('
m
.I
o
[.
L o,
i b

A NUMERICAL INVESTIGATION

>

P

-

(A

Do OF THE
o SIMPLEX METHOD
(=
L

BY
\ RICHARD H. BARTELS

TECHNICAL REPORT NO. CS 104
JULY 31, 1968

AUT 191968

COMPUTER SCIENCE DEPARTMENT o 78N

School of Humanities and Sciences
STANFORD UNIVERSITY

Reproduced by the
CLEARINGHOUSE
for Federal Scientific & Technical
Information Springfield Va. 22151 / 17{

= = e

A Numerical Investigation
of the

Simplex Method*

By

Richard H. Bartels

Computer Science Department

Stanford University

#Research sponsored by the National Science Foundation under contract
NSF GP 5962 and by the Office of Naval Research under contract
NOOO14-67=-A-0112-0029.

e e S b s Y

R B

l-uuuuuun—lu——n----

Acknowledgments

I sm happy at having this chance to express my gratitude to:

B vho, first as my fiancée and then as my wife, lifted my
spirits through the finsl agonies of doctoral candidacy;

Gene Golub, my thesis advisor and my friend, who has given me
measureless help, academically and privately, throughout my stay at
Stanford;

Professor George E. Forsythe, whom I thank for his aid and advice
to me during the course of ay academic progress;

Professor George B. Dantzig, whose words of encouragement to me
were very Jelcome;

And Miss Suzanne Stone, who under the pell of a deadline, did all
of the typing which I required and maintained her composure throughout.

I would like to note that my work at the Computer Science Depart-
ment has been financially supported by the National Science Foundation
and the Office of Naval Research.

And I give my thanks to Doctor James H. Wilkinson and, again, to

George B. Dantzig. They laid the foundations.

iii

e——

tad e my ANP O AN D &N @G 6B

[) L

Table of Contents

Chapter

1.

2,

10.

1l.

Introduction and Summary of Results . « « ¢ ¢ ¢ ¢ « o &
Review of the Simplex Method of Linear Progremming . .
Stendard Computer Implementations of the Simplex Method
Round-off Error Analysis of Gauss-Jorden Elimination .

Error Bounds for Linesr-system Solutions Fourd by
mplicit Inver'e L] [] [] L] [] [] L] L) L] . L] L] [L] L[] L] L[] L] L]

The Modified LU Implementation of the Simplex Method .

Round-off Error Analycis of the Modified LU
Impleme nt ‘ t ion [L[] . L] [L] L] L] L] L] * [] L] L] [] L] * [] » *

The Standard LU Implementation of the Simplex Method .

Error Bounds for Linear-system Solutions Found by
LUDecompositionocccocooonoocoonooo

Employment of Error Bounds in the Simplex-method :’ycle

Comparison _ot‘ Implementations by Operation Counts . . .

Bibliogr.phy ® @ o o e 8 o o o o o o &8 & o s o s e s » 'o

iv

13
18

25
34

Lo

75

84
93
103

118

.-.u:.

1. Introduction and Summary of Results

Since 1947 linear programming problems have been growing ever more
interesting to business, industry, government, and the military. Today
few facets of the economy remain uninfluenced by decisions made with
the aid of linear programming. The increasing practical use of linear
programming since 1947 is linked with the rise of electronic computers,
and 1947 itself is important as the year in which George B. Dantzig
developed the first, and so far the best, algorithm for the solution of
the general lineer programming problem: the simplex method.

Unfortunately the simplex method, as it is used on computers today,
does not handle every problem with the success which it deserves. At
times, with no forewarning, computer programs which implement the simplex
method will produce unreasonable results from reasonable data. In such
cases curses are muttered against a mysterious force called "round-off
error", and a battery of ad hoc penaceas are employed to attempt a cure.
Sometimes, in hopes of forestalling problems from the outset, a variety
of heuristic tests and purifications may be built into a computer pro-
gram to sniff.at suspected indicators of round-off error and attempt
recoveries during the computation. But all of the medicines employed
have the aspect of folk remedies. They are largely in the domain of
oral tradition; they are rarely published, and their efficacy has never
been proved.

The literature concerning the effects of round-off errors upon
the simplex method is very small (we have come acroes only papers (3],
(8], [10], and [15] 1isted in the bibliography), and it contains no

rigorous results. 7This state of affairs is unfortunate and unnecessary.

James H. Wilkinson first published the tools for investigating
round-off error effects in linear algebraic computations ir 1959, (11],
and they have been well-known to numerical analysts since then. Numer-
ical analysts, however, have not made much use of linear programing.
The subject is just beginning to be recognized in the numerical analyt-
ical world as a piece of practical machinery (e.g., Rabinowitz [9]).
The chief users of linear programming up to now, or the other hand,
could not be expected to be familiar with the literature on round-off
errors in linear algebraic computations (e.g., Chartres and Geuder (2],
and Wilkinson [11], [12], [13], [14]). Thus a proper investigation of
round-pfr errors in linear programming has never been made. This thesis,
we hope, will serve as a first step toward changing this.

It is important to separate the abstract expression of a computa-
tional algorithm from the realization of that algorithm on a computer.
In Chapter 2 we present the simplex method in an abstract setting, and
in Chapter 3 we describe the main details of the method's more common
implementations on computers. We show in Chapter 4 that round-off errors
can, indeed, have disasterous effects upon the common simplex-methcd
computer programs. This is not due to any flaw in the simplex method.
It is rather due to the use of Gauss-Jordan elimination without pivot
selection which characterizes the standard computer implementations of
the simplex method. 1In Chapter 4 we indicate that no simple & priori
inspection of the data will yield a bound on the effects of round-off
errors in programs which employ Gauss-Jordan elimination but do not

permit the pivots to be selected arbitrarily.

—

o tod g) 3

3 . ;
2 -
o . g 5 ’ .
T L e T e N = — et L I 1 it it hilihide m‘—“‘—‘j

bod bod od ood G O OB O GO

e

Chapters 6 end 8 present alternative computer implementations of
the simplex method for which pivot selection is flexible, and these
implementations are shown in Chapters 7 and 8 to be numerically stable.
That is, the effects of round-off errors i{n these methods can be bounded
in a simpie a priori fashion from the data.

In each of the simplex-method implementations presented in this
thesis the possibility of monitoring round-off errors during the compu-
tation exists. The discussion of this possibility is contained in
Chapters 5, 9, end 10, wherein a posteriori error bounds and their
employment in simplex-method computation is covered.

In rough terms, carrying out the simplex method entails the repe-~

titive solution of three linear-equation systems

f
Bu =b

<BT1'T-Y
By =As

\

(The notation we use in dealing with the simplex method holds closely
to that used by Dantzig in [4].) At each repetition the vectors u,

m, and y are inspected, the basic matrix B 1is modified as & result

of the insgpection and a new set of vectors is produced. It is the main
effect of round-off errors that only approximate vectors u + du,
n+8n, and y + 8y are produced from the computations. Assuming
that bounds can be placed on the norms of the errors ||6ull, [|én]l,

and ||8yfl, then Chapter 10 discusses the use of these bounds during

‘N

simplex-method computation to meke allowances for round-off effects.
(Throughout the thesis the double bars || || denote the L, metrix
and vector norms. That is,

Ivl m

for any vector v, and

Il = 2% il L on)

for any square matrix M .)

For the standard, explicit-inverse implementations of the simplex
method, Chapter 5 covers the computation of error-norm bounds. The

bounds themselves are given by the equation

levl < =gy ClElilvsavilellel)

appearing in mid-chapter, where O8v represents any of the error vectors,
and g 1represents any of the right-hand vectors. A bound for ll&ll is
presented, and the last half of the chapter is addressed to the problem
of efficiently computing E, or at least an upper bound for |E| .

The other two implementations presented in the thesis use forms
of triangular decompositions for matrices as substitutes for the inverse

of the basic matrix. The standard LU implementation, described in

Chapter 3, dec mposes the basic matrix into trianguler factors L and

U . The modified LU implementaticn, described in Chapter 6, decomposes

4

¢y =3 & =3 /33 43 T3

0 =3 =3

] .S D

e ——

= =l el ol d o G OO

B Clipast

t=— =3 =

s |

) FUpsr

the basic matrix into a triangular factor L, a product of simple
matrices G, and a triangular factor U . It is shown in Chapters
7 and 8 that, for both implementations, the computed solution v + &v

to the linear system
Bv =g
satisfies
(B+e)(w+dv) = g .

Both of these chapters also address themselves to the problem of
bounding [|€]| . For the modified LU implementation the results are
summarized in the last four pages of Chapter 7. For the standard LU

implementation the bound is given in Chapter 8 as

~ 7)o 1 mex
lell < m{3e)+em(m2)e,0 Y fuyyl
where the quantities ?1 and 72 are defined during the development
of this bound, and m 1is of the order B .
The error vector 8v 1is shown in Chapter 9 to satisfy

v = - B le(v+bv)

so that

lavll < lIz~2lellveev] .

-i-'l

idhbn i P

Since |lv+8v]l 1is known and s bound for ||&]l has been provided by
previous chapters, Chapter 9 addresses itselt mainly to the problem
of finding an upper bound for ”B'lﬂ easily from the information which
is at hand. This informastion is, roughly, the trace and determinant
of BB .

The trace, d, of BBT is readily computed, but only an approxi-
mation to det(BBT) can be made. The analysis of Chapters 7 and 8
show that the computed decompositions of B used in the standard and

the modified LU implementations actually satisfy
B ~ 8B = decomposition

because of round-off er.r effects, where a bound for |[8B]l is given.

Thus, the quantity
p = det([a+6B][n+6B]T)

is at hand. It is shown in Chapter 9 that the best upper bound on

HB'IH which can be made using p and d is

Mol [

where q satisfies

6

e

b h

1
|
1
i
i
1
1
|
I
I
I
I
I
|
1
|
|
i
I

and where
k > [leBB +peBT+6B8BT) |

Finelly, in Chapter 1l a comparison of the modified and standard
LU implementations of the simplex method is made with a representative
explicit-inverse implementaticn in terms of speed of operation. This
is done by counting arithmetic operations needed by each to produce
u, n, and y and to accomodate the changes in B which follow.
The results are reviewed on the last page of the chapter. In particular
we find that the modified LU implementation, which we have shown to be
not subject to round-off error disasters, is competitive in speed with

standard simplex-method implementations.

A o AT SR U

|
1
|
1
I
I
1
I
I
I
1
]
]
1
1
I
|
1
I

basis) associated with x . Any m X m matrix composed of these columns

2. BReview of the Simplex Method of Linesr Progremming

To begin with, we will briefly cover the basic concepts and termi-
nology of linear programming and of the simplex methcd. Everything to
be mentioned is covered in gr.ater detail in Dantzig [4] and in Hadley
(6].

A linear programming problem is, by definition, cne which can be

put in the following form:

maximize the objective function: 2z = ch

subject to the corstraints Ax =b and x> 0.

A is an m X n, real matrix having full row rank, and m<n . The
vectors b and ¢ are real and have dimensions m and n respectively.
For convenience we also require that b > O, but this is nct essential
tc the problem.

In the standard terminology any vector x which satisfies the

constraints is a feasible solution, and, if it maximizes the objective

function, it is an optimal feasible solution.

Let Av gesey AV be m 1linearly independent columns from the
1 m

matrix A . If x 1is a feasible solution having xJ =0 for all

J { {vl,..., vm], then x 1is called a basic feasible solution, and

the columns Av ey AV are called the basic vectors (or simply the
1 m

is a basic matrix corresponding to x . If X, = O for some

ie [vl,..., vm}, then x 1is a degenerate basic feasible solution.

The set of all feasible solutions to a linear programming problem
is convex, and the basic feasible solntions comprise precisely the set
of extreme points. The existence of any feasible solutions implies the
existence of at least one basic feasible solution. And, if the objective
function is bounded from above on the set of feasible solutions, at
least one of the basic feasible solutions is optimal. (In fact, several
of the basic feasible solutions can be optimal. A given linear pro-
gramming problem need not have a unique solution.)

