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SUMMARY

This study considers the problem of determining step function
maximum likelihood estimates for N stochastically ordered distributions,
subject to the constraint that the estimates themselves must also be
stochastically ordered. This problem arises, for example, in the
context of reliability growth. Brunk, et al., [2] has achieved a
closed form solution for the case N = 2, but was unable to extend the
results to the case N > 2, We shall present a new analytical method
based on the Kuhn-Tucker optimality conditions for the equivalent
concave program. For N = 2, the method yields the closed form solution
of Brunk, and for N 2 3, the method yields--when used in conjunction
vith a reduction strategy developed in [4])--an efficient éomputational
algorithm. The algorithm involves solving a short sequence of

essentially unconstrained sub-problems with many fewer variables, and has

been implemented and tested extensively on the IBM-7044. Computational
experience is presented showing that large problems can be solved in
reasonable time with good accuracy, especially when compared with the
performance of a general nonlinear programming algorithm applied directly
to the equivalent concave program. These results should also interest
those concerned with solving large structured nonlinear programs

(the largest we have solved involves 381 variables and 123 linear
constraints), since the reduction strategy used here is of quite

general applicability.
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I. _INTRODUCTION

Let the random variable Xj have a (right-continuous) cumulative
distribution function Fj, j=1,...,N, independent and stochastically
ordered* according to Fl 2 F2 2 ... 2 FN. Maximum likelihood esti-
mates %j of the distributions are desired, based on the independent
observations Xi (3 =1,...,N; 1 = 1,...,nj) subject to the constraint
%1 2 ... 02 %N.

When N = 2, explicit formulae for §1 and %2 were derived by
Brunk, et al. [2]. They were unable to extend their results to the
case N 2 3. This study makes use of the Kuhn-Tucker Theorem of concave
programming (3] to furnish an alternate derivation of the results in
(2], and to derive a partial characterization of the solution for
the case N 2 3, We then show how the author's reduction strategy
[4,5] can be used to take advantage of the analysis to achieve an
effective computational solution for N 2 3 and large aumbers of
observations. The computational procedure reduces the constrained
problem to a short sequence of essentially unconstrained sub-problems
with many fewer variables.

We begin by reformulating the given problem as one of concave
programming with a finite number of variables and constraints. The
analysis of the resulting concave program, with the help of the Kuhn-

Tucker Theorem, is carried out in Sec. III. In Sec. IV we describe

*
We write "F 2 G" for two distributions 1f F(x) 2 G(x) for all x.
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a computational method based on the reduction procedure. The method
has been implemented and tested, and in Sec. V we give computational
evidence that it is very effective in terms of computing time,
storage requirements, and numerical accuracy. Details regarding

the program, ESOD-3, are available in [1].
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II, TRANSFORMATION OF THE PROBLEM INTO A CONCAVE PROGRAM

The constrained maximum likelihood estimate ?j must be sought
from the class of discrete distributions, or the likelihood
product has no upper bound. Let f(x) be the probability assigned to
the value x by a discrete distribution F(x). Then we must maximize

the likelihood product

]

N n
n nead
j=1 i=1

over all discrete distribution functions with the desired stochastic
ordering. The task of this section is to reduce this problem to one

with a finite number of variables and constraints.

For j = 1,...,N, define the following: xj < xg S e € xi to be the

1
3
distinct values taken on by the xi; xg to be the smallest of the Xi for

1 to be the largest of the xi

J such that 1 £ J £ j, We assert that it suffices to seek the maximum

any J such that j < J < N; and xi for any

j+
of the likelihood product over all dizcrete distributions having the

desired stochastic ordering and also having the additional property r.

Progertxﬂaz For § =1,...,N, fj(x) = 0 unless x € fxi. x{.---.xij+1}-
This assertion follows from lemma 1.
Lemma 1: If Fi,...,Fﬁ are any discrete distributions stochasti-

cally ordered as Fi 2 0. 2 Fg, then there exist discrete distri-
1 N

butions Fi,...,Fg stochastically ordered as F_ > ... 2 F, with

property # and at least as large a value of the above likelihood

product.

Proof: We shall generalize an argument used in [2]. Dpefine




0 , 1f x < xj
o

R0 = {mua {Eled, ), B} e ] s x el 1m0 0
1 o i % B xij+1

for y = 2,...,N, where it is understood that any vacuous intervals in
the definition of the Fi are to be ignored (e.g., if x§ = xf, then
rxj, xf) is empty). Clearly the Fi have property @ and the desired
stochastic ordering. To see that the Fi are true (increasing)

distribution functions and that they have at least as large a likeli-

hood product as the Fg, it suffices to show fi(xi) 2 fg(xi) for

’ i=1,...,n, and j = 1,...,N. This is clearly true for j = 1.

b

Consider now 2 € j < N. Note that Fl 2 Fi by construction, which

implies Fz 2 Fg, which implies Fi 2 Fi, «++., Wwhich implies FE 2 F

N
o

Thus for 1 = 0, 1,...,n , we have
J4

Hed, ) s mia {Fed o) B e ) 2 Bled,

since

j-1 -1

Fi (xi) b Fg (xi) > Fg(x{) and Fg(xg+1-) > Fg(xi).
It follows that for i = 1,...,nj.
fi(xi) - Fi(xi) - Fi(xi-) > By - Flexd-) = fg(xi).

