
I
4

ANNUAL PROGRESS REPORT

RESEARCH
ON

AUTOMATIC CLASSIFICATION,
INDEXING AND EXTRACTING

F. T. Baker
J. H. Williams, Jr.

CONTRACT NONR 4456(00)

Submitted to:

Information Systems Branch
Office of Naval Research
Department of the Navy

Washington, D. C. Z0360

Prepared by: for puic: ':- ; jPrepred y: dist-ibutcon is un~hrmnod.

Federal Systems Division
Internatioral Bu sines s Machi,-es Corwtorr tion

Gaithersburg, Maryland 20760

August 1968 - .

Reproduced by the "
CLEARINGHOUSE

for Federal Scientific & Technical
Information Springfield Va 22151 -

ABSTRACT

To support studies in automatic -ndexing, classification and ex-
tracting, a general purpose frequency program has been developed to
further our theoretical and practical understanding of text word dis-
tributions. While the program is primarily designed for counting
strings of character-oriented data, it can be used without change for
counting any items which can be represented in an integral number of
characters. Counts may be obtained simultaneously at several levels
of detail, such as for sentences, paragraphs, chapters and entire
documents. Both printed outputs and outputs for further computer
processing may be obtained, and a variety of summary and detailed
outputs are available.

The program, titled FRQNCY, is written in the Fortran IV lan-
guage and has been compiled and run on the IBM System/ 360 using
Fortran IV (G) and the System/360 Operating System. It uses at
least one feature of the IBM System/360 Fortran IV language
(LOGICAL*l and INTEGER*Z variables) which is not in USASI Fortran
and hence may not compile or run under other Fortran systems. The
program ia extensively parametrized to allow its efficient use on com-
puters with varying amounts of immediate-access storage and input/
output equipment.

This report is a complete writeup of the frequency program. It
covers the purpose and usage of the program and also describes its
organization and internal operation. Finally, guidelines for modifying
the program or adapting it to different computers are also included.

PROGRESS SUMMARY

This year's effort consisted of writing and testing the general

purpose frequency program whose functions, organization and speci-

fications are described in a previous report: "Research on Automatic

Classification, Indexing, and Extracting" by F. T. Baker, G. L.

Johnson, M. Jones, and J. H. Williams, AD 485, 188.

Attached to this report is a complete writeup on the frequency

program and its use. The purpose of the program is reviewed in

Section 1. The inputs and outputs are described in Sections 2 and 3.

Operating instructions including control card formats are shown in

Section 4. The restart procedure is described in Section 5. Require-

ments for the input item identification subroutine are given in Section

6. Section 7 covers the organization of the program, and Section 8

describes ways to modify the program or adapt it to different com-

puters. Restrictions are discussed in Section 9. Section 10 contains

an example describing a typical application and the setup necessary

to run it.

• * 4

FRQNCY

A General-Purpose Frequency Program

Written under:

Contract NONR 4456(00)
Informatiobn Systems Branch

Office of Naval Research
Department of the Navy

Washington, D. C. 20360

Federal Systems Division

International Business Machines Corporation
Galthersburg, Maryland 20760

August 1968

C

CONTENTS

Page

Section 1 INTRODUCTION 1-1

Section 2 INPUT 2-1

Section 3 OUTPUTS 3-1

Section 4 OPERATION 4-1

Section 5 RESTART 5-1

Section 6 SETITM SUBROUTINE REQUIREMENTS 6-1

Section 7 PROGRAM ORGANIZATION 7-1
FRQNCY 7-1
BUILD 7-3
SETIN 7-6
SETWR 7-6
MERGE 7-7
SETDPR 7-9
SETSUM 7-10
FRQALL 7-11
FRQBLD 7-13
FRQMRG 7-14
BLD 7-14

Section 8 PROGRAM ADAPTATION 8-1
Storage 8-1
Capabiiity 8-4
Other Features 8-6

Section 9 RESTRICTIONS 9-1

Section 10 EXAMPLE 10-1
FRQNCY Setup 10-1
OS(360 Setup 10-3
FRQNCY C. .mments 10-5

i

I!

1. INTRODUCTION

FRQNCY is a general-purpose frequency program for producing

lists of items and counts of the number of times they occur. While it

is primarily designed for counting strings of character-oriented data

(e. g., words in text, syllables in a dictionary), the program can be

used without change for counting any type of items, each of which

contains an integral number of bytes. If the original data is hier-

archically structured, then cotuits may be made by unit at any or all

levels* of the structure. For example, a document (first-level unit)

may be considered to consist of chapters (second-level units), each

of which has a number of paragraphs (third-level units), consisting

of sentences (fourth-level units), containing individual words. If

words are the items to be counted, then one may obtain word counts

for each sentence, paragraph and chapter, as well as for the docu-

ment as a whole.

Either a sequential data set for listing or a sequential data set

for further computer processing (or both) may be obtained as de-

tailed output for each unit of counting at any level of count. The item

*Note: The words "level" and "interval" should be considered
synonymous in this document and in the FRQNCY program itself.

1-1

QC

F

itself may be accompanied by any or all of the following:

1. Its length in bytes.

2. Its absolute frequency (e.g., ten times in this chapter).

3. Its relative frequency (e. g., 2. 3% of the words in this
chapter).

4. The position of its first occurrence (e.g., 103rd word of
the chapter).

5. The number of different immediately-lower-level units in
which it occurred (e.g., in four paragraphs in this chapter).

Similarly, eight types of summary outputs are available for each

unit of counting at any level of count. They are:

1. Total number of items ("tokens").

2. Number of unique items ("types").

3. Distribution of the number of unique items occurring once,
twice, thrice, etc., ("type/token distributiont'.

4. Distribution of tokens by the first byte (up to eight bits) of
the item ("type/first character distribution").

5. Distribution of types by the first byte (up to eight bits) of
the item ("token/first character distribution").

6. Distribution of tokens by the length of the item ("token/item
length distribution").

7. Distribution of types by the length of the item ("type/item
length distribution").

8. Distribution of not-previously-occurring types ("new types")
per fixed number of tokens ("growth rate distribution").

1-2

FRQNCY is written in the Fortran IV language and has been com-

piled and run on the IBM System/ 360 Fortran IV (G) and the System/ 360

Operating System. It uses at least one feature of the IBM System/360

Fortran IV language (LOGICAL*l and INTEGER*2 variables) which is

not in USASI Fortran and hence may not compile or run under other

Fortran systems. The program is extensively parametrized to allow

its efficient use on computers with varying anounts of immediate-

access storage and input/output equipment.

The FRQNCY program was produced by the IBM Federal Systems

Division under Contract NONR 4456(00) of the Office of Naval Research.

It is not a part of the IBM product line and has not been subjected to any

formal product tests. Potential users should make any necessary eval-

uations concerning the utility of FRQNCY within their environments.

While there is no maintenance provided or planned for FRQNCY, users

are welcome to discuss any problems they may encounter with the

author:

F. T. Baker
IBM Corporation
Federal Systems Division
18100 Frederick Pike
Gaithersburg, Maryland 20?60

1-3

2. INPUT

Because of the great variety of types of input data from which

users might desire items to be counted, it was impracticable to try

to specify a single input processing algorithm. Instead, FRONCY

assumes that a subroutine will be provided which, whenever called,

tither passes to FkQcNCY a single input item or notifies FRQNCY

that a unit of counting Vor the entire input) is completed. In this way

the user is totally unrestricted as to the type of item counted or the

rules for isolating it. As a result of this approach, FRONCY itself

never refers to the original input data directly but instead uses the

items transmitted to it by the subroutine. The subroutine, which

must be named SErITM, is responsible for all manipulation of any

input data set(s) used. Complete instructions for writing a SETITM

subroutine and interfacing it with FRQNCY are presented in Section

6.

The only restrictions on items to be counted are that they must

be strings of bytes less than 256 bytes in length and that input units

must be presented in hierarchical sequence. For an illustration of

the latter requirement, suppose that words are to be counted by

document and by category within a hierarchical structure such as

the following:

2ol

I

Biology Chemistry Physics

Zoology Botany Organic Inorganic Ph "ics

and that fourteen input documents belong to the categories as follows:

Document Third-Level Second-Level First-Level
Number Category Category

1 Inorganic Chemistry Science
2 Botany Biology Science
3 O rganic Chemistry Science
4 Zoology Biology Science
5 Inorganic Chemistry Science
6 Inorganic Chemistry Science
7 Zoology Biology Science
8 PhysicZ s Physic Science
9 Organic Chemistry Science

10 Botany Biology Science
10 Physics Physics Science
12 Organic Chemistry Science
13 Zoology Biology Science

14 Inorganic Chemistry Science

Then ail words from the first Zoology docuiment (4) rmust be presented.

foUowed by all words for the second Zoology document (7) foUowed by

all words for the third Zoology document (13). All words for each of

the Bot.4y documents (2 and 10) must be presented next, followed by

2-2

bC

all words for eaAh -f the Organic documents (3, 9, and 12), followed

by all words for each of the Inorganic documents (1, 5, 6, and 14).

