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PARALLEL CHANNELS WITHOUT CROSSTALK 

ABSTRACT 

In this report, a study is made of information theoretic channels which are decomposable 

into a number of parallel subchannels which will, in general, be dependent. For this 

situation, two models are constructed in which each subchannel input affects only the 

corresponding subchannel output (no crosstalk). In the first model (MC channel), the 

lack of crosstalk is ensured by constraints on the channel conditional probability distri- 

bution. The second model (MS channel) is a channel with an underlying state structure 

with states independent of the input. Both models are memoryless. All MS channels are 

MC,  but the reverse does not hold. 

The effect of subchannel dependencies on capacity and random coding exponent (RCE) is 

investigated. It is proved that these dependencies cannot decrease the capacity of our 

channels. However, subchannel dependencies may either increase or decrease the RCE. 

It is also proved that the capacity of the channel is not less thanthe sum of the capacities 

of the individual subchannels. When the state model is used, the above two quantities 

are equal if the receiver has knowledge of the channel state. 

A definition of partial state knowledge is given. It is proved that, when the receiver has 

partial state knowledge, the resulting capacity and RCE are not decreased. For com- 

plete state knowledge at the receiver, the capacity and RCE are not less than those ob- 

tained for partial state knowledge. 

A restricted class of MS channels is defined wherein all the subchannels are in the same 

state during each use of the channel; these channels are called MSCC channels. For 

these channels, a number of results are given, most of which concern the limiting be- 

havior of the capacity per subchannel and the RCE as the number of subchannels becomes 

large. The principal results are: (1) the capacity per subchannel has a finite limit; and 

(2) the RCE has a finite limit if the rate per subchannel is kept constant and the constant 

is sufficiently large. These results hold whether or not the state is known at the 

receiver. 

Systematic coding and decoding, using BCH codes and minimum distance decoding rules, 

are considered for MSCC channels. Various coding alternatives are discussed, and for- 

mulas are given for computing or bounding performance. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief,   Lincoln Laboratory Office 

* This report is based on a thesis of the same title submitted to the Department of Elec- 
trical Engineering at the Massachusetts Institute of Technology on 5 May 1967 in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy. The report dif- 
fers from the thesis principally in that Appendix F has been added and that the refer- 
ences to M.I.T. course notes have been updated to references to a book by R.G. Gallager 
which evolved from those notes . 
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PARALLEL CHANNELS WITHOUT CROSSTALK 

CHAPTER 1 

INTRODUCTION 

In a typical point-to-point discrete communication situation (see Fig. 1),  we have as input to 

a transmitter a random message   m  which may take on one of  K values.    Corresponding to each 

message value m.,  there is a distinct waveform s.(t) which is transmitted in response to the 

message input.    The transmitted waveform s(t) is corrupted by the waveform channel (fading, 
additive noise,   attenuation,   etc.),   and a resultant signal r(t) is the input to the receiver.    The 

DISCRETE   CHANNEL 
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Fig. 1.    Discrete communication system model 

receiver then must decide which message was the input to the transmitter;   its decision is denoted 
in Fig. 1 as   m.    Discrete information theory generally deals with situations where the modulation 

(transmitter),  waveform channel,   and receiver are considered as fixed,   and the problems ad- 

dressed concern the properties and proper utilization of the resulting combination.    This com- 
bination is called the discrete channel.    For the purpose of properly utilizing the discrete channel, 
we shall be willing to add both pre-transmission and post-reception processing devices.    These 
are usually called coders and decoders,   respectively (see Fig. 2).    Sometimes,  the receiver will 

have knowledge of the condition (state) of the channel,   in which case it is assumed that this in- 

formation is passed on to the decoder. 
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Fig. 2.    Discrete channel with coder and decoder. 

Often,   in practice,   the transmitter,   receiver,   and waveform channel are such that the single 
discrete channel may be profitably viewed as an aggregate of parallel subchannels.    This situa- 
tion is usually associated with modulation  schemes where each subchannel corresponds to a trans- 
mitter frequency interval which does not significantly overlap any of the others.    We will,   in 



general,   assume that our parallel subchannels are dependent but without crosstalk.    The absence 

of crosstalk implies that each subchannel input affects only the corresponding subchannel output. 

Such a set of subchannels may,   however,   be dependent (i.e.,   the subchannel input-output pairs 

are dependent   in  the   usual statistical sense)   if the natural disturbance  (e.g.,   fading)   affecting 

them is itself not independent from subchannel to subchannel. 

Some examples of the dependent parallel channel situation we have in mind are scatter chan- 

nels (e.g.,   tropospheric and ionospheric scatter),   channels with additive colored Gaussian noise 

of unknown spectrum,   and channels subject to jamming. 

Multiple subchannels taken together are usually a less general type of single channel than 

that which the physical constraints on the communication problem alone would suggest we con- 

sider.    However-,   the study of parallel channels is important for three principal reasons.     In 

the first place,   many existing communication systems are built in a multiple-channel  form. 

These include 111'' systems,   tropospheric scatter- systems,   satellite systems,   and telephone 

company  equipment  of various   types.     In such situations,   the   multiple-channel structure   is 

forced upon the user.    A second situation is one which is thought to obtain in optical communi- 

cation systems.    Here,   the bandwidths are so great that no method is presently available or- 

immediately foreseeable which would allow one to modulate across the entire channel bandwidth 

at once.    A division of the channel bandwidth into subchannels is a technological necessity.     Fi- 

nally,   given certain physical constraints on a communication problem,   a multiple-channel com- 

munication system may always be a candidate for consideration as a solution.    It may,   in fact, 

be the most general type of realization that one is able to analyze,   but this will depend on the 

behavior of the physical channel. 

The communication systems we have been considering are point-to-point systems,   where 

all information originates at a single point and is to be ultimately received at a single point phys- 

ically removed from the first.     In what follows,   we shall take the discrete information theoretic- 

point of view and always assume the discrete channel to be given. 



CHAPTER 2 

MODELS,   DUALITY,   AND SOME  BASIC THEOREMS 

A.     PARALLEL CHANNEL MODELS 

To model a time discrete channel in the information theoretic sense,  we need to define 

several elements.    First,  corresponding to the basic unit of signal duration implied by the time 

discreteness,  we define an input space   X  and an output space  Y.<    We refer to a member   x  of 
N X  as an input,   and to a member  y of Y  as an output.    Let X    denote the space of sequences of 

N inputs of length N,  and Y    denote the space of sequences of outputs of length N.    We denote a 
N        -*N N        -» N member of X     by x     = (xv . . . , x^),   and a member of Y     by y      - (y.,..., y^.).    Then,   we define 

X 'N' 
a set of conditional probability distributions or densities^ pN(y    /x    ),   N = 1, Z, . . . ,   on sequences 

of inputs and outputs of arbitrary length.    Sometimes,   a channel state variable is introduced into 

the description to account for the memory of the channel,   if any.    If the channel is memoryless, 

N 

pN(y /x  ) = n p^y/V 
i=l 

N = 1, 2, . 

and  X,   Y,  and p, (y/x) suffice to specify the channel. 

K,«X. 

The parallel channel models we shall dis- 

cuss assume that each input x. is decomposable 

..,..., x-,. which we shall 
li ML 

into  M   subelements x 

call subchannel inputs,  and each output y. is de- 

composable into  M   subelements y. ..... , y,„. 

which we shall call subchannel outputs.    We 

shall assume that the space of the k     subchan- 

nel input (output) at "time"   i  is independent of 

both  k  and   i  and denote it by X  (Y   ).    Now,   in J     sK   s' 
general,  we can simply substitute (x. .,..., x,,.) to r J li Mi 

for x.,   and (y. .,..., y, „.) for y. in the probabil- 
l' w li'        ,JMi J I ^ 

ity distributions which describe the channel and we shall have a description in terms of subchan- 

nel inputs and outputs.    It will be convenient to make a simplifying assumption which will be in 

effect throughout most of this report:   the channel will be assumed memoryless.    Hence,  we shall 

be interested in a channel description given by subchannel input and output spaces X    and Y    and 

Fig. 3.    Conceptual diagram of parallel channels. 

probability distributions of the form p(y., . . . , yM/x., VM' 
x. e X  ,   y. € Y    (see Fie 1 s    J1 s 3) 

We have not yet finished imposing structure on our channel.    Further structure is desirable 

in  order  to  model  the  physical  channels   we  have   mentioned   in  Chapter 1   and   to   restrict 

the   situations  we  wish  to  consider   in  order  to obtain   meaningful  results.     Moreover,    we 

shall provide  two   structural  descriptions   (models)  of quite  different  sorts  and   shall have 

t In Chapter 1, we (tacitly) assumed Y = X.    Here, we consider a more general situation. 

I To avoid the tedium of repeating the words "or densities" when the random variables referred to may be 
either continuous or discrete, this may be assumed unless otherwise stated. 

§ If, contrary to what is impl ied but not required by the notation, p(y i,.. . ryk*/x-\, • • • IXKA) depends on fewer 
than M subchannel inputs, we have a highly degenerate situation.   We do not wish to consider such situations. 



soinething to say about their relation to each other. The first model will be in the form of a set 

of constraints on the probability distribution p(y., . . . , y, ,/x,, . . . , xM); the second will utilize a 

channel state structure to describe p(y., . . .,y,./x,, . . ., xM). 

1.    Model 1 - The MC Channel (M Subchannel,  Crosstalkless Channel) 

Suppose a set of IU — k subchannel inputs and their corresponding outputs are not to be used 

in communicating.    These M — k inputs are set to fixed values.    For purposes of communication, 

we are interested in the conditional probability which relates the -k   inputs which are used to their 

corresponding outputs.    Denote the unused inputs and outputs by x. , v.   (i = 1, . . . , M — k),   and 
h ' h 

the used inputs and outputs by x. , y.   (1=1 k).    (Note that {}.},_.     and {i.}._. are disjoint 
1 A 1 fj K     X — 1 X     X — x 

sets and that their union is the set of integers from 1 to M.)   What we wish is ply.   , . . . , v 
\ V 'i 

Now, 

p(.yli----.yik/x1,...,xM) .       E      ••• E        p(y1,...,yM/x1)...,xM) .(2-1) 

y.   < Y y. 'V 
Jl      S JM-k      S 

As the notation implies,   the LHS of Kq. (2-1) is,   in general,   dependent upon all  IV1   subchannel 
TV  -T  _ 1 . 

inputs x.,..., x.    However,   if for a particular p(y.,..., y/x     ..., x),   k  and {)»}._.     the 

LHS of Eq. (2-1) does not depend on x.  , . . . , x. ,   then the values to which these latter are set 
h ''iU-k 

do not affect the used inputs and outputs in the least.    If this is the case, 

p(\'-'\/xv'xm)    *(\-~-\/\ \)    • (2"2) 

We then say that there is no crosstalk between the used and unused subchannels.    If this is the 

case for all k      1, . . . , IV'l — 1 and all {i»}»  JI   then we refer to our channel as an MC channel.    This 

name is chosen for brevity rather than explicit descriptiveness,   because we will need to repeat 

it often.    The condition we have derived can be stated very simply:   A parallel channel with  M 

subchannels is an MC channel if a summation'  of p(y,, . • • , y-./x., . . . , x,,) over all values of 

the members of any subset of {y.}._j destroys the dependence on the corresponding subset of 

1 iji=i 

Here,   a terminological note is appropriate.    We have assumed that the channel input is de- 

composable into the same number of elements as the channel output.    Hence,  we may refer to 

a pair consisting of an input subelement and its corresponding output subelement as a subchannel. 

The correspondence we speak of is only clear if the channel is an MC channel.    In fact,   we may 

t An integration is required if p(y  ,.. . ,y    /x   ,.. . ,x    ) is a density.   We shall not bother to state this explicitly 
again. 

i In the discussion above,  the values of x.   ,. . . ,x. need not be considered fixed.    We could have assumed 

'l 'M-k 
at the beginning of the description of the MC channel that  k  subchannels were used by user A and the remaining 

M — k by user  B.    If it is desired that user B's input not affect user A's output, we get our MC channel model. 



say that a channel is  an MC channel if and only if there  is  some way to pair the input and 

output subelements so that Eq. (2-2) is true for all k,   1 < k <.M — 1,   and all {i»}»  ,.,   1 < i. < M, 

1 < £ < k.    The pairing need not be unique. 

We summarize with the following definition:   A memoryless channel consisting of M  sub- 

channels each with input space X   and output space Y    and characterized by the conditional prob- 

ability p(y,, • . . , yM/x,, . . . , x,.) is an MC channel if for each k,   1 •$ k < M — 1,  and for each 

{i^ti-   1 <ii<M,   1 4i4k, 

p(yV • • • • yikA'" • •' XM) = *(\ \/\> •• \)    •       ^ <2-2)l 

Although the definition of MC channel we have used assures us that disjoint sets of subchannels 

are mutually noninterfering however they are composed,   the verification of the MC property is 

rather tedious if the number of subchannels is large.    In fact,   the number  z  of different equations 

of the form of Eq. (2-2) which must be satisfied is given by 

M-l 

2  ft) 
M 2      - 2       . (2-3) 

k = l 

Eortunately,  this number can be reduced to M by making use of the following theorem. 

Theorem 2.1. 

A memoryless channel consisting of M subchannels each with input space X and output 

space Y and characterized by the conditional probability p(y,, . . . ,yM/x . . . , x ) is an MC 

channel if and only if for each  i,   1 < i < M. 

p(y1,...,yi_1.yi+1....,yM/x1,...XM) 

= p(yi yi-i-yi+i yM/xi xi-vxi+v--xM]   • (2_4) 

Proof. 

(1) Necessity is proved simply by observing that Eq. (2-4) is equivalent to Eq. (2-2) for 

k = M — 1 and L, . . . , i,   distinct. 

(2) To prove sufficiency, pick k, 1 < k< M. Let {i«}»_< be a set of k distinct integers 

each satisfying 1 •$ L •$ M. Let {J^^-i consist of the remaining (M — k) integers satisfying 

1 •$ L< M.    Recall 

p(yV-'yik/
xi XJ 

£        ••• I Pfy^-.-.y^/Xi xM)       . [Eq.(2-1)] 

y.   eY y. cY 
Jl      S JM-k      s 

If we assume the theorem is false,   then for some integer  q,   1 •$ q •$ M — k,   the LHS of Eq. (2-1) 

depends on x.   .    Now the sums on the RHS of Eq.(2-1) may be formed in any order.'    Hence, 

t This is true even if Y   is not finite;  see, for example, W. Rudin, Principles of Mathematical Analysis, 2nd 
edition (McGraw-Hill, New York,  1964), Theorem 8. 3.    If p(yi,... ,y^/x,,... ,x^.) is a conditional density 
and integrals replace sums,  then the Fubini Theorem allows us to integrate in any order;  see, for example, 
H.L. Royden, Real Analysis (Macmillan,  New York,  1963), p. 233. 



p(vii,...,yik/x1,...,xM 

v   ...      v       v v      v P(y1....,yM/x1.....xM)     . (2-5) 

* Jl Jq-1   ' Jq4l JI\l-k     Jq 

From Kq. (2-4) 

.(yv...,yik/x1,...,xM) 

PIYI, •••.yj     .yi v Jq-1     Jq+1 

V   ...      V        v     ...      v 

y • y •      y • y • Jl ' Jq-1     Jq+1 JIVl-k 

•'%/xi'--"xj     'xj ,. X
M)     • (2-6' ' Jq-1     Jq+1 

Since each summand on the RHS of Eq. (2-6) is independent of x.  ,   the sum,   and hence the LHS 
Jq 

of Kq. (2-6),   is independent of x.   .    Thus,   we have a proof by contradiction. 
Jq 

We note that in the IY1C channel model, although we have defined subchannel inputs and out- 

puts, the subchannels themselves are not identifiable. Our second model will have identifiable 

subchannels. 

2.    Model 2 - The MS Channel (M Subchannel,  State Description Channel) 

Suppose we have a set of M   subchannels each of which may be in one of a number of states. 

We call the set of subchannel states   A.    Associated with each o   r A,   there is a subchannel con- 

ditional probability distribution'  p   (| /?; ),   4   e Y  ,  TJ   c  X   .    We let a. denote the state of the 

i     subchannel,   and a = ((v., . . ., «',,,) denote the state of the (whole) channel consisting of  M 

subchannels.    We call  ft'   the channel state vector.    We assume that a probability distribution* 

p((v,, . . . , ft',,) on the subchannel states is given.    This is equivalent to a distribution p(ft) on the 

(whole) channel state.     Lets 

p(y1,...,yM/x1 xM) 

=       X      '••        X       p(a1,...,aM) pa   (y/x^   •••   p       (yM/xM)       . (2-7) 

aleA ~aM€A 
M 

If we write p(y/x) for p(y1, . ..,y]V./x1, . . .,x   ) and p^(y/x) for pa   (y1/x1)  •••   p      (y^/^'' 
« 1 M 

then Eq. (2-7) can be written in the more condensed form 

P(y/x) =     £    P(«) p^(y/x>    • <2"8> 

a eA 

t These may be densities. 

$ This may be a density. 

§ If p(a.,.. . ,a..) is a density, the sums over a.,... ,a., become integrals. 



A memoryless channel consisting of M  subchannels each with input space X    and output space 

Y    and characterized by the conditional probability p(y1, • • •, yiyi/xi> • • • • XM' defined Dy EtJ- (2_7) 

is called an MS channel (see Fig. 4). 

Fig. 4.    The MS channel. 
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Suppose that we chose instead the apparently more general model where the sets   A., 

M 
i = 1, . . ., M of subchannel states were allowed to be different.    In fact,   letting A =    (J    A.,   we 

i = l      ' 
can represent this situation as an MS channel.    Hence,  these two models are equivalent and we 

have chosen the one which is notationally a trifle more simple. 

Some relations between the MC and MS channels will now be given.    Referring to Eq. (2-7), 

one may see that a summation of any y. over Y    destroys the dependence of the summed expres- 

sion on x.    because      Z       p     (y./x.) = 1,   for all a . t  A,   and x. <r X     .    Hence,   by Theorem 2.1, l  I ..     ra.Jv    I I l        sj '     J 

y.eY i J l      s 
we see immediately that every MS channel is an MC channel. 

Although the fact is somewhat surprising,   it is not true that every MC channel is an MS 

channel.    A counterexample is discussed in Appendix A. 

The emphasis in this work will be on MS rather than on MC channels,   which latter are of 

doubtful engineering interest when they cannot be modeled as MS channels.    We shall,   however, 

assume the more general MC channel model when a result follows naturally from this assumption. 

B.     DUALITY  BETWEEN TIME  AND  PARALLEL DIRECTIONS 

The mathematical descriptions of a memoryless parallel channel bear a strong resemblance 

to those of a single channel with memory.    In both cases,  we start with base spaces X    and Y 

for the basic indecomposable inputs and outputs.    An input to or output of an MS or MC channel 

is a member of the product space X      or Y Similarly,   if we have but a single channel,   a 
s s N N sequence of its inputs or outputs of length  N   is a member of X     or Y    .    The MS and MC chan- 

s s MM 
nels are characterized by a conditional probability distribution defined over Y      XX.    Insofar s s 
as one is interested only in transmitting a sequence of inputs of length N,' a single channel with 

t N may be the block length of a block code, or large enough so that  N   times the basic unit of signal duration 

is equal to the lifetime of the equipment. 



memory is sufficiently characterized by a conditional probability distribution defined over 
N N 

Y     XX.    This is not to say that there may not exist simpler characterizations in particular 

cases. 

The purpose of mentioning the duality between time and parallel directions is twofold:   first, 

it enables us to borrow results obtained for single channels,   possibly with memory,  to use for 

our parallel channel model;  second,   some of the results obtained here will apply to single chan- 

nels with memory. 

We may define channels with memory to correspond to our MC channels:    a channel with no 

intersymbol interference (Nil channel) is defined as one for which given any integer i,   1 < i < N, 

Z    p(y1»---.yNA1. ••• V 
y.eY J1     s 

'i-l'Ji+1- V»t/xj ..... x.   11 x........ x.,)      • (2-9) •'N'    1 l-l     l+l N 

The correspondence between Nil and MC channels is made clear by Theorem 2.1.    We may also 

define the time analog of the MS channel:    let   A   be a set of channel states;   pn{£ /l ),   4   e Y ., 

TJ   fX ,   a ( A,   a conditional probability;   a .  denote the channel state at the i'-n time instant and 

p(a ., . . . , o<    ) the probability distribution over channel state sequences of length N.    Let 

p(yi yN/xi'---.xN
) 

I        ••       T,      P(«! 0
N)p«1

(y«/Xl,'"P«>/,N1       • (2-10) 

a . eA a.,eA 
1 N 

A channel with conditional probability distribution given by Eq. (2-10) is an MST channel. 

Now,   all MST channels are N II for the same reason that MS channels are MC .    All N II 

channels are not MST.    Basically,   the same counterexample which was used to show that all MC 

channels are not MS can be used here.    (See Appendix A.) 

For N II channels,   if k,i   are chosen so that 1 ^ k < i < N,  then p(y, , • • • , y»/x, , .... x.) is 

independent of the input distribution p(x,, . . . , X-J and is characteristic of the channel alone.' 

Thus,   for purposes of block coding,   we may take  N  as the block length and obtain a sufficient 

and unique characterization of the channel/ 

For Nil channels,   we may also define stationarity.    An Nil channel is stationary if for any 

integers j,   k,   and  i satisfying 0 < j < j + I <• N,   0<k<k + i<Nwe have 

P(yj+1 yj+i/xj+l V' = P<yk+1' " ' -' yk+^/xk+l' ' • • ' Xk+i) 

whenever 

and 

y,'  . = y. . Ki^J ^k+i     yi+i 

x' + . =x.+ . l<i<i      . (2-11) 

t This statement will appear subsequently in its "parallel" form.    It may be proved by applying Eq. (2-9) and 
Theorem 2. 1 to the calculation of p(yk,. . . ,yji/x\<,. . . ,x-l)- 

$ Since no stationarity condition has been imposed,  there is no guarantee that the channel will remain the same 
from block to block. 



In other words,   only the length and values of an input-output sequence matter,   not the starting 

point. 

For MST channels,   if the distribution of a.'s is stationary,   then the channel will be stationary 

as well. 

C.    MUTUAL INFORMATION AND CAPACITY 

We now wish to examine the effect of subchannel dependencies on the mutual information 

between input and output of a channel with independent subchannel inputs,   and to compare this 

mutual information with the mutual information between input and output of the individual sub- 

channels.    A comparison is implied between an original channel with dependencies and a derived 

channel without them.    Suppose we are given a channel with subchannel inputs x,, . . . , x        sub- 

channel outputs y,, . . . , y    ,   and conditional probability distribution p(y,, • • •, y../x  , . . . , x    ). 

