PR AT L

e A

ANNUAL PROGRESS REPORT

KESEARCH
ON
AUTOMATIC CLASSIFICATION,
INDEXING AND EXTRACTING

AD 673428

Ft T. Baker
J. H. Wiliiams, Jr.

CONTRACT NONR 4456(00)
Submitted to:

Information Systems Branch
Office of Naval Research
Department of the Navy

Washington, D, C. 20360

{ This docozs 2 1-sioam cmroved

hlic rilos

Prepared by: for public yil.ant €
P 4 dist-ibution is urlimited.

< c~1 scloi i

Federal Systems Division
Internatioral) Business Machires Cornorsticn
Gaithersburg, Maryland 20760

August 1968 ™, (- e~

. [
Reproduced by the \‘\ v
CLEARINGHOUSE
for Federal Scientific & Technical
Information Springfiald Va 22151

ABSTRACT

To support studies in automatic indexing, classification and ex-
tracting, a general purpose frequency program has been developed to
further our theoretical and practical understanding of text word dis-
tributions. While the program is primarily designed for counting
strings of character-oriented data, it can be used without change for
counting any items which can be represented in an integral number of
characters. Counts may be obtained simultaneously at several levels
of detail, such as for sentences, paragraphs, chapters and entire
documents. Both printed outputs and outputs for further computer
processing may be obtained, and a variety of summary and detailed
outputs are available,

The program, titled FRQNCY, is written in the Fortran IV lan-
guage and has been compiled and run on the IBM System/360 using
Fortran IV (G) and the System/360 Operating System, It uses at
least one feature of the IBM System/360 Fortran IV language
(LOGICAL#*1 and INTEGER%*2 variables) which is not in USASI Fortran
and hence may not compile or run under other Fortran systems. The
program i3 extensively parametrized to allow its efficient use on com-
puters with varying amounts of immediate-access storage and input/

output equipment.

This report is a complete writeup of the frequency program. It
covers the purpose and usage of the program and also describes its
organization and internal operation. Finally, guidelines for modifying
the program or adapting it to different computers are also included.

PROGRESS SUMMARY

This year's effort consisted of writing and testing the general
purpose frequency program whose functions, organization and speci-
fications are described in a previous report: ''Research on Automatic
Classification, Indexing, and Extracting' by F. T. Baker, G. L.
Johnson, M, Jones, and J. H. Williams, AD 485, 188,

Attached to this report is a complete writeup on the frequency
program and its use, The purpose of the program is reviewed in
Section 1, The inputs and outputs are described in Sections 2 and 3.
Operating instructions including control card formats are shown in
Section 4, The restart procedure is described in Section 5. Require-
ments for the input item identification subroutine are given in Section
6. Section 7 covers the organization of the program, and Section 8
describes ways to modify the program or adapt it to different com-
puters. Restrictions are discussed in Section 9. Section 10 contains
an example describing a typical application and the setup necessary

to run it,

FRQNCY

A General-Purpose Frequency Program

Written under:

Contract NONR 4456(00)
Information Systems Branch
Office of Naval Research
Department of the Navy

Washington, D. C. 20360

Federal Systems Division
International Business Machines Corporation
Gaithersburg, Maryland 20760

August 1968

Section 1
Section 2
Section 3
Section 4
Section 5
Section 6

Section 7

Section 8

Section 9

Section 10

CONTENTS

INTRODUCTION

INPUT

OUTPUTS

OPERATION

RESTART

SETITM SUBROUTINE REQUIREMENTS

PROGRAM ORGANIZATION
FRQNCY
BUILD
SETIN
SETWR
MERGE
SETDPR
SETSUM
FRQALL
FRQBLD
FRQMRG
BLD

PROGRAM ADAPTATION
Storage
Capability
Other Features

RESTRICTIONS

EXAMPLE
FRQNCY Setup
0OS/360 Setup
FRQNCY C..mments

Page

1-1
2-1

3-1

NN AN AN NN
1
s ot D =] ONON W e

NP

1. INTRODUCTION

FRQNCY is a general-purpose frequency program for producing
lists of items and counts of the number of times they occur., While it
is primarily designed for counting strings of character-oriented data
(e.g., words in text, syllables in a dictionary), the program can be
used without change for counting any type of items, each of which
contains an integral number of bytes. If the original data is hier-
archically structured, then counts may be made by unit at any or all
levels* of the structure. For example, a document (first-level unit)
may be considered to consist of chapters (second-level units), each
of which has a number of paragraphs (third-level units), consisting
of sentences (fourth-level units), containing individual words. If
words are the items to be counted, then one may obtain word counts
for each sentence, paragraph and chapter, as well as for the docu-
ment as a whole,

Either a sequential data set for listing or a sequential data set
for further computer processing (or both) may be obtained as de-

tailed output for each unit of counting at any level of count., The item

*Note: The words ''level' and "interval'' should be considered
synonymous in this document and in the FRQNCY program itself.

1-1

itself may be accompanied by any or all of the following:

1. 1Its length in bytes.
2, Its absolute frequency (e.g., ten times in this chapter).

3. Its relative frequency (e.g., 2.3% of the words in this
chapter).

4, The position of its first occurrence (e.g., 103rd word of
the chapter).

i

5. The number of different immediately-lower-level units in
which it occurred (e.g., in four paragraphs in this chapter).
Similarly, eight types of summary outputs are available for each
unit of counting at any level of count, They are:
1, Total number of items (''tokens").
2. Number of unique items (''types'!).

3. Distribution of the number of unique items occurring once,
twice, thrice, etc., (''type/token distribution"),

4, Distribution of tokens by the first byte (up to eight bits) of
the item ('type/first character distribution'),

5. Distribution of types by the first byte (up to eight bits) of .
the item ("'token/first character distribution). ¢

6. Distribution of tokens by the length of the itermn (''token/item
length distribution').

7. Distribution of types by the length of the item (''type/item
length distribution'),

8. Distribution of not-previously-occurring types (''new types'’)
per fixed number of tokens (''growth rate distribution'),

FRQNCY is written in the Fortran IV language and has been com-
piled and run on the IBM System/360 Fortran IV (G) and the System/ 360
Operating System. It uses at least one feature of the IBM System/ 360
Fortran IV language (LOGICAL*] and INTEGER%*2 variables) which is
not in USASI Fortran and hence may not compile or run under other
Fortran systems. The program is exteneively parametrized to allow
its efficient use on computers with varying a.nounts of immediate-
access storage and input/cutput equipment,

The FRQNCY program was produced by the IBM Federal Systems
Division under Contract NONR 4456(00) of the Office of Naval Research.
It is not a part of the IBM product line and has not been subjected to any
formal product tests. Potential users should make any necessary eval-
uations concerning the utility of FRQNCY within their environments,
While there is no maintenance provided or planned for FRQNCY, users
are welcome to discuss any problems they may encounter with the
author:

F. T. Baker
IBM Corporation
Federal Systems Division

18100 Frederick Pike
Gaithersburg, Maryland 20760

oo+

2. INPUT

Because of the great variety of types of input data from which
users might desire items to be counted, it was impracticable to try
to specify a single input processing algorithm., Instead, FRQNCY
assumes that a subroutine will be provided which, whenever called,
cither passes to FRUNCY a single input item or notifies FRQNCY
that a unit of counting (or the entire input) is completed. In this way
the user is totally unrestricted as to the type of item counted or the
rules for isolating it. As a result of this approach, FRQNCY itself
never refers to the original input data directly but instead uses the
items transmitted to it by the subroutine. The subroutine, which
must be named SETITM, is responsible for all manipulation of any
input data set(s) used. Complete instructions for writing a SETITM
subroutine and interfacing it with FRQNCY are presented in Section
6.

