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UNCLASSIFIED ABSTRACT

A METHOD FOR DETERMINING PROBABILITY TR-0158(S3960-30)-2
DISTRIBUTIONS FOR MNASS PROPERTIES OF June 19,8
SYSTEMS, by Frank C. Bond

An analysis is performed to develop expressions for the statistical parameters of
system mass properties. It is assumed that the component weights, centers of
graxity, and inertias have known probability distributions. The general forms of the
density functions generated are deduced from the calculus of probability whenever
applicable. Means and variances of the system mass properties are computed from
linear functions of the statistical parameters of the components. The input random
variables may be distributed according to any probability law or combination of
probability laws for which the moments are known. From conceptual design to
detailed specification drawings, the probability laws governing mass properties
estimation change. This method may be utilized at any point in the life cycle of
system design as it Is independent of the particular forms of the distributions used
as input. (Unclassified Report)
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NOMENCLATURE

Coy U-*] signifies covariance of the random variables (,)

D I -I
XZ zz xx

E g signifies mean of the random variable (-)

F D D
yz xy xz

H I I
yz xyxz

I, Io, Ii moments of inertia of it h component about Xi Yi Z.
oxi oyl oz. i

(see Figure 1)

IoxYi, oxz.j IoYzi products of inertia of ith component in reference

frame xi Yi zi

I,  I system moments of inertia about axes X, Y, and Z

Iy I, y system products of inertia in reference frame XYZ

m number of random samples in simulation

n number of components in system

SD []I
n

t 2 W.xi=1 1i1

ti  wixi

V[] , signifies variance of the random variable (.)

w. weight of the ith component

W total system weight( wi)
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NOMENCLATURE (Continued)

xi' Yi, zi position of center of gravity-(cg) of i component in
reference fraane XYZ (see Figure 1)

x, y, z position vectors of system cg in reference frame XYZ

0 angle between the X axis and that principal axis having
the least moment of inertia

,, Oxz  projected angles of principal axis offset angle from the

reference axis, X, in the XY and XZ planes respectively

A estimate of g from simulation
^2I
a2  estimate of variance from simulation

vii
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SECTION I

INTRODUCTION

The mass properties of a system are functions of the mass properties of the

constituents comprising that system. If the component properties are known, then

the system properties are uniquely determined. Consider a system having components

whose mass properties are random variables. If these random variables are com-

pletely defined, then the system mass properties are random variables having unique

probability laws. The problem here is to determine these system mass properties

probability laws gven the statistical distributions of the components.

In this paper, a model describing the statistical nature of mass properties of

systems is developed. Given the probability laws governing the weights, cente.rs of

gravity (cg), and inertias of the individual components, the means and variances of

the system mass properties may be computed. Complete information about these laws
is not required; only the moments of the input random variables are utilized as input.

Appendix A lists some of the well-known probability laws with their associated

distributions and moments.

A Monte Carlo simulation (Appendix B) was used to verify the theoretically
derived expressions for mean and variance for all system mass properties of a

typical reentry vehicle. The component mass properties were all input as uniform

random variables for convenience. The theoretical results were well within the errors

associated with estimating parameters from finite samples (a sample size of 100

was used). Furthermore, all mass properties appeared to be approximately normally

distributed regardless of whether the Central Limit Theorem could be applied.
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SECTION II

THE MASS PROPERTIES MODEL

Consider a physical system having n components. The weight of the 1th.th
component is w.. The center of gravity of the i component is located at

(xi, Yi, zi) within the system reference frame X Y Z (see Figure 1). Let

Xi Y. Z. be a rectangular coordinate system whose axes are parallel to X Y Z
1 1 .th

and whose origin is at the center of gravity of the 1 component. Thenmoments

and products of inertia of wi with respect to X. Yi Z. are Ioxi, I Ioz" and

I oxy )oyzi' respeztively. 1

Using these component mass properties. the system mass properties with respect

to the arbitrary reference frame, XYZ, may be computed as follows:

Weight

n
w - w.i=1 1

Center of Gravity, x Coordinate

n

= n X ,similarly for y and z

Fw.