Suppose,   too,   that we are given an input probability distribution 

M 

p(Xl,...,xM) = n p^-v 
i=l 

where p.(£ ) is a single-subchannel input distribution,   i - 1, . . . , M.    Furthermore,   let _2   and 
1 X. 

,, 1 

_S    denote summation over all but the i      input and output,   respectively.    Then,   the single- 
Y. 

l 

subchannel conditional probability distributions p.(y./x.),   1 < i < M,   are given by 

Pi<W = ^k~)^ J  P(y1..--,yM/x1,...,xM)P(x1,...,xM)     • (2"12> 
1    X    X.   Y. 

l      l 

We define a dependence-removed (DR) channel with conditional probability distribution given by 

M 

PDR(yi V^i "M
1=
 n p^y/V    • (2-13> 

i = l 

Theorem 2.2. 

Taking the usual definition of mutual information' 

M 

I(XI,...,XM;   Yl,...,YM)>   I   I(X.;   Y.)       • (2-14, 

i=l 

If we denote the mutual information between input and output of the dependence-removed channel 

'^DR^l XM;   Y1'--"YM)'   wehave 

M 
V   I(X.;   Yi) = IDR(X1....JXM;   Y< YM)       . (2-15) 

i   1 

t The use of Xj or Y;, i = 1,. . . ,M, as an argument of the informational expressions imp] ies that an expressi 
which is a function of x. or y. is averaqed over X   or Y . 

II s s 



Proof. 

It First we note that 

I(X.;  Y.) = H(X.) - HCX./Y^ i = l M (2-16) 

and 

KX1,...,XM;   Y1,...,YM)=H(X1 X^-Hf^ X^Y, ly       .      (2-17) 

These expressions hold for both discrete and continuously distributed variables.    Since the sub- 
2 

channel inputs are independently distributed, 

M 

H(Xj XM) =    £    H(X.)       . (2-18) 

i=l 

We have also that 

H(X1,...,XM/Y1,...,YM) = H(X1/Y1 YM) + H(X2/Y1,...,YM.X1) 

+ ...+ H(XM/Y1,...,YM,X1,...,XM_1)       . 

3 
Since for any random variables    U,   V,   W, 

H(U/VW) < H(U/V) 

we obtain the inequality 

:\I 

H(X1,...,XM/Y1,...,YM)^    £   HfX./Yj)       . (2-19) 

i = l 

Hence,   combining Eqs.(2-16) through (2-19),   we get 

M 
I(X1'--"XM;   Yl YM'^   X   UXf   YL) 

i=l 

as required.    The proof of Eq. (2-15) is an immediate consequence of the definition of InR • 

Note that for an MC channel the values of p.(y./x.) computed from Eq. (2-12) are independent 

of the input distribution p(x,, . . . , x,.).    Hence,   corresponding to each MC channel there is a 

unique dependence-removed channel.    This is not true,   in general. 

In the remainder of this report,  we will have frequent need to compare constants defined as 

maxima of functions of several variables and to compare functions of one variable defined as 

maxima over the remaining variables of functions of several variables.    This comparison,   which 

will usually take the form of an inequality between two non-negative quantities,   will-be facilitated 

by the two theorems which will be stated below.    First,   it will be necessary to explain some 

notation and give a definition. 

A probability measure over an input space consisting of a finite number  K  of points can be 

represented as a vector  p  in K-dimensional ICuclidean space  %. 

f Numbered references appear at the end of each chapter. 
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Suppose we have a parallel channel consisting of M subchannels.    If p.(x.),   i = 1, . . ., M 
M 1    1 

M are probability distributions over X  ,  then    n    p.(x.) is a product distribution over X = X 
i=l 

Theorem 2.3. 

Let  P  be the set of probability distributions over a finite '  product space X     ,   and  D  the 
M s 

set of product distributions over X     .    Let p  and  R be real variables with 0 •$ p ^ 1,  and 

p   c P.    Let  f and  g  each be continuous real valued functions of p,   p,   and   Ft.    Define 

F    (R) =     max    f(p, p, R) 
0< p4 1 

p <rD 

G    (It)  =     max      g(p,p, It) 
U 0<p<l 

p <rD 

F_(R) =     max     f(p, p, R) 

peP 

G„(R) =     max    g(p, p, R) 
0< p^ 1 

p < P 

& 

Then, 

(1) F   (R),  Gj (R),   Fp(R),   and Gp(R) are all finite. 

(2) Suppose f < g for all 0 ^ p ^ 1 and p   e D;   then 

FD(R)«GD(R)<Gp(R) (2-20) 

and F. (R) < G   (R) if f < g for all 0 ^ p ^ 1 and p   e D. 

(3) Suppose f < g for all 0 ^ p < 1 and p   e P;   then Eq. (2-20) holds and, 

in addition, 

FD(RKFp(R)<Gp(R)       . (2-21) 

Furthermore,   Fp(R) < Gp(R) if f < g for all 0 < p < 1 and p   e P. 

The proof is given in Appendix B. 

Theorem 2.4. 

Let  P  be the set of probability distributions over a product space X     ,   and  D  the set of 
"IVI 

product distributions over X     .    Let p   and   R  be real variables with 0 < p $ 1 and p e P.    Let 

f and  g  each be real valued functions (functionals) of p,   p,   and   R.    Define 

t This implies that X   is a finite set, and  M a finite positive integer. 

1 t 



F   (R) =   l.u.b.   f(p,p, R) 
0«p<l 
peD 

G   (R) =   l.u.b.   g(p,p, R) 
O^p^l 
peD 

F   (R) =   l.u.b.   f(p,p, R) 
O^p^l 
peP 

Gp(R) =   l.u.b.  g(p,p, R)      . 
O^p^l 
peP 

Then, 

(1) If  f < g for all 0 •$ p •$ 1 and peD,   we have 

FD(RKGD(R)«Gp(R)      . (2-22) 

(2) If  f $ g for all 0 •$ p < 1 and p e P,   Eq. (2-22) holds and,   in addition, 

FD(RXFp(RKGp(R)       . (2-23) 

The proof is given in Appendix  B. 

Theorem 2.5. 

Suppose we are given an MC channel,   with X    finite.    Denote the capacity of the dependence- 

removed channel by CnR,  the capacity of the i     subchannel [with conditional probability distri- 

bution given by Eq. (2-12)] by C.,   and the capacity of the original channel (consisting of M 

subchannels) by  C .     Then, 

M 

O   Z   C.=CDR       . (2-24) 
i=l 

Proof. 

Since the p.(y./x.) are unique,   the verification of Eq. (2-24) is straightforward.    First,   the 
111 4 

capacity of the dependence-removed channel is achieved with independent    subchannel inputs 

(i.e.,   a product distribution maximizes the mutual information).    Hence,   the equality part of 

Eq. (2-24) comes from Eq. (2-15).    Let us use a superscript  p   to make explicit the input dis- 

tribution which is involved in the calculation of mutual information between input and output of 

our channel.    Then,   since 

C  =  max  lP(Xlf....XM;   Y4 YM) 

p fP 

and 

CDR =   max   I,1;,^! XK];   Vf . . . , YM) 

p ( I) 

Eqs.(2-14),   (2-15),   and Theorem 2.3 give us the inequality part of Eq. (2-24). 
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Theorem 2.6. 

Suppose we are given an MC channel.    Let C,   CnR,   and C . be as above.    Then,   Eq. (2-24) 

holds. 

Proof. 

The proof is analogous to that of Theorem 2.5.    Theorem 7.2.2 replaces Theorem 4.2.1 in 

Ref. 4,  and our Theorem 2.4 replaces Theorem 2.3. 

Hence,   whether or not X    is finite,   the capacity of an MC channel cannot be increased by removal 

of its dependencies. 

Obviously,   this result applies to Nil channels as well.    However,   if it is the capacity per 

use  c   of an Nil channel that we are concerned with,   conditional probability distributions are 
NXXN 

s s defined on Y_   x X_   for all positive integers  N,   and we define 

lim   - 

and 

CDR =   lim 
DR      N-» 

PR 
N 

Then, 

N 

c^-  lim    ^    E   C. 'DR 
(2-25) 

so that the capacity per use of an Nil channel is not decreased by removal of its dependencies. 

If the channel is stationary, the middle expression in Eq. (2-25) is simply the capacity for one- 

shot use of the channel. 

To abbreviate the description of channel examples in the remainder of this report,  we will 

agree to call an MC channel with  M   subchannels,  X    = {l, . . ., L} and Y    = {l, • ...Q},   an 

MXLXQ channel. 

Both the inequality of Eq. (2-14) and the inequality part of Eq. (2-24) may be strict.    This 

can be shown by the following example of a 2 x 2 x 2 channel: 

xlx2 

yly2 

00 

ill 

10 

11 

00 01 10 11 

5/8 1/8 1/8 1/8 

1/8 5/8 1/8 1/8 

1/8 1/8 5/8 1/8 

•1/8 1/8 1/8 5/8 

P(y1y2/x1x2) 
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This example is MS    as well as MC.    Capacity (0.452 bit) is achieved by the following input dis- 

tribution? p(x.,x~): 

p(00) = p(01) = p(10) = p(ll) = 1/4 

The dependence-removed channel is: 

(2-26) 

x  x_, 
1   2 

00 01 10 11 

y^y 1J2 

00 

01 

10 

11 

9/16 3/16 3/16 1/16 

3/16 9/16 1/16 3/16 

3/16 1/16 9/16 3/16 

1/16 3/16 3/16 9/16 

PDR(yiy2/xix2) 

C...-.(0.378 bit) is also achieved by the input distribution Eq. (2-26).+   Hence,   the inequality part 

of Eq. (2-24) may be strict.    Since Eq. (2-26) is a product distribution,   both  C   and CnR are 

achieved with independent inputs.     Thus,   the hypothesis for Theorem 2.2 is obeyed and the in- 

equality in Eq. (2-14) may be strict as well.    A continuity argument shows that Eq. (2-14) may 

still hold for dependent subchannel inputs. 

The example we have been discussing may also be used to show that for dependent subchannel 

inputs neither- Eqs. (2-14) nor (2-15) need hold.     For the input distribution p(x,, x?) given by 

p(00) = p(ll) = 1/2 

p(01) = p(10) =  0 

we have 

I(XlfX2;   Y1(Y2) 0.262 bit 

2 

y 

i=l 

X„X, 

I(X.;   Y.)   = 0.379 bit 

WX1'-V  YrY2) = 0.329 bit      . 

One might be tempted to conjecture that an MC channel always achieves capacity for inde- 

pendent subchannel inputs.    The following example of a 2 x 2 x 2 channel disproves this conjecture: 

X1X2 

00 ill 10       11 

y^2 

00 0.5 0 0 0 

01 0 0.5 0 0 

10 0 0 0.5 0 

11 0.5 0.5 0.5 1 

P(y1y2/x1x2) 

t See Example 1  in Chapter 3, p. 1 7. 

I Theorem 4.5. 1 of Ref. 4 provides the means of proof. 
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One may verify that this is an MC channel (it is MS as well).    Capacity (0.806 bit) is achieved 
only by the following distribution'  p(x,, x?): 

p(00) = p(01) = p(10) = 2/7       ;        p(ll) = 1/7       . 

Since p,(x.) and p2(x?) are both given by p(0) = 4/7 and p(l) = 3/7,  capacity is not achieved by 

independent subchannel inputs. 

Since Theorems 2.2 and 2.5 deal with channels without a prescribed state structure,  they 
naturally have nothing to say about the situation where the channel state is known to the receiver. 

Suppose,   however,  we are given an MS channel.    If we consider the "output" in the state known 

case to be a doublet (y, a) c (Y,A    ),  then we see that this is just a special case of the general 
channel with state unknown to the receiver.    Furthermore,   since the channel state is independent 
of the input and the conditional probability distribution corresponding to a single  channel state 
(a product distribution) satisfies the MC constraints,  the channel with doublet output is MC. 
Hence,   Theorems 2.2 and 2.5 hold for MS channels whether or not the channel state is known to 
the receiver.! 

We conclude Chapter 2 with a theorem which applies only to the situation where the channel 

state is known to the receiver. 

Theorem 2.7. 

For an MS channel whose state is known to the receiver during each transmission,   the 

channel capacity is equal to the sum of the individual subchannel capacities. 

Proof. 

If the receiver knows the channel state,   the applicable conditional probability for the channel, 

corresponding to the state a,   is 

pa (yi/xi] ••• p«. (W   • 1 M 

Thus,  the MS channel with state known at the receiver is already a dependence-removed channel. 

We have from Eq. (2-15) 

M 

£   $<*!=   Yi) = Ip
a,(X1,...,XM;   Y, YM) (2-27) 

i=l 

where the channel state a,   and input (product) distribution 

M 

P*(x4—xM) = n p-!(*i> 
i=l 

arc now both made explicit parameters of the informational expressions.    Averaging over the 

channel states,   we have 

t Theorem 4.5. 1 of Ref. 4 shows that the distribution given yields capacity.    Corollary 2 to this theorem states 
that there is a unique output distribution corresponding to capacity.    Since the transition matrix for the channel 
is nonsingular,  the input distribution must be unique as well. 

i  There is no difficulty posed by the fact that we use an augmented output in our definition of mutual information. 
Since channel state is independent of input,   l(X;   YAM) = l(X;  Y/AM). 
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z •• Z      P{oiv-- ••V 

M     a. 
1 V (x, Yi> 

a . eA 1 aMeA i=l      * 

X      P(-)Ip"<Xi XM;   Y} YM) (2-28) 

-   .M a eA 

which becomes 

!\1 

I A      p.(a.) I   ...l(X.; u     *i    i    pr      l Yi> = Z      P(a)Ip^(X1... •<XM; y4. • • •' YM 
1=1 a .eA 

i aeA 

(2-29) 

Given a dependence-removed channel,  the mutual information between input and output for 

any joint distribution on the subchannel inputs is never greater than that corresponding to the 

product distribution with the same single-subchannel marginal distributions as the original joint 

distribution.'    Hence,  for the purpose of discussing capacity,  we need only consider independent 

subchannel inputs.    The capacity C  of the MS channel with state known at the receiver is then 

obtained by maximizing the RHS of Eq. (2-29) over all product input distributions  p* .    Hence, 

C' = max       Z      PWlJlXj X    ;  Yt Y    ) 
P*    -     M 

a f A 

max     Y.      Z     p.(a.) I   i(X.;   Y.) ...       '-'       u      ^r    I     pj v    1'      1 

M 

X 
p* 

M 
V V "i max      >,     p (a ) I  *'X ;   Y.)      . (2-30) 

i = l   a . eA 
l 

i=l    "i      cv.eA I 

But,   the last expression in P>q. (2-30) is clearly just a sum of individual subchannel capacities 

C,  with the state known at the receiver.    Hence, 

M 
Y L 

i=l 

as required. 

C =    Z   C! (2-31) 
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CHAPTER 3 
STATE REPRESENTATIONS AND BOUNDS 

FOR MUTUAL INFORMATION AND PROBABILITY OF ERROR 

A. STATE REPRESENTATIONS 

The formula for the conditional probability of the output y     . . . , y     of an MS channel given 

the input x., . . . , x     is given by Eq. (2-7) which is rewritten below: 

P(y1,...,yM/x1,...,xM)=      V     ...       v      p(0l aM) 

1 M 

The definitions of Chapter 2 apply to all the expressions in this formula (see p. 6).     Suppose we 

are given a conditional probability distribution p(y     . . . , y    /x  , . . . , x    ) which can be expressed 

in the form of the RHS of Eq.(3-1) and is therefore the conditional probability distribution as- 

sociated with an MS channel.    Is the representation unique or are there other sets of subchannel 

conditional probabilities r  (4/TJ),   y e T,   and probability distributions p(y,, . . . , yM) such that 

V p(y1,-.-,yM/x1 xM)=    I     •••      I   P(y1,...,yM) 

^yi(
yi/Xi)'" VYM/XM)   ? 

The answer to this question is that the representation Eq.(3-1) is not,   in general,   unique.    This 

may best be shown by an example. 

Example 1 

Let p.( £/TJ ) and p ( |/TJ ) be given below: 

1/2 

1/2 

P/C'i?) P2<f/n> 

Let p( a,, a ?) be given by 

p(l,l) = p(2, 2) = 1/2 p(l,2) = p(2, 1) = 0       . 

Then the representation for p(y,y?/x. x?) can itself be represented by the diagram: 
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a (1,1) 

p("a") 1/2 

1 

(2,2) 

1/2 

p~(y/x> 

1/2 

1/2 

p(y, y?/x. x?) can be represented by the matrix 

xlx2 

00 01 10 11 

y.y \"z 

00 

01 

10 

11 

5 ,H 1/8 1/8 1/8 

1/8 5/8 1/8 1 s 

1/8 1 H 5/8 1 8 

1/8 1/8 1/8 5/8 

Now,   let r.(£/>)), . . . , r  (£/rj) be given below: 

5/6 1/2 

Let p(yj, y2) be given by 

Pd,3) = 3/4 

P(2,4) = 1/4 

P(y1,y2) = ° unless (y1,y2) = (1,3) or (2, 4) 

r4(C/r?) 
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The diagram for the representation is: 

r 

p(r> 

p~(y/x) 
Y 

5/6 1/2 

One may check directly that this new representation yields the same probability distribution 

P(y,iy?/X.i x->)>   anc^ hence the same matrix,   as is given above. 

To conclude this example,   we give yet another representation for the p(y, y-,/x, x_) given by 

the matrix above.     Let s  (£/TJ) and S?(£/TJ) be given below: 

.,(£/•>?> • 2<£"?> 

Let p(/?r/32) be given by 

p(l,l) = 5/8 pd,2) = p(2, 1) = p(2, 2) =  1/8 

The diagram for the representation is given below: 

/S (1,1) 

p(/9) 5/8 

(1,2) 

1/8 

(2,1) 

1/8 

1 1 • 1 I 1 1 

(2, 2) 

1/8 

1                                                    1 
0 0 0 0 0V 0 0V ,0 

I   / \1 

y     x 
'i      i yi   xi     y*vi    yi    xi      yXvl     yi 
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We note that the channel states used here are "pure" channels,   i.e.,   given the input and the 

channel state,   the output is completely determined.    The "burden of randomness"  is placed en- 

tirely on the channel state probability distribution.    Thus,   in some sense,   this last representation 

is a "canonic"  representation.    The existence of canonic representations is not peculiar to the 

channel example given above.    For any MS channel with finite input and output alphabets,   there 

always exists a representation for which in each channel state the subchannel conditional prob- 

abilities are all either 0 or 1,   and hence for which the channel state probability distribution 

supplies all the randomness.    This fact is proven in Appendix D.    There is often more than one 

canonic representation for a given MS channel. 

B. ENTROPY 

The notation of channel representation leads naturally to the idea of channel entropy.    If the 

input-output statistics of a channel are given by an expression of the form in Eq.(3-1),   one might 

wish to define the entropy  II   of the channel representation by the formula ' 

H = -     Yi     "••       E     &c*i>---.<xM) logPfaj, ...,aM)      . (3-2) 

°lfA a
M

eA 

If we compute the entropies of the three representations in Example 1,   we obtain,   in order, 

Hl = ~ I lo%2 I " I loSz | = 1 bit 

H2 = -| log2| - \  log2i  =  0.811 bit 

5 5        3 1 II    = — — log    - — — loe    — = 1  549 bits 3 8       kZ 8        8       s2 8       l-3'*? uiL=> 

Thus,   the entropy of a channel representation is not determined by the channel's input-output 

conditional probability distribution alone.    Therefore,   we may not simply associate the quantity 

given by Eq. (3-2) with the entropy of the channel.    We note,   however,   that the entropy is both 

non-negative and continuous in p(rv ., . . . , o.,).    Hence,   among all representations of the channel, 

there must be at least one which gives a smallest value for the entropy of the representation. 

Despite the problem with uniqueness,   the entropy of a channel representation is,   in some 

instances,   a simple and natural quantity to use in bounding the mutual information between its 

input and output.    This fact will be demonstrated in the sequel. 

C. NATURAL STATE REPRESENTATIONS 

It should be clear at this point that it is impossible to decide which channel representation 

is a "natural" one from the input-output probabilities alone.    The naturalness of a channel repre- 

sentation will depend on the relationship between the states  cv   of the mathematical model and 

the processes which take place in the physical channel.    The choice of a natural state represen- 

tation is important because we will often talk about the situation where the receiver has knowledge 

of the channel state.    If the representation is natural,   this knowledge may usually be obtained 

t We will limit our discussion of channel entropy and its properties to cases where the state distribution is discrete. 
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through measurement of some physical quantity.    Generally,   the models we shall use (e.g.,   the 

first representation of Example 1) are natural ones for a set of fading subchannels with equal 

energy orthogonal signaling on each subchannel.    The observable which the receiver may use 

to obtain state (corresponding to depth of fade) knowledge is received signal energy. 

D.    BOUNDS ON MUTUAL INFORMATION 

We now proceed to derive some relations involving the mutual information between the input 

and output of a channel with discrete states.    The channel is not necessarily MS. 

Theorem 3.1. 

Suppose we have an input random variable   x  which may take on values in a space   X,   an 

output random variable  y  which may take on values in a space  Y,   and a discrete collection  G 

of channels  g,   each with input alphabet  X  and output alphabet   Y.    If probability distributions 

arc given over  G  and   X,   and   x  and   g  are independent,   then 

I(X;   Y/G)-H(G)<I(X;   Y)<1(X;   Y/G) (3-3) 

where H(G) is the entropy of the probability distribution over  G.    If G   is not discrete,   the right- 

hand inequality in Eq. ( 3-3) still holds.    The situation is shown schematically in Fig. 5. 

O- 

1 

13-65-7214 (t)| 

, y 0  2  o k i 
c p 

• 

• 
• 

L 

c ) 

Fig. 5.    General channel with state structure. 

Proof. 

I(X;   YG) = I(X;   Y) + I(X;   G/Y) 

I(X;   YG) = I(X;   G) + I(X;   Y/G) 

Hut I(X;   G) = 0,   since  x  and  g  are independent.    Thus, 

I(X;   Y/G) = I(X;   Y) + I(X;   G/Y) 

Also, 

0<I(X;  G/Y)<H(G)      . 

