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Abstract 

Conditions which are necessary and sufficient for convergence of a 

nonlinear programming algorithm are stated.    It is also shown that the 

convergence conditions can be easily applied to most programming algorithms. 

As examples, algorithms by Arrow, Hurwlcz and Uzawa; Cauchy; Frank and 

Wolfe; and Newton-Raphson are proven to converge by direct application of 

the convergence conditions.    Also the Topkis-Velnott convergence conditions 

for feasible direction algorithms are shown to be a special case of the 

conditions stated in this paper. 

Background and Summary 

Nearly twenty years ago F.  John [7], and Kuhn and Tucker [10], in 

brilli. nt papers, discussed when a given point was optimal for a nonlinear 

programming problem.    Under certain assumptions they gave necessary and 

sufficient conditions for a point to be optimal.    From a practical concave 

programming orientation the question, "Is a given point optimal?" was now 

settled.    Moreover, their conditions prompted exploration of a broader 

problem, viz., given a point which is not optimal, how can an optimal point 

be located. la effect, F.  Johi> andKuhn and Tucker answered the static question 

of knowing when a given point was optimal, but did not resolve the dynamic 

question of how to move from a point which is not optimal to an optimal one. 
partial 

As/answers to the latter question numerous nonlinear programming algorithms 

have been developed.    One of the earliest and best known of these,  the 

Simplex Method [k], actually predates the F. John,  and Kuhn-Tucker conditions. 



Even a casual glance at the literature reveals the plethora of 

algorithmic techniques; each one seemingly different from the next,  each 

having its own advantages and disadvantages.    As is well known,  it is 

often extremely difficult to prove that an algorithm converges.    In fact, 

only a small percentage of all suggested procedures have ever been proven 

to converge.    And even some which at first were thought to converge were 

later found to have incorrect or incomplete proofs.    Furthermore,  each 

algorithm seemed to have its own unique and different proof. 

It is the purpose of this paper to explore the similarities among 

algorithms.    Do the Simplex Method,   the Newton-Raphson Method,  and in . 

fact,      all      programming algorithms have a common essence?   And if so, 

do there exist features which insure algorithmic convergence?    In an 

important paper Topkis and Veinott [12],  have studied these questions for 

the class of feasible direction algorithms.    It will be shown that their 

conditions are subsumed by the conditions presented in this paper.    But in 

addition,  this paper will not only give conditions that are sufficient to 

insure convergence, but also will pose conditions that convergent algorithms 

necessarily satisfy. 

The practical impact of these conditions will be illustrated by using 

them to prove convergence of several well-known algorithms.    For example, we 

correct an error in Uzawa's modification of the Arrow-Hurwicz algorithm.   Further- 

more,      in     most cases the convergence proofs are considerably simpler than 

the original proofs.    Even when there is no obvious siraplifination    or 

improvement,  the convergence conditions provide a unified and straightforward 

method for proving convergence. 

The Algorithm as an Iterative Procedure 

Consider the general nonlinear programming problem,  called problem  (P). 

■HMMlaBblMa 



(1) maximize    f(x) 

(P) 

(2) subject to    g-Cx) > 0 i=l,'",m, 

where all functions are real-valued and   x e E ,    n-dimensional Euclidean 

sp€u:e.    It is assumed throughout the paper that   f   is continuous.    Define 

F vl En   as the set of all    x    vhich satisfy (2).    The set    F    is the feasible 

set.    Any point   x e F   that maximizes    f   is said to be an optimal point 

for    (P).    We assume    T f *,    where    <»    is the null set. 

Our goal   is to analyze algorithmic procedures for solving problem 

(P).    For definiteness assume the algorithms are for digital computers, 

and therefore,  the algorithms generate a discrete sequence of points. 

Furthermore,  the algorithm need not operate directly upon the points    x, 

but say on related points    z.    We may thus view an algorithm as a rather 

sophisticated iterative procedure,  that given a point    z     either stops or 

k+1 generates a successor   z      .    For generality assume that the points    z   on 

which the procedure operates need not be in   E .   Merely require that they 

be defined on a given metric  space    (V, p).    Often the metric  space will in 

fact be    En   with the usual metric. 

Now examine the iterative operation itself.    Given a point    z      the 

k+1 procedure yields a point    z       .    It may be possible  to actually define a 

k+1 k function   A: V -> V    such that    z        = A(z  ).    The function then defines the 

iterative procedure.    Unfortunately in many cases such a function would not 

be well defined as there may not be a unique value    A(z)    for a given    z. 

