
^ 

CS 104 

00 A NUMERICAL INVESTIGATION 

t* OF THE 
so SIMPLEX METHOD 

3 
BY 

RICHARD H. BARTELS 

TECHNICAL REPORT NO. CS 104 

JULY 31, 1968 

AUG131968 

COMPUTER    SCIENCE    DEPARTMENT 

School of Humanities and Sciences 

STANFORD UNIVERSITY 

y /~v 

.   •. 

RaproduMd by Itw 
CLiARINGHOUSi 

for Fadwal SewnHfie & Taehnical 
Information Springlwld V«. 221S1 ../ 



A Numerical Investigation 

of the 

Simplex Method* 

By 

Richard H. Bartels 

Computer Science Department 

Stanford University 

♦Research sponsored by the National Science Foundation under contract 
NSF GP 5962 and by the Office of Naval Research under contract 
N0001J+-67-A-0112-0029. 



Acknoyledgnenta 

I «m happy at having this chance to express my gratitude to: 

 who, first as my fiancee and then as my wife, lifted my 

apirits through the final agonies of doctoral candidacy; 

Gene Golub, my thesis advisor and my friend, who has given me 

measureless help, academically and privately, throughout my stay at 

Stanford; 

Professor George E. Forsythe, whom I thank for his aid and advice 

to me during the course of .ny academic progress; 

Professor George B. Dantzig, whose words of encouragement to me 

were very welcome; 

And Miss Suzanne Stone, who under the pall of a deadline, did all 

of the typing which I required and maintained her composure throughout. 

I would like to note that my work at the Computer Science Depart- 

ment has been financially supported by the National Science Foundation 

and the Office of Naval Research. 

And I give my thanks to Doctor James H. Wilkinson and, again, to 

George B. Dantzig. They laid the foundations. 

ill 



Table of Contenti 

Chapter Page 

1. Introduction and Summary of Reaulta   1 

2. Review of the Simplex Method of Linear Programming   • •  . 8 

3. Standard Computer Implementations of the Simplex Method . 13 

k.    Round-off Error Analysis of Gauss-Jordan Elimination    •  . 18 

3*    Error Bounds for Linear-system Solutions Found by 
Explicit Inverse  23 

6. The Modified LU Implementation of the Simplex Method    .  . 5k 

7. Round-off Error Analysis of the Modified LU 
Implementation  Uo 

8. The Standard LU Implementation of the Simplex Method    •   • 73 

9*   Error Bounds for Linear-system Solutions Found by 
LU Decomposition  8k 

10. Employment of Error Bounds in the Simplex-method Cycle    • 93 

11. Comparison of Implementations by Operation Counts .... 103 

Bibliography      118 

iv 

MA^kBl^aaMariaaaiaiaB MBMMMHaM 



mmmm mm PUtmmmmmm 

1.    Introduction and Summry of Reaulta 

Since 19^7 linear programing problem« have been growing ever more 

interesting to bualneaa, industry, government, and the military.    Today 

few facets of the economy remain uninfluenced by decisions made with 

the aid of linear programming.   The Increasing practical use of linear 

programming since 19^7 is linked with the rise of electronic computers, 

and 19U7 itself is important as the year in which George B. Dantzig 

developed the first, and so far the beat, algorithm for the solution of 

the general linear programming problem:    the simplex method. 

Unfortunately the simplex method, as it is used on computers today, 

does not handle every problem with the success which it deserves.    At 

times, with no forewarning, computer programs which implement the simplex 

method will produce unreasonable results from reasonable data.    In such 

cases curses are muttered against a mysterious force called "round-off 

error", and a battery of ad hoc panaceas are employed to attempt a cure. 

Sometimes, in hopes of forestalling problems from the outset, a variety 

of heuristic tests and purifications may be built Into a computer pro- 

gram to sniff at suspected indicators of round-off error and attempt 

recoveries during the computation.    But all of the medicines employed 

have the aspect of folk remedies.   They are largely in the domain of 

oral tradition; they are rarely published, and their efficacy has never 

been proved. 

The literature concerning the effects of round-off errors upon 

the simplex method is very small (we have come across only papers [3], 

[8], [10], and [13] listed in the bibliography), and it contains no 

rigorous results.    This state of affairs la unfortunate and unnecessary. 
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Jutes H. Wllkinaon flr»t published the tools for investigating 

round-off error effects in linear algebraic computations ir 1959, [11], 

and they have been well-knoirn to numerical analysts since then. Numer- 

ical analysts, however, have not made much use of linear programning. 

The subject is Just beginning to be recognized in the numerical analyt- 

ical world as a piece of practical machinery (e.g., Rabinowitz [9]). 

The chief users of linear progranming up to now, or. the other hand, 

could not be expected to be familiar with the literature on round-off 

errors In linear algebraic computations (e.g., Chart res and Geuder [2], 

and Wilkinson [11], [12], [13], [lU]). Thus a proper investigation of 

round-off errors in linear programnlng has never been made. This thesis, 

we hope, will serve as a first step toward changing this. 

It Is Important to separate the abstract expression of a ccoputa- 

tlonal algorithm from the realization of that algorithm on a computer. 

In Chapter 2 we present the simplex method in an abstract setting, and 

in Chapter 3 we describe the main details of the method's more conmon 

implementations on computers. We show in Chapter 1* that round-off errors 

can, indeed, have disasterous effects upon the cannon simplex-method 

computer programs. This is not due to any flaw In the simplex method. 

It is rather due to the use of Gauss-Jordan elimination without pivot 

selection which characterizes the standard computer implementations of 

the simplex method. In Chapter k we indicate that no simple a priori 

inspection of the data will yield a bound on the effects of round-off 

errors in programs which employ Gauss-Jordan elimination but clo not 

permit the pivots to be selected arbitrarily. 
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Chapters 6 end 8 present alternative computer implementations of 

the simplex method for which pivot selection is flexible, and these 

implementations are shown in Chapters 7 and 8 to be numerically stable. 

That is, the effects of round-off errors in these methods can be bounded 

in a simple a priori fashion from the data. 

In each of the simplex-method implementations presented in this 

thesis the possibility of monitoring round-off errors during the compu- 

tation exists.    The discussion of this possibility is contained in 

Chapters 5, 9» and 10, wherein a posteriori error bounds and their 

employment in simplex-method computation is covered. 

In rough terms, carrying out the simplex method entails the repe- 

titive solution of three linear-equation systems 

Bu    = b 

<BTTT Y 

By   = A 

[ (The notation we use in dealing with the simplex method holds closely 

to that used by Dantzig in [U].)    At each repetition the vectors    u, 

J TT,    and   y    are inspected, the basic matrix   B   is modified as a result 

of the inspection and a new set of vectors is produced.    It is the main 

effect of round-off errors that only approximate vectors    u + 6u, 

TT + 6TT,    and   y + 6y   are produced from the computations.    Assuming 

that bounds can be placed on the norms of the errors    ||Au||,    ||6TT||, 

J and    ||6y||,    then Chapter 10 discusses the use of these bounds during 

-    -  ■ .i —■ —    ^■.        - ■ m    ■■   ^ —i mm 
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a implex-method computation to make allowances for round-off effects. 

(Throughout the thesis the double bars    || ||    denote the    L?   matrix 

and vector norms.   That is. 

for any vector   v,    and 

M - ^ p 

for any square matrix   M .) 

For the standard, explicit-inverse implementations of the simplex 

method, Chapter 5   covers  the computation of error-norm bounds.   The 

bounds themselves are given by the equation 

IMI< jTpir(iiEiiMvii+ii»iiiigii) 

n 
0 
D 
fl 

H 
H 

II 
0 
0 
0 
a 
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appearing in mid-chapter, where   6v   represents any of the error vectors, 

and    g   represents any of the right-hand vectors.    A bound for   ||ft||    is 

presented,, and the last half of the chapter is addressed to the problem 

of efficiently computing   E,    or at least an upper bound for   ||E||  . 

The other two implementations presented in the thesis use forms 

of triangular decompositions for matrices as substitutes for the inverse 

of the basic matrix.    The standard LU implementation« described in 

Chapter 3» dec mposes the basic matrix into triangular factors   L   and 

U .    The modified LU implementaticn, described In Chapter 6, decomposes 

4 

i! 
D 

11 
il 

- - - ■ — 
MM 



_   ^ ,  

I 
I 
I 
I 
I 
1 
3 
3 

the basic matrix into a triangular factor L, a product of simple 

matrices G, and a triangular factor U . It is shown in Chapters 

7 and 8 that, for both implementations, the computed solution v + Av 

to the linear system 

Bv » g 

satisfies 

i&-t)iv+6v)  » g . 

Both of these chapters also address themselves to the problem of 

bounding ||£|| . For the modified LU implementation the results are 

summarized in the last four pages of Chapter ?• For the standard LU 

implementation the bound is given in Chapter 8 as 

H 
f] Hell < m[5ri+2m(mfj)r2] ^J ju^j    , 

0 
] 

3 
I 
I 
] 
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where the quantities   e      and   e      are defined during the development 

of this bound, and   m   is of the order   B . 

The error vector   Av    is shown in Chapter 9 to satisfy 

6v = - B'^v+Av)    , 

so that 

INI < llB^HIiellllv+AvJI   . 

~**n,tiii~nrr-***^^mm^ *m 
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Since    ||v+6v||    is known and a bound for    ||6||    has been provided by 

previous chapters, Chapter 9 addresses itscll' mainly to the problem 

of finding an upper bound for   ||B" ||    easily from the information which 

is at hand.    This information is, roughly, the trace and determinant 

of   BBT . 

T The trace,    d,    of   BE      is readily computed, but only an approxi- 

T mation to    det(BB )    can be made.    The analysis of Chapters 7 and 8 

show that the computed decompositions of   B   used in the standard and 

the modified LU implementations actually satisfy 

B -*- AB a decomposition 

:. 

: 

:. 

m. 

because of round-off er.or effects, where a bound for    ||6B||    is given. 

Thus,  the quantity 

p = det((B+6B][lH6B]T) 

is at hand.    It is shown in Chapter 9 that the best upper bound on 

||B~ II    which can be made using   p   and   d   is 

VF 
where   q    satisfies 

q = p 
Id-mK-q J 

:: 

[\ 



and where 

K > ||6BBT+BfiBT+6B6BT|i 

Finally,   in Chapter 11 a comparison of the modified and standard 

LU implementations of the simplex method is made with a representative 

explicit-inverse implementation in terms of speed of operation.    This 

is done by counting arithmetic operations needed by each to produce 

u,    TT,    and    y   and to accomodate the changes in   B   which follow. 

The results ere reviewed on the last page of the chapter.    In particular 

we find that the modified LU implementation, which we have shown to be 

not subject to round-off error disasters,  is competitive in speed with 

standard simplex-method implementations. 



2. Review of the Simplex Method of Linear Programming 

To begin with, we will briefly cover the basic concepts and termi- 

nology of linear programming and of the simplex method. Everything to 

be mentioned is covered in greater detail in Dantzig [k] and in Hadley 

[6]. 

A linear programming problem is, by definition, cne which can be 

put in the following form: 

T 
r maximize the objective function: z = c x 

I subject to the cor ^tralnts   Ax ■= b   and   x > 0 . 

A    Is an   ra x n,    real matrix having full row rank, and    m < n .    The 

vectors    b and c    are real and have dimensions    m and n    respectively. 

For convenience we also require that   b > 0,    but this is not essential 

tc the problem. 

In the standard terminology any vector   x   which satisfies the 

constraints is a feasible solution, and, if it maximizes the objective 

function,  it is an optimal feasible solution. 

Let   A   ,..., A       be    m   linearly Independent columns from the 
1 m 

matrix   A •    If   x    is a feasible solution having    x. = 0    for all 

J t (v, ,..•, v },    then   x    is called a basic feasible solution, and r      l. m —^— -^——— ——— 

the columns   A   ,..., A       are called the basic vectors (or simply the 
v ' vm 

r * 
i      m 

basis) associated with x . Any m x m matrix composed of these columns 

is a basic matrix corresponding to x . If x. = 0 for some 

i e (v,,.••, v ), then x is a degenerate basic feasible solution. 

iKnVlclmat,,, 
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The set of all feasible solutions to a linear programming problem 

is convex» and the basic feasible solutions comprise precisely the set 

of extreme points.  The existence of any feasible solutions implies the 

existence of at least one basic feasible solution. And, if the objective 

function is bounded from above on the set of feasible solutions, at 

least one of the basic feasible solutions is optimal,  (in fact, several 

of the basic feasible solutions can be optimal. A given linear pro- 

gramming problem need not have a unique solution.) 