3-4) 

'3-5) 

The right-hand inequality in Eq.(3-5) holds if G  is discrete.    Combining Eqs.(3-4) and (3-5), 

we have Eq. ( 3-3). 
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Now we may interpret Eq.(3-3).    In the first place,  g represents a "channel state" in just 

the sense we have been using this term.    Hence,  the rightmost inequality of Hq.(3-3) implies 

that knowing the channel state increases the mutual information between input and output.    It is 

a somewhat disguised form of the statement that mutual information is a convex downward func- 
tion of the channel transition probabilities. 

From our assumptions,   it is clear that 

p(y/x) =   YJ  P(S> pg(y/x> =   Z  ')(g' p<y/xs) 
gfG g€(; 

Hence, H(G) is the entropy of a channel representation, and the leftmost inequality of Eq. (3-3) 

states that we need subtract only this entropy from the upper bound to T(X; Y) to obtain a lower 
bound.    H(G) is thus a measure of the tightness of the bounds. 

E.    RANDOM CODING BOUND 

Coding is a subject we have not discussed,   as yet.    For a discrete channel without parallel 
structure,   a random coding bound is derived by choosing a probability distribution over all input 

letter sequences of length  N,   picking the requisite number of code words independently at random 

according to this distribution,   computing an upper bound to the probability of error given that 
a particular message is transmitted,   and averaging over the ensemble of possible codes.    Since 

the bound thus obtained is independent of the particular message chosen,   it is a bound to the 

average probability of error for the code. 
It In the discussion to follow,   the bounding technique of Gallager      will be used;   we shall state 

N some of his results below.      First,   we must give the notation and assumptions.     Let X     be the 
N set of all sequences of length N   that can be transmitted on a given channel,   and let V     be the 

N N set of all sequences of length N  that can be received.    We assume that both X     and Y     are finite 

sets.    Let p(y/x),   for y e Y     and x f X   ,   be the conditional probability of receiving sequence 
y   given that   x was transmitted.    We assume that we have a code consisting of W   code words, 
that is,   a mapping of the integers from 1 to W   into a set of code words x     . . . , x,,.,   where 
- N x     e X   ;   1 < m < W.    We also assume that maximum-likelihood decoding is performed at the 

m -* N — receiver.    Finally,   we define a probability measure p( x) on X     and use P s     to denote the average1 

over the ensemble of codes of the probability of error,   given that the mtn code word was 

transmitted. 

Now we state the following result of Gallager, 

1+p 

p(;/x)l/l+P P        < (W - 
em 

-1)" y V 

- ,.N ^xN 

(3-6) 

for any  p,   0 -^ p < 1. 
If we make some further assumptions,   we can simplify the bound of Eq. (3-6).     Pet x, , . . . , x 

be the individual letters in an input sequence   x,   and let v., . . . , y    be the letters in an output 

t Here and in the remainder of this report, we will freely use the notational convention that p (u/v) = p(u/vt). 

j Numbered references appear at the end of each chapter. 
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sequence y.    We now assume that the channel is memoryless and time invariant so that 

N 

p(y/x) = n  p<yn/
x
n) <3-?) 

n=l 

and that the probability distribution p(x) on input sequences factors into a product of individual 

letter probability distributions as follows: 

N 

P(x) = n p<v  • <3-8> 
n=l 

Then,   a bound on the ensemble probability of decoding error P  ,   which is independent of the 

probabilities with which the code words are used,   is obtained in the form 

P   ^exp[-NE(R)l (3-9) 

where E(R) is called the random coding exponent and is defined by the equations 

1+p 

Eo(p,p) = -In 

J 
V 

K 

I   pdOpfj/k)1/1^ 

I Lk=l 

3-10) 

and 

E(R) =   max  [-pR+E   (p, p)l       . (3-11) 

P,P 

We have assumed that the channel input alphabet consists of the integers from 1 to  K,   and that 

the channel output alphabet consists of the integers from 1 to .1.     The maximization in Eq. ( 3-11) 

is over all p,   0 < p < 1,   and all (input letter) probability vectors  p.    R   is the rate in natural 

units (i.e.,  W = exp[NR|). 

Now,   the question arises of what to do about the parallel structure of a channel if such struc- 

ture exists.    In the first place,   Oallager's bounds in Eqs.(3-6) and (3-9) apply without change to 

a channel with parallel structure if we understand that a "letter" (x    or y  ) in the sense used 

above is an M-tuple which is composed of the inputs to or outputs of the   M   subchannels of an 

arbitrary M-input,   M-output channel.    Then,   if each subchannel input has an   L  letter alphabet 
M M 

and each subchannel output has a  Q   letter alphabet,   K = E     and ,T = Q    .    We note that these 

statements do not depend on the assumptions of Eqs.(3-7) and (3-8).    Although Gallager's bounds 

are fully applicable to the situation we wish to study,   some further structure will have to be 

imposed so that these bounds will be productive of insight in spite of the additional complexity 

of our channel model.    Some of this structure is already implicit in our MS channel model.    In 

addition,   we will make notational changes which will facilitate the explanation of some of our 

results.    Let the rate per subchannel R    be defined bv f s 

RS=M     " (3'12) 

Define 

EM(Rs) = E(R) (3-13) 
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where there are  M   subchannels and K(K) is given by Eq. (3-11).    Then,   we have from Eqs.(3-13) 

and ( 3-9) that 

>e^exp[-NEM(iyi 3-14) 

Now,   let us consider a special rase.    Suppose that the MS channel consists of   M   identical 

and independent subchannels.    Then,  Theorem 5 of Gullager    implies that li.-fR .) may be further 

decomposed so t hat 

E..(R   )      !YIK,(K   ) Ms Is (3-15) 

where 

E.(U)   -   max      -pC  - In 

P.P*      I 

Q 
\' 

q  i 

^   pin p(q 'n1   1+p 

i = 1 

1+p 

(3-16) 

and the maximization is performed over all   p,   0 ;' p <J 1,   and all probability vectors p    defined 

on the subchannel input alphabet.    All the quantities in Eq.(3-16) refer to a single subchannel. 

From Eqs. | 5-14) and (3-15),   we have 

P    < exp[-NME,(R   )|       . '3-17) e Is1 

It should be strongly emphasized here that this result depends on our coding simultaneously in 

the "parallel" and "time" directions.    According to Gallager' s Theorem 5,   one of the conditions 

for the maximum required in the definition of E..(R   ) is that each subchannel letter be chosen 

independently of the other subchannel letters at that instant of time,   and independently of all 

subchannel letters at other instants of time.    A code word may he thought of as a matrix with 

M   rows and   N   columns.     I'.ach element of the matrix is a letter in the subchannel  input alphabet. 

Each column of the matrix is a letter in the t whole) channel input alphabet.    The hound of 

Eq.(3-17) assumes each matrix element is chosen independently of the others.    Clearly,   each 

output word may also be thought of as an M x N matrix with elements equal to letters of the 

subchannel output alphabet. 

In what follows, we shall generally be studying MS channels whose subchannels are not in- 

dependent, although the MS channel itself is memoryless. Thus, we shall obtain bounds of the 

form of Eq. (3-14). 

F.    STATE KNOWLEDGE - SOME GENERAL CONSIDERATIONS^ 

When dealing with a channel that has a state structure,   one naturally expects that knowledge 

of the state at the receiver will be advantageous,   both in terms of increasing the capacity and 

decreasing the probability of error.    It would also be expected that partial knowledge of the state 

at the receiver is better than no knowledge,   but not as good as complete knowledge. 

In dealing with capacity,   we may work directly on the mathematical expressions involved. 

The situation with regard to probability of error is somewhat different.    Here,   we know that 

receiver knowledge cannot increase the probability of error because the receiver uses this 

t The remarks and results in the remainder of this chapter are not limited to channels with parallel structure. 
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knowledge optimally (i.e.,   it computes the likelihoods of code words based on what state knowledge 

it has).    Since one of the options available to the receiver is to. ignore any state knowledge it may 

have,   the optimal receiver must do at least as well as this.    This same inequality must apply 

to the ensemble probability of decoding error because it applies to each member of the ensemble. 
However,   we do not generally compute this probability of error;   we compute the random coding 

exponent (RCE).    We would hope that an inequality between ensemble probabilities of decoding 

error for two categories of receiver state knowledge would be reflected in the opposite inequality 

between the corresponding RCE's.    This is indeed the case,   but it is necessary to pursue the 
mathematical properties of the RCE in order to prove it. 

Suppose we have an input random variable  x  which may take on values in a space  X,   an 

output random variable  y  which may take on values in a space  Y,   and a collection  G  of channels 

g,   each with input alphabet  X  and output alphabet  Y.    By complete receiver knowledge of the 
channel state,   we mean that the receiver knows  g.    By partial receiver knowledge of the channel 
state,   we mean that the receiver knows some observable t e T* which is related to  g}   We shall 
assume that a distribution p(xygt) onXxYXGxTis given,   and that 

p(y/xgt) = p(y/xg) (3-18) 

and 

p(gt/x) = p(gt)§       . (3-19) 

The first assumption,   Eq.(3-18),   is consistent with our terminology of "partial" and "com- 
plete" knowledge,   i.e.,   once g is known,  t becomes irrelevant for the computation of p(y/x). 
The second assumption,   Eq.(3-19),   is equivalent to the statement that the pair (g, t) conveys no 

information about   x.    Equations (3-18) and (3-19) taken together imply 

p(t/gyx) = p(t/g)       . (3-20) 

This assures us that the receiver need not consider t  if it knows  g (see Ref. 4). 
In the remarks following the proof of Theorem 3.1,   it was noted that the effect of state knowl- 

edge in increasing mutual information was related to the convexity (downward) of the mutual in- 

formation as a function of the input-output conditional probabilities.    The following theorem on 
convex functions will be useful in the sequel. 

Theorem 3.2. 

Let   f be a convex downward function of transition probabilities p(y/x),   and assume that a 
probability distribution p(xygt) on X x Y X G x T is given such that Eqs.(3-18) and (3-19) are 
satisfied.    Then, 

f None of the spaces X, Y,   G,  and  T  need be finite or even discrete.    We will proceed as though all the spaces 
were discrete, and remark that an appropriate replacement of sums by integrals covers the other cases, until we 
reach Theorem 3.6 which requires   G to be finite. 

X For example,  if we are dealing with a single fading channel with binary input and output alphabets and equal 
transmitted energy allotted to 0 and  1, g would be the bit crossover probability, and  t would be the energy of the 
received waveform. 

§ Assumptions in Eqs. (3-18) and (3-19) and all the statements in the paragraph preceding them shall be in effect 
for the remainder of this chapter. 
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f[p(y/x)]<    _    p(t) f [p(y/xt)]<    _^    p(g) f [p(y/xg)l      . (3-21) 

teT gcG 

|If f  is convex upward,   the inequalities in I:q. ( 3-21) are reversed.] 

Proof. 

p(y/xt) =     £    p(g/tx) p(y/gtx) 

geG 

=     S    P(gA) P(y/xg) (3-22) 

geG 

from Eqs. (3-18) and (3-19).    Also, 

P(y/x) =    ^    p(y/xt) p(t/x) =    ^    p(y/xt) p(t) (3-23) 

teT teT 

from Eq. (3-19).    Hence, 

f [p(y/x)l <     £    p(t) f [p(y/xt)| ( 5-24) 

teT 

from convexity of f and Eq.(3-23),   and 

f[p(y/xt)K     S    P(gA) f lP(y/xg)] (3-25) 

geG 

from convexity of  f and Eqs. ( 3-22).    Inequality (3-25) implies 

£    p(t) f [p(y/xt)K    Z      Z    P(t) P(gA) f [p(y/xg)] 
teT teT   geG 

<      S    Pig) f iP<y/xg)l       • (3-26) 

geG 

Equations (3-24) and (3-26) are equivalent to Eq.(3-21). 

G.    STATE  KNOWLEDGE,  MUTUAL INFORMATION AND CAPACITY 

Theorem 3.3. 

I(X;   Y)4KX;   Y/T)<I(X;   Y/G)       . (3-27) 

Proof. 

Since the mutual information is a convex downward function of the transition probabilities, 

this follows directly from Theorem 3.2. 

Theorem 3.4. 

Denote the capacity of the channel when the receiver knows neither  t  nor   g  as  C,   the 

capacity when the receiver knows  t  as C      and the capacity when the receiver knows  g  as  C   . 
^ g 

Then, 

C<CCt^C . (3-28) 
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Proof. 

Since Eq. (3-27) holds for all input distributions p(x),  Theorems 2.3 or 2.4 give us Eq.(3-28). 

This concludes our discussion of the effect of channel state information on the mutual in- 

formation between input and output and on capacity. 

H. STATE KNOWLEDGE AND RANDOM CODING EXPONENT (RCE) 

We shall begin this section by deriving some mathematical expressions involved in the def- 

inition of the RCE when an auxiliary variable v c V,   independent of the input,   is known to the 

receiver. 

We note that the RHS of Eq.(3-6) is independent of m.    Hence,   it is a bound on the ensemble 

probability of decoding error and is independent of the probabilities with which the code words 

are used.    If,  during an input sequence of length N,  the variable v assumes the values v., . . ., v,., 

then we assume the conditional probability relating input and output sequences to be given by 

N 

pjy/x) =  n   PV 
(yn

/x
n

)    • (3"29) 

n=l       n 

To obtain the RCE [E   (R)] corresponding to receiver knowledge of v,   we must substitute Eqs. ( 3-8) 

and (3-29) in Eq. (3-6),   replace (W — 1) by W = e      ,   average over the distribution'  of v,   divide 

the negative of the natural logarithm of the result by N,   and perform a maximization.    Thus,   if 

we define 

E  (p.p.R) = In pRN 
p(v) 

veV 
.N 

r N         ] 
y 
 i 

y n p<v 
yeY xi X Ln=l             J 

i/l+p 1+p 

n  P  (y /x i 
.n=l 

where V     is the set of all sequences of v's  of length  N,   v e V   ,   we have 

EV(R) =    max    EV(p, p, R) 

peP 

(3-30) 

'3-311 

We shall assume 

p(v) =   f]    p(vn) 
n=l 

(3-32) 

This corresponds to the assumption of time invariance and memorylessness if v  is the state 

variable.    Substituting Eq.(3-32) in Eq.(3-30) and reducing the result,   we get 

t We will now assume  v  discrete,  X = (1 , . . . , K), and Y = {1,. . . ,J) for purposes of notation.    Similar results 

may be obtained if any or all of these assumptions are dropped. 
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EV(p,?,R).-iln     e»R    £     p(v)    £ 

I veV yeY 

Z   P(x)Pv(y/x)1/1+p 

xeX 

1+p 

-pR - In I     P(v)    Z 
veV j=l 

K 
V 
—I 

k=l 

P(k) Pv(j/k) i/l+P 
1+p 

Define 

FV(p,p) =     S    P<v)    Z 
veV j=l 

K 

Z    P(k)Py(j/k) 
k=l 

1/1+p 
1+p 

Thus, 

EV(p, p, R) = -pR -In FV(p,p)       . 

We may also define 

E(p,p, R) = -pR -In 

.1 
y 

lj=i 

K 

Z  p(k)P(j/k) 

k=l 

1/1+p 
1+p 

and 

F(P.P) =   Z 

K 

Z    p(k)p(j/k) 

i  Lk=l 

l/l+P 
l+p 

Thus,   we have 

and 

E(p,p, R) = -pR -In F(p, p) 

E(R) =    max    E(p, p, R) 
0<p<l 

pcP 

3-33) 

3-34) 

(3-35) 

3-36) 

(3-37) 

'3-38) 

(3-39) 

Now,   we may easily show that   F  is a convex upward function of the conditional probabilities 

included in its definition.    Suppose 

Hence, 

P(j/k) =   Z  P<
V

> PV(JA)    • 
vfV 

F(p,p) 

[3-40) 

K K 
V Z p<k> Z    P(v)Pv(j/k) 
= 1 k=l .veV 

1/1+p 1+p 

(3-41) 

By applying Eq.(C-3) (Minkowski's inequality) to the inner two sums of the RHS of Eq.(3-41), 

we get 
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V 

j=l 

K 

E p<k> 
k=l 

£    P(v) py(j/k) 
eV 

.1 K 

y   y 
L-l           L-l 

V 

j=l  veV .k=l 

1/1+p 
1+p 

(k) p(v)1/l+p p^j/k)1/1*" 

1+p 

P(v) 

veV 

.1 
y 
. I 

j=i 

K 
y 

k=l 

p(k) py(j/k) 1/1+P 
1+P 

(3-42) 

as required. 

Theorem 3.5. 

If K(R) is the RCE corresponding to no state knowledge at the receiver,   E (R) and 1-.   (R) 

are the RCE's corresponding to receiver knowledge of t  and   g,   respectively,   and Eqs.(3-29) 

and ( 3-32) hold for  t,   g,   or a blank replacing v,   then 

E(R)<Et(R)<Eg(R)      . 

Proof. 

By the convexity upward of   F  and Theorem 3.2,   we have 

(3-43) 

Hence, 

Fg(p, P)4 F\PI p)< F(p,pj 

-pR - In F(p, p) <J -pR - In F^p, p) < -pR - In i"g(p, p) 

By Eqs.(3-35) and (3-38),   we have 

E(p, p, R) < K\p, p,H)4 Eg(p, p,R)       . 

Our result follows from Eqs.(3-31),   (3-39),   and Theorem 2.3 (or Theorem 2.4). 

It should be emphasized that not only must the state variable  g  and partial knowledge variable 

t   satisfy Eqs.(3-18) and (3-19),   but successive values of  g  and  t  must be independent and iden- 

tically distributed.    In addition,   the single-letter conditional probability of the channel must 

depend only on the value  g or  t  assumes during the transmission of a single letter.    If all these 

assumptions hold,   we shall say that the channel with complete or partial state knowledge is still 

memoryless and time invariant. 

We avoided making these additional assumptions in Theorems 3.3 and 3.4,   but the results 

there are "one-shot" results.    If the additional assumptions are made,   the results become "per- 

transmitted-letter"  results as well. 

We have devoted a fair amount of space to showing that state knowledge increases the RCE, 

a result which is analogous to the result that state knowledge increases mutual information.    In- 

cluded in the mathematical statement [Eq.(3-3)| of this last fact is a bound on the magnitude of 

the increase.    We shall now derive an analogous result for the case of the RCE.    Our notation 

and assumptions remain the same. 
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Theorem 3.6. 

Let G,  the set of channel states,   contain S elements,  and l'et the channel with or without 

state information be memoryless and time invariant.    Let p' be the value of p  which achieves 

the maximum required in the definition of E^(R).    Then, 

Eg(R) - p' In S < E(R) < Eg(R) 

Proof. 

From Eq.(C-l), 

1/1+p 

P(jA) 1/1+p 

Hence, 

J 
V 
 I 

3=* 

K 

E    P<k> 
k=l 

Z  p(g)pg(jA) 
gfG 

E    P(g)pg(j/k) 
gfCx 

L    P(g) Pg(j/k) 

geG 

1/1+p)1+p 

E E p(g) 
1/1+p 

3=1   LgeG 

J 
,1+p E 

K 

E   p(k) Pg(j/k) 
k=l 

K 

1/1+p 
1+p 

E ^p(g)1/1+p E ixk) P «A)1/1+P 

3=1  LgeG 

Using Eq.(C-2) on the sum over  G,   we get 

k=l 

lip 

s1+p  E 
3=1 

K 
V        1 .      ,1/1+p        V Ml f •/!   \l/l+P 
L    s p(g) L    P(k) Pg(j/k) 

geG 

<S 1+P 

3=1 

k=l 

V    1    /   i L  s" P< g) 
geG 

1+P 

K 

V    p(k) pJj/k)1/1*" 

k=l 

1+P 

3P     E 
geG 

P(g) 

J 
v V    p(k) p (j/k)1/1^ 

j=i Lk=i 

i+Pl 

SpFg(p,p) 

where we use Eq.(3-34) with g replacing v in the last step.    Hence, 

and 

Suppose 

F(p,p)^SpFg(p,p) 

.,g KB(p,p, R) - p In S< E(p,p, R) 

(3-44) 

(3-45) 

(3-46) 

(3-47) 

(3-48) 

(3-49) 
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Eg(R) = Eg(p',p',R)       . (3-50) 

Then, 

Eg(R) -p' In S < E(p',p',R) ^ E(R)       . (3-51) 

Since 0 < p' < 1,   we have immediately 

Eg(R) -In S< E(R) (3-52) 

which bears a strong resemblance to the left inequality of Eq. (3-3).    Equation (3-51) contains 

the left inequality in Eq.(3-44).    The right inequality comes directly from Theorem 3.5. 

It is important to note that p' is implicitly a function of R   and is the value of p which achieves 

the maximum in Eq.(3-31),   with   g   replacing  v. 

I.  SUBCHANNEL DEPENDENCIES AND RCE 

It now seems appropriate to remark that there is no RCE counterpart to Theorem 2.5. Sub- 

channel dependencies may either increase or decrease the RCE. An example will illustrate this 

fact. 

Example 2 

Let p.U/rj),   P?U/T7),   and three state distributions  q,   r,   and   s  be given below: 

 ! , 

P,<£/I>) Pgif/'?) 

q(l,l) = q(2, 2) =  1/2 q(l,2) = q(2, 1) = 0 

r(l, 1) = r(l, 2) = r(2, 1) = r(2, 2) =  l/4 

s(l, 2) = s(2, 1) = 1/2 s(l, 1) = s(2, 2) = 0 

Each state distribution leads to a different 2S channel.    We note that the channel corresponding 

to  r  has independent subchannels.    It may be verified that the "r   channel" is the dependence- 

removed channel derived from either the q  or  s channels.    The input distribution which achieves 

the maximum required by the definition of the RCE is the same for all three cases: 

p(00) = p(01) = p(10) = p(ll) = 1/4 

This may be verified by using Gallager's Theorem 4 (Ref. 5).    The curves of E  (R   ) vs R    for 

the three cases are given in Fig. 6.    Since the curve for the independent subchannels case lies 

between the other two,   we see that subchannel dependencies may either increase or decrease 

the RCE.t 

t In fact, the  s  channel has a zero-error capacity equal to its capacity of 1  bit. 
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Fig. 6.    E„(R ) vs R    for three different channels. 
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CHAPTER 4 

THE COMPLETELY CONSTRAINED CHANNEL 

A.    DEFINITION OF CHANNEL 

An important limiting case of the MS channel is the class of MS channels with the property 

that during the transmission of a single input letter all the subchannel states are the same.    We 

will call such channels completely constrained (MSCC) channels.    For MSCC channels,   Eq.(2-7) 

becomes 

p(yi yM
/xi"--'xM) =   TJ   p(«)pa(yi/xi> ••• Pa{yM/xM] (4-1) 

afA 

where we will always assume p(a) > 0,   a  e A.     Because of the complete dependence of the sub- 

channel states,   the MSCC channel has some very striking properties;   in fact,   these are proper- 

ties of sequences of MSCC channels i ^M' M = 1'   defined as follows: 

(1)   A,   the set of subchannel states,   is the same for all  M. 

