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1. INTRODUCTION

A key concept, already familiar to readers acquainted with queue-
ing theory, is that of an imbedded Markov chain connecting regeneration
points of a stochastic process. Starting from a regeneration point,
the future is stochastically independent of the past. In the imbedded
Markov chain, the original time scale of the transitions between re-
generation points is replaced by a discrete time version where all
transitions take unit time. The corresponding imbedded semi-Markov
process looks only at the "states" corresponding to these regeneration
points, but it does so in continuous time.

The use of these distinguished states, generally referred to as
events by probabilists, is natural in a dynamic programming framework;
see, e.g., Denardo and Mitten [13]. In fact, it was programming over
semi-Markov processes that motivated our interest in these processes.
We shall have more to say about this in Sec. 10.

Part of the definition of a distinguished state is its association
with certain regeneration points. To fix this idea concretely, consider
the M/G/1 queue (Poisson arrivals, general service time distribution,
single channel). For many purposes, a convenient set of distinguished
states is {0, 1, 2, ...} where state i signifies i customers in the
system and a service has just been completed.

This procedure is definitely in conflict with the notion of a
state used in fully rigorous treatments of probability theory and semi-
Markov processes in particular. There, a sample path of a stochastic
process is defined as a function X(-, w): [0, @) ~ E and the members

of B are called states. This often necessitates speaking of a "holding
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time" in a state. If this "holding time" is not necessarily exponen-
tially distributed, as in semi-Markov processes, then we intuitively
feel that the process does not remain in the same state during the
holding period because the process has memory (is not Markovian). By
contrast, all our distinguished states are occupied only for an instant.
This procedure is unconventional and heuristic, but this is not sup-
posed to be a review paper for experts. Rather, it is directed toward
those readers with some prior exposure to Markov chains and renewal
theory who would like to get a feel for what semi-Markov processes are
all about and how they arise in applications. For many readers belong-
ing to this class, it is felt that this primer is a more accessible first
introduction than the original papers cited in the reference list.

Letting Nj(t) denote the number of times state j is entered in
the half-open interval (0, t], we obtain the Markov Renewal Process
(MRP) N(t) = (No(t), Nl(t), Nz(t), .«+). 1In the M/G/1 queue, for
example, No(t) is the number of busy periods completed in (0, t].

Let Z(t), the semi-Markov process, be the last distinguished state
entered in [0, t]. In general, such & last state is not vell defined,
but in the applications there is virtually never any difficulty. See
Sec. 3 for discussion of this point. In the M/G/1 queue, if at the
last service completion epoch in [0, t] there were i customers in the
system, then Z(t) = i; however, at time t there may be more than i cus-
tomers in the system due to arrivals since the last service completion.

I+ is defined to be the set of distinguished states, assumed
countable. The state transitions form a Markov chain with transition
probabilities (Plj)' where direct transitions from a state to itself 0

(e.g., P > 0) are allowed. Given that an i - j transition is about

$
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to occur, the duration of the transition has distribution rij In the

M/G/1 Qqueue, P,, =G 1f 1 > 0 and P . is the convolution of G with the

1} 3
exponential distribution whose mean is the reciprocal of the arrival
rate; the transition matrix is given in Sec. 7.

Semi-Markov processes (SMP's), first studied by P. Lévy and
W. L. Smith, generalize several familiar processes. Note that
(1) a one-state SMP is a renewal process;

(i1) an SMP with ri degenerate at one for all i, j is a Markov chain;

3

(i11) an SMP with all ri exponential and independent of j is a con-

3
tinuous time countable-state Markov process;

(iv) an alternating renewal process is a two-state SMP.

All SMP's have renewal processes imbedded within them corresponding to
looking only at successive returns to the same state. In the M/G/1
queue, if the state in question is 0, then we are looking at successive
returns to the beginning of an idle period.