It is upon bases and basic feasible solutions that Dantziz's simplex
method is grounded. The simplex method is an algorithm which searches
from basic feasible solution to basic feasible solution, seeking an
optimal solution. The search is designed so that each basic feasible
solution encountered has a greater value of the associated objective
function than its predecessor. The search proceeds in cycles. Let x

be a nondegenerate basic feasible solution. The simplex-method cycle

produces one of the fecllowing from x:
I. a basic feasible solution x’' from which

eTx < ch’;

1I. an indicetion that x 1is optimal;
ITI. an indication that the objective function is unbounded from
abcove on the set of feasible solutions.
Degenerate basic feasible solutions do not yield quite such reasonable
outcomes from the simplex-method cycle. However, there are standard

ways of adjusting a given linear programming problem so that degeneracies

& .

. ~
e e

ki e et AR e s caia b it e D it i i J A rsmsh i

which are discovered are wiped away, which tact wili permit us the

liberty of ignoring degenerscies trom this point forward.

To each basic feasible solution there is a corresponding basis
of m linearly independent columns taken from the n columns of A .
And outcome (I) of the simplex-metnod cycle guarantees that the simplex
method will never encounter any basic feasible sclution mere than once.
Therefore, starting from any particular basic feasible solution, the

simplex method cannot be carried thrcugh more than

b=l =d e o4 Oomd Omd O

R
4 b4
B—
v
3

cycles on a given linear procgramming problem before terminating. 1In

practice one commonly finds that the number of cycles taken before
termination is only a small multiple cf m (Dantzig [4, p. 1601).

The mechanism for producing x’ from x by the simplex-method

. cycle is built upon basic matrices. If Av PR Av is the basis
1 m
L corresponding to x, then consider the basic matrix

Let
welx oo, x 1
:l kil Ym
] be the vector of the nonzero components of x . Then
]

ML B MM

Bu

0
o

To carry out a simplex-method cycle, one begins with B and proceeds

as follows:

lo

2'

Solve Bu=b .

Let ¥ = [c ooy o 17
1 m

selecting those components corresponding to the basgis.

s the vector composed from c¢ by

Solve Brn =Y,

For each column A, of A not in the basis compute

J

%, M. - ¢

J J 3’

and choose any ind<x s for which E’s <0 .
Solve By = As .

Let r be an index such that

u u,
r_min _i
Yo Y320y

Drop the vector A\J from the basis and add the vector As .
r

The resulting set of m vectors is a new basis, whose

associated basic feasible solution is the vector x’ . The

associated basis matrix B’ can be constructed with whatever

ordering of columns is most convenient.

The cycle cannot b: carried past step 35 if all Eﬁ are nonnegative,

in which case x 1is optimal. And the cycle cannot be carried out past

11

i~ =4 OC=xf Omf O N

aeadidel Lk dabat Cladiliite b i ik e it bl

td e md ed o) d O O

. |

step 5 if no component of the y vecter is positive, in which case
the objective function is unbounded on the set of feasible solutions.

The change in the value of the objective function

z' -z = cT(x'- x)
is given by
u u
L(cnta)=-L73 .
s 5 y. s
r r

Thus it makes some sense to choose s such that

making Es as largely negative as possible, in hopes of making as great
a change in the objective function as possible.

To solve a given linear programming problem by the simplex method,
a basic feasible solution must first be found. If none exists, the
problem is infeasible. The task of finding the initial basic feasible
solution can be formulated as an auxiliary linear programming problem,
one for which a starting basis is known. Hence, the simplex method is
generally carried out as a two-phase process, each phase of which
consists of repeated applications of the simplex-method cycle. The main
part of this thesis will treat with the computational details of carrying
out the simplex-method cycle on an automatic digital computer and with
the round-off errors incurred during the computation.

12

Fhens |

[

4

ey —3 =3

o =

|

3. Standard Computer Implementations of the Simplex Method

The major price to be paid in carrying out the simplex-method

cycle is incurred by solving the linear systems

Bu =1b
Brﬂ =Y |
By =A_ .

If these systems were presented in isnlatior we would expect to spend

3

an order of m” arithmetic operations cn a computing machine to get

their solutions. 1In the context of the simplex method, however, this

Lt S

much work is not usually required. The basic matrix B used in one

S

execution of the simplex-method cycle is constructed from all but one

of the columns which formed the basic matrix used in the preceding

execution of the simplex-method cycle. The vector b remains constant
throughout, and the vector Y changes in only one component at each
cycle. These observations provide t' o opportunity for significant
savings in computaticnal effort.

For example, in representative computer implementations of the

e e e e Bl e el e e B T 3 DR

simplex method the matrix of order m + 1

13

[t T ST

is conpstructed. Slince

fo e o s s f

-1 , -1

it can be verified that

and that

Iy
mTA -C) -C

7
1%
)
]
=
()

<
<
>

Let us number by zero the initial components of the vectecrs, and
tne initial rows and cclumns c¢f the matrices in what follows directly
be;ow.' This will unity the indicec used in this chapter with those
used througncut the rest of the tnesis.

Suppose an execution of the simplex-method cycle ends in outcome

(1), Ir we le.

+3

ih

— =

ey

PSP

L

FHHHHH‘H%HHHHmmm-—-—-——_

by replacing the rth column of D with

then it can be verified that (D')-l

is obtainable from D™t

by the

application of the Gauss-Jordan elimination which reduces the vector

t

th

| s
y

to the r " unit vector. That is, if

r

-to/tr

'tr-l/tr

1/tr

'tr+1/tr

'tm/tr

= [T = =
r

1 (t-e(r))e(r)T])

where e(r) is the rt'h unit vector, then

15

(D")"" = 1D

Similarly we can updatce the vector wu, rather than golve a scystem of

equations for u)

In this manner the simplex-metnod cycle can be carrled out on a computer

with only an order of m2 arithmetic operations. ’\
If D-l is explicitly computed in an implemertation of the simplex

method, is kept in cemputer storage as an m X m matrix, and is updated ‘

by Gauss-Jordan elimination at each cycle, the implementati~n is said -1

to use the explicit inverse. Alternatively, D'l can be expressed as

a product of transformations which reduces D to the identity matrix.
At the end of each execution of the simpler-method cycle, a Gauss-

Jordan transformation can simply be added to the product so that

p~t - T(u)T(u-l) rI(l) .

Implementations of tuc simplex method built alicng these lines are said

————
.

to use the product form of the inverse. They are used when the data

matrix A 1is sparse and has its nonzero entries in a regular pattern .1]
3 . 3

which permits the use c¢f transformations T(‘) having a particularly

simple form.

The basic computational process in implementations of either type

=l

- L

is the Gauss-Jordan elimination applied to a vector, either a column
of D-l, the vector

16

bcd

@R AR S SRR TSR

0O S, mm o em R D

=) I ey

e
= v

-
S

or, in case the product form of the inverse is used, to the vector

Hence, we will want to study this process as it is carried out in

floating-point arithmetic on contemporary computing machines.

17

e e o ey

L. Kound-off Error Anulysis of Guuss-Jordan Elimination

We will denote the computed value of an arithmetic expression €

ootained by tloating-point uvperationsg on a computer by

fe(e)

This value is a function not only of € but alcn of the computer

employed and the slgorithm used for the cevaluation. Following Wilkinson

[13], we know that on reaconable computers, sc long as overflow or

underflow do not cccur,

(
£e(atb) = u(24n) + b(1+7,)
rf(a-b) = 8(3*n3) - b(l*ﬂh)
ﬁ fl(axb) = a X b X (1+n5)
k.rz(a/b) = (a/0) x (1+1)

for any two machine numbers a and b, where the quantities lnil are
bounded by some fixed, small, positive number. In fact we will assume
that our computations are carried o©ou: on a machine offering a normal-

precision floating-point arithmetic, tor which

In,l <e; s

and an extended-precision floating-point arithmetic, for which

I“i,:E‘_"

e —

where is a few orders of magnitude smaller than ¢, . This is

2 1

usually accomplished by carrying out floating-point arithmetic in
base rt arithmetic (r = 2, 8, 10, 16 are common), carrying 9,
significant figures in normal arithmetic and 95 significant tigurcs
in extended arithmetic (usually with 9, > 201) « If that is the cuse,

one may take

and

A normal-precision machine number is a number which may be -

represented exactly on the computer to the precision of normal arith-

metic. A similar definition holds for extended-precision machine

numbers.

Suppose we transform the vector (wl,..., w‘) into the vector
(Vl""’ v‘) by applying Gauss-Jordan elimination, obtaining the
multipliers from the vector (pl,..., p‘), with pB used as the
pivot (lfpSI) . The p's, v's, and w's are all to be normal-precision

machine numbers.

Thus,

VB = fl(ws/pa) 2

vy = fl(wi- pin/pB) , for 1 #B . !

adin [UPETL RPN 7, PO P 2 7 S0 TRS -

Gl bod bend bed bd bd bed bed bed ed e o O B BB OO OB BN @B

e

Or

vg = (w/pg) (1) ,
vy = vy () - (pywa/pg)(14M) (14) (1p,), for 1 4 B

This means that, letting GwB = an "

1
Vg = 5; (wB+6wa) .

Or, letting |

P
i u
by = w0, - By Wy GyP o T ¥ M,) |

we have

p
i
v = (wi+6"1) = S; (wa+6wa) .

Thus, if
T
P=[I- ﬁL (p_e(B))e(e)]

P

20

:
* ‘

it hus been estublished Lhat

v = {1(Pw) = P(w+bw)

That is, the rounl-off errors have the effect of making the computed

vector v be un exact truncform via tnhe given Gauss-Jordan elimination

of a perturbation on the vector w .

How large can the perturvaticn 8w be? The answer is dicturbing. .

Unless restrictions are placed upon the pivot p

Bl

8w cannot be bounded. We have, for 1 # B :

Ip. |

the components of

or 1
AN 2.3 i
w, | < T ley + T,T Iwe|(2el+ semie-) I :

And so, if lpBI is made small enough relative to the magnitude of

some cne of the other comgonents c¢f the vector p,

the right-hand

side of the latter inequality can be made arbitrarily large for the

corresponding value of 1 .

To see a trivial example of what this means, suppose Lnat we

have a computing machine at our disposal which performs decimal arith-

metic with tnree figures of precisicn in normal floating-point calcu-

S

[

lations. The result of each basic arithmetic operation, however, is to te

computed to six figures cf accuracy before being rounded “c the nearest .I

three significant figures. This means that

a2y

S PSR

L e U o e ra ey

e

T T

Ol ont Gt i ud bud bmd i i i ed bmed) oow) o O O O 0B

Let
-4
w=(,1), p=(0,1), and B=1.
Then
v, = fl(l/lO'h) e J.ol‘, and
Vo ® f:(l-lxl/lo'l‘) = -10'1‘ :
That is,

So 6w2 = =W, - A perturbation has been made in one of the components
of w which is as large as the component itself. If there was any
useful information in the vector w initially, it has been lost.

It is easy to concoct examples wherein relatively small pivots
arise during execution of the simplex method. E.g., take the

data

F A VRIS e

cTafl 1 2]
1 0 ¥ v/e
A= y b=)
0O 1 1 1
22
. _ _ R,
LR R — NS e

where Y

columns of

and

Since 33

proceeds.

i a small positive aumber less than one. The first Lwo

A will serve as an initial ovasis, giving

- -~
S RS
p=lo 1 v
LO 0o ¢
-1 T
prt=lo 1 ©
o o 1

(2 [+ ¥/

u | =1 ¥/2

= ﬂTA5 - 03 =Yy -1, which is less than zero, the cycle

In the notation of Chapter 2,

Both components of y &re positive:

2%

»-53‘1 f‘-z)’w FY_
v |=0t| vl
y 1 i
L2 L J L

s = 3, and we must compute

=
=

. = % and 15 = 1 .
yl Yo
!
So ;— = min, or r =1 1in the notation of Chapter 2. dencz, the
1
basic vector
Y
A, =
O

1

- Al: o

-

X Thus all necessary updating is to be carried out by the Gauss-Jorda::

s elimination composed from the vector

- ~ - -~ o

., cj Y-1
! ! yl =]y

N R
(¥ -1

:f using ¥, ® Y as the pivot, which is small relative to the other tLwo
[-I components.