(Z)   p(«),  a  e A is the same for all M. 

(3)   For the M      channel if., in the sequence,   p(y,, . . . , y-,/x., .... «M) is 
given by Eq. (4-1). 

B.    EXAMPLES OF MSCC CHANNELS AND THEIR  PROPERTIES 

To illuminate the definition of sequences of MSCC channels and provide specific examples 

of their general properties,   we will discuss two examples. 

Example 1 

Let A  = (l, 2},   p(l) = p(2) = 1/2,   and Y    = X    = (0, l).     Let p,(y./x.) and p,(y./x.) be the 
So -111 £11 

binary symmetric distributions with crossover probabilities equal to zero and one-half,   respec- 

tively.    Then,   the M      channel in our sequence may be represented as in Fig. 7. 

pla) 

p (y/x) 

1/2 

1/2 

1/2 

Fig. 7.    An MSCC channel — Example 
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Now,   we will introduce some further notation which will be in effect for the remainder of 

this chapter. 

Associated with the M     member of a sequence of MSCC channels,   we have a capacity CM 

and a random coding exponent EM(R   ).    We define the capacity per subchannel C  M by 

C        -  ^ (4-2) 
sM        M (*     ' 

We introduce the convention that when the channel state is known at the receiver,  the corre- 

sponding capacity and RCE will be represented by primed quantities [e.g.,   CL.,   C ..,   E'   (R  )], 

and when it is unknown at the receiver,   by unprimed quantities. 

Plots of C   ,. and C .. vs   M  for Example 1 are found in Fig. 8(a). sM sM ^ a 

Example 2 

Let A  = {1, 2),   p(l) = p(2) = 1/2,   and Y    = X    = {0, l}.     Let p  (y./x.) and p  (y./x.) be the 
OO III i . ] 1 

binary symmetric distributions with crossover probabilities equal to zero and one-quarter,   re- 

spectively.    Then,   the M      channel in our sequence may be represented as in Fig. 9. 

Plots of C   ,,, and C .„ vs   M  for Example 2 are found in Fig. 8(b). sM sAI r a 

C.    CAPACITY THEOREMS FOR MSCC CHANNELS 

Theorem 4.1. 

When the channel state is known at the receiver,   the capacity per subchannel [defined by 

Eq. (4-2)] is the same as the capacity of a single subchannel standing alone,   i.e., 

C       = C (4-3) sM      S       • [        ' 

Proof. 

The result follows directly from Theorem 2.7. 

Theorem 4.1 is illustrated by the two horizontal lines in Fig. 8(a-b).    However,   an MS chan- 

nel need not be MSCC for the theorem to hold;   it holds whenever the individual subchannel capac- 

ities (with state known at the receiver) are all equal.    This last is certainly true if for each a  e A 

the probability that the i     subchannel is in state a   is independent of  i. 

Theorem 4.2. 

[f 

H = -    V   p(cv) logp(a) 

a eA 

is finite,   then 

M
Um   CsM = Ci       • (4"4) 

Proof. 

Applying Theorems 2.3 or 2.4 to Eq. (3-3),   we get 

c   — H < c    < c LM *= LM^ ^M       ' 
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Hence, 

(•' p pi 
_M.    ii < _M <- _M 

M        M ^   M   v    M 

Applying Eqs. (4-2) and (4-3),   we get 

Hence,   passing to the limit,   we obtain Eq. (4-4) directly. 

The curves of Fig. 8 illustrate the limiting property of C   .. which was just proved.    We note 

again that the channel need not be MSCC for the theorem to hold;   in fact,   Eq. (4-4) may obtain 

even if a discrete entropy  H  does not exist.    (See Appendix E.) 

D.     FURTHER PROPERTIES OF EXAMPLES 1  AND 2 

Just as the capacity theorems were illustrated by previously given curves, so we shall pro- 

vide curves relating to the RCE's of our examples to illustrate the theorems which are to come. 

The data on which the curves are based are as follows. 

For M = 1,   2,   5,   10,   20,   50,   and 100,   we computed E..(R   ) and E'   (R   ) for equally spaced 
1V1       S lvl       S 

values of R    from zero to C  M or C ...    The spacing was 0.025 bit.     Furthermore,   for each sucli 

computation,   the value of p   which achieves the maximum required by the definition of E-.(R   ) or 

EJ..(R_) is provided as output.    The input probability vector which,   for the case of   IY1   subchannels, 
s IV1 achieves the requisite maximum is the probability vector with each of its 2      components equal to 

(1/2)M (see Ref. I1). 

In Figs. 10 through 23,   the curves plotted from the data are: 

Example 1 

Fig. 10 E,,(R   ) vs R    for M  = 1,   2,   5,   10,   20,   50,    100 6 M     s s 

Fig. 11 E'   (R  ) vs R    for M = 1,   2,   5,   10,   20,   50,   100 

Fig. 12 E'   (R   )-En„(R   ) vs R    for M = 1,   2,   5,    10,   20,   50,   100 6 MsMs s 

Fig. 13 E.JR   ) vs   M   for R    =0 to 0.3 in steps of 0.025 bit fo Ms s ' 

R    = 0.3 to 0.45 in steps of 0.05 bit 
s ^ 

Fig. 14 E
T\T'

R
 •) vs   M  for R    = ° to °-3 in stePs of °.°25 bit 

R    = 0.3 to 0.45 in steps of 0.05 bit 
s ^ 

Fig. 15 (state unknown)      Maximizing  p  vs   M   for R    = 0 to 0.45 in steps of 0.05 bit 

Fig. 16 (state known) Maximizing p   vs   M   for R    = 0 to 0.45 in steps of 0.05 bit 

tNumbered references appear at the end of each chapter. 
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Kxample 2 

Fig. 17 E.JR   IvsR    for M = 1,   2,   5,   10,   20,   50,   100 
° M     s s 

Fig. 18 Ej^R.JvsR    for M = 1,   2,   5,   10,   20,   50,   100 

Fig. 19 EM(H   )-EM
(R

   > vs R   for M = 1,   2,   5,   10,   20,   50,   100 

Fig. 20 EM(R   ' vs  M   f°r R . = 0 to 0.2 in steps of 0.025 bit 

R    = 0.2 to 0.3 in steps of 0.05 bit 
s K 

R    = 0.3 to 0.5 in steps of 0.1 bit 
s ' 

Fig. 21 EM<R   ' vs   M   for R     = ° to °-2 in steps of 0.025 bit 

R    = 0.2 to 0.3 in steps of 0.05 bit s r 

R    = 0.3 to 0.5 in steps of 0.1 bit s r 

Fig. 22 (state unknown)   Maximizing p  vs   M   for R    = 0 to 0.55 in steps of 0.05 bit 

Fig. 23 (state known)        Maximizing p   vs   M  for R    = 0 to 0.55 in steps of 0.05 bit 

We will refer to these figures in subsequent sections of this chapter. 

E. RANDOM CODING EXPONENT (RCE) FOR MSCC CHANNELS 

We shall now undertake to prove a number of general properties of the RCE's of a sequence 

of MSCC channels.    We begin with a definition. 

Corresponding to each subchannel state a, there is a unique subchannel conditional prob- 

ability distribution p   (£/TJ),    £ € Y  ,   rj s X   .    This defines a channel with a capacity C    .    If there 

exists a € A with p(a) > 0 and 

C    < C all a   e A (4-5) 
a        a 

then we say that there exists a worst subchannel state   a.    (We have,   in fact,   not even assumed 

that  A   is purely discrete,   but only that  a  has a positive probability,   as opposed to a positive 

probability density.) 

Theorem 4.3. 

Suppose there exists a worst subchannel state  a,   with probability of occurrence p(a).    Then, 

we have 

E
M(RSX Ej^RgX-lnpU) (4-6) 

for all R    > C  .   we have s a' 

for all  M. 

Proof. 

Recall that,   when the receiver knows the channel state, 

Pe^exp[-NEJvl(Rs)]       . (4-7) 
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Fig. 10.    Random coding exponent vs rate per subchannel 

(state unknown) — Example 1 . 
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Fig. 13.    Random coding exponent vs number of subchannels 
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Fig. 15.    Maximizing  p vs number of subchannels 
(state unknown) — Example 1 . 
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Fig. 16.    Maximizing  p vs number of subchannels 
(state known) — Example 1 . 
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This is just Eq. (3-14) for the state known case.    Since Eq. (4-7) is derived using maximum- 

likelihood decoding at the receiver,   it is also true for maximum a posteriori probability (MAP) 

decoding when the inputs are equiprobable.    Recall,   too,   that P    is an average probability of 

error over an ensemble of codes. 

For a particular code,   with block length  N,   the probability of error p(e) satisfies 

p(e) >p(e,eN) = p(aN) p(e/aN) (4-8) 

N where a     refers to  N  consecutive occurrences of the worst state  a.    Since our channel is 

memoryless, 

Define 

p(aN) = [p(a)]N       . (4-9) 

H(e/aN)   =-p(e/aN) lnp(e/aN) -[1 -p(e/aN)] ln[l -p(e/aN)]       . (4-10) 
2 

Then,   letting W = exp [NMR   ] be the number of (equiprobable) code words,   we have 

H(e/aN) + p(e/aN) ln(W- 1) >NM(Rg - Ca)       . (4-11) 

Tims, 

NM(Rs-Ca)-H(e/aN) NM(Rg - C&)   _    ln 2 

pie/a   ) i. in(W-l) NMR NMR 
s s 

and 

R 
a ln2     <p(e/aNUl       . (4-12) R NMR 

s s 

Since inequalities in Eqs.(4-8) and (4-12) hold for each code in an ensemble,   they must hold after 

being averaged over the ensemble of codes.    Thus.t Eqs. (4-7),   (4-8),   and (4-9) become 

[p(a)lNpe/aN<Pe<exp[-NEM(Rs)] <4"13) 

and Eq. (4-12) becomes 

^B^ ~ mk « Pe/aN « 1        • <4-14> s s ' 

From Eq.(4-13),   we get 

EM(Rs'^ -lnP(a) "N~ lnPe/aN (4'15) 

for all N.    Passing to the limit N -» <*>,   we get 

E^(RB)< -lnp(a)-  Urn    (^lnPe/aN)      . (4-16) 

From Eq.(4-14),   we obtain 

lim    {~z InP    , N) = 0 (4-17) 

N, 
tWe denote the ensemble averages of p(e) and p(e/a    ) by P   and P   # N 
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Thus,   Eqs. (4-16) and (4-17) combine to give us 

EM(RsU _lnP(a) 

as required.     By Theorem 3.5 [E'   (R   ) is denoted E^(R) in the statement of the theorem],   we 

have also 

EM(Rs)<E]v](Rs) (4-18) 

for all M. 

We note that C    = 0 in Example 1,   and C    = 0.1887 bit in Example 2.    Hence,   the bounded a r       ' a r 

behavior of the RCE's is seen in all the curves of Figs. 13 and 14,   and in those curves in Figs. 20 

and 21 for which R    > 0.1887 bit. 
s 

It will now be convenient to restate some of the results of Chapter 3 in MSCC channel nota- 

tion, and to provide further definitions which will be useful in the sequel. Following Eq. (3-34), 

we define 

FUp.p) =     YJ     P(tt) 

a eA 

I    p(a) 
a eA 

I    p(k) p   (j/k) 
J r K 

I 
j=l  Lk=l 

I 

i/i+p 
i+p 

V 

M 

M 

p(xi V n pa(yA) 
i/i+p 

i = l 

1+pl 

(4-19) 

Then,   we define 

EoM(p'p) = -taFM(p,p) 

E'   (p.p.R   ) = -pMR•    +E-     <p,P) 

(4-20) 

(4-21) 

and 

EM(Rs)=   n
ma^    EM("'Rs> 0<p<l 

pcP 

(4-22) 

where,   again,   P is the space of all input probability vectors.    If we define 

M 

FaM(P-P) 

yl yM 

Z       p<x!>.... *M) n p„(yi/xi) 
i = l M 

1/1+P 
i+p 

(4-23) 

then 

FM(p'P) V p{a) F«M(p'p ' 
a eA 

(4-24) 

Finally,   we define 

Eo«M(p'p: -lnFaM(p,P: (4-25) 

so 



If M = 1,   p becomes p   (a subchannel input probability vector),   and we shall generally drop the 

M   subscript on E     .„ and F   ...    Thus,   E     (p, p  ) = E      An, p ),. and F   (p, p  ) = F   ,(p, p ) are 
OQM Q?M '      oo ^  ^s oa 1 ^'v ' a r  ps aiH  F 

quantities relating to a single subchannel. 

Theorem 4.4. 

Suppose there is a worst subchannel state a,   and R    > C  .    Let p'    be the value of p  which 

achieves the maximum required by the definition of E'   (R   ) [Eq.(4-22)].    Then, 

lim    P<M = 0 (4-26) 

and 

lim    (p'M)2 M = 0      . (4-27) 
M->.°° 

Proof. 

From Eqs. (4-6),   (4-21),   and (4-22), 

-pMRg + E^M(p,p)< -lnp(a) (4-28) 

for all R    > C ,   0 < p < 1,  p e P.    Thus, s a r ' 

E^M(p, p)4 -lnp(a) + pMC & (4-29) 

for all 0 < p < 1,   p £ P.    Equations (4-28) and (4-29) combine to give 

-pMRg + E^M(p, p) « -lnp(a) + pM(Ca - Rg) (4-30) 

forall0<p<l,   p e P,   and R    >C   .    Since EJ^tR  ) is non-negative,   Eqs. (4-30),   (4-21),   and 

(4-22) combine to give 

0<EJv[(Rs)< -lnp(a) + p'MM(C& - Rg) 

and thus we obtain 

0 < 0<    <       ~lnP(a> (4_31) U^PM^  M(R    -C   ) ( ' 
s        a 

From Eq. (4-31),   we get Eqs. (4-26) and (4-27) directly. 

We note that the proof could just as well be carried through if pi. were the value of p   which 

achieves the maximum required by the definition of EM(R   ). 

The behavior of pi, just proved is illustrated in the curves of Figs. 15 and 16,   and in those 

curves of Figs. 22 and 23 for which R    > 0.1887 bit.    Since the slopes of these curves are all 

minus one for large M,  they suggest that indeed PJwrM is equal to a constant independent of M 

for M  sufficiently large.    However,  the constant is smaller than that suggested by the rightmost 

expression in Eq. (4-31). 

Although the assertions of the theorem just'proved are technical in the sense that they are 

not subject to immediate physical interpretation,   their consequences are quite striking.    One 

such consequence is given by the following theorem. 
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Theorem 4.5. 

If there exists a worst subchannel state a, R    > C  ,   and A   is finite,  then, s        a' 

lim    [Ek(Rs)-EM(Rs)]=0       . (4-32) 
M—°° 

Proof. 

The result follows directly from Eq. (4-26) and Theorem 3.6. 

The result of Theorem 4.5 is illustrated in Figs. 12 and 19.    For the examples computed, 

Eq.(4-32) appears to hold at all rates.    Note that the difference in RCE's is not monotone in M. 

Since the difference E'   (R   ) — E„.(R   ) approaches zero with increasing  M,   under the con- 
Jvi     s M     s 

ditions stated,   it is natural to ask whether either term (and hence both terms) approaches a limit 

under similar conditions.    This question will be answered in the affirmative after some labor. 

First,   it will be necessary to study the properties of the input probability vector p'   ,   which 

achieves the maximum in Eq. (4-22).    Now,   from Eqs. (4-20),   (4-21),   and (4-22),   we have 

EM(Rs>=  £a*    [-pMRs-lnFk(p,p*] 

peP 

=    max    [-pMR    -In min  F'   (p, p )1       . (4-33) 
O^p^l s peP 

Thus,   we shall be concerned with the properties of probability vectors (distributions) which 

minimize FIw,(p, p). 

Definition. 

A distribution  p  over a product space V      is said to have permutational symmetry if 

P(Vj. ...,v     )  =   p(v     v.     ) (4-34) 

for all permutations {j„} «_.  of the integers from   1   to  M. 

Theorem 4.6. 

For an MSCC channel,   the  min  F'   (p, p) may,   for any p,   0 ^ p ^ ij  be achieved with an input 
P 

distribution having permutational symmetry. 

Proof. 

Let 

Fj^p.p**) =  min   FJM(p,p) (4-35) 

where  p* is implicitly a function of p   and  M.   and we may write 

p*  = p*(xr . . ., xM) 

Define 

^ = P^l V = Ml     I    P*(V-'X3M) <4"36) 
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where    2    denotes the sum over all M!   possible permutations of the integers from   1   to  M.    For 
PT 

M 
any permutation {j.} ._. ano any input distribution p(x., . . . , xM),   we have 

'\ yM 

M 

I   p(v-'xJ n p«(yA}1/1 
. . . x,, i = l xl- • • •• XM 

1+p 

yv . . . ,yM Lxf xM 

M 

^   p(v,xJ n p«(yiA) 
• • , x_. i = l 

l/l+p 1+P 

E 
, y.      Lx    .....x. 

•1M        .1 

ivi 

£    p(v-'xJ n p«(yiA) 
l/l+p 1+p 

IV!        -'l JM 

>'v •••.yM "-X.,. ..,x V • • -''M 

E      P^ xM) n pa(yA)1/1+p 

1' • • •' ~M 
i=l 

1+p 

(4-37) 

Since F   M(p, p ) is a convex downward function''' of p, 

FaM<P,P   )« M!    U 
PT y4 yM Lxi-----x 

\- 
M 

p*(x x. FT    p   (y./x.)l/l+p 

i = l 

1+p 

yl' • • ' ' yM 

M 

Z    p;;t(xi X
M> n pa

(yi/xi 
1=1 

l/l+p 

xl- • • •> X
M 

1+p 

F«M(p' P*' a11 a  € A (4-38) 

where we use Eq. (4-37) with p = p#.    From Eqs.(4-38) and (4-24), 

FJK<p,prUFfo(p.p*) (4-39) 

But,   by Eq. (4-35), 

F^p.p^XF^tp, p1) (4-40) 

Hence, 

as required. 

FM<P'P   ' = FM(p' p*' =  min  FM(p'p: 

peP 
(4-41) 

We note that the essential property of the MSCC channel which allows us to prove the result 

is that the subchannel state distribution p(a ., . . . , «M) has permutational symmetry.    This may 

be demonstrated by a minor modification of the proof of Theorem 4.6. 

t See Ref. 1, Theorem 4. 
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Let P    be the space of all input probability vectors with permutational symmetry.    We have 

shown that for an MSCC channel, 

min Fjyjfp, p) =   min    F'M(p,p) 
peP peP 

(4-42) 

for all p,   0 < p < 1. 

Definition. 

If p(ij) is a probability distribution on X ,   and 

p(x1,...,xM) =   []    p(x.) (4-43) 

LH 

then we say p(x., . . . , xM) is a product distribution. Let D be the set of all product distributions.t 

Clearly, D C P . If p is the probability vector corresponding to p(r)), p is the probability vector 

corresponding to p(x., . . . , xM),   and Eq. (4-43) holds,   then we shall write 

P =(psr (4-44) 

We shall also write p e D.    Finally,  we shall denote the set of subchannel input probability vectors 

by U. 

We shall now examine the properties of functions from which EV.fR) is derived if p c D,   From 

Eqs. (4-23) and (4-43), 

F
aM("'P) = X 

,J,1 

X p(xd) pjyi/xj 
i/i+p 

i+Pl M 

Henceforth,   we shall assume that X    ={l, ...,L},   and Y    = {1, . . . , Q) .    Thus,   we have 

Q 

F
a<P'?s)=    I y  p(i)p (q/o1/1+p 

q=l     Li=l 

Using Eqs. (4-24),   (4-45),   and (4-25),   we have 

Fivi<P.P>=     E     p(«)[Fa(p,pg 

a eA 

1+p 

,11 

(4-45) 

(4-46) 

=    YJ    P(a) exp[-MEoa(p,ps)] 

a eA 

for all p e D and all p,   0 ^ p 4 1.    More generally,   Eqs. (4-24) and (4-25) yield 

FM(p'P)=     E     P(a)exP[-E0„M(p,P>] 
a eA 

for all p e P and all p,   0 < p < 1. 

(4-47) 

(4-48) 

t Note that this is a more restrictive definition than in Chapter 2,  because here we ask that all the individual 
subchannel marginal distributions be the same. 
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Because of the functional form of E     (p, p  ) and the fact that the sums used in its definition 
_^     oa r   *s 

are finite,   all derivatives of E     (p, p  ) with respect to p   are continuous with respect to p   and 

the L + 1 probability vectors involved in the definition of E       (one subchannel input probability 

vector and   L  subchannel output probability vectors,   each conditioned on one input).    Hence,   by 

an argument identical to that used in the proof of part (1) of Theorem 2.3,   there exists a positive 

constant B( L, Q) for which 

a2E 

dp 
4 B(L,Q) (4-49) 

for all  p,   0 < p ^ 1,   all subchannel input distributions p(i),   and all conditional probability dis- 

tributions p   (q/f). 

Theorem 4.7.    (Gallager) 

Consider a channel with X = (l, . . . , K),   Y = (l, . . . , j),   and transition probabilities p   (j/k), 

1 •$ j < J,   l^k^K.    Let p  = [p(l), . . . ,p(K)] be an input probability vector,   and assume that the 

average mutual information 

K      J 

WP)=    I     ^    P(k) pa(j/k) In lr 
P(JA) 

k=i j=i 
i i 

P(i) Pa(j/D 

(4-50) 

is nonzero.    Define 

EoaM{p>P] = 
•In 

J r K 

I v  P(k) pa(jA)1/1+" 

.1=1 Lk=l                                      J 

1+pl 

Then,   for p > 0, 

E^   M(o, p) = 0 
oa 1V1 

Eo«M<"'P)>0 

3E      T,T( oaM o, p) 

dp 

dEoaM{P'V] 

dp 
p=0 

^oaM^'P' 

> 0 

for p > 0 

for p > 0 

= I «M (P) 

^ 0 
dp 

(4-51) 

(4-52) 

(4-53) 

(4-54) 

(4-55) 

(4-56) 

with equality in Eq. (4-56) if and only if both of the following conditions are satisfied: 

(1)   p   (j/k) is independent of k  for  j, k  such that p(k) p   (j/k) =fc 0. 