The only restrictions on items to be counted are that they must
be strings of bytes less than 256 bytes in length and that input units
must be presented in hierarchical sequence. For an illustration of
the latter requirement, suppose that words are to be counted by
document and by category within & hierarchical structure such as

the following:

2-1

Biology

Zoology

and that fourteen input documents belong to the categories as follcws:

Botany

Organic

Science

Chemistry

Inorganic

Phisics

Physics

Document Third-Level Second-Level Firet-Level
Number Category Category Category
1 Inorganic Chemistry Science
2 Botany Biology Science
3 Organic Chemistry Science
4 Zoology Biology Science
5 Inorganic Chernistry Science
6 Inorganic Chemistry Science
7 Zoology Biology Science
8 Physics Physics Science
9 Organic Chemistry Science
10 Botany Biology Science
11 Physics Physics Science
12 Organic Chemistry Science
13 Zoology Biology Science
14 inorganic Chemistry Science

Then all words from the first Zoology docuinent {4) rrust be presented,
followed by all words for the second Zoology document (7) followed oy
all words for the third Zoology document (13). All words for cach of

the Botauy documents (2 and 10) must be presented next, {ollowed by

2-2

P S i

i e E R R

all words for each -f the Organic documents (3, 9, and 12}, followed
by all words for each of the Inorganic documents (1, 5, 6, and 14).
Finally, all wcrdas for each of the Physics documents (8, 11} are pre-
sented,

The reason for the two PL;8ics categories in the above structure
ia the necesgsity to present all documents to FRQNCY at the lowest
level, Thus, if the tree structure desired has some leaves not at
the lowest level, it must be extended through use of repetitive or
"dummy' nodes. The only structures aliowable are therefore trees

with all leaves at the same (lowest) level.

2-3

——ra

sl i

3. OUTPUTS

As menticned in Section 1, two types of detailed output are avail-
able at each level of the siructure, a datz set for listing or a data set
for further processing, The format of the printed listing is self-
explanatory, At the top of each page appears a line containing the
idcntification field for sach level down to and including tae level of
the unit whose items are being counted. Next followe a header line
containing an identification of each column of data. Below this is a
line for each input item in that unit, containing the desired counts at
the left and the item itself at the right, Items appear in collating
sequence within the listing for each unit, and a new page is begun
for each unit,

The sequential data set which may be pr«duced at each level for
further processing contair.s information for many units of counting,
each of which contains many items., Therefore, for each unit, a
header record in one format is followed by detail records and a
trailer record in a second format, The header identifies the unit,
the detail records contain the requested data about items in that unit,
and the trailer record warns that another header (or the end of the

data set) follows.

3-1

The format of the header i3 as follows:

Field Length in Bytes
Total Frequency 4
Unit Identification NID®*NINTVS (see below)

The Total Frequency field contains an INTEGER*4 variable which

represents the total frequency of all items in the following unit. The
Unit Identification field consists of a string of bytes which identify

the following unit, This string consists of NINTVS substrings, each
NID bytes long, where NINTVS is the number of levels in the structure
and NID the maximum number of bytes in the identification for any
level. (See Section 5 for additional information on NID and NINTVS,)
The order of the substrings is from the major level of the structure

to the minor (level 1 to level NINTVS),

The format of the detail records comprising the data about items

within the unit is as follows:

Field Length in Bytes
i
Iitem Length (if specified) 2
Raw Frequency (if specified, 4 4
or if Relative Frequency not
specified)
Relative Frequency (if specified) 4
First Occurrence (if specified) 4
Lower Level Uses (if specified) 4
Item (always present) Variable

The Item Length {ield (optional) contains an INTEGER*2 variable which
gives the number of bytes in the item itself. The Raw Frequency field
(always present unless Relative Frequency is specified, in which case
it is optional) contains an INTEGER*4 variable representing the number
of times the item occurred in this unit. The Relative Frequency field
(optional) contains a REAL*4 variable representing the Raw Frequency
divided by the Total Frequency. The First Occurrence field (optional)
contains an INTEGER%*4 variable representing the position (in terms of
number of items) within this unit at which this item first occcurred. The
Lower Level Uses field (optional) contains an INTEGER*4 variable rep-
resenting the number of immediately-lower-level units in which this
item occurred. The Item field contains the item itself and is as many

_ bytes long as initially specified when the item was passed to FRQNCY
by SETITM (see Section 6). Records for items within each unit appear
in item collating sequence.

The trailer record is the same format as the item record; in other
words, it contains the same fields with the same length and in the same
order as the data item format selected for the current level. It can be
distinguished from a data item in that the Raw Frequency field (or
Relative Frequency field if Raw Frequency was not chosen) contains

zero, which cannot occur for a legal item, The Length field (if speci-

fied) contains one, and the Item field contains an all-zero byte. Any

3-3

other fields specified contain zeroes. This record was designed so
that it could be read using the same READ and FORMAT statements
as the data items and then distinguished by a test for a zero Fre-

quency field, (This procedure is generally necessary since the

number of items in a unit is usually variable.)
The second major type of output which is obtainable from FRQNCY

consists of the eight forms of summary outputs described in Section 1.

A single data set for listing is used to contain all the summary outputs

selected for a given level of the structure, For each unit, those out-
. puts selected occur in the order in which they are described below.
A new page is begun for each type of output selected, and on each page

appears at the top a line containing the identification field for each

level down to and including the level of the current unit, as well as a
line identifying the type itself. Descriptions of the formats for each
type of output follow:

1. The total number of tokens is printed as a single line,

2. The total number of types is printed as a single line.

3. The type/token distribution is printed in a tabular arrange-
ment, The first line contains the number of types occurring
once, twice,....nine times; the second contains the number
occurring ten, eleven,....nineteen times; and so on. The
number of occurrences for the first entry within a row is
printed at the left of the row, and the columns are headed
by digits zero, one,....nine, Any line with no occurren-
ces is omitted. The table currently is set up to contain

!

types occurring up to 999 times; the number of types occurring
more than this is placed in the "zero' position of the table,

The type/first character distribution is printed in a tabular
arrangement. Each entry represents the number of types in
which a particular bit configuration occurred as the first b te.
The first five bits of the byte (or as many as are present) are
printed at the left of the rows, and the last iiaree dits head the
columns, Rows with no entries are not printed.

The token/first character distribution is printed in the samc
format as the type/first character distribution. In this table,
each entry represents the number of tokens in which a partic-
ular bit configuration occurred as the first byte,

The type/item length distribution is printed in a tabular arrange-
ment, The first line contains the number of types with byte
length one, two,....nine (zero cannot occur); the second contains
the number of types with byte lengths ten, eleven,....nineteen;
and so on, The byte length of the first entry within a row is
printed at the left of the row, and the columns are headed by the
digits zero, one,....nine. Rows with no entries are not printed.

The token/item length distribution is printed in the same format
as the type/item length distribution. In this table, each entry
represents the number of tokens with a particular byte length,

The growth rate distribution is printed as a vertically~organized
array. Each line contains information about the number of rew
types (types not previously encountered) occurring within a fixed
interval of tokens specified as an input parameter, For example,
if the number of tokens specified was 500, then the first line con-
tains information about types which occurred in the iirst 500
tokens; the second line contains information about types which did
not occur in the first 500 tokene but did occur in the second 500
tokens; and so on, There are five entries on each line. The first
identifies the number of the last token in the current interval
(e.g., 500, 1000, 1500, etc.). The second identifies the total
number of types occurring up to that point, and the third identi-
fies the number of new types occurring in the current interval.
The fourth line identifies the ratio of the number of new types in

3-5

RS

TrEr WA G

this interval to the total number of types, and the fifth line
represents the difference between the number of new types
occurring in the last interval and the number occurring in
this interval.

3-6

B T

4, OPERATION

The basic form of the FRQNCY program is a FORTRAN source
program consisting of a main program and a set of subroutines. To
this program must be added the user's input item identification sub-
routine SETITM (see Section 6 for details). The program may then
be compiled and run,

When running FRQNCY, the user must supply a number of data
sets, With the exception of the Parameter data set, the location and
numbering of these data sets is completely up to the user. They are
all sequential data sets and may be placed on tape, disk, etc.; the
output data sets may also be written directly to a printer if desired.
The Parameter data set is always assumed to be data set number 5;
it is the first data set read by FRQNCY and contains information on
the particular run options and data set numbering desired by the user.

FRQNCY is organized much like a typical sort-merge program,
Initially, a set of parameters are read and processed to specialize
the program to the run desired. Next, the user's SETITM sudbroutine
is called repetitively to supply FRQNCY with input items; these are
sequenced and counted until a lowest-level input unit is complete or
until the available fast-access storage is full. At these points the

sequenced strings of items and their counts are placed on sequential

data sets for future merging. When the input is completed (signaled
by SETITM) the merge is begun. First, lowest-level units are com-
pletely sequenced and any desired outputs written, The process is
then repeated for the next-higher-level units until all units at the
highest level with any output requested have been sequenced. This
makes it possible to count individual units only, if desired, since
""dummy'' level(s) wit.h no outputs specified can be provided to com-
plete the tree structure required by the program,

The Parameter data set, as mentioned above, is always data set
5 and contains all the setup information for FRQNCY. It must consist
of 80-byte card format records and must contain one General Option
Card, and a Level Option Card for each level of input data structure
(including any '"dummy'" levels). It may optionally contain Initial
Dictionary Item Cards if desired. Eacl of these cards will be dis-
cussed separately.