== The implication of all of this for standard implementations cf the k

-I simplex method is that, since the relative sizes of the pivots which arise
during computation cannot be easily predicted, nc bound, simply expressed
in terms of the data, can be made a priori on the perturbaticns which

will be caused by round-off errors.

2k

-

—) =t =i e omd MR 0B

4

s

bd s

ol boed bed

5. Error Bounds for Linear-system Solution:

Found by Explicit Inverge

Though it is not poseible & priori Lo bound round-of'f’ pertarbutions
during applicution of the simplex methee nelrn, computer impiementautions
such us those Jjuct discussed, we can compute round-off ¢rrcr bounds in
an a posteriori fashion., We will do that here in connectlion witn
explicit-inverse implcmentutions. Product-form implementations can bhe
treated in & similar fashion.

Consider the following provlem: i F is w given, nonsinpgular
matrix of order 2, if g 1isc an L vector, and 1f the matrix Q 1is
uccepted as un approximate inverse to P, how much error is maue in

taking
£2(Qg)
as the solution to
Pv =g ?

Let v = Pnlg and v + 8v = £2(Qg) . Each component of v + 8v

is formed as an inner product:
1
+ = 24 .
vy * 8y, fl(jz_:l qije,j)

The calculatior of an inner product Is so basic to computational linear

algebra that, in order to be as accura'e as possible, it is a frequent

25

pree S WSl oa

SNCC

practice to form the products and partial sums in extended-precision
arithmetic. Only the full sum is reduced to normal precision (Wilkinson
(13, p. 23)). That is,

(0 .o
20 2 a8 g g0 = U) + o 8, (108,00,

for J-l ,'l.",

where laJI, |BJ|, and Injl are all bounded by ¢ Only t(l) is

2 L]
reduced to normal precision, giving:

vy + 6vi = t(l)(1+91) ’

where Ipil <S¢, . Therefore

!]
vy + by, = ngtq“(hpi)(mj)(mj)kcl;[ﬂ(l*ak)]gd)
or
5 (70,,)
v, = 8v, = q 4
R A R TR
where

1
Py = qia[(“"i)(“";)(“’“ﬂkg{ (1+a,)-1)

=4+l

26

{
LX)

¢ @ [1
[Y o

g b2

o 4
a—t SRURE S USRS LS o et . el . ottt

Thus, in matrix form,

v+ by = (Qt)g ,

where
lo, | < la, I{e,+ (ate,) 22 L2y
Dygl S 14540t 7 WM = ST T
The bound
le
1-34
€y + (1+ 1) 7 [exp(T:E;)-1]

> '(“"i)(md)(““J)kzgﬂ(““k)'”

will be established in Chapter 7

Let the residual matrix

be defined. We will demand that @Q be such a gocd approximation to
the inverse of P that [[E|l < 1 . Then the inverse of I - E will

exist, and

I(-8)" < =y -

W—, — n
Therefore
v+8vs= Qg+t dg
= QPv + Q¢
= QP(vH8v) - QPbv + g ,
which gives =
, -1, .
v = (I-E) “[og-E(vtév)] ,
or c
1 0
+ + . .e {
lovll < =gy ClElivssvli+lelligh) |
The cost of computing the residual matrix E 1is, in ordinary .
situations, far too great to pay for simply putting a bound on ”6v” . S
An order of 15 arithmetic operations is needed tc form E . That is
essentially the same amcunt of work as is required to invert the matrix
P . There are far more lucrative ways to expend one's energy. The]
often-used technique of iterative refinement (Wilkinson {13, p. 130},
Forsythe and Moler [5, Chapter 13]), for example, can correct v + v
to a point at which ”év“ ~ €y and can be carried out in an order of
12 operations. But, in the context of the simpiex method, the com- l
0 |
putation of this error bound can become uite economical.
Suppose P’ is obtained from P by replacement of the rth column
Pe(r) with the vector w : |
z»e i
r
{
!
r
I
f
- b | o %] |
i
A o A i sttt e o 2 asote ntbdnniabi e o ‘

-h

-
H

b

ol pmd bed i

Let the vector t be given by
t o= £2{Qw) ,

and compute Q', an approximation tc ()%, by applying te Q the

Gauss-Jordan elimination which reduces t to the rth unit vector:

T
VIR (1-c{)etF) 56y
r

(This imitates the situation in typical explicit-inverse implementations

of the simplex method.) Apply the results cf Chapter L columnwise to

Q to get:
\ T
Q = [I - -tl— (t-e(r’)c(r) eyl ,
e
where for all 1 and J :
1
Irl lqrjl el it i=r
r
lhysl < .
it 2,3 . .
+ |- Qe +3e T+ .
la; | € ltrl lay | (eey#3eT4e]) it 14 x
For convenience let
T
T= (I- ti (-0
T
29

E/ =1 - QIPI
=TI - T(Q+)P’

=1 - TQP' - Typ’ .

But

T
I-1QP =1-(1- %" (t_e(r))e(r)]Q[P-(Pe(r)- w)e(r)T] ¥
r

T
= I = [QP - ti (t-e(r))e(r) QP'Q(Pe(r)‘ w)e(r)T
r

T T
+%];_ (t-e(r))e(r) Q(Pe(r)- w)e(r)]

T T
=E - [g‘— (t-e(r))e(r) Q(Pe(r)- w)e(r)
r

T T
- %— (t-e(r))e(r) QP-Q(Pe(r)- w)e(r) l.

r

We make thc substitution

t = fa(Qw) = (@)w ,

for wnich

!
log 1 < {ey* (1ve)) 2222 fexp 122)-11} lag4l

30

ki i i Aaliiis . i - PP

e o o N

ol eed md bed

=4 i i e

=4

b3

and the substitution

QP =1-E

to obtain

+ Ee(r)e(r)T + te(r)T}
T - T T
PO LIS SO O RO

A couple of simplifications are possible:

T T
%- (t-e(r))(e(r) e(r))e(r)

L %—- (t-e(r))e(r)T ,
r r

T
since e(r) e(r) =1,

and
L (oD e o0 L (o) s
r T e
since e(r) t=t .
r !
Therefore -
I=1¢ =E-{ ;1- (t-e(r))e(r)TE(I-e(r)e(r)T) "
r
| TN T s I
T T .
= 11 -2 (e gp(re (R0
r -
! + mwe(r)T . .
| So ..

T
, E = T[E(I-e(r)e(r)T)' awvelT) . yp) .

-

And therefore, o

eIl < Al ClEl+lallwl+ihlie () -

If upper bounds for ”EH, "Q”, and ”Y” are at hand, an upper bound é

for ”E'H is thereby available. And orly an upper bound for the

residual matrix norm is needed to bound the error |[8v|] .

32

bt ued CGud oGmd omd o) o) Od O S

b—d

b

4

bred b 4

ol bod bemd beeed

I3}

Returning to the notatior and concepts of Chapters @ vor 4, I Qo
clear thut the above results can be employed during vae creounl oo of
the simplex method cycle to bound the computational errcr incu-red in
*inding v, y, n, =2, and tne Ei « In a Juter chapter, in connection
with another implementation of the simplex method, we will coreilder (e
employment of such error bounds tc provide automatic tolerunce coscrol.

The techniques presented there can easily be imitated with the expiicit.-

inverse implementation of the simplex method.

N
S
=%

S |

6. The Modified LU Implementution ol the Simpicx Mctlod

Returning tc the notstion ot Chapter 2, we let B be the m X m
nonsinguluar basic matrix and ccncern ourselves w'sh sowving the linear

cystems

m

Bu=1bL, B™m

H
<
g

U}

o>

[de]

Suppose we effect this by decomposing B into the product of a lower

and an upper triangular matrix. Such & decomposition is always pozsible
provided that, at the leas', row permutations of B are permitted.
Column permutations could be added, but, in tne context of the simplex
method in which we work, it will not be convenient to permute the columns
of each basic matrix we encounter arb-trarily.

Thus we have

fer some permutation matrix [, upper triangular matrix U and lower
triangular matrix L, where we further demand that all diagonal elements
of L be +).

A given linear system

Bv

1]
o2

which we must solve is handled by solving the triangular systems

b SRR T R YIRS TR e

Lt-ﬂq,

Uv=s t .

The round-off error analysis of the decomposition and solution of
the triangular systems is given in Wilkinson [13]). The best error bounds
{ are obtained if [1is chosen so that all elements of L are bounded in
I magnitude by unity. The strategy of constructing [during the com-
putation of the decomposition has come to be called "partial pivoting"

or "row pivoting".

At the beginning of the simplex method cycle B has the form

BB[A ’otc’A]o

] At the end of the cycle we may be required to construct a new basic

(1)

matrix B from the columns

R, seees A » A veeein A5 Ay

v
1 rl-l rl+l m 1

And this is to be done in such a way that the transition from the
decomposition of B to one for B(l) is particularly easy and com-

putationrally stable.

Consider, then, the basic matrix

(1) _ .
B [Av yreey Av ,A\) F ALY] Av’As] 3

1l rl-l rl+1 m 1l

ot b et Gl i =i)

']

g ol -

b4 e e ped bed e e O

=

-t

bed

ol bmd bod bed bl

i.e., let B(l) be obtained {rom B by dropping the rlth coJuma,
shifting all subsequent coiumns cne position to the lefty, and appending

A on the right. Therefore, columnwise:

5
Fs

e - e L., va ,
Vl VY‘

=
e e, tma L, vl)
\Y] v S
r.+1 m 1
1
= (U, y U y U - ;U,L-TA]
- + ’
1 1 1l rl m 1
- u')

where the Ui are the columns of U . H(l) is a matrix of the form

O

that is, an upper Hessenberg matrix with zeros below the diagonal in
the first rl-l columns. We point out that the vecto:r L—ll'IAS was

1
produced as a byproduct during the computation of the vector y . Hence

H(l) can be constructed without any computational effort.

D e R el

L (1)

cun be reduced to an upper triangular matrix U(l) by using
Gaussian eliminations to zero out the subdiagonal elements in columns

ry through m . The partial pivoting technique is carried out by making
a decision at each elimination step whether or not to interchange two

ad jacent rows. Thus, U(l) is gotten from H(l) by applying a sequence

of simple transformatins on the left:

J1 L W) L)),0)

m-1"m-1 r. 'r 2

1 1
where each Fil) has the form
i i+l
1
1
i 1
i+1 -gil) 1 ’
1
"1
(1)

and each Tl

ith and i+1St rows exchanged, the choice being made so that |g§l)| <1.

N is either the identity matrix or the identity with the

Thus

(L) - mix)rurl LW

1 rl mel m-1l

37

-y

[P

e o o b e o e i, . SeSt PO O T S0

D ol o bl by b d e=d bed) e bed omd e o ooy Od O a0

This is n decompo.itlion ol B() suitable tor our purposes. We could

nd,just tne order ol rowe in B and mustiply out

which copies the decomposition uced for B . But this turns out to
require more work for the execution ot the simplex method cycle than
is requirecd if the decomposition is left in the product form given above.

If another execution of the simplex method cycle is taken, the

(2) (1)

resulting basic matrix B is to be formed from B in the same

]
manner in which B(') was formed from B . The decomposition for
B(g) which we would use in the subsequent cycle would therefore be
(2) (V0™ T
19:} = Ln'r R | AR Y] x
r r m-1 m-1
1 1
(2) (2)" (2) (2) 7 ,(2)
x I°'r o R Ju .
r m-1"m-1

S(K)

. . . th . . .
And in general, if is the k basic matrix which we construct,

the general decomposition which will concern us will be

.

