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SUMMARY 

This study considers the problem of determining step function 

maximum likelihood estimates for N stochastically ordered distributions, 

subject to the constraint that the estimates themselves oust also be 

stochastically ordered. This problem arises, for example, in the 

context of reliability growth.  Brunk, et al., [2] has achieved a 

closed form solution for the case N - 2, but was unable to extend the 

results to the case N > 2. We shall present a new analytical method 

based on the Kuhn-Tucker optlmallty conditions for the equivalent 

concave program. For N - 2, the method yields the closed form solution 

of Brunk, and for N * 3, the method yields—when used in conjunction 

with a reduction strategy developed in [4]—an efficient computational 

algorithm. The algorithm Involves solving a short sequence of 

essentially unconstrained sub-problems with many fewer variables, and has 

bean Implemented and tested extensively on the IBM-7044. Computational 

experience Is presented showing that large problems can be solved in 

reasonable time with good accuracy, especially when compared with the 

performance of a general nonlinear prograsning algorithm applied directly 

to the equivalent concave program. These results should also Interest 

those concerned with solving large structured nonlinear programs 

(the largest we have solved Involves 381 variables and 123 linear 

constraints), since the reduction strategy used here Is of quite 

general applicability. 
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I.    INTRODUCTION 

Let the random variable XJ have a  (right-continuous)  cumulative 

distribution function F  ,  j = 1 ,, .. ,N,  independent and stochastically 

* 1        2 N 
ordered    according to F    ^ F   i ... i F  .    Maximum likelihood esti- 

mates F    of the distributions are desired, based on the independent 

observations X,  (j  ■ 1,...,N; i = l,...,n ) subject to the constraint 

F    a ...  i F . 

"I    ^2 
When N = 2, explicit formulae for F and F were derived by 

Brunk, et al. [2]-  They were unable to extend their results to the 

case N 2 3. This study makes use of the Kuhn-Tucker Theorem of concave 

prograraning [3] to furnish an alternate derivation of the results in 

[2], and to derive a partial characterization of the solution for 

the case N 2 3. We then show how the author's reduction strategy 

[4,5] can be used to take advantage of the analysis to achieve an 

effective computational solution for N ^ 3 and large numbers of 

observations. The computational procedure reduces the constrained 

problem to a short sequence of essentially unconstrained sub-problems 

with many fewer variables. 

We begin by reformulating the given problem as one of concave 

prograraning with a finite number of variables and constraints. The 

analysis of the resulting concave program, with the help of the Kuhn- 

Tucker Theorem, is carried out in Sec. III. In Sec. IV we describe 

We write "F i G" for two distributions if F(x) ^ G(x) for all x. 
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a computational method based on the reduction procedure. The method 

has been implemented and tested, and in Sec. V we give computational 

evidence that it is very effective in terms of computing time, 

storage requirements, and numerical accuracy. Details regarding 

the program, ESOD-3, are available in [l]. 

*i 



II.  TRANSFORMATION OF THE PROBLEM INTO A CONCAVE PROGRAM 

The constrained maximum likelihood estimate F must be nought 

from the class of discrete distributions, or the likelihood 

product has no upper bound.  Let f(x) be the probability assigned to 

the value x by a discrete distribution F(x).  Then we must maximize 

the likelihood product 

N  n"5  .  . 

n   n f2ab 
j-i t-i 

over all discrete distribution functions with the desired stochastic 

ordering.  The task of this section is to reduce this problem to one 

with a finite number of variables and constraints. 

For j « 1 N, define the following: x^ < x, < ... < x^ to be 
i        A n i 

11 J 
distinct values taken on by the Xj/; xJ to be the smallest of the X^ for 

«ny J such that j ^ J i N; and x^ . to be the largest of the X"r for any 

J such that 1 ^ J ^ J. We assert that it suffices to seek the maximum 

of the likelihood product over all discrete distributions having the 

desired stochastic ordering and also having the additional property Z3. 

Property^; For J - 1.... ,N, fJ (x) - 0 unless x € fx^, xj,...,x^ +1} 

This assertion follows from lemma 1. 

Lemaa 1: If F F are any discrete distributions stochastl- 
i o o 

cally ordered as F    i  ...  2 F  ,  then there exist discrete distrl- 
' o o 

butions F#,...,FÄ stochastically ordered as F^ :► ... i F^ with 

property ^ and  at  least as large a value of the above  likelihood 

product. 

Proof;    We shall generalize an argument used In [2].    Define 

the 



0 ,   if x < x1 

' o 

Fi(x)  - Fo(xJ+1-).   if x[<x<x1
1+1,  1 = 0.  1 Vl 

1 
,   if x 2 x 

nl 

and 

0 , If x < xJ 
o 

?lix)  - JMln |F^(xJ
1+1-), ^(xj)} . If xJ « x < xj

1+1. 1 - 0, l,...,^ 

J 
V 

. if x^x^ ^ 

for j ■ 2,...^, where it is understood that any vacuous intervals in 

1 2   2 
the definition of the FT. are to be ignored (e.g. , if x ■ x. , then 

w O     1 

2  2 1 
Fx , x,) is empty). Clearly the FT have property ^ and the desired o  I       . - * 

stochastic ordering.  To see that the FT are true (increasing) 

distribution functions and that they have at least as large a likeli- 

hood product as the F, it suffices to show fi(x;) i  f (x,) for 

i * l,...,n and j • 1 N. This is clearly true for j - 1. 