Many problems in management science and operations research can be
wodeled as SMP's: for example, queueing, inventory, and maintenance
problems. Explicit recognition of the underlying SMP often streamlines
the analysis. For detsails, see, e.g., Pyke [44], Barlow and Proschan
(1], Fabens [15], Foley [18], ginlar [4-8], and Neuts [37-41]. These
areas by no means exhaust the possibilities; e.g., Perrin and Sheps [431
and Weiss and Zelen {527 apply SMP's to medical problems. John McCall
(unpublished work) has used SMP's to model movements among income classes
in a study of strategies for combatting poverty. For proofs, citations
of earlier papers, and additional topics in SMP's, the reader should

consult the reference list. Another expository paper is Janssen (26].




1~

Recently, Neuts [427] has published a bibliography on SMP's. I
thank Professor Neuts for bringing several relevant papers to my

attention.
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11. DIST.'IGUISHED STATES

In this section we examine precisely what is meant by a distinguished
state. Since discussing this topic in an offhand manner could result
in confusion, the subject is treated in some detail.

For each sample path of a stochastic process X, there is a
correspondence between {t: t 2 0] and a set of states S. If every
state (in our sense of the word) in S is required to have the Markov
property, then in general S will be uncountable since a history of the
process, or at least the relevant portion of it, must be part of the
state definition. However, all that we require of S is that it have an
appropriate countable subset I+ of (distinguished) states having the
Markov property. Thus, for a state to be a candidate for I+, it must
correspond to a regeneration point, but we do not require that all
states corresponding to regeneration points belong to I+. We assume
that the process starts in a distinguished state at time 0.

Note that the set of distinguished states used previously in
our discussion of the M/G/1 queue does not include all regeneration
points, since any time the system is idle (empty), it is at a regen-
eration point. Occasionally it is convenient to add to I+ the
state corresponding to arrival epochs to an empty system. Our choice
of distinguished states conforms to our requirements because the
time to the next arrival is stochastically independent of the time
elapsed since the last arrival. In general, arrival epochs, except
those corresponding to the start of a busy period, are not regenera-
tion points. Thus the state "i customers in the system and a cus-

tomer has just arrived" cannot be a distinguished state, unless

v s den e s - .- e — - - - —




i = 0 or the service times are exponential. Through the use of so-
called supplementary variables, we can define every state in the
original process so that it is Markovian. Each state is then a couple
of the form (i,u), which denotes i customers in the system and the
customer being proceséed has been in service for time u; for i = 0,

u is arbitrary, say 0. Sometimes supplementary variable techniques
are useful as an alternative or adjunct to SMP techniques; see, e.g.,
Cox and Miller [9]. A disadvantage of supplementary variable techniques
is that superfluous regularity conditions, e.g., absolutely continuous
transition time distributions, often must be imposed on the original
process to justify their use.

Returning to the general discussion, we require the distinguished
states to be defined such that non-zero holding times in a distinguished
state are forbidden1 but instantaneous transitions among the distinguished
states are allowed. This is a departure from the setup of Pyke [44],
although the two formulations are essentially equivalent. The notion
of an auxiliary path (see [47]), needed in the conventional setup to
handle such processes as the M/G/l queue, is not required by us. Our
definition of distinguished state permits a graphic representation
of SMP's in terms of networks with branch nodes (distinguished states)
and stochastic arc lengths; see [19]. For example, traversing an arc

could correspond to a customer completing service.

1By contrast, in the conventional setup non-zero holding times .
are essential, but this seems to be an artifice unless at every
instant the process 1s memoryless, i.e., Markovian.




To remove ambiguity in case of instantaneous transitions,z we
define x+(:) = X(t+); thus, x+ is right continuous and the last
distinguished state of x+ entered in [0, t], say, is well defined,
provided that the process does not explode; see the discussion of
regularity in Sec. 3. Since we have prohibited non-zero holding
times in distinguished states, we cannot allow a distinguished state
to correspond to a nondegenerate interval of regeneration points
(e.g., an idle period in an M/G/l queue). Thus, to exclude an
infinite sequence of instantaneous transitions from a state to
itself, we require that the distinguished states be defined such
that, for all nondegenerate intervals (a, b), 1 € I+ =
P{X(t) = i, ¥t € (a, b)} = 0. For example, in the M/G/1 queue it
does not suffice to define the distinguished state 0 as 0 customers
in the system. The condition that a service has just been completed
must be added.