Each given linear system

l is solved by computing the solution (o
Lt=nq; .

carrying out the transformations

= 1 pk)s (k) (k)p (k) (1):(1) (1) (1) =

we= (DT e rrk nrk Voo Ir Tq 7y e rrl nrl e)

and solving ..
U(k)v =W .

In following chapters we shall show that the round-off «rrors
committed in the above computations can be bounded & priori, which was
not the case in the standard implementations of the simplex method.
And we shall show that the computational effort required for the
modified LU implementation compares favorably with the effort required

to carry out a representative explicit-inverse implementation.

39 ‘ .

- e i e - i —e—— e e

i S B PR Staiadidiadinaci o doan it L amafait s i ay

— e b et emd o g G

—i

$—d

GRS md Gd bd bed e

(AR

{+ Round-of't Error Anulysis of the Modilied

LU Implementution

Wilkinson [12, 13] hu. anuivied the computational crror ussociated

with solving the lineur syctem

via the LU decompositicn of B as {cllcws:
I. It is assumed, witnout loss of generality, that the rows of
B have been preurranged so *hat the partial pivoting sirategy
will nct alter their ordering.

II The matrices L and U which are computed from B satisfy

B+8B=1U

ITI. In solving the trianguiar systems composed from L and U,

vectors w and t are prudnced which satisfy

And t is the computed approximation to v
IV. Bounds ave given for |[|6Bl, ||8L], and [|8U] . Thus the

vector t has been shown to satisfy

(B+&)t = (B+8B+IA'H8LU+SIAU)L = ¢ ,

with a known bound for |&] .

We wish to eatablish a similar result for the decomposition 41
O DG B (D T 1L ORI (Y M CY R -
r,'r m-1'm-1 °* r 'r m-1"m-1 ’ ‘
1l 1 k "k Y
'
-
which, for notational convenience, we will also write
g(K) - o)) |1
The following error analysis will be shown to hoid:
I. It is assumed that the arrangement of rows in the first basic
matrix B 1is such that no row rearrangement is needed to i
produce
| (B+$B) = LU
|
! .
3 4
computationally by the partial pivoting strategy.
II. At the kth simplex-method cycle the matrices L ard U(k) ‘;
and the product G(k) satisfy
i
g
L

MM A AR Dt Lol iyth s s s e U POSAROWI T RPN VRS SR S /|
i B AR B

——oms e i o e e e - e -

111,

1v.

In solving

k)

via the decomposition above, vectors f, w, and t are

produced which satisfy

(L+8L)w = q ,

LA THLY P

and
(u(k)+6U(k))t =0 .

And t 1is the computed approximation to v .
Bounds for the norms of the matrices GB(k), 8L, éUak), and

bG(k) are given. Thus the vector t will satisfy
(3* ety - q,

where

e0) - an(®) 4 gt 4 agK)ye)
s a1a®y(0) 4 1y (K)y (k)

+ s16gu(k) 4 grac(Kly(k)

e

+ s Mgu(®)

b2

Hence, a bound for He(k)ﬂ is known.

—t g

Chartres and Geuder [2] give the following useful lemma:

If

|

eed

Icil <e<1l

and

then e

) v
, 1 ‘
Ii];ll(l+ci)i=11;[-f-l(l+ci) -1] < -;-[exp(Cl’_eg)-1] 7

They also implicitly give the corollary:

If
¢ K _
|1l (1%p,) [[()1l <u,
J=1 J=p+l
and
W v
| Tax) [T el <x,
i=1 i=p+l 1
il
then .e
h e
P K] v i
-
| II(I+¢J) I[(l+wj)-l I[(1+Ci) II (1+Ci)'l-l| <M+ N+MN.
J= J=p+1 i=1 1+l I
b3

T

g =

r— i d o

b4

b4

G d nd —d 4

B L

This is useful if the bounds on the ijl differ trom those on the
lcil ¢

We proceed to justify the claims made under II, III, and IV just
preccedli.g.

Dropping the superscript (k) momentarily for convenience, we

review the Chartres-Geuder demonstration that

(UH8U)t = £,

where t 1is the approximation to U-lf computed by back-substitution.

The components of 1t are prcduced in order from tm down to tl

by the computation

m

t, = fL{(r, - u, .t,)/.
i [(i J=§+l i}J J)/ i,i])

with partial sums accumulated, as usual, in extended precision. That

is,
pl=fi

Pp = L (I#M) = vy yag by () (10))

. m-i . = m-i
LSRN v];[l) - z=¥+1 ety ey v=l]-[i+1) -

L

5 SN i ST

ot

where lnvl’ l“[-il’ and Iot-il are all bounded by £, - Finally,
P
-1+l -
t, = == (1+p) (1) ,
1,1
where ¢ and p are the errors due to the reduction of Po_j+p ©
) normal precision and to the division by Y respectively. Thus,
)
m-i
. -1 -1 -1
£ =y b ())™ [a)
v=l
. -1
-1
Y u (i, N,)][am)t,
1oTH] it ! 1-i L-i sl W
or
fih = u t, + u, ,t)
i =1 i,272 = i,1°1
where
m-1i
-1 -1 -1
8y ;= [(149) " (14p) \,lll (14n,)7"-10y; 4
and
L-1
-1
45
| SEE ORI W - — — e

R &

—t e =) o emd Ooun) O

-

ol tod bod i

for &> 1 . Appealing to the lemma and corollary just given, we may

set the follrwing bounds:

2
251-51

o, ;1 < {(m-t)e, + o [L(m-1)e)}y

l-el

and

where

But using the inequality

ma

Il < m s

X

which holds for all matrices D (Wilkinson [12]), we may write

2
e -e, max

2 [1+(m'1)5é]} isj 'ui,Jl

loull < m{(m+1)es +
l-:l

In the same manner it is shown that

(L+6L)W =q

L

€
/ 1 /
82,1 < (i-1)e) + e, [1+(1-1)e]

and
Iblidl < lzijl(3+2)eé for i> J .
So
€1 ,
ezl < {(m+2)e, + ey (1+(m-1)e)}m ,

max
1<

The vector f used above was obtained by the computation

since |[8L| < m |6lij|, and Itijl <1 forall 1< .

X K m-1"m-1 1

f = fl{[P(k)ﬂ(k) ces rﬁk)nﬁk)] s [r(l)n(l) Son Fil)ﬂil)]w} .
il

m-1"m-1

This is effected a pair of transformations at a time:

W =W

RONARCHCNCS

1 1

®
1 1

P IR WU

e
e

(o

where

k
w = E: (m-ri) .
i=1

—d = d d o) Ol o O O

}
1 Thus we wish to make an analysis of
i U
{
h d = £1(Ma)
1 -
-* for any vector a, where
: -
=8
;
. v v+l
L]
" ’ 1

48

ol Gted brd boed b—d 4
| ot

and where [l is elther the identity matrix or the identlity with the

vth and v+lSt rows interchunged.

If 1 is the identity, then
d = t£(I'Ma)
is equivalant, compenentwise, to the tollowing:

di=a‘ for 1 v+ 1

a + [av+lc-gav(p+f+pT)] 5

vkl [av+l-gav]

where |o|, |pl, and |t| are ali bounded by e, - Thus, if we let

¢ = -g(p+1+pT) ,
we have in matrix form d = ([+8I)a, where

v v+l

¢ o v+l

or trivially, since a =I[n ,

d = ([+6[)a .

— 4 =d e e oY O O

Similerly, if 01 1is the permuteza identity, we f'ina that h
f
1
1
v 0 1
a - .

- v+l it -g
i
- 1
-~

]|

\
1
:I v vl 3\
-
I v
+ > a,
I g ¢ v+l
/

| .

or

d = (IM+8rf)a .
So again

d = (r+6r)fia .
Thus, for

(1)w}

r

fm f[{rl(nk)n(k) . rgl)u
1

=1"m-1l 8

we may write

£ = r{wor(m ... r{Peerm{Dw,

or

m-1

. nii)[rii)urgi)]-l oo 10 (g (9L

b §

o

- ——mm -

]
[] [
o P 01_«.v
-l —
P P
4 -~ :
' ~ o
-
~
-
-4 -PL
b
—{
[]
[45
g
; [] [] "
—t
[]
—~
Ce
«©
+
| 399
-
e]
o]
m
= == = == = = = s " an 'm e

5

RN ™

i skt

Therefore

.. e ek

‘

where

oL k).(k)"*
0 LT

and

- -1 -1 -1
sa®) o (L) egp W7y L)) g 007 oK)

1 N 1 m-1

Recall at this point that

OO

for all possible i and J . If we interpose such products at appro-

(k)

priate places among the factors in 48G'"’/, we can arrange to express

GG(k) in the equivalent form

00 - #®aald) .. oali1p M) .. ol

where

pk) o g{t) . p)
1

alk) . sk .

-l -1
(k) (k)
I‘m_1 + ”m-l ’

1 o
n{e) (r) p (1)

m-2

]n(k)

S e s o -

m-l ?

Oy,

= oo B

alD) 4 sqlD) .) (D0 (D)
r r r r

; 1 1L 1 1
|
!l This puts the product GG(k) into & form to which we can suitably
!
F 1 apply the following lemma: H
If Hl""’ Hp and Gl""’ Gp are square matrices, then H

H ... Hp -G ... cp = (ﬂl-cl)c2 Gp

T Y

+ HI(H,‘,-GQ)G3 Gp l‘)‘

ook H oL p_l(Hp-Gp) . !;

T
——reae
——

?' » i

— 0 9 = Gad et el 0t ed

£ G

G el el w3 =) 3

According to this,

861) « p(K{ (ga(*a*)
Ry

+ 1@MuwalM)) - @nalualkhy .

r

1 1

Each Qfd) has diagonal elements equal to +1 and only one none-

(4)

zero off-diagonal element, gy " whose magnitude is bounded by one.

This element appears somewhere in the subdiagonal portion of the matrix:

(k) .
ol

i 3
TR R LTINS e |

m-2

ui‘”

1l
()
Qi =
(J) N\
By —“_
1
(3)
vy
The corresponding bﬂi‘j) has only two nonzero entries:

sl -

———lid}—ﬂ(*‘)-—

_“EJ} (

))

-

(3) (J)wfd)

PP e
—

F g(d) s = 81 ai ’
: 1494
1
and
(3)
* N E . S
: . 1+01(J)

| o recatt that Jo{d)] < ¢ ana lol)] = 16l p{ue@p @)y

where |p§d)l <e¢, eand |T§J)| <e + So

 omcece S ooy S »— B -~ A o S - N o—an BENN seecs SR vomins

(1) 2

I and thus

: 2

he +¢
5 () 4 1a03)) < 281*8
Igi l % |1\i l < f_el *
(k)
Each term in the sum composing 4G is bounded elementwise in absolute H

. value by

| —

e e AV A PSS TIT RV

<ttt o,

1 1
O O

———-fli‘j}l ITIEJ}I"'_HP) _.
1 o n ik 1 1 ’

Vid) “ij)

which equals

g
881ini)

ey |
WEIINE

which, in turn, is bounded by

(gl 1+in{))

Hence
Ioa®t < Hea®in < ™I E e 1S |-
But
120 = g .. 18-,
and

L0
| <n
I 1\1 l ’
and there are
fi (m-r,)
m-xr
&

terms in the expression for GG(k) « Therefore

+52

Le k
186 < m =22 ¥ (nr,) .
seq—) (e

-el

Finally we wish to establish the relationship between the basic

k)

matrix B) and the factors L, %), and U(®) of its numerically

computed decomposition. We proceed inductively.

e /| 4Ja =

 aoonaces S aecess S mooe B —— N ——— I = B ~—]