Consider now 2 < j < N. Note that F. 2 F by construction, which 

2   2 3   3 N   N 
Implies F. 2 F , which implies F. 2 F , .... which implies F. ? F 

*    O "    O "    o 

Thu« for 1 ■ 0, 1 n^, we have 

FJ^.) > Min j FJ(x{+r) . FJ-^xj)) ^ FJ(XJ). 

since 

FJ-l(xJ) 5 FJ-
1
(X{) > FJ(X}) and F^x^-) . ^ 

It follows that for i - l,...,n , 

fi(xj) *  F^xj) - Fi(xj-) > F^xJ) - FJCXJ.) = fJ(x}) 

This completes the proof. 
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N 
Thus  we have reduced  the problem to one with  Less  than    E (n +2) 

variables,    fj(x^), fJ(x|),..., fj(x^ +1)(j  - 1,...,N).    We say less 

1 ^11 1 than because some of  the xJ coincide with x, , or xJ   .. with xJ 

o i n +1 n, 
1 1 N        N (e.g., it  is ob/ious  that x     .,  = x       ind x    = x.).    For notational N    0   ' n.+l n. o        1 

convenience we shall  adopt  the convention that  the  redundant end 

numbers among x    < x,  < x» < ...  < x      < x    .,   have  been eliminated o        1        2 n. n.+l 
j J 

and that n.  has been redefined where necessary so that the remaining 

x.  can be  relabeled x:* <r ... < xJ   .     The corresponding f^(x^) are 

1             1 denoted by y^,...,jr    (j = 1 N) . 
j 

The constraints are of two varieties.    The first  requires 

the y^  to correspond  to discrete probability distributions ; all y. 

must be nonnegative,   and 

"j 
J 

(l.J) ^i-1 

1»1 

must hold for j  » 1 N.    The second variety assures stochastic 

ordering: 

i=i       Li J 
k ' l,...,n   -1, 

for j » 1,.,.,N-1.    (For the sake of a linear notation, complicated 

restrictions  of the domain of summation follow a colon Immediately 

following the sunraand.) 

that 
(2.j)  can be Interpreted as  enforcing F    > F        by requiring 

FJ(xi+1-) ^ FJ+l(xi+i-)' k - 1..... nj-1. 

A similar Interpretation can be offered for (3.j). 
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An alternative to  (2.j) is 

(30)   [H-i^+i]^i y|+  , k = 1,...,nj+1-l, 

For the sake of being specific we shall use  (2.j)   in  the sequel. 

Letting h^  be  the number of X    observations with  value 

x^   (h,   or h     nay be 0)  and using log likelihood, we have finally 
1      1 nj 

reduced our original problem to  the concave programt 

N        J 
v    V  i        \ 

(P)      Maximize ,,  ^hJ   In y^ subject to (L.j), j = 1 ,. .. ,N 

yJ. * 0     j»l i=l J /o x • _ i Ji J and (2.j), J = 1 ,•• ,N-1. 

A number of constraints among (2.j), j  = 1,.-.,N-1,   are likely 

* 
to be manifestly redundant,  and  can therefore be eliminated;    for 

each j , denote  the k-indices of  the  remaining nonredundant constraints 

by Jf-1 .    Moreover, certain of  these nonredundant constraints can 

actually be written as equalities , as we now show, 

Lenana 2;    For j - 1,...,N, 

A. h^ = 0 implies 1 € 7f , and the corresponding constraint is 

satisfied with equality in any optimal solution of (P). 

B. h  =0 implies that the right-hand side of the last con- 

J       i -1     1        1 
straint in"^   is (y^ + ... +y _^)  and that this constraint 

is satisfied with equality in any optimal solution of (P)• 

Proof: By construction, h^ can vanish only for j € fl,..,,N-l}, 

and when it does, x^ > x^  necessarily holds.  This implies that the 

Lnt of  (2.j)   Is y| :> yj+l +  .... first constraint of  (2.1)   is yr  ^ y,      +   ..., where we have not 

* 
It  is  a trivial matter, due  to the very special  structure, 

to identify the redundant constraints. 

. 
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specifled the right-hand side fully.    This constraint is clearly not 

redundant,  so  1  €7\ .    Suppose now that  this constraint is  amply satis- 

fied at an optimal solution of  (P).    Then y^ can be decreased by a posi- 

tive amount  and  yi  increased by the same amount without destroying feasi- 

bility in  (P) , as  one can easily verify.     But this  improves  the value 

of the loglikelihood function, which is  impossible.    This proves part A. 

By construction, Ir    can vanish only for J € f2l...,ini  and when 

J J-l      ^ it does, x      .   < xJ        necessarily holds.    This implies that  the last 
V1        Vl -i.1 -11-1 i 1 nonredundant  constraint of /r      is y^      +. .. ^ y^ +...+ yJ 

n j ' 
where we have  not  specified  the  left-hand  side fully.     Suppose  now 

that   this  constraint  i.s amply satisfied  at  an optimal  solution of   (P). 

Then  y      ,   can be  increased  by a positive  amount and  y      decreased  by 
n.-l 'n. J 

J J 
the  same amount without destroying feasibility in (?) , as  one  can 

easily verify.     But   this  improves  the value  of  the  loglikelihood 

function, which  is   impossible.     This   proves  part  B- 

For j  = 1,...,  N-l , letTl    denote   the  constraints  of ^r   identified 

in Lemma  2.     The  results of  this  section are  summarized  and extended   in 

Theorem 1. 

Theorem  1;     The original  constrained maximum likelihood  problem 

can be  formulated as  the  concave  program (?), which has  a unique 

optimal  solution   fy;, T •     Each component  of  this  solution   is 

positive, and   it satisfies   the constraints  in Tr   (j  »  1,...,N-1) 

with strict equality. 

Proof;    The  only assertion unproved   thus   far   is  thai   (?)  has  a unique 

optimal  solution and   that  this solution has  all positive  components. 