It is upon bases and basic feasible solutions that Dantzig's simplex 

method is grounded.  The simplex method is an algorithm which searches 

from basic feasible solution to basic feasible solution, seeking an 

optimal solution. The search is designed so that each basic feasible 

solution encountered has a greater value of the associated objective 

function than its predecessor. The search proceeds in cycles. Let x 

be a nondegenerate basic feasible solution. The simplex-method cycle 

produces one of the following from x: 

I. a basic feasible solution x' from which 

■■ 

: 

T  . T , 
c x < c x ; 

II. an indication that x is optimal; 

III. an indication that the objective function is unbounded from 

above on the set of feasible solutions. 

Degenerate basic feasible solutions do not yield quite such reasonable 

outcomes from the simplex-method cycle. However, there are standard 

ways of adjusting a given linear programming problem so that degeneracies 

I] 

w 
0 



which are discovered are wiped away, which fact will permit us the 

liberty of ignoring degeneracies from this point,  forward. 

To each basic feasible solution there is a corresponding basis 

of    m    linearly independent  columns taken from the    n    columns of   A  . 

And outcome (l) of the simplex-metnod cycle guarantees that the simplex 

method will never encounter any basic feasible solution mere than once 

Therefore,  starting from any particular basic feasible solution,  the 

simplex method cannot be carried through more than 

n' 
m.'U-m): 

cycles on a given linear programming problem before terminating.    In 

practice one commonly finds that the number of cycles taken before 

termination is only a small multiple of    m    (Dantzig [h, p.   l6o]). 

The mechanism for producing   x'    from    x    by the simplex-method 

cycle is built upon basic matrices      If    A    ,...,  A       is the basis 
i m 

corresponding to    x,     then consider the basic matrix 

B.   [A    ,...,Av   !   . 
1 m 

Let 

u =  [x    ,   . •,  x    J 
i m 

be the vector of the nonzero components of    x •     Then 

10 
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Bu = b . 

To carry out a simplex-method cycle, one begins with B and proceeds 

as follows: 

1. Solve Bu » b . 

T 
2. Let Y = [c ,..., c ] , the vector composed from c by 

1      m 
selecting those components corresponding to the basis. 

T 
3. Solve B TT = Y • 

h.    For each column A. of A not in the basis compute 

I 
I 
I 
I 
I 
T 

"j""^ - V 

and choose any ind^x    s    for which   c   < 0 s 
:: 

5-    Solve    By = A   • s 

6.    Let    r    be an index such that 

u .      u. r      rain   _i 
yr 

= y^o yi 

7.    Drop the vector   A        from the basis and add the vector    A    . 
v s 
r 

The resulting set of m vectors is a new basis, whose 

associated basic feasible solution is the vector x' .  The 

associated basis matrix B7 can be constructed with whatever 

ordering of columns is most convenient. 

The cycle cannot b> carried past step 5 if all "c.    are nonnegative, 

in which case x is optimal. And the cycle cannot be carried out past 

11 
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ctep 5 if no component of the   y    vector is positive,  In which case 

the objective function is unbounded on the set of feasible solutions. 

The change in the value of the objective function 

T,   ,       v z   - z = c (x - x; 

is given by 

-£ (c -nTA  ) ^ c    . yr      s        s' yr    s 

Thus it makes some sense to choose s such that 

c = rain c. * 
.1 s   J  J 

making    c     as largely negative as possible,  in hopes of making as great s 

a change in the objective function as possible. 

To solve a given linear programming problem by the simplex method, 

a basic feasible solution must first be found.     If none exists,  the 

J    .. problem is infeasible.    The task of finding the initial basic feasible 

solution can be formulated as an auxiliary linear programming problem, 

one for which a starting basis is known.    Hence, the simplex method is 

generally carried out as a two-phase process,  each phase of which 

consists of repeated applications of the simplex-method cycle.    The main 

part of this thesis will treat with the computational details of carrying 

out the simplex-method cycle on an automatic digital computer and with 

the round-off errors incurred during the computation. 

12 
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5>     Standard Computer Implementations of the Simplex Method 

The major price to be paid in carrying out the simplex-method 

cycle  is incurred by solving the linear systems 

[ 
Bu    = b 

T B n » v 

L By    - A, 

If these systems were presented in isoiatior we would expect to spend 

an order of m  arithmetic operations on a computing machine to get 

their solutions. In the context of the simplex method, however, this 

much work is not usually required. The bajic matrix B used in one 

execution of the simplex-method cycle is constructed from all but one 

of the columns which formed the basic matrix used in the preceding 

execution of the simplex-method cycle. The vector b remains constant 

throughout, and the vector y    changes in only one component at each 

cycle. These observations provide f 5 opportunity for significant 

savings in computational effort. 

For example, in representative computer implementations of the 

simplex method the matrix of order m + 1 

D = 

1 -vT 

0 B 

13 
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it can be verified  that 

1 
n      I 

0 
1 

H-W- i 

and that 

r/A 
-- D 

Let vis number by zero the initial components of the vectcis, and 

tne initial rows and columns cf the matrices in what follows directly 

below. This will unify the indices used in this chapter witn those 

used throughout the rest of the thesis. 

Suppose an execution of the simplex-method cycle ends in outcome 

(I). If we let 

D' = 

i 
■ Tl         1 

Ü B'         1 

u 

.i 

D 

mmm 
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by replacing the r  column of t) with 

-c 

"T 

then it can be veril'ied  that    (D')"      is obtainable from   D       by the 

application of the Gauss-Jordan elimination which reduces the vector 

t = 
y 

to the r     unit vector.    That is, if 

1 
1 

1                               * 

I                        1 

• 

• 

l/tr 

"W'r 1                                                                  | 

•                                                                                      ji 

•                                                       1 

1 

= [I.f (t.e(r))e(rJT], 
r 

where    e is the r      unit vector, then 

15 
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(D' )"] = TD"1 

Similarly we can update the vector u, rather than solve a cyatem oi' 

equationa I'or u : 

W ■ -W 
In this manner the simplex-method cycle can be carried out on a computer 

2 
with only an order of m  arithmetic operations. 

If D   is explicitly computed in an implementation of the simplex 

method, is kept in computer storage as an m X m matrix, and is updated 

by Gauss-Jordan elimination at each cycle, the implementation is said 

to use the explicit inverse- Alternatively, D'  can be expressed as 

a product of transformations which reduces D to the identity matrix. 

At the end of each execution of the simplex-method cycle, a Gauss- 

Jordan transformation can simply be added to the product so that 

1 

! 

D-l = TU)T(^-1) __ T(l) 

Implementations of tue simplex method built along these lines are said 

to use the product form of the inverse. They are used when the data 

matrix A is sparse and has its nonzero entries in a regular pattern 

which permits the use of transformations T   having a particularly 

simple form- 

The basic computational process in implementations of either type 

is the Gauss-Jordan elimination applied to a vector, either a column 

of D , the vector 

16 
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i: 
I: 
0 
y 

c 
c 
E 
I 

w 
or, in case the product form of the inverse Is used, to the vector 

w 
Hence, we will want to study this process as It is carried out in 

floating-point arithmetic on contemporary computing machines. 

• 

17 
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k.     Hound-^ri' Error Anuiysl::  i r Gauss-Jordan Elimiimlion 

We will denote the  eomj-uted value ol' an arithmetic expression    t 

obtained by floating-point  operations on a computer by 

fi(e) 

This value is a function not only of £ but al^o of the computer 

employed and the algorithm used for the evaluation. Following Wilkinson 

[l5l> we know that on reasonable computers, so lon^ as overflow or 

underflow do not occur, 

fl(a*b) = ad+T^) + b(l^2) 

fi(a-b) = ad+TU) - b(l^) 

fi(axb) = a X b X (l+lU 

fi(a/b) -: (a/b) x (1^6) 

for any two machine numbers a and b, where the quantities  jlK | are 

bounded by some fixed, small, positive number  In fact we will assume 

that our computations are carried out on a machine offering a normal- 

precision floating-point arithmetic, for which 

\\\  < t1  , 

and an extended-precision floating-point arithmetic,  for which 

ITI.I   <  £ ,   , 
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where tp is a few orders of magnitude omaller than c. • This is 

usually accomplished by carrying out floating-point arithmetic in 

base T arithmetic (T ■ 2, 8, 10, 16 are common), carrying a 

significant figures in normal arithmetic and o« significant figures 

in extended arithmetic (usually with a2 > 20,) . If that is the caae, 

one may take 

1-<J. 
C, = T 

and 
1-c, 

A normal-precision machine number is a number which may be 

represented exactly on the computer to the precision of normal arith- 

metic.    A similar definition holds for extonded-precision machine 

numbers. 

Suppose we transform the vector    (w..,..., w.)    into the vector 

(v.,..., v.)    by applying Gauss-Jordan elimination, obtaining the 

multipliers from the vector    (p,>•••> P.)*    with   p     used as the 
x     f        p 

pivot (l<p<i) . The p's, v's, andw's are all to be normal-precision 

machine numbers. 

Thus, 

■■ 

v
p ■fi VPP) ' 

ri  = fi(wi- P^ß/Pß) > for i ^ P 
: 

19 



Or 

vß - (we/pa)(l-Hl)  , 

vi - w^l^) -  (piwß/p0)(l+Tl)(l^i)(l+P1)>    for    i / P    . 

This means that,  letting    flwg ■ T^Wg  , 

v
e-^ V'e'- 

And, for i / p , 

p 

vi"lVp:V 

+ Uw T «p^i^i^ipi^i^i^ipi^ " i: V * 
P p 

Or, letting 

6wi " wiV p" w0^Pi^iPi+^i41lPi+1^ipi) ' 
P 

we have 

p 

vi » (w^fiw^ - |i (wß+«Wp) • 
P 

Thus, if 

p^.J^p-e^e^] , 
PP 

20 



It haa bt'en established lhal 

v - ri(Pw) ^ p(w+6w) 

That is, the rounJ-off errors have tho effect of making the computed 

vector v be an exact transform via tne civen Gauss-Jordan elimination 

of a perturbation on the vector w . 

How large can the perturbation öw be? The answer is disturbing. 

Unless restrictions are placed upon the pivot p » the components of 

flw cannot be bounded. We nave, for i / ß : 

IPJ 

or 

^iii"ii'l 
+ irTi"iil(V5'! + ,i) 

:. 

■• 

«. 

And so, if |p_|  is made small enough relative to the magnitude of 
P 

some one of the other components of r,he vector p, the right-hand 

side of the latter inequality can be made arbitrarily large for the 

corresponding value of i • 

To see a trivial example of what this means, suppose that we 

have a computing machine at our disposal which performs decimal arith- 

metic with tnree figures of precision in normal floating-point calcu- 

lations. The result of each basic arithmetic operation, however, is to be 

computed to six figures of accuracy before being rounded to the nearest 

three significant figures. This means that 

21 

il 

0 
] 
I 



Let 

Then 

That is, 

': - ¥<>■* 

w - (1,1) , p » (lü"4,l) , and ß » 1 . 

v1  = f/(l/l0"4) o iok,    and 

v2 - fi(l.lXl/l0"
U) = -10"U 

vl 
- a 

'        k        ' 
10      0 

It 
-10      1 

1 

0 

So 6w- ■ -w? . A perturbation has been made in one of the components 

of w which is as large as the component itself« If there was any 

useful information in the vector w initially, it has been lost. 

It is easy to concoct examples wherein relatively small pivots 

arise during execution of the simplex method. E.g., take the 

data 

c1 - [1  1  2] 

1  0  Y 

10  1  1 

Y/2 

1 
■    — 

22 

(I 



where If Is a smull positive .lumber Icaa than one. The first two 

colurana of A will servo a;; an initial uusla, giving 

]) - 

-a 1 -1 

0 1 u      ' 

0 Ü i 
L -» 

■ 

and 

u 

1    1    1 

0        10 

0 G 1 

rz-i 

.\ 

1  t lf/2~ 

Y/2 

L 1 J 

T - - ., A- - C- ■ If - li which is less than zero, the cycle 

notation of Chapter 2, s -- 5> and we must compute 

Since c, = TT A7> - c 

proceeds.  In the 

'5 
~~2 "t-l 

^1 
.D-1 * = Y 

y2 

_ - 

1 1 

: 

- 

1 

Both components of y ars positive 

2? 