In applications, the first step is to carefully specify the dis-

tinguished states, which throughout the sequel are simply called

"states," necessitating definitions slightly different from conven-

tional usage.

2Sometimes it is convenient to permit instantaneous transitions;
see, e.g., Denardo [11]. Yackel [55] makes a detailed study of limit
theorems for SMP's with instantaneous transitions allowed.




II1. REGULAR SMP'S

In the literature the Z process is called an SMP. However, the MRP
and the SMP are different aspects of the same underlying stochastic
process; therefore, by slight abuse of language, we shall refer to the
underlying process itself as an SMP or a MRP, using the terms inter-
changeably.

An MRP is regular if with probability one (w.p.l) each state is
entered only a finite number of times in any finite time span--i.e.,

if P[Ni(t) <w] =1, Vi € 1V and t 2 0. An MRP is strongly regular

if w.p.1l the total number of state transitions is finite in any finite

time span--i.e., if P(T Ni(t) <®] =1, Vt 2 0. Clearly strong

regularity implies regularity and, 1f n < «, it suffices that H = (Ho,...,Hn)
have at least one component nondegenerate at zero for every ergodic

subchain of the imbedded Markov chain, where Hi is the unconditional
distribution of time elapsed starting from state i until the next state

is entered (possibly 1 itself). In the denumerable state case (n = =),

see Pyke [44] and Pyke and Schaufele [46] for conditions that imply

strong regularity; see also Feller [17]. In the sequel, we assume that

strong regularity holds.

RSN f‘m
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) IV, FIRST PASSAGE AND COUNTING DISTRIBUTIONS

Let
Q (6 = P F ()
Hy(e) =) @, (e)
3

Pij(t) = Prz(t) = j|z(0) = i1

G, ;(£) = BTN (£) > 0]2(0) = 1]

(first passage time distribution)

Mij(t) - E[Nj(t)[Z(O) = 1i]

(mean entry counting function).

Defining the convolution

t
(A *B)(t) = [A(t - x) dB(x)
5
and deleting the argument t below, we have by straightforward renewal-

theoretic arguments:

Py = (- H)ey, +zk:Qik ¥Ry T (- HDE P X G

Gy "y * 9 * Gy
k#j

Mg = Cyy 0y ¥ My = Q +§Q1k * M.

3Unless otherwise stated, all summations will be over I+ and all
functions vanish for negative arguments.
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In general, these relations cannot de solved analytically, although for
the moments complicated expressions have been obtained (Pyke and Schau-
fele 467). 1In the finite state case, numerical solutions can be ob-
tained by numerical inversion of the corresponding Laplace transforms
(see, e.g., 27, [247, [337, and [477). For each value of s, only one
matrix inversion in the transform domain is required--that of 1 - q(s),

where s > 0 and

a(s) = [e"“ 4Q, ,(£)

o]
In obvious notation, having found [I - q(s)]-l, either analytically as

a function of s or, for suitably spaced values of s, numerically, one

successively computes
-1 \ -1
m(s) = [I - q(s)] "q(s) =TI -4q(s)] " - I
gij(s) = mij(s>/[1 + mjj(s)1

1 - hj;(s)
ij(’) = ]—_—-j—(T) ,
€53

and then inverts the transforms. Although this procedure is not trivial,

it often compares favorably with the alternative simulation approach for
getting the transient behavior in the time domain. By usual limit theo-
rems for Laplace transforms (Widder [537, Feller [167, see also Jewell
[27]), the behavior in the time domain for large (small) t corresponds
to behavior in the transform domain for small (large) s. Renewal theory

provides an important tool in studying asymptotic behavior; see Sec. 8.

For the stationary probabilities, see Sec. 6.