Thds completes the proof.

§
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N
Thus we have reduced the problem to one with less than I (n-1
: j=1
variables: fj(xg), fj(xi),..., fj(xg1 +1)(j =1,...,N), We say less

]

(o}

+2)

than because some of the x° colncide with xi, or xj with xi

n,+l

] ]
. 1 _ .1 N_ N
(e.g., it is obvious that X 4 =X and X xl). For notational

n
1 1
convenience we shall adopt the convention that the redundant end

3 ] ] ] b

numbers among X_ < X) <X < ... <«<x’ <x have been eliminated

nj nj+1

and that nj has been redefined where necessary so that the remaining
xi can be relabeled x{ < ... < xg . The corresponding fj(xi) are

denoted by y{,...,yg (g =1,...,N).
3

The constraints are of two varieties. The first requires

i 3

the y; to correspond to discrete probability distributions; all vy
i i

must be nonnegative, and

"3
i o_
(1.3) Zyi =]
=1

must hold for j = 1,...,N. The second variety assures stochastic

ordering:*

k
J J+l o 3+l ) - .
2.3) t21)'12 lgyi P X] <xk+1] , k 1,...,nj 1,

for j =1,...,N-1. (For the sake of a linear notation, complicated
restrictions of the domain of summation follow a colon immediately

following the summand.)

j+l

*
(2.j) can be interpreted as enforcing Fj > F by requiring

that

Fj(xj =) 2 Fj+1(x' =

J = i
k+1 i+l Y,k =1,...,n,-1.

]

A similar interpretation can be offered for (3.1).




T——

An alternative to (2.j) is
k
3.3 [Syi :xg <xl'1+l] > zyiﬂ, ko= L,y y-l.
1 i=1

For the sake of being specific we shall use (2.j) in the sequel.

Letting hj be the number of xj observations with value

i
xi (hi or hi may be 0) and using log likelihood, we have finally
3
reduced our original problem to the concave program:
N ;)

(P) Maximize o Lahi 1n yi subject to (L.j), j = 1,...,N

3 a1 i=

i =0 S 250 and (2.3), 3 = 1l,...,N-1.

A number of constraints among (2.j), j = 1,...,N-1, are likely
to be manifestly redundant, and can therefore be eliminated;* for
each j, denote the k-indices of the remaining nonredundant constraints
by'hj. Moreover, certain of these nonredundant constraints can
actually be written as equalities, as we now show.

Lemma 2: For j = 1,...,N,

A. h{ = 0 implies 1 € hj, and the corresponding constraint is

satisfied with equality in any optimal solution of (P).

B. hi = 0 implies that the right-hand side of the last con-

3 j-1

straint in ¥ is (y{ + ...+ yj ) and that this constraint

nj-l

is satisfied with equality in any optimal solution of (P).

Proof: By construction, h{ can vanish only for j € f1,...,N-1},

+
and when it does,xg > x{ : necessarily holds. This implies that the

first constraint of (2.j) is y{ 2 y{+1 + ..., where we have not

*
It is a trivial matter, due to the very special structure,
to identify the redundant constraints.
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specified the right-hand side fully. This constraint is clearly not

redundant, so 1 E'YP. Suppose now that this constraint is amply satis-

j
1

j '

tive amount and ¥) increased by the same amount without destroying feasi-

fied at an optimal solution of (P). Then y; can be decreased by a posi-

bility in (P), as one can easily verify. But this improves the value
of the loglikelihood function, which is impossible. This proves part A.

By construction, hg can vanish only for j € {2,...,N}, and when

- J |
i 1 < xi k necessarily holds. This implies that the last

: e IEUEE! j .1
nonredundant constraint of Z° " is yj = +... 2 y] +...t Yy op
j

where we have not specified the left-hand side fully. Suppose now

it does, x

that this constraint is amply satisfied at an optimal solution of (P). i
i .y can be increased by a positive amount and yi

J j
the same amount without destroying feasibility in (P), as one can

Then y decreased by
easily verify. But this improves the value of the loglikelihood
function, which is impossible. This proves part B.

For j =1,..., N-1, letZZé denote the constraints of 7 identified
in Lemma 2. The results of this section are summarized and extended in
Theorem 1.

Theorem 1: The original constrained maximum likelihood problem
I can be formulated as the concave program (P), which has a unique

optimal solution f;il. Each component of this solution is

positive, and it satisfies the constraints h12f (J=1,...,N-1)
with strict equality.
Proof: The only assertion unproved thus far is that (P) has a unique
optimal solution and that this solution has all positive components.