Finally, all wczda for each of the Physics documents (8, 11) are pre-

sented.

The reason for the two PLhsics categories in the above structure

is the necessity to present all documents to FRQNCY at the lowest

level. Thus, if the tree structure desired has some leaves not at

the lowest level, it must be extended through use of repetitive or

"dummy" nodes. The only structures allowable are therefore trees

with all leaves at the same (lowest) level.

2-3

3. OUTPUTS

As menticned in Section 1, two types of detailed output are avail-

able at each level of the .tructure, a data set for listing or a data set

for further processing. The format of the printed listing is self-

explanatory. At the top of each page appears a line containing the

identification field for each level down to and including the level of

the unit whose items are being counted. Next fo]!owe a header line

containing an identification of each column of data. Below this is a

line for each input item in that unit, containing the desired counts at

the left and the item itself at the right. Items appear in collating

sequence within the listing for each unit, and a new page is begun

for each unit.

The sequential data set which may be pr(duced at each level for

further processing contains information for many units of counting,

each of which contains many items. Therefore, for each unit, a

header record in one format is followed by detail records and a

trailer record in a second format. The header identifies the unit,

the detail records contain the requested data about items in that unit,

and the trailer record warns that another header (or the end of the

data set) follows.

3-1

The format of the header is as follows:

Field Length in Bytes

Total Frequency 4
Unit Identification NID*NINTVS (see below)

The Total Frequency field contains an INTEGER*4 variable which

represents the total frequency of all items in the following unit. The

Unit Identification field consists of a string of bytes which identify

the following unit. This string consists of NINTVS substrings, each

NID bytes long, where NINTVS is the number of levels in the structure

and NI) the maximum number of bytes in the identification for any

level. (See Section 5 for additional information on NID and NINTVS.)

The order of the substrings is from the major level of the structure

to the minor (level 1 to level NINTVS).

The format of the detail records comprising the data about items

within the unit is as follows;

Field Length in Bytes

Item Length (if specified) 2
Raw Frequency (if specified, 4

or if Relative Frequency not
specified)

Relative Frequency (if specified) 4
First Occurrence (if specified) 4
Lower Level Uses (if specified) 4
Item (always present) Variable

3-2

The Item Length field (optional) contains an INTEGER*2 variable which

gives the number of bytes in the item itself. The Raw Frequency field

(always present unless Relative Frequency is specified, in which case

it is optional) contains an INTEGER*4 variable representing the number

of times the item occurred in this unit. The Relative Frequency field

(optional) contains a REAL*4 variable representing the Raw Frequency

divided by the Total Frequency. The First Occurrence field (optional)

contains an INTEGER*4 variable representing the position (in terms of

number of items) within this unit at which this item first occurred. The

Lower Level Uses field (optional) contains an INTEGER*4 variable rep-

resenting the number of immediately-lower-level units in which this

item occurred. The Item field contains the item itself and is as many

bytes long as initially specified when the item was passed to FRQNCY

by SETITM (see Section 6). Records for items within each unit appear

in item collating sequence.

The trailer record is the same format as the item record; in other

words, it contains the same fields with the same length and in the same

order as the data item format selected for the current level. It can be

distinguished from a data item in that the Raw Frequency field (or

Relative Frequency field if Raw Frequency was not chosen) contains

zero, which cannot occur for a legal item. The Length field (if speci-

fied) contains one, and the Item field contains an all-zero byte. Any

3-3

other fields specified contain zeroes. This record was designed so

that it could be read using the same READ and FORMAT statements

as the data items and then distinguished by a test for a zero Fre-

quency field. (This procedure is generally necessary since the

number of items in a unit is usually variable.)

"I he second major type of output which is obtainable from FRQNCY

consists of the eight forms of summary outputs described in Section 1.

A single data set for listing is used to contain all the summary outputs

selected for a given level of the structure. For each unit, those out-

puts selected occur in the order in which they are described below.

A new page is begun for each type of output selected, and on each page

appears at the top a line containing the identification field for each

level down to and including the level of the current unit, as well as a

line identifying the type itself. Descriptions of the formats for each

type of output follow:

1. The total number of tokens is printed as a single line.

2. The total number of types is printed as a single line.

3. The type/token distribution is printed in a tabular arrange-
ment. The first line contains the number of types occurring
once, twice, nine times; the second contains the number
occurring ten, eleven,. . nineteen times; and so on. The
number of occurrences for the first entry within a row is
printed at the left of the row, and the columns are headed
by digits zero, one, nine. Any line with no occurren-
ces is omitted. The table currently is set up to contain

3-4

I

types occurring up to 999 times; the number of types occurring
more than this is placed in the "zero" position of the table.

4. The type/first character distribution is printed in a tabular
arrangement. Each entry represents the number of types in
which a particular bit configuration occurred as the first by-te.
The first five bits of the byte (or as many as are present) are
printed at the left of the rows, and the last Uiree 'bits head the
columns. Rows with no entries are not printed.

5. The token/first character distribution is printed in the samc
format as the type/first character distribution. In this table,
each entry represents the number of tokens in which a partic-
ular bit configuration occurred as the first byte.

6. The type/item length distribution is printed in a tabular arrange-
ment. The first line contains the number of types with byte
length one, two, nine (zero cannot occur); the second contains
the number of types with byte lengths ten, eleven, nineteen;
and so on. The byte length of the first entry within a row ;s
printed at the left of the row, and the columns are headed by the
digits zero, one, nine. Rows with no entries are not printed.

7. The token/item length distribution is printed in the same format
as the type/item length distribution. In this table, each entry
represents the number of tokens with a particular byte length.

8. The growth rate distribution is printed as a vertically-organized
array. Each line contains information about the number of rew
types (types not previously encountered) occurring within a fixed
interval of tokens specified as an input parameter. For example,
if the number of tokens specified was 500, then the first line con-
tains information about types which occurred in the lirst 500
tokens; the second line contains information about types which did
not occur in the first 500 tokens but did occur in the second 500
tokens; and so on. There are five entries on each line. The first
identifies the number of the last token in the current interval
(e.g., 500, 1000, 1500, etc.). The second identifies the total
number of types occurring up to that point, and the third identi-
fies the number of new types occurring in the current interval.
The fourth line identifies the ratio of the number of new types in

3-5

this interval to the total number of types, and the fifth line
represents the difference between the number of new types
occurring in the last interval and the number occurring in
this interval.

3-6

4. OPERATION

The basic form of the FRQNCY program is a FORTRAN source

program consisting of a main program and a set of subroutines. To

this program must be added the user's input item identification sub-

routine SETITM (see Section 6 for details). The program may then

be compiled and run.

When running FRQNCY, the user must supply a number of data

sets. With the exception of the Parameter data set, the location and

numbering of these data sets is completely up to the user. They are

all sequential data sets and may be placed on tape, disk, etc.; the

output data sets may also be written directly to a printer if desired.

The Parameter data set is always assumed to be data set number 5;

it is the first data set read by FRQNCY and contains information on

the particular run options and data set numbering desired by the user.

FRQNCY is organized much like a typical sort-merge program.

Initially, a set of parameters are read and processed to specialize

the program to the run desired. Next, the user's SETITM subroutine

it called repetitively to supply FRQNCY with input items; these are

sequenced and counted until a lowest-level input unit is complete or

until the available fast-access storage is full. At these points the

sequenced strings of items and their counts are placed on sequential

4-1

data sets for future merging. When the input is completed (signaled

by SETITM) the merge is begun. First, lowest-level units are com-

pletely sequenced and any desired outputs written. The process is

then repeated for the next-higher-level units until all units at the

highest level with any output requested have been sequenced. This

makes it possible to count individual units only, if desired, since

"dummy" level(s) with no outputs specified can be provided to com-

plete the tree structure required by the program.