L a een em e e e L A ————
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Conditioning on the event that no state in a subset B of I is

entered in (0, t] may be of interest. For example,

p-Pyy(e) = P(2(t) = 3]20) = 1, N (t) =0, Vk € B]
B Gij(t) = P[Nj(t) > 0|z(0) =1, Nk(t) = 0, Vk € B]

p Myy(8) = E[Nj(t)|Z(0) =i, N (t) =0, Vk € B]

can be calculated from the formulas already given by (temporarily) making
the states in B absorbing.
Barlow and Proschan [1, pp. 132-134), using ‘'renewal" arguments,

show that the first and second moments of G1 denoted respectively by

(2)
i3’

jl

and are given by

u'ij

Wy T Ej Pty * vy

2y _ (2) (2
By g 2 pik["kj + 2"1k“k3] + vy >,

k$j
where v is the mean of F v(l) =y, and
ij 13) 9
vf‘) -f tz dHi(t).

(1]

We assume that vfz) <o Vi€ I+. If the imbedded Markov chain is
finite and ergodic, these equations have a unique finite solutiona

and, with n, the stationary probability that the last state entered

3

aSee appendices 1 and 2 of Fox [19] for an efficient way to solve
these equations. (An expression for the 'bias terms" in Markov renewal
programming involves the first passage time moments, which are of intrin-
sic interest, but recently Jewell [29] has derived a remnrta?ly simple
alternative expression, obviating the need to calculate {“ii } to evalu-
ate the bias terms.)
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(2)

is j if all Fi 13

j were degenerate at one,5 multiplying uij and p

by LA and summing yields

iy = (1/my) zk:"k"k

(2) (2)
cs = (1/ + )
wiyt = Y me 2 3 Zﬂipikvik“'kj]'
k#j i
For finite state SMP's, the probability that state j is ultimately

reached starting from i is

1, if i, j € Ek

Gij(°) = (0, ifi€E,J€E,Kk ¥

-1 .
[(x-4)78);, ifi€T, JE€ E

where A is the submatrix of P corresponding to the set T of tramsient

states, El’ ey Em are the recurrent subchains of P, and

91 = 2 pi" l GT'
LEE,

The mean time to leave T starting from i is

g, =[a-a"h),  ier,

where vt is the vector of vj's, j € T. Pyke [45] obtains a double

generating function for the distribution of N (t), viz.,

]

5In other words, nw is the stationary measure for the imbedded
chain, but not (in general) for the SMP itself.

6 The case {, § € T, of less interest, is not considered.

Dokl tade. &
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Y, =1- l-2z)mfzI+(Q - z)D]-l,

where 1 is a matrix of 1's,

.
- -1 (L

and

Y, = (8(z; o))

¢1j(z; s) -.}P e-st dtwij(Z; t)
5"

wij(z; t) -Z zkvij(k; t)
k=0

vij(k; t) = P[Nj(t) = k|z(0) = i7.

Thus, in principle, the probabilities and moments can be obtained in

(*))

the usual way. The Laplace transform m of the first moment (M1j
was already given. See Pyke and Schaufele [46] for further general
moment computations, weak and strong laws of large numbers, and
central limit theorems. A generating function that yields many
quantities of interest upon considering special cases has been ob-

tained by Neuts [36]. Stone [50] derives the distribution of the

maximum of an SMP.

e e v
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V. STATE CLASSIFICATION

In classifying the states of an SMP transient, null recurrent, or
positive recurrent, we must distinguish between a state's classifi-
cation in the imbedded Markov chain and in the SMP itself. For I+
finite and v; €@, Vi € I+, the distinction disappears and a state j
is either transient or positive recurrent (ij(c) = 1 and By < ®).

In large-scale applications, the ergodic subchain-transient set
breakdown may not be obvious and recourse may be necessary to an
algorithmic classification scheme such as that of Fox and Landi [237.