It is easy to construct a feasible solution of (P) with each

component positive. For example, it is readily verified that the
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following construction is possible: let yi = l/n1 Eil = 1,...,n1);
2
let Yq (1= 1,...,n2) have any positive values summing to 1 con-

sistent with the satisfaction of the constraints iJ171l considered as

equalities;...; let y? (i 1....,nN) have any positive values

summing to 1 consistent with satisfaction of the constraints i.n.;?N-1
considered as equalities. Let v be the value of the objective function

of (P) for some positive feasible solution. Clearly v » - ». Thus

we may impose the additional constraint g v hi Ln yi 2v(> - ®)
on (P). Since (1.j) places an upper bouidlo;—; on each yi and

f, this constraint requires that

> v(> - @) for all i and j. For hi > 0, this requirement

j
(V/hi)(> 0). From Lemma 2 and constraints

J

thereby an upper bound of O on ln y

i

j
hy ln Y

i

is equivalent to yi > e

(1.j) it follows that yi is bounded strictly away from 0 even when
hi = 0 (in this case the above requirement is vacuous, since v < 0).

]

All this is to say that the Vi

may be taken to be bounded strictly
away from 0 in (P). By the continuity of the maximand on the compact

thus-restricted feasible region, (P) is seen to have a positive

3
; we

is unique when hi > 0. This implies, with the help of

optimal solution f;i]. From the strict concavity of ln y

]
i

i such that hg = 0 is also unique., This concludes the

conclude that §

A
Lemma 2, that y
proof.

We remark that (P) is amenable to solution by various existing
concave programming algorithms. For example, the algorithms of Graves
(6] and Rosen [7] seem appropriate. So does a family of approximate
algorithms of the ''separable programming' variety, in view of the

linear separability of the objective function. (See, e.g., Miller (81




However,

these algorithms do not take full advantage of the important

special structure enjoyed by (P).
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III. APPLICATION OF THE KUHN-TUCKER THEOREM

In this section we apply the Kuhn-Tucker Theorem [3] to (P) to
recover the analytical solution of Brunk, et al. [2] for the case N = 2,
We shall see that the method becomes unwieidy for the case N 2 3, but
nevertheless does yield analytical results leading to an effective
computational procedure.

The Kuhn-Tucker Theorem can be applied to (P), in view of the
results of the last section, to yield the following characterization
of {yi}

Theorem 2: A trial solution [yg} is an optimal solution of (P)

] i
i

satisfying 2{'] c sJ _c_7IJ there exist generalized Lagrange multipliers

if and only if all y; > 0, and for some collection $°(j = 1,...,N-1)

xi(k £ Sj; j=1,...,N-1) and uj(j =1,...,N) such that

(SJ; yg; Xi, uj) satisfies the corresponding Kuhn-Tucker con-

ditions:

n.
(KT-1) Z Yhi ny] + Yu (Z vl 1)
-1

ayi \j =1 i=1 i

e d

i Xe+1l] = 0 for all i and j,

ZZ[-

y=1 kes? i=1

r-:<|....
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(0 j
‘\ = = o o0
. Y1 1, j 1, ,N
i=1
(xr-z)ﬁ
k
+1 4+l 3 3 .
\Eyi‘}jyi :xi cx, k€S, §=1,.N81,
1=l {
k
(KT-3) ?y‘l 22}{”’: xjiﬂ < xiﬂ, kenmd-sd, 3 =1, 801,
i=1 i

(KT-4) x,lj( 20, kesd-f¥, j=1,...,n1.

Our general strategy will be to determine from (KT-1) and (KT-2),
for Sj satisfying le (ot Sj g_:”j, what [yf} and [)\i} must be. For
(KT-3) and (KT-4) to be satisfied, it will follow that the Sj must
satisfy certain necessary and sufficient conditions. With the Sj S0
determined, it remains only to compute [§vf} from (KT-1) and (KT-2).

This strategy will be completely successful only for the case

N = 2. We assume henceforth that ZJ € Sj g7(j (j = 1,...,N-1).

3.1 THE CASE N = 2

We shall simplify the notation somewhat in this subsection by

writing S for Sl, A, for Xll", and /] for 77 1.

k
When the differentiation is performed, (KT-1) becomes

Y_ : s
y )\k:k21=0, i= 1,...,n1,

(1('1:-1)i1 ‘-(hil/y:) TR
k€S
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2 ,.2,2 . 2 . .2_.1 i
(K.T-l)i (hi/yi) + 4y - zakk'xi < Xl 0, i 1,...,n2.
k€eS
Let S be expressed as fkl,...,ks}, where k; < ... < k_, when S
is not empty. We see from (KT-1) that when S is empty, the ratios
(hi/yi) are constant for { = 1,...,n.1 and j = 1 and 2. When S is
not empty, (h;/y}) remains constant over the integer intervals
202
I k1] (kl’ k2],...,(ks, nl], while (hj/yj) remaing constant over
2 1 1 2 1
the integer intervals [j.x.1 < xkl+1], {j.xk1+1 < xj < xk2+1},...,

1 2 1 1 2
fj.xk 4 S X< xks+11, fj.xks+1 < xj}. Thus S induces a partition

. b

P of ?1t...,n17 and a partition Q of [1,...,n2]. We denote a generic
cell of P by p, and the ith cell by Pi(i =1,...,8+l); similarly, we
use the notations q and 9y for Q. Since there is a natural 1l:l corre-
spondence between the cells of P and Q, we sometimes denote the cell
of Q corresponding to cell p of P by q(p).