As an example,  consider the Simplex Method and suppose the point    z    has 

just been generated.    The point    z    is a basic feasible  solution of the 

constraining linear inequalities. Now assume that the next point    y,    also 

a basic  solution, is to be generated.    The point    y,     called a successor point, 
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may not be well defined as there might be a tie in the choice of the variable 

to enter the basis.    That is,  there are situations in which several possible y 

can conceivably be generated from    z.    Similar ambiguity about the successor 

to a point    z    arises in other algorithms.    We are therefore forced to 

consider procedures that may generate a   y   in some set.    The set being 

the set of all possible successor points that the iterative operation could 

conceivably generate from a particular    z. 

It should also be observed that the procedure might depend upon the 

number of iterations   k   already taken place.   A procedure which does not 

depend upon   k   is said to be autonomous.    As autonomous procedures are so 

numerous an autonomous iterative procedure will be defined first.    This 

definition will then motivate the more abstract definition for the general 

iterative procedure. 

The Autonomous Iterative Procedure 

Consider a particular problem (P) and a given metric space    (V, p). 

Letting   oP(V)    denote power set, define a point to set mapping   A: V -»   (P{v). 

Then the autonomous iterative procedure operates as follows.    Given   z   e V 

2 k k assume    z ,"•,%     have been generated.    Then, if   A(z ) = ♦    the procedure 

k k+1 stops.    Otherwise   y € A(z )    is a possible value for   z    ""    and furthermore 

zk+1 e A(zk). 

The more general definition will now be stated. 

The Iterative Procedure 

Consider a particular problem (P) and a given metric space (V, p). 

Fbr all k > 1 define a set V C V. For any point z e V,  define a set 

1 2    k 
The iterative procedure is as follows. Given z c V, assume z ,«'«,z 
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have been generated.    If   4» = A. (z ),    the procedure stops.    Othervise any 

y c A. (x )   is a possible value of   z     ,    and furthermore,    z       € Ak^x ^* 
v 

It should be clear that the set   A(z )    Is the set of all successors to 

k k 
z      for the autonomous procedure, while for the general procedure   A^Cz  ) 

is that set. 

Before continuing it is useful to develop some notation for subsequences, 

The letter   K,    perhaps superscripted, will denote an infi.üte subsequence 

k oo k of the integers.    Any subsequence of   {z ). can be denoted    {z )„    for 

an appropriate   K.    If the subsequence converges to a point   z00   we write 

z   -♦ z00   k e K.    The subsequence    (z     )„   is simply the subsequence formed 

by adding   1   to each    k c K.    If   zk+1 -» z0+1    k € K, then   z"+1   is the 

k+1 k 1 limit of the subsequence    {z      )„.    The notation    (z )  .    where   K  CK 

will mean an infinite subsequence of subsequence    (z )„. 

The Convergence Conditions 

Our immediate goal is to determine some conditions that are necessary 

and sufficient for an iterative procedure to be a convergent algorithm.    But 

first the concept of convergence must be clarified.    It is difficult to 

write a foolprocf definition of convergence other than the tautology that 

convergence is the property which all convergent algorithms have.    To begin 

with we specify a set    n C V    called the solution set.    Any point    z € n    is 

called a solution point or solution, and the algorithm will seek points in   fl. 

The set   n    will be defined by some given property;  the property perhaps 

depending on the problem and the algorithm under consideration.    Often    Ü 

will be the set of optimal points to problem (P).    However, many other 
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properties can be used to define   fi.    For example   fi    could be any one of 

the following:    the set of all points in an   e   neighborhood of an optimal 

point, all roots of an equation, all efficient or Pareto points, all 

equilibrium points, etc.    Nevertheless, it is assumed that for any given 

problem and algorithm the set of solution points   SI    has been defined. 

Of course,    fj   may turn out to be empty for certain problems. 

Ideally, ve would like an algorithm either to determine a solution point 

if one exists or to indicate that a solution does not exist.    In addition, 

if a solution does not exist,  it should tell us why such a point does not 

exist.    Unfortunately, such properties are far too stringent to impose upon 

any conceivable algorithm iraplementable on any conceivable digital computer. 

We,  therefore, adopt a somewhat practical definition of an algorithm based 

upon the properties of extant convergent algorithms. 

A convergent algorithm is an Iterative procedure with the following 

properties: 

a) If the procedure stops at a point   z,    then the algorithm indicates 

either that no solution exists or that    z   is a solution.    Also if a point 

v k k 
z     is a solution,  then either   Ak(z ) = *    or   ye A. (z  )    implies   y   is 

a solution. 

b) If the procedure generates an infinite sequence of points none of 

which are solutions,  then if txll points ar* not on a compact set 

no solution point exists while if    all   points   are    on a compact set the 

limit of any convergent subsequence is a solution point. 