(2) I p(k) is independent of  j. 

k:pa(j/k)^0 
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This is Theorem 2 of Gallager.t so the proof will not be given here.    If I   M( p ) = 0,   input and 

output are independent.     Thus,   p   (j/k) = p   (j) if p(k) ^ 0 (1 < j ^ J).    Then,   using Eq. (4-51), 

we have E     iyi(p, P ) = ° for all p > 0. 

Note that if the channel referred to in Theorem 4.7 is MSCC,   the definition of E      ,. by ooM    J 

Eq. (4-51) is consistent with the definition of E     .. by Eqs.(4-23) and (4-25).    Note,   too,   that 

all the results of Theorem 4.7 apply to a single subchannel as well as to the whole channel.    In 

our notation,  this means that the results hold if all M's are deleted and we make the following 

changes: 

j - q 

k - i 

J - Q 

K - L 

P - P s 

For p    e U,   define t 

EN(t, p     R) =-tR    -In    VL     P<«) exp[-tl   (P*J] (4-57) 

and 

a eA 

EN(R   )=  1. u. b.    max   EN(t, p  , R   )       . (4-58) 
S        0;it<°°    ptU S      S rs 

Theorem 4.8. 

• (a) Suppose there exists a worst subchannel state a,   and C   < R    < C\.    Then,   there exists 

a positive number t    with 

EN(R   ) =  max   EN(t  , p  , R   )       . (4-59) s       -.    TT o' Fs'    s p   eU rs 

(b) If,   in addition,   there exists a single-subchannel probability vector p    with 

C     = I   (p  ) all a  e A (4-60) 
a       a   ^s 

then, 

EN(R   ) =-t  R    -In     V     p(a) exp[-t  C   ] (4-61) 
S OS <->       K >     ' f I       0    a 1 

a eA 

t See Ref. 1, p. 6. 

£ Note that for each p   and R ,     I    p(a)exp{t[R   -I  Cp)]}   is the moment generating function g(t,p ,R ) 
s s    aeA s       a     s s     s 

associated with the random variable R   —I   (p*).    Since by Eq. (4-57) EN(t,p* , R )=—In g(t,p* , R ), some of the 

properties of EN(t,p , R ) which we shall derive may be obtained from the theory of moment generating functions. 
See, for example, Chapter 8 of Ref. 2. 
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where t    is given implicitly and uniquely by 

2     p(a) C     exp[-t  C   ] 
n a eA 

2     p(o) expf-t  C   ] . o   a a eA 

(4-62) 

Proof. 

(a) All that really needs to be proved is that 

EN(R   ) 41 lim sup   max   EN(t, p  , R   ) 
t-»«>        p   fU 

(4-63) 

From Eq. (4-57), 

EN(t, ps, Rg) £ -t [Rs - Ia( pg)] -lnp(a) 

<-t(R= -C   ) -lnp(a) (4-64) 

for all p    e U.    If we define 

t* 
lnp(a) 

R    - C s        a 
(4-65) 

t > t*  implies 

EN(t, p  , R   ) < 0 = EN(o, p  , R   ) ^s     s rs     s 
(4-66) 

for all p    € U.    Thus,   we have proven Eq. (4-63). 

(b) Using the definition of C   ,   we obtain 

p   eU -tR    - In     Y     p(«) exp[-tl   (p  ) s u     r '       a   's 
a eA 

for all t > 0,   with equality if 

^ -t R    -In     £     p(a) exp[-tC   ] (4-67) 

a eA 

I   ( p  ) = C as a 
all a  e A       . [Eq. (4-60)] 

Thus,   if Eq. (4-60) holds,   we have from Eqs. (4-57) and (4-58) that 

EN(R   ) = 1. u. b. 
s       0<t<°° 

-tR    - In     T,     p(cv) exp[-tC S LJ c 
a eA 

-In   g. l.b. 
\ 0^t<°o 

E 
a eA 

p(«) exp[t(Rs-Cff)] (4-68) 

Let 

Then. 

<p(t) =     V     p(a) exp[t{Rs-Ca)l 

a eA 

P'<t) = -§=     Z     p(o)(Rs-Ca) exp[t(Rfi-CJ] 
s        a 

(4-69) 

(4-70) 

a eA 
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and 

,2 
"(t) = £|   =     ^     P(«) <Rs-Ctt)

2exp[t(Rs-Ca)]       . (4-71) 
dt , a eA 

From Eq. (4-70), 

<p<(0) = Rs-   Z   P<a) C
f 

a eA 

= R    - C'   < 0      . (4-72) si 

From Eq. (4-71), 

<?"(t)   > 0 (4-73) 

for all t Ji 0.    Thus,   ^(t) is strictly convex downward and must,   by Eqs. (4-72),   (4-68),   and 

part (a) of this theorem,   have its g. 1. b.   at its stationary point.    Thus,   setting (p'(t  ) to zero, 

we obtain Eq. (4-62). 

For p e D,   define 

EM(p,p,Rs)=-pMRs-ln    YJ     P(a) exp[-pMIff(ps)l (4-74) 

a eA 

where  p   = (p  )    ,   and 

EM(Rs)=    "la^   EM<"'P'V      • (4"75) 

peD 

Theorem 4.9. 

Suppose there exists a worst subchannel state   a,   and C    < R    < C' .    Then,   if t    is defined 
a s 1 o 

by Eq. (4-59),   and p(M) is the value of p  which achieves the maximum in Eq. (4-75),   we have 

for M > t o 

EM(Rg) = EN(Rs) (4-76) 

and 

Furthermore, 

p(M) = t   /M       . (4-77) 

lim    EM(R   ) = EN(R   )       . (4-78) 
M-*°° 

Proof. 

A comparison of Eqs. (4-74) and (4-75) with Eqs. (4-57) and (4-58) makes Eqs. (4-76) and 

(4-77) obvious consequences of Theorem 4,8.    Equation (4-78) is a consequence of Eq. (4-76). 



Define 

EM(R   ) =    max    E'   (p, p, R J JMV1 s 

peD 

\V 

max   f-pMR    - lnF^p, p 
O^p^l s NT 

peD 

=    max   [— pMR    — lnmin   F'   (p, p)] 
04p^i peD 

(4-79) 

This definition differs from that of E'   (R   ) only in that the maximization over input probability 

vectors is over  D  rather than  P. 

Note that Eq. (4-33) and Theorem 4.6 imply 

EJyl(Rs) =    max    [-pMR= - In F'M(p, p \ 
O^psjl 

pePv 

NT 

max     [- pMR    — In  min    F'   (p, p)] 
0<PO pcPr 

(4-80) 

Equations (4-74) and (4-75) imply 

EM(Rs) =   n
ma* 

p   <rU 

V 

ae A 

-pMR    -In    2J     P(«)   expf-pMI   (p  ) (4-81) 

Theorem 4.10. 

(a) If there exists a worst subchannel state   a,   and C        R    < C\,   then a s 1 

lim    E^(Rg) =    lim    E^) = EN(Rg) 
M—°° M—°° 

(4-82) 

(b) Suppose there exists a single  subchannel input probability vector p    satisfying Eq. (4-60). 

Associate p(f) with p    and assume that the subchannel conditional probability distributions p ,(q/f) 

satisfy 

p   (a/l) is independent of   I a 

for q, I with p(f) p   (q/f) ¥= 0 and all a  e A.    Assume,   too,   that 

(4-83) 

p(l) is independent of  q 

i:Pfv(q/P)#0 

(4-84) 

for all a  c A.    Then,   there exists a positive number t    defined by Eq. (4-62) such that M > t 

implies 

E'   (R   ) =   lim    E' (R   ) 
M     s        T_oo      T     s 

(4-85) 
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Proof. 

(a) From Taylor's theorem and Theorem 4.7,   we have for any 0 < p < 1,   p* e   P.   and p    <   U, 

Eo«M(p'p) = pWp) 4  T" " 

where 0   ' f(p)      p 4 1, and 

9p f(p) 
pIaM(p) (4-86) 

2 a E    (p. p ) 
i •      i     '" \ r   i " \   ,   P orv       ' s L,^,<P- Pj = Pl,J Pj + 
W' 'V      '   o-v » V        2 

3p t(p) 

where 0      £(p)   " p < 1.     from Eq. (4-49) and Theorem  4.7,   we get 

32R      {p.p. ) 
B(L.Q)<  2S< 5_ - o      . 

dp 

(4-87) 

(4-88) 

•Thus,   from Eqs.(4-48) and (4-86). 

Fjyjfp.p) V 
p(tt) exp [-pIaM(P' 

O'fA 

(4-89) 

From Eq. (4-80),   for purposes of minimizing F'   (p,p),   we may assume p e   P   .     Making this 
iv l r 

assumption,   we define 

Pi(xi' =   S  P(x1 X
M' (4-90) 

Since p <   P .,   we have 

p.(x.) = p(x.) all i,   1 ^• i< M (4-91) 

Define 

M 

PDR(xl XM> =   II   P<xi) 
i = l 

(4-92) 

and associate P-,-.,, with p_R(x, x\i''   a,u' P. vvith p(x.).    Then,   by the remark following 

Eq. (2-29). 

MMps)>In,AI(p> 

By Eqs.(4-89) and (4-93), 

(4-93) 

r"A|<P,P> V p(a) exp[-pMI(r(ps)| (4-94) 

for all  p,   0-4 p 4 I,   and all p t  P   .    From Eqs. (4-79).   (4-80),   and Theorem 2.3,   we get the 

left inequality below: 

EM(RsU Ek(RgU EM(Rs) (4-95) 

The right inequality is obtained from Eqs. (4-80),   (4-81),   (4-94),   and Theorem 2.3. 
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Let p, p'   be such as to achieve the maximum in Eq. (4-75).    From Eq. (4-95), 

°<EM(Rs)-EM(Rs)<EM(Rs)-EM(Rs) 

From Eq. (4-79), 

EM(Rs) - iM(Rg) < EM(Rs) - E<M I p, ( p- )M   R 

From Eqs. (4-20),   (4-21),   (4-47),   and (4-87), 

K<M\P.(P/\R 

for all  p,   0 < p < 1,   and p    e U.    Using Eq. (4-88),   we have 

-pMR    — In     2J    p(«) exP 

<it A 

2,.   d  E       p, p 
pMI   ( p   ) — r A       5  as 2 2 

3p «(P) 

(4-96) 

(4-97) 

(4-98) 

EM   fP.(p*MM   RsU'pMRs + ln YJ   p(a) exp[-pMIa(p^)l 

a eA 
+ £^LB(L.Q) 

Thus,   using Eqs. (4-81) and (4-77),   we get 

_2 t 
EM(R  )-E-    [P,(P*')M, RH   ^ B(L,Q) =^_ B(L,Q) JMWV M IM' x ps'    '     s1 "       2 

Combining Eqs. (4-96),   (4-97),   and (4-100),   we get 

2M 

(4-99) 

(4-100) 

no:.v|(Ks)-i:'u(Hs)o:v|(Rs)-i:,|(Ks).T^T   B<L.Q) (4-101) 

Thus, 

lim    [EM(Rs)-Ek(Rs)]=    lim    [ EM(R ) - EM(R8)] = 0 
M-*°o M-»«> 

From Eqs.(4-78) and (4-102),   we get Eq.(4-82),   as required. 

(b) Equations (4-67),   (4-74),   and (4-75) imply that for p    satisfying Eq. (4-60), 

EM
(R

S
)=

   •a*   EM[P,(PS)M,RS]      . 
0<p^l 

Equations (4-83),   (4-84),   and Theorem 4.7 imply 

(4-102) 

(4-103) 

9Eoty(^Ps) 

ap2 
0 (4-104) 

for all p.   0<p<l.    From Eqs. (4-74),   (4-98),   and (4-104),   for p    satisfying Eq. (4-60) and all 

p.   0 -5; p -S; 1,   we have 

£M[P.(P"S>M,  Rsl = Ekl[p,(ps)M, Rsl 

Hence,   by Eqs. (4-95) and (4-103), 

W-W50      a11 M   • 

(4-105) 

(4-106) 

Thus,   for M >t  ,   Eqs. (4-76),   (4-78),   and (4-106) give the result. 
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The curves of Fig. 14 illustrate both parts of Theorem 4.10.     In this rase,   the p    of part (b) 
-» i    i s 

is given by p    =  (}, £).    The curves of Fig. 21,   corresponding to R    > 0.1887 bit,  illustrate part (a) 
s s 

of the theorem.    Part (b) of Theorem 4.8 applies to both examples,   with p    = (}. |). 

Corollary 1. 

Suppose  A   is finite.    Under the assumptions of part (a) of Theorem 4.10. 

.lim    EM(Rg) = EX(Rs) 
M--*<x> 

Proof. 

Combine Theorems 4.10 and 4.5. 

(4-107) 

The curves of Figs. 13 and 20.   corresponding toR    > 0.1887 bit,  illustrate the corollary. 

Again,   part (b) of Theorem 4.8 applies to both examples with p    = (\ , ~). 

Theorem 4.11. 

If for each   p,   0 < p < 1,   there exists a single p'   c U with 

min   £    (p, p  ) = I    (p, p' ) 
-*    T-    O'S or s 
p   el rs 

(4-108) 

for all a   e  A,   then 

EM(IV = EM(Rs> (4-109) 

for all  M. 

Proof. 

Theorem 5 of Gallager (see Ref. 1,   p.10) and our P]qs.(4-20) and (4-45) imply 

M 
min   F   (p. p   ) 

peD IP   ft, 
•in  Fo<M(p'p) =   "lln   F„M'

P
'
P
' 

(4-110) 

Equations (4-108),   (4-44),   (4-45),   and (4-110) imply 

min  FaM(p,p*) =FaM[p,(p*')M] 
peP 

for all rv   e  A.     Thus,   from Eqs. (4-24) and (4-111). 

\1 
min  F^(p,p) = Fl, [p. ( p')     ] 
peP 

M \l 

min F'M(p, p) 
peD 

(4-111) 

(4-112) 

and from Eqs. (4-33),   (4-79),   and (4-112) we have our result. 

For both Examples 1 and 2,   Eq. (4-108) is satisfied for all p,   0 ^ p < 1,   if p    = (|, }).    Thus, 

Eq. (4-109) holds for our examples. 

One might wonder if Eq. (4-109) holds for all MSCC channels.    The answer,   although far 

from obvious,   is that it does not.    An example which demonstrates this fact is discussed in 

Appendix F. 
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Thus far,   we have considered only the case where there exists a worst subchannel state  a, 

and C    <R    <C'       Now,   if R    >C' a        s 1 si 

EM(Rs> = EM(Rs' = ° 

for all  M,   by the converse to the coding theorem.    It remains to investigate the behavior of 

E'   (R   ) when R    <C    and R    < C' 
Ms s        a si 

Theorem 4.12. 

If there exists a subchannel input distribution p    and a positive number  I,   for which 

I   ( p  ) >I > R alia e A (4-113) 
a     s s 

then, 

E'   (R   ) — °o as Ivl — °° (4-114) 

If,   in addition,   A   is finite,   then 

EM(RS) - °° as M -* » (4-115) 

Proof. 

By Eqs.(4-87) and (4-88) for p    satisfying Eq. (4-113),   all p > 0 and all a  a A,   we have 

2   3  E     (p,p   ) 
T-I     /     ~*n\       T   / ~* \  ,   P oas 

Joa s'    s as 2 
dp 6(P) 

pI-%- Bd-Q) (4-116) 

Hence,   by Eqs. (4-20).   (4-21),   (4-47),   and (4-116), 

,  P2M E'   [P, (p)       R   U-pMR    " ln    1     p((v)exp    -pMI + ^B(l,Q) 

a eA 

pZM 
>pM(I-Rg) - i^ B(L, Q) 

Let 

p*  = min     1 [l     ±il I'    B(I.. Q)J 

Then, 

E
M [P""< (PS>    • RJ > ~ min 'M V *-  2 II - R 

(I-Rs) 

s''     B(L, Q) 
(4-117) 

Clearly, 

M (I-RJ 
(I- RJ 

s''     B(L, Q) 
°°       as M -» =o (4-118) 

Thus,   Eqs. (4-22),   (4-117),   and (4-118) imply that Eq. (4-114) holds.     If  A   is finite,   Eqs. (3-52) 

and (4-114) combine to yield Eq. (4-115). 
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The curves of Figs. 20 and 21,   corresponding to R   < 0.1887 = I, illustrate the theorem 

[ps =<!,£)]. 

Theorem 4.13. 

Let A  be finite.    If for each subchannel input distribution p   there exists /3 e A with 

I/3(PS)<RS (4-119) 

then, 

EM(Rs,<EM(Rs)<d (4-120) 

for all  M,   wheret 

Proof. 

Let 

d =  max  {— lnp(tt)} <  °°       . (4-121) 
aeA 

Ekl(RS
) = EM(')''P'.Rs

) 

where  p' is chosen to have permutation symmetry.    Using Eqs. (4-33) and (4-89),   we have 

EM(RsU"P'MRs~ln    S     p(o)exp[-p'IaM(p')l       . (4-122) 
a eA 

If p    is the single-subchannel marginal distribution corresponding to p',   Eqs. (4-122) and (4-93) 

imply 

EM(Rs)<_p'MRs~ln    S     P(a) exp[-p'MIo(ps)]      . 
a eA 

Then,   for  j3  satisfying Eq. (4-119) for this particular p  , 

Ejy[(Rs)<-p'M [Rg-yPg)] -lnp(/3X-lnp(/3)       . (4-123) 

Thus,   using Eq. (4-121),   we have 

independently of p  ,   and hence independently of  M.    The remainder of Eq. (4-120) is provided by 

Theorem 3.5. 

Theorem 4.13 extends the conditions under which the conclusion of Theorem 4.3 holds [with 

substitution of  d  for —lnp(a)].    One would expect that a similar extension is possible for Theo- 

rems 4.4,   4.5,   4.8,   4.9,   and 4.10.    This is indeed the case.    Of course,   some modification of 

the proofs of these theorems is required. 

We shall close this chapter with a result on monotonicity. 

t Recall that p(a) >0 for all a e A. 
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Theorem 4.14. 

EM(R   ) is a monotone nondecreasing function of M. 

Proof. 

First,   note that Eq. (4-56) implies that E     (p, p  ) is a convex upward function of p  for each 

p    e U and a  e A.    By definition of convexity, 
S 

,.^  .  E      (p, P  ) +  T,„ !   ,   E     (o,p  )<E     (TITTICP  )       • (4-124) M + 1     on K' *s       M + 1     oa      Ks o»   M + r' ^s 

By Eq. (4-52),   this becomes 

ME      (p,p  )< (M + 1) E     (#^r,p) (4-125) oa r  's oa   M + 1 ' Ks 

for all p,   0 < p < 1,   a  e A,   and p    e U.     From Eqs. (4-20),   (4-21),   and (4-47),   we have 

EJY, [P, (PS)M    Rs] =-pMRg-ln    ^     p(a) exp[-MEoa(p,ps)l       . (4-126) 

a eA 

Define  p', p'   by 

Then, 

SM(Rs) = EM[P''(?s)M'RSl        • (4"127) 

EM(RS) =-p'MRs-ln   ^   p(a) exp[-MEott(p',p^)] (4-128) 

fffA 

and 

p'M 
T,(p;)M + 1, Rsl =-p'MRs-ln    YJ     P<«) exp[-(M + 1) E^^,?;)]     .    (4-129) M + l l M + 

a eA 

SinceO^p'^1,   0 < p'M/(M + 1) < 1 also,   and by Eqs. (4-125),   (4-128),   and (4-129), 

0^p<l 

peD 

Note that if E'   (R   ) = E,„(R  ),   the monotonicity above carries over to Ein(R   ).    It is not M     s M     s J Ms 
known whether E'   (R   ) is always monotone for MSCC channels.    I would conjecture that the answer 

is in the negative.    However,   since 

92E     . 
oak,     -• > , n 
 7— (p, P) < ° 

dp 

-» k for 0 ^ p 4 1 and  p  defined on X   ,   we may derive in a manner analogous to the derivation of 

Eq.(4-125) 

E      ,(p,p)<iE      ,(p/i,p) oak ^   ^ oak ' p 
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for  I   an integer.    Thus,   again proceeding as in Theorem 4.14,   we get 

and 

EjV[(Rs)>E'(Rs) 

EWV^iW 
whenever M = kl. 

For our examples,   E-JR  ) = E'  (R ).    Thus,  the monotone behavior of their RCE's may be r M     s M     s 
observed in Figs. 11 and 18. 
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CHAPTER 5 

SYSTEMATIC CODING FOR COMPLETELY CONSTRAINED CHANNELS 

A. INTRODUCTION 

Our study of coding for parallel channels has thus far been confined to an exploration of the 

properties of the applicable random coding exponent (RCE).   This exponent presupposes maximum- 

likelihood decoding,  as has been previously stated.    For any given code,  with code words used 

equiprobably,   maximum-likelihood  decoding yields the  minimum probability  of  error.    Unfor- 

tunately,   the amount of computational effort required to perform maximum-likelihood decoding 

is a positive exponential function of block length.    Thus,  for long codes,  this  effort becomes 

prohibitive. 

Fortunately,  for a class of block codes known as BCH codes [which class includes the Reed- 

Solomon (RS) codes],  the computational effort involved in decoding can be reduced to a practical 

level through the use of minimum distance decoding techniques.    The use of these techniques 

will,  however,   involve some sacrifice in performance relative to maximum-likelihood decoding. 

In this chapter,  we shall examine a class of procedures for BCH coding on a channel with 

parallel structure.    For the case of an MSCC channel,   we shall develop a set of formulas which, 

in combination,  will enable us to calculate or bound the probability of error associated with each 

procedure.    Although general results concerning performance will not be given,  some examples 

are computed out at the end of the chapter. 

B. CODING ALTERNATIVES 

The presence of a number of parallel subchannels presents us with a number of coding alter- 

natives.    One of the decisions which must be made in choosing among them is to decide on the 

number  m    of subchannels to be coded on at once.    Such a decision implies that the   M  subchan- 

nels will be divided into M/m sets of m  subchannels each.    For each such set,  a code letter 

will be defined as the m-tuple consisting of the  m  subchannel inputs in the set at some one in- 

stant of time,   i.e.,   a code letter is a member of X     .    If we choose the code alphabet to be X ' s ^ s   ' 
we shall classify our coding technique as simple. However, we may wish to increase the reli- 

ability of individual code letters by choosing the code alphabet to be a proper subset of X , in 

which case we classify our coding technique as compound. 

