must make r, In I, smaller than the capacity (in natural units) of the worst sub-
channel state whose reliability we wish to improve. Furthermore, for a number of subchannels
of order 100, the improvement in reliability is generally not too marked unless ry InL is one-
half or less the capacity of the worst subchannel state. Thus, compound coding is generally ap-
plicable only to low rates. That the exponents obtained even at these low rates are not generally
as large as those obtained for simple coding is not so obvious. Indeed, we cannot be sure that
compound coding is not advantageous in some instances, although intuition suggests that coding

in a direction in which we have no "diversity" will not be advantageous.

REFERENCES
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t This resembles the approach taken in concatenated coding (see Ref. 2).
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CHAPTER 6
MORE GENERAL CHANNEL MODELS

In Chapters 4 and 5, we restricted our discussion to channels which are MSCC. Roughly
speaking, such channels have three main properties: state structure, memorylessness, and
identical subchannel states at each instant of time. We shall here consider channels in which

the second and third properties may not obtain.

A. MARKOV PARALLEL CHANNEL

Let pij be such that

0<py<t 1gdi<®
and

S

'Y i g

L P 1 1gig<s . (6-1)

Let {uJ.}jb:1 be a solution of

S
\V

o= & uipiJ
i=1

1€j<S (6-2)

{u].} is called a stationary distribution. l.et

quJi = uipij e I I I (6-3)
Definition
A Markov Parallel Channel (MPC) is an MS channel with A = {1,...,S} in which the prob-
ability p(ei, R ek) that any k successive subchannels are in states TERRERIW respectively,
is given by
ple,. ..., e)=u_p P (6-4)
1 k e, e, e, Ck-iek

ix'respectivc” of the direction of progression across the subchannels.

The channel we have just defined has relatively simple subchannel dependencies while not

requiring the states of all the subchannels to be the same during a single-letter transmission.

The MSCC channel is the special case of the MPC with pij = By our remarks on time-

Olee
1)
parallel duality in Chapter 2-B, we should be able to make use of known results on single chan-

nels with a Markov state dependence in time§ to analyze the MPC.

t Numbered references appear at the end of each chapter.
# Equatian (6=3) is the cansistency canditian which allaws this (see Ref. 1).

§ The channel with Markav state dependence in time is called a "discrete finite state channel" in Ref. 2.
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B. CAPACITY OF MPC

The first problem we might wish to consider is that of the computation of the capacity of the
MPC. Unfortunately, there is no simple formula for capacity in terms of the channel parameters
given. Gi}bert3 computes the capacity of a single channel with Markov state dependence in time
for the special case where both input and output are binary and there are only two channel states.
The first state guarantees that the output and input be the same. In the second state, all transi-
tion probabilities are one-half, (The states correspond to pi(g/n) and p2(§ /n) of Example 1,
Chapter 3.) Since Gilbert's result is a capacity per use of the channel defined by a limiting
process, Theorem 2.5 suggests that his results will serve as upper bounds to the capacity per

subchannel C In general, Theorems 2.3, 2.4, 2.7, and 3.1 may be combined to obtain upper

sM’
and lower bounds to Cs\l which are relatively easily calculable. These are given by
2
S S S S
\ j e i e
r)n(aix x u_]'lp(Xs' SS) tu L u.l loguj + (1 \1) & uipiJ 1ngi_j
I j=1 = =1 i=1
S
- A Jix .
€ Cgy € max Y uliX; Y (6-5)
pel . :
j=1
where, if
X =Mool o T om0 Q}
then,
8 L p g/
X v)= Y Y p)p.lqg/0 log \ (6-6)
p s s e R [
q=1 £=1 = p.q/k) plk)
k=1 J

[Reeall that j is the subchannel state, and p({) is the subchannel input distribution.]

C. RANDOM CODING EXPONENT FOR MPC

Unfortunately, no results are available concerning maximum-likelihood RCE's for Markov
ehannels. Yudkin?t derives RCE's for Markov channels with a type of nonmaximum-likelihood

decoding. By duality, his results carry over to the MPC without essential change.