The first card of the Parameter da:a set must be the General

Option Card. It has the following format:

Card Cols, Information
1-5 The number of levels in the input structure; also

the number of Level Option Cards.

6-10 The number of Initial Dictionary Item Cards; if
none are supplied, this should be zero (§).

Card Cols. (Contd.)

11-15

16-20

21-25

26-30

31-35

16-40

4]1-45

47

49

Information

The maximum length of an internal chain of
sequenced items; using FRQNCY as supplied,
eight (8) is an appropriate value for this field,

The order of the merge; twice this many Merge
data sets must be supplied. The minimum is
two (2) and the maximum is four (4) in FRQNCY
as supplied,

The number of the first Merge data set., Num-
bering of Merge data sets is assumed to be se-
quential, beginning with this number,

Number of lines per printed page; any output
data set for printing will be formatted (by use

of carriage control characters) not to exceed
this value. The minimum value is four (4)

&x_ﬂ the number of leveis; there is no maximum,

Maximum length of any level identification field.
The user's SETITM subroutine must provide an
identification byte string for each input unit;
this is the longest one to be provided. With
FRQNCY as supplied, the minimum value is
one (1) and the maximum is sixteen (16).

The number of the Comments data set. This is

a sequential data set in which information on the
progress of the program is placed; hence, an
on-line printer or typewriter is a logical choice.
This data set contains carriage control characters
for formatting purposes.

Reserved for future use; must be set to zero (8).

Reserved for future use; must be set to the letter
F.

Reserved for future use; must be set to the letter
F.

Following the General Option Card must be a series of Level
Option Cards. There must be one card for each level of structure,
and they must appear in sequence from the highest level (the root
of the tree; level number (1)), to the lowest (the leaves of the tree,
the highest level number). The Level Option Cards contain the name
of each level and the output options for themn. Their format is as

follows:

Card Cols. Information

1-16 Name of the level; this is placed on any output for
printing together with the SETITM-supplied identi-
fication of the individual units at that level, For
example, DOCUMENT might be the name of level
one (1), CHAPTER of level two (2), PARAGRAPH
of level three (3) and SENTENCE of level four (4).
SETITM would then supply an identification field
for the document, chapter, paragraph and sentence
being counted.

17-19 Number of the data set to be used for summary out-
puts at this level. This is a formatted, 132 character-
per-line, sequential data vet with carriage control
characters, designed to be printed. If no summary
outputs are desired at this level, this field should be
zero (#), and Columns 2§-36 need not contain data,

20 Must contain the letter T if total types are desired
for units at this level; the letter F if not.

21 Must contain the letter T if total tokens are desired
for units at this level; the letter F if not.

4-4

Card Cols. (Contd.)

22

23

24

25

26

27-36

37-39

40

41

Information

Must contain the letter T if type/token distri-
butions are desired for units at this level; the
letter F if not,

Must contain the letter T if type/first character
distributions are desired for units at this level;
the letter F if not.

Must contain the letter T if token/first character
distributions are desired for units at this level;
the letter F if not.

Must contain the letter T if type/item length
distributions are desired for units at this level;
the letter F if not.

Must contain the letter T if token/item length
distributions are desired for units at this level;
the letter F if not.

Must contain the token interval over which new
types are to be counted if growth rate distribu-
tione are desired for units at this level; other-
wise must contain zero (§).

Number of the data set to be used for detailed
print outputs for units at this level, This is a
formatted, 132 character-per-line, sequential
data set witb carriage control characters. If

no detailed print outputs are desired at this
level, this field should be zero (§), and Columns
4§-44 need not contain data.

Must contain the let*er T if item lengths are to
be printed; the letter F if not.

Must contain the letter [if raw frequencies are
to be printed; the letter F if not.

Card Cols. {Contd.)

S TP RN A T A T PR T T

42

43

44

45-47

48

49

50

51

Infor mation_

Must contain the letter T if relative frequencies
are to be printed; the leiter F if not, (If both
Columns 41 and 42 contain F, T is assumed for
Column 41,)

Must contain the letter T if the locations of item's
first uses in units at this level are to be printed;
the letter F if nct,

Must contain the letter T if the number of next-
lower-level units in which this item occurred are
to be printed; the letter F if not, (F is always
assumed for the lowest level,)

Number of the data set to be used for detail oucput
for further processing for units at this level, This
sequential data set will contain variable-length
records whose formats are described in Section 3.
If no output for firther processing is desired from
this level, this field stould be zero (§), and Col-
umns 48-52 need not contain data,

Mnst contain the letter T if item lengths are to be
provided for further processing; the letter F if not,

Must contain the letter T if raw frequencies are to
be provided for further processing; the letter F if
not,

Must contain the letter T if relative frequencies
are to be provided for further processing; the
letter F if not. (If both Columns 49 and 50 con-
tain F, T is assumed for Cclumn 49.)

Must contain the letter T if the location of items'

first uses in units at this level are to be provided
for further processing; the letter F if not.

4-6

b b 1 AT S

A, 4

Card Cols, {Contd.) Information

52 Must contain the letter T if the number of next-
lower-level units in whick this item occurred
are to be provided for further processing; the
letter F if not, (F is always assumed for the
lowest level.)

Following the L.evel Option Cards, a series of Initiai Dictionary

Item Cards may be provided. Although not required, the inclusion of
high-frequency items on these cards will speed processing of the input.
Thus, if such items can be identified in advance of a run, they may be
specified on these cards. In FRQNCY as supplied, up to 999 of tkese
items may be specified. They must be ordered by collating sequence
of the items, and the number of items must be provided in Columns

6-10 of the General Option Card. The format of the Initial Dictionary

Item Cards is as follows:

Card Cols. Information
1-3 Length of the item in bytes.
4-80 The item itself, If the item is more than 77

bytes long, it may be continued in Columns

1-80 of succeeding cards up to a maximum
of 255 bytes.

Once the akove cards haves been read and checked, FRQNCY be-
gins to process input items, No other control information is required

by FRQNCY itself, although additional information describing data sets,

4-7

Binbasthe o afl ot e

compilation options, etc., may be required by an operating system,
One peint which should be noted is that FRQNCY is designed to support
additional options in later versions, As a result, some unresolved
symbol references exist which will eventually be subroutine names.
Although these subroutines are not called by the present version, it
may be necessary to notify an operating system that these unresolved
references may be ignored. In the version of FRQNCY provided, the
following six symbols represent such unresolved references:

INSPIT

ININEX

INCONC

INEXM

SPITM

CONCOR

Section 10 contains an example of FRQNCY setup and the OS/360 setup

necessary for a typical run,

4-8

5. RESTART

Because FRQNCY may run for a considerable length of time if the
input is voluminous or if many levels are involved, a restart feature
has been provided., Using this feature, the program mav be restarted
at the beginning of any merge pass (including the first one, immediately
following the sort phase). At the beginning of each merge pass, FRQNCY
places in the Comments data set a message giving all the data needed to
restart at that point, This information may be added to the General
Option Card to perform a restart in place of a normal run.

More specifically, at the beginning of each merge pass, FRQNCY
provides for potential restart purposes, the level number, the number
of the first Merge data set to that merge pass, the largest number of
strings remaining to be merged at that level, and the length of the
longest item. If the run aborts or is stopped during that pass, it may
be restarted using those four parameters and the Merge data sets
which were input to that pass. Only the last such set of data may be
used, since the logic of the merge is such that the output from each
merge pass is written over the input to the previous pass.

To perform a restart, the setup for the run must be identical to

the original run with two exceptions. The first exception is the

5«1

addition of four fields of restart data to the General Option Card as

follows:
Card Cols. Information
50-54 Level number at which restart is to begin,
55-59 First Merge data set to this pass,
60-64 Largest number of strings remaining to be merged
at this level,
65-69 Length of the longest input item,

The second exception is that Input Dictionary Item Cards (if any)
need not be provided in the rerun. With this setup, FRQNCY will
space data sets up to the points they were at when that merge pass
began, and then continue the run. No input data set need be mounted
for a rerun, since FRQNCY can be restarted only ;fter input process-

ing is complete.