It is easy to construct a feasible solution of  (?) with each 

component positive.     For example,  it   is   readily verified  that   the 



following construction Is  possible:    let  y    ■ l/n1   (i = lt,.,,n.); 

2 
let y.   (I ■ l,...,n2)  have any positive values summing to  1 con- 

sistent with  the satisfaction of the constraints   in 7|   considered as 

N equalities;...;   let y.   (I  = 1 rO have any positive values 

-i/iN-l 
summing to 1  consistent with satisfaction of  the  constraints  In 7 

considered as equalities.     Let v be  the value of   the objective function 

of   (P)  for some positive feasible solution.     Clearly v > - »,    Thus 
N     n4 

J        1 1 
we may Impose the additional constraint    V     V      h.   In y:  a v(> - ») 

J=l  1=1       1 

on   (P).    Since   (l.j)   places an upper bound of 1 on each y": and 

thereby an upper bound of 0 on In y^r,   this constraint requires  that 

hj   In y.  t v(> - <=)  for all   I and j.     For h.   > 0,  this requirement 

Is  equivalent   to y.   > e^       I  (> 0).     From Lemma 2  and  constraints 

(l.j)  it follows  that  y.   is  bounded  strictly away  from 0 even when 

hj   =• 0  (in this  case  the above requirement  Is  vacuous,  since v <• 0) . 

All   this  is  to say  that   the  y^ may be  taken  to  be  bounded strictly 

away from 0 In  (?)•    By the continuity of the maximand on the  compact 

thus-restricted  feasible region,  (?)  Is  seen  to have a positive 

optimal solution  fy.}«    From the strict concavity of In y: we 

conclude that y-1 Is unique when h"1 > 0.    This  Implies, with the help of 

Lemma 2,  that y:  such  that  li.   = 0  is also unique.     This  concludes  the 

proof. 

We remark that (P)  Is  amenable to solution by various existing 

concave programming algorithms.    For example,   the algorithms of Graves 

[6] and Rosen [7] seem appropriate.    So does a family of approximate 

algorithms of  the  "separable  programming"  variety,   In view of  the 

linear separability of   the objective  function.     (See, e.g.. Miller  [8].) 



However,   these algorithms do not  take full advantage of the important 

special structure enjoyed by  (P). 
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III.     APPLICATION OF THE KUHN-TUCKER THEOREM 

In this  section we apply the Kuhn-Tucker  Theorem [3]  to  (P)   to 

recover the analytical solution of Brunk, et al.  [2] for the case N ■ 2. 

We shall see   that  the method becomes unwieldy for the case N * 3,  but 

nevertheless does yield analytical results leading to an effective 

computational procedure. 

The Kuhn-Tucker Theorem can be applied  to   (P),  in view of  the 

results of  the   last  section,   to yield  the   following characterization 

of {yJ). 

Theorem 2;    A trial solution  {y.}   is an optimal solution of  (?) 

if and only if all y] > 0, and for some collection S   (j ■ 1,...,N-1) 

satisfying^ c S    c 7f    there exist  generalized Lagrange multipliers 

XjJ(k ^ S-5 ;  j  - 1 N-l)  and u
j(j   = 1 N) such that 

(S   ,  y^T;   \?,  H  )   satisfies  the  corresponding Kuhn-Tucker con- 

ditions; 

/N       "j N "j 

«-) -HI M-yM*j(I'ji-0 
^i Vj-i i-i j-i     1=1 

N-l k 

* 11.^[hi-hr-*?^^]-""""<'*'>■ 
j = l k€S:, i=l 

L 
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ly[a l*  J " I....,N 

i=l 

(KT-2) { 

Iyl 'Iyt+1: ^ <Xk+l'    kPsJ.     J"1 N-l, 
l-l 

(KT-3) YyJ^y^1: x^1 <xJ+1)    k € 7?j-Sj .    j-l N-l. 

1=1 

(KT-4)        ^ ^ 0,    k €  Sj-^j,    j - 1 N-l. 

Our general  strategy will be  to determine   from   (KT-1)  and   CKT-2) , 

for Sj  satisfying ^    9 ^ £* > what   [y^] and   [\jj} must be.    For 

(KT-3) and  (KT-4)   to be satisfied, it will  follow that the SJ must 

satisfy certain necessary and  sufficient  conditions.     With the  S    so 

determined,  it  remains only  to compute   {y^}   from  (KT-1)  and  (KT-2). 

This strategy will be  completely successful only  for the case 

N = 2.    We assume henceforth   that "5J c S-* c ^   (j  =   I,..,,N-l). 

3.1    THE CASE N = 2 

We  shall  simplify  the  notation  somewhat  in  this  subsection by 

writing S for S  ,   K   for K,  and/f for 7?   . 

When the differentiation  is performed,   (KT-l)  becomes 

(KT-1) I [<'yl ;> + / + Y Vk *i! = 

k€S 

i  = 0, i  =  1,... ,n., 



(KT-l)J    (h^/y^) +^2 

12- 

\ 2 1 
>A:xi <Xk+l 0, 

kes 

1>•••»n. 

Let  S be expressed as  fk, ,.. . ,k  ) , where k.   <  . ..  < k   , when S r 1' s 1 s 

is not empty.    We see from (KT-1)   that when S is empty,  the ratios 

(hj/y^)   are constant for i - 1 n    and j - 1 and 2.    When S  is 

not empty,   (h  /y.) remains constant over the Integer  Intervals 

2    2 
[I, k. ]    (k. , k2],...,(k   , n  ], while  (h /y ) remains constant  over 

2        1                     1              2         1 
the Integer  Intervals {j :x    < xk +1} ,   {J ^ +1 < x,  < xk +1^  

1 21 12 
f j :x. -   < x    < x,   +,T.  Tj :x. < x.l.    Thus  S induces  a partition 

8-1 -'s s J 

P of   fl ,... .n. 1 and a partition Q of   fl ,... ,n.} .    We denote  a generic 

cell of P by p , and the 1      cell by P^Ci = l-.--'iS+l); similarly, we 

use  the  notations q and  q.   for Q.     Since there  is  a natural   1:1  corre- 

spondence  between the cells of  P and  Q, we  sometimes denote   the  cell 

of Q corresponding to cell p of  P by q(p). 