Thus to determine fyi} satisfying (KT-1), it suffices to determine
the 2(s+l) ratios (hi/yi) corresponding to the cells of P and Q.

Using an obvious notation, we denote these ratios by (h/y); and (h/y):.

Lemma 3: If (KT-1) has a solution (yi],then for each p € P,
(hi/yi) = (h/y); for all i € p, and for each q F Q, (hi/yi) =

(h/y): for all L € q.
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Let us turn now to (KT-2). With our new notation, we may rewrite

(KT-2) as (KT-2A) and (KT-ZB)p for each p € P:

1
Co1
(KT-24) } v =1,
i=1
. )
KT -2B Z = z
( )p ¥y y{ -

1€p 1€q(p)

By Lemma 3, (KT-ZB)p can be written

) IR 2 1 2
(KT-2B) /h ht = Z
p /Mg 2By = /g )
i€p i€q(p)
where it is understood that if hi = 0, then
1 V.1
h
1€p1

which is undefined, is defined as simply yi; and, similarly, that {f

h2 = 0, then

ny

v 2
LM

P
1-q

2
(y/h)q
s+l

s+l

is defined as simply y2 g
2
Thus far we have reduced (KT-1) and (KT-2) to [2(a+1) + (s+l) + 1]
1
independent equations (namely, (KT-I)k and (KT-I)i for k € S, (KT-l)i :
1
(KT-I)ﬁ , (KT-ZBh’for p € P and (KT-2A)) in [3(s+l) + s + 2] unknowns
2 by
(namely, yi (respectively yi) for one 1 in each cell of P (respectively

Q, Xk for k € S, and ul, uz). We shall see that we can obtain a

complete solution.




Consider the case S = ¢. We may assume, because of Lemma 25

that all hi > 0. The equations (KT-1) and (KT-2) reduce to:

(hi /yrll ) +ul =0,
I 1
A2 2
(h /y" )y +u =0
Ry Mg '
n n,
1 1 1 2 ,2 2
(ynl/hnl) Ehi (ynz/hnz) Lhi’
i=1 i=1
"1
(y1 /hl) Zh1=1.
nyong 1
i=1
Their solution is obviously
")
(4-1) o=l 1)y, gy,
nj nJ L
i=1
n
3
uj"zhj’ y=1, 2.
i=1
From (K’I‘-l)l, we finally have
"1
1 1 1l - :
(4.2) y{ (hi/zhj)’ i-—l,...,nl,
i=l
2
and from (KT-1) ,
2
2 2 2 o
(4.3) ' (hi/zhj)' L-l,...,nz.

i=1
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It remains to consider the case S ¥ ¢. From (KI-I)i , we have

|
for j =1, 2,
(5)’ W -wd .
I 3 ‘
1 1 l
Upon subtracting (KT-1) from (KT-1), , one obtains
ki+1 k1
. 1 1 L 2 {
(6) )\k (hk_+1/yk.+1) = (hk /yk )’ i o 1,0--,50
i i 1 i i

1
From (KT-2B), (5), and (6) we see that we can easily express u , uz, |

A, (KES), (y/h)2 (i=1,...,s) and y2 in terms of y1 (k€S) and
k 9y n, k
yh . The problem of obtaining a complete analytic solution to (KT-1)
1

and (KT-2) thus reduces to solving for the last mentioned quantities.

For each p ¢ P, add (KT-l); and (KI-I)? for some i € p and

j € q(p). The result is

1 1 2 2
(7) (h/y)p +u + (h/)')q(p) * 0=, p FP.

Substituting (KT-2B) and (5) into (7), one obtains for each P FP

(1w ) o)
® (/) = =k s P
[(hn /yn LRk (hn /yn )]< > hi )
1 1 2 2 igb

where it is understood that if hi = 0, then (8)p is replaced by
. 1

1 N\ L2 1 1 2 20087
B *© Z,hi/[(hn /yn )+ (hn /yn )J ‘
1 1 2 2
1€q1

s
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Equation (KT-2B) can be used to eliminate yﬁ from (8). The
s+1 2
resulting expressions for yi (k € S), in terms of yi , can be used with
1
(KT-2A) to solve for y; . The result is
1
1 1 2 1 1 2 1
(9) yn1 = [(TE+1 = 'TL-O-I)/-%-#-I(.n + M hnl’
where
1 1
m = z hy (3= L,...,840),
iEPj
s+l
2 2 . .
- z by () =1,...,84), and T = z oG-,
1qu i=1

Finally, we have from (8) and (9) for i = 1,...,s+l

1 2
(M + 1)
R L

where it is understood that if hi = 0, then (10)1 is replaced by
yi s nf/(nl + nz). This is the desired analytic solution. For

completeness, we record (using (10) in (KT-2B)) that for i = 1,...,8+l

2 1 2 1 2,.2
(11), (/D = (g + T/ + O

. 2
where it is understood that if hn2 = 0, then (11)'+1 is replaced by

2 1 1 2
Vn, = Tgpy/ (T + 1.
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Let us summarize our results as

Lemma 4: Let S satisfy?] < S c?. Then (KI'-1) and (KT-2) have
a unique solution (yi; )‘k; u,j) given by (10) and (11), (6) and
(5). ((4) is subsumed by (10), (11) and (») in the event that

S = @¢.) Moreover, all y‘}_ > 0 in this solution.