The Parameter data set, as mentioned above, is always data set

5 and contains all the setup information for FRQNCY. It must consist

of 80-byte card format records and must contain one General Option

Card, and a Level Option Card for each level of input data structure

(including any "dummy" levels). It may optionally contain Initial

Dictionary Item Cards if desired. Each of these cards will be dis-

cussed separately.

The first card of the Parameter da~a set must be the General

Option Card. It has the following format:

Card Cols. Information

I-5 The number of levels in the input structure; also
the number of Level Option Cards.

6-10 The number of Initial Dictionary Item Cards; if
none are supplied, this should be zero (0).

Card Cols. (Contd.) Information

11-15 The maximum length of an internal chain of
sequenced items; using FRQNCY as supplied,
eight (8) is an appropriate value for this field.

16-20 The order of the merge; twice this many Merge
data sets must be supplied. The minimum is
two (2) and the maximum is four (4) in FRQNCY
as supplied.

21-25 The number of the first Merge data set. Num-
bering of Merge data sets is assumed to be se-
quential, beginning with this number.

26-30 Number of lines per printed page; any output
data set for printing will be formatted (by use
of carriage control characters) not to exceed
this value. The minimum value is four (4)

plus the number of levels; there is no maximum.

31-35 Maximum length of any level identification field.
The user's SETITM subroutine must provide an
identification byte string for each input unit;
this is the longest one to be provided. With
FRQNCY as supplied, the minimum value is
one (1) and the maximum is sixteen (16).

36-40 The number of the Comments data set. This is
a sequential data set in which information on the
progress of the program is placed; hence, an
on-line printer or typewriter is a logical choice.
This data set contains carriage control characters
for formatting purposes.

41-45 Reserved for future use; must be set to zero (0).

47 Reserved for future use; must be set to the letter
F.

49 Reserved for future use; must be set to the letter
F.

4-3

Following the General Option Card must be a series of Level

Option Cards. There must be one card for each level of structure,

and they must appear in sequence from the highest level (the root

of the tree; level number (1)), to the lowest (the leaves of the tree,

the highest level number). The Level Option Cards contain the name

of each level and the output options for them. Their format is as

follows:

Card Cola. Information

1-16 Name of the level; this is placed on any output for
printing together with the SETITM-supplied identi-
fication of the individual units at that level. For
example, DOCUMENT might be the name of level
one (1), CHAPTER of level two (2), PARAGRAPH
of level three (3) and SENTENCE of level four (4).
SETITM would then supply an identification field
for the document, chapter, paragraph and sentence
being counted.

17-19 Number of the data set to be used for summary out-
puts at this level. This is a formatted, 132 character-
per-line, sequential data iiet with carriage control
characters, designed to be printed. If no summary
outputs are desired at this level, this field should be
zero (#), and Columns ZO-36 need not contain data.

20 Must contain the letter T if total types are desired
for units at this level; the letter F if not.

21 Must contain the letter T it total tokens are desired
for units at this level; the letter F if not.

4--4

Card Cols. (Contd.) Information

22 Must contain the letter T if type/token distri-
butions are desired for units at this level; the
letter F if not.

23 Must contain the letter T if type/first character
distributions are desired for units at this level;
the letter F if not.

24 Must contain the letter T if token/first character
distributions are desired for units at this level;
the letter F if not.

25 Must contain the letter T if type/item length
distributions are desired for units at this level;
the letter F if not.

26 Must contain the letter T if token/item length
distributions are desired for units at this level;
the letter F if not.

27-36 Must contain the token interval over which new
types are to be counted if growth rate distribu-
tions are desired for units at this level; other-
wise must contain zero (0).

37-39 Number of the data set to be used for detaileO
print outputs for units at this level. This is a
formatted, 132 character-per-line, sequential
data set witb carriage control characters. If
no detailed print outputs are desired at this
level, this field should be zero (0). and Columns
40-44 need not contain data.

40 Must contain the leter T if item lengths are to
be printed; the letter F if not.

41 Must contain the letter f if raw frequencies are
to be printed; the letter F if not.

4-5

4-

Card Cols. (Contd.) Information

42 Must contain the letter T if relative frequencies
are to be printed; the leLter F if not, (If both
Columns 41 and 42 contain F, T is assumed for
Column 41.)

43 Must contain the letter T if the locations of item's
first uses in units at this level are to be printed;
the letter F if net.

44 Must contain the letter T if the number of next-
lower-level units in which this item occurred are
to be printed; the letter F if not. (F is always
assumed for the lowest level.)

45-47 Number of the data set to be used for detail output
for further processing for units at this level. This
sequential data set will contain variable-length
records whose formats are described in Section 3.
If no output for f irther processing is desired from
this level, this field should be zero (0), and Col-
umns 48-52 need not contain data.

48 Must contain the letter T if item lengths are to be
provided for further processing; the letter F if not.

49 Must contain the letter T if raw frequencies are to
be provided for further processing; the letter F if
not.

50 Must contain the letter T if relative frequencies
are to be provided for further processing; the
letter F if not. (If both Columns 49 and 50 con-
tain F, T ia assumed for Cclumn 49.)

51 Must contain the letter T if the location of items'
first uses in units at this level are to be provided
for further processing; the letter F if not.

4-6

Card Cols. (Contd.) Information

52 Must contain the letter T if the number of next-
lower-level units in which this item occurred
are to be provided f'r further processing; the
letter F if not. (F is always assumed for the
lowest level.)

Following the Level Option Cards, a series of Initial Dictionary

Item Cards may be provided. Although not required, the inclusion of

high-frequency items on these cards will speed processing of the input.

Thus, if such items can be identified in advance of a run, they may be

specified on these cards. In FRQNCY as supplied, up to 999 of these

items may be specified. They must be ordered by collating sequence

of the items, and the number of items must be provided in Columns

6-10 of the General Option Card. The format of the Initial Dictionary

Item Cards is as follows:

Card Cols. Information

1-3 Length of the item in bytes.

4-80 The item itself. If the item is more than 77
bytes long, it may be continued in Columns
1-80 of succeeding cards up to a maximum
of 255 bytes.

Once the above cards have been read and checked, FRQNCY be-

gins to process input items. No other control information is required

by FRQNCY itself, although additional information describing data sets,

4-7

compilation options, etc., may be required by an operating system.

One point which should be noted is that FRQNCY is designed to support

additional options in later versions. As a result, some unresolved

symbol references exist which will eventually be subroutine names.

Although these subroutines are not calied by the present version, it

may be necessary to notify an operating system that these unresolved

references may be ignored. In the version of FRQNCY provided, the

following six symbols represent such unresolved references:

INSPIT
ININEX
INCONC
INEXM
SPITM
CONCOR

Section 10 contains an example of FRQNCY setup and the OS/360 setup

necessary for a typical run.

4-8

5. RESTART

Because FRQNCY may run for a considerable length of time if the

input is voluminous or if many levels are involved, a restart feature

has been provided. Using this feature, the program may be restarted

at the beginning of any merge pass (including the first one, immediately

following the sort phase). At the beginning of each merge pass, FRQNCY

places in the Comments data set a message giving all the data needed to

restart at that point. This information may be added to the General

Option Card to perform a restart in place of a normal run.

More specifically, at the beginning of each merge pass, FRQNCY

provides for potential restart purposes, the level number, the number

of the first Merge data set to that merge pass, the largest number of

strings remaining to be merged at that level, and the length of the

longest item. If the run aborts or is stopped during that pass, it may

be restarted using those four parameters and the Merge data sets

which were input to that pass. Only the last such set of data may be

used, since the logic of the merge is such that the output from each

merge pass is written over the input to the previous pass.

To perform a restart, the setup for the run must be identical to

the original run with two exceptions. The first exception is the

5-1

addition of four fields of restart data to the General Option Card as

follows:

Card Cols. Information

50-54 Level number at which restart is to begin.

55-59 First Merge data set to this pass.

60-64 Largest number of strings remaining to be merged
at this level.

65-69 Length of the longest input item.

The second exception is that Input Dictionary Item Cards (if any)

need not be provided in the rerun. With this setup, FRQNCY will

space data sets up to the points they were at when that merge pass

began, and then continue the run. No input data set need be mounted

for a rerun, since FRQNCY can be restarted only after input process-

ing is complete.

5-2

6. SET ul M SUBROUTINE REQUIREMENTS

The SETITM subroutine is written by each user to scan his own

input. In this subroutine the user defines his own item Ldentification

rules and exceptions. The output of the subroutine to the main

FRQNCY program is the actual items to be counted.

