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ABSTRACT 

Theoretical real gas performance calculations have been made 
for the expansion tunnel operating in a high density regime at modest 
velocity.    Both Mach number-Reynolds number simulation and flow 
duplication were considered.    Typical results and detailed working 
graphs are presented.    To illustrate the potential of the expansion tun- 
nel, the performance was calculated for the case of a 1000°K,  5000-atm 
helium driver.    This example illustrates that the expansion tunnel does 
show promise for testing in the high density regime at modest velocity. 
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NOMENCLATURE 

A Cross-sectional area of tube 

a Acoustic speed 

d Tube inside diameter 

h Enthalpy 

i Length 

&l, I4J ig Tube length 

it Test gas slug length at time of secondary diaphragm rupture 

M Mach number 

Mg Shock Mach number 

p Pressure 

Re Reynolds number 

T Temperature 

At2 Run time in region ©,  i. e., time required for the test gas 
in the (D region to flow past the secondary diaphragm station 

Atr Ideal expansion tunnel run time (assumes nozzle loss time 
= 0) 

U Velocity 

Ug Shock velocity 

x Axial distance along tube 

(j. Viscosity 

p Density 

SUBSCRIPTS 

1, 2, 3, Denote various flow regions (see Fig.  2) 
6A,  etc. 

vis Viscous 

VI 
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SECTION I 
INTRODUCTION 

Consideration of low altitude reentry trajectories has generated 
interest in very high density, hypersonic test facilities.    There is 
interest both in Mach number-Reynolds number simulation and in flow 
duplication at conditions existing in low altitude, hypersonic flight. 

The two major limitations involved in obtaining high density flows 
in conventional wind tunnels are excessive reservoir pressure and/or 
excessive flow energy.    These.limitations suggest the use of an ex- 
pansion tube,  or some modification thereof, for high density aerody- 
namic testing.    The expansion tube offers two distinct advantages 
over stagnated reservoir,   steady expansion-type wind tunnels: 

1. Since the flow is not stagnated in the reservoir and since the 
isentropic stagnation pressure is increased by the unsteady 
expansion,  the isentropic stagnation pressure in the test sec- 
tion is many times the maximum pressure that must be con- 
tained anywhere in the system.    This helps to alleviate the 
reservoir pressure limitation. * 

2. The unsteady expansion is an energy multiplier (or concentra- 
tor) and this alleviates to some degree the flow energy 
problem. 

The experimental expansion tube studies (Refs.  1,  2,  3,  and 4) 
have shown that the experimental performance,   i. e., velocity at a 
given altitude,   is in reasonable agreement with theoretical predictions; 
however, the basic problem has been in the quality of the test flow. 
There is some indication (Ref.   3) that the flow quality problem is asso- 
ciated with the proximity of the test gas to the secondary diaphragm at 
the time of rupture.    This problem may become less severe as the test 
gas slug is lengthened,  since,  if the test gas slug is long enough, the gas 
used late in the run is not in close proximity to the secondary diaphragm 
at the time of rupture. 

As was demonstrated in Ref.  5 (see Fig.  1, Appendix I) the test gas 
slug length,  it, varies inversely with free-stream velocity.    This 

*Shock-tube driver pressure may be a limitation,  but was not 
investigated or reported herein. 
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raises the possibility that the quality of expansion tunnel flow might be 
acceptable for modest velocities,  say from 5000 to 10, 000 ft/sec.   In 
addition,   it might be possible to achieve quite high density at these 
velocities since, for a given shock-tube driver, the expansion tunnel 
allows a trade-off between velocity and density. 

It appears,  then, that the expansion tube/tunnel might be a useful 
device for high density aerodynamic testing at modest velocities.   The 
purpose of this investigation is to theoretically assess the performance 
of the expansion tube/tunnel for hypersonic high Reynolds number 
simulation and low altitude flow duplication. 

SECTION II 
CALCULATIONS 

The calculations were made in part by an existing machine program 
and in part by hand.    Basic flow calculations and tube length calcula- 
tions were made using the machine program which was formulated for 
the study described in Ref.  5.    The following were not included in the 
program and were calculated by hand: 

1. test flow Reynolds number,  Re, 

2. acceleration tube charge-to-test pressure ratio, P^^ßA' 

3. acceleration tube shock strength, Ms_, 

4. test gas slug length ratio,  $.^1$.%, 

5. effects of mass loss in the boundary layer. 