Th J us   to determine   f y":} satisfying  (KT-I),  it  suffices   to determine 

the  2(s+l)   ratios   (hj/y|)  corresponding  to the cells of  P and  Q. 

1 2 
Using an obvious notation, we denote  these  ratios  by  (h/y)     and   (h/y)   . 

Lenaa 3; If (KT-1) has a solution fy^l, then for each p £ P, 

(h[/y[) - (h/y)1 for all I € p, and for each q ^ Q, (hj/y*) = 

(h/y)2  for all  1 f q. 
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Let us turn now to (KT-2) . With our new notation, we may rewrite 

(KT-2) as (KT-2A) and (KT-2B)  for each p € P: 

ni 

(KT-2A) ) yj = 1. 

i=l 

(KT-2B)p ^J.   1,1     . 
i€p    i€q(p) 

By Lemma 3,   (KT-2B)     can  be written 
P 

(KT-2B)p (y/h)J   ) hJ . (y/h)2(p)        I     h2  , 
i€p i^q(p) 

i 
where  it  is  understood   that  if h    = 0,   then 

which is undefined,   is  defined as simply y  ;  and,   similarly,   that if 

h  =0, then 
n2 

(y/h)q
2    I   *\ 
S + l .,, 

"qS + l 

2 
is defined as simply y 

n2 
Thus far we have reduced (KT-1) «nd (KT-2) to [2(8+1) + (s+l) + l] 

12 1 
independent equations (namely, (KT-1). and (KT-1). for k € S, (KT-1)  , 

(KT-1)2 , (KT-2B) for p € P and (KT-2A)) in [3(s+l) +8+2] unknowns 
O P 

1 2 
(namely, y (respectively y ) for one i in each cell of P (respectively 

k 12 
Q), X for k € S, and p, , y, ). We shall see that we can obtain a 

complete solution. 



•14- 

Consider the case 8 = 0.     We may assume, because of Lemma 2, 

that all hj > 0.    The equations   (KT-1) and  (KT-2)  reduce to: 

(hL   /y1  )   + H1 - 0, 
"I     nl 

n2    n2 
n 

1 

(y1   /h1 )    Y hj  - (y2  /h2 )       ,  h2 
w

n,     n,       L    I ti*    n '      L    1 1       1 
i=I 

n 

2       2 1=1 

1 

<<> I"}-1 
1       1 1=1 

Their solution is obviously 

(4.1) 
j 

<   =  <hn/H>'        J"1'2' 

t--lA' j = 1. 2, 

i-1 

1 
From (KT-1)   , we finally have 

(4.2) yli =  ^Z^' 
j-l 

i = !■»••• ,n   j 

and   from  (KT-I)   , 

(4.3) 2 m ,.2.X     2, 

j=l 

i = I.... , n. 
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It rematns to constder  the case  S ^ ^.    From (KT-l)^   , we have 

for j  = 1,  2. 

(5)" .j  = -(h^). 

Upon subtracting  (KT-l)k    ^ from (KT-1)     , one obtains 

(6) 
I   / 1 

iii i      i 
.s 

1       2 
From (KT-2B) ,   (5) , and   (6) we see  that we  can easily express  ti   ,  u   , 

2 2 1 
X^kfS),  (y/h)       (i = l,...,s) and y      in  terms of y    (k^S)  and 

K qi n2 K 

y The problem of obtaining a complete analytic solution  to  (KT-1) 
nl 

and   (KT-2)   thus  reduces  to solving for the  last mentioned  quantities. 

1 2 
For each  p ^ P, add  (KT-1).   and   (KT-1).   for some  i  ^ p and 

j  € q(p)'     The  result  is 

(7) (h/y)p
l +/ + (h/y)q(p)  + ^  =0,    p ,: p, 

Substituting   (KT-2B) and  (5)   into  (7) , one obtains  for each p   r p 

(8), (y/h), 

(l. »I *   L   t) 
Iii£ igq(p)      £ ^(P)      / , 

K/y1)   +(h2/y2)l/)   hM L    n1    n1 n2 
yn2 J(   Z.    ,) 

iep 

where it is understood that if h. « 0, then (8)  is replaced by 

yj -  ) hf/fch1 /y1 ) + (h2 /y2 )'   . Jl L, i L n. 'n '    n  n 'J 
iCq, 
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2 
Equation (KT-2B)    can be used to eliminate y  from (8). The 

Vl S 1 
resulting expressions for y. (k € S), in terns of y  , can be used with 

i 
(KT-2A)   to solve  for y    .    The result is 

nl 

<9> ^-^l^^l)^!^*^1^' 

where 

T\] -   ^     hj    (j -  1 s+1), 

s+1 

^j  "   I   hi     (j  " 1 8+1)'  and   ^   :=   I    ^i     (J =  i*2) 

Finally,  we have  from (8)  and  (9)  for  i -  l,...,s+l 

i   (i+ \2) 
(10), (y/h)1    - 

i       (Tl   + Tl )\ 

where  it  is understood  that  if li.  - 0,   then   (10).   is  replaced by 

12      12 y.   ■ Tlj/d]    +71).     This   is  the desired analytic  solution.     For 

completeness, we record   (using  (10)   in  (KT-2B))   that  for i - l,...,8-fl 

(n)i (y/h)*    - (Til + ^i^^1 + ^l  ' 

2 
where  it  is understood  that  if h      "0,   then  (II) is replaced by 
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Let us summarize our results as 

Lemna 4; Let S satisfy^ c S c77. Then (K'J'-l) and (KT-2) have 

a unique solution (y;j; X. ; ^)  given by (ID) and (11), (6) and 

(5).  ((4) is subsumed by (10), (ID and ()) in the event that 

S « ^.)  Moreover, all yj > 0 in this solution. 