There are two entries to SETITM, an iryi~dalization entry and a

normal entry. The purpose of the initialization entry is to make

array and item parameters knowrn within 3ETITM and to alluw the

user to prepare his data set for processing. The purpose of the

normal entry is to allow identificaton of iteras for FRQNCY process-

ing, of unit breaks and of t e end of the input.

The initialization enti y should Eave the following format:

SUBROUTINE SETITM (ITEM, /MLNGTH/, /LNGTH/, NEWID,
/ M:D/, /NID/, /MINTVS/, / NINTVS/,

icUtrr/)

!NTEGER*4 MLNGTH, LNGTH, MID, NID, MINTVS, ICNT

LOGICAL*l ITEM, NEWID

DIMENSION ITEM (MLNGTH), NEWID (MID, MINTVS)

(Initialization Coding)

RETURN

The initialization coding may do any initialization the user wishes.

However, before the RETURN is made, the identification array NEWID

6-1

C

must be initialized to contain the identification for the first unit. The

byte array NEWID contains NID bytes for each of the NINTVS levels,

where NID and NINTVS are the numbers in Columns 31-35 and Columns

1-5, respectively, of the General Option Card. These are preset to

blanks before SETITM is called. Thus the user must provide coding to

place up to NID identification bytes into each of the NINTVS identification

rows of NEWID. For example, if there are three levels (Overall, Cate-

gory and Document) and the first document is numbered 4365 and is in

Category ABC, then NEWID might be set up as follows:

T1 T 0 T L

A B C -5

IT MID 'T

The normal entry should have the following format:

ENTRY ITMID {*, *, *)
(Item Identification Coding)

END

6-2

Normally, the user provides coding to identify an item in his input,

to determine when the end of an input unit occurs and to determine

when his input is complete. In the first case, the length of the item

must be placed in LNGTH and the item itself into the first LNGTH

bytes of the byte array ITEM. (In all cases, LNGTH must be less

than MLNGTH.) Also, the frequency of this item may be placed in

ICNT. At the beginning of the run, FRQNCY presets ICNT to one

(1), which is the assumed normal case. Hence ICNT need only be

set if the frequency differs from one. Note, however, that once

ICNT has been changed, it is not automatically reset to one. Follow-

ing this, the statement:

RETURN 1

must be coded. When the last item of one unit has been passed to

FRQNCY and a new unit is to begin, then on the next entry to ITMID

the identification array NEWID must be set up as above with the new

unit's identification, and the statement

RETURN 2

must be coded. Finally, when the last item of the last unit has been.

passed to FRQNCY and the input is complete, then on the next entry

to ITMID any final processing the user may wish to perform must

take place, and the statement

RETURN 3

must be coded. No further entries to ITMID will be made following

this final exit.
6-3

7. PROGRAM ORGANIZATION

FRQNCY is organized so that it may be run in an overlay structure.

A small setup and control program, FRQNCY, calls first the mara sub-

routine BUILD for the sort phase and then the main subroutine MERGE

for the merge phase. BUILD in thrn calls three subroutines (including

the user-written one, SETITM), while MERGE calls two. The overall

organization is therefore of the following form:

RFRQNCYJ

fRaI Lw BULD uMERGE

-4 SETIN7 -- SETDPR

-F S-ET-W-R -4 SE-TSUW

L FSE TI TYMW -

A description of each of these routines and the functions they perform

follows.

FRQNCY

FRONCY is the setup and control routine for the entire program.

It reads the General and Level Option Cards and perform* a number

of validity checks upon the information they contain. If any cards are

incorrect, FRONCY will abort the run. If the cards are all correct.

then for a normal run. FRQNCY will call the BUILD subroutine to

7-1

begin input processing. BUILD returns control after all input has been

processed and placed in the merge data sets, and FRQNCY then calls

MERGE to perform the merging and output functions. When MERGE

has completed its operations, control is again returned to FRQNCY,

which immediately executes a STOP statement to complete the run.

In the case of a restart, FRQNCY bypasses BUILD completely and

gives initial control to MERGE to continue the processing from the

end of the last completed merge pass.

FRQNCY also sets up a number of control tables used in the run

and places in COMMON many of the input parameters. The major

tables generated are:

NAME: contains the name of each level.

IDENT: contains two subarrays for each level:

1. OLDID: identification of the last unit at this level.

2. NEWID: identification of the current unit at this level
(set by SETITM).

SOUTS: contains four subarrays with information on the kinds
of outputs desired at each level:

1. SUMMDS: number of data set for summary outputs or
zero for no summary output.

2. GRINTV: token interval for growth rate distribution or
zero for no growth rate distribution.

3. PRINDS: number of data set for detailed print outputs
or zero for no detailed print output.

7-2

4. OUTPDS: number of data set for detailed outputs for
further processing or zero for no d 'tailed output for
further processing.

DOUTS: contains seventeen subarrays with information on what
is to be included in the outputs at each level. The first seven
contain summary output data; the next five, de!ailed print out-
put data; and the last five, data in A-etailed outputs for further
processing.

BUILD

BUILD is thk routine which accepts inpits from the user-written

SETITM subroutine, places them in sort and accumulates the number

of times each has appeared, BUILD begins processing by reading the

Initial Dictionary Item Cards (if any were provided) and plhcing them

into its internal dictionary with counts of zero. Any errors found in

the sequence or number of cards input will cause an abort at this

point. Following this, BUILD calls SETIN through its setup entry

point (SETIN), to initialize the remainder of the dictionary, calls

SETWR through its setup entry point (SETWR) to set internal switches

controlling output formats, and finally calls SETITM through its set-

up entry point (SETITM) to allow initialisation processing such as

opening data sets. determination of the first unit's identification.

etc. BUILD then completes its internal setup, positions the merge

data sets to their beginning points and begins input processing.

7-3

Input processing is accomplished through interaction between

BUILD and SETITM. BUILD calls SETITM through its processing

entry (ITMID), and SETITM places the next input item in the array

ITEM and optionally places its count (if any counts are unequal to

one) in ICNT before making a normal return. BUILD then attempts

to find this item in its dictionary. If successful, BUILD adds the

contents of ICNT to the total count being accumulated for this item.

If unsuccessful, then BUILD checks to make sure space exists for

this item and adds it is possible. If not, then BUILD calls SETWR

through its processing entry (WRDICT) to write out this partial

dictionary and then calls SETIN through its processing entry (INDICT)

to re-initialize the dictionary area for the next partial dictionary of

this unit. Following thies the iterr is added as the first item in the

new partial dictionary.

U SETITM completes a unit, it places the next unit identification

in the array NEWID and executes a RETURN 2 statement. BUILD

then calls SETWR (through WRDICT) to write out this partial dictionary

and then calls SETIN (through INDICT) to re-initialize the dictionary

for the first partial dictionary of the next unit.

If SETITM completes the input, it executes a RETURN 3 state-

ment. BUILD then calls SETWR (through WRDICT) to write out this

7-4

• . m . -

final partial dictionary. It then closes the merge data sets, informs

"lie operator that input processing is successfully completed, and

returns control to FRQNCY.

SETITM uses a number of arrays to hold the items themselves,

indexing information and counts. The major ones are:

BASE: contains the number of tokens counted so far in the

present unit at each level.

OFLOW: contains counts for any items whose frequency is
greater than MFREQ (set to 32767).

ITEM: contains the item currently being processed.

CWORKS: contains two subarrays with chain information:

1. CENTPT: contains an index value for the entry point
in DWORKS of this chain of sequenced items.

2. CLNGTH: contains the current length of this DWORKS

chain of sequenced items.

DWORKS: contains four subarrays with item information:

1. IFCHAR: contains an index value for the beginning
byte of this item in DICT.

2. NENTX: contains an index value for the next DWORKS

entry in this chain of sequenced items.

3. ILNGTH: contains Ohe length (in bytes) of this item in

DICr.

4. FREQ: contains the frequency within the current
partial dictionary of this item in DICT.

7-5

,,

FUSE: contains the count (in terms of total tokens) at which this
item was first used in the present unit.

DICT: contains the items themselves.

Arn explanation of the method used in sequencing the input iternis is

contained in Section 4. 2. 3 (pp. 33-38) of the docu-ment referenced in

the Introduction. The techniqui! is baoically the directory-chain

method with uni-directional chaining. The initial dictionary items

are used to "prime" the chains with expected high-frequency words

to reduce the average search time.