=2 A BB £ 5093

————d

sore - : SerI T IS TS LA

Ir B(o> is the tasic matrix initiully decomposed, then matrices

L and U(o) are computed such that

0) 0)

B(+ 68(0) = LU(
For the moment we neglect the superscript (0) . The decomposition

is produced by letting

]

1-1
1 = fl(bij- vgl 'iv"vj) for 1<
and
11
j-1
i] ‘iJ = fl[(bij- v)gl livllv.j)/".j.j] for 1>J,

where J 1is assigned in order the integers from 1 to m, and for

each value of J, 1 1is assigned in order the integers from 1 to l

m . The inner products

Eil %il
1, L and L,
&1 v vj G vl

are, as usual, to be computed in extended-precision arithmetic. Thus,

for each pair of values for i and Jj, if we let

W= min{i,;j} ’

60

then we set

and

Py41 = pv(lﬂlv) - li»‘lVJ(lwv)(1+cv)

fOI‘ \)=1, 2’-.-,“'1’

where lnvl, Iovl, and lcvl are all bounded by €y - Finally,

if 1< J we set

and if 1> jJ we set

tyy = (p/uyy) (L) (14p)

where |(p| < € represents the error committed in reducing pu to
normal-precision accuracy, and Ipl < €y represents the error committed

while performing the division. We may also write, for the sake of

symmetry,

uiJ = Pu(l“'tp)(l"'P))

—

e e R R

b ik R R DR VT ORI S i EPRRUSEA. | rr oy

it p =0 1in this case. Thus, in general,

! o= (14 +
13 (1+¢) (1 p)pu >

where we have used the fact that lii =1 ., We find alsc that

p=l
B, = by QB; (1+nv)

_ 4
5 il
- tou (140) (1+C) (147)
Kol iK'k K K i 1 Y
|
Therefore |
w-1 l

-1 -1 -1
byg = £3,8,5(140) " (14p) | (141,)

K
Bl -1
+ Kgl B (149,) (14€,) v];[l (141,)

That 1is,

p-1

“L(349)"2
8o,y = -ty u (1) H(1tp) H(lm 1)

&= =J T/

K

uil
- T Ay (10,0 (13¢,) H ()

K=1

Thus
2el+e
|6b13| < I‘iu“p3|{(“'l)‘2 * e, o [1+(u-1)es]]
3 ! / ﬂ
g + Z 250l (k¥2)e il
£
{ And, since =
b1
f max
i
we have I‘ ‘ﬁ
L I
2
' 2e. te u
2 max / 171 ’
H ol <o 5l fmnddey + sy Cioton)egld

Now suppose that, after k exchanges, we have

206 4 yp(8) | oK)

03

ey S e S s S vesnst S cret

That is, columnwise

Let B

[B](_k);-'-: Brflk)] + [631(.1‘);--')

-,

(k+1)

63“‘):
m

o)y

be formed as described in the preceding chenter. That

is, drop column Bﬁk) from B(k), shift the rk+1St through the

th

k

m column left one place, and append the column As « The deccm-

K (k)

position is made to reflect this change by modifying U +» The

column U

pcsition to the left, and the column H

Ty

approximation to

is appended.

From previous discussions we know that H

where

(11009 (oK) 01) _

"A(k)” < {(m2)e], + ",

Al

m

fL

(k) is dropped, the subsequent columns are shifted one
(k+1)
b

which is the computed

(k+1)
m

satisfies

S¢

m-l)eé]]m 5

i

epg

Therefore

1) A - [E(k)ﬁ(k)c(k)%(k)s(k)]H;m)

k

= A +6A

So that columnwise

(k) (k) (k) (k)
[B;™,..., Brk_l, Brk+l,..., By s A

+ [63{1‘) sp{®) | gp(K)

k

(1), glie)

(k)
§seey r-l, rk+l’clo’ 6Bm]

]

6Ask]

- Lc(k)[ugk),..., Uikzl, ul®) o), Hik“)]

+,...,
rkl

- 1a{K) (k)

At this point the transformations

I,(1c+1)n(k+1) r(k+1)n(k+1)
m-1

k Tk

m-1 r

e B

G A a3

|
|
|
1
1
I
I
I
]
]

Gl b L)

Gl ol Gl fad Dad

are applied to H

mations

(k+1)

o) (e#1) (e#1) ™

is taken as G

Ty Tk

(k1)

Columnwise we have

U(k+l) _

1

ylk*l) |

k-l

and

k+l) _
(k+1) _
Um-l

(k+1)

fl{[F

fz{[r

y(k+1)

1

g(k*1)

k-l

v Tk

(k+l) (k+l)
m 1

(k+l) (k+l)
m 1l

Hence, from previous discussions,

H(k+1) _

1

g(k*1)

rk-l

U§k+l)

ylk+l)

k-l

C~

(@)

to produce U

(k+1)

« The product of transfor-

gyt

= £a{[r k+1)n(k+l)]H£k+l)}
k

m-l
(k+l)n(k+1)]H(k+l)}
rk Ty

Dy o)y

|
|

area o N vese

and
Hz(‘k+1) - [°£k+1)+6°£k+1)]uﬁk+1)
Tk L k
H{Slk-f-l) - [o£k+1)+;°£k+1)]uék+1) ,
where
Ile(“*l)ll < mii%:—;i (3+1-r.)
with

olk#1) | [(k#l) (k#1) L(k#1)p (kt1)

J J J e Ty Ty

for j #m, and

°(k+l) . ¢(k*1)
m T 'm-l

However, because of the special forms which the vectors

(k+1)
m

and the matrix ¢ have, we may replace

(k+1) _ . (k+1) . (k+1) 4, (k+1)
HJ —[oj *”3]Uj

67

=3 = =4

_ == =

e = e

for each j =1,..., m by

KD (D (k1) | y(er1)
i m J

bood bod boed bmd od O Om9

where
Y(k+l) .. Y(k+1) - 0
1 r -1
k
and ;
- 3 !
' Ul
F (k+1) (k+1), (k+1)
Y\) = 6@\) U\) for v = Tppeeey Moo 6

Thus 1

—d

gk 1) 0r(nk.+1)U(k+1) 4+ ylk+1) ,

Y(k+1)

where is the matrix with columns ‘i’gk”') . Therefore

[s -3 e _:

p(k*1) , g(k+1) _ o (k) (k+1)

- LG(k) [¢r(nk+1)u(k+1)+y(k+1) |

3:’;9 L'

or, 1t ¢ &1 | G(k)®;k+l) .

p(ktl) | (k1) _ | (k) (k1) - Lol (ke)

£8

‘

A

That is,

p(k*1) , gpitl) _ 1o (k+1) (k41)

+ 4B ’
and the induction is complete.

To bound ||6B(k+l)”’ we note that

(k*1) _ rap(k) (k) (k) (k)
8 == [6B1 greey aBrk-l’ 6Brk+l,-|0, 6Bm) 6ASR])

ba, = - (15®)(Klg(k) s (k) py(e)

and

Y(kﬂ.) - [‘,gkﬂ)’m, Yikﬁ)’ Yf‘kﬂ)’“.’ ‘,ékﬂ)]
k k
(k+l)U(k+l)

M(k"'l)u(k*l)]
T T m ’

=[O"'0’ 0, 60 m

greey

Now
Gl 1= egaley 1O agalid) =06y ulis)y

2
meltl“f‘l s €

A

llsag

A

1_51 igl (m-ri)+{ (m+2)eé + i?q [1+(m-1);é]]

be . +e. k

=

1

{1+ (
l-e;, &

-

69

wer) IS

- k-4 bed P e

A

| o | L e]

A 4 4 o ,

=0 I iy

| s o

PR

which we denote by P(k+l) - So, if

B(k) N max]bb)I

then

nax{8(¥), p(k71)y > e

Furthermore

max lw(k+l)| < mgx H6®§k+l)ugk+l)”
(
J

max ”6

k+l)” max
J

{k*1))

A

() flu

1

+1-1
(m*+1-r k) 1,3

which we denote by R(k+l)

max lbb(k+l)l max ’e k+l)' + p Mex IW

and that

lez™*) < || o B 4 rgkd) g (kHL))

< m[maxb@(k),ﬂ°(k+l)] + mﬁ(k+l)]-

) max | (k+l)l ,

Therefore, we may conclude that

‘k+l)|

i
g
1
i

T

AN WIS o

—l—j -‘-—&J‘

To recapitulate: If we are asked to compute the vector v

satisfying

‘
o———d
_— e omr—

38y = 4

via the modified LU decomposition

5(K) 4 gp() _ o000

we actually calculate the vector t, an approximation to v, which

satisfies
(B(k)ﬂ,,(k))t .
vhere
e(6) _ gpi) , 1 (k) () |y (k) (K))

v 86805 o+ Laa®)yy(®)

+ 816aul) 4+ arac()y(k)]

+ o186 (Wgylk) | l
Now

€
/ 1 /
8Ll < mf (m+2)ey + Toe; [1#+(m-1)egl}

i

h
IGG(k)ll <m 115 L Z (m-r) 3

and

D¢ -
l6u®)] < nf (a-1)e, + il L, fae(meneg)) 125 48]
-el

And in order to bound IIGB(k)”: we let

80 - n 2% 1l L)y

1<3 12 [1+(m+1)e 1)

e

and

glk+l) max{@‘k) P(k+l)] + m (+1)

for k=0, 1, 2,... » This makes

ll&B(k)II < mG(k)

for all k .

Thus it is possible to compute a bound on !Ie(k)ll at every
execution of the simplex-method cycle. This will be the foundation
for the a Eosteriori bounds developed in Chapter 9. Moreover, an
a priori bound on ||8(k)|| for all k, expressed only in terms of

the given data, could be given at this point. The bound would be

|

. 5 : 7 9 o
! = a 0 . P i - P Ay
£t 0 ot b i 8 e £ Pt it it o TV PPEP SR R PUIT W i, b aCiatadi st i

extremely large and of no practical value, but its existence argues a

numerical stability for the modif'ied LU implementation of the simplex

method which was not present in the explicit-inverse implementation.

This a priori bound would be grounded upon the following considerations,

round-off effects in the computation of u£§) and h(

for the moment:

m-r <m-1 forall i,

max |, (0) m-1 max
i<g 131 S8 4,5 1%

(Wilkinson [13, p. 97]), and

max | (k)

max
i<y Ui | <m Ihl

p)

(Wilkinson [14, p. 218]), where

"X 0] < max(L3V)y

and

10 = o=y)
sm Taj |a, JI (approximately).

13

for all k=1, 2,...

) being neglected

b=

-4

| S
o

[REee
P

§ - ammar ¥ []
. | o e

— s ke e il b b

I
N
i
1
1
I
]
|
I
I
1
I
I
I
1
1
|
1
1

Finally we must note that one of the systems of equations to be
T
solved in the simplex-method cycle uses B(k) as the coefficient

matrix. It can be shown that, if t 1is the solution to

B(k v =4q
computed via the modified LU decomposition for B(k), then t satisfies

T
k) g (k)ye ©)

where any bound on Ha(k)H is also a suitable bound for "3(k)” .

bed bod oed Omd ONS

d d d

]
PSS {

al el bl bl 2

8. The Standard LU Implementation

of the Simplex Method

The round-off error analysis due to Chartres and Geuder (2] which

holds for the conventional method of solving a linear system

Bv

]
o]

via the LU decomposition of B was covered, in passing, throughout
the discussion in the preceding chapter. It is worth a quick review
for its own sake, since we wish to describe an implementation of the
simplex method in which this error analysis is valid.