Sufficient Conditions 

Certain conditions known as convergence conditions may now be stated 

such that if an algorithm satisfies these conditions it is a convergent 

algorxchra.    The first condition is, roughly speaking, a compactness condition. 



7 
that may arise due to lack of compactness 

A key complication in nonlin ar programming algorithms/is that there may be 

no optimal   point to problem (P).    In this case the maximum operation on   f 

has to be replaced by a supremum operation.    Condition I is intended to 

circumvent   such a problem. 

Condition I.    a)    If for some    z    and    k   A. (z) = $,    then the algorithm 

indicates either that    z    is a solution or that no solution exists.    Should 

k k k z     be a solution,  then either   A. (z ) = 4»    or   ye A. (z )    implies    y   is 

a solution,    b)    If the procedure generates an infinite sequence of points 

none of which are solution points, then if a solution exists there is a 

compact set   X    svch that    z    e X   for all   k. 

This condition is akin to similar assumptions made for nonlinear 

programming algorithms [6, 15, 16].    If anything it is somewhat less 

restrictive than most assumptions of this type. 

Condition II is the crucial assumption that guarantees convergence. 

Condition II.    If   z    e X,    a compact set,  for all   k,    then there 

exists a continuous function   Z: X -> E      such that: 

Il-a)   Given any point    z     then there exists an   L.     such that for 

all    i > Lk + k 

Z(zl) >Z(zk). 

Il-b)    Suppose the algorithm generates an infinite sequence of points 

none of which are solutions.    Also suppose there exists a 

k 00 00 convergent subsequence    z   -» z      k e K    such that    z      is not 

1 k        * 1 a solution.    Then there is a    K      such that    z   -♦ z      k e   K     and 

Z(z*) >Z(z00). 

The previously developed conditions will now be proven sufficient to 

insure that an iterative procedure is actually a convergent algorithm,  in that 

it will satisfy the definition of convergence. 
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Theorem 1.    Consider an iterative procedure on a metric space    (V, p) 

and assume conditions I and II hold.    Then the procedure is a convergent 

algorithm. 

Proof. By I-a ve are assured that if the algorithm stops at z then 

either z is a solution or that no solution point exists. Also if z is 

a solution any successor point is also a solution. 

Consider now that the procedure generates an infinite sequence of points 

(z  }j.    none of which are solutions.    If the points are not all on a compact 

set, then by I-b no solution point exists.    If all points are on a compact 

set, then any subsequence must contain a convergent subsequence.    It only 

remains to prove that the limit of any convergent subsequence must be a 

solution. 

It first will be shown that the sequence    (Z(z )).   ,    itself has a limit. 
k* 

Applying Il-a there exists a sequence    (z    )    such that 

(3) Z(zk*) - minimvan {Zizl)\i > k). 

k*\ Furthermore,  the sequence    {Z(z    ))    is monotonic increasing.      Also by 

k* compactness of   X   a convergent subsequence    (z    )K#   may be extracted from 

k* k        * * (z    }    such that   z   -»z      k e K .    By monotoniclty 

(U) lim   Z(zk*) =   limZ(zk) - Z(z*) 
k*-v* kcK* 

where the final equality is by continuity of the Z. 

Now consider any convergent subsequence z -» z* k € K . By continuity 

lin^ Kf Z(z
k) « Z(zl). Given k* and using (3) we may select k« € K1 so 

large that Ziz*') > Z{z**).    Hence 

(5) Z(z')>Z(z*). 
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But by II-a given any   k-  e K'     there is an   L.     such that   i > L.   + k 

implies 

Z(zk,) < Ziz*) . 

Thus for    k*   large enough 

k* 

Z(k,) < Z(zk*). 

Monotonie!ty of {Z(z   )} implies   Z(z    ) < Z(z ).    Thus 

(6) 

By (5) and  (6) 

Z(z') < Z(z*). 

Z(z*)   » Z^'), 

As this holds for any limit point    z1    it must be that 

(7) lim Z(2K) « Z(z*). 
k-t» 

Up to this point Il-b has not been employed.    It will be used nov. 

Let   z   -» z*    k e K.    It must be proven that    z*   is a solution.    Assume 

z"   is not a solution.    Then by Il-b there is a   K     such that z   -> z 

k e K     and 
Z(z*) > Z(z00). 

But by (7) this is impossible.    Hence    z00   must be a solution, 

Q.E.D. 

The next corollary will add insight into the previous theorem.    It is 

useful for the autonomous case.    But before we state it, we must define a 

closed map. 

A map    A: V -♦ {P{V)    is said to be closed at    z00    if 

a) zk -» z00 k € K, 

b) yk -» y" k c K 

and 
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c)    yk € A(zk; k € K 

imply 

y   e A(z  ). 