The machine program starts with the free-stream, @\,  conditions 
and works backward through the steady isentropic expansion, the unsteady 
isentropic expansion,  and crosses the normal shock to give the initial 
conditions in the driven tube.    In addition,  it calculates the run time per 
unit length of acceleration tube and the acceleration-to-driven tube length 
ratio.    The test gas (air) is assumed to be in thermodynamic and chemical 
equilibrium throughout.    The thermodynamic properties of air were taken 
from Refs.  6,  7, and 8.    Standard atmospheric properties as a function of 
altitude were taken from Ref.  9.    The expansion tunnel computer program 
is described in detail in Ref. 5,  and input and output data are shown in 
Table I, Appendix IV. 
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To assess the Mach number-Reynolds number simulation regime, 
it is necessary to put some limit on the minimum allowable free- 
stream temperature,  Tg^.    For these calculations,  Tg^ was chosen 
to be 100°K.    For very high density, this is approximately the lique- 
faction temperature; for lower density the liquefaction temperature 
is somewhat less,  and,   in addition,  some supersaturation might be 
tolerated.    However, this is a conservative choice since the perform- 
ance in terms of Mach number-Reynolds number could be increased by 
allowing lower free-stream temperatures. 

Previously,  either the altitude (for altitude duplication) or the 
free-stream pressure and entropy were inputs to the computer pro- 
gram and the machine determined the other free-stream thermody- 
namic properties by interpolation of tabulated air data (Refs.  6,  7, 
and 8).    The lowest temperature in the tabulated air data is 100°K.   To 
avoid interpolation problems the program was modified to accept all 
free-stream thermodynamic properties as input data.    No other modi- 
fications were required to permit use of the existing program for the 
Mach number-Reynolds number simulation cases. 

The hand calculations were all straightforward.    The unit Reynolds 
number was calculated from: 

P6A   1J6A 

where 
p6 ^ and UgA are input values 

and 
f*6A   =   14.5 x 10"'slugs/ft-sec 

from Sutherland's equation at 

T6A   =   100°K. 

The acceleration tube charge-to-test gas pressure ratio, ^S/PQ^, 
and test gas slug length ratio, H^JS.^, were calculated as described in 
Ref.  5.    The acceleration tube shock strength,   Ms , was determined 
from Ms = f (l^/ax) (Fig.  2e of Ref.  10) where: 

(U2/a,)Ref. io =  U7/a, =  IVa, 

U6 was taken from computer output 

a, is an independent variable 
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It was assumed that the charge gas in region ©would be room tem- 
perature air hence: 

a,  =.  1130 ft/sec 

As was pointed out previously it is quite likely that the test flow 
uniformity will depend upon the test gas slug length-to-diameter ratio, 
J0t/dg.    Since this parameter is directly proportional to the accelera- 
tion tube length-to-diameter ratio, ig/dg,  high i/d acceleration tubes 
are desirable.    However,  their use raises the question of test time 
loss resulting from the mass entrained in the tube boundary layer (the 
"leaky piston" effect,  see Ref.   11). 

It is not clear how the mass loss (i. e.,  mass entrained in the 
boundary layer) from the shock-heated (D region will affect the run time 
since it is region®, not <JX that is expanded through the nozzle for test 
purposes.    The loss of gas from the © region will tend to accelerate 
both the© - © interface (the passage of which starts the run) and the 
tail of the unsteady expansion (the passage of which ends the run). 
Although this may cause some loss, or gain,   in test time, the process 
is quite complicated and its effects will herein be assumed to be negligible. 

The mass loss from the shock heated ©region in the driven tube is 
another matter,  and apparently cannot be neglected.    For expansion tun- 
nels operating at modest velocity,  the optimum driven tube length is of the 
same order as the acceleration tube length.    The mass loss from the 
shock heated © region then can become significant, and loss of run time 
in the ® region relates directly to loss in tunnel run time.    Therefore, for 
a given tunnel run time, the driven tube must be longer than the value cal- 
culated from inviscid considerations in order to prevent premature term- 
ination of the run by the wave reflected from the © - © interface (see 
Fig.  2). 

The turbulent theory of Mirels, Ref.   11,  was used to calculate the 
loss in run time in the (§) region for values of ij/dj^ of 100 and 
200 ft" V4 which probably brackets the range of interest.    The acceleration- 
to-driven tube length ratio considering the mass loss from the © region, 
ig/^l   vis was determined from: 

t/t        -   *'      A12tvis 

-j2- is from computer output 

 '-   is calculated from the theory of Ref. 11 
At, 
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It is also of interest to look at the run time per unit length of 
acceleration plus driven tube for the case with mass loss to the 
boundary layer in the driven tube.    This parameter* was calculated 
using: 

Atr At, At, 

CVis+J.) 

