
COMPUTER SOFTWARE: THE EVOLUTION

WITHIN THE REVOLUTION

George W. Armerding

July 1968

P-3894

1•D~

I|T

COMPUTER SOFTWARE: THE EVOLUTION

WITHIN THE REVOLUTION

George W. Armerding

The RAND Corporation, Santa Monica, California

A corporate treasurer signs a check for $30,000, in

payment for a five year lease of a proprietary computer

program. The United States Patent Office issues a patent

protecting the inventor of a computer sorting technique,

represented in the patent by a program flow chart. A

computer manufacturer announces availability of his COBOL

compiler at extra cost -- customers who want it, must pay

for it.

The above incidents are signs of the evolution taking

place within the realm of computer software. I call it an

evolution, to differentiate it from the revolution continually

seen in computer hardware: speeds have gone up, prices of

hardware have gone down, and the price of the execution of

a single instruction is diminishing so rapidly engineers now

talk about "throwaway computers" which will be cheaper to

replace than to repair.

But within this continuing hardware revolution we see

slower evolutionary changes taking place within the software

Z Any views expressed in this Paper are those of the
author. They should not be interpreted as reflecting the
policy of any of its governmental or private research
sponsors. Papers are reproduced by The RAND Corporation
as a courtesy to members of its staff.

-2-

realm. These changes, while not as exciting and visible

as those in hardware, are still significant -- perhaps

more significant.

The Hidden Cost Bezins to Show Itself

Twist the arm of the computer manufacturer's cost

accountant and he will admit it; the cost of developing

and maintaining the software for his current family of

computers has approached, perhaps exceeded, the cost of

developing, manufacturing, and maintaining the hardware

on which that software runs.

As we all know, the manufacturer gives away his com-

puter software. It's "free." Yes, the marginal cost of

getting the software from the manufacturer -- once you

have bought his hardware -- is indeed zero. But no matter

how you evaluate it, half of what you pay that manufacturer

is for the software, not for the neat, colorful boxes of

electronic components. The customers and manufacturers

are becoming aware of this hidden cost and are beginning

to take action to control it.

At least one computer manufacturer now offers his

COBOL compiler as an "extra." If you don't want it, don't

pay for it.

Within the ranks of computer users, we are beginning to

hear rumblings that manufacturers should price all of their

software separately. Then the customer can go down the price

list and pick out -- and pay for -- only the items he needs.

This mode of operation could have some interesting

economic effects on both the manufacturer and the customer.

I

-3-

The Programmer is Not a Programmer

Consider the evolution which is taking place among

people who write computer programs. In the early days of

computers, it took skill, perseverance, and a certain amount

of alchemy to be a programmer. Computers were instructed by

an elite group often drawn from strange and diverse back-

grounds.

Who programs now? Everybody. It seems to be a point of

honor to be able to advertise that "an hour's worth of simple

instruction can make every member of your engineering or

accounting staff a qualified user of our online timesharing

system." This evolution away from "Closed Shop" programming

by the professional elite, into "Open Shop" programming by

everyone has led to some interesting speculation. Some suggest

that professional programmers will disappear. Others suggest

that they won't disappear, but will become very specialized,

suited only to perform rare and exotic programming such as

writing compilers or complicated service subroutines.

On the other side of the argument, the purists assert

that we will always have professional programmers. The

programming discipline will never sink to such a low common

denominator that anyone will be able to do it. Yes, there

will be on-line dilettantes -- the one-hour wonders -- but

the hard core of "real" programming will always be done by
I

the professionals.

It appears that these arguments are at once both right

and wrong. Yes, much programming will be done by Open Shop

users at typewriter consoles. Yes, specialized programming

will continue to be done by the programming professionals.

And it will probably always be true that there will be more

"-4-

programs to be written, at all skill levels, than there

will be people at those skill levels capable of writing

them.