Now that we have an analytical solution of (KT-1) and (KT-2) for 

any S satisfying^ c S C^T, let us see what further conditions must 

be imposed on S so that this solution also satisfies (KT-3) 

and (KT-4). 

Consider (KT-4), which can be written 

(KT-4) 
\.   * 0' 1, ,s. 

In view of  (6)   and  (10),   (KT-4)   is  equivalent  to 

(V + T\Wi+l       (Tl1 + Tl2)TlJ 

<in+ i+s (i+ in> 
^ 0,        i - 1,...,s, 

or 

(12) (\/\)  * C\+1/Tl}+1).       i  B 1 *• 

Consider now (KT-3), which can be written 

(KT-3A) I yi aZyi:xi<xi+i' k ^s 

i-l 
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For  the  sake of simplicity,  we have not bothered  to exclude the 

redundant  constraints among  (2.1).    In view of  (KT-2),   (KT-3A)  amounts 

to requii.-K  for i  * l,...,s+l  and all k ^ S  but   k  f p   , 

k 
1 T       2    2 ^ 

k+1 
r     22^1 

Using  (10),   (11)  and Lemma 3,   this becomes 

___    ^     h.::   Sk 
Tl^Tl1 + TC)  j€p 

(TlJ + Tl*) 

^(V + ^2)  - 
V       ^2      2 ^     l )       li.: x .  < x. ,. 
L        J     J k+1 

for  i  =  1,...,s+l   and k f p. .     For i = 1,...,s+l,   a little 

manipulation yields 

(13) (TlJ/Tl|i i 

I 
J€q, 

.22^1 
h . :x.   < x. ,. 

J     J k+1 

I 
L
J€P, 

h .: j   i k 
J 

for all k € P    but k ^ S 
L 

We  have proven,   in view of  Lemmas  3 and 4 

Lemma 5:    Let  S satisfy ^f    c S c?[ . 

A  necessary and  sufficient   condition on  S  in order   that  the 

unique  solution of  (KT-1)   and  (KT-2)  also satisfy  (KT-3)   and 

(KT-4)   is given by   (12)   and   (13). 

Lemmas  3,  4,   and  5   immediately yield,   in view of Theorem 2,   the 

central   result of  this  section. 

Theorem 3;    Let S satisfy??   9 s 9^   and also  (12)   and  (13). 

Then  the optimal  solution   {y. ] of  (P)   is  given  by   (10) and  (11). 
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Bruak, et al.  [2] has given a simple geometrical method for con- 

structing S  so as   to  fulfill   the  conditions of Theorem 2.     Conditions 

(10)  and   (11)  have purposely  been written  in such a  form as   to make 

this  construction clear.     It will  not  be  repeated here, since  it   cannot 

be generalized   to  the  case of  primary  interest  to us. 

3.2    THE CASE N ^ 3 

When the partial differentiation in (KT-1) is carried out, the 

result is 

(KT-DJ     (h[/y[) + U
L + ^ xj:k > i  =0,  1 = 1,....^, 

kfS1 

(KT-DJ  (hJ/yj) + .
j -  ^ hj;1 4  < *ll\]  + I    >l* > i  = 0, 

kfS*'1 kcs* 

i = 1 ,. . . ,n. ;  j = 2 ,. .. ,N-1, 

(o-uj   (h
J

t/y;) + .
N- y K'l:"i'vl1-"' t-1 v 

vs"-1 

Let  S-1   be  expressed as  fkv,...,kJ   l,   where  k^ <  , . .  < kJ   ,   when 
1   1' si ^ s * 

S    is  not  empty.     We  see  from  (KT-1)   that   the  ratios  (li./y.)   remain 

constant  over  certain  integer  intervals.     Toward  identifying  these 

intervals,  we make  the   following definitions.     Let  P    be a partition 

of  fl,...,n   }   induced  by SJ  for J  =  1 N-l,  as  follows:  [l,   k^, 

(kj,  k^]....,(k^   .  n  ].     Let Qj   be  a  partition of   fl n       } 

induced by S   for  j  =  1,...,N-1,  as   follows   (for better   legibility, 

complicated  subscripts  are placed  in  parentheses): 

{i:xJ+1 < x^kj+DJ.flix^kj+l) < x|+1 < x^k^+l)},..., 

fi:xj(^   ^+1)  ^ x^1  <x:i(kJ +l)}.fi:xj(k^ +1)  - xj+l] 
j j j 
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For j - 2,...,N-1, let TIJsP^QJ' be the product partition of (l,...,n } 

detemintd by P^ and QJ' - Let 11 ■? and 11 "Q  .We denote a generic 

cell of P , Q-', or nJ by a subscript, and define Tr= T  .h] for each 
lfTTp 

p € nJ and j - 1 N. 

From (KT-1)  we  see   that   (li./y.)   remains  constant within  each  cell 

of n  ,  j  "  1,...,N.     Tlierefore,   to determine   fy.}   satisfying   (KT-I) 

it suffices  to determine  the ratios of (li./y.)  within these cells. 

We denote  these  ratios  by   (li/y)   .    The  symbol   (y/h)   ,  used  in  the 

sequel,  denotes   the  reciprocal.     We  have 

Lemna 3A:     If   (KT-1)  has  a  solution  fy)},   then  (h^/y|)   =  (h/y)j 

for each   i   in  cell  p of n  ,  j  "  1,...,N. 