D. SYSTEMATIC CODING FOR MPC

In eontrast to the situation whieh exists for the RCE, the performance of BCH codes with
simple coding schemes and minimum distance decoding can be evaluated almost as readily for
the MPC as for the MSCC. We eontinue to assume that Eq. (5-11) holds. What is changed is our
computation of the reliability bm (probability of correct reception) of an m-tuple of subchannel
inputs. Suppose, for eonvenience, we choose the m-tuple to consist of the first m subchannel
inputs, The state vector we are concerned with is o = (0/1 ..... nrm). Thus, for the case of

complete state knowledge,

t See Ref. 2, Chapter IV.
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m
b (&)= [] 1 -fa)] . (6-7)

i=1

If we have no state knowledge,

m
R P Ty N =
b= L uaipaiwz Py . JE: i flae )] . (6-8)
m-1"m .
ozieA ca €A i=1
m
Suppose we have a random variable f§ = (Bi' SAAL Bm), representing partial knowledge, with
ply/xaB) = ply/xa) = p_{y/x) (6-9)
o
p(xaf) = p(x) p(af) (6-10)
and
for all i, 1 £ i< m. Then, if we define gi(Bi) by
g8)= ) ply/xB) (6-12)
YT
gi(Bi) is independent of x;, and
g(8) = ), fla,) pla./B) (6-13)
a.e€A

gi(Bi) is the probability that the ith subchannel symbol will be incorrectly received given that

the ith component of the partial knowledge vector is Bi' Thus, if the receiver knows /?

m
bty = I (v—gl8.n (6-14)
=
The erasure criterion is of the form
bm(B) < ry . (6-15)

If we define I‘Sm as the set of -ﬁ for which Eq. (6-15) holds, Eqgs. (5-23), (5-24), and (5-25) become

pg= ) pE) (6-16)
ESI‘Sm
m
Pe= L PF) j1— [T 11-gi8) (6-17)
per T i-1
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P 1 =g =By (6-18)

where I‘an is the complement of I‘sm. If the receiver has no channel state knowledge, Eqgs. (5-27)

and (5-28) become

Pl = 0 (6-19)
m
= O .
Pe = 2 plad it = T] 11 —fla))
aen™ 1=
=t-p_ . (6-20)

E. OTHER MS CHANNELS

Needless to say, the MPC and MSCC channel are not the only possible MS channels. How-
ever, together with the independent subchannel case, they are the only MS channels for which
random coding results of any generality are known, If, for some reason, it seems dcsirable
to use some other MS channel model, numerical computation may provide the only guide to the
behavior of the RCE, The performance of minimum distance decoding of BCH codes may none-
theless be evaluated with an effort comparable to that involved in a similar evaluation for the
MPC. The details of this evaluation involvc an obvious extension of the material in the preceding

section,

F. CHANNELS WITH BOTH TIME AND PARALLEL DEPENDENCIES

Thus far, we have considered only memoryless channels or, equivalently, channels with
memory but no parallel dependencies. An obvious generalization is to channels with dependencies
in both the time and parallel directions. We shall assume a state structurc where A is the set
of subchannel states, and a conditional probability distribution Pa(€/77). 1303 YS, n € XS is as-

sociated with each o ¢ A.

G. BLOCK MODEL

Suppose we have a channel consisting of \11 subchannels which, at each transmission instant,
are all in the same state. Suppose, too, that there is an integer MZ such that for any integer Kk,

the state which is in effect at time kl\/[2 + 1 must persist until time (k + 1) M., and that the state

2,
corresponding to each value of k is independent of all the others.’ The channel is cyclostationary
rather than stationary, because a change in state may occur only at specified times,

The significant facts about the channel are that a block of

M = N'l1l\ﬂ (6-21)

2

subchannel letters is transmitted while the corresponding subchannel states are all the same,
and that the statc for each block is independent of the states for the others. Hence, we may make
use of our MSCC results for the block model, lLet Rb be the rate per block of length M,. Then,

the rate pcr subchannel per channel use Rs is given by

T Note that if Mj =1, we have the dual of the MSCC channel. This serves as a simple model for a single channel
with memory.
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(6-22)

Results concerning CsM in Chapter 4 remain true, where M is now the number of subchannel
letters in the block. We have also, for block codes of length NMZ,T that

P, < exp[-NE(R_)] (6-23)

where E (RS) is precisely the same as in Chapter 4, with M given by Eq. (6-21).

M

H. CONSTRAINED-MARKOV MODEL

Suppose we have a channel consisting of M subchannels where, at each transmission instant,
all the subchannels must be in the same state. Suppose, further, that the state sequence in time
is a Markov chain., Then, using the results of Yudkin,2 we might hope to pursue a line of reason-
ing similar to that in Chapter 4 to prove theorems such as those in Chapter 4 for nonmaximum-
likelihood decoding of block codes on this channel. This seems like a promising area for future
research.

Obviously, the constrained-Markov model has a dual. This dual has a Markov state depend-
ence in the parallel direction. In the time direction, each subchannel state persists for a "block
length" of M, uses of the channel. At the start of a new block, the set of subchannel states is
chosen independently of prior states according to the Markovian rule given. This dual seems

less attractive as a model for physical channels than the constrained Markov model itself.