-

The decomposition of B 1is produced by letting

i-1
.= T4 = SN u i < §
U, f (le éﬁ 1vqu) for 1<,
v-—
and
-1
L. . = f[(v,, - J S PO — i >3 .
1 [y Zl LA IR

From this we find that L and U satisfy

B+§6B=1U,

where, letting u = min{i,j} ,

~
ko]

b s |

e

- -

2
8,] < [2,u [{(pedef + ok
130 = Py pgltie-ties (1-e1)2

-1
+ uz le, w . |(k+2)e)
£ i 2

A vector w satisfying

(LHL)w = q

is produced by letting
i-1

w, = fl(qi - gl lijwj

for i=1, 2,..., m, where

[14(-1)eg))

€
j 3l ;
'“11' < (1-1);2 + T, [1+(i-1)52] ,

and

Finally a vector ¢,

(VHU)t = w ,

76

approximating v and satisfying

=4 =i i ued = Omg Omg

Bad Los o3 =3 & tad bl e

l

is produced by letting

2
ey vey

'6'11| < ((m-i)eé + 5 [l+(m-i)eé]}'lii| ,

(l-el

and

» r ! . N
lbuij' < (J-1+£)52|uij| for j>1i .

Hence the vector t satisfies

(B+3)t =q

e

where

€ =8B + 8LU + 18U + 818U ,

or

eiJ = °b13 + ;Z& (6liKqu+liK6qu+GtiK6qu) . ?

[o o o

(1
ey | < 121l ey ! |
e < |1, {(u'l)c' + [1+(u-1)e 1} !
- i 2 2 2
iJ TN (l'tl) N
- |f
15
+ + |1 + (82
I“ip.uujl | iu.°“udl |6 iLLeuml |
bt €Yol 4 2 ﬂ |
+ Zl |2, n | T (34t6)ep+ (k42) (3-x+2)ey ") l
K= " ;
L "
|
where, if we let 4 ‘
i
251+e]2. 1 i
A= (m-l)eé +) [1+(m-l)eé] ’ n !
(1-¢; |
m |
as t I
we may st the bounds
(
”“ijl for i<j,
Iuiv-uudl < é)\lujjl for 1=9J, and
(m+1)|zijujj|eé for 1> ;
L
(1 2
(m+l)|ui‘jle:2 for i<j,
lliu.éuujl < 4 xlujjl for i=Jj, and
xl:ijujjl for 1>] ;
78

and

r
x(m+1)|uijlgé for i<}j,
2
lazipbuujl < < A lujjl for i =3, and
x(m+l)|lij-jj|52 for i>J .

L

This gives the result

| i l2, i+K+6 ‘ ¢!
Ieij < Egg linKJI[(J+K+)+(K+2)(j-K+2)52]52 |
.Y
e ' ' . .
[2k+(m+l)€2+(m+1)k€2]luijl for i< j,
2 0 I3
w2 < [3)\'.')\],uj,jl tor 1 =j » and
aa+(m+l)e/ +(m+l)ne)2, u,.| for i>J .
| (n+(med)efr(medneg) | j
Let us set

= eé(l+25é)

and

™

=) + (m+l)eé + (m+1)géx + xe .

As estimates, then, we will have

(~— ’
Er s Ep By

19

G G a o O d d Sod God bod od Od o) d d Od Od Od O

. CUSSEE P Tty

and .l
{
1 |
el =)\ =~ 251 . i
]
i |
L Using these, we may write T |
f
(r
2‘1'“13' for i<y, il
leg41 < 2(343)e, 21 48,0 § 3ey vy for i =3, and -
|2, u,,| for 1> . = .
G B e .
!
de
|
This leads to the bound - |
||
max m |
llel < m |e 5| < ml3E +2m(me3)e,) <] uy i |]
’ 1
The argument concerning a priori bounds which was given in the ‘E
last chapter can be applied here as well. That is, by noting that 'i .
J !
m-1 max ' |
il el L | 1

we may place an upper bound on ||&] a priori, in a simple fashion, in
] ‘
terms of the given data. For the purposes of the a posteriori bounds I .

to be discussed in Chapter 9, the quantity) l

A A] |
: 80

s i SeDialiininiin}

can be computed within each execution of the simplex-method cycle. This
quantity, being only a constant multiple of ng Iuijl » has better
behavior than the computed bound on He(k)ﬂ a;velOped in the preceding
chapter. For, initially, the modified LU implementation and the standard

LU implementation are the same. That is, d3(0>” has the bound which

we have just given above. On subsequent executions of the simplex-

method cycle, however, terms depending upon the transformations G(k)
enter the bound for ”e(k)H . These terms bring in the quantities
k
Z (m-r,) and /3(k) ,
i
i=1

which grow roughly in a linear fashion with k and cause the bound for
HE(R)“ gradually to grow larger than the bound given above for ”8" .
Finally, we should note as in the preceding chapter that :if we

solve a linear system

via the LU decomposition computed for B, then we actually calculate

a vector t which satisfies

(BT+%)t = q ,

where any bound on [l&| is also a suitable bound for || .
The error analysis given above can be used in the context of the

simplex method as follows.

|

Let

; be the current basic matrix, and let L and U be the matrices of

its computed decomposition. We assume that the order of the rows in

B is such that the partial pivoting strategy produces no row reordering.
If the simplex method cycle is carried out to produce the new

basis

{A ,..-, A , A

o o

r+l m

then let the new basis matrix B’ be constructed by dropping the rth
column of B and introducing As in its place. In this case the
decomposition matrices L° and U’ which would be computed from B’
using the partial pivoting strategy differ from L and U only in

the shaded areas indicated below:

B

[

: be

=3

b

e
o

.*.
OS]

r
U’ r
Thus, only in the shaded areas must the elements lij and u;j

be computed, and only for the last m - 8 + 1 rows do row interchanges
have to be considered. The saving of work implied by this is considered
in detail in Chapter 1l. But in rough terms, half the work needed to
compute L° and U’ from scratch is needed on the average to update

the LU decompositicn of B to the LU’ decomposition of B° . Even
50, this amounts to an order of m5 operations for the average execution
of the simplex method cycle. The conventional implementations of the
simplex method as well as the modified LU implementation described pre-

viously require only an order of m2 operations.

’%

9. Error Bounds for Linecar-System Solutions

Found by LU Decomposition

We have seen that the round-off errors committed in computing the

solution v to the linear system

Bv

]
om

permit only an approximate solution v + 8§v to be produced which

satisfies
(B+e)(vHv) = g
for some matrix &€ whose norm we can bound. Thus
8v = - B-le(v+6v) F
and so
lovll < s~ llell ivesv] .-

Since "v*év” can be computed and an upper bound on H&”

available, we can bound [|8v| by finding an upper bound for

is

e T T T I T PR e —_——— e ——" T —

i.e., by finding a lower bound for xmin(BBT) .

Let the eigenvalues of BBT be

_ T
s M o=)‘min(BB) < Ao Seee Shp

We can compute the sum of these eigenvalues as

m m

d = i ki=tr(BBT)=)} ; bfj.
i=1 =l

i=1

Further, if we have solved the given linear system via some decomposition

B+8B =W,

where det(V) and det(W) are particularly easy to compute, and a

bound for ”GB” is available, then we can compute an approximation to

the product of the eigenvalues as well:

[det(B+6B)]2

L]
]

m

[T »,([B+B](B+3B)")
i=1

m

Il », (sB+smB"+Bs5™+em88") .
i=1

But BBT and 6BBT + BGBT + 6B6BT are both symmetric matrices. Hence,

it follows that

I
I
I
I
I
I
I
I
1
]
]
]
1
I
]
1
]
1
i

xi(BBT+bBBT+BGBT+6BéBT) = Ayt 8y
for each 1, where

lax, | < llemBT+BsB"+s 88" .

(See Wilkinson [14, Chapter 2, §4l].) Suppose, therefore, that
K > |lsBBT+Bs BT+sB8BT)| .
Then
|8, | <k
for all i . And

m
P = (A;+8N.)
iLL i i

m

m
d= (A, +8\.) - 8, -
igl 17 igl i

The best lower bound for kl = Amin(BBT) which we could hope to obtain

using this information would be the component 9 of the solution to

the following programming problem:

'T-"Illllll'-'l-l"-I-f-"""“""'-"""-'-----'-H-'--tWﬁ
.! . ‘ , '

H e L L e e

minimize f(ql,..., qm) = qp i

m
SubJeCt tO gl(ql,--o, qm) = Z qi - d - mKS O [

golas-evr g)= F g - d+mK20

m
g5(ay,--+5 q) =), logla,) - log(p) = O i)
L i=1

Using the method of Lagrange multipliers, we are presented with four

linear systems to solve: s
1. T |
f | l}
m L]
2. log(q;) - log(p) = © .
i=1 ;
< L ul/ql =0 . }
l = ul/qa = O
\ T B/ =0
which has no solution;
2.
(
I m .
-‘ Y. log(q,) - log(p) = 0
E i=1
;
ﬁ
m
} q - d-mK =0
i=1
1 - ul/ql ue =0
- b/ - By =0
= lJ-l/‘lm - '-"2 =0 ,
\
87

from which we first infer that

giving the equations

m-1
q,Q " =P

e i s et

ql W (m'l)Q =d + mK)

which imply that 9y must satisfy

s (m-1)m-l
Gq R d*mK-q;

.
3

(

il
(@]

m
121 log(q;) - log(p)

=

&
[}
(@]

m
q, - d
121 i

1-u1/ql-u2=0

‘ 13 A Y

= ul/qa = ue =0

\ - Hl/qm = ue =0,

N

ol bl bod bed

|

B w1y
3

whose solution, as with the preceding system, has a first component I
which must satisfy I
q, = p(m-1)m-l . -
- T o o~ ’
1 d-mK-ql 31
L J
and e
h. r m aw
log(g;) - log(p) = 0 %
i=1 ~
m .,
)} g -d-mK=0 :
i=1 2k
m |
<)} g -d+mK=0 g
i=] =
1'ul/ql-u2'u-3=0
|
"U'l/qe'ug'uB:O ©
. . -
'ul/qm'ue'u3=0: - I
. .o
from which we first infer that
!’
q2=...=qm=Q, _]1
LY J '
7|

bend ueed Gomd g

4

giving the equations

r m-1
qu = p
é ql + (m-l)Q =d + mK
q, + (m-1)Q = d - mK ,
L

which have no solution.

Thus we use the lower bound

A 2 mex{q, a),

where 4 Q. satisty

,/ m-1 m-1
oA\ Ty)

If F 1is a real matrix of order m with positive eigenvalues,

the fixed point f of the equation

m-1)m-l
trZFs-f

f = det(F)(
is often used as a lower bound for xmin(F) (Bodewig [1, page 69]).
The fixed point is found iteratively with f = 0 inserted initially
into the right-hand side. With this background, it is easily shown

that

\O
2

q_ = max{q,, q_}

For, in the iterative production of Q, and q_ we let

RONIRC N

and

m-1
i+l m-1

q:mK-q+l

for i =0, 1,... . Thus, we proceed inductively. Initially,

Suppose

(1) 5 o)

for some i > l . Then

So

m-l
d mK- q d+mK-

—a

141 1+l 1
) o) .
1 qQ_ = lim qu) > lim q_f_i) =q, -]
4 i+ i =0]
{
-* Therefore, if 2 > [lel, we can bound |[8v|| by |
1
o
. levll <\f1/a_ zllv+svil .
I
-
b ¢
l
-
03]
|

.])] . X

] 1
[=Y

L 2
5 el b bemd
D
V)
- e ._.:"J&.“ru o

bed bed el ol O

—t —4d

TTRETT W wonyr e

10. Employment of Error Bounds in the

Simplex-Method Cycle

Fach study which we have made on an implementation of the simplex

method has led us to conclude that, in solving the systems

Bn=y¥
Bu=o>»
By = A

computationally, round-off errors permit us to produce only the approxi-

e s it

mate vectors

m+ b, utbu, yt+8y.

From these studies we have also determined how bounds on the errors

A
€

l&nll <
8ull < 7

layll < o

can be computed.