Now that we have an analytical solution of (KT-1) and (KT-2) for
any S satisfying 7 c S C?, let us see what further conditions must
be imposed on S so that this solution also satisfies (KT-3)
and (KT-4).

Consider (KT-4), which can be written

(KT-4) A 20, i=1,...,s.
i

In view of (6) and (10), (KT-4) is equivalent to

A+, A+ o

ey @ ey BT b
or
(12) (e = M /M), = 1,s,
Consider now (KT-3), which can be written
k
(KT-3A) z yi ziyf:xf < xlld-l’ k ¢S.

i=} i
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For the sake of simplicity, we have not bothered to exclude the
redundant constraints among (2.1). In view of (KT-2), (KT-3A) amounts

to requiz:.g ‘or i = 1,...,s+]l and all k € S but k ¢ Py

k

|
}: y§=J<k 2 z R
jep, Jeqy

Using (10), (11) and Lemma 3, this becomes

:
1
M+ o (M + 1

ey h,:j < k| 2
1,1 2
R RETS

2
)

o 1 2 z ])2'X2 < Xl
2,1 2 it k+1
o+ ) 7

j€q;

for i = 1,...,s+t]l andk ¢ P For i = 1,...,s+l, a little

manipulation yields

2 .2 1 9

z hj'xj<xk+l

2,1, {3
(13)4 (M; /1,2 = 1 for all k € p_ but k € 5.
3 L

z h,:j <k
j

jep, -

We have proven, in view of Lemmas 3 and 4

Lemma 5: Let S satisfy cSc? .

A necessary and sufficient condition on S in order that the

unique solution of (KT-1) and (KT-2) also satisfy (KT-3) and

(KT-4) is given by (12) and (13).

Lemmas 3, 4, and 5 immediately yield, in view of Theorem 2, the
central result of this section.

Theorem 3: Let S satisfy? < S C and also (12) and (13).

Then the optimal solution {;i} of (P) is given by (10) and (11).
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Brunk, et al. [2] has given a simple geometrical method for con-
structing S so as to fulfill the conditions of Theorem 2. Conditions
(10) and (l1) have purposely been written in such a form as to make
this construction clear. It will not be rcpeated here, since it cannot

be generalized to the case of primary interest to us.

3.2 THE CASE N 2 3

When the partial differentiation in (KT-1) is carried out, the

result is
1 1,1 1 T .1 . - 1=
(KT—1>i (hL/yi) +p + Ll)\k.k =1 =0, 1 l,...,nl,
k€S
o1y] i, i ) % [ -1 ] -1 A -
(KT l)i (hi/yi) +u Z*-l Kk xy < xk+1J + / k > 1 0,
k€S kes?

AN i N N-l N _ N-17 _ o
(KT l)i (hi/yi) + oy S‘ rkk X, <X (I ) O T

Let Sj be expressed as {kj,...,kg.}, where k{ < nls (€ ki , when
Sj is not empty. We see from (KT-1) tdat the ratios (hg/yi) remain
constant over certain integer intervals. Toward identifying these
intervals, we make the following definitions. Let Pj be a partition

of (1,...,nj] induced by Sj for § = 1,...,N-1, as follows: [1, ki],
)

(kj, k;],...,(kg . nj]. Let Q° be a partition of {1,...,nj+1]

induced by s} for j=1,...,N-1, as follows (for better legibility,
complicated subscripts are placed in parentheses):

j+l

{i:xj+1 < xj(ki+1)},fi:xj(k{+1) < %]

Il
i <% (kp+)] e,

fi:xj(kij'1+1) < Xi+1 < Xj(kij+1)}'{i3xj(kgj+l) ) xi+1].
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For § =2,...,N-1, let HJEPJstl be the product partition of {1,...,nj]
determined by PJ and Qj-l. Let I'II'P1 and HN'QN-I. We denote a generic
cell of PJ, QJ, or HJ by a subscript, and define Tgs 1) jhi for each
p € 1 and J= 1,.9.,K. T
From (KT-1) we see that (hi/yi) remains constant within each cell
of Hj, j=1,...,N. Therefore, to determine {yi} satisfying (KT-1)
it suffices to determine the ratios of (hi/yi) within these cells.
We denote these ratios by (h/y)g. The symbol (y/h)g, used in the
sequel, denotes the reciprocal. We have
Lemma 3A: If (KT-1) has a solution {yi}, then (hi/yi) = (h/y)g
for each i in cell p of nj, et I5TE T o NS

We turn now to (KT-2). It can be written as (14) together with

(15)g for each p € Pj, j = 1l,...,N-L:

&)
(14) Y =1L,
i=1
J d = i+l
(1)} Z.yi z.yi .
iepg 1ng

By Lemma 3A, (14) may be rewritten as

(KT-2A) Z 71; (y/h); 0
]