We  turn  now  to  (KT-2).     It  can be written as   (14)   together with 

(15)-^   for each  p  <= Pj ,  j   =1 N-l : 

(14) I 
i-l 

y^ = i. 

(15); I A-1 A+l 

i€PJ i€QJ 

By Lemma 3A,   (14)  may be  rewritten as 

(KT-2A) I i^'1- 
P€P 

and  (15)J as 
P 

(KT-2B) 
1 T^Cy/Mj-    I     <(y/H)^ 

*'W? 
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(KT-2B) J     I        i^rr' I ^(y^1. 
^.QJ"1 

T1€P
J+1

.Q
J 

P 

for j = 2,. , . ,N-2 (for N :> 4), and 

(KT-2B) 
N-l I \ (y/,i)n   STt(y/h)p' 

P 

This assumes, of course, that all hJ > 0, since (y^/h-?) is undefined 

otherwise.  When h^ = 0 (this can happen only for i = 1 or i = n )  the 

corresponding term in (14) or (15) should replace the offending term 

in (KT-2A) or (KT-2B)-J; that is, y^ replaces the corresponding TlJ(y/h)j. 

Let us see what can be done to solve (KT-I) and (KT-2) for the 

^J. Xk» and yJ,  From (KT-l)^ we see that 

(16) HJ - -(h/y)J ,   j = 1 N 

j 

Upon subtracting (KT-1) i  from (KT-1)  , one obtains for i =1 ... s 
k +1 v1 l' kT+l 

(17) li' (h\  ^i  > - (h\/y\y 
k!      k!+i  k'+i        k1  k1 

iii ii 

One similarly obtains  for j  = 2,...,N-l  and  i = 1,...,s., 

It  is helpful  to recall   that  our  assumption A    ^ S    C ^ 

(j  » 1,...,N-1)   implies that when h-|  = 0, we have T]^ = 0 for  the cell 

Tr containing 1. 
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(17)- ^ - (h^    /yj.    ) 
kj kj+l    kjn 
ill 

(hVyj.) 
k^    k^ 

kesJ-1 k^ k-^+l 
i 

Thus one  can express  the ^    and Xj!  in  terms  of  the  y.. 

By an appropriate   linear transformation of  the  system  (KT-1), 

one  can eliminate  the  ^    and \^.     The resulting  system,  taken 

with  (KT-2A)  and   (KT-2B),   is nonlinear and  does  not yield  to analytical 

solution  techniques.     This  is in contrast  to  the case N = 2,  and 

destroys  our hopes of obtaining generalizations of Lemmas A and 

5 for N 2 3.    Lemma 3A and   (17) will be of considerable value in 

what follows,  however,  as will the following weaker version of 

Lemna 4. 

Lemna 4A;   Let  S^   satisfy 2^EsJ^V.    J=l N-1 •    Then 

(KT-1) and   (KT-2)  have  a unique  solution   (yj;  X:*;  p,J) .    Moreover, 

all  y^   > 0 in  this solution,   and  the p.    and \^ are given 

in  terms of  the  yj-   by relations  (16)  and  (17),  respectively. 

Proof;    Consider  the  following subproblem derived  from (P)  according 

to S^j^l N-l), where ^ E Sj  cV : 

N       n 

(P ) Maximize     )       )    ht  ln y| subject  to (Kr-2). 

yj s 0      j-1  i=l 



^ 

23- 

The proof of Theorem I  is easll> adapted to show that  (P ) has a 

unique optimal  solution, and   that  this  solution has  all positive 

components.    Applying the Kuhn-Tucker Theorem to (Pc) as In Theorem 2, 

we  see that (KT-1) and   (KT-2)  are in fact the Kuhn-Tucker conditions 

associated with   (P ).    Hence   (KT-1) and  (KT-2) must have a solution, 

and   fy;r} is unique and positive in any such solution.    The above 

manipulations show that  the y,J  and u must also be unique, since 

they can be expressed in  terms of the yj according to  (16) and  (17). 

This  completes   the proof. 

. 
J 
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IV. A REDUCTION PROCEDURE 

The basic strategy of the last section was to determine, with the 

help of a general solution of (KT-1) and (KT-2), conditions that 

the S-^ must satisfy (in addition tott^ C s^ C 7^) so that (KT-3) 

and (KT-4) will have a solution.  With the SJ so determined, the 

optimal solution of (P) is obtained from the corresponding solution 

of (KT-1) and (KT-2). This strategy was completely successful only 

in the case N ■ 2 , the main obstacle for the case N 2 3 being the 

apparent impossibility of obtaining a general solution of (KT-1) and 

(KT-2).  In this section we essentially pursue the same strategy, but 

in an iterative numerical manner. Lemmas 3A and 4A will be quite 

valuable in this pursuit, and the result is an efficient computational 

procedure. 

The proof of Lemma 4A indicates that solving the concave program 

N   j 

(P_.       Maximize   >  ^ hj In yj      subject to (KT-2) 

y^ > 0  j=i i=i 

is equivalent to solving (KT-1,2).  Our strategy then is to choose 

an initial S and solve (Pc), and determine whether the resulting 

(yii U « K)  satisfies (KT-3) and (KT-4); if so, then the current 

solution solves (P) and we may terminate , but if not, then S is modi- 

fied according to the sign reversals found in (KT-3) and (KT-4), «nd 

the new (P ) is solved, and so on.  After a usually finite number of 

iterations, a subproblem yielding the optimal solution of (P) is 
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found. A generalization of this strategy has been presented by the 

author elsewhere [4, 5].  When the results therein are specialized 

In view of Lemma 4A to the present problem, the following reduction 

procedure and theorem are obtained. 

Reduction Procedure 

Step 1 : Choose an initial S to satisfy VJ^ cr s^ £>[  , 

j = l,...,N.l. 