+ . . . .
For I infinite, a state j is transient (recurrent--i.e., G

jj<«o = 1)
in the SMP & j is transient (recurrent) in the imbedded Markov chain.
State g is positive recurrent in the imbedded Markov chain (contained
in ergodic subchain Ek) and, for some constant c, v;; Sc <o Vi,
j € Ek’ = f is positive recurrent in the SMP. An SMP is positive
recurrent if all the states in I+ are positive recurrent in the SMP.

We remark that, if Z(0) = i and i belongs to the same positive

recurrent ergodic subchain as j, t-le(t) - l/u,jj w.p.l, a strong law

that follows immediately from renewal theory. Under these conditions

and assuming u§§) < @, Nj(t) is asymptotically normally distributed
-3, (2) 2
with mean t/ and variance t - a consequence of a
bys byglegy” - wyy)s 1

renewal-theoretic result found, for example, in Feller [16, p. 359].
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VI, STATIONARY PROBABILITIES

It is important to distinguish between the stationary proba-
bilities {ni] with respect to the imbedded Markov chain and the
stationary probabilities {pi} with respect to the SMP.7 Thus Py
is the steady state probability that the last distinguished state

entered is i. Hence the {pi} are of direct interest in applications,

while the {n;} are computed only as an intermediate step. We consider

first the case I+ finite and vy < », Vi € I+.

“j/“jj’ j €E., 2(0) € E
- Giy(®vy/py,» I €E, 2(0) =i€T
3o, jer

0, j €, 2(0) € E, k o )

where Gij(-o was computed already and

A
v,/p,, =
373
T v,
1€E,

with {"1} here being the stationary probabilities for the imbedded
Markov chain given that Z(0) € Ek.

In the remainder of this section we assume that the imbedded
Markov chain is irreducible and that the SMP is positive recurrent,

where I+ may be finite or infinite. We also assume that the mean

7}n general, the stationary probabilities must be interpreted
as Cesaro limits. 1If the process is aperiodic, these reduce to
ordinary limits.
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transition times are uniformly bounded away from zero; i.e., 0 € € <

vij < . With these assumptions, Fabens [151 shows that

LYY
L3
PIUAH
i

P3

. . , + .
in agreement with results given above for the I finite case. Define g(x)
as the time of the last transition completion before or at x and t(x) as

the time of the next transiton completion after x. The random variables

y(x) = v(x) - x (excess r.v.)

8(x) = x - g(x) (shortage r.v.)

are of interest. Adding to the previous assumptions the hypotheses

that the mean recurrence times {y .} are finite and that Z(®) is

aperiodic, Fabens shows that

lim P{g(t) < x|z(t) = i} = lim P{Y¥(t) < x|2(t) = i}
t

£ =0 -t

X
1
gql [1 - Hi(U)] du.

This generalizes the well-known result from renewal theory for the
one state case, obtained there as a corollary to the key renewal
theorem; see, e.g., Barlow and Proschan [1].

The general question of existence and uniqueness of stationary
measures is dealt with in Pyke and Schaufele f47]. Cheong [3] gives

conditions under which convergence to the steady state is geometric)
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see also Teugels [51]. An estimate of the convergence rate is important.
It it is high enough, troublesome transient phenomena can be neglected.

We then pass directly to a relatively simple steady state analysis.
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VII. EXAMPLE: THE M/G/1 QUEUE

To illustrate the notion of stationary probabilities for an SMP,

we consider the M/G/1 queue. Let 8
m o= the stationary probability that i customers are in
the system just after a random service completion

epoch
Py = the stationary probability that i customers are in
the system just after the service completion epoch

preceding a random point in time

p. = the stationary probability that i customers are in
the system at a random point in time.

We assume that the traffic intensity \b is less than one, where ) is
the arrival rate and b the mean service time, assumed positive.