Corollary 1-1.    This is the same as Theorem 1 except that Condition II 

is replaced by II1    where: 

Condition II'.;  If   z    € X,    a compact set,  for all   k,    then there 

exists a continuous function   Z: X -*E     such that 

II -a)    If    z    is a solution,  then either the procodure terminates or 

y e A(z)    implies 

Z(y) > Z(z). 

While if   z   is not a solution,    y c A(z)    implies 

Z(y) >Z(z). 

II'-b)    The map   A(z)    is closed at any   z    not a solution. 

Proof.    Clearly Il'-a) implies Il-a).    We now show that Il-b holds.    Let 

K oo iv 
z   -» z k € K 

k+1 
such that the subsequence (z  )vl converges. 

■k+1       -# "   -  K1  . 

where    z00   is not a solution.    By compactness of   X,    there is a    IT" C K 

.... „ * 
z        -» z k e 

However, 

zk+:L 6 A(zk) k € K1 . 

Using the definition of closedness 

z    € A(zco). 

But    z*   by assumption is not a solution.    Therefore from II1-a 

Z(z ) > Z(z*). 

O.E.D. 
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For further implications of this theorem see [16]. 

It should be remarked that if   V   is a finite set,  I-a and 11'-a insure 

finite convergence. 

Necessary Conditions for Convergence 

It will now be shown that using the previous definition of convergent 

algorithm,  I and II necessarily follow. 

Theorem 2;    Consider an iterative procedure on    (V, p)    which is a 

convergent algorithm.    Let   fi,    the set of all solution points,  be closed. 

Then conditions I and II necessarily follow. 

Proof;    Condition I-a holds easily as it is a) of the definition of 

convergence.    Assume that an infinite sequence of points is generated none 

of which are solutions.    If all   points are not on a compact set 

no solution point exists so that I-b holds. 

Assume therefore that    z    e X    for all   k   where   X   is compact.    It 

must now be shown that Il-a holds. 

(9) Define   Z(z) «= - inf{p(z,  y);y € n). 

It is straightforward to show that    Z    is a continuous  function Z: X -» E . 

Note that    Z(z)  =0    implies    z € fi    as    ü    is closed. 

k v» Consider the sequence    (Z(z  )r,. It will be established that 

(10) lira    Z(zK)  = 0. 
k-x» 

k oo But this raust be true for consider any subsequence    z    -» z      k e K.    Then 

lira Z(zK)   = Z(2ro)  = 0. 
keK 

employing the continuity of   Z    and the fact that by hypothesis any limit 

point    z00    ±r a solution. 



12 

Now »nftlyze   II-a.    Let   z     be optimal.    Then by   a) of the convergence 

definition, if there exists aye A. (z ),    then   y   is also optimal.    Hence 

for any   / > k 

Z(zk) - Z(zk+1) - ZCz*) - 0. 

Assume now   z     is not optimal.    Then   Z(z ) < 0.    But by (10) there exists 

an    1^   such that for all   i > Lk ■♦• k, Z(zk) < Z(ti) < 0. 

Only Condition Il-b remains.    But Il-b holds vacuously as any limit 

point of any convergent subsequence must be a solution. 

O.E.D. 

Application of the Convergence Conditions 

In this section a representative  sample of the bettor known algorithms 

will be proved to converge using the convergence conditions.    In several caaes 

the convergence proofs are considerably simpler than the original proofs. 

But given any algorithm the convergence conditions provide a framework from 

which to start a convergence proof.    Presumably such a framework is a better 

place to commence than starting each proof from scratch.    Proving convergence 

has not yet been reduced to filling in the blanks.    But it is hoped that the 

convergence conditions will simplify the problem. 

Occasionally in the following algorithms certain assumptions are made 

which are slightly stronger than the corresponding assumptions made by the 

algorithm's originators.    The purpose of this is solely for clarity.    The 

proofs also hold with the weaker assumptions. 

Unconstrained Maxima 

Some of the simplest,  yet most useful,  algorithms seek the unconstrained 

maximum of   f   over   En.    An important class of these algorithms, known as 

unconstrained feasible direction algorithms, are easily proven to satisfy 
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conditions I and II of Corollary 1-1 and hence are convergent algorithms, 

as is now shown. 

Each algorithm in this class possesses a continuous function   b: En -* En 

k k+1 that serves as a direction.    Briefly given a point   x ,    the successor   x 

is generated by maximizing   f   in the direction   b(x ). 