5-2

6. SE7T 1M SUBROUTINE REQUIREMENTS

The SETITM subroutine is written by each user to scan his own
input. In this subroutine the user defines his own item identification
rules and exceptions, The output of the subroutine to the main
FRQNCY program is the actual items to be counted,

There are two entries to SETITM, an initialization entry and a
normal entry. The purpose of the initialization entry is to make
array and item parameters known within SETITM and to allow the
user to prepare his data set for processing. The purpcse of the
normal entry is to allow identificat'on of iteras for FRQNCY process-
ing, of unit breaks and of tte end of the input,

The initialization entiy should kave the following format:

SUBROUTINE SETITM (ITEM, /MLNGTH/, /LNGTH/, NEWID,

/MID/, /NID/, IMINTVS/, / NINTVS/,
[1CHT/)

INTEGER*4 MLNGTH, LNGTH, MID, NID, MINTVS, ICNT

LOGICAL*] ITEM, NEWID

DIMENSION ITEM (MLNGTH), NEWID (MID, MINTVS)

(Initialization Coding)

RETURN

The initialization coding may do any initialization the user wishes.

However, before the RETURN is made, the identification array NEWID

6-1

must be initialized to contain the identification for the first unit. The
byte array NEWID contains NID bytes for each of the NINTVS levels,
where NID and NINTVS are the numbers in Columns 31-35 and Columns
1-5, respectively, of the General Option Card. These are preset to
blanks before SETITM is called. Thus the user must provide coding to
place up to NID identification bytes into each of the NINTVS identification
rows of NEWID, For example, if there are three levels (Overall, Cate-
gory and Document) and the first document is numbered 4365 and is in

Category ABC, then NEWID might be set up as follows:

Mo lolz | | -
wl . %TiL _‘___1
> i ;
NN
1'.[4'33;L6i5 -+ %____}!é
] ! | o~ &
,Lt:,:,J/«fJ"”J - 22
s — o |
PR ET - R Rt “:l
R R U | B

The normal entry should have the following format:

ENTRY ITMID (%, *, %)
(Item Identification Coding)

END

6-2

Normally, the user provides coding to identify an item in his input,
to determine when the end of an input unit occurs and to determine
when his input is complete. In the first case, the length of the item
must be placed in LNGTH and the item itself into the first LNGTH
bytes of the byte array ITEM, (In all cases, LNGTH must be less
than MLNGTH,) Also, the frequency of this item may be placed in
ICNT, At the beginning of the run, FRQNCY presets ICNT to one
(1), which is the assumed normal case, Hence ICNT need only be
set if the frequency differs from one. Note, however, that once
ICNT has been changed, it is not automatically reset to one. Follow-
ing this, the statement:

RETURN 1
must be coded. When the last item of one unit has been passed to
FRQNCY and a new unit is to begin, then on the next entry to ITMID .
the identification array NEWID must be set up as above with the new
unit's identification, and the statement

RETURN 2
must be coded. Finally, when the last item of the last unit has been
passed to FRQNCY and the input is complete, then on the next entry
to ITMID any final processing the user may wish to perform must
take place, and the statement

RETURN 3
must be coded. No further entries to ITMID will be made following

this final exit.
6-3

7. PROGRAM ORGANIZATION

FRQNCY is organized so that it mav be run in an overlay structure.
A small setup and control program, FRQNCY, calls first the maia suk-
routine BUILD for the sort phase and then the main subroutine MERGE
for the merge phase, BUILD in turn calls three subroutines (including
the user.-written one, SETITM), while MERGE calls two, The overall

organization is therefore of the following form:

[FRQNCY |

SETIN SETDPR

SETWR SETSUM |

SETITM

Tk

A description of each of these routines and the functions they perform

follows,

FRQNCY

FRQNCY is the setup and control routine for the entire program.,
It reads the General and Level Option Cards and performs a number
of validity checks upon the information they contain. If any cards are
incorrect, FRQNCY will abort the run. If the cards are all correct,

then for a normal run, FRQNCY will call the BUILD subroutine to

begin input processing. BUILD returns control after all input has been
processed and placed in the merge data sets, and FRQNCY then calls
MERGE to perform the merging and output functions, When MERGE
has completed its cperations, control is again returned to FRQNCY,
which immediately executes a STOP statement to complete the run.

In the case of a restart, FRQNCY bypasses BUILD completely and
gives initial control to MERGE to continue the processing from the

end of the last completed merge pass,

FRQNCY also sets up a number of control tables used in the run
and places in COMMON many of the input parameters. The major
tables generated are:

NAME: contains the name of each level,

IDENT: contains two subarrays for each level:

1. OLDID: identification of the last un;t at this level,

2. NEWID: identification of the current unit at this level
(set by SETITM).

SOUTS: contains four subarrays with information on the kinds
of cutputs desired at cach level:

1. SUMMDS: number of data set for summary outputs or
zero for no summary output,

2. GRINTV: token interval for growth rate distribution or
zero for no growth rate distribution.

3. PRINDS: number of data set for detailed print outputs
or zerc for no detailed print output,

7-2

4., OUTPDS: number of data set for detailed outputs for
further processing or zero for no d3tailed output for
further processing.

DOUTS: contains seventeen subarrays with information on what

is to be included in the outputs at each level. The first seven

contain summary output data; the next five, detailed print out-

put data; and the last five, data on detailed outputs for further

processing.
BJUILD

BUILD is th. routine which accepts inpats from the user-written
SETITM subroutine, places them in sort and accumulates the number
of times each has appeared. BUILD begins processing by reading the
Initial Dictionary Item Cards (if any were provided) and placing them
intc its internal dictionary with counts of zero, Any errors found in
the sequence or number of cards input will cause an abor: at this
point. Following this, BUILD calls SETIN through its setup entry
point (SETIN), to initialize the remainder of the dictionary, calls
SETWR through its setup entry point (SETWR) to set internal switches
contrelling output formats, and finally calls SETITM through its set-
up entry point (SETITM) to allow initialization processing such as
opening data sets, determination of the {irst unit's identification,

etc. BUILD then completes ite internal setup, positions the merge

data sets to their beginning points and begins input processing.

7-3

Input processing is accomplished through interaction between
BUILD and SETITM, BUILD calls SETITM through its processing
entry (ITMID), and SETITM places the next input item in the array
ITEM and optionally places its count {if any counts are unequal to
one) in ICNT before making a normal return, BUILD then atterapts
to find this item in its dictionary., If successful, BUILD adds the
contents of ICNT to the total count being accumulated for this item.

If unsuccessful, then BUILD checks to make sure space exists for
this item and adds it is possible. If not, then BUILD calls SETWR
through its processing entry (WRDICT) to write out this partial
dictionary and then calls SETIN through its processing entry (INDICT)
to re-initialize the dictionary area for the next partial dictionary of
this unit, Following thie, the iterr is added as the first item in the
new partial dictionary.

If SETITM completes a unit, it places the next unit identification
in the array NEWID and executes a RETURN 2 statement. BUILD
then calls SETWR (through WRDICT) to write out this partial dictiorary
and then calls SETIN (through INDICT) to re-initialize the dictionary
for the first partial dictionary of the next unit,

i SETITM completes the input, it executes a RETURN 3 state-

ment. BUILD then calls SETWR (through WRDICT) to write out this

7-4

final partial dictionary,., It then closes the merge data sets, informs

t1e operator that input processing is successfully completed, and
returns control to FRQNCY.

SETITM uses a number of arrays to hold the items themselves,

indexing information and counts. The major ones are:

BASE: contains the number of tokens counted so far in the
present unit at each level,

OFLOW: contains counts for any items whose frequency is
greater than MFREQ (set to 32767),

ITEM: contains the item curreatly being processed.
CWORKS: contains two subarrays with chain information:

1. CENTPT: contains an index value for the entry point
in DWORKS of thies chain of sequenced items,

2, CLNGTH: contains the current length of this DWORKS
chain of sequenced items,

DWORKS: contains four subarrays with item information:

1. IFCHAR: contains an index vaiue for the beginning
byte of this item in DICT,

2. NENTX: contains an index value for the next DWORKS
entry in this chain of sequenced items,

3. ILNGTH: contains the lengih (in bytes) of this item in
DICT,

4, FREQ: contains the frequency within the current
partial dictionary of this item in DICT.