Although it is easily shown that

xbni, izl
Py = 2

(1 +ab)m =1- OB, =0,
it turns out that Py =y, Vi, a remarkable result originally due to

Khintchine [31] and derived in a more elementary manner by Fox and

Miller [241 using SMP theory. In bulk queues (Fabens [15]), for
example, the stationary measures for the imbedded Markov chain and
the original queueing process are different.
Readers familiar with queueing theory may prefer to skip to the .
last paragraph of this section. In between, the standard manipulations

ylelding G"(z), the generating function of the (ni], are performed.

8The stationary probabilities for the imbedded chain and the SMP
are {n ]} and {; ], respectively.
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Recalling that state n means that there are n people in the
system and a service has just been completed, we obtain the well

known transition matrix tfor the imbedded Markov chain:

where the probability that n customers arrive wnile a customer is being

serviced is

e-)‘t n
K =f- = (\t)" dB(t)
0

and B is the service distribution. By the usual straightforward

manipulations, we find that the generating function of the [kn] is
i
6, (2) =} kiz" = B(A(1 - 2)),
i
where g is the Laplace-Stieltjes transform of B, i.e.,

gs) = [ ¢ °° aB(v).
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To obtain the stationary vector 1w for the chain, we multiply the i-th
relation determined by P = nn by zi and sum, define the generating

function
i
Gﬂ(z) = Z iz o
i
and obtain from the special form of P for this chain by an easy calcu-
lation the standard result

ﬂo(l - Z)Gk(Z)
Ck(z) -z

Gn(Z) =

Using the fact that lim G (z) = 1 (i.e., the probabilities sum to 1)
21"
and applying L'Hospital's rule,

= 1 - »b.

Summarizing our results so far,

no(l - z)B(A(1l - 2))
(2 = TBoa - ) - =

Thus the mean number in the system averaged over service completion

. 2 .
epochs is, with g~ the variance of the service times,

Ge(® - 26 - DI (n? + + b,
1-12b

lim G (z) = n_ lim
z=1" 7 % z-1° 2(6) (2) - 1)2

and by the fact that = Py Vi, is also the mean number in the

system at random point in time (in the steady state). Higher moments
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and probabilities can be obtained from the generating function by

appropriate differentiations, which, however, become quite tedious.
Having found Gﬂ(z), the Laplace-Stieltjes transform of the stat-

ionary waiting distribution (Pollaczek-Khintchine formula) for the first

come, first served (FIFO) discipline can easily be found. The deriva-

tion depends on the fact that, since the arrival process is Poisson,

an arrival plays the role of a random observer. If an arrival finds

the system empty, the conditional wait in queue is 0. Otherwise it

is governed by the remaining processing time of the customer in service,

the excess random variable, plus the service times for the customers

(if any) already in qQueue. Noting that Gp(z) = Gﬂ(z), the interested

reader can readily derive a version of the Pollaczek-Khintchine formula,

namely, ua + l;ig%éil [Gp(a(s)) - "o]' See Feller [16, p. 3921, for an

alternate elegant derivation that bypasses the calculation of Gp(z).

A third derivation follows from the fact that the number of customers

in the system just after a departure is the number of arrivals during

his total wait (queueing time plus service time); the resulting equa-

tion is solved by taking generating functions yielding the standard

form of the Laplace-Stieltjes transform of the stationary queueing

delay distribution sno/(s - A (1 - g(s))), the more familiar version of

the Pollaczek-Khintchine formula.9 For a fourth derivation, where the

(superfluous) assumption of an absolutely continuous failure distribu-

tion is tacitly made, see Cox and Miller [9, pp. 241-242].

9Comparison of the two versions yields an interesting and surpris-
ing identity.
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VIII. ASYMPTOTIC FORM OF Mij

From a previous section, we know that

mij(s) = gij(s)[l + mjj(s)]

Sjj(s)
TE O T T

Formally expanding e %* in a Taylor series under the integral defining

gij’ integrating termwise, and performing the appropriate algebraic

manipulations yields for i, j in the same ergodic subchain

(2)
u,. u..
m ;(9) =-s—:—- P o,
2y, »
i3 M35 33
whence by a Tauberian argument
(2)