I. OTHER MODELS

Clearly, any one-dimensional discrete-time random process which is not independent from
shot to shot may be combined with complete constraint in the parallel direction to yield a state
process for a channel with both time and parallel dependencies. Since general results concern-
ing the single-subchannel versions of such channels are not available, one would anticipate dif-
ficulty in analyzing the multiple-subchannel case.

When we consider the case of channels which are neither completely constrained nor in-
dependent in either the time or the parallel direction, it becomes difficult even to find simple
models for the underlying state process. Here, the prospect for other than numerical results

is slim indeed, and even numerical results can only be obtained with great difficulty.
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APPENDIX A
CHANNELS WHICH ARE MC BUT NOT MS, AND RELATED TOPICS

Theorem A.1l.
There exists a two-subchannel MC channel with XS = YS = {o, 1} which is not MS.
Proof.
Let the conditional probability distribution p(yiyz/xixz) of a 2 X 2 X 2 MC channel be given

by the cntries in the following matrix:

i)

00 01 10 11

00| 0.5 0 0 0

o1 o |o.5)05]0.5
Y4192 Py,Y,/%,%,)

10 0 0.5 (0.5]|0.5

45 [f 05 0 0 0

It may be verified [using Eq. (2-2)] that this channel is MC. Suppose this channel is MS; then,

for some set of subchannel conditional probability distributions {pa(g /n)}ozeA’ £,m €{0,1}, and

some joint distribution p(ai, ozz), we have

Py, Y /% %)= ) ) play. @p) o (74/%)) P (7/%5) - (A-1)
a1€A OZZEA

For each value of @, we may dcpict pa(g/n) as follows:

1-a
0 () ) 0 < afa) <1

perm %@ bla)

1 0< bl@)g

1-bla)

Let us consider the four "pure"” channels which are diagrammed below:

o—— 0o 0 0
q,(&/7) q,(&/7) 1
i ::
S S—— 1

a5(€/m) 1' a4(€/m)
1 1
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COne can easily see that pa(g /n) may be represented as follows:

Pu(/1) = (1—2a) (1 —=b) q,(E/n) +b(1 —a)a,(E/n) +a(l —b)q (/1) +abg, /1) .  (A-2)

Note that all the coefficients of the qk's are non-negative, and that a and b are functions of «.
Since p(Oli, ozz) > 0 for all ay, @, € A, Egs. (A-1) and (A-2) imply that there exist variables

61 and [32. each of which may takc on values 1, 2, 3, and 4, and a joint probability distribution

p(B1. BZ), such that

4 4
s S e
LA N ) p(Bi,BZ)qﬁi(yi/xi)qﬂz(yz/xz) . (A-3)
B1=1 BZ:Z

[We know that p(Bi. BZ) is a probability distribution because the non-necgativity of thc cocfficients
in Egs. (A-1) and (A-2) implies p(Bi, BZ) >0and X g (yi/xi) =1, 1=1,2 implies
4 4 Wil o
z Z  p(B,,B,) =1 from Eq. (A-3).] 1t is clear that Eq. {A-3) holds cven if p(« .(1/2) is a
B =1 B =1 1552 il
1 2
joint density and the sums in Eq. (A-1) are replaced by integrals.

Suppose Eq. (A-3) holds for the MC ehannel given. Sctting = H S 0, we have

pOy,/0x,) = Y Y piB,.By) a, (0/0) ag (y,/x,)
B;=1 By d .
4 4
= )2 pBy)ag (y,/x)+ ) PR.B,)ay (v,/2,)
[32'2 2 ,—’ 2 ﬁz 2 12 (A-4)
Bzz'l 132:1

Since p(,,8,) > 0 and p(0y2/0x2) = 0.5q1(y2/x2), only the terms of Eq. (A-4) with 8, = 1 may be
nonzero. [Otherwise p(01/00) > 0 or p(00/01) > 0 or both, contrary to assumption.] Hence,
0.5 = p(1,1) + p(2, 1)
From Eq. (A-3),
p(11/11) = p(1,1) + p{1,3) + p(3,1) + p(3,3) 2 p(1,1) > 0
Since p(“/“) =0, p(1,1) = 0 as well. Thus, p(2,1) = 0.5. We have
p(00/10) =p(2,1) + p(2,2) + p(4,1) + p(4,2) > p(2,1) = 0.5

But, p(00/10) was given to be zero; hence, we have a contradiction which proves that the channel

whose transition probability matrix is given above is not MS.

Theorem A.2.

There exists an M subchannel MC channel with X_ = Y_ = {0, 1} which is not MS.