Ul  1   , U2  1 - - r,    und - - I 

Sc — - min, or r = 1 in the notation of Chapter 2.    Hence, the 

basic vector 

V 

must be exchanged for the basic vector 

A, 

Thus all necessary updating is to be carried out by the Gauss-Jordai; 

elimination composed from the vector 

it 

.: 

C,5 
Y-ll 

kl 
a 

*   ! 

L l 

using y, = Y as the pivot, which is small relative to the otner tvo 

components. 

The implication of all of this for standard implementations of the 

simplex method is that, since the relative sizes of the pivots which arise 

during computation cannot be easily predicted, no bound, simply expressed 

in terms of the data, can be made a priori on the perturbations which 

will be caused by round-off errors. 

2k 
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!>. Error Bounda Tor  Uru.Tir-L.y.si.Tn LlüluMor..- 

Found Ijy Kxpii'-'H Xnvorsc- 

Though it is not, po^iblc a priori to bound round-ofl' pertarbutions 

during application or the simplex raethcc "^1r.ö computer implementations 

such as those just discussed, wc can compute round-off error bounds in 

an a posteriori fashion. We will do that here in connection with 

explicit-inverse implementations.  Produot-form implementations can be 

treated in a similar fashion. 

Consider the following problem:  IT F is a given, nonsinguiar 

matrix of order i, if g is an I    vector, and if Uie matrix Q is 

accepted as an approximate inverse to P, how much error is maue in 

taking 

fi(Qg) 

as the solution to 

Pv = g ? 

Let v = P g and v + 6v = f'(Qg) • Each component of v + 6v 

is formed as an inner product: 

f 
r.  + 6v. = f/( V q. ,g.) 

J=I 

The calculation of an inner product is so basic to computational linear 

algebra that, in order to be as accurate as possible, it is a frequent 

25 
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practice to form the products and partial sums In extended-precision 

arithmetic. Only the full sum Is reduced to normal precision (Wilkinson 

[15, P- 25]). That is, il 

J0' - 0 

reduced to normal precision, giving: 

vi + 6vi - t^d+p^ , 

or 

i 
viB 6vi - I^ij^ijkj 

where 

^u - ti^i^^V^1*^ 

26 

:: 

f or   J - 1 ,...,  i  , T 

where    |a.|,   |p  |,    and    |T)  |    are all bounded by    g- .     Only    V  '    Is 

1 

1 where    Ip.j < e-,  •    Therefore 

!1 

:: 

0 
:i 
1 
1 

— LM^t. 



Thus,   in matrix form, 

v + 6v ■  (Q"t)g , 

where 

* 

'Eo I^^I^Ke^d^i^^^).!]} 

The bound 

ei+ (^^ ■/   [exp( TT: ^ 

k«J+l 

will be established in Chapter 7 

Let the residual matrix 

E » I - QP 

be defined. We will demand that Q be such a good approximation to 

the inverse of P that ||Eil < 1 . Then the inverse of I - E will 

exist,  and 

i^^isii 

27 

■ • 

- - - - ■ 



Therefore 

which gives 

v + 6v"Qg + <tg 

-    QJ>V   +   «tg 

■=  (^(v+fiv)  - QPflv + *g  , 

,-1 
5v =  (I-E)    [*g-E(v+«v)]  , 

or 

INI 5^ (llEllllv+fivll+lkllllgll) . 

The cost of computing the residual matrix E is, in ordinary 

situations, far too great to pay for simply putting a bound on ||6v|| . 

5 
An order of i  arithmetic operations is needed to form E . That is 

essentially the same amount of work as is required to invert the matrix 

P . There are far more lucrative ways to expend one's energy. The 

often-used technique of iterative refinement (Wilkinson [15,  p. 150]; 

Forsythe and Moler [5, Chapter 15] )> for example, can correct v + 6v 

to a point at which ||6v|| » e-, and can be carried out in an order of 

2 
i  operations. But, in the context of the simplex method, the com- 

putation of this error bound can become quite economical. 

Pe (r) 

Suppose P' is obtained from P by replacement of the r  column 

with the vector w : 

.. 

&8 



: P' « P -  (Pcvw- w)e (r)       s    i fr^ 
e 

Let the vector    t    be rjvrn by 

t = fl(Qw)   , 

and compute Q', an approximation to (?')"", by applying to Q the 

Gauss-Jordan elimination which reduces t to the r  unit vector: 

Q' =  fi([l - -^ (t.c(r))o(r) jQ} • 
"r 

(This imitates the situation in typical explicit-inverse implementations 

of the  simplex method.)    Apply the results of Chapter h columnwise to 

Q    to get: 

Q'  =   [I . -L (t-e(r))e(r)   ][QW]  , 
r 

:; 

where for all    i and j  : 

InJ  < 
't rj      1 r 

J^iji Ei+ ir1 I'rji ^H^A) " ' ^r • 

For convenience let 

T=  f! .i- (t-e
(r))e(r)  ] 

r 

29 



Then 

But 

E' - I - Q'P' 

- I - TCQ+Y)?' 

■ I - TQP' - TYP' 

- TQP' . J . (! . i. (t.e(r))e(r'TJ,(P.(pe(r). .^(r)
1, 

= I - (<SP - f (t-e(r')e(r) <B'-«(Pe(r)- »)e(r)T 

^ (Ue^)e^\^l .^f] 

- E - f f (t.eM)eM\^rl „^y 

f {t-e(r))e(r)V<i(Pe(^- v)*^ ■ 

We make the substitution 

,. 

t = fl(Qw) = (^fl)w , 

for which 

Kj^W^^i)^^^-)-!]} iq i , 

30 
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I 
1 
I 
I 
I 
T 

and the substitution 

QP = I - E 

to obtain 

I -TQ?'  = E-  If  (t.e(r))(e(r)Vr))e
(r)' 

:: 

. J.  {t.eM)^,^M' 

T       /   NT .  1. (t.e(r))(e(r)\)e(r) 

:: 

1   ,<     (r)s  (r)" - r- (t-ev   'Je 
r 

r 

+Ee(r)e(r)T
+ te(r)T} 

\T 
+nWe(r)    -f (t-e(r))e(r)nwe(r)    . 

A r-ouple of simplifications are possible: 

since    e(r)Te(r) ^ 1 , 

:i 

■ 

^^BMaaaatfB 



and 

vT  /.vT 
1 u    ^)\i (*)\\  (t)   /. (r)v (r) 

(D1 since ev  t = t . r 

Therefore 

T T 
I = TQP' = E - t f (t.e(r))e(r) E(l-e(r)e(r) ) 

'v 

+ Ee
(r)

e
(r)T] + mwe

(r)T 

= [! .f (t-e(r))e(r),r3E(l-e
(r)e(r)T) 

r 

/ vT 
+ THwe^1"' • 

So 

E' = T[E(l-e(r)e(r:')- nwe(r) - YP'] . 

And therefore, 

IIE'II < llTlKllEll+llnlllUII+IKIIIlP'll) . 

for HE'II is thereby available. And only an upper bound for the 

residual matrix norm is needed to bound the error ||6v|| . 
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If upper bounds for    ||E||,    Hnll,    and    ||Y||    are at hand, an upper bound 

! 

I 
I 
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Ht-turnlng to the notation and concepts ol" Clmptcrt 2  v.i '>,  1' i.- 

clear thut the above results can be employed during trie i'>r '.i-.l ,;. r-v 

the simplex method cycle to bourjd the computational errcr incwiv.j in 

'"inding u, y, n,  2, and the c. . 3n a later chapter,, in coti.neoti.. 

with another implementation of the simplex method, we wil" ccreller 'i>• 

employment of such error bounds to provide automatic tolerance ccn^roi. 

The techniques presented there can easily be imitated with the explicit- 

Inverse implementation of the simplex method. 



I 
I 
I 

6.     The Modified LU Impl-.'ment iiliun of the Simplex ffetiiod 

Returning tc the notation of Chapter 2,  wc let    B    be thy    m x m 

nonsingulur basic matrix and concern ourseivefi v/'M'. solving the linear 

systems 

! 

Bu = b , B'n = Y -•  By = A  . 

.. 

Suppoce we effect this by decomposing B into the product of a lower 

and an upper triangular matrix. Such a decomposition is always possible 

provided that, at the least, row permutations of B are permitted. 

Column permutations could be added, but, in the context of the simplex 

method in which we work, it will not be convenient to permute the column; 

of each basic matrix we encounter arb-trarily. 

Thus we have 

a 
mm 

I 
I 
I 
I 

ÜB =  LU 

for some permutation matrix   n,    upper triangular matrix    U   and lower 

triangular matrix    L,    where we further demand that all diagonal elements 

of   L   be    +1  . 

A given linear  system 

Bv =   q 

which we must solve   is handled by solving the triangular Systeme 

^_____^ m^m 



Lt - Ilq , 

Uv - t . 

The round-off error analysis of the decomposition and solution of 

the triangular systems is given in Wilkinson [IJ]. The best error bounds 

are obtained if n is chosen so that all elements of L are bounded in 

magnitude by unity. The strategy of constructing n during the com- 

putation of the decomposition has come to be called "partial pivoting" 

or "row pivoting". 

At the beginning of the simplex method cycle B has the form 

B = [A »•.., A ] . 
vl     vm 

At the end of the cycle we may be required to construct a new basic 

matrix B ' from the columns 

A ,...,A    ,A    >...>A , A_ 
vl     ^-1  vr1+l     

vm  Sl 

And this is to be done in such a way that the transition from the 

decomposition of B to one for B ' is particularly easy and com- 

putationally stable. 

Consider, then; the basic matrix 

35 
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•• 

B    '  B [A    ,..., A , A ,..., A    , A    J   ; .. 
vl vr1-l     vr1+l vm      sl 

1 
i 

I 
I 



i.e., let    B    '    be obtained from    B    oy dropping the r       column, 

shifting all cubuequent coxumnc '>ne position to the left,  and appending 

A        on the right.    Therefore,  columnwise: 
81 

L'W1)  =   [L'^A     ,...,   L'V 
V1 

L'^IA ,...,  L'TIA    ,  L'lIA^   ] 
r +1 m 1 

[U ....,   U      . ,   U    .,,..., U ,  L'TIA    ] 
1 r -1      ri+J- m s-i 

= H(l)  , 

,(1) where the    U.    are the columns of    U .    Hv   '    is a matrix of the form 
i 

m 
0 m 

I 
I 
I 
1 
1 

that is, an upper Hessenberg matrix with zeros below the diagonal in 

the first r -1 columns. We point out that the vector L~llA   was 
1 Sl 

produced as a byproduct during the computation of the vector y . Hence 

H   can be constructed without any computational effort. 
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H    eun be reduced to an upper triangulär matrix U   by usines 

Gaussian eliminations to zero out the subdiagonal elements in columns 

i^  through m . The partial pivoting technique is carried out by making 

a decision at each elimination step whether or not to interchange two 

adjacent rows. Thus, U    is gotten from H    by applying a sequence 

of simple transformatins on the left: 

11 
: 

where each f (i) 

m-l ra-l    r  r. 

has the form 

i i+1 

1 
• 

'   1 

i 1 

f 

+ 1 
-^ 

1 

1 
t • 

* 1 

and each n.   is either the identity matrix or the identity with the 

i  and i+1  rows exchanged, the choice being made so that |g^ | < 1 

Thus 

ÜB (1) _ m(l)r(l) 
rl ri 

-1 XDM'Kii) 
m-i m-l 
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This   iü 'i decomposition of    H  '      uuitabLe  l'or nur purpose;!.    Wt; couUl 

( I) (id,just   Urn order ol' r'owc   in    B and multiply oul 

(0r(0-' ...aC)r(i)-1 

r      r, m-l  m-J 
inv ;r 

to produce a decomposition 

n(i)B(i) r jO);/:) 

which copies the decomposition  used  l'or    B  .     But  this  turns  out to 

require more work Tor the execution of the  simplex method  cycle than 

is  requirer1   if the decomposition is  left  in the product form given above, 

If another execution of the simplex method cycle   is taken,  the 

resulting basic matrix    B is to be  formed  from    B in the same 

(1) manner in which    B was  formed from    B .    The decomposition for 

(2) 
B which we would use   in the  subsequent cycle would   therefore be 

ÜB 
r,     r, m-l  m-l ]       1 

x [n (2)rur: ...n^r^rV2) . 
r2     r2 

m-l  m-l 

And in general, if B    is the k  basic matrix which we construct, 

the general decomposition which will concern us will be 

•r. 
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nB<k'.L|n'1>r(1>'1...n<1>r'1)"1) r,    r. m-i m-i r,     r m-i rn-i 

Each given linear system 

B(k'v - , 

is solved by computing the solution to 

Lt = Ilq , 

carrying out the transformations 

m-i m-l    r.  r,       m-i m-i 
k  k 

r(1)n(1)]t , 
ri ri 

• ■ 

" 

and solving 

U^v * w . 