SETTN

The SETIN routine has two entry points, SETIN and INDICT.

The SETIN entry is used only when BUILD is initializing the input

processing phase and makes the addresses of dictionary arrays

known within SETIN. The INDICT processing entry causes chain

entry points and lengths in CWORKS to be reset and then causes the

chaining indexes and frequency counts in DWORKS to be reset.

SETWR

SETWR also has two entry points, SETWR and WRDICT. The

SETWR entry is used by BUILD during input processing phase

initialization to set internal switches to correspond to the formats

7-6

C

of the partial dictionaries to be written. The WRDICT entry is used

whenever a partial dictionary must be written out to a merge data set.

For each partial dictionary, a header containing the total frequency

of all items within it, the array OLDID, and the array BASE, is

written. Following this, SETWR follows the chains of sequenced

dictionary items and, for each item, writes out its length and fre-

quency, its first use (if selected), a one to indicate the number of

next-lower-level uses (if selected) and the item itself. A dummy

record with an item length of one, count(s) of zero and a single all-

zero item byte is written to indicate the end of the sequenced string.

Following completion of the write, the number of the merge data set

is incremented so that the data sets are used in rotation.

MERGE

MERGE is the routine which merges the sequenced strings at a

given level and calls necessary formatted output preparation routines

as required. It consists essentially of four nested loops. The inner-

most loop merges sets of sequenced strings, the next loop controls

the processing of each pass of the merge data sets, the next one con-

trols the merging of all items at a given level and the outermost loop

controls the levels from highest-numbered (detail) to lowest-numbered 14

(overall). Regardless of the number of levels, processing is terminated

7-7 1

when no more outputs remain to be produced; thus one can count units

at any given level or levels of a hierarchy by merely specifying no

outputs for the remaining levels.

MERGE begins processing by setting switches for the formats of

the merge data sets. Then, entering the level loop, it sets summary

and detail output switches for the highest-numbered level. The first

input pass then begins, and partial dictionary strings are merged.

Passes at this level continue until the maximum number of partial

dictionary strings remaining to be merged in any unit at this level is

less than or equal to the number of merge data sets. At this point,

output switches are set so that the summary outputs and detail out-

puts specified are produced for these lowest-level units during the

final merge pass at that level. This entire process then is repeated

at the next higher level, with the completed dictionary strings for

entire units at one level becoming the partial dictionary strings of

the more comprehensive units at the next level. Outputs are pro-

duced on the final pass at each level until no more specified outputs

remain, at which point MERGE returns control to FRQNCY.

7-8

Important arrays generated by MERGE are:

WORKS: contains six subarrays with information about the items
being merged:

1. DSNO: contains number of the data set from which the
item was read.

2. IFUSE: contains the count (in terms of total tokens) at
which the item was first used in the present partial
dictionary.

3. INUSE: contains the count of the number of next-lower-
level units in which the item was used.

4. IFREQ: contains the frequency within the current partial
dictionary of this item.

5. ILNGTH: contains the length (in bytes) of this item.

6. SEQ: contains the relative index of the order of this
item among the items currently being merged.

IITEM: contains the actual items being merged.

OBASE: contains the new BASE array being generated for the
merged string.

IBASE: contains the old BASE arrays for each string currently
being merged.

SETDPR

SETDPR is the routine which generates and formats the detailed

print outputs. It is first called through its SETDPR setup entry point

during the level loop initialization of MERGE, and at this time it sets

a switch to branch to the proper WRITE/FORMAT statement combi-

nations for header and detail line writing. The DHEAD entry point is

7-9

used when a new page must be started because a new unit is to be out-

put, and this entry merely forces a heading to be printed by setting the

line count to the maximum.

The normal item print entry is made on the last pass of each level

through the DPRINT entry point. A check is made for line count over-

flow, and a header is written if necessary. Following this, the detail

line is written and control returned to MERGE.

SETSUM

The SETSUM routine is used to accumulate and print summary

outputs. At the beginning of each level, MERGE calls it through its

SETSUM entry point to set its internal switches. At the beginning of

processing for each unit on the last pass of each level, MERGE calls

SETSUM through the SUMIN entry point to initialize all the summary

data accumulation arrays to zero. As MERGE completes processing

of each item of that unit, control is passed to SETSUM through the

SUMCMP entry point to accumulate the specified summary statistics.

Finally, upon completion of the unit, SETSUM is called through the

SUMPRT entry point so that it may output the accumulated statistics.

7-10

Major arrays created by SETSUM are:

FCHS: contains two subarrays with first character frequency
data.

1. TYPFCH: Type/first character data.

2. TOKFCH: Token/first character data.

ILGS: contains two subarrays with item length frequency data:

1. TYPILG: Type/item length data.

2. TOKILG: Token/item length data.

TYPTOK: contains type/token data.

TYPINT: contains growth rate data.

In addition to the routines and arrays described above, there are

four named COMMON areas which contain important parameters used

by a number of the routines. The labels of these areas, the manner

in which they are used, and the constants they contain are as follows:

FRQALL (used throughout):

1. MMRGOR: Maximum merge order; presently set to 4.

2. MLNGTH: Maximum length (in bytes) of an input item;
presently set to 255.

3. MINTVS: Maximum number of levels; presently set to 5.

4. MFREQ: Maximum capacity of the standard INTEGER*2
cell for accumulating frequencies; set to 32767 for
Systemf360; frequencies greater than this become overflow
items and are accumulated in INTEGER*4 celils of greater
capacity.

7-11

5. MID: Maximum length of any level identification field;
presently set to 16.

6. MRGOR: Merge order for this run; must not be greater
than MMRGOR.

7. FIMRGS: Number of the lowest numbered input merge
data set for this pass.

8. LIMRGS: Number of the highest-numbered input merge
data set for this pass.

9. MRGS: Number of the current merge data set for this pass.

10. NINTVS: Number of levels for this run; must not be greater
than MINTVS.

11. NID: Maximum length of any level identification field in this
run; must not be greater than MID.

12. GPARS: Largest number of partial dictionaries in any unit
at the present level.

13. NPARS: Number of partial dictionaries in the current unit
at the present level.

14. TFREQ: Total frequency of all items in the current unit.

15. LLNGTH: Longest item at the present level.

16. LPERP: Number of lines to be written on pages of summary
and detailed output.

17. COMMNT: Number of the data set to be used for comments
and operator instructions.

18. FUSECT: 'T" if first uses are to be counted at any level;
"F" otherwise.

19. NUSECT: "T" if the number of next-lower-level uses is
desired at any level; IF" otherwise.

7-12

pC

FRQBLD (used by FRQNCY and BUILD):

1. MCHARS: Number of bytes available for item storage in the
dictionary; presently set to 35000.

2. MDITMS: Number of different items which may be counted
in one partial dictionary; presently set to 5000.

3. MCHNS: Number of chains of sequenced items which may be
included in one partial dictionary (also one more than the
number of initial dictionary items which may be supplied);
presently set to 1000.

4. MCLNG: Maximum number of items in a chain before it will
be split into two chains; should be specified as approximately
'3*MDITMS) / (2*MCHNS).

5. MOITMS: Maximum number of items whose frequency is
greater than MFREQ which may be counted in one partial
dictionary; currently set to 100.

6. NINDIS: Number of initial dictionary items supplied in this
run.

7. PARAMS: Number of the Parameter data set from which the
input parameters will be read; presently set to 5.

8. CONCRD: Reserved for future use; should remain zero (0).

9. GONOGO: Internal indicator set during the process of checking
input parameter cards.

10. SPITEM: Reserved for future use; should remain "F."

11. INEXAM: Reserved for future use; should remain "F."

7-13

FRQMRG (used by FRQNCY and MERGE):

1. MGRINT: Maximum number of growth rate intervals for
which type counts can be accumulated (should be greater
than the largest number obtained by dividing the number
of tokens expected in units of each level by the growth
rate interval specified on the Level Option Card for that
level); presently set to 1000.

2. MTOKNS: Greatest token count for which the type/token
distribution can be generated; presently set to 1000.

3. MSYMS: Number of unique first characters for which the
two first character distributions can be generated; presently
set to 256.