FUSE: contains the count {in terms of totzl tokens) at which tkis
item was first used in the present unit.

DICT: contains the items themselves,

An explanation of the method used in sequencing the input iteras is
contained in Section 4. 2.3 {pp. 33-38) of the doccument referenced in
the Introduction. The tachnique i3 basically the directory-chain
method with uni-directional chaining. The initial dictionary items
are used to '"prime'' the chains with expected high-frequency words

to reduce the average search time.

SETIN

The SETIN routine has two entry points, SETIN and INDICT.
The SETIN entry is used only when BUILD is initializing the input
processing phase and makes the addresses of dictionary arrays
known within SETIN, The INDICT processing entry causes chain
entry points and lengths in CWORKS to be reset and then causes the

chaining indexes and frequency counts in DWORKS to be reset,

SETWR
SETWR also has two entry points, SETWR and WRDICT. The
SETWR entry is used by BUILD during input processing phase

initialization to set internal switches to correspond to the formats

7-6

of the partial dictionaries to be written. The WRDICT entry is used

whenever a partial dictionary must be written out to a merge data set.

For each partial dictionary, a header containing the total frequency

of all items within it, the array OLDID, and the array BASE, is

written. Following this, SETWR follows the chains of sequenced

dictionary items and, for each item, writes out its length and fre-
quency, its first use (if selecied), a one tc indicate the numbezr of
next-lower-level uses (if selected) and the item itself, A dummy

record with an item length of one, count(s) of zero and a single all-

P . zero item byte is written to indicate the end of the sequenced string.
Following completion of the write, the number of the merge data set

is incremented so that the data sets are used in rotation,

MERGE
MERGE is the routine which merges the sequenced strings at a
given level and calls necessary formatted output preparation routines

as required. It consists essentially of four nested loops. The inner-

most loop merges gets of sequenced strings, the next loop coentrols
the processing of each pass of the merge data sets, the next one con-

trols the merging of all items at a given level and the outermost loop

Fhower o 5 v

RS i ki <585 o i s g 4B

controls the levels from highest-numbered (detail) to lowest-numbered

(overall). Regardless of the number of levels, processing is terminated

7=7

when no more outputs remain to be produced; thus one can count units

at any given level or levels of a hierarchy by merely specifying no
outputs for the remaining levels.

MERGE begins processing by setting switches for the formats of
the merge data sets, Then, entering the level loop, it sets summary
and detail output switches for the highest~-numbered level. The first
input pass then begins, and partial dictionary strings are merged.
Passes at this level continue until the maximum number of partial
dictionary strings remaininé to be merged in any unit at this level is
less than or equal to the number of merge data sets. At this point,
output switches are set so that the summary outputs and detail out-
puts specified are produced for these lowest-level units during the
final merge pass at that level. This entire process then is repeated
at the next higher level, with the completed dictionary strings for
entire units at one level becoming the partial dictionary strings of
the more comprehensive units at the next level, Outpute are pro-
duced on the final pass at each level until no more specified outputs

remain, at which point MERGE returns control to FRQNCY,

7-8

Important arrays generated by MERGE are:

WORKS: contains six subarrays with information about the items
being merged:

1.

2,

IITEM:

DSNO: contains number of the data set from which the
item was read.

IFUSE: contains the count (in terms of total tokens) at
which the item was first used in the present partial

dictionary.

INUSE: contains the count of the number of next-lower-
level units in which the item was used,

IFREQ: contains the frequency within the current partial
dictionary of this item.

ILNGTH: contains the length (in bytes) of this item.

SEQ: contains the relative index of the order of this
itemn among the items currently being merged.

contains the actual items being merged.

OBASE: contains the new BASE array being generated for the
merged string,

IBASE: contains the old BASE arrays for each siring currently
being merged.

SETDPR

SETDPR is the routine which generates and formats the detailed

print outputs. It is first called through its SETDPR setup entry point

during the level loop initialization of MERGE, and at this time it sets

a switch to branch to the proper WRITE/FORMAT statement combi-

nations for header and detail line writing, The DHEAD entry point is

7-9

e 4

used when a new page must be started because a new unit is to be out-
put, and this entry merely forces a heading to be printed by setting the
line count to the maximum.

The normal item print entry is made on the last pass of each level
through the DPRINT entry point. A check is made for line count over-
flow, and a header is written if necessary., Following this, the detail

line is written and control returned to MERGE,

SETSUM

The SETSUM routine is used to accumulate and print summary
outputs, At the beginning of each level, MERGE calls it through its
SETSUM entry point to set its internal switches. At the beginning of
processing for each unit on the last pass of each level, MERGE calls
SETSUM through the SUMIN entry point to initialize all the summary
data accumulation arrays to zero, As MERGE completes processing
of each item of that unit, control is passed to SETSUM through the
SUMCMP entry point to accumulate the specified summary statistics.
Finally, upon completion of the unit, SETSUM is called through the

SUMPRT entry point 8o that it may output the accumulated statistics.

7-10

Major arrays created by SETSUM are:

FCHS: contains two subarrays with first character frequency
data:

1. TYPFCH: Type/first character data.
2. TOKFCH: Token/first character data.
ILGS: contains two subarrays with item length frequency data:
1. TYPILG: Type/item length data.
2. TOKILG: Token/item length data.
TYPTOK: contains type/token data.

TYPINT: contains growth rate data.

In addition to the routines and arrays described above, there are
four named COMMON areas which contain important parameters used
by a number of the routines, The labels of these areas, the manner

in which they are used, and the constants they contain are as follows:

FRQALL (used throughout):

1. MMRGOR: Maximum merge order; presently set to 4,

2. MLNGTH: Maximum length (in bytes) of an input item;
presently set to 255,

3. MINTVS: Maximum number of levels; presently set to 5,

4., MFREQ: Maximum capacity of the standard INTEGER*2
cell for accumulating frequencies; set to 32767 for
System/360; frequencies greater than this become overflow
items and are accumulated in INTEGER*4 cells of greater
capacity.

9.

10,

lll

12,

13,

14.

15.

16.

17.

18.

19.

MID: Maximum length of any level identification field;
presently set to 16,

MRGOR: Merge order for this run; must not be greater
than MMRGOR,

FIMRGS: Number of the lowest numbered input merge
data set for this pass,

LIMRGS: Number of the highest-numbered input merge
data set for this pass,

MRGS: Number of the current merge data set for this pass,

NINTVS: Number of levels for this run; must not be greater
than MINTYVS.

NID: Maximum length of any level identification field in this
run; must not be greater than MID,

GPARS: Largest number of partial dictionaries in any unit
at the prerent level.

NPARS: Number of partial dictionaries in the current unit
at the present level,

TFREQ: Total frequency of all items in the current unit.
LLNGTH: Longest item at the present level.

LPERP: Number of lines to be written on pages of summary
and detailed output,

COMMNT: Number of the data set to be used for comments
and operator instructions,

FUSECT: "T'" if first uses are to be counted at any level;
"F'' otherwise,

NUSECT: "T'" if the number of next-lower-level uses is
desired at any level; "F'" otherwise.

7-12

FRQBLD (used by FRQNCY and BUILD):

1.

9.

10.

11.

MCHARS: Number of bytes available for item storage in the
dictionary; presently set to 35000,

MDITMS: Number of different items which may be counted
in one partial dictionary; presently set to 5000,

MCHNS: Number of chains of sequenced items which may be
included in one partial dictionary (also one more than the
number of initial dictionary items which may be supplied);
presently set to 1000,

MCLNG: Maximum number of items in a chain before it will
be split into two chains; should be specified as approximately
{3¥MDITMS)/(2*MCHNS).

MOITMS: Maximum number of items whose frequency is
greater than MFREQ which may be counted in one partial
dictionary; currently set to 100,

NINDIS: Number of initial dictionary items supplied in this
run,

PARAMS: Number of the Parameter data set from which the
input parameters will be read; presently set to 5,

CONCRD: Reserved for future use; should remain zero (0).

GONOGO: Internal indicator set during the process of checking
input parameter cards.

SPITEM: Reserved for future use; should remain "F."

INEXAM: Reserved for future use; should remain "F."