Step 2 ; Solve (P„) for its unique optimal solution {y^}- 

Compute [Xjj] by (17). Check (KT-3) and (KT-4) : 

if both are satisfied , then terminate 

My?] solves (?)); otherwise, let TJ (j - 1,...,N-1) 

be the indices of the sign reversals found in 

(KT-3,4), that is, let TJ be 

k 
[k €V-Sj: E yJ  < E y|+l:xJ+1 < xJ+1 ] U  [k  6 Si ^ :\^ < 0], 

and go  to Step 3. 
N"1 j *    j j Step 3 ;    Pick  t  at random from    X TJ.    Replace    SJ  by SJ  ± t   , 
iml J where j   is  the  index satisfying  t  € T   .    Return  to 

Step  1. 

Theorem 4;    The reduction procedure is well defined, and  ter- 

minates  in a finite number of steps with probability 1. 

The computational  efficiency of  the procedure depends on  (i)  the 

time required  to solve a typical subproblem, and   (11)  the number of 

subproblems  that must be solved  before  termination.     Ue consider 

each of  these factors  in  turn. 

V  ± t means SJ  -  t  If  t € Sj,  and Sj U t If  t  (f SJ. 
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SOLVING A SUBPROBLEM 

The subproblems  have  the  same objective function as   (P) ,  but 

fewer constraints,  and these are equalities rather than inequalities. 

Moreover,  the  result of Lemma 3A makes  it a trivial matter to sub- 

stantially reduce  the number of variables  (especially when S  is  sparse); 

all  that  is needed   is one variable for each cell of  the partitions 

nJ(J-l N)  induced by S.    When  this  is done,  the constraints   (KT-2) 

can  be rewritten as   (KT-2A)  and   (KT-2B) , and  the objective  function 

(after a simple manipulation)  as 

N 

(18) V      )     Tlj  In   (y/h)j  + a constant, 

j=l  prrjl 

where   it   is understood  that  if h    = 0,   then  the  term Tr   In   (y/h) 

is  omitted  for  the  cell  nJ  containing  i  (cf.   the next   to   last  footnote). 
P 

Hence (P„) , thus simplified, is considerably more convenient to solve 

than (P) Itself. 

Even further simplifications are possible, in fact, by solving 

the constraints (KT-2A) and (KT-2B) explicitly for (s +1) of the 

(y/h)    (J"l N-l) and one of the (y/h) .  Because of the 

convenient triangular structure of the constraints this can be done 

easily without performing a matrix inversion. If the expressions 

for the dependent variables are substituted into the objective 

function, only the nonnegativity constraints are left in (P-).  And even 

these can be ignored if (P ) is to be solved by an optimal gradient-type 
9 
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procedure, for In (y/h)-1 - - » as (y/h) -« 0 implies that boundary- 
P P 

■k 
repulsion occurs automatically. 

All this is to say that (P ) can be rewritten as an essentially 

unconstrained problem in many fewer variables than (P).  Thus the 

time required to solve a typical subproblem can be expected to be 

very small compared with that necessary to solve (P) itself by a 

comparable gradient method. 

THE NUMBER OF SUBPROBLEMS 

It seems difficult to derive theoretical results concerning the 

number of subproblems that must be solved before termination.  The 

Markov chain analysis and computational results reported by this 

writer in [5], however, suggest the following tentative hypothesis: 

the number of required subproblems can be expected to be about twice 

the number of mistakes made in identifying, through the choice of the 

initial subproblem, the constraints of (P) that are actually binding 

at the optimal solution.  This hypothesis holds provided that the 

sign reversals of (KT-3) and (KT-4) are a sufficiently reliable 

guide regarding which constraints are actually binding at the optimum. 

If the hypothesis is even approximately valid, then use of the 

reduction procedure is greatly encouraged; for it has been our experience 

with numerous test problems (cf. the next section) that usually only a 

* 
We assume that the gradient procedure is initiated at a positive 

feasible solution of (Pq), which can always be easily done (cf. the 
proof of Theorem 1).  Strictly speaking, boundary-repulsion only occurs 
directly for the ratios actually in (18); it occurs indirectly for 

the y^ such that h^ ■ 0, however, because 7^ ^ S . 
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conpar«tlv«ly small proportion of all constraints are actually binding 

at the optimal solution, and hence by taking 7f as the Initial S , one 

would be assured that the number of subproblems to be solved Is small. 

We turn now to the computational studies of these matters. 



-29-

V. COMPUTATIONAL EXPERIENCE 

IMPLEMENTATION 

Preliminary tests designed to study the tentative hypothesis 

mentioned in the previous section quickly confirmed that the sign 

reveraale found in (KT- 3) and (KT-4) at Step 2 are indeed a 

remarkably reliable guide in identifying the constraints actually 

binding at the optimum. To take fuller advantage of this situation, 

it wa1 decided to implement a slight variant of the reduction procedure, 

namely: at the first few (five) executions of Step 3 utiiize !ll sign 

reversals r ecorJed in Tj to modify each Sj, instead of using just one 

at random. Theorem 4 obviously remains valid for this variant. 

In considering how to solve the subproblems (P
5
), we decided to 

take a major shortcut: the (triangular) constraints of (P
5

) were 

not used to solve for and eliminate some of the variables. Undoubtedly, 

the pri c e of this expediency is significantly longer solution 

times for the subproblems, but it was adopted for the sake of programming 

simplicity since the primary object of the investigation was the number 

of subproblems required by the reduction procedure. 