In following chapters we shall show that the round-off errors 

committed in the above computations can be bounded a priori, which was 

not the case in the standard implementations of the simplex method. 

And we shall show that the computational effort required for the 

modified LU implementation compares favorably with the effort required 

to carry out a representative explicit-inverse implementation. 
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7.     Houna-ol'i' Error /.rmly.'/i;: o£ iho Müdi£ied 

LU Imulemcfvt üiU n 

Wilkinson  [3.2, LJ ] ha.: analysed the compunational error associated 

with solving the linear syuLem 

Hv - o 

.. 

via the LU decomposition of B a.: fclicws; 

I.  It is assumed, without loss of generality, that the rows of 

B have been prearranged so that the partial pivoting strategy 

will not alter their ordering- 

II  The matrices L and U which are computed from B satisfy 

B ^ 6B - LU 

III.  In solving the triangular systems composed from L and U, 

vectors w and t are produced which satisfy 

(I/6L)w = q , 

(U+6UH - w 

And    t    is the computed approximation to    v   . 

IV.     Bounds are given for    liöBÜ,     i|öL||,     and    ||6Ui|   ■     Thus the 

vector    t    has been shown to satisfy 

«MMMtf* i 



I T' 

! 

(B+e)t =  (B+flB+L6n+6LU+6L6U)t » q , 

with a known bound for    ||ß|l   . 

We wish to establish a similar result for the decomposition 

B(k) . LaMrM-1 ... „(lyir1) ... aMrW-1 ... nMrM\w , 
r, r,       m-1 m-1        r,  r,       m-1 m-1 
11 k  k 

which, for notational convenience, we will also write 

B(k) = ^(k^k) < 

The following error analysis will be shown to hold: 

I. It is assumed that the arrangement of rows in the first basic 

matrix B is such that no row rearrangement is needed to ■ ? 

produce 

(B+6B) - LU 

computationally by the partial pivoting strategy. 

(k) 
and the product G   satisfy 

B(k) + 6B
(k) = LG(k)U(k) • 

if! 

th (k) II. At the k  simplex-method cycle the matrices L ard U 

I 
1 
I 
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III. In solving 

B(k)v - q 

via the decomposition above, vectors f, w, and t are 

produced which satisfy 

(L+6L)w = q , 

(G(k Wk))f - w , 

und 

(u(k)+6U(k))t= f 

And t is the computed approximation to v . 

(k)        ''k) 
IV. Bounds for the norms of the matrices 6B  , ÖL, fllT ',    and 

(k) 
6G   are given. Thus the vector t will satisfy 

(B(kWk))t = , , 

where 

e(k) = 6B(k) + LG
(k)6U(k) + L6G

(k)U(k) 

+ 6LG
(k)U(k) + L6G

(k)6U(k) 

+ 6LG
(k)ÖU(k) + 6L6G

(k)U(k) 

+ 6L6G
(k)6U(k) 

h2 

S 



(k) 
Hence, a bound for \\t    '\\     is known. 

Chartres and Geuder [2] give the following useful lemma: 

If 

ICJ  < e < 1 

I 
I 
I 
I 

and 

0 < p, < v < a 

then 

irid+Ci) n d+Ci)"1-!! <^exp(2£- )-i] 
i=l i=^+l 

They also implicitly give the corollary: 

If 

j=l      J j=o+l       J 

and 

iwnK.) n (i^i)-1-!!<N, 
i=l i»v+l 

then 

iiicurp.) n d^pj^rid+ct) n (I+CJ^-I^M+N+MN. 
J=l       J J=p+1       J      i=l i-ji+1 

■ 

0 

I 

l\ 

i 



I 
I 
I 
I 
T 

This is useful if the bounds on the    |«j.|     differ from those on  the 

We proceed to Justify the claims made under II,  III,  and IV just 

precedi.ig. 

Dropping the superscript (k) momentarily for convenience, we 

review the Chartres-Geuder demonstration that 

(U+6U)t =  f , 

- 

where    t    is the approximation to    U    f   computed by back-substitution- 

The components of    t    are prcduced in order from   t_    down to    t1 

by the computation 

m 

:: 

^ = nK.vI.^jV/i.i1 

with partial sums accumulated, as usual,  in extended precision.    That 

is, 

pl= fi 

P2 = vi+V - ^i+iW^i^V 

m-i    . ra-i 

vw - fi n (i+v - t ^/V^i-iH^i.i) n^ (^v) v=l /=i+l v=i-i+l 

ummmmmmmmmna 

kh 
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. 

where JTV |,  l^/.il' und ^/.j' ure ai:L bounded by t2 .    Finally, 

t, = 
tn-i+l 

i   u 
i,i 

(l+cp)(l+p) , 

.. 

1 

where cp and p are the errors due to the reduction of p  .,.  to 

normal precision and to the division by  i. ., respectively.  Thus, 
1,1 

where 

ra-i 
1/, ,   s-1   n    /, ._  v-1 

v=l 

or 

t-i 
+ t ui./t/(i^/.i)(i+ai.i) n i^j'1 > 

tn m 
f< =   E   u,   .t. +   T   6u.   .t. 

i=i      ' /=i        ' : 

m-i 

fiui4 = [(i+epr^i+p)-1 n (i^r1.^^^. ? 

and 

l-i 
6ui,i = ^^i-i^^^i-i) ^ ^'^S.i 

^ i 
i 



for    i > 1   •    Appealing to the lemma and corollary just given,  we may 

set the following bounds; 

Iflu^   .| < [(m-i)c' +-^2 ^(m-Oe^K^I 
1,1 (l-e1) 

and 

bnUi\ < 10-1+2)6^1^^1     for    J>i 

where 

4 ■ 55 texp^^^-H 

But using the inequality 

.      max     . 
^ ra i,J     diJ     ' 

which holds for all matrices    D    (Wilkinson [12]), we may write 

2 

||6U|| < m[(mn)e^ + -^^2 [l+(m-l)e^) ™ lu^jl   . 
\1"6T / 

In the same manner it is shown that 

(L+6L)w = q  , 

hi 



^'««!«%..     . , ' 

where 

and 

le/J < (i-l)e^ +I^- (l+(i-l)e^  , 

l6lijl < I'ijl^2)^   for    i > J 

il 

:: 

:: 

So 

||6L|| < l(m+2)E^ +3-^- [l+(m.l)e^]m , 

since    HfiLlI < m "^   l^'ijl'    and    ''ij' 5 1    for a11    i < J  ' 

The vector   f    used above was obtained by the computation 

I 

v m-1 m-1    r  r,       m-i m-i    r^. r^ 

This is effected a pair of transformations at a time: 

(0) wv      = w 

w (i) . „trCDnd^o)] 
' ri ri 

w 
(2) = mr^l/'l^] r1+rr1+l 

V? 

: 

I 
I 
I 

-- ^M^M^m 



where 

m-1 m-i 

r . „<") , 

di =   V    (m-r.) 
i=1   ■       1 

Thus we wish to make an analysis of 

d = fi(rna) 

for any vector    a>    where 

r = 

V v+1 

1 

' 1 

V 1 

v+1 -g 1 

1 

' 1 

hb 
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I 

and where    11     Is either the  identity matrix 01   the  identity with the 

th       ,    ..st v      and v+1      rowü interchanged. 

If    11    is the identity,   thLii 

d - fi(nia) 

is equivalent,  componentwise,   to the t'oilowing: 

.. 

'• 

d.   = a.     i'or     i   ^ v +   1 

Vl = 'Vr^v1 +  [Vi^-Sa^p+T+pr)]  , 

.. 

where     |o|,     |pl,    and    |T|     are all bounded by    t     .    Thus,   11'we let 

cp = -gCp+T+pr)  , 

we have in matrix form   d = (r+6r)a,    where 

v v+1 

6r = 

<p a 

'•9 

v+l 

ü1 

• 1 

1             ] 

a 

i 
"   1 

-■-'-- 



or trivially,  since    H - HH 

d =.- (r+fir)na 

Similarly,   if   11    is the permuted   identity, we rind  '.hat 

d=/ 

v+1 

i  1 

j            * 1 

Ü 

* -g 

1 
*                                  1 

*                        i 

*   1 

V v+1 

a «P v+1 
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or 

d - (ni+6rn)a . 

So «gain 

d - (r+«r)na . 

Thus, for 

1    *1 

I 
D 

1                              we may write Q 

E                                                              n-i     B-I   o-i            r.        r.      r. 
D 

I                               or 

1 1 

j                                                                              rl       rl          rl                                    m" Q 

i 1 

n       j 

1 Q 

51 
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I "I 

But 

3 
n 
] 
] 
] 
] 
] 

(r+6r) -i 

I 

1          0 

I             | 

-1 

I 

1             0 

1-HJ       l+o 

I         1 

(r^+fir"1) , 

 --   i H» 



IB11111 ■,l1 

where 

and 

«r-1. 

Therefore 

mmmmm 
~$Sm^ 

w =  [G(kWk)]f , 

P3 

I 

1                0 

8                1 

I 

0                0 

-go+eo   -a 
1+cj     1+a 

• . . 

Ö 

II 

D 
0 
0 
D 
D 
0 
0 
D 
fl 

D 
i! 

Ü 

Q 
I 

M 
I^M «MMI l^»^^M^M—^^Mil UMIM .ii.ii      1 



■ I""1        ' 

where 

^.„aui)-1...,,^)-1, 
r, r,      m-i m-i 
1 *1 

and 

r, l r,    r,       m-ll m-1   m-1 J 

'1  41 

Recall at this point that 

np'np' 

for all possible 1 and J . If we interpose such products at appro- 

(k) 
priate places among the factors in dG ', we can arrange to express 

(v) 
0G   in the equivalent form 

.o<k> - pWin^WD] ... (nW^'l-p^'n«1) ...oW   , r,        r, m-i     m-x r, m-i 1       *1 

where 

pW-nW-nW. r. m-i 

>'+ 

^mmm^—m^^m^^ .^^^^IBMB-aBMM_^.^Maaa 



W^i 

> 

and 

m-i ra-1      m-1 m-1     ' 

!i 

fl 
ii 
D 

fl 

11 
0 
i! 
0 

ri        ri ri        ri 

(v) 
This puts the product 6GV   into a form to which we can suitably 

apply the following lemma: 

If Hj^ ...,♦ H  and 0.,..., G  are square matrices, then 

^ ...  Kp-Q1 ... 0p.(H1-O1)O2  ... G 

+ ^(I^-Og)^  ... 0 

+ -"+Hl ••• v^w 
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I 
I 
I 
I 
3 
3 
3 
3 
3 
:I 
3 
0 
3 
II 
3 
1 
1 
I 
I 

According to this; 

r,    r,+L tn-i ri ri 

t^W1') .- (o'^oW).^))) . 
1 *1 

Each n}J' has diagonal elements equal to +1 and only one non- 

zero off-diagonal element, g; ; whose magnitude is bounded by one. 

This element appears somewhere in the subdiagonal portion of the matrix: 

n (J) .. 

(J) 

The corresponding   6n|J'    has only two nonzero entries: 

((J)      (J) 
'i       ^i 
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where 

,0) giVMd) 

l+o (JT 

and 

.0) 
.(J) 

l-hy Ü7' 

We recall that lo) 

»tore   Ipp'l < «!   and   |T|
J)
| < t1 .   So 

•nd   |,p) Igp^pPM^^P'^»)! . 

1,(^1 < 2.1 ♦ c* , 

and thus 

I^I.I^KVli . 

Each term In the sum composing 8G   Is bounded elementwlse in absolute 

value by 

X 

. . 