2133
and (15)j as
p

1 1 1 2 2
(KT-28) Tomy = ) M

2 1
P,
e QP
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j J . j+1 j+1
(KT-ZB)g z Ta(y/h)g z 'Tln (y/m 3™,
nEPg.Qj'l n€PJ+1-Q;

for y =2,...,N-2 (for N > 4), and

N-1 N-1 N-1 N N
(kT-28) z T, o= Tomd.
ﬂEPI:-l-QN-Z

This assumes, of course, that all hg > 0, since (yg/hg) is undefined

ntherwise. When hi = 0 (this can happen only for i

L ori= nj)’ the

corresponding term in (14) or (15) should replace the offending term

) . * . .
in (KT-2A) or (KT-ZB);; that is, yg replaces the corresponding ﬂ#(y/h)l.
n

Let us see what can be done to solve (KT-1) and (KT-2) for the

“J, xi, and yg. From (KT-l)g we see that

i

(16) uJ = -(h/y)g , j=1,...,N.
j

1
Upon subtracting (KT-I)ll from (KT-1)",, one obtains for i = 1,...,s
k.+ k

i

1 1 1 1 1,1
ki k.+1 k.+1 k, k.,
i i i i
One similarly obtains for j = 2,...,N-1 and i = 1,...,sj,

~ . . .
It is helpful to recall that our assumption 71'] C sJ E?(J

(j =1,...,N-1) implies that when hi = 0, we have ﬂg = 0 for the cell
Hi containing 1.




-22-

) | 3 oo 3
an’ e (hkj+1/ykj+1) (hkj/ykj)
i i i i i
Jis Ly j-1 J
+ )\k .xkj < ka < xkj+1.
kesi-1 B i
b

Thus one can express the u~ and )‘l-]( in terms of the y1

By an appropriate linear transformation of the system (KT-1),
one can eliminate the u,j and le(- The resulting system, taken

with (KT-2A) and (KT-2B), is nonlinear and does not yield to analytical
solution techniques. This is in contrast to the case N = 2, and

destroys our hopes of obtaining generaliza*ions of Lemmas / and

5 for N2 3, Lemma 3A and (17) will be of considerable value in

what follows, however, as will the following weaker version of

Lemma 4.
Lemma 4A: Let Sj satisfyj‘ c SJ g?rl, j=1,...N-1. Then

(KT-1) and (KT-2) have a unique solution (yJi; Xi; uj). Moreover ,

3 ]

all i

> 0 in this solution, and the p

lJ< by relations (l6) and (17), respectively.

and )\i are given
in terms of the y
Proof: Consider the following subproblem derived from (P) according

to Sj(j=1,...,N-1), wher:e_’)l'1 c sJ g‘?tj:

SN ] - I
(Ps) Maximize ) Z hi ln i subject to (KI-2).

yji 20 j=1 i=1
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The proof of Theorem 1 is easily adapted to show that (Ps) has a
unique optimal solution, and that this solution has all positive
components. Applying the Kuhn-Tucker Theorem to (PS) as in Theorem 2,
we see that (KT-1) and (KT-2) are in fact the Kuhn-Tucker conditions
assoclated with (PS). Hence (KT-1) and (KT-2) must have a solution,

and (yi] 1s unique and positive in any such solution. The above

manipulations show that the uj and xi must also be unique, since
they can be expressed in terms of the yi according to (16) and (17).

This completes the proof.
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IV. A REDUCTION PROCEDURE

The basic strategy of the last section was to determine, with the
help of a general solution of (KT-1) and (KT-2), conditions that
the S3 must satisfy (in addition to'(_l_J c s c nj) so that (KT-3)
and (KT-4) will have a solution. With the Sj so determined, the
optimal solution of (P) is obtained from the corresponding solution
of (KT-1) and (KT-2). This strategy was completely successful only
in the case N = 2, the main obstacle for the case N > 3 being the
apparent impossibility of obtaining a general solution of (KT-1) and
(KT~2). In this section we essentially pursue the same strategy, but
in an iterative numerical manner. Lemmas 3A and 4A will be quite
valuable in this pursuit, and the result is an efficient computational
procedure.

The proof of Lemma 4A indicates that solving the concave program

e
(p Maximize ) Thi 1n y{ subject to (KT-2)

S) j . A
yi >0 j=l i=1

is equivalent to solving (KT-1,2). Our strategy then is to choose

an initial § and solve (PS), and determine whether the resulting

(yi; uj; xi) satisfies (KT-3) and (KT-4); if so, then the current
solution solves (P) and we may terminate, but if not, then S is modi-
fied according to the sign reversals found in (KT-3) and (KT-4), and
the new (Ps) is solved, and so on. After a usually finite number of

iterations, a subproblem yielding the optimal solution of (P) is




-25-

found. A generalization of this strategy has been presented by the
author elsewhere [4, 5]. When the results therein are specialized
in view of Lemma 4A to the present problem, the following reduction

procedure and theorem are obtained.

Reduction Procedure

Step 1: Choose an initial S to satisfy “gj c SJ EY(J.
j=1,...,N-1.