But the interesting speculation is not whether pro-

grammers as a group will disappear, but whether we will

experience a growth of a phenomenon which we now see; many

people who would not define themselves as programmers

nevertheless spend a majority of their working hours doing

the sorts of things which professional programmers would

categorize as programming.

Consider the open shop programmer who becomes iatrigued
by his online terminal, to the point where he spends a large

portion of each working day trying to make his program work

properly, or adding a new feature, or trying its behavior
with slightly different data. He is a programmer. He soon

tires of playing with the machine, and gradually turns his

computing chores over to a technical aide. The aide, who

formerly worked a desk calculator and plotted points on

graph paper, now spends a major portion of his day seated
at the master's console, tracking down bugs and making
changes according to the boss's wishes. The aide is a
programmer.

Consider the business executive of the future who has
a CRT display installed in his office. It shows him up-to-

the minute sales data, allows projection of wage and salary
costs five years into the future; and gives him a quick look

at the personnel file of a young man being considered for a

promotion.

When the CRT was first installed, the executive used it

himself. In fact, he developed a modicum of skill at making

it honor some reasonably complicated requests.

-5-

But this will soon become boring. He will hire a

fresh young MBA with a couple of years of computer courses

on his college record. That young man will then be charged

to instruct the console to perform special tasks at the
"executive's bidding. The young MBA is a programmer.

People who call themselves programmers may begin to

disappear. But they will most certainly reappear in other

places, referring to themselves by other appelations. And

the combined population of "real" and "hidden" programmers

will certainly continue to grow rapidly.

Be Inefficient and Like It

Not too long ago in the history of computers, the

watchword of the programmer seemed to be "efficiency."

A good programmer was one who could squeeze the last few

machine cycles out of the inner loop of the program. Only

incompetents would use such things as trace programs.

Interpretive programs were used only with great care, because

of their "inefficient' use of the computer.

Now we are in the hardware revolution, and the software

world is experiencing an enlightened attitude toward apparent

inefficient machine usage. As an example, consider time-

sharing. Few eyebrows are raised when it is reported that

a general purpose timesharing system uses 507 of the avail-

able computer time performing its various overhead operations.

Or interpretive programs. We find that even our installed

compiler -- one of the most heavily used programs on our

computer -- runs interpretively, making our computer behave

like something it isn't. Inefficient? No. In fact, the

compiler is well worth the time which it takes.

"-6-

Operating systems, loaders, editing programs, and

innunerable other overhead functions quite typically take

a significant share of the CPU cycles away from the "real"

user -- the problem program.

In spite of overhead operations which make the old

programmer cringe, today's computer management, as well

as the new generation of programmers, find nothing wrong

with our mode of operation. To them, the benefits surpass

the costs.

True, we would all like to squeeze more useful work

out of our computer, but we now know that, everything

considered, we are paying less -- much less -- per useful

answer than we ever have in the past.

Increased hardware performance per dollar of hardware

cost more than compensates for loss of the ever increasing

portion of the machine's power absorbed by the software.

This trend can be expected to continue. As long as

the hardware designers keep reducing the cost of computers

and keep raising their performance, users will tolerate --

even demand -- more and more "overhead" software to make

things easier for the programmer and his program.

Only when the hardware revolution diminishes can we

expect a reversal of the present tendency to greater soft-

ware overhead. Only when the computer designers have

squeezed the last ounce of power out of their circuits and

the manufacturers have reduced their production costs to

their reasonable limits can we expect the softwate builders

to begin worrying, in earnest, about software overhead rates.

That day appears to be far in the future.

j

-7-

Timesharing Loses and Wins

Programmers poke fun at the problem being experienced

by implementors of large, general purpose timesharing

systems. The "I told you so" attitude is prevalent. But

while we sneer at (or commiserate with) the developers of

general purpose timesharing systems, some little foxes have

quietly been stealing the grapes. Small, limited purpose

timesharing systems are proliferating. Innovative systems

appear at the universities, fathered by clever graduate

students. Profit-oriented systems are emerging weedlike;

each day's mail seems to bring notice of one more on-line

system which is available (for a price).