11 
D 
D 
i! 
E 
II 

H 
0 
D 
0 
D 
1! 

. 

D 



* 

(J) 

vp) :p> 

which equals 

.(J)ll^J) 
»i ^'i- 

(J) M) 
'i   Vi 

.wu) 

(j) .(J) 

which, in turn, is bounded by 

(It^Khp'l) 
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Htnce 

||6o(k)||<|||eo(k)|||<i|p(k)|| llZEd^HTt^l) 

But 

HP^II-Hn^.-.n^ll-i, 

and 

< m , 

and there are 

i-1 
(m-rj^) 

terms in the expression for   fiG       .    Therefore 

6G (k)ll < « 
^e,+ef   k '1 "1 

1-e 1    f^l 
(m-^) . 

Finally we wish to establish the relationship between the basic 

matrix B'^ and the factors L, G^k', and irk' of its numerically 

computed decomposition. We proceed inductively« 

3H  .:. 

ii 

!! 

11 
D 
D 
il 
11 
2 
1 
1 
0 
D 
I! 
D 
[J 

Q 
0 
D 
D 

.'■iJtL,..,■::>' . jt.... 



  ^ " " ■■' 

MnaHMmin mmm 

If   B is the basic rmitrix Inititilly decomposed,  then matrices 

(0) 
L    and    U are computed such that 

C) * JB'0' - LU«0'  . 

1 
3 
fl 

0 
3 
3 
3 
1 
] 
1 
I 
I 

For the moment we neglect the superscript (0) . The decomposition 

is produced by letting 

1-1 

Vj-«(V £ W for ^ ■ij  -"v-iJ ^ 'iv vj 

and 

iiJ=f"(v£'ivUvJ)/;lJ1 for 1>J' 

where J is assigned in order the integers from 1 to m, and for 

each value of J, i is assigned in order the integers from 1 to 

m . The inner products 

i-1 

V5L '^ M'^ vfel "^^ 
t1 

are, as usual, to be computed in extended-precision arithmetic. Thus, 

for each pair of values for 1 and j, if we let 

p, = min{i,j] , 

60 

■ . ■    • 

iUHM^aMaaBkMab^^M ^^^Mtfaaaa ^^^MHa_aaBaa_ 



mmmmmmm 

'.- 

then we set 

pl " biJ ' 

and 

P 4.1 « P (l-^l ) " '4 U 4(1^ )(1+C  ) 

for v = 1> 2,... 1 n - 1 

where I'D | >  |o | > and |( | are all bounded by e2 • Finally, 

if i < J we set 

•lij " v^1^ > 

and if    i > J    we set 

lir VUJJ)(1'TP)(1+P) ' 

where |cpi < e, represents the error committed in reducing p  to 

normal-precision accuracy, and |p| < e, represents the error committed 

while performing the division. We may also write, for the sake of 

symmetry. 

uiJ = Pti(
1+V)(1+P) > 

DJ. 

ii 

H 
I 
I 
I 
0 
1 
D 
Q 

a 
i! 
Ö 

D 
I 
I 
I 
I 
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it'   p  = 0    in this case.    Thus.,   in general, 

I. u   . « (l+cp)(l+p)p    , 

where we have used the fact that I..   = 1  .    We find also that 

Therefore 

H=l 

n 
v=l 

".-bij n (»v 

-T ^v^ojdKj n 

n-i 
,-i/,..v-i   n   ,,.. v-i bij B 'i,u,j(i+{p) (i+p) n ^+\) 

v«l 

That is, 

* || 'iAjt^'f^' g ^V1 

Lj li '^U'J •\)' 

brj 



mmmnmm 

: 

wmmmm 

where 

H-l 

K 

Kssl ^ V=l 

Thus 

l6biil  ^  l£ili
U

lill
((^l)e2+~-T2   [l+^-l)«2^ ij1 - ' ^ ndl (l-e^' 

^fj'iAjl^2^ 
K=l 

And,  since 

|.B||<«^|.btJ|   , 

we have 

I6B 
2 max <mi^ |u    K(a+i)e' +-^-i2 i,J       iJ 2       (L^)^ 

2e +e 
1    i    [l+(m+l)e']} . 

Now suppose that, after    k    exchanges, we have 

B M + 6B(k) = LO(k)U(k) 

o3 

0 
D 
i 
I 
I 
1 
1 
il 
Ö 

0 
il 
11 
D 

il 
i! 
0 

D 
I] 
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m*m 

That is, columnwise 

[BW. m       1 
, 6B 

(k). 
m 

« LG^'luW, 
tn 

(k+l) 
Let B     be formed as described in the preceding chanter. That 

(k)       (k) st 
is, drop column B   from Bv , shift the r.+1   through the 

rk th 
m   column left one place, and append the column A  . The deccm- 

k (k) 
position is made to reflect this change by modifying U   . The 

(k) 
column U    is dropped, the subsequent columns are shifted one 

position to the left, and the column H   , which is the computed 

approximation to 

is appended- 

r(k+l) From previous discussions we know that H —' satisfies m 

where 

(L^(k))(G(kWk))H(k+l) = A  , m     s. 

||A(k)|| < [{m^+rj^.  [l+(m-l)6^}m , 
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and 

'It^ k) ll ^ 1   1 
£ m ^T i^ (m-ri ) 

Therefore 

Lodc)^!)  = A      _  [^W^^^Uk)^!) 
8k ' m 

Ao    + 6A 
8k 8k 

So that columnwise 

^'•••'B£i'B$i ev 

. B(ten) + e(kfi) 

k *      V1 m        sk 

. uMjfto-i) 

', 

Wl'-"   '.I'" 

■■    i*r li n     iiMlihi 

i 

! 

I 
0 

■^M10 ^.^  «(«,„(-), g 

11 
At this point the transformations \ 

(kfl)n(k+l) r(k+l)n(kfl) D 
m-1     m-1      **'    r r 

k       rk 

1 
I 

'  •■     -  ■ 



are applied to JT  '    to produce IT  ' . The product of transfor- 

mations 

G(k)n(k+i)r(k+i)-
1 _ ^k+D^k+i)-1 

rk   rk      * m"1 m'1 

is taken as    G^k+1^  . 

Columnwise we have 

yCk+l)       =       H(k+1) 

l 
(k+1)       _       „(k+1) 

Uv    T    = H 
"k"1 V1 

and 

] 
3 
1 
1 

u (k+i) = fi{[r(k+i)n(k+i)]H(k+i)^ 

k k 

m-1 m-1     m-1 r,        r, m-1    J 

„(kn) . H(   (m) (kn) ... r(kn) (k+i))H(k+i)   . 
m m-i      ra-l ri,        r, m 

Hence,  from previous discussions, 

H 
(k+1) = ^k+l) 

H 
(k+1) _ „(k+l) 

^k"1 
= U 

V1 
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and 

H (k+1) B ^(k+l)^^(k+l)]u(k+l) 

H m      n     in    m 

where 

i^Dn^Vli^, , 

with 

« 
(k+1) = r(k+l)n(k+l)    r(k+l)n(k+l) 

J   "J rk   rk 

for j ^ m, and 

^(k+1) = 4(k+l) 
m     ra-1 

However, because of the special forms which the vectors U 

and the matrix $ (k+1) 

(k+1) 
J 

m have, we may replace 

(k+1) = ^(k+1)      (k+1^  (k+1) 
J J J J 
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for each    j  = 1,...,  m    by 

where 

and 

H(k+1)    .  ^(k+1)   (k+1)  4   y(k+L) 
J m J 

1 V1 

wWHMWi 

Y(k+^   =6<i,(k+1)u(k+l) 
for    v = r. ,»..,  m . 

Thus 

H(k+1)  s    (k+D^k+l) +    (k+1) 
m 

,(k+l) 
where    yK is the matrix with columns    ^K L)   ,    Therefore (^1) 

BMM 

B(k+1)    +   e(k+l)    =   LG(k)H(k+l) 

= LG(k)[*(k+1)u(k+1)
+y(k+1) 

m 

Or,   if    G(k+1)   = G(k)$(k+1)   , 
m * 

B(k+1) + 0(k4l)   _ LG(k)Y(k+L)   = ^(k+D^k+l) 
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That is, 

B(k+1) + 6B(k+l) ^ ^1)^1) f 

and the induction is complete. 

To bound    ||6B^k+1^||,    we note that 

0 (lt+1) - («BW «»'">,- «B<k' «BH 5A    ), 
k k k 

6A     = -  [IZM^MQM^MM]*^ , 
sk' 

and 

Y(k+1) . rY(k+l) Y(k+1)    ^(k+l) ^(k+l), 
1        »•  •»    r    i *    rk      '*" *    m 

= [0,...,0, fl^+1Vk+1),...,6^+1Vk+1)]  . 
rk        rk m m 

I 
I 
i 
I 
I 
I 
I 
I 
1 
fl 

0 
il 

Now 

|6A    || <  (llLlI   ||H(k)||+|^(k)||  ||G(k)||+||A^k^||   ||^k)||)||Hlkn)|| 
k 

m 

< m 
Ue,+ef   k 
■yi-i  £   (m.ri)+{(m+2)ei + ^ [l+(m-l)e']} 

1 4e,+t,    k -    /, j.^ 

'1    i=l 
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which we denote by Pv l-    So, if 

then 

Ä(k)>max l6Ml 
- i,J '  ij ' 

max- 

Furthermore 

3 
I 

max  |.(k+l)|  < max ^(k-nyk+1),, 
i»J    Yij -    J j J 

< max ii6*!k+l)|| ^ |!l/k+l)|| r    " r 

4e,+e .    2    El    1  /  ^.T       N max  |     k+l), 
< m   -T  (m+l-r, )   .   .     u, . , 

1-e k' 1,0   '   ij 

which we denote by R(k+1) Therefore, we may conclude that 

max   i., (k+l)i   . max  |Q(k+l)i max   ..(k+l)! 

and that 

3 
3 
3 
1 

|«B(k+1'i| < || e(ktl)|| +||w(k)|| ||Y(k+l)|| 
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To recapitulate:    If we are asked to compute the vector    v 

satisfying 

BK  =  q 

via the modified LU decomposition 

B(k) + 6B(k) = LG^)u(k)  , 

we actually calculate the vector t, an approximation to v, which 

satisfies 

(B^V^H = q   . 

where 

,(k) 6B(k) + LG(k)6U(k) + L6G(k)U(k) 

+ «LG(k)U(k) + L6G(k)6U(k) 

+ fiLG^k^U^k^ + ÖLfiG^U^ 

+ 6L6G(k)6U(k) . 

Now 

IM < m((m+2)e^ + -ll- [l+Cm-D^]) , 
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wm 

and 

6G (k)|| ^ i    J 
1-e 1    i=l 

E    (m-^) , 

2e,-E 
||6U(k)|| <ml(m-l)e' + 2 i^0 [i+(«.i)^n ^ i .«fi . 

And in order to bound   ||flB    '||,    we let 

^(0) = m^|u(0)|((ra+l)e: + i<J   '   iJ 2 

2el+el 
a [l+(m+l)e^]} 

and 

I 
1 
1 
] 
1 
] 
1 
I 

/?(k+1> = rnax^^,P(k+1h+"«(k+l) 

for   k = 0,  1, 2,...  .    This makes 

|6B(k)|| < vßM 

for all   k . 

Thus it is possible to compute a bound on   Hfc^'H    at every 

execution of the simplex-method cycle.    This will be the foundation 

.(k). 

for the a posteriori bounds developed in Chapter 9- Moreover, an 

a priori bound on \\t    '|| for all k, expressed only in terms of 

the given data, could be given at this point. The bound would be 

72 
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extremely large and of no practical value, but its existence argues a 

numerical stability for the modified LU implementation of the simplex 

method which was not present in the explicit-inverse implementation. 

This a priori bound would be grounded upon the following considerations, 

(k)      (k) 
round-off effects in the computation of u^./ and h^.' being neglected 

for the moment: 

kl-rr 
n.' 

- m.' (n-m): ' 

m - r. < m - 1 for all i , 

max |u(0)| <  pm-1 max |a i 
Kj ' ij ' - "   i,j ' ij1 

(Wilkinson [13, p- 9?]); and 

max i ,(k)| . m  max i. (k) 
. , |u^| <mm^ |h^;|  for all k = 1, 2,, 
i<J ' ij ' -  1,^ ' ij ' 

(Wilkinson [ih,  p. 218]), where 

and 

^ Ih^)) < max{^ U^l, llH^^II} 

: 

i 
i 

5k-i 

< m . . |a.. |  (approximately). 