Proof.
Pieck a single-subehannel conditional probability distribution p(¢ /n), te€ Ys' n € Xs and let
M

B s yM/x1 ..... xM) = p(yiyZ/x1X2) gl p(yi/xi) (A-5)
i=3
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where p yiyz/x x,) is given by the matrix shown in the proof of Theorem A.1. It may easily be

verified that the RHS of Eq. (A-5) is the eonditional probability distribution of an MC ehannel.

Suppose that for some {pa(g /T’)}ozeA and joint distribution p(ai, ceey UM), we have
B S, ©
P(Yiv'yM/x M)_ ) L p(Oli,...,OZM)
@, €A . €A
4
R, W By h = b Ml T (A-6)
1 M
Then,
1 N
}_l }_/ p(y1 ..... yM/x1 ..... XM)
Y3 ¥ M Ys
= L L plege)p, 7,/%) b, (v,/%,)
@ 6N @€l ¢ ¢
1 2
p(yiyZ/Xixz) . (A-T7)

But this implies that the ehannel whose transition probability matrix is given in the proof of
Theorem A.1 is MS, eontrary to Theorem A.1.
Theorem A.3.

For any integer M, subehannel input space Xs’ and subehannel output spaee YS, there exist
MC ehannels whieh are not MS.

Proof.

Let X' = Y| = {0,1} and p' ¥y ,y'M/x'i, ... x};) be given by the RHS of Eq. (A-5) with
X, = x'i, and ¥y~ y'i. Define a funetion f(x) from Xs onto X'S and two probability distributions

(or densities) po(g ) and pi(g ) over Ys sueh that po(g ) pi(g )= 0for all ¢ € YS. Definet

M

T N
p(yi""’yIV[/Xi""’xM)_ L 2y H By
Vi g ymeYg List
)<p'[y'i,...,y'N[/f(Xi),...,f(XM)] . (A-8)

The relationship between the primed (original) and unprimed (derived) ehannels is shown in

Fig. A-1. Sinee the primed ehannel is MC, elearly the unprimed e¢hannel is MC, too. Now, sup-

pose for some {pa(g/n)}aeA’ t e YS, n € Xs and some joint distribution p(« on), we have
I
p(yi""’yM/Xi""'XM)_ Vi v p(ozi,...,on)
aeiEA QMEA
x pai(yi/xi) paM(yM/xM) : (A-9)

t As usual, py y/y
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Fig. A-1. Relotionship between original and derived channels.

Let
Yso be the set of ¢ € Ys for which po(._i) 21i0)
and
\si be the set of £ € ‘)S for which pi(g) 0
g e ) . . . ) . e . e
Since po(é ) p1(5 )= 0 for all & € \S, \so and \si are disjoint. If ry € \s’ define
> = B /
Pa Ty RYS  fr P 7
i ey i
yi ST,
i
Note that
5
3 i
yi€§ sr.
i
Pick
(r‘1 ,I‘M) r‘ie\s =T | M
and
(u1 uM) ui € XS i=1 M
Choose
(Xi' ,XM) xieXS N =T (PRSI ||
so that
fi(x.) = ui 1= 1, M

72

(A-10)

(A-11)

(A-12)



From Eqgs. (A-8) and (A-9),

M
Lo X | TE et v Sty g
] 71 ] 1 . 1
yie'xs yMEYS i=1
= 7 = 3 pilied s ape BB @ /%) 2 By Gl - (R-48)
aieA oneA s M

Summing both sides of Eq. (A-13) over all ¥ € Ys
and (A-12), we get

o i< i< M, and using Egs. (A-10), (A-11),
i

M .
‘-‘ \' i ' '
¥ L H 6y|i p'(yi,...,yM/ui,...,uM)
' ' ' ] A
y1€YS y_‘\/IEYS i=2
- N 3% =
L L Plag,... o) Pai‘ﬁ/xﬂ P, (ry/%xy) - (A-14)
o, €A o €A
1
This reduces further to
1 =
8 7 3
p'(r, ,I‘M/u1 ..... upg) o L play, XN
aieA one/\
xw, (ri/ui)"' W, (rM/uM) (A-15)
1 M
where w_ (r./u,) is defined by
a i &
wai{ri/f(xi)l = Pai(ri/xi) (A-16)

foralla, € A, r. €Y', and x, € X . Clearly, w_ is a eonditional distribution on Y' X X'.
i i s i s o4 s s

Sinee (r . ,rM) and (uy ;0. ,uM) were arbitrary, Eq. (A-15) implies that the primed ehannel

4 1
is MS, contrary to Theorem A.2.
Theorem A.4.
There exists an NII ehannel with XS = Ys = {0, 1}, which is not MST.