Furthermore, in computing the objective function

we cun produce only

z + bz = (n+6n)Tb

= nTb + énTb
=z + 6n£h 5
su that, letting
¢ = o],
|62] = Jon™v| < lonl o] < ¢
Likewise, in computing
s T o

tor { {vl,---, vm}, 1< Jj<n, we can only produce Ej + GEJ J

where
- T
N Al <(.
65,1 = lsn"a] < ¢,

f'or o= WALl .
¢, = ol
These bounds may be used to give warnings that round-off effects
have become harmful. As an example, at each execution of the simplex-
method cycle the test that B 1is, indeed, a basic matrix is that

u> 0. Conceivadbly round-¢ff errors commivted during the previous

2
=

e 0 bbb : a

execution of the simplex-method cycle cun have caused Lh: wron: cojunn

to be moved to or from the basis. Ac & check on u, then, ve note Lhat,

for any i,

- S if u, + 8u, >
u, >0 if u 6u1 N >

and

.o

u, <0 1if u, + 8u, <-7.
i i i

If neither of the above hold, then we shouldn't draw conclusions about

! the sign of ui . Thus, if for any i 1t is discovered that
=
- o + <

ui 6ui_"ﬂ:

*t

|
- 4

then the computation in the previous execution of the simplex=method

i
13 cycle bears a second look.

Similarly an improper exchange of columns in the previous execution
of the simplex-method cycle may have produced a basic matrix, but one
for which the associated objective function value shows a decrease
) rather than the increase which it should. Let % + 0% and & be
_E respectively the previously computed objective function value and

associated error bound. Let z + &z and & Dbe the corresporcing

i

values for the current execution. Then

2<z if 2+82+R <z +bz+¢g,

bmd bed

e AL Y AR TR S 4 PN OEITNR R

2<% if z+8z+€<7Z+482+2 . !

I |
If neither holds, the situation is indeterminate. Thus, if
I,
z+8z+€8<2z+8z+8,
the computation of the preceding simplex-method cycle could stand review. I
Likeﬁise the index s for which

- I 1

c = mln{cj] I

has definitely been found if -

c_ +8c + c. + 8c, -
cg bcs csscj 6cJ. 4

j e
- i1 '
for all J f.’ {vl,---, vm} and 1< j<n. And g is definitely il :
negative if .. ;
C +8c +(¢ <O0. 1
S S S } t
' j
. .
The execution of the simplex-method cycle can proceed if a value of 15 |
s 1is found such that only this last inequality holds. Otherwise each .f 1 i
i

Cj is nonnegative or has indeterminate sign, and as good a check as
possible should be made on the optimality of the current basic feasible

golution.

95

"y

It there is no value ol § for whic

then each yj is negative or has indetcrminate sign, and us rood a

check as possible should be mudc on the sima of each corpouent of vy
to establish whether or not the objective "unction is unbtounded from

above. If for each j the sign of y, can be determined; i.e.,

(9

either |

. t 6 .>(p
or

o+t 8y. < - :
NJ .YJ ¢ >

then, if r satisfies

+8u + . -
wttu 4 i+6?i,n

< -t
yr+5yr~(p - j+6y.j+q)

for all J such that yj + 6yj >, r is definitely an index such

that

u,
= min{ }i | § is any index for which Js >0}
J

4<|ws
[}

AR

Thus, tests involving 7, @, und ¢ cun be wade throyrhout

ey 2cution of the simplex-method cycle to determine whether the compu-

tations which have just been performed need to be 1nvestigated. The

needed investigations must be carried out by prcducing better wpproxi-

mations to the vectors u, 1, and y corresponding either to the

current basis or to the preceeding one, and ccmputing smaller error

bounds T, w, uand ¢ in association. This is most easily accom-

plished by iteratively refining the three vectors (Wilkinsen [13,

pp. 121-127], Forsythe and Moler (5, Chapters 13 and 221, Moler [7!).

Under the usual circumstances; i.e., if ¢, 1is sufficiently smeller

than el and the basic matrix is not too badly conditioned, iterative

refinement can be expected to improve the approximations to wu, m,

and y essentially to full normal-precisiocn aczuracy. In other terms,

M, ®, and ¢ can each be reduced to a small integer multiple of

El by the iterative refinement.. Cince the given data A,

¢ are only assumed gond to normal-precision accuracy,

b, and
there is no
reason to produce appreximaticns to u, mn, and y having more accuracy
It difficulries arise which

than that provided by iterative refinement.

cannot be cleared up by iterative refinement, it is reasonable to argue
that they should remain unresolved pending acguisitlicn of more accurate

data.

We summarize these remarks by presenting a variation on the simplex-
method cycle:

Main Section

1. Produce u+ 8u and T .

iroua, t 6ul <7 for any i, restore the basis used for the
previcus erecution of the cycle, and go te step 8.

9t

==

— =1 =y

. .
-~ ——

S S S

Sow

Produce 1 + &m arnd w .

Produce 2z + 6z and €& .

Let z + &z end E be the corresponding values produced
during the preceding execution ot the cycle. If
z+06z+€<72+ 6z -8, restore the preceding basis, and go
to step 8.

Produce Ej + 6'5], and Cj for each j § {vl,..., vm],

L

1<j<n . For one such value of j set

For each other such value of j 1in turn set
t =c.+ 8¢ -QJ_ and s = j
ir
EJ.+63J.+C3.<t.

Having finished, if

then go to step 9.
Produce y + 8y and o .

If y. + 8y, < for all i, go to step 9.
i 1iI1=%

%

— T e e e " _—

6. For one value of i such that y; * éyi > let | ’1
- '
u,+u, -1 i
t=tte and r=i. i |
yiroy e .
For each other such value of 1 in turn set t and r as
-
1
above whenever o
u, Hu, + "
T—i L o<t
yi yi-¢ *m
7. Drop A from the basis and add A+ Then form a corre- '
r !
sponding basic matrix, update a decomposition, or do whatever -
else is necessary to reflect the basis change, and go to ..
step 1.
Refinement Section
e}
8. Form the necessary basic matrix, compute a decomposition, and !
produce u + 8u, mw+48n, y + 8y . e

9. Refine u + 8u and produce a corresponding error bound T .
Ir uJ + auj <7 for any Jj, computation should be suspended, B

and an indication should be made that the problem seems to

be degenerate. g

10. Refine mn + 8n and produce a corresponding error bound .

. .
[Y

11. For each J ;’ [vl,---; vm}, 1< J <u produce Ej + 6-c_:J.

and Cj from the refined = +é8m and @ . Find s as in

]
[T

step 4. If Es + 635 > (s the optimal basis has been found.

.Lu,.l

190

o i

-t

If Cs > ES & GZS > - gs, the current bavis ic¢ prcbauly,
though not necessarily, optimal.

12. Refine y + 8y and preduce a correspmonding error bound ¢ .
If yi + 6yi < ¢ for ali i, computation should be suspended,
and an indication shoculd be made that the objective function

appears to be unbounded from above. Otherwise go to ctep 6.

We should note in closing that, if an implementation of the simplex
method constructed along the lines given above produces a vector X + 8%
as the computed approximation to an optimal solution, there is no way
of checking its closeness to any true optimum for the problem using
the information at hand. This is due to the fact that the components
of' optimal solutions to linear programming problems need not vary con-
tinuously with perturbations in the data. And round-off errors committed
during computation of the basic feasible solutions may be expressed, we
have seen, as perturbations of the basic matrices, and hence of the data.
A bound on 8% is useful only for delimiting the distance from some
basic feasible solution X and the computed vectcr X + 8X . The
problem can quite possibly have a unique optimum x¥* for which the

distance
[|x*- (x¥F%)|

is greater than the bound on Hé?ﬂ . Such a situation might arise, for

example, in a problem having one optimal point and one or more widely

separated nearly optimal pcints. Then round-off errors can quite

possibly cause the computed approximstion to one of the nearly optimul
points to have a higher associated value ot the objective function than

does the approximation to the optimal point.

1oz

— = =~ bl

—4

-

§~rmurg

» . P
PESm—— [re—] o v——

[.
[&t]

T A U O D

11. Cecmpariscn of Implementations by

{peration Counts

It is our final goal to compare the computational effort required
by each of the three simplex-method implementations which have been
studied- These implementations differ only in the manner in waich wach
produces the vectors u, m, and y . Hence, a measure of the work
done by each to produce these three vectors will constitute a satisfac-
tory comparison.

Traditionally the number of multiplications and divisions (prciuct
oEerations) needed to carry out a computation has been the measure of
thie work needed for that computation. The reascn fcr this lies in s
much slower speed at which earlier generétions of computers have per-
fcrmed product operaticns in ccntrast to their speed of perferming

additicns and subtractions (summation operations). As machines are

built with more nearly uniform speeds for all arithmetic operaticns,
this traditicn 1s becoming indefensible. In the programs discussed
here, however, computations are composed of inner prcducts cr of
additions of a multiple of one vector to ancther. Thus, each product
operation generally gets paired with a summation cperaticn, and the
ccnvenience cf counting only the product operations may be kept.

We begin by considering the standard LU implementation, since
several of the operation counts which we derive for it are applicable
tc the modified LU implementation as. well.

Consider solving a lower triangular system

103

A RSN DTS

= T e

if the first k - 1 components of v are known. The components

Vk""’ vm are produced by setting

in order for i = k,..., m . This requires

(1) + () +ooet (1) = RleD=(1)(c2)

product operations.

Consider solving a lower triangular system

if the first k - 1 components of v are known. Here, for 1i =

in order we set

i s e e ;ga Uy gVl

so that the cost to produce v is

_ m{k+1)-k(k-1)
2

k + (k+l) +...+ m

product operations.

To produce the vector u 1in the standard LU implementation, we

solve, in order,

104

Kyeooy m

—l = e o oo O @D

-

Lt = b ,
and
Ju = t .
But the matrix L is identical in its first r. -1 ailumns witk the

0 %

lower triangular factor of the basic matrix used ir the previcus «xccu-
tion of the simplex-method cycle. 'Thus, if the vector t 1is savzd trom
the previous execution of the cycle, since the vecter bt is constant

throughout, only the compcnents tr 9P 00 g tm need pe produced anew,
o)
which costs

m(m-l)-(ro-l}(ro-E)

2

product operations.
In solving Uu = t, no reduction in effort is afforded by raving
an cld copy of u available. The cost to produce u will bte e¢qual

to the cost of preducing all components of v from the system

.

U'v =g ;

that 1s,

prcduct operations.

IR S e

To produce the vector n we solve, in order,

(e

=
H

<

)

and

et

=
"
£

But the matrix UT is identical in its principal submatrix of order

ry - 1 with the corresponding matrix used on the preceding execution

of w can be used to cut the cost of computing n to

m(m+1)-ro(r0-1) a(m-1)
2 *=2

product operations.

No saving in the production of y can be arranged. The total

cost required for the computation wil®! be

m(g-l) + m(2+l)

product operations.

1

of updating the LU decomposition. The areas which change are shown

sheded next:

106

of the simplex-method cycle. Similarly, the vector y does not differ
in its first ry - 1 components from the corresponding vector used cn

the preceding cycle. Thus, as was done in producing u, an old ccpy

Finally, if the execution of the simplex-method cycle results in

the change of column r. of the basic matrix, we must count tiie cost

P

 —

bed beodd omd

-t

4
-

S .
s 1
V(///l O

Now, a partial cclumn of the LU decomposition,

— V) .
" oy
0 oo
v=L,v
v - 1 VY
vV
L 0
V+l)V
! 0 ,
M,V

is computed by first letting 1 =p, p * 1,..., v in order and setting

Eiﬁ
u, =b, - Loou, o,
LIRS T ~ P A

-

which requires

(H'l) +tp toot (v-1) = V(v-l)é(u_l)(u_g)

LD

156 44 RN RTINS IR

2 &5

s

product operations, and then letting [=v + L,....m 'n 2>eder and

setting

u)
AV}

which requires

(m-v)v

preduct operations.
Tc completely update the LU deccmposition of the basic matrix,

it is required that column r be fully recomputed, and that cclumns

Ty + 1 through m be recomputed from row number ry on down. This

costs

r,(r -1)
—L—ei——w + (m-rl)rl
m k(k-1)-(r,-1)(r,-2)
Y 21 L4 (mek)k
k=r.+1 |

product cperations.