Denoting   Vf{x)   as the gradient of   f   evaluated at   x,    a point   x   is 

termed a solution if   7f(x)b(x) « 0.    We specify the map   A   by   x'  c A(x)    if 

and only if   x'    is an optimal solution to 

(11) max{f(x + Tb(x))|T > 0). 
^unconstrained feasible directiorT) 
TheTalgorithm operates as"~follows.    If   x     is a solution stop.    Otherwise 

k+1 k k define the successor by calculating   x        € A(x ). For simplicity let T    satisfy 

(12) xk+1 - xk + r^i^). 

To prove convergence the following two assumptions will be needed. 

i)    Either    f   has no solution point or the set    (x|f(x) > f(x0)) 

,  .„ 0 is compact for any   x 

and 

ii)    If   x    is not a solution,  then   x'  e A(x)    implies    f(x') > f(x). 

It will now be shown that any unconstrained feasible direction algorithm 

which satisfies i) and ii) also satisfies conditions I and II'.    Assumption i) 

insures that I holds since if no    x'    satisfies equation  (ll)  then there is 

n       k       k 
no solution point.    Coniition Il'-a is verified by letting    V = E ,    x    = z , 

and   Z(z)  = f(x),    because  (ll) insures that    f(x )    is monotonic.    Also ii) 

provides that if   x     is not a solution 

f(xk+1) > f(xk). 

Condition Il'-b will now be established.    Let    x   -> x^ and ic       -» x 

k € K.    By continuity   b(x  ) -» bCx"),  k e K.    Assume    x00    is not a solution, 
(.by definition of solution) ^     „ 

then7b(x  ) / 0.  It then follows from (12) that for some    T" > 0,  T -»t      k € K. 

Using (ll)  for any   T > 0 

f(xk+1) = f(x^tkb(xk)) > f(xk+Tb(xk)). 
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Taking limits 

„ /    00+1 \       •       -/OT        00, ^XV rt/0C %   /    oo V \ f(x       )  = f(x +T  b^x   )) > f(x +Tb(x  )), 

As this holds for any   T > 0 

fCx"*1)  ^ maxCfCx80 + Tb(xeo))|T > 0)  . 

Therefore the map A is closed and condition II'-b holds.      The algorithm 

converges. 

By applying the above reasoning two popular algorithms are seen to 

converge.    The first is the Cauchy [2] procedure.    This procedure assumes 

the    f    is continuously differentiable and defines    b(x)  = Vf(x).    The 

second is a modified Newton-Raphson algoriUjn.    For this algorithm    f   is 

assumed to have continuous second partial derivatives and its Hessian matrix 

at   x,    H(x);    is assumed negative definite for all   x.    Defining   H'  (X) 

as the inverse of the Hessian,    b(x) = -H' (x)7f(x).    It might also be noted 

that the above reasoning provides an alternative to Theorem 2 of Topkis and 

Veinott [12]. 

TM Frank and Wolfe Algorithm 

The Frank and Wolfe algorithm [6] is for problem (P) when all constraints 

g.    are linear and    f   is continuously differentiable.    Assume the feasible 

region   F   is compact.    Given any   x € F   define   A(x)    as follows.    Solve 

the linear programming problem where    x    is fixed via the Simplex Method 

(13) max{7f(x)w|w c F} 

for an optimal    w .    Then   x'   € A(x)    if and only if   x1    is an optimal solution 

to 

(Ik) max(f(x + T(W -x))|0 < T < 1). 

Note that for 0 < T < 1, x + T(W-X) e F. Therefore given x e F all 

successor points will also be feasible. 
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l 1 A point    x    is called n  .solution if   Vf(x)(w -x)   = 0    where    w      solves 

(13).    Should   x    be a solution the procedure stops and    A(x) = 4>,    The 

algorithm ia now specified and we will prove its convergence using conditions 

I and II. 

Condition I holds immediately as   F   is compact.    Letting   V = F, 

s = x,    and   Z(z) * f(z)/    equation (l'O insures that Il-a holds. 

Now condition Il-b must be established.    Let    x    -»x"    and    x        -» x 

00 k for    k c K.    Assume    x      is not a solution.    Define    w      as the optimal 

point to problem (13) when   x = x .    From the theory of linear programming 

and the fact that    f   has continuous derivatives,  there must exist a 

IC C   K    such that    w    -♦ w00    k € IT"   where    v*    solves  (13) for   x * x00. 

Given any fixed    T,    0 < T < 1 

f(xk+1) > f(xk+ T(wk - xk)). 

From the continuity 

f(x'B+1) > raaxCfCx" + xCw^-x00))^ < T < 1) > f(x"), 

where the final inequality holds as   x"   not optimal implies 

Vf(xa,)(ww-x00) > 0. 

.'__Corollary ]..l.) 