Proof.
FFor £ an even integer, and N an even positive integer, define

N/2

POgge - YN Xgarr - Xgan) = II PGporotr Vv Sem -1 Xea2x) (=5}

k=1

where the bivariate conditional probability is given by the matrix shown in the proof of

Theorem A.1. The conditional probability for other values of £ and N ean be obtained by
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summing conditional probabilities of the form given over appropriate outputs. Since each odd
input-output pair and the succceding even one "stand alone," it is clear (an argument similar to
that used to prove Theorem A.2 may be used) that the channel given by Eq. (A-17) is NII but not
MST.

The restriction to binary subchannel alphabets may be removed as in Theorem A. 3.
We note that the channel given by Eq. (A-17) is cyclostationary rather than stationary. In
fact, there is a unique stationary channel with bivariate conditional probabilities given by the

entries in the following matrix:

Xi¥i41

00 01 10 4

00] 0.5 0 0 0

0o1{ o [0.5]05] 05 e
¥4 PY; Y541/ % %501
10] o |05 |05 |05

1111045 0 0 0

This channel has thc property that given a single input sequence, thcrc are only two possiblc
output sequences, each having probability one-half. This is true regardless of the length of

the input sequence. Unfortunately, this channel is not NII, and this fact is proven as follows:

(1) The input (Xi’XZ’ x3) = (0, 0,1) may result in the outputs (yi,yz, y3) =
(0,0,1) or (1,1, 0), each with probability one-half.

(2) The input (x4, %5, %3) = (0,1, 1) may result in the outputs (¥4 ¥, Y3l =
(0,1,0) or (1, 0,1), each with probability one-half.

Hence,
p(001/001) + p(011/001) =

and
p(001/011) + p(011/011) = 0+ 0 = 0

Thus, the channel referred to is not NII. 1t is not known whether there cxist strictly stationary
NII channels which are not MST.
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APPENDIX B
PROOFS OF THEOREMS 2.3 AND 2.4

I.et P be the set of probability distributions over a finite product space XSM and D be the

set of product distributions over XSM Let XSM consist of K points. Clearly,

DEC PER™ (B-1)
and P is compact.T
Lemma.

D is compact in fRK.

Proof.
D is bounded because D C P, and P is bounded. Let p(xi, P xM) be a limit point of D.
Then, there exists a sequence :{111 qfi( xi)] :;1 of product distributions with
M 2
im Qe L plxpxy) = T 9 x)| =0 (B-2)
) xieXS xMeXS i=1
Since the sums are finite, this implies
M
mo L L [etemg) = IT b)) s (B-3)
x1rXS xMeXS i=1
Now,
M
E E plx,, ... xp) — [T q[i(xi)
xicXS xMeXS ii=d
> Y |pfx)-a,lx)| 20 i=1,...M (B
xi€XS '

where pi(xi) is the marginal distribution of the ith subchannel input associated with the joint

distribution p(x,, .. }. From Egs.(B-3) and (B-4),

Y|

lim q, (x)) = p;{x;) . (B-5)
i

[l

From Egs. (B-2) and (B-5),

M M
plxy, ..., xpg) = zi*rﬁ I1 q[i(xi) = I py(x) . (B-6)
1i=# i=1

1 Thot is, closed ond bounded. See W. Rudin, Principles af Mathematical Analysis, 2nd edition (McGraw-Hill,
New York, 1964), Theorem 2.41.
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Hence, p(xi, A xM) is a product distribution, and D is closed. Since D is closed and bounded,

it is compact.

Proof of Theorem 2.3.

We note that since D and P arc compact subspaces of RK, DX {[0, 1]} and P X {[0, 1]} are

)
compact subspaces oi'J\K 1.

(1) Since a continuous function defined on a compact set is bounded,T

FD(R), GD(R), F_(R), and GP(R) are finite,

(2) Since a continuous function defined on a compact set achieves its max-

P

imum,I for each value of R there exist 0 € p* < 1 and E;* ¢ D with

F(R) = flp*, p*, R) . (B-7)

Thus,

F(R) = f(p*, p*, R) < glp*, p*, R) < G

1)(Fi) < Gp(R) (B-8)

as required. The last inequality is an obvious consequence of Eq.(B-1).

Clearly, if f < g, the inequality between FD and GD is strict.

(3) For the same reason as in (2) above, for each value of R there exist

ng'siandg'epwith

Fo(R) = f(p', p", R) . (B-9)

p!
Hence,

>

FL(R) < F(R) = f(p", p', R) < glp', p'. R) € GR(R) . (B-10)

The first inequality is an obvious consequence of Eq. (B-1). It is clcar
that if f < g, the inequality between FP and GP is strict.
Proof of Theorem 2.4,
(1) For each R, pick € > 0. There exist 0 < p'< 1 and p'e D with
0g F(R) —flp",p, RIge . (B-11)
Thus,

Gp(R) = Fiy(R) = [GL(R) = g(p', p', R)] + [glp', p', R) — f(p", p', R)]

+ 180, PLR) = Fp(R) 2 0+ 0— €= —¢

T W. Rudin, op. cit., Theorem 4,15,

f1bid., Theorem 4.16. If this were not so, we would hove used . u.b. insteod of max in the definitions of F

DI
GD, FP’ ond GP'
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Since € was arbitrary, we have

GD(R) = FD(R) >0

as required. The rest of Eq.(2-22) follows from Eq.(B-1).