Using the equalities

m -
kf;-lz = % [(m+L)m(m=1)-(r +1)r. (r =17
k=r_ +1 1 iy

1

s

o il il st R i B T —— "
“’“‘- sl adiood 1 e]‘_..‘..‘:-. £

Gl D G O od Omd bwd bond bd od bod Ood o) d Od od Od O O

|

¥ O
WT — 'v*'vr-ﬂ
\
and
m m m 5
Y (mk)k=m k-) k
k=rl+] k=r_+1 k=rl+l
m m
=) ¥ k- Y k(k-1)
k=r_ +t1 k=r_ +1
1 1
1

ﬂ%l [m(m+1)-rl(rl+l)] -

we find that the cost of updating is

rl(rl-l)
2

product operations.

-+

(r,-2)(r,-1) (n-r)

4

5

m-1

2

3
3
= ? - mri + 3 ri + 2mr

2

[a(m+1)(m-1)-r, (r *1)(r;-1)]

r(nr,) + % [(m+1)m(m-1)- (x,+1)r (r;-1)]

(m{m+1)-r, (x,+1)]

1 [(m1)m(m-1)- (r +1)r, (r,-1)]

[]
Wil &=
3
+
AN
o]

Thus, to fully carry out the simplex-method cycle

using the standard LU implementation requires

5

m

3

mi+%ri+2m1'%ri'%m+gr1
m(m-l)-(ro-l)(ro-2) n(m#L)

5 * T2
m(m+l)-r -1

o{ro-1) , m(n-1)

2 2
m(m-1) . m(m+1l)
2]

109

product operaticns, which simplifies to

m 2 2 3 3 2 L 5
— = + = - 2 -
3 mrl 3 rl + 2mr1 5 rl 73 m + z rl
2 2
+ m - ro + 2ro -1

product operations.

This expression is not as useful as we would like for comparison
purposes, depending as it does upon the present and preceding exchange
through the numbers Ty and Ty

that each value for ro and r

However, it is reasonable tc assune
1 between 1 and m 1is equally likely
to occur. Hence, the expected number of product operations in any execu-

tion of the simplex-method cycle would be

|
J

3 m m 0
ﬂ-i-}mg-&m-l+ig v3-(m+-§) v2+(2m+l)
3 3 mf > Vgl e vgl BZ \)gl

or

product operations.
For the modified LU implementation some savings can be made in
the computation of the vectors u and n like the savings made in

the standard LU implementation.

110

-4

To produce the vector u we solve

and then set

b=t d i o=) O O

‘ k) (k et 1) (L In i)y,
| O+ R e) ol
3 k 'k ' 1 71
i and lastly solve
" e

i -

' LYY,

|

T However, on the previous execution of the simplex-method cycle we have
| '

l - already solved

! i}

1

| Lt =b,
and have set

LKD) [r(k{l)ﬂ(k'l) oo, pEelg(el) oy

Ut el Tr-1 Tkl C s L

(k-1)

Hence, if q is saved, we need only cet

(k) (k) (K)q (k)| (k-1)
m-lnm-l e Ty I'Ir Ja ?
k k. :
¥
i
110 A]
|
LR AL AR ; = S e AT

r!ﬁlgL;

and then solve

U(k)u = q(k) .
(k) ,
The production of ¢ costs m - Iy product operations, and the
production of u costs m(m+tl)/2 .
To compute m, we solve
T
U(k) W=y,

then we set

Kk 1) (1)F 1) (1)T k). (k)T k) (k)T
p() = [nil)ril) T2 né_%r;_i Il o0 [nik)rik) e H;_%Pé_i Jw
and solve
] LTn = (k)

Noting, as with the standard LU decomposition, what 1hings remain

unchanged from one cycle to the next, we find that the first step

"

] need cost only y
5 .
t {
L) : ‘
m(m+l)-rk(rk-l) l
2 ve
o 1|
l i
p] \
!
1.
l
112 '
| RN B e

s SRR AT

product operations. ‘ine second step costs
y 3
(m-r,) = km - r,
i=1 * =t
product operations, and the third step costs

mgm-lz

2

product cperations.
No saving in the production of y can be arranged, so that

vector's cost will be

K
m(m-1) . m(m+l)
st g tm-) T

i=]l

product operations.
Suppose the current execution of the simplex-method cycle ends

in the dropping of column number Tyl from the basis matrix. Then,

in order to update the basis matrix decomposition, we must construct

the transformations

(k+1)
m-1

m=-1 rk+l rk+l

(k+1) 11(k+l)n(k+l)

r it

(k+1)

and apply them to the upper Hessenberg matrix H to produce

+
U(k 1), as was described in chapter 6. Letting o =r ey m -1

k+1’’

in order, we would carry out the updating by:

115

1. interchanging rows ¢ uand ¢ + 1 it necessary,

+
2. making one division to compute the Guuss multiplier gék 1) ’ -
+
3. subtracting gék 2 times the cth row ot H(k+l) tfrom the . |
th - i

c+1 row.

In making this last step, only components ¢ + 1 through m of the

o+ lSt row need to be computed. Thus, for each value of ¢ we require

-1

m+ 1l -0 product operations for a total of

+.o.04 (mtl-mtl) = 2 + 3 +...+ (m+l-r

(m+lory) ke1)

—

(m-ry 1) (m-ry . +3)

4 -
2

Thus, the measure of the work needed to carry out the kth execu-
tion of the simplex-method cycle using the modified LU implementation -~

is

“ﬂam

= Mgy Yot TG T |
+ﬁ+m+m-r) i
2 2 k 3
+£+E-i+3+km-fr+m—2-ﬂ .
2 2 2 2 & i 2 2 'i
+-m—‘2.£1+km_§r-t-m—e--f-m S
2 ~ 2 s 12 2 ; {
T

.- o
[e &]

111

——

Nt ot o

bed e ed eed ed eed end o) O OE D

e

| I = |

ond bod bmd ped el

product operutions, which condenses to

2
r

2 . kL Tk
2

Again assuming thut each value ot rj (j=1ly-+., k*1) between 1

and m 1is equally likely, we would expect to perform

3m2 + (2k+3)m + % (m-2-2k)

<
agE
<

1

2
- Im , om
=5 + > + km - kK -1
product operations on an average execution of the simplex-method cycle
using the modified LU decomposition.
For the standard, explicit-inverse implementation of the simplex-
method cycle described in chapter 3, the order of proceeding is slightly

!
different. The cycle begins with u and tn already at hand, and

the vector y 1is produced by forming the matrix-vector product

which costs m2 product operations.
After the exchange o¢f column AS f'or Av in the basis, columns
r
1 through m of the matrix D must be updated by applying to each

the Gauss-Jordan elimination which reduces the vector

to the rth unit vector. That is, the rth row of D is divided by F !
tr ; then, for i =0,..., r-1, rt+ 1,..., m ti times the rth YOW ::
is subtracted from the ith row of D . In all the updating requires 1
m(m+l) product operations. T :

Finally, the same Gauss-Jordan elimination is applied to the s

vector

at a cost of m + 1 product operations.

Thus, one execution of the simplex-method cycle using this explicit-

inverse implementation cests
| om® 4+ 2m 4 1 |

product operstions. This is to be compared with the

2

of the simplex-method cycle using the modified LU implementation. And .

it is to be compared with the

—

}

|

. +th !

product operations needed on the average to perform the k execution : |
i

r

m” M & 1}
— 4 jnl o s

(

product operations needed on the average io carry out th: simplex-metnod
cycle using the standard LU implementation.

Since k does not generally grow larger than a small multiple of
m, the modif'ied LU implementation does not require signiticantly morc
work than the classical implementation. Guarante=d rumerical stabi.ity,

in short, needn't be expensive.

LI

(1]
(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

(10]

[11)

(12]

(13]

[14]

(15]

Bitlicgraphy

Bodewig, E.: Matrix calculus, interscience Publishers, 1G56.

Chartres, Bruce A. and Geudsr, James C.: Computable error hounds
for direct solution to linear equations, J. Assoc. Comp. Mach.,
vol. 14, Jan. 1967, pp. 63-71.

Clasen, R. J.: Techniques for automatic tolerance control in
linear programming, Comm. Assoc. Comp. Mach., vol. 9, no. 1l,
Nov. 1966, pp. 802-803.

Dantzig, George B.: Linear programming and extensions, Princeton
University Press, 1965.

Forsythe, George and Moler, Cleve B.: Computer solution of linear
algebraic systems, Prentice-Hall, 1967.

Hadley, G.: Linear programming, Addison Wesley, 1962.

Moler, Cleve B.: Iterative refinement in floating point, J. Assoc.
Comp. Mach., vol. 14, Apr. 1967, pp. 316-321.

Mueller-Merbach, Heiner: On round-off errors in linear programming,
paper presented at the joint CORS-ORSA conference, May 28, 1964,
Montreal.

Rabinovitz, Philip: Applications of linear programmning to numerical
analysis, SIAM J. Numer. Anal., to appear.

Storﬁy, Sverre: Error control in the simplex-technique, BIT,
vol. 7, 1967, pp. 216-225.

Wilkinson, J. H.: Rounding errors in algebraic processes, Pro-
ceedings of the International Conference on Information Processing,
UNESCO, 1959.

Wilkinson, J. H.: Errcor analysis of direct methods of matrix
inversion, J. Assoc. Comp. Mach., vol. 8, 1961, pp. 281-330.

Wilkinson, J. H.: Rounding errors in algebraic processes, Prentice-
Hall, 1963.

Wilking_u, J. H.: The Algebraic eigenvalue problem, Oxford Uni-
versity Press, 1965.

Wolfe. Philip: Error in the sclution of linear programming problems,
in Error in digital computation, Louis B. Rall ed., Wiley, 1965.

PO SO OIS BT

\

BT g

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classificetion of title, bod/s of abatract and indexing annotation must be entered when the oversll report ts claas!lied)

1. ORIGINATIN G ACTIVITY (Corporate suthor) 28. REPORY SECURITY CLAISIFICATION
Computer Science Department Unclassified

Stanford University 28. arouP
Stanford, California 94305

3. REPORT TITLE

A NUMERICAL INVESTIGATION OF THE SIMPLEX METHOD

4. DESCRIPTIVE NOTES (Type of repert and inclusive dates)

Manuscript for Publication (Technical.Report)

S. AUTHOR(S) (Laet name, firet neme, initial)

Bartels, Richard H.

6. REPORT DATE Ta. FOTAL NO. OF PASES 75. NO. O™ REPS
July 31, 1968 122 15
80. CONTRACT OR GRANT NO. 90. ORIGINATOR'S REPORT NUMBER(S)
NOOO1k4-67-A-0112-0029
& PROJEET NO. CS 104
.. . :Luw"’onf NO(S) (Any ether numbere that may be aaeigned

d none

10. AVAILABILITY/LIMITATION NOTICES

Releasable without limitations on dissemination.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

——— Office of Naval Research

13. ABSTRACTY

‘Thég report analyzes the behavior of the round-off errors associated with three
different computer implementations of the simplex method of linear programming. One
of the three 1s representative of computer implementations in common use, and it is
shown that the standard method of updating the basic-matrix inverse is numerically
unstable. The remaining two implementations are suggested by the author and use
triangular decompositions of the basic matrix »s substitutes for its inverse. The
implementations are shown to be stable, and one of them is shown to be competitive
in speed with the standard simplex-method computer implementations. Error bounds
which may be calculated from intermediate results are developed for each of the
three implementations, and their use during computation for error monitoring and
control is discussed.

DD.."%%%. 1473 Unclassified

Security Classification

it T ———