The code letters corresponding to each set of  m  subchannels are then encoded to form code 

words of length  N   (this is done,   separately,  for each set).    Each set of  m  subchannel outputs 

is then separately decoded (although there may be state knowledge used in common by all sets). 

An error is considered to have occurred if a decoding error is made in any of the sets. 

The distinction,   defined above,   between simple and compound coding may be made more 

graphic  by referring  to  the  following  diagram  which  shows   a  code  word  of  length  N  on  M 

subchannels: 

t We assume  m  divides M. 
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In compound coding,  we code in the parallel direction (with dimensionless rate less than 

unity) before coding in the time direction.    In simple coding,   we code in the time direction only. 

Simple Coding Example 

Let M =  10,   m =  2,   N = 3,   and X    = {0, l}.    Then, 

:)•(: 

0     10 

are the four possible code letters. 

is one of the 64 possible code words. 
110 

Compound Coding Example 

Let M -• 10,   m =  2,   N = 3,   and X    = { 0, l}.    Let 

0\ /l 
)     and     I       1     be the only two permitted code letters. 

0/ \l 

0     1     1 

0     1      1 
is one of the eight possible code words. 

C.    DIMENSIONLESS RATE 

Obviously,  we shall be interested in comparing the performance of various coding techniques 

on particular MSCC channels.    To make the comparisons meaningful,  we must define our input 

and output parameters with some care.    We have already done this for the probability of error, 

i.e.,  an "error" means the same thing regardless of the value of m.    Suppose X    is a set con- 
sisting of  L  members,   and that on each set of m  subchannels we define W     code words of & m 
length  N,  with 

W    ^ L m 
mN 

Then,  for some real number  r  satisfying 

(5-1) 

(5-2) 
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we have 

W     = LrmN       . (5-3) 
m v 

We shall call r  the dimensionless rate.    If we consider each M/m-tuple of the above code words 

to be a code word on the whole channel,   then 

w        . M/m=LrMN 
Mm 

Since the RHS of Eq. (5-4) is independent of  m,   we may define 

log.  W 6L    m 
mN (5-5) 

as the appropriate input parameter.     The dimensionless rate is related to the rate per subchan- 

nel Rg by 

Rg = r InL (5-6) 

where R    is in natural units, s 

D.     BCH CODES AND SIMPLE CODING SCHEMES 

The properties of BCH codes and various decoding schemes for them are developed and de- 
1 -3t scribed in a fairly extensive literature. In a BCH code,  the code letters are equal to (iso- 

morphic with) the elements of a finite (Galois) field with  q  elements GF(q).    Such fields exist 

whenever q = p  ,   where  p   is a prime and n  is a positive integer.    Hence,   if a BCH code is to 

be used for simple coding over  m  subchannels of a channel with parallel structure and subchan- 

nel input alphabet { 1, . . . , L},   we require L     = p    for some prime  p  and positive integer  n. 

The requirement can be met if and only if for some prime  p  and positive integer  k, 

L = Pk      • (5-7) 

Then,   n =  km.    Thus,   we must restrict our discussion to situations where the subchannel input 

alphabet size is an integer power of a prime. 

If there is a Galois field GF(q) with q elements,   then for any positive integer- i   there exists 
I t an extension field GF(q ) with q   elements.    Let 

i 
N = q   - 1 

A sequence (uN   .,..., u   ) of code letters    may be represented by a polynomial u(t) of degree at 

most N - 1 

N-l 
u(t) = u^t1'      +. ..+ UQ u. e GF(q)      . 

I 
Pick y t GF(q ) so that y   is primitive,   and pick  d  a positive integer less than  N.    Let the code 

words of a code of block length  N  be given by the set of polynomials of degree N — 1 or less with 
2 d-1 

coefficients in GF(q) which have y,y   , . . . ,y as roots.    A code generated in this way is defined 

as a BC1I code.    Iff = 1,   the code is an RS code.    If  r   is the dimensionless rate of the code 

t Numbered references appear at the end of each chapter. 

t Note that the usual subscript order for the letters is reversed here. 

i.'.) 



(d-1)^ ^-LtZ       . (5-8) 

For HS codes, 

(d- 1) =  (1 - r) N      . (5-9) 

The actual value of the ratio of (1 — r) N to (d — 1) for BCH codes with I -•/= 1 may be obtained by- 

making use of the fact that (1 — r) N is equal to the degree of the polynomial which is the least- 
d-1 

common multiple of the minimal polynomials for the (d — 1) field elements y, . .. ,y       .    This 

can be a tedious calculation.    Note,  however,   that for q = 2,   we have 

(d-l)>   2(1~r)N (5-10) 

and the parameters of a number of such binary BCH codes are tabulated by Peterson. 

We note that the parameter  d of a HCH code is not necessarily the same as its minimum 

distance,   although it serves as a lower bound to the minimum distance. 

E.    STATE INFORMATION AND RELIABILITY 

We shall restrict our consideration to those channels for which,   for each a  <  A, 

^       PQ(q/i) = f(«) (5-11) 

q:q-^i 

independent of  L    This will have the effect of making the probability of correct decoding by a 

minimum distance algorithm independent of the code word sent,   and thus greatly simplify the 

calculation or bounding of code performance.    The symmetry requirement,   Eq. (5-11),   is usu- 

ally mot in practice. 

The probability of correct decoding will,   in general,  be affected by the choice of m   in the 

simple coding and decoding schemes described above.    It will also be affected by what state in- 

formation is available at the receiver and how it is used.    As was pointed out in Chapter 2, where 

the physical channels we are modeling are fading channels,   it is usually possible to obtain par- 

tial state information at the receiver by making an energy measurement.     (We may also obtain 

this  information by using some of the channels as test channels.)   This information will often 

enable us to assign a number' representing reliability to each received letter.    Suppose   m  sub- 

channels are coded at once,   and the reliability b      of an m-tuple received at a particular instant 

of time is defined as the probability of its being correctly received conditioned on whatever state 

information the receiver possesses.    If the receiver has complete state knowledge,   we have 

from Eq. (5-11) 

bm(Qf) =  [1 -f(«)]m      . (5-12) 

Suppose the receiver has partial channel state information represented by knowledge of a random 

variable  ft,   for which 

p(q/ia/3) = p(q/io) = p   (q/l) (5-13) 

and 

pdaft)     p(i) p(orj8)       . (5-14) 

t See p. 166 of Ref. 
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One can readily show that Eqs. (5-11),   (5-13),   and (5-14) imply 

S    p(q/w = gW) <5-15) 
q:q^f 

independently of 1,  with 

g(fl) =     £     f(o)p(a//3)      . (5-16) 

We then have 

F.    MINIMUM DISTANCE DECODING 

Let X    = Y   ,   and A = X = Y be the set of possible received sequences.    Let  g be a s s s s r a 

function defined on A x A with 

g(x,y ) = g(y,x ) >, 0 allx.yeA 

g(x,x) =0 all x f A 

and 

g(x, z)4 g(x, y) + g(y, z) all x, y, z e A 

Then,   g  is a distance function.    A minimum distance decoding scheme is one which decodes a 

received word  y  into  the code word x for which g( x, y ) is minimum. 

The simplest choice for g( x, y ) is the Hamming distance,   which is simply the number of 

code letters in which x  and y  differ.    The Hamming distance treats each code letter equally and 

makes no use of reliability information.    Decoding with a Hamming distance is also referred to 

as errors-only decoding.    Efficient algorithms exist for errors-only decoding of BCH codes. 

These algorithms succeed whenever twice the number of code letters received in error is less 

than  d,   where  d  is the code parameter. 

If the receiver has partial state information,   it is no longer logical to use a distance func- 

tion which treats all received letters equally.    One may,  for example,   establish a reliability 

threshold r.,   0 < r. < 1,   and erase the i     received letter if its reliability b    (8) satisfies 
t t J    mr 

b^(/3)«rt      . (5-18) 

One may then define g( x, y ) as the number of non-erased positions in which x  and y  differ.    This 

distance is called the Elias distance.    Decoding with this distance is called erasures and errors 

decoding.    Efficient algorithms exist which succeed whenever the number of errors   e   and num- 

ber of erasures   k  satisfy 

2e + k < d      . (5-19) 

Finally,   define v(x.,y.),   x. <r X    ,   and y. e X      by 
j v   i' ^ i"     i s J l s       J 
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v x., y. 

if x. = y. 
l     J1 

if x. ^y. 
l  '   J l 

(5-20) 

Then,   if b      is the reliability of the i     received code letter,   and h(t),   0^- h(t) <C 1,   is a monotone m J _^ _J '      v ^    ' 
nondecreasing function of  t,   0 ^.' t ^. 1,   we may define g( x, y ) by 

5(x,y) 

N 
\' 
—i 

i   1 

h(b    ) v(x.,y.) m      *  i' -' r (5-21) 

Decoding with this distance function is called generalized minimum distance decoding.     Efficient 

algorithms exist which are successful when the transmitted word  x  and received word  y obey 

2g(x,y N + 

N 

y h(bi > 
—' m 

i=l 

Since explicit analytical error bounds do not exist for generalized minimum distance decod- 

ing,  we shall confine our analyses to decoding with erasures,   errors,   or both.    It should be 

pointed out,   however,   that when b    (ft) may take on many widely separated values (e.g.,   1.0, 0.9, 

0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0),   generalized minimum distance decoding should promise 

sufficient advantage over erasures and errors decoding to justify the numerical calculation of a 

bound in a practical situation. 

Note that the Hamming distance is obtained from Eq. (5-21) by setting 

h(t)  =1 all t,   0^ t <: i 

The Elias distance is obtained by setting 

(0      if t^: r. 

h(t) = 
1      if t > r 

G.    SINGLE-LETTER ERASURE AND ERROR  PROBABILITIES 

We are now in a position to compute the single-letter error,   erasure,   and correct reception 

probabilities (p ,   p  ,   and p  ,   respectively) for an MSCC channel when the receiver has knowledge 

of /3,   and  m  subchannels are coded at once.    Let  r   be the set of all possible  /3.    For conven- 

ience,   we shall assume that  p   is a discrete variable.    Define T . CZ V as the set of /?,   for which 

m      v    t 

Then,  let 

V 

^r\ 
P(/3) 

V      p(/3) fl-[l-g(/?)]m} 

(5-22) 

(5-23) 

(5-24) 

/3er 

tSee Ref. 2, pp. 12-24. 
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^c ps     pe 
(5-25) 

where r    is the complement of T   . s s 
For the special case of complete channel state knowledge,  we may define A    as the set of a 

for which 

bm(o0^rt (5-26) 

and A    as the complement of A   .    Then,   Eqs. (5-23),   (5-24),   and (5-25) hold if a   replaces  /3, 

f (a) replaces g(/3),   and A   replaces   r. 

For the special case of no channel state knowledge, 

p    = 0 (5-27) 

£     p(a) {1 ~[l-f(a)]m} 
a eA 

= *"P, (5-28) 

H. PROBABILITY OF CORRECT DECODING 

Using the probabilities derived in Sec. G above and Eq. (5-19),   it is possible to calculate the 

probability P  (m) of correct decoding of a single set of m subchannels: 

Pc(m) L 
i,k: 

2i+k<d 

 Nl       I   k,. ,N-i-k 
V.  k!   (N-*-k)'.    peps (1 - Pe - ps' (5-29) 

Equation (5-29) assumes erasures and errors decoding,   but reduces to errors only or erasures 

only if p    =  0 or p    =0,   respectively. 

I.      CHERNOFF BOUND 

It is often difficult to evaluate Eq. (5-29).    To evaluate conveniently the performance of BCH 
4 

codes,   we shall need to use the Chernoff bound.     Let u.,   1 <; i <: N be a set of independent iden- 

tically distributed random variables with mean u;   let e > 0 and \ = u + e;  let a   . (t) be defined by 

1      f or t >. 0 

. 0      for t < 0      . (5-30) 

Then, 

a_1(t) 

-1 I  N 
i=l 

u. - A 

\ 
V 

i=l 

u. - NX (5-3i; 
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For any s >, 0, 

a. (t) .$ exp [st] (5-32) 

Thus, 

Z   ui": 

i=l 

.< E exp 1   \-^ (5-33) 

and 

exp 

N 

J]   u. - NX 
i=l 

= E 

\ 
[]    exp[s(u.-X)] 

i=l 

(5-34) 

VN 
=   (E {exp[s(u-X)]})T 

where we use the fact that the u. are independent and identically distributed.    Thus,   if 

(5-35) 

D(s,X) = -In {E(exp[s - X])} (5-36) 

we have for s X 0, 

Z   ui ^A) -£ exp[-ND(s,X)] 
i=l / 

(5-37) 

The bound is tightest for  s   satisfying 

d 
ds E (exp[s(u- X)]} = E {(u-X) exp[s(u-X)]} = 0 

or 

E(u exp [su]) 
E(exp [su]) (5-38) 

Since X > u,   a unique positive solution s    to Eq. (5-38) is guaranteed to exist    if the variance of 

u   is positive. 

J.     CHERNOFF BOUNDS FOR ERASURES AND/OR ERRORS DECODING 

Theorem 5.1.    (Chernoff Bound for Errors and Erasures) 

Suppose we use a BCH code of block length  N  and parameter   d  over a channel with erasure 

probability p  ,   error probability p  ,   and probability of correct reception p  .     Let 

p    + p    + p    =1 c        s      ^e 

p    > 0 
^e 

(5-39) 

(5-40) 

and 

2p    +p    < — = t < 1 *e     ^s       N (5-41) 

t This is proved in essentially the same way as the similar result in part (b) of Theorem 4.8 in Chapter 4. 
E(exp[su]) is the moment generating function associated with the random variable  u. 
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Then,   the best Chernoff bound to the probability that decoding will fail,   P ,   is given as follows: 

P   ^ exp[-ND(d)] (5-42) 

where 

and 

D(d) = s 

s    = In 
o 

o1-1"! 

2 s 
Pc + Pse      + Pee 1 

-Ps(t- 1) 

2pe(t- 2) 

Ps(t- 1) 

2Pe(t- 2: 

2 p  t 
+ C 

pe(2-t) 

(5-43) 

(5-44) 

Proof. 

By Eq. (5-19),   the probability of error in decoding is at most the probability that 2e + k >. d. 

Now,   define random variables u.,   1 < i <C N as follows: 
1      ^     ^ 

u. =  0 with probability p 

u. = 1 
1 

u. = 2 
1 

with probability p 

with probability p 

These  N  random variables will be assumed to be independently distributed.    Clearly, 

/        N \ 

P(2e + k^d)= Pi |j    V    u.^t (5-45) 

i   1 

The RHS of Eq. (5-45) may be Chernoff bounded as per Eqs. (5-36),   (5-37),   and (5-38),   where 

\ - t.    Now, 

/ s Ui         s      2s 
E(e ° ) = pc + Pse ° + Pee 

/ s u\     s       2s 
T-,/         O   I                 O   ,   ,             O Elue   ) = pge  + 2pee 

Thus, by Eq. (5-38), 

s       2s 
0 , T      0 

Poe  + 2P0
e 

t 7-.           s       ( 

(5-46) 

(5-47) 

s 2s 
0   ,   T o 

pc + pse      + 2pee 

(5-48) 

Equation (5-48) is a quadratic in e     .     \Vhen it is solved and the natural logarithm is taken,   the 

RHS of Eq. (5-44) results.    From Eq. (5-36), 
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s  (u-t) 
D = -InE le  ° 

= +s   t - InE o 

s 2s 
s  t — In (p   + p e      +pe     ") 

o \*c     *s *e / 

Theorem 5. 2.    (Chernoff Bound for Erasures Only) 

Suppose we use a BCH code of block length N  and parameter  d over a channel with erasure 

probability p    and probability of correct reception (1 — p  ).    Suppose 

0<PS < ^ = t < 1       . (5-49) 

Then,   the probability that decoding will fail,   P  ,   is bounded as follows: 

Pe <: exp {-N [-t lnpg- (1 - t) ln(l - pg) - K(t)]} (5-50) 

where 

K(t) =-t lnt-(1 - t) ln(l - t)      . (5-51) 

Proof. 
s 

The proof proceeds as that of Theorem 5.1 up to Eq. (5-48),  which is now linear in e 

Substituting the value of s    obtained in Eq. (5-36) gives our result. 

Theorem 5. 3.    (Chernoff Bound for Errors Only) 

Suppose we use a BCH code of block length N and parameter  d over a channel with error 

probability p    and probability of correct reception (1 — p   ).    Suppose 

0< 2pe < | = t< 1       . (5-52) 

Then,   the probability that decoding will fail,   P  ,   is bounded as follows: 

Pe<J exp {-N [- |  lnpe- (1 - |) ln(l - Pe) - K(t/2)]} (5-53) 

where  K(t) is given by Eq. (5-51). 

Proof. 

This is really a corollary of Theorem 5.1.    We set p, =  0,   p    = 1 — p    in Eq. (5-44),   and 

substitute the result in Eqs. (5-43) and (5-42) to obtain our result. 

K.     BOUNDS ON TOTAL  PROBABILITY OF DECODING FAILURE 

We have one further topic we must explore before proceeding with the analysis of simple 

coding schemes on some specific MSCC channels.    Earlier,  we agreed to count the decoding as 

being in error if a decoding failure occurs in any one of the M/m = S sets of  m  subchannels 

each,   where  m  subchannels are encoded at once.    If the probability of error P  (m) is computed 

or bounded above for each such set,   separately,   then the total probability of error P    may be 

estimated by the use of the union bound.    Thus,   if for each set of m subchannels, 
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-ND Pe(mU e (5-54) 

we have 

Pe^ SPe(m)<; Se_ND      . (5-55) 

Since,  at each instant of time,  all the subchannels of an MSCC channel are required to be 

in the same state,  we would normally expect that errors in the various subchannel sets would 
tend to occur together,   and thus that a better estimate than the union bound exists.    Suppose  a 

is a sequence of  N  subchannel states,   and A     is the set of such sequences.    Then,   we have 

Pe=l-      E      P(«) [1- Pe(m/a)]S (5-56) 

a eA 

where P  (m/«) is the probability of decoding failure on a single set of m subchannels when the 

sequence of subchannel states was  a.    Equation (5-56) is obtained from the elementary rules of 
probability after noting that when the state vector  a   is given,   the subchannels become independ- 

ent of each other.    The principal limitation on the use of Eq. (5-56) is the fact that even though 

P  (m/ff) depends only on the number of each subchannel state in the sequence  a,   it is not gen- 
erally easy to compute or bound.    Equation (5-56) is most easily used when P  (m/a ) is equal 

either to zero or to unity for all  a.    Then, 

P    =  P  (m) all m      . (5-57) 

This situation occurs in erasures-only decoding. Equation (5-57) reflects the fact that decoding 
will fail if there are d or more erasures, and that the same number of erasures occur for each 

set of  m  subchannels because our channel is MSCC. 

L.    ERROR EXPONENTS FOR SOME EXAMPLES OF MSCC CHANNELS 

We shall now compute error bounds for simple BCH coding on some particular MSCC chan- 

nels.    The subchannel input and output alphabets will be binary,   and the number of subchannels   M 

will be seven.    Since seven is prime,   we shall have only two simple coding alternatives to con- 

sider:   first,   to code and decode on all seven subchannels simultaneously,   using an RS code for 
which the alphabet size is 2    = 128,   and block length is 2   — 1 = 127;   second,   to code and decode 

each subchannel separately,   using a binary BCH code of the same block length.    The relationship 
among  d,   r,   and  N for the RS code is given by Eq. (5-9);  for the binary BCH code,   the relation- 

ship is obtained from Table 9.1 of Ref. 1.    The results we need are summarized in Table I. 

We define a new exponent,   B(r),   by 

B(r) = D[d(r)] - j£f (5-58) 

and an upper bound to the total probability of decoding failure P    by 

P    = exp[-127B(r)]       . (5-59) 

Hence,  we have 

P   <: exp[-127B(r)] = P        . (5-60) 

77 



TABLE   1 

RATE 
FOR 

AND MINIMUM DISTANCE 
SOME  BINARY BCH CODES 

(N = 127) 

rX N d rX N d 

120 3 57 23 

113 5 50 27 

106 7 43 29 

99 9 36 31 

92 11 29 43 

85 13 22 47 

78 15 15 55 

71 19 8 63 

64 21 

|3-63-7?32 ] 

0.4 5 \ 

040 

P • <   e«p[-l27B(r)] -  •-• 

0.35 

0 30 

CD 
0 25 

0 20 

io'2 

- 

to"9 

.; 15 

0 '0 

to'6 

- 

0 05 

ID"5 

" ID'2 

>v                                         f   - to"' 

l                    1                    l                    i      ^ i                   l 
0.2 0 3 0.4 0.5 

Fig. 24.    Exponent vs dimensionless rate for Reed-Solomon code —Example 1. 

7 8 



Example 1 

M State Known at Receiver 

p (a) 1/2 1/2 

PaC»,/«,l 

We   note that  the erasures-only bounds are applicable  here,   and p_ =  1/2.     For   the RS  code, 

r^ 1/2 implies   that   Eq. (5-49) holds   and we   may compute a positive  error  exponent using 

Eqs. (5-50) and (5-51).     The result is plotted in Fig. 24. 

Now, we consider a binary BCH code on one subchannel of this channel, and note that the 

expected number of erasures is 63.5. Even the lowest rate binary BCH code given in Table I 

corrects at most 62 erasures. Hence, the probability of decoding failuce exceeds 0.5 for all 

positive rates.    Thus,   coding over all subchannels at once is clearly a superior procedure here. 

Example 2 

M = 7 State Unknown at Receiver 

P (a 1/2 1/2 

pB(yi/"i) 

1 - c 

For the RS codes, 

c =  0 05, 0 10,   0.15,  0  20 

Pe=   2  [1-H (5-61) 

For   each value of  c,   Eqs. (5-52),   (5-61),   and (5-9) tell  us at which  rates a positive  exponent 

may be expected.    If Eq. (5-52) is satisfied,   the exponent is the expression in square brackets in 

Eq. (5-53).    These  exponents are plotted   in Fig. 25   for c =  0.05,   0.10,   0.15,   and   0.20   (curves 

labeled S). 

For the BCH codes, 

P    = c/2 (5-62) 

For each value of  c,   Eqs. (5-52),   (5-62),   and Table I tell us at which rates a positive exponent 
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Fig. 25.    Exponent vs dimensionless rate for Reed-Solomon (S) and binary BCH (B) codes 
on several MSCC channels — Example 2. 

may be expected in the bound for 1J Ji). [f Eq. (5-52) is .satisfied, the exponent l)(r) is the ex- 

pression in square brackets in Eq. (5-53). We plot the exponent B(r) given by Eq. (5-58) when- 

ever ii  is positive; plots are shown in Fig. 25 for c      0.05, 0.10, 0.15, and 0.20 (curves labeled B). 