1$ 



Finally we must note that one of the systems of equations to be 

(k)T 
solved in the simplex-method cycle uses D    as the coefficient 

matrix. It can be shown that, if t is the solution to 

Bv ' v = q 

(k) computed via the modified LU decomposition for    B      ,    then    t    satisfies 

(B^V^q, 

where any bound on \\t     \\    is also a suitable bound for H'  | 

•I 
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I 
I 
I 
I 
I 
] 
■■» via the LU decomposition of B was covered, in passing, throughout 

the discussion in the preceding chapter. It is worth a quick review 

for its own sake, since we wish to describe an implementation of the 

simplex method in which this error analysis is valid. 

The decomposition of B is produced by letting I 

.1 

8.    The Standard LU Implementation 

of the Simplex Metnod 

The round-off error analysis due to Chartres and Geuder   [2]  whicl? 

holds for the conventional method of solving a linear  system 

Bv =  q 

^ = f'^J " £ 'ivV    f0r    ^J   ' 

and 

From this we find that L and U satisfy 

B + 6B - 1U , 

1 j^1 

t. .   = f/[(b..   -    7    /.   u   .)/ü..] 

:i 
3 
1 
I 
I 
I 

for    i > j 

where,  letting   ^ = min{i,j}  , 

l »cm*, ummmmnnrtm i 

.J—      *»~*äM 
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2 

(l-e^' 

£iv«i (<+2)e2 • 

A vector   w    satisfying 

(L+6L)w = q 

is produced by letting 

i-1 
wi= fi(qi - £ 'ijV 

1=1 'iJ J 

i 
i 
i 
i 
i 
i 
i 
i 
i 

for   i ■ 1, 2,,.., m,    where 

Ifil^l < (i.i)e^+iri- [l+(i-l)e^]  , 

and 

Ift'J <  IhM^K   for    !■> 3  • •ij1 -  '"id 

Finally a vector t, approximating v and satisfying 

(U-+*U)t = w , 

7b 

I 

I 
I 
I 
I 
I 

• 
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is produced by letting 

ti-fi[(wi.jssZiVj)/lii] 

for    i - m, m - 1,...,  1,    where 

|6r.iil   < f(m.i)E2 +-J-J:2  [l^m-i)^]}!,..!   , 

and 

Ifi-ijl  <  (J-i^^l-j i     for    j > i 

Hence the vector    t    satisfies 

where 

or 

(B+e)t = q  , 

C = 6B + 6LU ■*■ L6U + 6L6U , 

'U 
= 6b,, +   y    (6/. u  .+i. fiu ,+fii.  6u  ,) ij      ^  ^    IK KJ    IK    Kj      iK    xy 

77 
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So 

K^ivw^'^Si1?'1^'1^1 

+   it,  u  A  + \t,  flu  .|   + |61.  6i  . 

+ ts   liiK,Vjl{('j+,<+6)€2+('<+2)(j-'<+2)e22]   ' 

where,  if we let 

X = 
2e +e' 

(m-l)e; + —L--2 [l+(>n-l)E^ , 
(1-6!)' 

we may sst the bounds 

tt. u  .| <  < 
in ^j   -   A 

Xlu 

xh 

ij' 

^ 

for    i < j  , 

for    i = j  ,    and 

(^Dl/.ju.jl^    for    i>j; 

(mn)|uitj|e2 

i, tu. A < I x|u.. iu.    ii.i    —   S .1.1 '1^    nJ 

for    i < J 

for    i = j ,    and 

for    i > J  ; ii 
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and 

X(m+l)|i:1J|£^ for    I < j , 

l«'t,.
8u..,l  <   <   ^l"»i 'ip.    |ij JJ 

for    i = j  ,    and 

X(m+l)|ii....|e2    for    i>J . 

This gives the result 

l^jl <^    |iiKa<j|[(.i+^6)+(K+2j(.i-/<+2)e2]e^ 

[2X + (m+l)e2+(m+l)\E2]|uiJ| for    i<j, 

+ ( [5x+\2]K JJ 
lor    i = j  ,    and 

[2X+(m+l)£^+(m+l)\E2]|fiJuJj|     for    i>j 

Let us set 

T2 = E2(1+2E^) 

and 

71= \ + (m+l)e2 + (m+l)e2X + X    • 

As estimates,  then, we will have 

£p w Ep W Ep 
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and 

Using these^ we may write 

^ 

2TJU |    for i < J 

'ni^i 

^'I'VJJ1 

for i = j > and 

for i > J 

This leads to the bound 

Hell < « ^J ^iJ1 ^ mt5T1+2m(m+5)T2] ^ luj . 

The argument concerning a priori bounds which was given in the 

last chapter can be applied here as well. That is, by noting that 

max i       i   . „m-l max  ■       i 
i<i KJ1^2    i,j ^ij1 ' 

we may place an upper bound on    ||ß||    a priori, in a simple fashion, in 

terms of the given data.    For the purposes of the a posteriori bounds 

to be discussed in Chapter 9, the quantity 

:: 

ii 

■■ 

.. 

«. 

mt^r^mCm+jyTg]  ^   1^, 
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can be computed within each execution of the simplex-method cycle.  This 

max 
quantity,  being only a constant multiple of   ".  '.' |

U
JJ|   > has better 

i^j ■ ij - 

'k)ii 
behavior than the computed bound on ||£'V ll developed in the preceding 

chapter.  For, initially, the modified LU implementation and the standard 

LU implementation are the same- That is, |j.?. 'j| has the bound which 

we have just given above. On subsequent executions of the simplex- 

method cycle, however, terms depending upon the transformations G 

(k) 
enter the bound for ||e.  || . These terms bring in the quantities 

(k) 

Y    (m-r.)    and    S it 
(k) 

which grow roughly in a linear fashion with    k    and cause the bound for 

||6      |i    gradually to grow larger than the bound given above for    ||e.||   . 

Finally,  we should note as in the preceding chapter that if we 

solve a linear system 

T B v = q 

via the LU decomposition computed for B, then we actually calculate 

a vector t which satisfies 

(BT+9)t = q , 

where any bound on ||6|| is also a suitable bound for ||^|| . 

The error analysis given above can be used in the context of the 

simplex method as follows. 

ii i 



Let 

ß •= [A. ,..., A, ] 

be the current basic matrix, and let L and U be the matrices of 

its computed decomposition- We assume that the order of the rows in 

B is such that the partial pivoting strategy produces no row reordering. 

If the simplex method cycle is carried out to produce the new 

basis 

V-'Vx'vr-'V**1' 

then let the new basis matrix B  be constructed by dropping the r 

column of B and introducing A  in its place. In this case the 
s 

decomposition matrices L'  and U' which would be computed from B' 

using the partial pivoting strategy differ from L and U only in 

the shaded areas indicated below: 

L': 

fl 

: 

■ 

62' D 
H 
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U': \S %j w 
Thus, only in the shaded areas must the elements l'. ,     and  .; . 

be computed, and only for the last m - ß + 1 rows do row interclianges 

have to be considered-  The saving of work implied by this is considered 

in detail in Chapter 11.  But in rough terms, half the work needed to 

compute L  and U' from scratch is needed on the average to update 

the LU decomposition of B to the L'U'  decomposition of B' .  Even 

5 
so, this amounts to an order of m  operations for the average execution 

of the simplex method cycle.  The conventional implementations of the 

simplex method as well as the modified LU implementation described pre- 

2 
viously require only an order of m  operations. 

ö- 

^^M^^M mm* 



9.    Error Bounds for Linoar-System Solutions 

Found by LU Decomposition 

We have seen that the round-off errors committed in computing the 

solution    v   to the linear system 

Bv = g 

permit only an approximate solution v + fiv to be produced which 

satisfies 

(B+e)(v+«v) = g 

for some matrix    6    whose norm we can bound.    Thus 

«v = - B_1e(v+6v)  , 

and so 

Iftvll < IIB-1!! Ilell IMvll .< 

Since    ||v+4v||    can be computed and an upper bound on    ||6||     is 

available, we can bound    ||fiv||    by finding an upper bound for 

^in(BB ) 

&r 

1 
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i.e.,  by finding a lower bound for    \   ,   (BB ) min 
T Let the eigenvalues of    BB      be 

< ^  = ^min(BB ) < Xp < ...  < X i        rain —    d — — m 

We can compute the sum of these eigenvalues as 

m _   tn  m 
d = 2 Xi = trCBB

1) = j; r 
i=l i=l A 

TN   ^ ^ ,2 
biJ 

Further, if we have solved the given linear system via some decomposition 

iii 
:; 

Hi 

B + 6B = VW , • • 

where det(v) and det(W) are particularly easy to compute, and a 

bound for ||66|| is available, then we can compute an approximation to 

the product of the eigenvalues as well: 

p = [det(B+6B)]2 

m 

=    H   X.([B+6B][B+fiB]T) 
i=l 

m 

=    | j   X   (BBT+8BBT+B4BT+aBfiBT)   . 
i=l 

:: 

:: 

11 
11 

But BB  and ABB + B6B + 6B4B  are both symmetric matrices. Hence, 

it follows that 

0 

1 

■• 
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I 
I 
I 
I 
I 
I 
I 
T 

: 

i 

i 
i 

i 
i 
i 

X^BB^fiBB^BfiB^fiBÖB1) = ^ + 6Xi 

for each    i,    where 

|fiXil < ||6BBT+BfiBT+mBTl|   . 

(See Wilkinson [Ik, Chapter 2, §44].)    Suppose, therefore,  that 

K > ||6BBT+BfiBT+6BfiBT||   . 

Then 

IftXj < K 

for all    i .    And 

m 

P = n ^i+ö^j > 
i=l 1 

tn m 

1=1 1        i=l     1 

The best lower bound for   ^ = \min(BB )   which we could hope to obtain 

using this information would be the component   q..    of the solution to 

the following programming problem: 

36 
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r 

( 

minimize f(q  .•••>  q ) - q, 

m 
subject to       g,(q,i•••i q ) »   /    q.  - d - mK < 0 

11 m        j*^,     i ■" 

m 
82(q1i ■"» \) =   Y.   qi - d + mK > 0 

i=l 

m 
sA% >• • - > q_) = J iog(qi) - iog(p) ^     x -m i=1 

= 0 

Using the method of Lagrange multipliers, we are presented with four 

linear systems to solve: 

1. 
r 

m 
I]   log(q ) - log(p) = 0 
i=l 

- ^/qg = o 

^l/\ = 0 

which has no solution; 

2. 

m 
£   log(q.) 
1=1 1 

log(p) = 0 

m 
y    q,   - d - mK  -- 0 

1 ' ^l/ql " ^2 = 0 

- H;L/q2 - ^2 = 0 
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from which we first infer that 

q2=   ...   =qm=Q 

giving the equations 

„m-1 
q-jQ       = P 

q-j^ +  (m-l)Q = d + raK , 

:: 

which imply that    q.    must satisfy 

5- 

/      m-1      xm-1 
qi= p( d^i:)   ; 

m 
T   log(q   )   - log(p) = 0 
i=l 

m 
mK = 0 

1  " ^l^l  " ^2 = 0 

- ^1/q2 - li2 = 0 
t • 

" ^l/qm " ^2 = 0 ' 
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• 

whose solution,  as with the preceding system,  has a first component 

which must satisfy 

/  m-1  \m-l 
% = P( ^„v „   )     ; d-mK-q, 

and 

I 
I 
I 
I 

•* 

k. m 
J log(q. ) - log(p) = 0 
i=l 

m 
Y   q, - d - raK = 0 
i=l i 

m 

i=l 

1 " ^1^1  " M-2 " U.5 = 0 

"A. - 1*2 - I»; -0' 

from which we first infer that 

q2 = ... = qm = Q , 

69 
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giving the equations 

q^   = p 

^ q1 + (m-l)Q = d + mK 

q1 + (m-l)Q - d - mK , 

: 

which have no solution. 

Thus we use the lower bound 

\l > maxlq^,   q_} , 

where    q^,     q      satisfy 

f   m-1      ^-I 

If   F    is a  real matrix of order   m    with positive eigenvalues, 

the  fixed point    f    of the equation 

:i 

3 
1 
1 

f = ^(F'( t^FR J""1 

is often used as a  lower bound for   X   .   (F)     (Bodewig [1, page 69]). 