(2) The proof here proceeds as in (1) with P replacing D.

We note that if { and/or g fail to depend on any or all of p, 5 and R, the conclusions of

Theorems 2.3 and 2.4 remain valid.

97



APPENDIX C
SOME USEFUL INEQUALITIES

This appendix contains statements of the important nontrivial inequalities used in the text.
A reference is given for each inequality stated. In any inequality in which A appears, we assume

0<Arg.

(1) Let {ai}i\‘:1 be a sequence of non-negative numbers. Thent

N A N
Lale B (C-1)
i=1 i=1
(2) Let {ai}li\—i and {bi}li\‘_1 cach be sequences of non-negative numbers with
N = =
% b, =1. Then,?
. i
=i
N N A
V! A V' ~
L bal<| L ba; . (C-2)
i=1 i=1
. o . N M M .
(3) Minkowski's inequality: let {aij}i—i =1’ and {p‘].}j_1 be sets of non-negative
M T a
numbers with Z p.=1. Thcn,§
=1
N /M 1/x M N A1/
\-\ A A Y\
2 L pjaij < E pj L aij . (C-3)
i=1 \j=1 j=1 i=1

t G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalities (Cambridge University Press, Cambridge, England,
1959). See Theorem 19, p. 28.

1bid., Thearem 16, p. 22,
§1bid., Theorem 24, p.30.
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APPENDIX D
CANONICAL REPRESENTATIONS
Theorem D.1.

For any MS channel with finite input and output alphabets, there always exists a representation

for whieh in eaeh channel state the subehannel conditional probabilities are all either zero or unity.

Proof.
Let A,AS={1,...,L}, 4 ={1,...,Q}. pa(q/f)oz ey g e, e, pla,....a)) be
given and
p(yi, . ,yM/xi, Co xM)
o ¥ W T L = .
s 3 w3y Bl geaegy) pai(yi/xi) paM(yM/xM) . (D-1)
&161\ cyMeA

We define a pure (sub) channel as one for which the input completely determines the output. There
are QL possible different pure subehannels, We denote the eonditional probability distribution

associated with a pure subchannel by s (q/1), 1 € XS, q € Ys’ where 1 £ 8 QI‘. We note that for

eaeh B, £ there is a unique value of q with sB(q/JZ) = .
If 1<bk<QLfor 1< k<M, then
M
ply/x) = [] Sbk(yk/xk) (D-2)

k=1

is the conditional probability distribution of a pure channel with LNl inputs and QM outputs.
For eaeh @ ¢ A, we shall show that it is possible to expand pa(q/JZ) in a series of SB(q/f)
with non-negative coeffieients, as shown in Eq. (D-3).

QL

p la/ty = ), Cfs (a/1) (D-3)
n=1
L

where Cg >0, o e A, and1 £ ng<Q The expansion Eq. (D-3) is not generally unique, but one

way of finding the Cg is to proeced as follows: Let
o
= D-4
P, (a/1) = pyla/) . (D-4)

By definition of a probability distribution, p(;)(q/JZ) 20, 1<1< L, 1€£q< Q. Find the smallest

p 1
nonzero transition probability in the set {p(;)(q/ll)} szi q?i. Call it r, . Now,

Q
Z po(;(q/f) =1>0 (D-5)
1

q:
. " : 41
for all £, 1< 2 < L. Thus, there must be a (not neeessarily unique) function q (£), 1 < q (£} < Q.
with p2 [q'(£)/1] >0, 1< 1< L. By definition of r_,

pO 1" (n/0 21 >0 (D-6)
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for all £, 1< £ < L. Choose qi(

value of £. Iet s, be the pure subchannel with

£) so that Eq. (D-6) is satisfied with equality for at least one

by
s, falto/=1 . (D-7)
1
Let
il _ (O] 1 "
p,(a/t) =p /1) rasbl(q/l) . (D-8)
Clearly,
poi(q/l)zo , dgtgls , 1<45s®

If pﬂ}(q/l) is not identically zero, the process may be continued. Note that at each step of the
m+1

s o

at most, LQ positive values of pa(q/l), the process must terminate after, at most, [LQ steps,

process, a positive value of pm(q/l) is converted to a zero value of p (q/1). Since there are,

and we may write

N
A SN
pa(Q/” = L M5 (q/1) (D-9)
B a b
m=1 m
where
NLLQ . (D-10)