Step 2: Solve (PS) for its unique optimal solution {yi}-
Compute {xi} by (17). Check (KT-3) and (KI-4):
if both are satisfied, then terminate
([yi} solves (P)); otherwise, let Tj(j =1,...,N-1)
be the indices of the sign reversals found in
(KT-3,4), that is, let Tj be

ok
end.gd. ¢ I ks,
eenl-sd:zyl <z y)u

Mo Jukestmiad <o,
i=1 i =k

i k+l

and go to Step 3.
g * 3L
Step 3: Pick t at random from X T-. Replace S by S” +¢t ,
j=1
where j is the index satisfying t € Tj. Return to

Step 1.

Theorem 4: The reduction procedure is well defined, and ter-

minates in a finite number of steps with probability 1.

The computational efficiency of the procedure depends on (i) the
time required to solve a typical subproblem, and (ii) the number of
subproblems that must be solved before termination. We consider

each of these factors in turn.

*sJ +t means §9 - t 1f t €5, anda s Ut if ¢ ¢ 5.

<
. ¢ ‘—‘-L—ﬂ----H--__--J
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SOLVING A SUBPROBLEM

The subproblems have the same objective function as (P), but
fewer constraints, and these are equalities rather than inequalities.
Moreover, the result of Lemma 3A makes it a trivial matter to sub-
stantially reduce the number of variables (especially when S is sparse);
all that is needed is one variable for each cell of the partitions
nj(j-l,...,N) induced by S. When this is done, the constraints (KT-2)
can be rewritten as (KT-2A) and (KT-2B), and the objective function

(after a simple manipulation) as

(18)

=

5‘ ﬂg In (y/h)g + a constant,
3=1 pemd

where it is understood that if hi =0, then the term ﬂg In (y/h)g
is omitted for the cell ng containing i (cf. the next to last footnote).
Hence (PS), thus simplified, is considerably more convenient to solve
than (P) itself.

Even further simplifications are possible, in fact, by solving
the constraints (KT-2A) and (KT-2B) explicitly for (sj+1) of the
(y/h)g+1 (j=1,...,N-1) and one of the (y/h);. Because of the
convenient triangular structure of the constraints this can be done
easily without performing a matrix inversion. If the expressions
for the dependent variables are substituted into the objective
function, only the nonnegativity constraints are left in (Ps). And even

these can be ignored 1if (Ps) is to be solved by an optimal gradient-type




2T

procedure, for ln (y/h)g - - o as (y/h)i ~ 0 implies that boundary-
repulsion occurs automatically.*

All this is to say that (PS) can be rewritten as an essentially
unconstrained problem in many fewer variables than (P). Thus the
time required to solve a typical subproblem can be expected to be
very small compared with that necessary to solve (P) itself by a

comparable gradient method.

THE NUMBER OF SUBPROBLEMS

It seems difficult to derive theoretical results concerning the
number of subproblems that must be solved before termination. The
Markov chain analysis and computational results reported by this
writer in [5], however, suggest the following tentative hypothesis:
the number of required subproblems can be expected to be about twice
the number of mistakes made in identifying, through the choice of the
initial subproblem, the constraints of (P) that are actually binding
at the optimal solution. This hypothesis holds provided that the
sign reversals of (KT-3) and (KT-4) are a sufficiently reliable
guide regarding which constraints are actually binding at the optimum.
If the hypothesis is even approximately valid, then use of the
reduction procedure is greatly encouraged; for it has been our experience

with numerous test problems (cf. the next section) that usually only a

*
We assume that the gradient procedure is initiated at a positive

feasible solution of (P_.), which can always be easily done (cf. the
proof of Theorem 1). Sérictly speaking, boundary-repulsion only occurs
directly for the ratios actually in (18); it occurs indirectly for

3
i

] 5

the y; such that hi = 0, however, because M’ C S°.




comparatively small proportion of all constraints are actually binding
at the optimal solution, and hence by taking Zj as the initial SJ, one
would be assured that the number of subproblems to be solved is small.

We turn now to the computational studies of these matters.

—
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V. COMPUTATIONAL EXFERIENCE

IMPLEMENTATION

Preliminary tests designed to study the tentative hypothesis
mentioned in the previous section quickly confirmed that the sign
reversals found in (KT-3) and (KT-4) at Step 2 are indeed a
remarkably reliable guide in identifying the constraints actually
binding at the optimum. To take fuller advantage of this situation,
it was decided to implement a slight variant of the reduction procedure,
namely: at the first few (five) executions of Step 3 utilize all sign

] ]

reversals recorded in T” to modify each S, instead of using just one
at random. Theorem 4 obviously remains valid for this variant.

In considering how to solve the subproblems (PS), we decided to
take a major shortcut: the (triangular) constraints of (PS) were
not used to solve for and eliminate some of the variables. Undoubtedly,
the price of this expediency is significantly longer solution
times for the subproblems, but it was adopted for the sake of programming
simplicity since the primary object of the investigation was the number
of subproblems required by the reduction procedure.