Hence, condition Il-b holds.  The algorithm can also be proved to converge via/ 

Modifications of the above reasoning can be used to validate that many 

similar algorithms satisfy the convergence condition.    In particular,   the 

decomposable nonlinear programming method of Zangwill [ih], Zoutendijk's 

methods of feasible directions  [17], and the Convex Simplex Method of 

Zangwill [15] fall into this category. 

The Direction Function 

Topkis and Veinott [12] consider the concept of a direction function. 
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This concept is quite useful for proving that feasible direction algorithms 

converge.    Let    F,    the feasible region,  be compact.    A direction    b e L'n    is 

called a feasible direction at   x c F   if for some    t > 0,    x + Tb c F,    for 

all   0 < T < t.    If   b   is feasible at   x   and, in addition,    f(x) < f(x+Tb) 

for all    0 < T < t,    then    b    is also said to be usable at    x.    Should no 

usable direction exist   at   x € F,    the point   x   is termed a solution. 

As    f   is continuous and   F   is compact a solution point clearly exists. 
wo assume 

For every sequence    (x ,x ,x , •••,x ,•••)    in   F/there is a direction function 

Ik k 1    2 k 
b   which assigns to    (x ,'",x )    a feasible direction   b    = b(x ,x ,«««,x ) 

k k at   x .    All   b      are contained in a compact set. 
k       k oo 

Let     (z ,  b  ) -> (zv , b )    k e K,     then the Topkis-Veinott conditions 
specify that 

i)    For some    t > 0, xk + Tbk c F   for all   k c K   and all 

0 < T < t. 

ii)    If   b00    is feasible but not usable at   x00,    then   x*0    is a 

solution. 

Also        there is a real-valued lower semi-continuous step size function 

f [A, W)    defined on the Cartesian product   F (x) F   such that    f (x, x+Tb) 

is continuous in    T.    This function satisfies conditions 

iii)    f^x, x) = f(x)    and    f^x,  w) < f(w)    for   w, x € F, 

and 

iv)    if   b    is usable at    x    for    f,    then   b    is usable for 

f^(:c,   •)    at   x. 
algori thnic ,2 . . 

The/procedure is defined as follows.    Given   x ,x ,'",x ,     if   x 

k+1 is a solution the procedure stops.    Otherwise the point    x    '    is generated 

by 

(15) rL(xk,  xk+1) = max(f1(xk,  xk + Tbk) |T > 0, xk +  Tbk € F). 
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It muat now be shown that any procedure which satisfies the above  fuur 

conditions also satisfies I and II.    Let    En    be the metric  space and define 

V = F   and   V.   « (x )    for all   k.    The algorithm is then defined as follows 

f # if   x      is a solution 

Ak(xk)  =   V 

(x      )    otherwise 

Also let   Z(x)  = f(x). 

Condition I holds as the set    F   is compact.    Condition Il-a holds 

because equation (15) and condition    iii) insure that    f    is raonotonic. 

1c oo It+l oo+l 
Condition Il-b now must be established.    Let    x-»x      kcK,    x        -»x 

k e K   and    b   -» b      k € K.    Assume    x      is not a solution.    It must be 

proved that 

f(x0O+1)> f(x"). 

By   i) and the compactness of   F,    x00 + Tb" e F    for all    0 < T < t,    and thut 

b      is feasible.    Since    b"    is feasible but    x"    is not a solution,    b" 

must be usable by    ii).  Then via iv)  there exists a    0 < T    < t    such that 

(16) f^x",  x" + TV) > i'^x00,  x00)  = f(xw). 

vbepau^c^. 
Furthermore,    ^'  x   -»x"    k € K   and    b   -► b00    k e K 

xk + th* - x00 + TV      k € K. 

In addition, by   i)    as    T
1
 < t,    xk + t1** c T    for all    k € K. 

Using (15) and iii) 

„/ k+lx  .    .1, k      k+lv ^   .1/  k      k        L kx f(x      ) > f (x , x      ) > f^(x ,  x    + ib ). 
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KxpJLoiting the continuity of    f   and lower ;3cmi-continul cy of    f , 

f(x"+1) - lim f(xk+1) > lim inf f1(xk, xk+1) 
k€K "      kcK 

> lim inf f;L(xk
/ xk+ i\k) 

k€K 

^^(x", x" + TV). 

Hence Il-b holds for using (lo) 

f(x00*1) > fCx"), 

The fact that the Topkis-Veinott conditions are    a special case of the 

convergence conditions I and II establiohes that the many algorithms proved 

by their    techniques can also be proved by the convergence conditions.    One 

class of algorithms subsumed by these conditions are the so-called cyclic 

coordinate ascent methods.    These methods optimize one coordinate at a time. 