The advent of these smaller, more specialized time-

sharing systems has relieved much of the pressure from

general purpose timesharing implementors. But even while

the general purpose camp struggles to meet their promised

specifications, the smaller systems are multiplying.

The inevitable results will be a merger. Some of

today's limited systems will boast added features, languages,

file systems, and programmer aids to the point where they

will be indistinguishable from true general purpose systems.

By then, the battle will have been won. We will, in fact,

have general purpose timesharing systems.

Programs for Sale

"Let's band together for our mutual benefit," said the

pioneer computer users, and they did. Early users of large

computers realized that they had much more to gain by sharing

among themselves than by operating behind closed doors. This

resulted in the formation of user groups. One of the first

-8-

pro,-cts unde-taken wa: the sharing of programs. Hundreds,

even thousands, of computer programs performing all manner

of calculations and manipulations were donated by their

originators and distributed, free of cost, to all comers.

The software evolution is also at work here. The

early spirit of "together we survive, apart we die," is

gone. Now any program worth the cards it is punched on

is being offered, not free, but for a price. Major soft-

ware houses take full page ads in computer magazines

offering large proprietary programming packages. In the

want-ad section of a computing newspaper, a lone programmer

asks $150 for a copy of his latest, improved, high speed

sorting program.

The pioneers are gone; the competitors are here. The

cooperative spirit of the old guard has been replaced by

the business sense of the new generation of computer experts.

Early software entrepreneurs found the going rough. A

few early programs offered for sale didn't find enough takers

to cover development expenses. The market is now more favor-

able. Users who, at first, were revolted at the prospect

of having to pay for something they traditionally got for

nothing, recognized the inevitable. They are beginning to

lay out real dollars for the privilege of using proprietary

program packages.

Reckless competition is sure to come. Every programmer

in the country is a potential software entrepreneur. All

he needs is a pad of coding paper, some pencils (with

erasers) and a few hours of moonlight time during evenings

and weekends. Countless computer installations are happy

to sell him machine time to debug and test his program.

- . --.--.,- _ _ _ _ _

-9-

Now that some of the first volleys are beginning to

hit their marks, this part of the software evolution may

well become a full scale revolution. Don't be surprised

by an avalanche of proprietary computer programs on the

market. It is not difficult to imagine the day when all

software will be sold, with multiple suppliers of equiva-

lent programs and true competition.

Some Competitive Implications

With the advent of manufacturers' separate pricing of

software and of proprietary programs which are offered for

sale, the door is open for significant economic changes

within the realm of computer software.

Now, most programs offered for sale are applications

oriented. As such, they seldom compete directly with soft-

ware offered "free" by the manufacturer. But we can expect

that in the not too distant future enterprising programmers

will begin competing with manufacturers. The market could

see improved versions of manufacturer software, or software

which functionally replaces the "free" software, or programs

which supplement the standard software or make it easier

for users to approach.

Couple the above with an increased tendency for manu-

facturers to price hardware and software separately and you

have the makings of a highly competitive situation. The

manufacturers, of course, have the upper hand. They can

adjust the price of software as they desire, ranging from

"free" to profitable. But as high performance substitutes

appear on the open market, even at a price, the pressure

will fall on the manufacturers to either improve their

performance or adjust their price.

__ ____________________ __________________

-10-

When the user begins paying for a substitute product,

the cycle of pressure will continue. Now the user will

certainly want a separate hardware/software price schedule

because he will not want the manufacturer's software, and

will not want to pay for it, either directly or indirectly.

Further separate software pricing will invite further com-

petition; this cycle will continue until price stability

occurs.

An example of this competitive situation may already

exist -- or be close to existence -- in the realm of man-

agement information systems. These are programs which

currently are being offered "free" by manufacturers and

for a price by entrepreneurs. It will be interesting to

follow this competition closely, using it as a data point

to test the above speculation.