Moment of Inertia about X

I = w Y + z + + z, similarly for I and Iix i i l + l yy zz

3
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Figure 1. Component Reference Frame

Product of Inertia in XY Plane

n n
IY = i= w xi yi + E ,oy)similarly for I xzand I y

Projection of Principal Axis Offset Angle in the XY Plane (See Figure 2)

21
7 = tan xy similarly for 02 

I -y I xx 
xz

yy xx

4



Principal Axis Offset Angle

0= tan-1 2 0x + a

I.1

X PRINCIPAL AXIS

A0

Oxy Oxz

z

Figure 2. Principal Axis Offset Angle
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SECTION III

PROBLEM STATEMENT

Determine the probability density functions of the following system mass

properties:

Weight w

Components of Center of Gravity x, y, z

Moments of Inertia Ixx Iyy z

Products of Inertia Ixy Ixz

Components of Principal Ais Offset Angle 0xy, 0xz

Principal Axis Offset Angle 0

In particular, for each of the above random variables, determine the mean
variance (.2), and the general form of the probability density function (normal,

uniform, etc.).

7
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SECTION IV

RESULTS

A. GENERAL FORMS OF THE SYSTEM MASS PROPERTIES
DISTRIBUTION FUNCTIONS

For sufficiently large n, the Central Limit Theorem states that the weight and

the moments and products of inertia are approximately normally distributed. Since the

equations for the center of gravity and principal axis offset-involve dependent terms,

the theorem cannot be applied to these latter mass properties. However, the simulation

(Appendix B)-verifies that the dependency of these terms is weak enough for them to

still be normally distributed for most practical purposes. A good rule to follow when

no other information is available is to assume that all sums of random variables are

normally distributed. If a more precise density function is required in order to make

probability statements, simulation may be used.

B. THEORETICALLY DERIVED EXPRESSIONS FOP.
MEANS (y) AND VARIANCES (a2 )

The following results are in terms of the first four moments (E [-], E[. 2],

E[. 3], E [- 4])of the component mass properties. These means and variances are
independent of the forms of the system distribution functions.

Weight, w

n

9w =E E [w

w E E[i 2 -E 2 w]

9



Ii

X Coordinate of Center of Gravity, x

n-

F, E [wJ E [xj]

i=1 i

2 -1 i 2 2-- +/I a 2/1 Cov [t, q

w

where

=1 ]'I . E [2 - r]E '

and

n n wcov~,, 13 [i E [E [w
i=1 j=1
itj

nr2r n/ ~,
I;+ E Ew. IE [xi- ju E .E [x.])

Replacing x, by yi and zi, we get the expressions for the means and variances

of y and z respectively.

10
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Moment of Inertia about X, I,

r,2i] ,,
= EI..J(E i~ + Ex i E

oc F1 S/i=1 Li

#2 = E [w] (E[y2]+ i2 _ E IE

lxx i=1

n 2 [wi] + E [)+ 2] ( 2 n 2 [

Replacing yi by xi , and z i by x., yields the equations for Iy and

Izz respectively.

Product of Inertia in XY Plane, I

n w x]y n ixi

#I  EE Lw.JE x.JE[y. + E EE1 0xy i=1 i= il'~

C2 2xiE y2 ] 222 Liiw,.],. -,.,{i wi] ExJE2[
1xy i

+=1 (E o j- E



Replacing y~ by zi teaove equations gives the parameters forI

Angle of Principal Axis Offset Angle in XY Plane, o-
XY

XY yy Ixx

2r 2 )2& +go6 orD -29 Coy Dy)

where

D i2 E [2] 2 E [i E Ey4

n 2 [wi.(E [x,2] -E[y,2]2

(En2 2 ri 2 1%i [12]
i-(E Io0y.I + E - E2  

- E [XJ

and

1vIy~ Dx] ': j E [-,v] E [xj] E [yi] E [wj] (E [xj2] - E [yf,

+ n: Enr

JU E - E Li)
+ -. 7 Eioj)1iP EZ E[10y] - E I'xj)

12



Replacing yi by z. in the above equations yields the expressions for 91 xz
Principal Axis Offset Angle, 9

2 2 2 2
2 2 9 O' + 19 a 0 - 2#1 P Cov 90~S+ xz xv xy zx

~B XZ +2 2 X 3/2

a2 =a2 + 2 +2 +2 2
Xy xz xy z

where

Coy IO, 01 PH - -go /I
yz xy z

and where

n n

+ E E [wj ] E [xF E 3~ E [zx. E [Iozj)

iyz i=1 j=1 xl3

E o - FIE [iD (n E [Ioxyi)

13
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and

EI I'F JEl Ixg -i E E ~ j Hz' + x~ E-~ E L[I z ij I

IPD E oi~ 7 - E] [I~] + 'UD xz E

14



SECTION V

THE ANALYSIS

A. DISTRIBUTION OF w

By the Central Limit Theorem, for independent wi and large enough n,

we know that w is normally distributed and has a mean

E~ j ~ nJ ~E [ i

and variance

2 V[w = V

or

n
i=1 i2

w i-- ( [wiJ] E E j

It has been sbown that w converges to a normal random variable rapidly

even for n as small as 3 or 4 when the E [wil are of the same order of magni-

tude. A mass properties probability distribution simulation (Appendix B) of an

operational reentry vehicle with n=7 showed the weight to be approximately

normally distributed even though the E [wi were not all of the same order of

magnitude. In the simulation, the w. were assumed uniformly distributed,

which represents a conservative test for w approaching normality.