Arrpw-Hurwicz-Uzawa Algorithm 

The Uzawa iterative adaption [1] of the Arrow-Hurwicz gradient method 

considers the following modification of (P) 

maximize    f(x) 

subject to    g(x) > 0 

x > 0 

where    f   is strictly concave and   g(x) = (gjCx), • • •,£  (x))    is a vector 

of the constraints a.   each of which is assumed concave.    All functions are 

continuously differentiable on    E .    It is also supposed that a vector    x 

exists  such that    x   > 0   and    g. (x  ) > 0    for all    i. 

Define a Lagrangean function 

*(x,  u) = f(x) + ug(x) 

^^Ma^aaMwaaMa 
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where   H   is an   ra   vector.    Consider a point      (7,  if)       assumed to exist; 

called a saddle point, such that 

(19) '(x-,    u)    ■ max =(xi  u)    « min *(x,    u). 
xX) uX) 

By strict concavity there is a unique   x     which solves (19).    Let 

U   * {u|(xi u)    is a saddle point of   *(x,  u)).    It is easy to show that 

U     is compact [1,  p. 155]« 

The    algorithm    is      defined by the difference equations 

(20a) xk+1 = max[0,  xk + T* (xk,  uk)] 

(20b) uk+1 = raax[0,  uk - TH'u(xk,  uk)] 

where   x   > 0   and    u   > 0,    T   is a positive scalar to be specified 

subsequently, and    *    = V *(x ,  u")    and    *    = g(x  )    are respectively the 
A A LI 

partial derivatives of * with respect to x and u. 

Given  e > 0 a point z = (x, u) is termed a solution if 

— 2 
lÜT -   x(      <   E. 

The algorithm commences with an initial point    z    =  (x ,  u )    and 

k k      k recursively generates points    z    =  (x ,  u )    via equations  (20a) and   (20b) 

until a solution is obtained.    The algorithm stops at a solution. 

To specify    T    first define 

Then 

Z(x,  u) = min {|x - x|2 +   |u - ul2), 
ueU 

(x-x)y    -  (ü-u)f 
T  = min u 

|y  |2 +   |*  |2 
1 x'        '  u1 

-.2 
| <  |x-x|  ,  Z(x,u) < J,   u e  U } 

J 
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where    J = Z(x ,  u ).    The value of   T    will be positive because the numerator 

of the function being minimized is positive as the next lemma proves, also 

the function is continuous and the region of minimization is compact. 

Lemma 3. 

(x - x)*    -  (ü - u)*   > 0 if   x / x. 

Proof:    By concavity of   *   in   x 

y(x,  u) < !P(x, u) + (x - x)f    . 

Since    *u = g, 

1l{x, Ü) - (G - u)^ = f(x,  u). 

Therefore 

«(x,  u) - *(^, u) < (3? - x)*x -  (u - u)*u. (1) 

Now by definition of a saddle point, and since    f   is strictly concave 

*(x, ü) < *(x, u) < ^(x - u) 

Therefore from (l) 

0 < *(x,  u)  - *(x, u) < (x - u)?v -  (u - u)* . Q.E.D. 

We now prove convergence via Corollary 1.1.    Condition II will be 

established first.    If    z = (x, u)   is a solution the procedure terminates. 

k k      It Now suppose    z    => (x ,  u )    is not a solution.    After some manipulation it 

can be shown that [1, page 156] 

1  k+1     -,2^ 1 k+1   -,2       .  k -|2 ,   1 k -.2 x        - x    +   u      - u     <   x -x     +    u -u 

• - T{2[a.xjC)*x - (ü-U)TU] - t[|fxr + i*ur]]     (2) 

We will validate 11'-a  (reversing inequalities) by proving that 

Z(xk+1, uk+1) < Z(xk
l  u

k) (3) 
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However,   to prove (3) we see from  (2) that it is only necessary to show 

2[(x.xk)yx - (TI-u)^]   - T[|*X|
2
 +  IfJ2] > 0. (4) 

Employing    the definition of   T,    the left side of {k) is larger than 

/ft-xV    -  (u-uV A o o 
2C(^. xk)V (u-u)* ] -'   —f   —z u (hg2 + l*u|2) 

r   xi i   ui 

- [(J- xk)!Fx -  GI- uVu] 

> 0 

where the final inequality holds via Lernraa 3 as z is not a solution. Thus 

II'-a) holds. 

Condition 11'-b) holds immediately as the recursions (20a) and (20b) are 

continuous functions. 