Ilquation (D-9) may be converted to Eq. (D-3) if rén - Cgl and the s _(q/¢) are renumbered so

B
that bm -~ m, Now, from Eq.(D-3),

L3
M M Q\‘ o,
II Pg. (yi/xi) = 11 L G sn.(yi/xi) ! (D-11)
: i = i i
i=1 =l nizi

Thus, from Egs.(D-1) and (D-11),

BiFy s ,yM/x1, o xM)
M [Ql
N N L /
= Lo Pleyg,.ay) JTT LG, sy try/x)
o N i i
aicA a/McA i=1 ni-i
L i
Q Q - -
e Oy P 3 ¥ } @ o &
- Ly iy &£y Ay P&, ¥y n n
-1 2 A A t M
Ili— an[— CY1€A ﬂ’l\lE
Xs Ay, /x,} oo 5 Ayag/%yq)
1 1771 nl\/l M’ ™M
L s
Q Q
= W .c \' . . . / "
=), L ding,..oong) sni(y1/x1) bnM(yM Xy (D-12)
n1=1 nM=1
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where

' &g M
U S LI R RN [ DR Gt S G, T (D-13)
ozieA oneA
d(ni, 2 A nM) is clearly a probability distribution because it is non~negative valued by Eqg. (D-13),
and a summation of both sides of Eq. (D-12) over Yoo M shows that it is properly normalized,

Thus, we have our desired representation,
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APPENDIX E
A COMPLETELY CONSTRAINED CHANNEL
WITH A CONTINUOUS PARAMETER

In this appendix, wc shall give an example of an MSCC channel whose capacity per subchannel
with state unknown approaches the capacity of a single subchannel with state known as the number
of subchannels increases, although the statc rcpresentation for the channel is not discrete. Sup-
pose we have an MS channel consisting of M parallel binary symmectric subchannels. For each
use of the channel, the crossover probability g is the same for all the subchannels, Thus, this
channel is MSCC. A probability density p(g) is given with p(g) = 0, unless 0 < g < 1. We will sup-
pose that each possible input is uscd with probability (1/2)M, indcpendently of the channcl state.

It is casy to see that this is the input distribution which achieves capacity, whether or not the state

is known at the receiver. Now,

IXY; G) = IY; G) + UX; G/Y) . (E-1)

By symmctry, ply/g) = (1/2)1\/l = ply). Thus, y and g arc indcpendent, and I{Y; G) = 0. Hcence,
IXY; G) = UX; G/Y) . (E-2)
Combining Egs. {3-4) and {(E-2), we have
(X; Y) = IX; Y/G) - KXY; G) . (E-3)

For each value of g, ply/xg) depends only on the Hamming distance dH(x, y) between x and y.

[.et D be the ensemble of such distances.

IXYD; G) = IXY; G) + I(D; G/XY)
= I(D; G) + UXY; G/D) . (E-4)

Now,

p(d/gxy) = pld/xy)
and

plxy/gd) = p{xy/d) . (E-5)
Hence,

ID; G/XY) = 0 = (XY: G/D) (E-6)

and, combining Egs. (IZ-6) and (I£-4), we get
UXY; G) = UD; G) . (E-7)

Combining Egs. (E-7) and (E-3), we get

X; Y) = UX; Y/G)—LD; G) . (E-8)
Now, D ={0,1,...,M}; hence,
UD; G) < (D)< log(M + 1) . (E-9)

Thus, using Theorem 3.1, Egs. (E-8) and (I2-9), we have

UX; Y/G)—log{M + 1) < UX; VIS UX; Y/G) . (E-10)
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We may readily compute

I(X; Y/G)

1
MS (1 +glogg +(1—g)log(l—g)] plg) dg
(¢}

MIX,: Y, /G) . (E-11)

Thus, from Egs.(E-10) and (E-11),

- log(M + 1) _ IUX; Y) _ ]
(b Yi/G)— AT < “Fr—< X Y1/G) . (E-12)
Now,
- log(M + 1) _ o
\14120 =t r— =0 . (E-13)
Hence,
y X, Y) _ . 9
h1411110 = = UX,: Yi/G) . (E-14)

From the remarks preceding Eq.(E-1), Eq.(E-14) implies

lim 1€
S

= C'i . (E-15)
Moo

M
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APPENDIX F

AN MSCC CHANNEL FOR WHICH Ej(R.) # E\(R))
Consider the 2SCC channel defined [see Eq. (4-1)] by Xs E i {1,.... 8}, pla) = 1/2,
o =1,2, and