We chose a general nonlinear programming routine due to Graves
(6] for use in the subroutine for solving (PS). This is a sophisticated
large-step gradient method that has proven quite effective in a variety
of applications. An important issue regarding its use concerns the
choice of an appropriate termination criterion. Fortunately, the
routine computes an upper bound v on the true optimal value of (Ps)

at each iteration, and so a bound on the maximum possible error is

always available: v mirus the value of the current feasible solution.
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We therefore provided a parameter TL ('"termination level') to cause
return from Graves' routine when the maximum possible relative error
for (PS) drops below TL X 100 percent., For large problems, of course,
it may not be possible to reach the desired value of TL in a reasonable
time. Thus a parameter ICYCLE is also used to cause a return from
Graves' routine after ICYCLE iterations.

S P. Azen carried out the implementation in Fortran IV for the
IBM 7044. Details of the test program, called ESOD-3, are available

in [1].

TEST PROBLEMS

ESOD-3 has been tested extensively on dozens of different problems.
All have been solved successfully. We present in Table 1 only our
experience with some of the larger problems, the largest of these
having 381 variables and 123 nonrcdundant constraints (not counting
sign restrictions on the variables).

Series A consists of three distributions (N = 3), all exponential,
with means 1, 2 and 3, respectively. Problem Al has 15, 12 and 9
observations, respectively, from each distribution. When the conversion
is made from the constrained maximum liklihood estimation problem to a
concave program of the form (P), Al has 37 variables and 13 non-
redundant constraints. The number of observations from the three
distributions increases in multiples of 5, 4, and 3, respectively,

in problems A2 through A6.



-31-

Series B consists of 4 Weibull distributions with scale parameter

)\ and shape parameter ¢ as follows:

Distribution A o Mean
1 5 1 0.2
2 1 2 0.88263
3 1 3 0.89338
4 0.1 1 10.0

Problems Bl through B4 each have 10, 20, 30, and 38 observations from
each distribution, respectively.

Series C consists of 10 normal distributions with unit variance
and means 0, 2, 4, 6, 7, 8, 9, 9%, 10, 10%, respectively. Problems Cl
through C4 also have 10, 20, 30, and 38 observations from each
distribution.

Table 1 summarizes our computational experience with these
problems. All were run with TL = 0.02, and with the initial
sd =7J. Sseries A was run with ICYCLE = 15, series B with ICYCLE = 25,
and series C with ICYCLE = 30. These values of ICYCLE are quite
small, and cause the subproblems to be considerably suboptimized;
this was done deliberately to take advantage of the empirical observa-
tion that the ultimate sign reversals in (KT-3) and (KT-4) manifest
themselves long before (PS) is solved optimally. The parameter ICYCLE
is automatically made inoperative in the final subproblem, so that TL
becomes effective as the termination criterion. In some of the
larger problems, it will be noted that the 2-percent level was
not achieved; in these cases the permissible step length SK in

Graves' routine became 0, so that no further improvement was numerically

possible.
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Table 1

SOME COMPUTATIONAL EXPERIENCE WITH THE ESOD-3 PROGRAM

No. of B
Variables Guaranteed
N Maximum
z;n. No. of No. of Solution | Possible
J Constcaints Subproblems Time Error
Problem j=1 (Nonredundant) Required (7044) (%)
Al 37 13 3 18" 1.85
A2 48 15 3 17" 1.33
A3 60 17 4 23" 1.30
A4 72 20 4 22" 1.93
A5 84 27 3 23" 1.33
Ab 96 30 5 39" 2,56
Bl 43 9 1 4" 1.73
B2 83 23 3 53¢ 1.89
B3 122 33 2 49" 6.85
B4 154 39 2 145" 6.90
Cl 103 26 2 220" 1.82
Cc2 203 71 3 425" 2,53
C3 302 96 4 5'06" 5.69
Cé4 381 123 3 427 6.85
CONCLUS I0NS

The central conclusion from this experience is that the number
of subproblems that must be solved remains extremely small, even when
the problem becomes quite large. This remarkable result is certainly
a stronger justification for using the present reduction strategy than
could reasonably have been hoped for in advance.

This experience also shows that, in spite of the efficiency-
reducing shortcut mentioned above under implementation, ESOD-3 can
solve large practical problems in a reasonable time. The guaranteed
maximum possible error levels attained for the optimal value of (P)

were generally sufficient to assure three- or four-place accuracy in

the estimated frequencies--probably more than sufficient for most uses.
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It is of interest to compare these computing times and

accuracies with results obtained by applying Graves' routine directly
to (P) itself (without using the reduction procedure). For problem
Al, in 8 minutes and over 300 {terations the guaranteed maximum possible
error (GMPE) was 30 percent; in 20 minutes and over 1000 {terations
the GMPE was 18 percent. For problem A2, the GMPE was 600 percent in
8 minutes and 34 percent in 30 minutes. The performance on problems
A3 through A6 was even poorer when compared with the results shown in
Table 1. The story was similar for Series B and C.* This reflects
the usual tendency of first-order gradient methods to converge slowly
in the neighborhood of the optimum.** That the very same gradient
method should perform so much better in terms of time and accuracy,
when used in conjunction with the present reduction strategy, constitutes
a compelling example of the power of this strategy.

*Some of the larger problems could not even be attempted, as the

direct application of Graves' routine to (P) is less economical in
terms of primary computer storage than the present approach.

%ok
(P) and (PS) appear to be particularly difficult and ill-behaved
in this regard.
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