4. INTX: Internal counter used to indicate the current level
number.

5. FOMRGS: Number of the lowest-numbered output merge
data set for this pass.

6. LOMRGS: Number of the highest-numbered output merge
data set for this pass.

BLD (used only within BUILD):

1. NCHARS: Number of bytes currently in use for item
storage in the dictionary.

2. NINCHS: One more than the number of bytes in the initial
dictionary items.

3. NDITMS: Current number of different items in the dictionary.

4. NCHNS: Current number of chains of sequenced itenms in the
dictionary.

5. NOITMS: Curient number of itcrms whose frequency is greater
thar. MFREQ.

7-14

8. PROGRAM ADAPTATION

There are several types of changes which may be required to adapt

FRQNCY to run on a particular computer or to run for a particular

purpose. This section is included to point out some of these potential

changes and the ways in which FRQNCY may be modified to implement

them.

Storage

One of the most likely ways in which a user may viiý, to nicd '.y

FRQNCY is to adapt it to differing sizes of fast-access stora',,-

Generally, efficiency can be increased by reducing the number of partial

dictionaries required to count units at the lowert level. On the other

hand, the size of the partial dictionaries whizIh can be used is limited by

the amount of fast-access storage avaiiable.

One of the two ways in which storage available for di.tionaries can

be adjusted is by making use of the organ.ýiation of FRQNCY to run it as

a planned overlay program. Section 7 described the program organization

and indicated the manner in which the routines are ý*.i:

The second way in which storage availabie for dictionaries can be

adjusted is by changing the sizes of nAjor arrays to meet the require-

ments of the problem and/or the characteristics of the cc:-mputier. Tu this

end, three principles were used in ':riting the program:

1. All major arrays are defin.d and dimensioned at the lowest
point possible consistent with the overlay structure.

2. Only the initial definitions of major arrays use absolute
dimensions; all subsidiary def•nitions ana subarrays use
relative dimensions.

8- I

3. The parameters used to refer to the sizes of all major arrays
are defined at the beginning of FRQNCY by Assignment state-

ments and are referred to symbolically thereafter.

As a consequence of these principles, it is rela-ively simple to change

the dimensions of major arrays, since at most assignment statements

and a DIMENSION statement need be modified.

Each of the major arrays is discussed below, together with an

indication of its dimensions, specified either as integers or symbc-li-

cally. The integer dimensions shown below represent absolute dimen-

sions which cannot be changed. The symbolic dimensions shown below

kndicae that the corresponding dimensions in the program may be

changed. The symbols used in the dir-ension statements are identical

to the symbols used in the Assignment statements at the beginning of

the FRQNCY program. If the user wishes to -hanl-e the dimension(s)

of any array shawn below with symbolic dimension(s), he must do two

things. First, the Assignment statement(s) at the beginniri of

FRQNCY which assigns an integer value to the affected symbol(s)

must be located, and they must be changed to assign the new value(s)

desired. Second, the inteper(s) actually used in the DIMENSION

staterment(s) defining the array(s) must be rhanged correspondingly.

(It is important to note that in some cases a dimension change may

affect more than one arx ky and tht in such cases all affected arrays

must be changed.)

I-

CWORKS (MCHNS, 2): This INTEGER*2 array is defined in
BUILD and u-sed to maintain information on the chains of
sequenced items. It can be changed in size at the expense of
changing the a,,erage chain length and thus the internal search
time to find a p-.rticular item. The guide which should be used
is that MCHNS should be approximately equal to (3*MDITMS)/
(2*MCLNG).

DWORKS (MDITMS, 5): Thi5 INTEGER*2 artay is defined in
BUILD and used to maintain information on individual items.
MDITMS is the maximum number of different items which can
be counted in one partial dictionary and is hence a very critical
parameter. The values of both MCHNS and MCHARS and hence
the sizes of CWORKS and DICT (two of the largest arrays) also
depend primarily on the value of MDITMS.

FUSE (MDITMS): This INTEGER*4 array is defined in BUILD
and used to store the token count of an item's first use. It is
not ieferred to unless first uses are being recorded for at least
one level. Hence, if no first uses are being recorded, its di-
mension may be changed to 1 to save storage.

DICT (MCHARS): This LOGICAL*] array is defined in BUILD
and used to store the items themselves. The guide which should
be used in selecting the value of MCHARS is that it should be the
average item length expected (in terms of types, not tokens)
multiplied by MDITMS.

TYPINT (MGRINT): This INTEGER*4 array is defined in SETSUM
and used to store the growth rate information. MGRINT is the
maximum number of growth rate intervals for which type counts
can be accumulated and should be greater than the largest number
obtained by dividing the number of tokens expected in units of each
level by the growth rate interval specified on the Level Option Card
for that level.

FCHS (MSYMS, 2): This INTEGER*4 array is defined in SETSUM
and used to store the two first character distributions. MSYMS
should be greater than or equal to the largest value occurring in
the numeric representations of the first bytes of input items.

8-3

ILGS (MLNGTH, 2): This INTEGER*4 array is defined in SETSUM

and used to store the two item length distributions. MLNGTH

should be greater than or equal to the byte length of the longest in-

put item.

Of the above arrays, the first four are defined in BUILD and the last

four in SETSUM. Since the BUILD arrays are likely to occupy con-

siderably more storage than the SETSUM ones, it is probably more

productive to reduce their sizes if an overlay program structure is

used as recommended above. If not, then attention should be paid to

all arrays if storage is a problem.

Capability

A second reason for which FRQNCY may be modified is to change

its capabilities. It may be desirable to handle more levels, to use a

higher-order merge than allowable with the program as distributed,

etc. While the arrays concerned here do not significantly affect

storage requirements, they have been treated in the same manner as

the arrays described above. Where they may be changed, both an

Assignment statement at the beginning of FRQNCY and the integers

actually used in the DIMENSION statements defining all affected arrays

must be changed.

NAME (16, MINTVS): This LOGICAL*I array is defined in FRQNCY

and is used to store the name of each level. MINTVS represents the
maximum number of levels.

8-4

aC

IDENT (MID, MINTVS, 2): This LOGICAL*I array is defined in
FRQNCY and used to store the identifications supplied by SETITM
for units at each level. MID repreaents the longest identification
string allowable at any level.

SOUTS (MINTVS, 4): This INTEGER*4 array is defined in FRQNCY
and used to store data set numbers and growth rate interval infor-
mation.

DOUTS (MINTVS, 17): This LOGICAL*1 array is defined in FRQNCY
and used to store output option information.

BASE (MINTVS): This INTEGER*4 array is defined in BUILD and
used to store token count data from each level.

OFLOW (MOITMS): This INTEGER*4 array is defined in BUILD
and used to store counts for items whose frequency is greater than
MFREQ. MOITMS represents the maximum number of items whose
frequency is greater than MFREQ which may be counted in one par-
tial dictionary.

ITEM (MLNGTHý: This LOGICAL*1 array is defined in BUILD and
contains the current item. MLNGTH is the length of the longest
item which can be counted; longer items are truncated to this length.

WORKS (MMRGOR, 10): This INTEGER*2 array is defined in MERGE

and used to store information about the items being merged. MMRGOR
is the maximum merge order.

IITEM (MLNGTH, MMRGOR): This LOGICAL*I array is defined in
MERGE and contains the items being merged.

OBASE (MINTVS): This INTEGER*4 array is defined in MERGE and
contains the new BASE array being generated for the merged string.

IBASE (MMRGOR, MINTVS): This INTEGER*4 array is defined in
MERGE and contains the old BASE arrays for each string currently
being merged.

Of the above arrays, the first four are defined in FRQNCY, the next three

in BUILD and the last four in MERGE.

8-5

Other Features

There are several miscellaneous parameters which the user may

wish to modify for various reasons. These parameters are all included

in the initial set of Assignment statements in FRQNCY but do not affect

any array definitions:

MDS: This parameter is the highest data set number allowable.

In general, it will be operating system dependent. It is currently set

te 99 for compatibility with the OS/360 convention for Fortran data set

naming.

PARAMS: This is the number of the data set from which the input

parameters are read. It also is an operating system related parameter

and is currently set to 5 for compatibility with the OS/ 360 cataloged

procedures for Fortran runs.

MFREQ: This parameter is the maximum positive value which

FRQNCY can store in the INTEGER*2 cells in which token counts are

accumulated.

8-6

9. RESTRICTIONS

A few restrictions are applicable to use of the FRQNCY program.

Each of the known restrictions is discussed below. It is important to

note that, while FRQNCY is written entirely in Fortran IV, it has been

tested only on the IBM System/360 Models 40 and 50. Different corn-

puters, operating systems or Fortran IV compilers may not produce

the same results.