We chose a general nonlinear programming routine due to Graves 

[6] for use in the subroutine for solving (P
5
). This is a sophisticated 

large-step gradient method that has proven quite effective in a variety 

of applications. An important issue regarding its use concerns the 

choice of an appropriate termination criterion. Fortunately, the 

routine computes an upper bound v on the true optimal value of (P
5

) 

at each iteration, and so a bound on the maximum possible error is 

always available: v micus the value of the current feasible solution. 
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We therefore provided a parameter TL ("termination level") to cause 

return  from Graves'   routine when  the maximum possible relative error 

for   (P )  drops below TL X  100 percent.    For large  problems,  of course, 

It may not be possible  to reach  the desired value of TL In a reasonable 

time.     Thus a parameter ICYCLE Is  also used  to cause a return from 

Graves'   routine after ICYCLE Iterations. 

S P.  Azen carried out  the Implementation In Fortran IV for the 

IBM 7044.    Details of the test program, called ES0D-3,  are available 

In [1]. 

TEST PROBLEMS 

ESOD-3 has been tested extensively on dozens  of different problems. 

All have  been solved successfully.    We present  in Table  1  only our 

experience with some of  the   larger  problems,   the  largest  of  these 

having 381 variables and  123 nonr^dundant constraints   (not counting 

sign restrictions on the variables). 

Series A consists  of  three distributions   (N =  3),  all exponential, 

with means  1,  2 and 3,  respectively.    Problem Al has   15,   12 and 9 

observations,  respectively,   from each distribution.     When  the conversion 

is made  from the constrained maximum llklihood estimation  problem to a 

concave  program of  the  form   (P),   Al has  37 variables  and   13 non- 

redundant  constraints.     The number of observations  from the  three 

distributions increases  in multiples of 5,  4,  and  3,  respectively, 

in problems A2 through A6. 
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Serles B consists of 4 Weibull distributions with scale parameter 

X and shape parameter o as follows: 

Distribution X a Mean 

1 5 1 0.2 
2 1 2 0.88263 
T 1 3 0.89338 
4 0.1 I 10.0 

Problems Bl through B4 each have 10, 20, 30, and 38 observations from 

each distribution, respectively. 

Series C consists of 10 normal distributions with unit variance 

and means 0, 2, 4, 6, 7, 8, 9, 9^, 10, 10^, respectively.  Problems Cl 

through C4 also have 10, 20, 30, and 38 observations from each 

distribution. 

Table 1 summarizes our computational experience with these 

problems.  All were run with TL » 0.02, and with the initial 

Sj -ft."1.  Series A was run with ICYCLE - 15, series B with ICYCLE = 25, 

and series C with ICYCLE = 30.  These values of ICYCLE are quite 

small, and cause the subproblems to be considerably suboptlmlzed; 

this was done deliberately to take advantage of the empirical observa- 

tion that the ultimate sign reversals in (KT-3) and (KT-4) manifest 

themselves long before (P ) is solved optimally. The parameter ICYCLE 

Is automatically made Inoperative in the final subproblem, so that TL 

becomes effective as the termination criterion. In some of the 

larger problems, it will be noted that the 2-percent level was 

not achieved; in these cases the permissible step length SK in 

Graves' routine became 0, so that no farther improvement was numerically 

possible. 
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Table   1 

SOME COMPUTATIONAL EXPERIENCE WITH THE  ESOD-3 PROGRAM 

1 No. of 
Variables Guaranteed 

N Maximum 

I- No. of No. of Solution Possible 
Constraints Subproblems Time Error 

Problem j-l (Nonredundant) Required (7044) (%) 

Al 37 13 3 18" 1.85 

A2 48 15 3 17" 1.33 

A3 60 17 4 23" 1.30 

A4 72 20 4 22" 1.93 

A5 84 27 3 23" 1.33 

A6 96 30 5 39" 2.56 

Bl j   43 9 1 4" 1.73 

B2 I   83 23 3 53" 1.89 

B3 122 33 2 49" 6.85 

B4 j  154 39 2 1-45" 6.90 

Cl !  103 26 2 2'20" 1.82 

C2 i  203 71 3 4I25" 2.53 

C3 302 96 4 5'06" 5.69 

C4  | 381 123 3 4,27" 6.85 

CONCLUSIONS 

The central conclusion  from this experience is   that the number 

of  subproblems that must be  solved remains  extremely small,  even when 

the  problem becomes quite  large.    This remarkable result is certainly 

a stronger justification for using the present  reduction strategy than 

could reasonably have  been hoped for in advance. 

This experience  also shows  that,   in spite  of the  efficiency- 

reducing shortcut mentioned  above under implementation, ES0D-3 can 

solve  large  practical  problems in a reasonable  time.     The guaranteed 

maximum possible error  levels attained for  the  optimal value of  (F) 

were  generally sufficient  to assure three-  or  four-place accuracy in 

the estimated  frequencies — probably more  than sufficient for most uses. 
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It  is  of Interest to compare  these computing times  and 

accuracies with results obtained by applying Graves'  routine directly 

to  (P)   itself   (without using the reduction procedure).     For problem 

Al,   in 8 minutes and over 300 iterations  the guaranteed maximum possible 

error  (GMFE)  was 30 percent;   in 20 minutes and over  1000 iterations 

the  GMPE was   18 percent.    For problem A2,  the GMPE was  600 percent in 

8 minutes  and  34 percent in 30 minutes.    The performance on problems 

A3  through A6 was even poorer when compared with the results  shown in 
it 

Table 1.  The story was similar for Series B and C.  This reflects 

the usual tendency of first-order gradient methods to converge slowly 

** 
in the neighborhood of the optimum.   That the very same gradient 

method should perform so much better in terms of time and accuracy, 

when used in conjunction with the present reduction strategy, constitutes 

a compelling example of the power of this strategy. 

* 
Some of the larger problems could not even be attempted, as the 

direct application of Graves' routine to (P) is less economical in 
terms of primary computer storage than the present approach. 

JLJL 

(F)   and   (P.)  appear  to be particularly difficult and  ill-behaved 
in this regard. 
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