We observe that from equation (3) for all   k 

Z(xk,  uk) < J. 

k k     k 
Therefore all    z    * (x , u )    generated are on a compact set.    Furthermore, 

by assumption a saddle point exists,  therefore condition I also holds.    The 

algorithm converges. 
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Other Algorithms 

Several other algorithms have been proved by application of the 

convergence conditions.    In particular,    loss    function     methods   ■•.  •   '   ' 

such as Zangwill's penalty function method [13] and Fiacco and McCormick's 

sequential unconstrained approach [5] have been established using the 

convergence   conditions.    Also cutting plane methods [8] have been considered. 

Conclusion 

This paper has presented an attempt to unify the convergence proofs of 

nonlinear programming algorithms.    Both necessary and sufficient conditions 

for convergence were discussed.    The methods presented seem related to but 

are actually somewhat different than the differential equation stability 

theory of Liapunov [11].    For the special case in which   A(x)    is a function, 

that is,    A(xk) = x]r+i>    &T& in addition   A(x)    is continuous,  the convergence 

conditions may be considered as Liapunov conditions for the nonlinear 

programming case.    Finally,  it should also be clear by selecting the solution 

set   n   astutely, algorithms other than the nonlinear programming algorithm 

can be considered. 

Acknowledgment 

The author expresses his appreciation to Professor R. van Slyke for 

his comments on a previous version of this paper.     Professor James Friedman 

suggested an important simplification of Condition Il-b. 



22 

References 

1. Arrow,   K.  J., Hurwicz, L., and Uzawa, H.    Studies in Linear and Nonlinear 

Programming,  Stanford University Press, Stanford, California, 1958. 

2. Cauchy,  A.  L.,  "Method General pour la Resolution des Systems d'Equations 

Siraultanees,  C.R.R. Sei.,  Paris,   IS2*?,  Ch. 25, pp.  536-53Ö. 

3. Cheney,  E. W. and Goldstein, A.  A.,  "Newton's Method of Convex 

Programming and Tchebycheff Approximation," Numer. Math.,  Vol.  1, 

1959, PP.  253-268. 

't.      Dantzig,  G.  B.,  Linear Programming and ExtenFion:^   :.    iceton University 

Press,  Princeton,  N. J.,  1963. 

5. Fiacco,  A.  V. and McCormick, G.  P.,  "The Sequtvi- ^strained 

Minimization    Technique for Nonlinear Progi ■ :. • ng,  e Pn;    "'-Dual 

Method," Management Science, Vol.   10,  No.  2, pp.  360-36'+,   I96U. 

6. Frank, M.  and P. Wolfe, "An Algorithm for Quadratic Programming,"Naval 

Research Logistics Quarterly, Vol.  3,  1956,  pp. 95-110. 

7. John, F.,   "Extreraum Problems with Inequalities as Subsidiary Conditions," 

Studies and Essays, Courant Anniversary Volume, Interscience,  New York, 

19^8. 

8. Kelley, J.  E.,  "The Cutting Plane Method for Solving Convex Programs," 

J.  Soc. Indust. Appl. Math., Vol.  8,  No.  1*, December i960,  pp. 703-712. 

9. Kelley,  J.  L.,  General Topology,  D. Van Nostrand Co.,  Inc.,  Princeton, 

New Jersey,  1963« 

10.      Kuhn, H. W.  and Tucker, A. W.,  "Non-Linear Programming," Proceedings of 

the Second Berkeley Symposium on Mathematical Statistics and Probability, 

J. Neyman  (ed.),  University of California Press, Berkeley,   1951, 

pp. U8l-^93. 



23 

11. La Salle,  J. and Lefschetz,  S.,  Stability by Liapunov's Direct Method, 

Academic Press,  N.  Y., London, 1961. 

12. TopkiJ,  D. M. and Veinott,  Jr., A,  F.,  "On the Convergence of Some 

Feasible Direction Algorithms for Nonlinear Programming,"  3IAM Journal 

on Control, Vol. 5, No. 2,  1967,  pp. 268-279. 

13. Zangwill, W. I.,  "Non-Linear Programming via Penalty Functions," 

Manasement Sciencc-A, Vol.  13,  No.  ^, pp.   3^-3^6. 

lb.      ,  "A Decomposable Nonlinear Programming Approach," Operations 

Research.  Vol.  15,  No. 6,  Nov-Dec 1967,  pp.  IO68-IO87. 

15.      ,  "The Convex Simplex Method," Management Science-A, Vol.  lh, 

No.  3, Nov. 1967,  pp. 221-238. 

16.     ,  "Application of the Convergence Conditions," Working Paper 

No. 231, Center for Research in Management Science, University of 

California, Berkeley, August 1967. 

17. Zoutendijk,  G., Methods of Feasible Directions,  Slse ier Publ. Co., 

Amsterdam,  i960. 