The fixed point is found  iteratively with    f = 0    inserted initially 

into the right-hand side.    With this background,   it is easily shown 

that 

90 
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 ■ 

q_ - max{q+,   qj   . 

For, in the iterative production of    q.    and    q     we let 

q(°) - q(°) . 0 

and 

il 

:; 

:: 

: 

/        m-1 = p  rr 
V d+mK-q;   ' 

for    1=0,  1,...   .    Thus, we proceed Inductively.    Initially, 

,(0' - 40) • 

Suppose 

qW > qM 

for some    1 > 1 .    Then 

d + mK - q)1^ > d + mK - q^1' > d - raK - q^^ 

So 

m-1 
ra-1       \m-l .      /       m-1 

rn    ^p zrin d-mK-qv  '/ V d+mK-q^ 
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I 
1 
1 
I 
I 
I 
:. 

: 

: 

: 

or 

Hence 

q(l+l) > q(i+l) 

q_ =    11m    q^ >    lim    q^ = ^ 
i   -•   00 i   -•  08 

Therefore,   if    Z > \\t\\,    we can bound    ||6v||    by 

INI <-JÜ*. Z||v+6v||   . 

:; 

] 
3 
1 
1 
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10.    Employment of Error Bounds in the 

Simplex-Method Cycle 

Each study which we have made on an implementation of the simplex 

method has led us to conclude that,   in solving the systems 

1 

: 

T B TT = Y 

Bu = b 

_By = As 

computationally, round-off errors permit us to produce only the approxi- 

mate vectors 

Ti + on, u + tu,  y + 6y • 

From these studies we have also determined how bounds on the errors 

< INI < n 

llöyll < cp 

] 
i 
i 

can be computed. 

Furthermore,  in computing the objective function 

T z = rr b  , 

95 
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I 
we can pruduce  ouiy '• 

so  that,   letting 

z + 6z =  (TT+6n)"l.' 

•- n b + 6rr b 

- z + 6TT L , 

.. 

:: 

5 = ">INI . 

T H\ = IöTT^I < UM ||b||<5 

Likewise,   in computing 

c .  =  Tl   A.   -   c . 
J J J 

1 

:: 

. * 

I'or    J ^  [v .,•••; v },     1 < j < n,    we  can only produce    c.  + 6c.   , 
1 Hi J J 

where 

16c. |   -   |6TTTA.|   < Q. 

for    C    = üDIIä  ||   . 
.J J 

These bounds may be used to give warnings that round-off effects 

have become harmful. As an example, at each execution of the simplex- 

method cycle the test that B is, indeed, a basic matrix is that 

u > 0 .  Conceivably round-off errors committed during the previous 

9^ 

- 

i 
i 
i 
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I 
3 

!  il 
:: 

execution of the  simplex-method cycle can have canned th ; wi'on • colur.in 

to be moved  to or from the basis.    As a check on    u,     thou,   '.to note   that, 
t 

for any    i, 

u. > 0    if    u.   + 6u.  > 11  , 
i ii1 

and 

-   • 

I 

u. < 0    if    u,   + 6u.  <- Tl  • 
i ii 

If neither of the above hold,  then we  shouldn't draw conclusions  about 

the  sign of    u.   .     Thus,  if for any    i    it  is discovered that 

u.   + 6u.  < Tl  , 
i i —   ' 

] 

i 

i 
i 
i 

then the computation in the previous  execution of the simplex-method 

cycle bears a second look. 

Similarly an improper exchange  of columns in the previous execution 

of the simplex-method cycle may have produced a basic matrix,   but one 

for which the associated objective function value shows a decrease 

rather than the increase which it should.     Let    z + uz    and    \    be 

respectively the previously computed objective function value and 

associated error bound.    Let    z + 6z    and    5    ^e ^he corresponding 

values for the current execution.    Then 

z<z    if    z + fiz+|<z + 6z + 5, 

95 
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and 

z < z    if    z + 6z + § < z + öz + |  . 

If neither holds,  the situation is  indeterminate.    Thus,  if 

Z   + 02   +  5  <   2   + ftz   + | 

the computation of the preceding simplex-method cycle could stand review. 

Likewise the index s for which 

c = minfc,} 
s      y 

has definitely been found if 

c   +6c   +r   <'c.+6c.-rJ s s      ^s -    J J      tej 

for all j d  [v,,..-, v ] and 1 < J < n . And c  is definitely 

negative if 

c + 6c + C < 0 
s    s  's 

The execution of the simplex-method cycle can proceed if a value of 

s is found such that only this last inequality holds.  Otherwise each 

c. is nonnegative or has indeterminate sign, and as good a check as 
u 

possible should be made on the optimality of the current basic feasible 

solution. 
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IT there la no value of l'or which 

y. + iy, > cp ; 

then each y. is negative or hac indeterminate sign, and as good a 

check as possible should be made on the sign of each component, of y 

to establish whether or not the objective function i;.-. unbounded from 

above.  If for each j the sign of y. can be determined; i-o-., 

either 

y. + 6y. > cp 

or 

yj +  6yj < cp , 

;hen,  if    r    satisfies 

•   i 

u +.5u +T1      i .+6u.-Tl 
r      r   | <    j      j   ' 

yr+3yr~<P - : j+öy.+cp 

for all j such that y^ + 6y. > cp,  r is definitely an index such 

that 

— = min[ —"• | J is any index for which y.. > 0 ] 
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Thus,  teate  invoiving    y\,    cu,    and   cp    (-'an be- made  throut^hout 

ej »cution of the simplex-raethüd cycle to determine whether the eompu- 

tations which have just been performed need to be  investigated-      The 

needed investigations must be carried out. by producing better approxi- 

mations  to the vectors    u,    rt»     and    y    corresponding either to the 

current basis or to the preceeding one,  and computing smaller error 

bounds    T\,    tu,    and    cp    in association.    This is most easily accom- 

plished by iteratively refining  the three  vectors     (Wilkinson  [l^, 

pp.   121-127], Forsythe and Moler   [5, Chapters 15 and 22],  Moler  [?]). 

Under the usual circumstances;  i.e.,   if    e0    is  sufficiently smaller 

than    E      and the basic matrix is not too badly conditioned,  iterative 

refinement can be expected to improve the approximations to    u,    n, 

and    y    essentially to full normal-precision accuracy.     In other terms, 

T),    cu,     and   cp    can each be reduced to a small  integer multiple of 

E      by the iterative refinement.     Since the given data    A,    b,    and 

c    are only assumed good to normal-precision accuracy,   there is no 

reason to produce approximations to    u,    n,     and    y    having more accuracy 

than that provided by iterative refinement,     if difficulties arise which 

cannot  be cleared up by iterative refinement,  it  is reasonable to argue 

that  they should remain unresolved pending acquisition of more accurate 

data. 

We summarize these remarks by presenting a variation on the simplex- 

method cycle- 

Main Section 

1.    Produce    u + 6u    and    T| . 

If    u.   +• 6u    < Tl    for any    i,     restore the basis used for  the 
1 i —   ' 

previous  execution  of the cycle,   and go  to  step 8. 

9« 

i 

: 

T 

i 

I 
I 

n 

ii 

1 
1 
1 1 

p—1 

— 



I 
I 
I 
: 

:: 

2.     Produce    TT + 6n     und     CD  , 

5«     Produce    z  + 6z    and    5   ■ 

Let    z + 6z    end    %    be  the corresponding values  produced 

during the  preceding execution of the cycle.     If 

z + 6z + 5 < z + 6z  - I,     restore the preceding basis,   and go 

to step 8. 

k.     Produce    c. + 6c.     and    C.    for each    j  /  [v  . ...^ v  ], 

1 < j < n   .    For one  such value of    j     set 

h 

; 

H 

t  = c. + 6c.  -C.    and    s  - j 

For each other such value of j  in turn set 

t=c. + 6c.-C.  and s •- J 

if 

c . + 6c. + C ■ < t 
J    J 

Having finished^   if 

c     + 6c    > - £    , 
s s —        s 

then go to step 9» 

5.    Produce    y + 6y    and    cp  . 

If   yi 
+ ^yi < tp    for all    i,    go to step 9. 
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6. For one value of i such that y. + 6y. > cp let 

u.+eu -Tl 
t =  .i .  and r - i . 

yi+6yi+tp 

For each other such value of i in turn set t and r as 

above whenever 

Uj+fiu^ 
< t . 

:: 

- 

7. Drop A   from the basis and add A . Then form a corre- 
vr s 

sponding basic matrix, update a decomposition, or do whatever 

else is necessary to reflect the basis change, and go to 

step 1. 

Refinement Section 

8. Form the necessary basic matrix, compute a decomposition, and 

produce u + 6u, rr + 6TT, y + 6y • 

9. Refine u + 6u and produce a corresponding error bound Tl • 

If u. + 6u. < 1] for any j, computation should be suspended, 
J    J 

and an indication should be made that the problem seems to 

be degenerate. 

10. Refine n + OTT and produce a corresponding error bound CD . 

11. For each j ^ tv,,. ■ •, v }, 1 < J < u produce c + 6c 

and C. from the refined TT + 6TT and (o . Find s as in 

step k.    If c + 6c > ^ , the optimal basis has been found, 
s   s   s 

100 

:f  ! 

H 

: 

? 
.1 

0 

a 
1 
1 
1 

111 



I 
I 
I 
I 

:: 

:: 

:: 

0 

0 
0 

If £ > c + 6cr- > - Q  >    the current baüis Is prcbably, 

though not necessarily, optimal. 

12. Refine y + fiy and produce a corresnonding error bound q  , 

If y. + 6y. £ tp f'ijr ali i, computation should be suspended^ 

and an Indication should be made that the objective function 

appears to be unbounded from above.  Otherwise go to step 6. 

We should note in closing that, if an implementation of the simp Lex 

method constructed along the lines given above produces a vector x + ox* 

as the computed approximation to an optimal solution, there is no way 

of checking its closeness to any true optimum for the problem using 

the information at hand.  This is due to the fact that the components 

1 
of optimal solutions to linear programming problems need not vary con- 

tinuously with perturbations in the data.    And round-off errors committed 

during computation of the basic feasible solutions may be expressed,  we 

have seen,  as perturbations of the basic matrices,   and hence of the data- 

A bound on    6x    is useful only for delimiting the distance from some 

basic feasible  solution    x"    and the computed vector    x + ox* ■     The 

problem can quite possibly have a unique optimum    x*    for which the 

distance 

l|xMxT6x)|| 

is greater than the bound on    ||6x||   .    Such a situation might arise,  for 

example, in a problem having one optimal point and one or more widely 

separated nearly optimal points.    Then round-off errors can quite 

ID: 
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^ 

HHHHH ■ i • 

possibly cause the computed approximation to one of the  nearly optiirval 

points to have  a higher associated value of the objective   function  than 

does the approximation to the optimal point. 

II 

:: 

: 
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n 

:( 

11.     C'cmparisi..'n of Implementütio^a by 

Cperütion Counts 

It  is our final goal to compare the computational effort  requited 

by each of  the three simplex-method implementations which have been 

studied.     These  implementations differ only in the manner  in wnich tach 

produces the vectors    u,    n,     and    y  .     Hence, a measure of the work 

done by each to produce these three vectors will constitute a  satisfac- 

tory comparison^ 

Traditionally the number of multiplications and divisions   (product 

operations; needed to carry out a computation has been the measure of 

the work needed for that computation.     The reason for this lies  in   .he 

much slower speed at which earlier generations of computers have per- 

formed product operations in contrast  to their speed of performing 

additions and subtractions  (summation operations).    As machines are 

built with more nearly uniform speeds  for all arithmetic  operations, 

this tradition  is becoming indefensible-     In the programs  discussed 

here,  however,   computations are composed of inner products or of 

additions of a multiple of one vector to another-    Thus,  each produc- 

operation generally gets paired with a summation operation,  and the 

convenience of counting only the product operations may be kept. 

We begin by considering the standard LU implementation,   since 

several of the operation counts which we derive for it are applicable 

to the modified LU implementation as. well. 

Consider solving a lower triangular system 

JV   ^   g 
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if the first    k - 1    components  of    v    are known.     The components 

v, ,.. . ,   v      are produced by setting 
k m 

i-1 
ri = gi " £ 'i 

j=l 
.v. 
J J 

:: 

:: 

in order for i = k,.... m . This requires 

Ik -i)Mk)^..M-i) = "''m-1'-^1'<k-£' 

product operations. 