We see from the curves that,   for c      0.10,   0.15,   and 0.20,   the binary BCH exponent is 

greater than the RS exponent at all rates.    Hence,   a binary BCH code would be our choice for 

these examples.    In addition, tin- binary BCH code is easier to implement.    If C      0.05,  it appears 

as though the favored code depends on the rate.    (Note that the curves for the binary BCH codes 

serve only to connect the data points and have no meaning between them.    Thus,   the RS and bi- 

nary BCH codes may only be compared at the data points for the latter.) 

Now, we can examine the reasons why we have obtained the above results.    When we increase 

the number of subchannels coded over' at once,   two things happen.     First,   the alphabet size in- 

creases,   with a resultant  increase in the code parameter  d  for a fixed dimensionless rate and 

block length   N.     The  largest value of   d   for a fixed dimensionless  rate and block length is that 

given by Eq. (5-9) and is achieved for an alphabet size one greater than the block length.     Second, 

the probability of a code letter being received in error (or erased if the receiver has state knowl- 

edge) increases (see Eqs. (5-17),   (5-22),   (5-23),   and (5-24)|,   with a resultant increase in the ex- 

pected number of errors and erasures.    Example 1 is a special case in that the erasure probabil- 

ity remains the same regardless of how  many subchannels are coded over.    Hence,   the increase 

in alphabet size is entirely beneficial,   and the RS code is superior.     In Example 2,   the increase 

in error probability with the number of subchannels coded over is the dominant effect for c =  0.10 
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0.15,   and 0.20.    Unlike the situation in Example 1,  we can only determine this after making a 

calculation. 

In general,  we would expect the optimal number of subchannels coded over at once to lie 

somewhere between  1   and  M.    The determination of this optimum number (which may depend 

upon the rate),   in more general situations than we have considered,   involves considerable labor. 

This labor is primarily due to the difficulty of finding the precise relationship among code pa- 

rameter,   dimensionless rate,   and block length for non-binary,   non-RS BCH codes.    Inequality 

(5-8) is of some help here.    If assuming (5-8) were satisfied with an equal sign,   we compute 

our exponent and find it to be greater (for the same block length) than that for a RS code,   then 

we are secure in concluding that the RS code is not best. 

M.    COMPOUND CODING 

The problem mentioned above,   of an increase in code letter probability of error with in- 

creasing number of subchannels,   has an obvious solution— to code across the subchannels be- 

fore coding along them.    This is what we have called compound coding.     The number of channel 

code letters   A   (i.e., the number of possible input M-tuples, at a given instant of time) is given by 

A= LrlM 

for some 0;: r,      1.    The number of channel code words  W  is given by 

r,N        r.r  M 
W = A = L 

for- some 0^  ro<  1.    Thus,   r.r? for compound coding is comparable to  r for simple coding. 

Compound coding does not seem to be an attractive technique for MSCC channels.    In the 

first place,   we must make r.  In L smaller than the capacity (in natural units) of the worst sub- 

channel state whose reliability we wish to improve.    Furthermore,  for a number of subchannels 

of order 100,   the improvement in reliability is generally not too marked unless r.  In L is one- 

half or less the capacity of the worst subchannel state.    Thus,   compound coding is generally ap- 

plicable only to low rates.    That the exponents obtained even at these low rates are not generally 

as large as those obtained for simple coding is not so obvious.    Indeed,  we cannot be sure that 

compound coding is not advantageous in some instances,   although intuition suggests that coding 

in a direction in which we have no "diversity" will not be advantageous. 
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CHAPTER 6 
MORE GENERAL CHANNEL MODELS 

In Chapters 4 and 5,   we restricted our discussion to channels which are MSCC.    Roughly 

speaking,   such channels have three main properties:    state structure,   memorylessness,   and 

identical subchannel states at each instant of time.    We shall here consider channels in which 

the second and third properties may not obtain. 

A. MARKOV PARALLEL CHANNEL 

Let p.. be such that 
ij 

0<pi;j4?l l«i,j<S 

and 

S 
V 
L, 

.1   1 

p    = i 1 < i< S      . (6-1) 

Let {u).   . be a solution of 
J J=1 

S 

u. =    Y   u.p. 1 < i < S (6-2) 

i=l 

(u } is called a stationary distribution.     Let 

u.p..  = u.p. 1 < i,i < S      . (6-3) 
.1 Ji       i i.l 

Definition 

A Markov Parallel Channel (MPC) is an MS channel with A = { 1, . . . , S)  in which the prob- 

ability p(e., . . . , e, ) that any  k  successive subchannels are in states e., . . . , e, ,   respectively, 

is given by 

p(e e, ) = u     p . . .   p (6-4) '     1 k e/ e.e, ' e,    ,e. 1      1   2 k-1   k 

irrespectivet + of the direction of progression across the subchannels. 

The channel we have just defined has relatively simple subchannel dependencies while not 

requiring the states of all the subchannels to be the same during a single-letter transmission. 

The   MSCC  channel   is   the  special  case  of  the   MPC  with p.. = <5...    By  our  remarks   on  time- 

parallel duality in Chapter 2-B,   we should be able to make use of known results on single chan- 

nels with a Markov state dependence in time     to analyze the MPC. 

t Numbered references appear at the end of each chapter. 

i Equation (6-3) is the consistency condition which allows this (see Ref. 1). 

§The channel with Markov state dependence in time is called a "discrete finite state channel"  in Ref. 2. 
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B.    CAPACITY OF  MPC 

The first problem we might wish to consider is that of the computation of the capacity of the 

MPC.     Unfortunately,   there is no simple formula for capacity in terms of the channel parameters 
3 

given.    Gilbert    computes the capacity of a single channel with Markov state dependence in time 

for the special case where both input and output are binary and there are only two channel states. 

The first state guarantees that the output and input be the same.    In the second state,   all transi- 

tion probabilities are one-half.    (The states correspond to p,(£/rj) and p2UA)) of Example 1, 

Chapter 3.)    Since Gilbert's result is a capacity per use of the channel defined by a limiting 

process,   Theorem 2.5 suggests that his results will serve as upper bounds to the capacity per 

subchannel C   ,,.    In general,   Theorems 2.3,   2.4,   2.7,   and 3.1  may be combined to obtain upper 

and lower bounds to C   ,, which are relatively easily calculable.    These are given by sM - fi J 

S S S      S 

c 
pi (' 

max    V    u.IJ(X  ;   Y   ) +  -^    Y    u. log u   + (1 - -£=)     Y      Y    u.p.    logp. j p    s       s        M    <->     j     s   j M      —'     ->     I'IJ     
H' IJ 

j=l j = l j=l   i=l 

S 

< C   .^max    V    u IJ(X  ;   Y  ) (6-5) v     sM ^      T.     '->     j p    s'     s 
pel!        ,      * v 

Xs = {1 D       ,        Yg =  ll Q} 

Q 
IJ(X  ;   Y   ) = 
p     s       s 

where,   if 

then, 

P,(q/f) 
J   p(f) p,(q/l) log-T- J       . (6-6) 

q=l   1=1 2     p.(q/k) p(k) 
k=l     J 

[Recall that  j   is the subchannel state,   and p(f) is the subchannel input distribution.] 

C. RANDOM CODING EXPONENT FOR MPC 

Unfortunately,   no results are available concerning maximum-likelihood RCE's for Markov 

channels.    YudkinT derives RCE's for Markov channels with a type of nonmaximum-likelihood 

decoding.    By duality,   his results carry over to the MPC without essential change. 

D. SYSTEMATIC CODING FOR MPC 

In contrast to the situation which exists for the RCE,   the performance of BCH codes with 

simple coding schemes and minimum distance decoding can be evaluated almost as readily for 

the MPC as for the MSCC.    We continue to assume that Eq.(5-ll) holds.    What is changed is our 

computation of the reliability b      (probability of correct reception) of an m-tuple of subchannel 

inputs.    Suppose,   for convenience,   we choose the m-tuple to consist of the first  m  subchannel 

inputs.    The state vector we are concerned with is a = (a .,..., a    ).    Thus,   for the case of 

complete state knowledge, 

tSee Ref. 2, Chapter IV. 
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bm(«)= n [i-f(«i) 
i=l 

(6-7) 

If we have no state knowledge, 

m 

t>     =       7,     • • •        7,       up • • •   p 
A A 1      *    2 m-1   m   .   . 

1 m 

n I*-««!>] (6-8) 

Suppose we have a random variable /3 = (/3 ., . . . , /3    ),   representing partial knowledge,   with 

and 

p(y/x«/i ) = p(y/xtt) = p_^(y/x) 
a 

p(xap ) = p(x) piap ) 

p.(y./x./3) = p.(y./x./3.) 
*i    l     l ri Ji     li 

(6-9) 

(6-10) 

(6-11) 

for all   i,   1 < i < m.    Then,   if we define g(/3.) by 

Si</V = ^ P^i/^i) (6-12) 

y.:y.7^x. Jrir  i 

g.(/3.) is independent of x.,   and 

(6-13) 

a. eA 
l 

.th 
g.(/3.) is the probability that the i     subchannel symbol will be incorrectly received given that 

the i*" component of the partial knowledge vector is p..    Thus,   if the receiver knows ft, 

i=l 

(6-14) 

The erasure criterion is of the form 

b    (/3) ^ r. m r t (6-15) 

If we define r      as the set of p   for which Eq. (6-15) holds,   Eqs. (5-23),   (5-24),   and (5-25) become 

V 
p(/3 (6-16) 

?er» 

pe =   Z   p<^ 

P*K 

i- n  I1 -gi^)] 
i=l 

(6-17) 

HS 



»-P. "c ' s      ' e 

, m . , „ _m 

(6-18) 

where r      is the complement of r    .    If the receiver has no channel state knowledge,   Eqs.(5-27) 

and (5-28) become 

p    = 0 1 s 
(..-I'M 

V 

(VtA 

*-P, 

p(o) i - n i1 -f<«i' 
i=l 

(6-20) 

E. OTHER MS CHANNELS 

\ccill(-ss to say,   the MPC and MSCC channel are not the only possible  VIS channels.    How- 

ever,   together with the independent subchannel case,   they are the only MS channels for which 

random coding results of any generality are known.    If,   for some reason,   it seems desirable 

to use some other MS channel model,   numerical computation may provide the only guide to the 

behavior of the RCE.    The performance of minimum distance decoding of BCH ('odes may none- 

theless be evaluated with an effort comparable to that involved in a similar evaluation for the 

MPC.    The details of this evaluation involve an obvious extension of the material in the preceding 

section. 

F. CHANNELS WITH BOTH TIME AND  PARALLEL DEPENDENCIES 

Thus far,  we have considered only memoryless channels or,   equivalently,   channels with 

memory but no parallel dependencies.    An obvious generalization is to channels with dependencies 

in both the time and parallel directions.    We shall assume a state structure where   A   is the set 

of subchannel states,   and a conditional probability distribution p   (f/?i),   f  i  Y  ,   II t X    is as- 

sociated with each B  C A. 

G. BLOCK MODEL 

Suppose we have a channel consisting of M,  subchannels which,   at each transmission instant, 

are all in the same state.    Suppose,   too,   that there is an integer M    such that for any integer  k, 

the state which is in effect at time kM? + 1 must persist until time (k ^  1) M-,,   and that the state 

corresponding to each value of k  is independent of all the others.^   The channel is cyclostationary 

rather than stationary,  because a change in state may occur only at specified times. 

The significant facts about the channel are that a block of 

M - M.M, 1     2 (6-21) 

subchannel letters is transmitted while the corresponding subchannel states are all the same, 

and that the state for each block is independent of the states for the others.    Hence,   we may make 

use of our MSCC results for the block model.     Let R,   be the rate per block of length M?.    Then, 

the rate per subchannel per channel use R    is given by 

t Note that if M] - 1, we have the dual of the MSCC channel.    This serves as a simple model for a single channel 
with memory. 
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R Rb 
Rs =  MT  = ~M"      • (6_22) 

1 

Results concerning C  M in Chapter 4 remain true,   where   M  is now the number of subchannel 

letters in the block.    We have also,   for block codes of length NM„,' that 

Pe«exp[-NEM(Rs)] (6-23) 

where EM(R   ) is precisely the same as in Chapter 4,   with   M  given by Eq. (6-21). 

H.    CONSTRAINED-MARKOV MODEL 

Suppose we have a channel consisting of  M  subchannels where,   at each transmission instant, 

all the subchannels must be in the same state.    Suppose,   further,   that the state sequence in time 

is a Markov chain.    Then,   using the results of Yudkin,   we might hope to pursue a line of reason- 

ing similar to that in Chapter 4 to prove theorems such as those in Chapter 4 for nonmaximum- 

likelihood decoding of block codes on this channel.    This seems like a promising area for future 

research. 

Obviously,   the constrained-Markov model has a dual.    This dual has a Markov state depend- 

ence in the parallel direction.    In the time direction,   each subchannel state persists for a "block 

length" of M, uses of the channel.    At the start of a new block,   the set of subchannel states is 

chosen independently of prior states according to the Markovian rule given.    This dual seems 

less attractive as a model for physical channels than the constrained Markov model itself. 

I.     OTHER MODELS 

Clearly,   any one-dimensional discrete-time random process which is not independent from 

shot to shot may be combined with complete constraint in the parallel direction to yield a state 

process for a channel with both time and parallel dependencies.    Since general results concern- 

ing the single-subchannel versions of such channels are not available,   one would anticipate dif- 

ficulty in analyzing the multiple-subchannel case. 

When we consider the case of channels which are neither completely constrained nor in- 

dependent in either the time or the parallel direction,   it becomes difficult even to find simple 

models for the underlying state process.    Here,   the prospect for other than numerical results 

is slim indeed,   and even numerical results can only be obtained with great difficulty. 
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APPENDIX A 
CHANNELS WHICH ARE MC BUT NOT MS, AND RELATED TOPICS 

Theorem A.l. 

There exists a two-subchannel MC channel with X   = Y    = (o, l) which is not MS. 
s        s 

Proof. 

Let the conditional probability distribution p(y.y_/x x_) of a 2 x 2 x 2 MC channel be given 

by the entries in the following matrix: 

X1X2 

00       01       10       11 

y4y2 

00 

01 

10 

11 

0.5 0 0 0 

0 0.5 0.5 0.5 

0 0.5 0.5 0.5 

0.5 0 0 0 

p(y1y2/
x

1
x

2) 

It may be verified [using Eq. (2-2)] that this channel is MC.    Suppose this channel is MS;  then, 

for some set of subchannel conditional prol 

some joint distribution p(a, , a?),   we have 

for some set of subchannel conditional probability distributions {p   (|/rj)}     .. ,   £ , ?7  e {o, l},   and 

P(y1y2A1x2)=    I      Z    P«Va2)pa WP^'W 
a, eA   a_.eA 

1 £• 

For each value of  a,   we may depict p   (|/r)) as follows: 

(A-l) 

l-a(a) 

t>aWv) 

l-b(a) 

o« a(o)^ 1 

o $ b(a) $ I 

Let us consider the four "pure" channels which are diagrammed below: 

M'V) 

q.ie/i?) Q4(£A?) 
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One can easily see that p   (4/T;) may be represented as follows: 

P0,(4/1) =  (1 - a) (1 - b) q^/rj) + b(l - a) q^/v) + a(l - b) q^/v) + abq^/rj)      . (A-2) 

Note that all the coefficients of the q, ' s are non-negative,   and that  a  and  b  are functions of  a. 

Since p(a,, cv   ) >, 0 for all a   , a    e \,   Eqs. (A-l) and (A-2) imply that there exist variables 

p. and P.,   each of which may take on values 1, 2, 3,   and 4,   and a joint probability distribution 

p(/3   ,/3   1    such that 
\ L 

4 4 

p(y4y2/v2> = £   £ ptfw^ 'y/^'^'V^1   • (A"3) 

^ = 1   ^=2 

[We know that p(P.,P   ) is a probability distribution because the non-negativity of the coefficients 

in Eqs. (A-l) and (A-2) implies p(/3   ,/O >. 0 and      2       q. (y./x.) = 1,   i = 1, 2 implies 

4      4 yieY
s     l 

2 2      p(/3   , /}  ) =  1 from Eq. (A-3).]     It is clear that Eq. (A-3) holds even if p((v   , a   ) is a 
p  =1   p  =i 1     l !      z 

1 2 
joint density and the sums in Eq. (A-l) are replaced by integrals. 

Suppose Eq. (A-3) holds for the MC channel given.    Setting x    = y    = 0,   we have 

4 4 

P(oy2/ox2) =   YJ    S   p«Wq£ i°/°)y (y2
/x2' 

Pi = i   (ifi * 2 

4 4 

Y      p(l,/32)q     (y2/x2)+     2      P(2,/32)q      (y2/x2)       . (A_4) 

Pz-i Pz=i 

Since p(/3   , P   ) >. 0 and p(0y /Ox   ) = 0.5q   (y /x?),   only the terms of Eq. (A-4) with P    = 1 may be 

nonzero.    [Otherwise p(0l/00) > 0 or p(00/01) > 0 or both,   contrary to assumption.]   Hence, 

0.5 = p(l, 1) + p(2, 1) 

From Eq. (A-3), 

p(ll/ll)=p(l,l) + p(l,3) + p(3,l) + p(3, 3)  5. p(l, 1) >. 0 

Since p(ll/ll) = 0,   p(l, 1) = 0 as well.    Thus,   p(2, 1) = 0.5.     We have 

p(00/l0) = p(2, 1) + p(2, 2) + p(4, 1) + p(4, 2)  >. p(2, 1) =  0.5 

But,  p(00/l0) was given to be zero;   hence,   we have a contradiction which proves that the channel 

whose transition probability matrix is given above is not MS. 

Theorem A.2. 

There exists an  M   subchannel MC channel with X    =Y    ={0, l) which is not MS. s        s 

Proof. 

Pick a single-subchannel conditional probability distribution p(4A)),   4 e Y   ,   i) e X    and let 

M 

P(yd yjvi^l XM) = p(yly2/xiX2)   n    P(yiA.) (A-5) 
i=3 
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where p(y y~/x x  ) is given by the matrix shown in the proof of Theorem A.l.    It may easily be 

verified that the RHS of Eq. (A-5) is the conditional probability distribution of an MC channel. 

Suppose that for some {p   (£/»?)}       .   and joint distribution p(a,, . . . , a..),   we have 

p^i yM
/xi x

M» =   Z Z   p(«r 
al£A aM€A 

'V 

x p„ (yi/xi>--- p«M <yM/xM> 
1 ivl 

(A-6) 

Then, 

^3eYs 

V p(y1 

y    6Y JM      s 

yM/xl XM> 

Z Z      P<ai'a2
)pa   (yl/xl)pa   '^V 

• « 1 2 a   eA   «   eA 

p(y1y2A1
x

2
) (A-7) 

But this implies that the channel whose transition probability matrix is given in the proof of 

Theorem A.l is MS,   contrary to Theorem A.l. 

Theorem A.3. 

For any integer   M,   subchannel input space X   ,   and subchannel output space Y   .   there exist 

MC channels which are not MS. 

Proof. 

Let X'   = Y'   = {0, 1} and p'(y' ^'M^I XM* be Siven bV the RHS of Ecl- (A"5) with 

x. -» x1.,   and y. — y'. .    Define a function f(x) from X    onto X' ,   and two probability distributions 
1 l J\       Ji s s + 

(or densities) p   (| ) and p.(| ) over Y    such that p   (| ) p.(? ) = 0 for all £   e Y   .    Define' 
O 1 S O 1 o 

M 

p^i yM
/xi X

M
)=

   Z    •••    Z 
J1      s JM      s 

El    Py'.'^i 
L i 

xp'iy1! y'M^^i'' f(xM)] (A-8) 

The relationship between the primed (original) and unprimed (derived) channels is shown in 

Fig. A-l.    Since the primed channel is MC,   clearly the unprimed channel is MC,   too.    Now,   sup- 

pose for some (p   (£ A?)}       , ,   £   e Y   ,  ri  e X    and some ioint distribution p(a ., . . . , a..),   we have f lta aeA s s r     1 M 

p(yi yM
/xi X

M
)=

   £ 

t As usual, p    (y.) = p(y./y'.). 
i 

Z   p<ar aM» 
a . eA 

1 aM£A 

x Pa (y/xj)--- Ptt    (yMAM) 
1 M 

(A-9) 
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.(•1 

and 

'»o- 

P(y2/y2) 

-ORIGINAL CHANNEL 

J*   ply   It'   ) 
M       M 

DERIVED 
CHANNEL 

1 J 

Fig. A-l.    Relationship between original and derived channels. 

Y      be the set of £   e Y    for which p   (| )   •   0 
so s "o 

Y   , be the set of £  e Y    for which p. (|) >   0 
si s rl 

Since p   (£ ) p,(£ ) = 0 for all t  e Y  ,   V      and Y   , are disjoint.    If r.  t Y' ,   define i Qy    t-^^ s       so si ' l s 

P     (r./x.) = V        p     (y./x.) 
a.    y    I u a. J i    l 

y.cY 
M      sr. 

l 

(A-10) 

Note that 

v.eY 

P ,(yi) = 6  } 
J I 'I 

(A-n: 

Pick 

and 

Choose 

so that 

<rl- '••rM)       '        rieYs       '        i=1 M 

(U1 V      •       Ui£Xs       '        1=1 M 

<xl V       •       XitXs       '        1=1 M 

f(x.) = u. i = 1, . . . , M (A-12) 
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From Eqs. (A-8) and (A-9) 

E       ••• I 
v' eY' v'   eY1 
yl      s yM      s 

M 

n Pv.<yi» 
1=1 

• yWf{xi] f(xM)] 

E   •••    E    p<a! aM)p«1
(yi/xi)"  Pa ^M^M' 

aieA a
M

£A 

(A-13) 

Summing both sides of Eq. (A-l 3) over all y. e Y       ,   i^i^ M,   and using Eqs. (A-10),   (A-ll] 

and (A-IE),   we get 

P'(yl yM/ui V 

•M       r 

z  • •   E n \{ 
yieYs yMeYs .1=1   i 

E      •••        E       P<Q! VPa'VXl''--PaM
(rM/XM»     -<A"14> 

This reduces further to 

P'(rl rM/ui UM)=       E      •••        E       P<«! «M) 
aieA aM£A 

*%   (VU1)'"   %,  'VV M 

\vh ere w     (r./u.) is defined by a.    i'   I 

(A-15) 

%;ri/
f(xi)1 = Pa.(ri/x1

) 

l I 

(A-16) 

for all a. e A,   r. e Y' ,   and x. e X   .    Clearly,   w     is a conditional distribution on Y'   x X' . l l s l s -"a s s 
Since (r r    ) and (u. uM) were arbitrary,   Eq. (A-15) implies that the primed channel 

is MS,   contrary to Theorem A. 2. 