7-13

FRQMRG (used by FRQNCY and MERGE):

ll

MGRINT: Maximum number of growth rate intervals for
which type counts can be accumulated (should be greater
than the largest number obtained by dividing the number
of tokens expected in units of each level by the growth
rate interval specified on the Level Option Card for that
level); presently set to 1000,

MTOKNS: Greatest token count for which the type/token
distribution can be generated; presently set to 1000,

MSYMS: Number of unique first characters for which the
two first character distributions can be generated; presently
set to 256,

INTX: Internal counter used to indicate the current level
number,

FOMRGS: Number of the lowest-numbered output merge
data set for this pass.

LOMRGS: Number of the highest-numbered output merge
data set for this pass,

BLD (used only within BUILD):

1.

2'

NCHARS: Number of bytes currently in use for item
storage in the dictionary.

NINCHS: One more than the number of bytes in the initial
dictionary items,

NDITMS: Current number of different items in the dictionary.

NCHNS: Current number of chains of scquenced itermis in the
dictionary.

NOITMS: Current number of items whose frequency is greater
thar MFREQ,

8. PROGRAM ADAPTATION

There are several types of changes which may be required to adapt
FRQNCY to run on a particular computer or to run for a particular
purpose, This section is included to point out some of these potential
changes and the ways in which FRQNCY may be modified to implement

them.

Stora ge

One of the most likely ways in which a user may v to med .y
FRQNCY is to adapt it to differing sizes of fast-access stora -
Generally, efficiency can be increased by reducing the nuinber of partial
dictionaries required to count units at the iowest ievel. On the other
hand, the size of the partial dictionaries whiclk can be used is limited by
the amount of fast-access storage avaiiabie,

One of the two ways in which storsge available for di:tionsries can
be adjusted is by making use of the organ:.ation of FRQNCY to run it as
a planned overlay program. Section 7 described the program organization
and indicated the manner in which the routines are uiee.

The second way in which storage avaiiable for dictionaries can be
adjusted is by changing the sizes of major arrays te meet the require-
ments of the problem and/or the characteristics of the computer. To this
end, three principles were used in "=riting the program:

1. All major arrays are definzd and dimensioned at the lowest
point possible consistent with the overlay structure,

2. Only the initial definitions of ma)or arrays use absolute
dimensions; all subsidiary definitions and subarrays use
relative dimensions.

3. The parameters used to refer to the sizes of all major arrays
are defined at the beginning of FRQNCY by Assignment state-
ments and are referred to symbolically thereafter.

As a consequence of these principles, it is relatively simple to change
the dimensions of major arrays, since at most assignment statements
and a DIMENSION statement need be modified.

Each of the major arrays is discussed below, together with an

indication of its dimensions, specified either as integers or symbcli-

cally. The integer dimensions shown below represent absolute dimen-

sions whti_h_‘cannot be changed. The szmbolic dimensions shown below

indica.e that the corresponding dimensions in the program may be

changed. The symbols used in the dirension statements are identical
to the symbols used in the Assignment statements at the beginning of
the FRQNCY pregram, If the user wishes to change the dimension(s)
of any array shown below with symbolic dimension(s), he must do two
things. First, the Assignment statement({s) at the beginning of
FRONCY which assigns an integer value to the affected aymbol{s)
must be located, and they must be changed to assign the new value(s)
desired. Second, the inteper{s) actually used in the DIMENSION
statement(s) defining the array(s) must be changed correspondingly.
{It is important to note that in socme cascs a dimension change may
affect more than one ar1ay and th -t in such cascs all affected arrays

must be changed.)

CWORKS (MCHNS, 2): This INTEGER#*Z arrayv is defined in
BUILD and used to maintzin information on the chains of
sequenced items, It can be changed in size at the expense of
changing the average chain length and thus the internal search
time to find a porticular item. The guide which should be used
is that MCHNS should be approximately equal to (3*MDITMS)/
(2*MCLNG),

DWORKS (MDITMS, 5): This INTEGER*2 ar:ay is defined in
BUILD and used to maintain information on individual items,
MDITMS is the maximum number of different items which can
be counted in one partial dictionary and is hence a very critical
parameter. The values of both MCHNS and MCHARS and hence
the sizces of CWORKS and DICT (two of the largest arrays) also
depend primarily on the value of MDITMS,

FUSE (MDITMS): This INTEGER*4 array is defired in BUILD
and used to store the token count of an item's first use., It is
not referred to unless first uses are being recorded for at least
one level. Hence, if no first uses are being recorded, its di-
mension may be changed to 1 to save storage.

DICT (MCHARS): This LOGICAL*] array is defined in BUILD
and used to store the items themselves, The guide which should
be used in selecting the value of MCHARS is that it should be the
average item length expected (in terms of types, not tokens)
multiplied by MDITMS,

TYPINT (MGRINT): This INTEGER%*4 array is defined in SETSUM
and used to store the growth rate information, MGRINT is the
maximum number of growth rate intervals for which type counts
can be accumulated and should be greater than the largest number
obtained by dividing the number of tokens expected in units of each
level by the growth rate interval specified on the Level Option Card
for that level,

FCHS (MSYMS, 2): This INTEGER*4 array is defined in SETSUM

and used to store the two first character distributions, MSYMS
should be greater than or equal to the largest value occurring in
the numeric representations of the first bytes of input items.

ILGS (MLNGTH, 2): This INTEGER*4 array is defined in SETSUM

and used to store the two item length distributions., MLNGTH
should be greater than or equal to the byte length of the longest in-
put item.
Of the above arrays, the first four are defined in BUILD and the last
four in SETSUM, Since the BUILD arrays are likely to cccupy con-
siderably more storage than the SETSUM ones, it is probably more
preductive to reduce their sizes if an overlay program structure is

used as recommended above, If not, then attention should be paid to

all arrays if storage is a problem.

A second reason for which FRQNCY may be modified is to change
its capabilities, It may be desirable to handle more levels, to use a
higher-order merge than allowable with the program as distributed,
etc. While the arrays concerned here do not significantly affect
storage requirements, they have been treated in the same manner as
the arrays described above. Where they may be changed, both an
Assignment statement at the beginning of FRQNCY and the integers
actualiy used in the DIMENSION statements defining all affected arrays
must be changed.

NAME (16, MINTVS): This LOGICAL*1 array is defined in FRQNCY

and is used to store the name of each level. MINTVS represents the
maximum number of levels,

Jh

-

goT T e

IDENT (MID, MINTVS, 2j: This LOGICAL*] array is defined in

FRQNCY and used to store the identifications supplied by SETITM
for units at each level. MID represents the longest identification
string allowable at any level.

SOUTS (MINTVS, 4): This INTEGER*4 array is defined in FRQNCY
and used to store data set numbers and growth rate interval infor-
mation.

DOUTS (MINTVS, 17): This LOGICAL*] array is defined in FRQNCY
and used to store output option information.

BASE (MINTVS): This INTEGER*4 array is defined in BUILD and
used to store token count data from each level.

OFLOW (MOITMS): This INTEGER¥*4 array is defined in BUILD
and used to store counts for items whose frequency is greater than
MFREQ, MOITMS represents the maximum number of items whose
frequency is greater than MFREQ which may be counted in one par-
tial dictiopary.

ITEM (MLNGTH;: This LOGICAL*] array is defined in BUILD and
contains the current item, MLNGTH is the length of the longest
item which can be counted; longer items are truncated to this length.

WORKS (MMRGOR, 10): This INTEGER*2 array is defined in MERGE
and used to store information about the items being merged. MMRGCR
is the maximurm merge order.

IITEM (MLNGTH, MMRGOR): This LOGICAL*1 array is defined in
MERGE and contains the items being merged.

OBASE (MINTVS): This INTEGER*4 array is defined in MERGE and
contains the new BASE array being generated for the merged string.

IBASE (MMRGOR, MINTVS): This INTEGER*4 array is defined in
MERGE and contains the old BASE arrays for each string currently
being merged,

Of the above arrays, the first four are defined in FRQNCY, the next three

in BUILD and the last four in MERGE,

8-5 ’

T

Other Features

There are several miscellaneous parameters which the user may
wish to modify for various reasons, These parameters are all included
in the initial set of Assignment statements in FRQNCY but do not affect
any array definitions:

MDS: This parameter is the highest data set number allowable.

In general, it will be operating system dependent, It is currently set
te 99 for compatibility with the OS/360 convention for Fortran data set
naming.