Consider  solving a lower triangular system 

T U v = g 

if the first k - 1 components of v are known.  Here, for i = k,..., m 

in order we set 

i-1 
v. = (g - / u..v.)/u.. 

j=l 

so that the cost to produce v is 

A.,I         mfk+ll-kCk-l) 
k + (k+l) +...+ m = -J ^—^ L 

product operations. 

To produce the vector u in the standard LU implementation, we 

solve, in order, 

10k 

- 

a! 
.. 

:i 
II 
;! 

ll 
I 
I 
I 

k«\ii.;*> 

■• 
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: 

3 
I 
1 
I 

and 

Lt ■= b 

Uu = t 

But the matrix L is identical in its first r, - 1 columns wii.h the 

lower triangular factor of the basic matrix used in the prevtuus execu- 

tion of the simplex-method cycle.  Thus, if the vector t is saved from 

the previous execution of the cycle, since the vector b is constant, 

throughout, only the components t  ,..-, t  need oe produced anew, 

which costs 

m(m.l)-(r0-i)(r0-2) 

product operations. 

In solving Uu = t, no reduction in effort is afforded by raving 

an old copy of u available.  The cost to produce u will be equal 

to the cost of producing all components of v from the system 

T 
U v = g ; 

that is., 

i(m-H) 

product operations. 

LOS 
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• • 

To produce the vector n we solve, in order, 

and 

V v = y 

L TT = >; . 

But the matrix U  is identical in its principal submatrix of order 

r0 - 1 with the corresponding matrix used on the preceding execution 

of the simplex-method cycle. Similarly, the vector y    does not differ 

in its first r» - 1 components from the corresponding vector used on 

the preceding cycle • Thus, as was done in producing u, an old copy 

of w can be used to cut the cost of computing TT to 

•i 

m(m+l)-r0(r0-l)  ^j 

2      +  2 

product operations. 

No saving in the production of y can be arranged. The total 

cost required for the computation will be 

m(m-l)  m(m+l) 
2      2 

product operations. 

Finally, if the execution of the simplex-method cycle results in 

the change of column r. of the basic matrix, we must count the cost 

of updating the LU decomposition.  The areas which change are shown 

shaded next: 
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I 
I 
1 
.. 

: 

• r 

.1 

1 o 

'A /A 
r. 

N l 
O 

v\ V//J 

Now, a partial column of the LU decomposition) 

0 
M-y        1 

0 'i    -       1 
V-i;V 

1 u i 
vv         i 

V + ljV 
0        | 

I o    ! 

a 

•j 

is computed by first letting i •= p,, (j, + l,---, v in order and setting 

i-1 

u. « b,  - Y    *■ •u- 

which requires 

I     1 \ +      +     +  f     ■ i  _ v(v-l)-(u-l)(u-2) 

U>i 

1 
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product operationsi  and then letting    i  -- v ■••  L., 

setting 

m     :n  Drder and 

-  (b.     -ft   .u.   )/u       , 
iv      s iv       A    i.1 Jv     vv 

which requires 

(m-v)v 

product operations- 

To completely update the LJ decomposition of the basic matrix; 

it is required that column    r      be fully recomputed,  and that columns 

r    + 1    through    m    be recomputed from row number    r      on down.     Phis 

costs 

^(r  -1) 
±^~~ + (m-r1)r1 

m        ! 
+  E    ' 

k=r1+l 1 

>rc iduct operations. 

Using the equalities 

f             ^-11   ::     1 

k(k-l)-(r -l)(r  -2) I 
 s= =  + (m-k)k1 

^ |-;m+i)m(m-l)-(ri+l)r1(r1-:. 

:: 

i 

rot i 

*m 



mid 

i 1 
T 

i 

I       (m-k)k = m  £   k-  £   k 
k-r^+I k=r +1    k=r1+l 

m m 
(m-1) £       k -  I   k(k-l) 

k-r *•!    k=r +1 

^ [m(ra+l)-r1(r1+l)] -| [m(m+l)(m-l)-r;L(r:i+l)(r]-l)] , 

we find that the cost of updating is 

r^-l) 
+ r^m-r^)  +^ [(m+l)tn(m-l).(r1+l)r1(r1-l)] 

(r -2)(r1-l)(m-r.)  m . 
- —i ~ ^ - -~ Mm+D-r^r^l)! 

- ^ [(m+l)m(m-l)-(r1+l)r1(r1-l)] 

mr, + I K + 2mr1 - i ^ - ^ m + Z rl 

product operations. Thus, to fully carry out the simplex-method cycle 

using the standard LU implementation requires 

m 
5 

- mrT + ^ r^ + 2mr, - ^ r, - -j m + ^ r1 ■1  3 1 1 ~ "2 "1 " 5 

m(m-l)-(r0-l)(r0-2)  m(m+l) 

g +  2 

| m(mn)-r0(r0-l) ^  m(^l) 

m(m-l)  m(m+l) 
"~2      2 

109 



product operations, which simplifies to 

m 
3 

2 a. 2 5 a 0    5 2 mr1 + ^ r1 + 2mr1 - ^ r1 5 m ^ ^ ri 

+ 5m 
2 

r + 2r r0    0 

product operations. 

This expression is not as useful as we would like for comparison 

purposes, depending as it does upon the present and preceding exchange 

through the numbers r  and r.. . However, it is reasonable to assume 

that each value for r„    and r,  between 1 and m is equally likely 

to occur. Hence, the expected number of product operations in any execu- 

tion of the simplex-method cycle would be 

^ ^ x 2 k i • i -=- + 5"! -■rm-l+- 5       5m 
0m, [-m0 T7m 

f E v5-(m + |) I v2+(2m + f) J 
^ v=l v=l v=l 

1 

or 

nr , , 2  m 
-TT + 5m - T 

product operations 

For the modified LU implementation some savings can be made in 

the computation of the vectors u and TT like the savings made in 

the standard LU implementation. 
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To produce  the  vector    u    we  solve 

Lt  = b 

and  then set 

,(*' . lr<k'n(« ...r(k)n'k'i 
m-L m-L r,      r, 

k       k 
m-L m-.l 

r(i)nCi)H, 
ri ri 

and   lastly solve 

I I 
I 
1 

„(k) (k) 
U       U   -■   q 

However,  on the previous execution of the simplex-method cycle -we  ha1 

already solved 

;: 

Lt ~ b , 

and have set 

(k-l)   =   [rU-l)n(k-l)   ...   r(k-l)n(k-l)      ...        (1)   (1)   ...     (1)     (!) 
m-l      m-1 r,    ,     r,   n m-1 m-1 r      r 

k-i      k-i ;      i 

He 
(k-l) 

nee,   if    q is  saved,  we need only set 

q(k'. (r(k'n(k) ... W1']^-1' , m-1  m-1 r,     r, ' 
k      k 

u: 

* 
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d~~ 

. . 

and then solve 

„00    (H) 

,(k) The production of q    costs m - T      product operations, and the 

production of u costs m(m+l)/2 , 

To compute n, we solve 

vM\ = V , 

- 

i 

then we set 

,W . [n(i)r(i) 
r      r 

1      1 
m-1 m-i 

. rnH(k>T...iWk'Tlw 
r      r 

k     k 
m-1 m-1 

and solve 

.T (k) 
L rr = p 

Noting, as with the standard LU decomposition, what things remain 

unchanged from one cycle to the next, we find that the first step 

need cost only 

m(m+l)-rk(rk-l) 

112 
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product operations.  Tne second step costs 

k k 
J (n-r^  = km - £ r. 
i=l i=l 

product operations, and the third step costi 

T 

~ 

^n-ll 

product operations. 

No saving in the production of y can be arranged, so that 

vector's cost will be 

m(m-l) , m(m+l) , ,    r^ s P ' +    s 2  + km - L r 
1=1    ± 

: 

i 
i 
i 
i 
i 

product operations. 

Suppose the current execution of the simplex-method cycle ends 

in the dropping of column number    r.   ..     from the basis matrix.    Then, 

in order to update the basis matrix decomposition, we must construct 

the transformations 

r(k+l)  (k+1)  _   r(k+l)  (k+l) 
m-1    m-1 Vi  rk+i 

and apply them to the upper Hessenberg matrix H     to produce 

U    , as was described in chapter 6. Letting a = r. ......, m - 1 

in order, we would carry out the updating by: 

11;' 

5 
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1. interchanging rows a and a + 1 it' necessary, 

2. making one division to compute the Gauss multiplier g     , 

x    v...  i.i    (k+l) ..   t,   th     ., ..(k+l) ,, }• subtracting g     times the a  row oi H     tram the 
a 

a + 1  row. 

In making this  last step, only components    a + 1    through    m    of the 

st o+l      row need to be computed.     Thus,   for each value of    a    we require 

m + 1 - a    product operations for a total of 

(m+l-rk+1) +...+ (m+l-m+1) = 2 + 3 +...+ (m+i-r^) 

(m-rk+1)(m-rk+1+3) 

r'l 

ii 

:: 

- 

i 
i 

• 

• 

4" Vn 
Thus, the measure of the work needed to carry out the k execu- 

tion of the simplex-method cycle using the modified LU implementation 

is 

2 
m 
T ■ 

r                      3r 
,     k+l  .  5m      ^ k+l 

^k+l +    2      +   2   -      2 

2 
m    .  m  , 

+   2   + 2 + m "  rk 

2     r   r 
t 
m . m   k ^ k ^ , + T + 2 " T + T + km 

k 

i m   m , , 
+ T " 2 + krn 

i=l 

2 

m 
2 

I ri + — 
1=1 

m 

• m 

o I 
n i 

ILV I 
1 
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I 
I 
I 
I 
1 
I 
1 
1 
I 
I 
: 

] 
: 

i 
i 
i 

i 
i 

product operationi;,   which condenses  to 

2    ,2 
>= 2       L 

rk+l  'k  /0, j-.x   p k+1 > - mrk+1 + 1— - - + (2k+3)m - -r- 

- r -2 .1, ^ • 
i=l 

Again assuming that each value of r,  (j=l,..., k+l) between 1 
J 

and m is equally likely, we would expect to perform 

5m2 + (2k+3)m + - (m-2-2k) f   v 
v=l 

= -Sj- + -g-+km-k-l 

product operations on an average execution of the simplex-method cycle 

using the modified LU decomposition. 

For the standard, explicit-inverse implementation of the simplex- 

method cycle described in chapter 3, the order of proceeding is slightly 

t 
different.  The cycle begins with u and TT already at hand, and 

the vector y is produced by forming the matrix-vector product 

B-\  = y , 

2 
which costs m  product operations. 

After the exchange of column A  for A   in the basis, columns 
s 

1 through m of the matrix D must be updated by applying to each 

the Gauss-Jordan elimination which reduces the vector 

... ^ ..— -^- — — —— mmmmtmm i      nmumiamiatm,, i      li 
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t ~ 
c 
_s 
y 

rr 

U       _J • 

t 
m 

to the  r      unit vectur.    That is,,   the  r   ' row of   D    is divided by 

th t    ;    then,   for    i = 0,...,   r -  1,   r +   Ij....,  m,    t      times  the  r   ' row 

is subtracted  from the  i      row of    D  .     Tn all, the updating requires 

m(m+-l)     product operations. 

Finally,   the same Gauss-Jordan elimination is applied  to t.he 

vector 

.. 

. 

- 

w 
at a cost of   m + 1    product operations. 

Thus,  one execution of the  simplex-method cycle using this explicit- 

inverse   implementation costs 

2m    + 2m + 1 

product operations. This is to be compared with the 

7m    .   5m  .   , ,       , 
-1-^- +■•—■+ km - k -   1 

I i 

product operations needed on the  average  to perform the k"    execution 

of the  simplex-method cycle using the modified LU implementation.    And 

it is to be compared with the 

116 
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: 

F ' 3m    - 6 

product operations needed on the average  to carry out the  s mp lex-met hod 

cycle using the  standard LU  implementation. 

Since     k    does not generally grow larger than a small  multiple of 

m,     the modified LU implementation does not  require significan+ly more 

work than the classical implementation.     Guaranteed numerical  L-tuM.my, 

in short,   needn't be expensive. 

:: 
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