M, .(t) - t ?E-;—--fﬂl_ir - Bil’
ij By esaro) z“jj By g

a result that can be obtained by analogy with renewal theory for
delayed recurrent events, where the time to the first "renewal' has
distribution Gij and the spacing between subsequent renewals has
distribution ij. If the SMP is aperiodic, the Cesiro limit reduces )
to an ordinary limit. It can be shown that the formal manipulatien

used to obtain the asymptotic expansion of m, (s) is justified if

b
H§§> < » If 1+ is finite, ng) < w, Vi€ I+ - “gi) < . A result

- - . o e e
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that holds for all t is 2(0) = j = ij(t) 2 t/ujj - 1, which follows
from Barlow and Proschan [1, Theorem 2.57. We can obtain a tighter
inequality from [1] and, if ij has increasing failure rate, an upper

bound as well.
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IX. FINITE SMP'S WITH COSTS

Sometimes the performance of a system is evaluated by probabilistic
criteria, such as average delay in a queue, that serve as surrogates for
monetary loss. It is more appealing to deal directly with expected loss
as a performance measure.lo In this section we indicate how to do this.

Often in applications, costs are associated with the transitions.
Measuring time from the start of an i - j transition, let Cij(xlt) be
the cost incurred up to time x given that the transition length is t.
The expected discounted cost for a transition starting from state i

is then

o t
Y, (@) =Zpijf dr-‘ij(t)f e ¥ dxcij(x|t),
J 0 0°

where a cost incurred at time x is discounted by the factor e ¥
An elementary renewal type argument then shows that vi(ao, the total
expected discounted cost over an infinite horizon starting from state

i, satisfies

via) = Y(o) + q(a)via),

where o > 0 and v(a) and y(a) are the vectors with components vi(a)

and y(o), respectively. Thus, assuming a finite number of states,

vie) = [T - (a7 ¥(an.

1OA similar remark applies to 'chance-constrained" programming.
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Since I - q(0) is singular and a direct asymptotic expansion is not

obvious, it is convenient to make use of the relation between q and
; ; + .

m given earlier to study the behavior of v(&) as @ =~ 0 . Following

Jewell [ 27], we have

vi@) = (I + m(a)]¥(a).

Making use of the expansion of m(g) given in the preceding section,

we find that, if i is a recurrent state, vi(a) has the form
o+
vi(a) = zi/u w, + o(1)

and a straightforward argument in Fox [197] then shows that this form

is valid for any state; i.e.,

via) = t/a +w +o(1) ,

where expressions for g, the loss rate vector, and w, the bias term
vector, can be found in Jewell (28, 297 and Fox [19], where appropriate
conditions are given to justify the expansion. Substituting this
relation into v(a) = Y(a) + q(a)v(a) and equating the coefficients

of a-l and the constant terms, respectively, yields11

PL = g

y+tPu=uty

Vi T 21: Pivishy

- vizi' if i is recurrent.

llThis procedure can be justified by a simple contradiction

argument. Note that qij(a) = pij(l - awiy) + o(a) and that the
loss rate for all states in an ergodic sugchain is the same.

- p——r = =
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These expressions can be solved uniquely for ¢, but w is determined
only up to an additive constant in each ergodic subchain; see, e.g.,
Denardo and Fox f12]. An interesting and intuitive result that follows
easily from the above formulas is that the loss rate for each state in
)y o,

an ergodic subchain Ek is the same and equal to m , where

n(k) is the stationary vector for the corresponding submatrix and Y’
and v~ are the restvictions ¥ and y, respectively, to Ek' This formula

can be rewritten as

ié?k o, (Y, /v,),
which is the sum of the expected cost per unit time in each state of
Ek weighted by the respective stationary probabilities for the SMP.
The loss rates for the transient states are obtained from the fact
reflected in P¢ = g that the loss rate for a state is given by the
appropriate convex combination and that I - A, where A is the sub-
matrix corresponding to the transient states, is invertible.