PARAMS: This is the number of the data set from which the input
parameters are read. It also is an operating system related parameter
and is currently set to 5 for compatibility with the OS/360 cataloged
procedures for Fortran runs.,

MFREQ: This parameter is the maximum positive value which
FRQNCY can store in the INTEGER%*2 cells in which token counts are

accumulated,

8-6

9. RESTRICTIONS

A few restrictions are applicable to use of the FRQNCY program.
Each of the known restrictions is discussed below. It is important to
note that, while FROQNCY is written entirely in Fortran IV, it has been
tested only on the IBM System/360 Models 40 and 50. Different com-
puters, operating systems or Fortran IV compilers may not produce
the same results,

The most important restriction is that the Fortran IV compiler
used to compile FRQNCY permit the LOGICAL*1 and INTEGER*2
type statements or reasonable equivalents, Extensive use is made of
these to conserve storage, and, while FRQNCY could be modified
to eliminate its dependence on these, it would use considerably
more storage,.

A second restriction concerning the compiler is that it must not
produce coding to check array bounds at object time. Subarrays in
general have been defined using EQUIVALENCE statements and
minimum absolute dimensions, This was done to allow easy modifi-
cation of array sizes to fit differing amounts of fast-access storage,
since only the major array dimensions need be changed. If such
check coding is produced, then all subarray dimensions must be
explicitly stated in absolute form, and all must be changed whenever
the corresponding major array dimensions are changed.

The third restriction on the compiler is that it permit the ex-

e Y

tended READ statement allowing an exit to a specified statement

when an end-of-data-set condition is encountered.

The above three restrictions outline the major known deviations

from compilers meeting USASI Fortran standards. One other minor

incompatibility is that, in order to produce more readable output

listings, both the vertical bar "'|' and the underscore ''__'" have been

used in FORMAT statements in the SETSUM and SETDPR subroutines,
These can be changed to other characters or to blanks if necessary

to prevent character set incompatibility,

9-2

10. EXAMPLE

This section is included to demonstrate setup and operational
features of a typical run of FRQNCY under OS/3¢0. It is divided
into three sections, the first describing the setup peculiar to
FRQNCY, the second describing the OS/360 setup, and the third
describing the comments output during processing. The first and
third would be applicable on any computer, while the second assumes
a knowledge of OS/360 and would be applicable only to System/3¢0

runs.

FROQNCY Setup

e g .

The run described was made to count words in individual docu-
ments occurring in a five-level hierarchial structure. It made use of
a SETITM subroutine which was designed to identify words and pass
them as the input items to FRQNCY. This SETITM subroutine
placed five levels of input unit identification information into the
NEWID array so that FRQNCY could theoretically have performed
counts at all levels of the hierarchy from individual documents to the
overall input, However, in this particular run only document counts
were desired, so that outputs for only that level (level 5) were
requested,

The first card prepared was the General Option Card. Five

levels were present in the input structure, so columns 1.5 of this

10-1

e ey oo

card were "p¥pp5.'"* No initial dictionary items were supplied, so

columns 6-10 were "PBPBBO''. The maximum length chain was 10
(eight would have been a slightly better choice), so columns 11-15
were "'PBB10'', A two-way merge was used, so columns 16-20 were
"BPBB2''. The first merge data set was 9 (and hence the last was
12), so columns 21-25 were "BPBPP9''. No more than fifty lines of
output were to be placed on a page, so columns 26-30 were ''bbb50",
The longest identification field at any of the five levels was 6, so
columns 31-35 were "PBPBPB6''. The data set for comments was to be
the on-line printer, which in the standard OS/360 Fortran procedure
is data set 6, so culumns 36-40 were ""BPBB6''. Finally, columns
41-45 were "PYPPPO', column 47 was "F' and column 49 was "F" to
deselect options not presently included.

The next five cards in the FRQNCY input were the five Level
Option Cards, They were in order from the highest level (Level 1)
to the lowest (level 5)., For the highest level, the name was
"EVALOVAL'", so columns 1-16 of the first card were
"BPYBEVALOVALPEBD''. No outputs were desired at this level, so
columns 19, 36, 39 and 47 were punched with a zero. The second,
third, and fourth cards were punched identically except for the name

fields in columns 1-16. These were, respectively, punched ag

2 Note: The representation "B is used to indicate the character
"blank'',

10-2

"BBBBEVALISTLBBBY'', "BBPPEVAL2NDLBBBE" and BBBBE VAL3IRDLEBBE'".
The fifth card contained additional information, since outputs
were desired at this level., The name was "EVALDOCT", so columns
1-16 were punched "$PBPEVALDOCTBBEY''. No summary outputs were
desired, so column 19 was punched with a zero, Column 36 was also

punched with a zero, since no growth rate distribution was needed.
Since no print output was wanted, column 39 was also punched with a
zero. To produce a tape for further processing as data set number 21,
columns 45-47 were punched "B21'". Only the item length and its
frequency were needed, so columns 48-52 were punched "TTFFF",

Since no Initial Dictionary Item Cards were to be included, these
six cards comprised the entire set of input parameters. They were
placed in the input stream as OS/360 SYSIN input and hence became
data set 5 according to the standard OS/360 Fortran cataloged

procedure,

0S/360 Setup

Figure | shows the OS/360 Job Control Language cards which
were provided to compile, link edit and run the FRQNCY job de-
scribed above. The reader is referred to the IBM manual, Job

Control Language (IBM Form C28-6539) for a fuller explanation of

10-3

1/J506yF

7/

/7

7/
J/EQR T, 5V

/%
//LKbD.SVSlN

/%

//GN,FTO8FO0L
/7

//

//
7/GOLFTO9FNN])
//

7/

7/

/7

//
//GUJFTLOFNOY
//

1/

//

144

//
//GOFTLLIFNNY
r/

//

’/

/17
//GU.FT12FN0]
//

//

/7

¥4
17GO.FT21F00)
//

7/

/7

1/

r/

7/760.5YS N

/s
7/

Figure 1,

Jus NCI,BAKER,MSGLEVEL=I

EXEC PRUC=FORTGCL S,
PARM.FjPT:'NAM£=FRQNCV,NAP.DECK'
PARH.LKED:'MAP.LISI'

0D L

FORTRAN

Source Deck

nn *

LIBRARY ‘(lNSPlT,INlNEX.lNCUNC

DIy DSNAME=DOC SO8,
DISP=(OLD,KEEP),
UNIT=183,
VOLUME=SER=005349

DD DSNAME=MERGO1,
UNIT=SYSDA,

VOLUME =SER=SYSRO],
DISP=(NEW,DELFTE),
SPACE=(CYL,t20,10)),

4

leEXM,SPlTH.CONCOR’

DCB=(.RECFMzFB,LRECL=26yBLKSlZE=3614-BUFNO=2)

NO DSNAME=MERGD?2,
UNIT=SYSDA,
VOLUME=SER=SYSRO3'
DlSP“NENvDELETE)v
SPQCE=‘CYL:(20v10’)'
DCB=(*.FT09F00])

Do DSNAME=MFRGO3,
UN(’=180’

VOLUME =SER=0N5240,
DISP=(NEW,KEEP),
OCB=(*.FTO9F00N])

Do DSNAME=MERGNSG,
UNIT=14],

VOLUME =SER=005095% ,
DISP=(NEW.KEEP),
OCB=(*,FT09F001)

00N OSNaAME=EVALDOCT,
UNIT=182,

VULUME =$ER=N05 250,
U‘SP=(NEH.DELETE)0
LABEL=(]1,SL),

UCB=!.RECFM=FH.LRECL=26.8LKSIlE’)leydUFNH:?’

Bo ¢
Parameter
Data Set

OS/360 Input

LS S S » K o > XX > M X > x

oo oM X X

this input, which is presented here primarily to suggest one way in

which this job could be set up.

FRQNCY Comments

Figure 2 shows the comments which FRQNCY provides at im-
portant points in the processing. These comprise the normal comments
expected in a complete, correct run, Error comments provided, as
part of the input diagnosis process or at the termination of a run where
errors occurred, are generally self-explanatory and are not included
here.

After signing on in the first comment, FRQNCY prints out the
options specified on the General Option Card. This is followed by
listing of all options specifked on each of the Level Option Cards. If
no errors have been found (each crror is flagged with asterisks and
indicated on the linc containing the option listing), then FRQNCY
prints the comments on successful initialization and beginning of
processing. The comment "END OF FILE' which f{ollows was
printed by the SETITM subroutine and not by FRONCY. However,
following that comment, which was printed when SETITM encountered
the end of the input data set, FRQNCY printed the comment on completion

of input processing.