Don't Steal My Program

The automobile is a very mobile (if you will excuse

the play on words) device. It is also expensive, in an

absolute sense. These two factors make it a prime target

for thieves. So government, in the form of laws, registra-

tion procedures, and policemen in patrol cars, takes costly,

but valuable, steps to protect the automobile owner from the

dishonest.

Most computer programs being offered for sale these

days are priced higher than the cost of an automobile,

and are significantly easier to steal.

Some programs have been copyrighted. But it is not

clear that this offers effective protection to the author.

Recently, the first computer program patent was issued; the

validity of this action remains to be tested in the courts.

Even if the program patentability is upheld, the effective-

ness of this protection is also suspect.

A positive means of protection will be required. As

more and more computer programs are sold (or leased), more

and more opportunity occurs for the dishonest to perpetrate

his foul deeds. The nascent sinful nature of man predicts

that he will.

If copyrights and patents are not sufficient, is some

new form of protection indicated? Will there be special

legislation designed to provide protection for computer

programs? Because of the complexity and novelty of the

computer milieu, it appears that protection will come only

after substantial foul play puts pressure on government to

"do something."

What About Hardware?

The hardware revolution will be affected by the software

evolution in two important areas: reliability and machine

organization.

By almost any measure, today's computers are extremely

reliable. Compared to models produced five or ten years

ago, they are superb. However, in timesharing use a high

level of reliability is not enough. Consider a timesharing

computer which operates perfectly for, say, fifty hours,

then malfunctions for two seconds. Suppose that, during the

two seconds, all communication between the online users

(there may be several dozen) and the computer are lost;

program pointers to data are confused; dictionaries of files

are destroyed; and key portions of the operating software

-12-

have been disabled. Each user is going to be very, very

unhappy.

If the computer were being used in a batch operation

rather than in timesharing, only one or a few programmers

would be affected. The operator would restart their pro-

grams from their beginnings and little notice would be

taken of the failure.

In a timesharing situation, however, each of the

several dozen users will be extremely unhappy. Each has

lost the latest version of his file. Each has lost the

work which his current session at the console represents.

He will have to backtrack and reconstruct everything he

has done in this session (perhaps some previous sessions

as well).

So extreme reliability becomes very important. In

the second generation, batch mode of operation, a slight

stutter by the computer has little effect; in the third

generation, timesharing mode users consider such a stutter

to be a major catastrophe. In this new generation, hard-

ware and software together and cooperatively must be able

to "fail soft" to minimize user frustration caused by even

minor hardware failures.

In the field of machine organization, much work remains

to be done. Hardware designers and software designers have

long said that the two groups must design computers together.

And they have, to a certain extent. But the computer world

has still not come full cycle on the hardware/software

design process. It is probably safe to say that there

exists today no combined pair of packages, software and

hardware, designed truly, intimately, and completely for

each other. There have been a number of interesting changes

-13-

in machine organization which are the results of feedback

from programmers. But we cannot honestly say that this

design loop has been solidly closed.

The recently announced IBM 360/85 is an interesting

milestone in this process. Characteristics of the Model 85
evolved by "running" present 360 programs (with present 360

software) on "paper" versions of the aborning Model 85. The

final hardware organization, according to IBM, represents an

economic tradeoff between the cost of indicated hardware

features and how those features affect the operation of

today's 360 applications programs running under today's 360

operating software.

Missing is the next step, or better, the next few

iterative design cycles. What would happen if special

compilers could be constructed to make efficient use of

the new machine organization? How about determining which

portions of the operating system dictate the most extensive

hardware organizational changes. Can the operating system

then be modified to eliminate the need for those hardware

changes? Most applications programs these days are written

in higher level languages and require a compilation step.

Could we make substantial changes to machine organization

which would make the compiler's job easier and faster?

To make the compiled program smaller and faster?

Yes, some work has been done in this area, but much

work remains.

4.

i

-14-

So the software evolution continues, hidden beneath

the more spectacular hardware revolution. The collection

of many small, evolutionary changes in the software realm

is certain to cause important changes in the entire computer

field.