15
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B. DISTRIBUTION OF x

Let

t. = W. X.•1 1 1

Since w. and x. are independent,1 1

E [tiJ E [wi] ECi

and

E [ti2] E [w.29] E [xi2]

Using the identity

-v r+ = . 2] v2 [.i

we get

wi
IT [tij E [E2 ~x2 2 wi] ,2 [x.]

Now let

n nt--E t.--E W. X.
i7- 1 i7-1~ xi~l i i= 1 1

Since each of the ti are independent, we have the mean of t

16



or

A"t E % EH

and the variance of t

= ( E [ w E2w

Expanding as a function of t and w in a Taylor series about t and

Aw respectively,

#wUsing only the first three terins of the expansion, the mean of x is found to be

/I E[XM At

Combining the last two expressions and squaring,

-2, 2 xt~) p 2 x_
Jux + 2 + 2 ( ) wpw w

2,5 (t _ 
- 2 (t - W

17
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Taking the expected value

[ 2 '2 02 21-gE xI /12 + ft +-U -- Co[t,
S-2 2 w 2

w Aw w

T1he variance of x is therefore

x

S1 2 2t 2i

2 tc ~2/~ ow

where

Coy [t, w] E A ~(

E [tw -tw -U t +

t w

and

I E [tw] = E wx) w

E F,. E w w.1EF.

I j=1 L1Jl

n n

i=1 j=l [i "j

n~ n

•, 1: E ]+'r E[,2

i--1 =1 [il rj i=



The reentry vehicle mass properties simulation (Appendix B) showed Y to be
x i wi

approximately normal despite the dependency of the terms w . The theoretical
2expressions above for p- and a. agreed very well with the sample means andxx

variances. Using Yi, zi in the above equations, we get the equations of the means

and variances of Y and Y respectively.

C. DISTRIBUTION OF I

The mean of Ixx can be found immediately as

n w .(y2 + z2) + nk

= E [wi] ( [yi2] 1 [z 21 )+ E []lox]

Assuming that the terms are all independent, we have the variance

2=V [Ixxj = n V [wi(yi2 + zi2/j + nI Vjj

where

V [wi (yi 2 + zi2)] = E [W.2 (~ 2 + zi 2 )2] 2 [w. (yi 2 + 1

= E [wi 2 (E[i 4 + 2E [yj E [z2] + E [z4])

E E2wi] (E [Yi2] + E[Iz12])

19



Hence,

+2= ] +2E E [zi. + Ez
xxI i=1

E2 [wj (E [y2iv + E [z2])2 + E [Iox2 2 [Io1j

Note that and a are exact. The Central Limit Theorem would
XX xx 2

guarantee that Ixx is asymptotically normal if the terms wi  + z.2) and

were independent. It was shown in the previously mentioned simulation thatOX.

Ixx is, for all practical purposes, approximately normal. The statistical parameters

for I and I z  are found similarly.

D. DISTRIBUTION OF Ixy

The mean of I is

rn (.~.I y

Assuming each term independent, we find the variance of Ixy to be

I9. V[ixy]  [--- (Wi Xi Yi  oi ]
In iix

=2 = V i \ +  + oy2

%F



or
1~ (~w2X2Y2] 2 E[wi X. Y

(E i=1 y

= (E [wj2] E [xj2] E [yi2] -E 2 .0 2 [:]E [yi]

+ E [ 2] - E2 [Ioxy])

Again, these parameters are exact and the simulation has shown that I is
approximately normal. The parameters for Ixz are similar to those for Ixy,

E. DISTRIBUTION OF 0xy

For 0xy small, we can rewrite

xyy
21

tan2= - --

yy xx

as

I
0 ,
'.T I - Iyy xx

Now let

D 1 -I n~ w. (x. 2 Ii +I Ixy yy xx ~ i~ oy. ox,

The mean of D is simplyxy

' 1D = E[D = - '
. xy 

yy xx

21
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I

and the variance of D isxy

2 [D] jjw(x 2 
- 2) + -jxl

O'D Vx y 1 V° XI Y Y i o "

Assuming the three terms are independent,

D 2 =n (V [w. Ii 2 
- y2)] + V [oi~] V V[lox)Dix

or

D F,' E [w,2] (E [.]-2 E [xj2] E [yi2] + E [y.4])
xy i7-1

-E
2 [ [] (E[V!] i E [Yi2])

+ EFI 21- E 2[ 1 - E' [ 21 + E 2 [1
[ jj [OX.]