10-5

BEGINNING FEQUENCY PROGRAM,

U N ——— .

GENERAL OPTIUNS ARE:
S INTERVALS,
b n INITIAL DICTIUNARY [TEMS.
%3 1O 1TEMS IN MAXIMUM LENGTH CHAIN,
z

2 1S 4ERGE ORDGER.
B 9 1S FIRST MERGE DATA SET.
= 12 1S LAST MERGE DATA SET,
1 6 15 COMMENTS DATA SET.

i 50 LINCS PER PAGE ON PRINTFR QUTPUT.
(: 6 IDENTIFICATION CHARACTERS AT EACH INTERVAL.
} Ni) CONCURDANCE DATA SET.
: NL SPECIAL ITEM CHECK.

NJ INPUT ITEM EXAMINATION.

OPTEINS LISTFD BELOW WERE SELECYED FOR INTERVAL 1 NAMED EVALUVAL
OPTIONS LISTED S£L0W4 WERE SELECTED FUR INTERVAL 2 NAMED EVALLSTL
OPTL NS LISNTzi detuw whHRE SELECTED +UR INTERVAL 3 NAME) EVALZNDL
ARTTUNS LISTED BELJA WERE SELECTED ;UR INTERVAL 4 NAMED PVAL 3R
UPT LA LESTed HELUa wifE SELECTED FUR INTEARVAL h tAME) tVAL YR

21 FS JUTPUT UATA SET wlTr FACH TYEM AND 115
LENGTH
AW FREQUENCY

FRONCY tommentsa

e

Faigure

10-¢

COMPLETLE) INITIALIZATION SUCCESSFULLY.
BEGINNING INPUT PROCESSING.

END OF FILE

COMPLFTEN INPUT PROCESSING SUCCESSFULLY.
BEGINNING MERGE PASS FOR INTERVAL 5 NAMED EVALDOCT
I A RFSTART IS NECESSARY, THE INPUT DATA SETS BEGIN WITH NUMBER

THt LARGEST NUMBER OF STRINGS TO BE MERGED IN THIS INTERVAL IS
AND THE LONGEST ITEM HAS 8 CHARACTERS.

END OF PROCESSING FOR INTERVAL 5 NAMED EVALDOCY
NO FURTHER OQUTPUTS REQUESTED

&END OF FREQUENCY PROGRAM#

Figure 2, FRGNCY Commentis {Continued)

10-7

D
L

At the beginning of each merge pass, FRQNCY prints the comment
presenting the restart information which must be used if the pass is
aborted. At the completion of the merge for each level, the comment
on end of processing is printed. Finally, if the last level has been
processed, the end of program comment is printed, In this case,
since termination was based on the fact that no further outputs were
requested at higher levels, a comment to that effect precedes the

end comment,

10-8

.

i

uww_._.._..___._._.___.v.__.-..r—.m

~ T UNCLASSIFIED

Secunty Classification

DOCUMENT CONTROL DATA - R&D

(Security classilicanian of title hody uf abstret end indesing annutelion must be entered whaen the oversl! report 18 clesafind)

! QRIGINATING ACTIVLITY (Corparets suthor) 2@ RLPOMY SECURITY C LASSIFICATION

¥ederal Systems Division UNCLASSIFIED
International Business Machines Corporation 25 amour

Mmhn:g..Mm 20760
3 REPORT TITLE

RESEARCH ON AUTOMATIC CLASSIFICATION, INDEXING AND EXTRACTING

4 DESCRIPTIVE NOTES (Trpe of report and inclusive dates)

Annual Progress Report

5. AUTHORC(S) (Last nameo. firat name, initisl)

Baker, F. T., Williams, John H., Jr.

6. REPORT DATE 78 TOTAL NO. OF PAGES 70 NO. OF REFS
August 1968 60 None
8a CONTARACT OR GRANT NO. 98 ORIGINATOR'S REPORTY NUM..”S)

NONR 4456(00)

o PROJECT RO.

. 95 OTHEA REPORTYT S,
an NPO"’ (-] NO(S) (Any other numbere that may be sesigned

d
10 AVAILABILITY/LIMITATION NOTICES
Qualified requesters may obtain copies of this report from DDC. Other
qualified users shall request cop.es of this report from the originator.

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Information Systems Branch

Office of Naval Research
Q Washington, D. C.

13- ABSTRACT 0 support studies in automatic indexing, classification and extracting,

a general purpose frequency program has been developed to further our theoreti-
cal and practical understanding of text word distributions. While the program is
primarily designed for counting strings of character-oriented data, it can be used
without change for counting any items which can be represented in an integral
number of characters., Counts may be obtained simultaneously at several levels
of detail, such as for sentences, paragraphs, chapters and entire documents.
Both printed outputs and outputs for further computer processing may be obtained,
and a variety of summary and detailed outputs are available,

The program, titled FRQNCY, is written in the Fortran IV language
and hae been compiled and run on the IBM System/360 using Fortran IV (G) and
the System/360 Operating System. It uses at least one feature of the IBM System,
360 Fortran IV language (LOGICAL*1 and INTEGER*2 variables) which is not in
USASI Fortran and hence may not compile or run under other Fortran systems,
The program is extensively parametrized to allow its efficient use on computers
with varying amounts of immediate-access storage and input/output equipment.

Thie report is a complete writeup of the frequency program. It covers
the purpose and usage of the program and also describes its organization and in-
ternal operation, Finally, guidelines for modifying the program or adapting it
to different computers are also included.

DD ."o™. 1473 UNCLASSIFIED

Security Classification

o N At e b . C e

UNCLASSIFIED

Security Classification

KEY WORDS

LINK A LINK B LINK C

ROLE ROLE ROLE wy

Information Retrieval
Information Systems
Documentation
Libraries

Word Association
Correlation Techniques
Dictionaries
Vocabulary
Information Sciences
Programming (computers)
Word Frequency

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report,

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all security classification of the report. Indicate whether
‘“Restricted Data’ is included Marking is to be in accord
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading ia specified in DoD Di-
rective 5200. 10 and Armed Forces Industrial Manusl. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifice- -
tion, show tifle classification in all capitals in parenthesis
immediately following the title,

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final,
Give the inclusive dates when a specific reporting period is
covered.)

5. AUTHOR(S): Enter the name(s) of author(4) as shown on
or in the report. Enter last name, {irst name, middle initial.
If military, show rank and branch of service. The name of
the principal «thor is an absolute minimum requirement,

6. REPORT DATT Enter the date of the report as day,
month. year; or mor** year. If more than one date appears
on the repurt, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information

7b. NUMBER OF REFERENCES Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If sppropriate, enter
the applicahle number of the contract or grant under which
the report was written.

8b, 8, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

«94. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be idemified
and controlled by the originating activity. This number must
be unique to this repert.

*95. OTHEKR REPORT NUMBER(S): If the report has been
asuigned any other report numbers (either by the originator
or by the aponsor), aleo enter this number(s).

10. . VAILABILITY/LIMITATION NOTICES: Enter any lim-

itutions on further dissemination of the report, other than those|

imposed by security classification, using standsrd statements
such as:

> (1) ‘““Qualified requesters may obtain copies of this
report from DDC."’

(2) ‘*Foreign announcement and dissemination of this
report by DDC is not authorized.”

(3) “U. S. Government agencies may obtain copies cf
this report directly from DDC. Other qualified DDC
users shall request through

"

(4) ‘U. 8. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

.Fl

(5) ‘'All distribution of this report is controlied Qual-

ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known

1l. SUPPLEMENTARY NOTES: Use for additions! explans-
tory notes.

12. SPONSORING MILiTARY ACTIVITY: Enter the name of
the departmental pro: 't offfce nr Yahnrgtory aponsoring (pay-
ing [or) the researc.. ~nd development. Include address.

13. ABSTRACT: Enter an abstiract giving e brief and factual
summary of the document indicative of the report, even though
it may aiso appear eltewhere in the body of the technicsl re-
port. If additions! upace is required, a continuation sheet shall
be attached.

It is highly desirable that the abatract of classified reporte
be unclessified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (7S). (S), (C). or (U)

There is no himitation on the length of the abstract
ever, the suggested lentth is from 150 t2 225 words.

How-

14. KEY WORDS: Key words are technically meaningful terms
or short phragses that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. ldent1-
fiers, such as equipment mode!l designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

1ED

Security Cleassification