Denoting the undiscounted loss up to time t by L(t), we obtain

from the asymptotic expansion of v(&) that

L(t) - ft —————— .
(Cesaro)
Jewell [30] studies the fluctuations in cumulative loss in what .
is essentially the one-state case. If the imbedded Markov chain is
ergodic, these results extend in principle to n-state problems by

considering G,, and the distribution of cumulative loss until the

11

first return. In general, the calculation would be tedious. Besides,

c ey -
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we are distinguishing here only one state out of n. Apparently, no

one has dealt with fluctuation theory for the n-state case directly.

A related topic is a central limit theorem for cumulative loss.

Since cumulative loss is an example of a functional of a Markov

Renewal Process, results of Pyke and 3chaufele [46] apply.

© e e ——— o
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X. MARKOV RENEWAL PROGRAMMING

The situation becomes more interesting when, at each state i,
one has a set of options Ai and the choice at i simultaneously deter-

mines Py Fij' and Cij for all j € I+. The goal is to choose

K
a policy that minimizes either the expected discounted loss or the
loss rate. In the latter case, an appropriate secondary objective is
to minimize (g, w) lexicographically, which is especially important
when some policies can have transient states. With either criterion,
an optimal policy can be found by linear programming when I+ and

X,
i

e1t Ai are finite. For details, see, e.g., Jewell 728, 297, Fox
{19, 227, Denardo [10, 11}, and Denardo and Fox [12], where references
to the earlier (extensive) literature on the subject are given. The
linear programming formulation facilitates sensitivity analyses and
parametric studies. Controlling roundoff errors is probably less
difficult in the averaging version; see related remarks in [12].

Some papers treat the I+ infinite case, but the author believes
that, for applications, the general theory developed so far for that
case is inadequate and that particular problems are best attacked on
an ad hoc basis. The averaging version of the infinite state case
apparently has been studied only in the discrete time setup; see,
e.g., Derman [14], Ross [487. However, in the discounted continuous
time version no new theoretical problems arise when the problem is
approached via contraction mappings (Denardo [10]). For the case
where I+ is finite but the finiteness restriction on )(Ai is dropped,
see Fox [207. The connection with generalized linear programming and

column generators is outlined in [127.

I
.

—
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Miller {32, 337 treats the continuous time Markov process case
with loss proportional to the transition time.

Markov renewal programming problems are a fertile source of large-
scale linear programs. Many problems that look deceptively simple at
first sight can lead to linear programs with hundreds or thousands
of constraints because of the detailed state description required to
make all decision points regeneration points. But often we need not
throw in the towel. Another look generally reveals that the con-
straint matrix is sparse and structured so as to be amenable to

decomposition.
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XI. ESTIMATION, INFERENCE, AND ADAPTIVE CONTROL

Moore and Pyke [357 develop estimators for the fpij] and the
fFijl and their large sample distributions. For statistical inference
in birth and death queueing modeis, see Wolff [547. Both of the fore-
going approaches are objectivist, i.e., non-Bayesian. When a large
number of observations are at hand, the objectivist approach is un-
objectionable and difficulties stemming from a possible lack of con-
sensus of prior belief do not emerge. On the other hand, when the
observations are few or nonexistent, as is common, a Bayesian approach
incorporating prior beliefs and loss functions is essential.12 Such
an approach may be formal or may simply consist of a sensitivity analy-
sis with the outcomes being given subjective weights. In the realm of
decision making, policies should adapt to modified beliefs as more
observations are taken.

Unfortunately, when the tradeoff between information acquisition
and immediate losses is explicitly included in the problem formulation,
the number of states generally explodes. Generally explicit inclusion
is advisable, because if an average cost criterion is interpreted
literally, policies that are absurd for any positive discount rate can
result. Thus, from a practical viewpoint, for relatively few problems
(see, e.g., 217) can "optimal" adaptive policies be found; for the
remainder, it appears that we must be content with heuristic devices.

This area remains largely unexplored and is ripe for investigation.

lzThts is, of course, a statement of the author's opinion. These
matters are highly controversial.
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