1 n=t¢

pylE/m) =
0 otherwise
(0 ifeg=2,..., 7
£y f 24 8 g| 2 7

ol =z 6 = Gad T B e
1 if (¢,n) = (1,1) or (8, 8)
0 if (¢, 1) =(1,8)or (8,1)

1 o— — 0 1 1 1
1

2 o— — 20 2 4 2
1

3 o——————0 3 3 3

U] 4 o—l___o 4 { n 4 4 {

1

5 o———o0 5 -] 5
1

6 o 0o 6 6 6
1

i 020 7 T T
1

8 D it i 8 8 8

p, (&/m p, &/m

In the computation of E'Z(RS), we are first concerned with the minimization for each value
of p, 0 < p <1, of the function F'Z(p,?)) over all ;—; € P [see Eq.(4-33)], Using Eq.(4-19) and
taking advantage of the available symmetries, we find that for purposes of minimization we may

consider F!

;asa function of a reduced probability vector p}:

=S 1+p 1+p 1+p
1 i,
E 2(p, pr) =3 [4pr(1, 1) + 24pr(1, 2) + 36pr(2, 72} ]

1.1/14p 1.1/14p 1+p
+2(p.(1, 1)+ 12p (1.2) (3) + 36p (2, 2) () ]
where
by = Ip (1), p(1,2), p_(2,2)]
p.lt, 1) >0, p.(t.2) >0 , p(2,2)>0
and

4p_(1,1) + 24p_(1,2) + 36p _(2,2) = 1
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The components plny, n,), ny, n, = 1,...,8, of the original probability vector p may be
obtained from those of the reduced probability vector Er as follows.

Define

2]
"

= (1,8}
Sa = 2, ... ., W)
By g = (i), €85 w5 € 8p)
Ay, = {(Tli,nz)/n1 €S, n, €8, or n, €8,, 0, 681}
L = S, Ml €6, 7, Ei8)
Then, (ni,nz) € Aij implies
p(n,.n,) = pr(i,j) =

In the computation of EZ(RS)’ we»are first concerned with the minimization for each value
of p, 0 < p <1, of the function F'Z(p, p) over all E € D [see Eq.(4-79)]. Using Eq. (4-47) [replacing
the LLHS by G'Z(p, q), and Py by qq to avoid confusion] and taking advantage of the available sym-
metries, we find that for purposes of minimization we may consider G'2 as a function of a reduced
probability vector a,:

- 2
Gylo,a ) = 3 (24, (0P + 6q_ (21*P)° + 2 [q (1) + eq (2) (%)1/“912“*9)

where
G - ()"
gy = lag (1. a ()]
q (1) >0 . q  (2)>0
and
qur‘“) + 6qsr(2) =
The components qs(n), n=1,...,8, of the original subchannel probability vector ES may be

obtained from those of the reduced probability vector asr as follows:

b g Si implies qs(n) = qsr(l) s = ft; 2

Thus, we may compute (for RS in bits)

E'Z(R ) = max —ZpRS In2 —In n_l}n F'Z(p, pr)
Pr
and
hZ(I{S) = max —ZpRS In2 — 1In rim G'Z(p, qr)

ar
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3-63-8600]

E,(Ry), E,(Ry)
=]
m.
7

SRS e
08

Rg (bits)

Fig. F-1. E'2(RS) and EZ(RS) vs RS for a particular MSCC channel.

The minimizations over ;r‘ and (—:fr were performed using the method of Zoutendijk.T The
entire computation was programmed on the IBM 360. Results are given in Fig. I'-1, where the
vertical distance A between the straight-line portions of the two curves is 0.0318. The guar-
anteed accuracy of & is given by the bound 0.0301 < A <0.0319. This bound is believed to be
conservative (i.e., A is believed to be given by 0.0318 to three significant figures). The results
clearly demonstrate that E'Z(Rs) # EZ(RS) for this r-,haanel.

Table F-1 gives some of the values of E'Z(Rs) and EZ(RS), together with the values of
P, Pp and a,. which achieve the maxima required by the definitions of E'Z(Rs) and EZ(RS).

The marginal distribution of subchannel inputs p(n) (the same for both subchannels) cor-

responding to f;r may be computed as follows:

pr(i) = ()pr(1, 2 % Zpr(1, 1)
pr(Z) = épr_(Z, 2) + Zpr(1, 2)
N € Si implies  p(y) = pr(i) . e 2

The capacity C'Z for this channel is 1.660964 bits, achieved by a product distribution (see
proof of Theorem 2.7) with q _ = (0.19992979, 0.10002340).

t G. Zoutendijk, Methods of Feosible Directions (Elsevier, Amsterdam, 1960).
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