'•[TTH     '" +   l 
'«/*!, vis 

where: 

and 

'8/J1|Vjsis from above calculations 

Air      .    , 
—i   is lrom computer output 

The viscous correction considered herein is a correction only to 
the driven tube length,  8.^.    Wherever the viscous correction has been 
applied to JL\,  the subscript (vis) has been added.    All parameters with- 
out this subscript were calculated assuming inviscid equilibrium flow. 

SECTION III 
RESULTS 

Results of the calculations are presented in the Appendixes.    General 
illustrations are presented in Appendix I.    Appendix II deals with the case 
of Mach number-Reynolds number simulation,  and a list of figures in 
Appendix II is given at the beginning of the Appendix.    Appendix III deals 
with the case of flow duplication,  and a list of figures is given at the be- 
ginning of the Appendix. 

The performance of a given facility depends upon the specific shock- 
tube driver used.    Specifically,  the performance depends upon the shock 
strength,  Ms , that the driver can produce in a given driven tube charge 
pressure,  ~P\.    To gain some insight into the potential of the expansion 
tunnel,   it would be instructive to consider a case utilizing a potent,  but 

*The run time Atr assumes no losses in the nozzle starting and stop- 
ping processes.    These losses are a direct function of nozzle length,  and 
since sizing of nozzles is beyond the scope of this paper,   run time loss 
was not investigated.    A discussion of nozzle loss time in expansion tun- 
nels can be found in Ref.   12. 
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technically feasible, driver.    For this case the driver conditions chosen 
were: 

P4 =  5000 atm (helium) 

T4  =  1000 TC 

A«/A, =  1 

Driver performance, Ms   = f(P,), was taken from Fig.  11 of Ref.  13 
and is based on perfect gas,  no loss calculations.    The driver per- 
formance is therefore optimistic, but should serve to illustrate the tun- 
nel performance potential.    The working charts of the Appendixes were 
then used to generate selected tunnel performance data.    The area ratio, 
Ag^/Ag, of 20 was chosen since it offers a reasonable compromise be- 
tween performance and run time (and test gas slug length).    In reality 
some other area ratio might be more advantageous for a specific facility. 

The resulting Mach number-Reynolds number simulation line and 
the flow duplication line for low altitude are shown in Fig.   3.    To pro- 
vide some feeling for existing capabilities,  the AEDC-VKF Hotshot Tun- 
nel F (Gas Dynamic Wind Tunnel,  Hypersonic (F),  operating regime 
is  shown in Fig.  3a.*    This comparison should not be taken too 
literally since it compares the actual performance of Tunnel F with 
theoretical (no loss) performance of a hypothetical expansion tunnel.   Also, 
the minimum static temperature of Tunnel F is somewhat below the 100°K 
taken for the expansion tunnel.    The comparison does,  however,  indicate 
that the expansion tunnel has considerable potential in the area of high 
Reynolds number testing. 

Run time per unit length of driven tube plus acceleration tube is shown 
in Fig.  4.    For a reasonable tube length,  say ig + ij = 100 ft,  the run 
time varies from about 2. 7 msec at Mach number 10 to about 0. 75 msec 
at Mach number 20.    For the altitude duplication case the run time (for 
ij + ig = 100 ft) varies from 1. 6 msec at 10, 000 ft/sec to about 0. 75 msec 
at 15, 000 ft/sec. 

•   The test gas slug length ratio,  it/is*   i-s shown in Fig.  5.    Also shown 
in Fig.  5 is the test gas slug length-to-diameter ratio for the case of 

*Also shown is the expected performance of Tunnel F with the 
addition of a larger,  "Full Volume",  ARC chamber.    This modification 
is scheduled for completion on 15 September 1968. 
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j?g/dg = 150 (which from past experience might be a reasonable value). 
This parameter varies from about 7 at low Mach numbers and veloc- 
ities to about 0. 3 at the higher values of Mach number and velocity. 

SECTION IV 
CONCLUDING REMARKS 

Theoretical calculations have been made for the expansion tunnel 
designed to simulate Reynolds number at hypersonic Mach numbers 
and for the tunnel designed for flow duplication at low altitudes and 
modest velocities.    The results are presented in the form of working 
graphs in Appendixes II and III. 

A driver condition was arbitrarily chosen so that tunnel perform- 
ance,  run time, and test gas slug length could be illustrated for a spe- 
cific example.    The results indicate that the expansion tunnel does 
indeed offer considerable potential in the high Reynolds number or low 
altitude test regime.    Further, both the run time and the test gas slug 
length indicate promise for testing at lower velocities and Mach numbers. 