The most important restriction is that the Fortran IV compiler

used to compile FRQNCY permit the LOGICAL':1 and INTEGER"2

type statements or reasonable equivalents. Extensive use is made of

these to conserve storage, and, while FRQNCY could be modified

to eliminate its dependence on these, it would use considerably

more storage.

A second restriction concerning the compiler is that it must not

produce coding to check array bounds at object time. Subarrays in

general have been defined using EQUIVALENCE statements and

minimum absolute dimensions. This was done to allow easy modifi-

cation of array sizes to fit differing amounts of fast-access storage,

since only the major array dimensions need be changed. If such

check coding is produced, then all subarray dimensions must be

explicitly stated in absolute form, and all must be changed whenever

the corresponding major array dimensions are changed.

The third restriction on the compiler is that it permit the ex-

9-1

tended READ statement allowing an exit to a specified statement

when an end-of-data-set condition is encountered.

The above three restrictions outline the major known deviations

from compilers meeting USASI Fortran standards. One other minor

incompatibility is that, in order to produce more readable output

listings, both the vertical bar "I" and the underscore "I-"have been

used in FORMAT statements in the SETSUM and SETDPR subroutines.

These can be changed to other characters or to blanks if necessary

to prevent character set incompatibility.

I 9-2

10. EXAMPLE

This section is included to demonstrate setup and operational

features of a typical run of FRQNCY under OS/3(0. It is divided

into three sections, the first describing the setup peculiar to

FRQNCY, the second describing the OS/360 setup, and the third

describing the comments output during processing. The first and

third would be applicable on any computer, while the second assumes

a knowledge of OS/360 and would be applicable only to System/360

runs.

FRQNCY Setup

The ran described was made to count words in individual docu-

ments occurring in a five-level hierarchial structure. It made use of

a SETITM subroutine which was designed to identify words and pass

them as the input items to FRQNCY. This SETITM subroutine

placed five levels of input unit identification information into the

NEWID array so that FRQNCY could theoretically have performed

counts at all levels of the hierarchy from individual documents to the

overall input. However, in this particular run only document counts

were desired, so that outputs for only that level (level 5) were

requested.

The first card prepared was the General Option Card. Five

levels were present in the input structure, so columns 1-5 of this

10-1

card were 'q6161t65."* No initial dictionary items were supplied, so

columns 6-10 were "1W10". The maximum length chain was 10

(eight would have been a slightly better choice), so columns 11-15

were "W610". A two-way merge was used, so columns 16-20 were

"1M662". The first merge data set was 9 (and hence the last was

12), so columns 21-25 were "016?19I". No more than fifty lines of

output were to be placed on a page, so columns 26-30 were "bbb50".

The longest identification field at any of the five levels was 6, so

columns 31-35 were "'16". The data set for comments was to be

the on-line printer, which in the standard OS/360 Fortran procedure

is data set 6, so columns 36-40 were "116". Finally, columns

41-45 were "M0,10", column 47 was "F" and column 49 was "F" to

deselect options not presently included.

The next five cards in the FRQNCY input were the five Level

Option Cards. They were in order from the highest level (Level 1)

to the lowest (level 5). For the highest level, the name was

"EVALOVAL", so columns 1-16 of the first card were

"000tEVALOVAL01064 '". No outputs were desired at this level, so

columns 19, 36, 39 and 47 were punched with a zero. The second,

third, and fourth cards were punched identically except for the name

fields in columns 1-16. These were, respectively, punched as

Note: The representation "b" is used to indicate the character
"blank".

l0-z C

" ý6OýEVAL1 STLWlW', "''0616EVAL2NDLWIW" and 1661EVAL3RDLý160Y1".

The fifth card contained additional information, since outputs

were desired at this level. The name was "EVALDOCT", so columns

1-16 were punched 'V016EVALDOCTbIW!". No summary outputs were

desired, so column 19 was punched with a zero. Column 36 was also

punched with a zero, since no growth rate distribution was needed.

Since no print output was wanted, column 39 was also punched with a

zero. To produce a tape for further processing as data set number 21,

columns 45-47 were punched "'121". Only the item length and its

frequency were needed, so columns 48-52 were punched "TTFFF".

Since no Initial Dictionary Item Cards were to be included, these

six cards comprised the entire set of input parameters. They were

placed in the input stream as OS/360 SYSIN input and hence became

data set 5 according to the standard OS/360 Fortran cataloged

procedure.

OS/360 Setup

Figure 1 shows the OS/360 Job Control Language cards which

were provided to compile, link edit and run the FRQNCY job de-

scribed above. The reader is referred to the IBM manual, Job

Control Language (IBM Form C28-6539) for a fuller explanation of

10-3

I/J S0414F J06~ WIvtAKkR,MSGLEVE1...
//EXF-C PRJC =FORT GC,;,

PARM.F'JPI=GNA34E=-FRJNCYMAPDECK
, x1/PARM.LKED='MAP,L 1STl

//FOtsT.SYSIN~ 00

FORTRAN
Source Deck

//LKU).SYSIN DO
LIBRARY *tINSPIT91NINEX (NCUNC, LNEXM SP I rMCONC OR)

//Gfl.Fro8Fool D0I) -DSNAME=DOOCSO,

//Gn.FT0OFOol DD D)SNAME=J4ERGO2.
1/UNIT=SYSDA,
1/VOLUME =SER=SYSRO3, x

U1 DISP= (N EW ,DE LEFT F) ,
1/SPACE=ICYL,120,10) I x
//DCB=(,REFTMqFOtLREL2,LSZ,64BFO2

//(;O.FTi1F)ooj DO DSNAME=MERG02,
x(IUNIT=SYS0,
x(1VOLUME SR=ERY0O526,

iiDISP=(NEWKEETEP)

x
DCB&(*.FT09FOoll

//GtJ.F~TL2Fr)Ol X)a DSNAME=MERGO,n4
/1UN I T=180,

VO LUME =SE ROnS260,// iISP=(NEw*KEEP),
xI, O)CB=(*.FJO9FOOI)//CO.F-T4IFmj(1 I0) DSNAMi-=tVALOOC,

// UNI1'z182,

1.1 ~DISP=(NEW,flEFPT) ,

II LABE1=(1,SL),
1/DCB= 9RCFM:Fg,LRECL=)6#BLKSIlEz

3 6 1,itfN=2

Parameter
Data Set

Figure 1. OS/360 Input

1 0-.4

this input, which is presented here primarily to suggest one way in

which this job could be set up.

FRQNCY Comments

Figure 2 shows the comments which FRQNCY provides at im-

portant points in the processing. These comprise the normal comments

expected in a complete, correct run. Error comments provided, as

part of the input diagnosis process or at the termination of a run where

errors occurred, are generally self-explanatory and are not included

here.

After signing on in the first comment, FRQNCY prints out the

options specified on the General Option Card. This is followed by

listing of all options specifked on each of the Level Option Cards. If

no errors have been found (each error is flagged with asterisks and

indicated on the line containing the option listing), then FRQNCY

prints the comments on successful initialization and beginning of

processing. The comment "END OF' FILE" which follows was

printed by the SETITM bubroutine and not by FRQNCY. However,

following that comment, which was printv'd when SETITM encountered

the end of the input data set, FRQNCY printed the comment on completion

of input processing.

10-5

3ýU3I NN I1, fl?;;J :::: ITEMS.A

GENerAL OPTIONS ARE:
5 INTERVýLS•

,!r) INITIlAL DICTIONARY ITEMS.

10 ITEMS IN MAXIMUM LFNGTH CHAIN.
2 1S AERGE ORDER.

IS FIRST MERGE DATA SET.
12 IS LAST MERGE DATA SET.

6 Ici CM'4LENTS DATA SET.

Sn LINCS PER PAGE ON PRINTFR OUTPUT.
6 IE•ENTIFICATION CHARACTERS AT EACH INTERVAL.

N) CONCORDANCE DATA SET.
Nu SPECIAL ITEM CHECK.
NJ INPUT ITEM EXAMINATION.

nPrl,)NS LISTFL) BELOW WE-REJ SELECTED FOR INTERVAL I NAMED EVALUVAL

O#PTInt6S LISTED l-O•l(]lo WFRE SELECTED FUR INTERVAL 2 NAMEO EVALISTL

nPTI)*s LI%\Tr i tt.Jvo WvRE SELtCTH) N(jR INTERVAL 3 NAME) (VAL?NUL

,OPI I t%! LIS-Ti F tl j pit LRf SELtCI E) FUR INTEQVAL 4, ,AdEJ I-VAL •i~t

UPTi'-,s LTSTti) 4ELJ#i WFPk %EICTLU FU;R INIf AVAL AM) tV A, ', I

I%)UTPUT jATA %FT iTi I .ACH ITEM ANI) T1 :

,(AW FEkfJUINCY

1 ,.7 -•

COMPL&TLf) INITIALIZATION SUCCESSFULLY.