Theorem A.4. 

There exists an Nil channel with X    = Y    = {o, l},   which is not MST. 

Proof. 

For I an even integer,   and  N  an even positive integer,   define 

N/2 

p(yi + l yi+N'/xi + l Xi+N> "    n     Pfri + Zk-l'^ + Zk^i + Zk-l'^+Zk' 
k=l 

(A-17) 

where the bivariate conditional probability is given by the matrix shown in the proof of 

Theorem A.l.    The conditional probability for other values of I  and  N  can be obtained by 
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summing conditional probabilities of the form given over appropriate outputs.    Since each odd 

input-output pair and the succeeding even one "stand alone,"  it is clear (an argument similar to 

that used to prove Theorem A.2 may be used) that the channel given by Eq. (A-17) is Nil but not 

MST. 

The restriction to binary subchannel alphabets may be removed as in Theorem A. 3. 

We note that the channel given by Eq. (A-17) is cyclostationary rather than stationary.    In 

fact,   there is a unique stationary channel with bivariate conditional probabilities given by the 

entries in the following matrix: 

Vi+i 

00 

01 

10 

11 

1 1+1 

00       01       10       11 

0.5 0 0 0 

0 0.5 0.5 0.5 

0 0.5 0.5 0.5 

0.5 0 0 0 

pfriWVi+i' 

This channel has the property that given a single input sequence,   there are only two possible 

output sequences,   each having probability one-half.     This is true regardless of the length of 

the input sequence.     Unfortunately,   this channel is not Nil,   and this fact is proven as follows: 

(1) The input (xf,x2, x^) =  (0, 0, 1) may result in the outputs (y     y     y   ) = 

(0, 0, 1) or (1, 1, 0),   each with probability one-half. 

(2) The input (x^ x2,x3> =  (0, 1, 1) may result in the outputs (y,,y?, y   ) = 

Hence, 

and 

(0, 1, 0) or (1, 0, 1),   each with probability one-half. 

p(00l/001) + p(01l/001) = °-l 

p(00l/011) + p(01l/011) =0+0=0 

Thus,   the channel referred to is not NIL    It. is not known whether there exist strictly stationary 

Nil channels which are not MST. 
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APPENDIX B 
PROOFS OF THEOREMS 2.3 AND 2.4 

Let  P be the set of probability distributions over a finite product space X    ,   and  D be the 
MM s 

set of product distributions over X     .    Let X      consist of  K points.     Clearly, 

K 
(B-l) 

and   P  is compact.' 

Lemma. 

D  is compact in 'A   . 

Proof. 

D  is bounded because D (Z P,   and  P  is bounded.    Let p(x., . . . , x..) be a limit point of  D. 
!M I oo 

n     q. [x.)\ of product distributions with 
i=l       I    l \ £=i 

lim I 
xleXs xM€Xs 

M 

p<xi-• • •• x
M'" n %(^ 

i-i * 

= 0 (B-2) 

Since the sums are finite,  this implies 

lim I 
x. tX x„.eX Is Ms 

M 

p<xi ^^M' - n qf.
(x

i
) 

i=l 

(B-3) 

Now, 

y.   ••    r. 

x. eX x„,eX Is Ms 

M 

p(xi x
M

)_ n %.ui] 

v 

x.eX 
i     s 

p.(x.) - q   (x.) 
l 

i=l 

>0 i =  1, . . . , M 

,th 

(B-4) 

where p.(x.) is the marginal distribution of the i     subchannel input associated with the joint 

distribution p(x, x„.).     From Eqs. (B-3) and (B-4), 

lim  qf (x.) = p (x ) 
f—oo i 

From Eqs. (B-2) and (B-5), 

\l M 

p(x1 , xM) = lim    J]   qf UJ =   ]J   pAxJ 

(B-5) 

(B-6) 

i=l i=l 

fThat is, closed and bounded.    See W. Rudin,  Principles of Mathematical Analysis,  2nd edition (McGraw-Hill, 
New York,  1964), Theorem 2. 41. 
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Hence,   p(x,, . . . , xM) is a product distribution,   and  D is closed.    Since  D is closed and bounded, 

it is compact. 

Proof of Theorem 2.3. 

We note that since  D and  P are compact subspaces of '&   ,   D x {[0, 1]} and P x {|0, 1]} are 
K+l 

compact subspaces of*:R 

(1)   Since a continuous function defined on a compact set is bounded,' 

FD(R),   GD(R),   F   (R),   and Gp(R) are finite. 

(Z)    Since a continuous function defined on a compact set achieves its max- 

imum,'- for each value of R there  exist 0 ^ p* ^ 1 and p* e D with 

FD(R) = f(p*,p*, R)       . (B-7) 

Thus, 

FD(R) = f(p*, p*, R) < g(p*, p*, R) *C GD(R) < Gp(R) (B-8) 

as required.    The last inequality is an obvious consequence of Eq. (B-l). 

Clearly,   if  f < g,   the inequality between Fn and Gn is strict. 

(3)    For the same reason as in (2) above,   for each value of R  there exist 

0 ^ p1 ^ 1 and p' e P with 

Fp(R) = f(p',p\ R)      . (B-9) 

Hence, 

FD(R)^ Fp(R) = f(p',p\ R)< g(p',p\ R)« Gp(R)      . (B-10) 

The first inequality is an obvious consequence of Eq. (B-l).    It is clear 

that if  f < g,   the inequality between F„ and Gp is strict. 

Proof of Theorem 2.4. 

(1)    For each  R,   pick e > 0.    There exist 0 4 p' 4 1 and p' e D with 

0^ FD(R) -f(p',p', R) 4 e      . (B-ll) 

Thus, 

GD(R) - FD(R) = [GD(R) - g(p', p', R)] + [g(p', p', R) - f(p', p\ R)] 

+ [f(p',p', R)-FD(R)]> 0 + 0- e = -e       . 

|W. Rudin, op. crt., Theorem 4.15. 

t Ibid., Theorem 4.16.    If this were not so, we would have used I. u. b.   instead of max in the definitions of Fn, 

GD' FP' and GP' 
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Since   e  was arbitrary,   we have 

GD(R) - FD(R) >0 

as required.    The rest of Eq. (2-22) follows from Eq.(B-l). 

(2)   The proof here proceeds as in (1) with  P  replacing  D. 

We note that if f and/or  g  fail to depend on any or all of p,   p,   and  R,   the conclusions of 

Theorems 2.3 and 2.4 remain valid. 
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APPENDIX C 

SOME  USEFUL INEQUALITIES 

This appendix contains statements of the important nontrivial inequalities used in the text. 

A reference is given for each inequality stated.    In any inequality in which A appears,   we assume 

0 < \ < 1. 

(1)    Let {a.}._. be a sequence of non-negative numbers.    Then* 

) Q 

i=l i=l 

(C-D 

r      i N r      I N (Z)   Let (a.).   , and (b.}._. each be sequences of non-negative numbers wi th 

2   b. = 1.    Then,' 
i=l    1 

N 
v, h,2.} A y b;a; (C-2) 

i=l >i=l 

(3)   Minkowski's inequality:   let {a..}._.   ._.,  and {p}_. be sets of non-negative 
M «T 

numbers with     S    p. = 1.    Then, 
j=l     3 

N 1 M 

El - pjai 
i=l Vj=i 

kiA 
V ^/w 

,A 

Lj=l        \i=l 

iA 
(C-3) 

fG.H. Hardy,  J. E. Littlewood, and G. Polya,  Inequalities (Cambridge University Press,  Cambridge,  England, 

1959).    See Theorem 19,  p. 28. 

% Ibid., Theorem 16, p. 22. 

§ Ibid., Theorem 24, p. 30. 
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APPENDIX D 

CANONICAL REPRESENTATIONS 

Theorem D.l. 

For any MS channel with finite input and output alphabets, there always exists a representation 

for which in each channel state the subchannel conditional probabilities are all either zero or unity. 

Proof. 

Let  A,Xs = {1 L},   Ys = {l Q) ,   P^q/i) a  e A,   q e Yg,   i  <r Xg,    ploj aM) be 
given and 

V 

1- "iv 

V 
Ll u 

a . eA 1 aMeA 

p(cvl aM]PaA
{yl/xi]   •••   PaJyM/xM]       • (I>1) 

1 1V1 

We define a pure (sub) channel as one for which the input completely determines the output.    There 

are Q     possible different pure subchannels.    We denote the conditional probability distribution 
associated with a pure subchannel by s„{q/l),   I  e X  ,   q e Y  ,   where 1 ^ ji 4 Q   .    We note that for 

each /3, I there is a unique value of q  with s  (q/i) = 1. 

If 1 < b,  ^ QL for 1 < k 4 M,   then 
M 

P(y/x) = n s
b (ykAk) <D-2> 

k=i    k 

is the conditional probability distribution of a pure channel with L     inputs and Q     outputs. 
For each a  e A,   we shall show that it is possible to expand p   (q/l) in a series of s„(qA) 

with non-negative coefficients,   as shown in Eq. (D-3). 

QL 

Pa(q^ =    2    Cn sn(q/i) (I>3) 

n = l 

where Ca > 0,   a € A,   and 1 < n < Q   .    The expansion Eq. (D-3) is not generally unique,   but one 

way of finding the C    is to proceed as follows:    Let 

p°(q/l) =p0(q/i)       • (D-4) 

By definition of a probability distribution,   p°(q/i) > 0,   I 4 I 4 L,   1 < q < Q.    Find the smallest 
Q' I        O 1 nonzero transition probability in the set {p°(q/<)} JJ1-    Call it r    .    Now, 

Q 
£     p°(q/l)   =  1  >0 (D-5) 

q = l 
1 1 for all   1,   14 14 L.    Thus,   there must be a (not necessarily unique) function q  {!),   1 4 q  (')^Q, 

with p° [qV)/!]  > 0,   i 4 i 4 L.    By definition of r1, 

P°[qV)A]    >r' >0 (D-6) 

9'< 



for all  i,   i 4 1  € L.    Choose q  (') so that Eq. (D-6) is satisfied with equality for at least one 

value of i.    Let s,     be the pure subchannel with 

S      [q*(i)/i]   =  1 (D-7) 

Let 

phq/t) = p°(q/i)-rV   (q/i) (D-8) 

Clearly, 

pHq/t) >0 1 < i < L 1 < q < Q 

If p   (q/i) is not identically zero,   the process may be continued.    Note that at each step of the 
a m + 1. process,   a positive value of p     (q/f) is converted to a zero value of p (q/f).    Since there are, 

at    ' a 
at most,   LQ positive values of p   iq/l),   the process must terminate after,   at most,   LQ steps, 

and we may write 

p0<q/*> 

N 

< Csb {q/t) 
m = l m 

(D-9) 

where 

N< LQ (D-10) 

Equation (D-9) may be converted to Eq. (D-3) if r     -» C      and the s  (q/f) are renumbered so 

that b     - m.    Now,   from Eq. (D-3), m i >        'i 

VI M 

npa.(yA)= n 
L=l i = l     Ln. = l 

Q 
V C    ^    (y./x.) n.     n.    I     i 

(D-ll) 

Thus,   from Eqs.(D-l) and (D-ll), 

p<y1.....yM/x1,....*M> 

M 'QL 

V      . L P(Q'1; .. ••°'M) r 
«1eA °MfA i = 

QL QL • 

1      • 
V y V 

n1=l nM = 1 Lcv^A «MeA 

a 

Ln. = l 
i 

I'lft',, 

v     C   xs    (y./x.) <->        n.     n. •'r    I 
l       l 

a i 

1 

XsnJ
(yl/xl)   •'•   sn   <yM/xM> M 

Q 

n^l 

Q 

d(n, n,.) s     (y./x.) <-* 1 M      n.  ^ 1      1 1 
nM = 1 

snM
(yM/xM' 

:D-I2) 
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where 

d(n1,...,nM)=      I     •••        I      FX«1,....o(M)c"1   •..   Cn^      , (D-13) 
A A 1 M 

ffleA aM€A 

d(n., . . . , n-.) is clearly a probability distribution because it is non-negative valued by Eq. (D-13), 

and a summation of both sides of Eq. (D-12) over y., . . . , yM shows that it is properly normalized. 
Thus,   we have our desired representation. 
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APPENDIX E 

A COMPLETELY CONSTRAINED CHANNEL 

WITH A CONTINUOUS PARAMETER 

In this appendix,   we shall give an example of an MSCC channel whose rapacity per subchannel 

with state unknown approaches the capacity of a single subchannel with state known as the number 

of subchannels increases,   although the state representation for the channel is not discrete.    Sup- 

pose we have an MS channel consisting of  M   parallel binary symmetric subchannels.    For each 

use of the channel,   the crossover probability  g  is the same for all the subchannels.    Thus,   this 

channel is MSCC.    A probability density p(g) is given with p(g) = 0,   unless 0 ^ g ^ 1.    We will sup- 

pose that each possible input is used with probability (l/2)    ,   independently of the channel state. 

It is easy to see that this is the input distribution which achieves capacity,   whether or not the state 

is known at the receiver.    Now, 

I(XY;   G) = I(Y;   G) + I(X;   G/Y)       . (E-l) 

By symmetry,   p(y/g) = (l/2)      = p(y).    Thus,   y and  g  are independent,   and I(Y;   G) = 0.    Hence, 

KXY;   G) = I(X;   G/Y)       . (E-2) 

Combining Eqs. (3-4) and (E-2),   we have 

I(X;   Y) = I(X;   Y/G)  - I(XY;   G) .                                                                                          (E-3) 

For each value of  g,   p(y/xg) depends only on the Hamming distance d-Jx, y) between  x  and y. 

Let  D be the ensemble of such distances. 

I(XYD;   G) = KXY;   G) + I(D;   G/XY) 

= I(D;   G) + I(XY;   G/D)       . (E-4) 

Now, 

and 

Hence, 

p(d/gxy) = p(d/xy) 

p(xy/gd) = p(xy/d)       . (E-5) 

I(D;   G/XY) = 0 = I(XY;   G/D) (E-6) 

and,   combining Eqs. (E-6) and (E-4),   we get 

KXY;   G) = I(D;   G)       . (E-7) 

Combining Eqs. (E-7) and (E-3),   we get 

I(X;   Y) = I(X;   Y/G) - K D;   G)       . (E-8) 

Now,   D = {0, 1, . . . , M};   hence, 

I(D;   G) < H(D) < log(M + 1)       . (E-9) 

Thus,   using Theorem 3.1,   Eqs. (E-8) and (E-9),   we have 

I(X;   Y/G) -log(M + 1)<I(X;   Y)<I(X;   Y/G)      . (E-10) 
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Y/G) = M r 

We may readily compute 

I(X;   Y/G) = M \     [1 + g logg + (1 - g) log(l - g)] p(g) dg 
Jo 

= M I(Xi; Y^G) (E-ll) 

Thus,   from Eqs.(E-lO) and (E-ll), 

I(Xi;  Yl/G) - lM<^±_D < 1^11 4 i(xi;   Yl/G)      . (E-12) 

Now, 

M-*°° 

Hence, 

lim    U\Y)  =KX.;  Y/G)      . (E-14) 
M-*<*> 

From the remarks preceding Eq. (E-l),   Eq. (E-14) implies 

lim    CsM=Ci       . (E-15) 
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APPENDIX F 
AN MSCC CHANNEL FOR WHICH EJy[(Rs) ^ EM(Rg) 

Consider the 2SCC channel defined [see Eq. (4-1)] by X 

1, 2,   and 

{1 8),   p(«)  =  1/2, 

PiU/v) 

P2(«AI) 

1        T) = | 

0       otherwise 

0       if | = 2 ,7 

if 4  =  1,8 and t] = 2, 

1       if (5,17) = (1, 1) or (8, 8) 

10       if (|, n) = (1, 8) or (8, 1) 

The subchannel states are depicted as follows: 

o o 

o o 

o o 

o o 

o o 

o o 

o o 

p. <.£/-q) p-tf/l?) 

In the computation of E'(R   ),   we are first concerned with the minimization for each value 

of p,   0 ^ p 4. 1,   of the function FMp, p) over all p   c P [see Eq. (4-33) ].    Using Eq. (4-19) and 

taking advantage of the available symmetries,   we find that for purposes of minimization we may 

consider Fl as a function of a reduced probability vector p  : 

F'(p,pr)  =  I  [4pr(l, l)1+p f 24pr(l,2)1+p + 36pr(2,2)1+p] 

1,1/1+p + 2 [pr(l, 1) + 12pr(l,2) (-)*' i,fJ + 36pr(2, 2) (i) 1_ l/l+p 1 + p 

where 

Pr = [prd. 1).   Pr(l. 2),   Pr(2, 2)] 

p  (1, 1) >0 •   ,       p  (1, 2) >0 Pr(2, 2) ^0 

and 

4p   (1, 1) + 24p   (1, 2) + 36p   (2. 2)  =  1 

104 



The components p(y,, r)?),  ijj,7)_= 1, . . . , 8,   of the original probability vector p maybe 

se of the re 

Si = {1,8} 

obtained from those of the reduced probability vector p   as follows. 

Define 

S2={2,...,7} 

Adl= {(Vvr,2)/r,i eS±, ^ eS,} 

A12 =  {(vi,Vz>/vi e S1,   TJ2 e S2   or   771  € S2>   rj2 e S1) 

A22 =  {("l'T'2)/ril  eS2'   ^2 eS2}       • 

Then,   (77., 77,)  e A. . implies 

pOjj, J72) = Pr(i, j)       ,        i, j = 1, 2 

In the computation of E.,(R  ),  we are first concerned with the minimization for each value 
2     S _ _ 

of p,   0 < p < 1,   of the function Flip, p ) over all p e D [see Eq. (4-79) ].    Using Eq. (4-47) [replacing 

the LHS by GUp, q),   and p   by q   to avoid confusion] and taking advantage of the available sym- 

metries,   we find that for purposes of minimization we may consider G!, as a function of a reduced 

probability vector q  : 

,1+p 
G'(p,q J  =  f [2q     (1)"" + 6qo   (2)'   " ]    + 2 [q     (1) + 6q     (2) (T) 

l+p,2 l,l/l+p.2(l+p) 

/here 

and 

qr = {%r] 

q       =  [q     (1),  q     (2)] nsr      IMsr Msr      ' 

q    (1) ^0 qsr(2) >0 

2q     (1) + 6q     (2) =  1 
sr sr 

The components q  (71) 1, . . . , 8,   of the original subchannel probability vector q    may be 

obtained from those of the reduced probability vector q      as follows: 

Tj   e S.       implies      qg(Ti) = qgr(i) 

Thus,   we may compute (for R    in bits) 

i = 1,2 

E2(Rs> max 
O^p^l 

-2pR    In 2 — In min FMp, p  ) 

and 

EJR   ) =   max 
S       O^p^l 

•2pR    In 2 — In min   G'(p, q  ) 
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R.  (bits) 

Fig. F-l.    E'(R ) and E  (R ) vs R   for a particular MSCC channel. 

The minimizations over p   and q   were performed using the method of Zoutendijk.T   The 

entire computation was programmed on the IBM 3 60.    Results are given in Fig. F-l,   where the 

vertical distance A between the straight-line portions of the two curves is 0.0318.    The guar- 

anteed accuracy of A   is given by the bound 0.0301 < A < 0.0319.    This bound is believed to be 

conservative (i.e.,   A  is believed to be given by 0.0318 to three significant figures).    The results 

clearlv demonstrate that E'(R   )  ^ E.(R   ) for this channel. 2     s 2     s ^ 
Table F-l gives some of the values of E'(R  ) and E?(R  ),   together with the values of 

p,   p   ,   and q    which achieve the maxima required by the definitions of E'(R   ) and E?(R   ). 

The marginal distribution of subchannel inputs p(-q) (the same for both subchannels) cor- 

responding to p    may be computed as follows: 

p  (1) = 6p Jl, 2) + 2p(l, 1) 

pr(2) = 6pr(2, 2) + 2pr(l, 2) 

TJ e S.       implies      p(7j) = p  (i) i = 1, 2 

The capacity C'? for this channel is  1.660964 bits,   achieved by a product distribution (see 

proof of Theorem 2.7) with q    = (0.19992979,   0.10002340). 

fG. Zoutendijk, Methods of Feasible Directions (Elsevier, Amsterdam,  1960). 
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13.     ABSTRACT 

In this report, a study is made of information theoretic channels which are decomposable into a number of parallel subchannels 
which will,  in general, be dependent.    For this situation, two models are constructed in which each subchannel input affects only the 
corresponding subchannel output (no crosstalk).    In the first model (MC channel), the lack of crosstalk is ensured by constraints on 
the channel conditional probability distribution.    The second model (MS channel) is a channel with an underlying state structure with 
states independent of the input.    Both models are memoryless.    All MS channels are MC.  but the reverse does not hold. 

The effect of subchannel dependencies on capacity and random coding exponent (RCE) is investigated. Ii is proved that these 
dependencies cannot decrease the capacity of our channels. However, subchannel dependencies may either increase or decrease 
the RCE. It is also proved that the capacity of the channel is not less than the sum of the capacities of the individual subchannels. 
When the state model is used, the above two quantities are equal if the receiver has knowledge of the channel state. 

A definition of partial state knowledge is given.    It is proved that, when the receiver has partial state knowledge, the resulting 
capacity and RCE are not decreased.    For complete state knowledge at the receiver,  the capacity and RCE are not less than those 
obtained for partial state knowledge. 

A restricted class of MS channels is defined wherein all the subchannels are in the same state during each use of the channel; 
these channels are called MSCC channels.    For these channels, a number of results are given, most of which concern the limning 
behavior of the capacity per subchannel and the RCE as the number of subchannels becomes large.    The principal results are: 
(1) the capacity per subchannel has a finite limit; and (2) the RCE has a finite limit if the rate per subchannel is kept constant and 
the constant is sufficiently large.    These results hold whether or not the state is known at the receiver. 

Systematic coding and decoding,  using BCH codes and minimum distance decoding rules, are considered for MSCC channels. 
Various coding alternatives are discussed,  and formulas are given for computing or bounding performance. 
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