Although the results of these calculations demonstrate that the ex- 
pansion tunnel has considerable potential for this operating regime,   the 
real utility of the expansion tunnel for this type of testing remains to be 
shown experimentally. 
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APPENDIX II 

WORKING GRAPHS FOR MACH NUMBER-REYNOLDS NUMBER SIMULATION 

Figure Page 

II-1     MgA and Re/ft as a Function of Ms    and P± 

a. A6A/A6 =1  18 

b. A6A/A6 =10  19 

c. A6A/A6 = 20  20 

d. A6A/A6 =100  21 

II-2     Run Time per Unit Length of Acceleration Tube, 
Atr/ig,  versus MgA 

a. A6A/A6 = 1,  10, and 20  22 

b. A6A/A6 =100  23 

II- 3     Run Time per Unit Length of Driven and 
Acceleration Tubes, Atr/(fL^ vis + i8), versus MgA 

a. A6A/Ag = 1,  ^/d^4 = 100 and 200 ft"1/4    .   . 24 

b. A6A/A6 = 10, ^/dj5'4 = 100 and 200 ft"1/4 .   . 25 

c. A6A/A6 = 20,  £1/d1
5f4 = 100ft"1/4  26 

d. AgA/A6 = 20,  ij/d!^4 = 200ft"1/4  27 

e. A6A/Ag = 100,  A1/d1
5^4 = 100 ft_1^4  28 

f. A6A/A6 = 100,  Je1/d1
5/4 = 100 ft"1/4  29 

II-4     Acceleration-to-Driven Tube Length Ratio 
(inviscid), ig/ij, versus MgA 

a-    A6A/A6 = 1  30 
b. A6A/Ag =10  31 

c. A6A/Ag = 20 and 100  32 

II-5     Acceleration-to-Driven Tube Length Ratio 
(viscid), £Q/£1 vis, versus M6A 

a. A6A/Ag = 1,  £1/d1
5l4= 100ft"1/4  33 

b. A6A/A6 = 1,  ii/dj5/4 = 200 ft"1/4  34 

c. A6A/Ag =  10,  ii/d!5/4 = 100ft"1/4  35 

d. A6A/A6 = 10,  J^i/dj5/4 = 200ft"1/4  36 
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Figure Page 

II-5 (Continued) 

e. A6A/A6 = 20,  ii/d!^4 = 100 ft"1/4  37 

f. A6A/A6 = 20,  ij/d!5^4 = 200 ft-1/4  38 

g. A6A/A6 = 100, Ij/di5'4 = 100ft~1/4  39 

h.   A6A/A6 = 100, Je^dj^4 = 200 ft" 1/4  40 

II-6     Test Gas Slug Length Ratio, 4^8* versus MgA 

a-   A6A/A6 " 1  41 

b. A6A/A6 =10  42 

c. A6A/A6 =20  43 

d. A6A/A6 =100  44 

II-7     Driven Tube Shock Strength,   MS1, versus MßA 

a-    A6A/A6 " 1  45 

b. A6A/A6 =10  46 

c. A6A/A6 =20  47 

d. A6A/A6 =100  48 

II-8     Acceleration Tube Shock Strength,  Ms_, versus MgA 

a. A6A/A6 = 1 and 10  49 

b. A6A/A6 = 20 and 100  50 

II-9     Driven Tube Charge Pressure Ratio,   Pi/PgA» 
versus MßA 

a-    A6A/A6 = 1  51 
b. A6A/A6 =10  52 

c. A6A/A6 =20  53 

d. A6A/A6 =100  54 

11-10     Shocked Gas Pressure Ratio,  P2/P6A» versus MgA 

a-    A6A/A6 = 1  55 
b. A6A/A6 =10  56 

c. AgA/Ag = 20 and 100  57 

11-11     Acceleration Tube Charge Pressure Ratio,  ^s/^QA'   • 58 

11-12     Free-Stream Pressure,  PgA,  versus Reynolds 
Number   ..........       .                .                    . 59 
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TABLE I 

EXPANSION TUNNEL PROGRAM INPUT AND OUTPUT DATA 

INPUT DATA 

Full Duplication Option 

U6A   Altitude A6A^A6 Tl 

Reynolds Number Simulation Option 

U6A 

a6A 

OUTPUT DATA 

Pi Usi 

P2 u2 

P6 U6 

P6A   U6A 

P6A T6A P6A h6A 

Z6A A6A^A6 Tl 

M81 ^l/^8 J88/Atr* 

T2 P2 h2 a2 Z2 

T6 P6 h6 
a6 Z6 

T6A P6A h6A a6A Z6A 

This Atr assumes no loss in the nozzle starting-stopping process. 
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