BEGINNING INPUT PROCESSING.

END OF FILE

COMPLFTEI INPUJT PROCESSING SUCCESSFULLY.

BEGINNING MERGE PASS FOR INTERVAL 5 NAMED EVALDOCT
IF A RFSTART IS NECESSARY9 THE INPUT DATA SETS BEGIN WITH NUMBER 9t
THI- LARGEST NUMBER OF STRINGS TO BE MERGED IN THIS INTERVAL IS i,
AND THE LONGEST ITEM HAS 8 CIHARACTERS.

END OF PROJCFSSING FOR INTERVAL 5 NAMED EVALDOCT

NO FURTHER OUTPUTS REQUESrED

END OF FREQUENCY PROGRAM

Figure 2. FRQNCY Conunents (Continued)

10-7

At the beginning of each merge pass, FRQNCY prints the comment

presenting the restart information which must be used if the pass is

aborted. At the completion of the merge for each level, the comment

on end of processing is printed. Finally, if the last level has been

processed, the end of program comment is printed. In this case,

since termination was based on the fact that no further outputs were

requested at higher levels, a comment to that effect precedes the

end comment.

10-8

UNCLASSIFTED
Secunty Clmaslfication

DOCUMENT CONTROL DATA- R&D
(SOe rv c .Iae*,lstsm of tile hff eodv il abeont, &nd ondeamin Ontlttle,m must be entered •ehen the ovrcal report teocla s-lS d)

OqIGINATIN , ACTIVIJY (Corpo'atgo author) 2 RilPORT SECURtTY C LASSFI' CATION

Federal Systems Division UNCLASSIFIED

International Business Machines Corporation lb GROUP

CGdthprotburg. Md. 20760
3 REPORT TITLE

RESEARCH ON AUTOMATIC CLASSIFICATION, INDEXING AND.EXTRACTING

4 DESCRIPTIVE NOTES (Typo of relport and inclusive date&)
Annual Progress Report

S AUTHOR(S) (Last nfime. first name. initial)

Baker, F. T., Williams, John H., Jr.

C REPORT DATE 74 TOTAI NO OF PAGES 7b No Oi aEW0

August 1968 60 None
41, CONTNACT OR GNANT NO. 38& ORIGINATOR'S REPONT NUMOUE(S)

NONR 4456(00)
d. PNOJECT NO.

C. 9b. OTH4ER RPOR? NO(S) (Any el0,#. jft nub.. AIIIaY be assisede

d

10. AVA IL AGILITY/LIMITATION NOTICES

Qualified requesters may obtain copies of this report from DDC. Other

qualified users shall request coples of this report from the originator,

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Information Systems Branch

Office of Naval Research
_DePt. of the Navy. Washington, D. C.

13. ASSACT To support studies in automatic indexing, classification and extracting,

a general purpose frequency program has been developed to further Gar theoreti-

cal and practical understanding of text word distributions. While the program is

primarily designed for counting strings of character-oriented data, it can be used

without change for counting any items which can be represented in an integral

number of characters. Counts nmay be obtained simultaneously at several levels

of detail, such as for sentences, paragraphs, chapters and entire documents.

Both printed outputs and outputs for further computer processing may be obtained

and a variety of summary and detailed outputs are available.

The program, titled FRQNCY, is written in the Fortran IV language

and h" been compiled and run on the IBM System/3 6 0 using Fortran IV (G) and
the System/3 6 0 Operating System. It uses at least one feature of the IBM System

360 Fortran IV language (LOGICAL*l and INTEGER*2 variables) which is not in

USASI Fortran and hence may not compile or run under other Fortran systems.

The program is extensively parametrized to allow its efficient use on computers

with varying amounts of immediate-access storage and input/output equipment.

This report is a complete writeup of the frequency program. It covers

the purpose and usage of the program and also describes its organization and in-

ternal operation. Finally, guidelines for modifying the program or adapting it

to different computers are also included.

DD I JAN 1473 UNCLASSIFIED
Security Clamsification

UNCLASSIFIED
Security ClassificationL

14LIqK A LINK S LiNK C
KEY WORDS________________________________ OLE wT hoLE wY SOLE wY

Information Retrieval
Information Systems
Documentation
Libraries
Word Association
Correlation Techniques
Dictionaries
Vocabulary
Information Sciences
Programming (computers)
Word Frequency

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the name and address imposed by security classification, using standard statements
of the contractor, subcontractor, grantee, Department of De- stich as:
fense activity or other organization (corporate author) issuing (1) "Qualified requesters may obtain copses of this
the report. report from DDC."
2a. REPORT SECURITY CLASSIFICATION: Enter the over- (2) "ForeiL, announcement and dissemination of this
all security classificetion of the report. Indicate whether
"Restricted Data" is included, Marking is to be in accord- report by DDC is not authorized."
ance with appropriate security regulations. (3) "U. S. Government agencies may obtain copies ef

this report directly from DDC. Other qualified DDC2b. GROUP: Automatic downgrading i3 specified in DoD Di- users hall request through
rective 5200. 10 end Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author- (4) "U. S. military agencies may obtain copies of this
ized. report directly from DDC. Other qualified users
3. REPORT TITLE: Enter the complete report title in all shall request through
capital letters. Titles in all cases should be unclassified.
U a meaningful title cannot be selected without classifica-
tian, shbw title clissification in all capitals in parenthesis (5) "All distribution of this report is controlled. Qual.
immediately following the title. ified DDC users shall request through
4. DESCRIPTIVE NOTES: If appropriate, enter the type of _"

report, e.g., interim, progress, summary, annual, or final. If the report has been furnished to the Office of Technical
Give tke inclusive dates when a specific reporting period is Services, Department of Commerce. for sale to the public. indi-
covered. cate this fact and enter the price, if known.
5. AUTHOR(S): Enter the name(s) of author(b) as shown on II. SUPPLEMENTARY NOTES: Use for additionusl explana-
or in the report. E',tes last name, first name, middle initial, tory notes.
If military, show rank Pnd branch of service. The name of
the principal . thor is an absolute minimum requirement. 12. SPONSORING MILITARY ACTIVITY: Enter the name of

the departmental pro,, t office -.r tIa'"ratory sponsoring (pay6. REPORT DoT-, Enter the date of the report as day. ing for) the researc:. -ad development. Include address.
month. year:; o mor'1S year. If more than one date appeard
on thi report, use date of publication. 13. ABSTRACT: Enter an abstract giving a brief and factualsummary of the document indicative of the report, even though
7a. TOTAL NUMBER OF PAGES: The total page count it may also appear eltewhere in the body of the technical re-
should follow normal pagination pr6cedures, i.e., enter the port. If additional space is required, a continuation sheet shall
number of pages containing information. be attached.
7b. NUM1BER OF REFERENCES: Enter the total number of It is highly desirable that the abstract of classified reports
references cited in the report. be unclassified. Each paragraph of the abstract shall end with
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter an indication of the military security classification of the in-
the applicable number of the contract or grant under which formation in the paragraph, represented as (rsj. (S), (C). or (U)
the report was written. There is no limitation on the length of the abstract How-
8b, 8C, & Sd. PROJECT NUMBER: Enter the appropriate ever, the suggested lensgth is from IS0 to 225 words.
military department identification, such as project number,
subproject number, system numbers, task number, etc. 14. KEY WORDS: Key words are technically meaningful terms

or short phrases that characterize a report and may be used as.9j. ORIGINATOR'S REPORT NUMBER(S): Enter the offi- index entries for cataloging the report. Key words must be
cial report number by which the document will be identified selected so that no security classification is required. Identi-
and controlled by the originating activity. This number must fiers, such as equipment model desipnation, trade name, military
be unique to this report. project code name, geographic location. may be used as key

"9b. OTIIEI(REPORT NUMORR(S): If the report haa been words but will be followed by an indication of technical con.
assigned any other report numbers (either by the originator text. The assignment of links, rules, and weights is optiotal.
or by the sponsor), also enter this number(s).
10. 'VAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on furthý,r dissemination of the report, other than those

UNCLASSIFIED
Security Classification

Lc