Expanding 0 as a function of I and D in a Taylor series aboutxy xy xy
the points I and D respectively,

xy xy D
I ,i I /D °'w N -/ PD+..

xy DD D
yy xy xy

The mean of 0 is

xy

22
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The variance of 0 is found by a method similar to that for axy

aI 1  a2 + 2 2 2 p ii
Oxy DY I xy Ox a xy xyW ) xyJ 1

where

Coy [1XT Dx] = E [Ix, Dx] Al XYPD1

and where

E [JxyDJy E(~ w xi y. + Ej Ioyj( w.x.

i-i i-] 2y (i)]3

n1 nj

+ IF. x- F, I

E wi iy (x 1 2)1 2)

i7-23

n



Assuming the component moments and products of inertia are independent, we have

Coy , E E E w1 E[xi] E[yl E[w.] (E - E[y ]Ii=I j=1

+ E [wi2] (E [xi3l E [y.] - E [xi] E [yjJ)
i--1

n n n

xy i=, xx yy i=I1 i=1 l )

Replacing y by z in the above equations yields the parameters for 0,z.

F. DISTRIBUTION OF 0

For small values of 8, we can rewrite

j6 tan-1  ( tan 0 , + tan2  0 X7,)

as

Then, 8 can be expanded in a Taylor series about the points /'0 and POxz

0 2 Tp~xz +(OXY - Pxz) PuOxy +
2 22 +O xy 2x2

1 0 + 1 7
xy xz

24t



+IZ%)9x 
+ X v

2 2 )/
2 +12 +

xy xz

"0e x' ez,#, (exz POX- xy xz

2+ U2e x)3/2

~2 - 2

+ OY (XZ goI~e +....1 ,
2+ 2 2)3/2

Taking the expected value of the first and second-order terms,

2 2 + 1 2 2

go 2+1162 + goz 2~
x yx x z2 P 2 3 / 2

01 r0  x
Coy [X' z

2 +24 3/2

'Oxy #2)

or

~~2 2 120 ~2~~1 0 0[
2y 2 xz x X X

~'0 X0 +19 +(

I:Y

25



Let

Ixy Ixz yz

and

D D =F
xy xz 'cz

We can then write

KY xz

The first-order approximation for the mean of 0 0 i

xy yxz

Yz

where

n [n r

Jul, E[Xh E[] E zw

+ nE Oz]P,+ ( nE xjju

26 :



and

= E ]E [ E [w. ] E[x.2 Ey.2 E E ). - Ez2

cov[0, ~ ~i, [] j] EE [o, o] p

n r

co~r~o,] n~~ [I~%

where p is the correlation coefficient between 0x and Oz and is bounded,

xy i=y

27



If it happens that

2 2 + /2 a2A
(i oe ao C 0  21 1 0 0 o xz

(i. e., twic the mantd ftescn emiegiiloprdt h antd

(.etwice the magnitude of the second term is negligible compared to the magnitude

of the first term), then we can write

2 a2 2 +p2 2 >> 2p/ /jox o

0xz 0 + P 0 Pxz >X>

or

2 2 + 2 2 >> 2/Aox /1 Co 6,, 0i
Oxz Oxy Oxy Oxz xy xz

and / is written neglecting the covariance term

2 2 2 2
P aO + a0

2,2 + xz xy 0xy/ xz
J0 9L Ox 42 2 )23/2

The variance for 0 may be readily found since we have

_E[0. 2]= 0,0  2 + PO2

xy xy

and

E [Oxz2]= a 2 + / 2
Oxz xz

28
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The variance is

2=E [02] E E2[8] =E [ 2+ -z2

or

2 2 2 2 2 2

xy OX z 0xy xz

The theoretical parameters for 0 agreed quite well with those found by simulation

for the reentry vehi--le. The distribution function was shown to be very nearly normal.

29
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SECTION VI

CONCLUSION

Any sum of independent, normal, random variables is normally distributed.

For large n , the Central Lin-it Theorem states that the sum is approximately

normal regardless of the forms of the independent component distributions. The

largeness of n must be measured primarily as a function of those components which

dominate. Deviation from the theoretical normal will also occur if the terms are

dependent. If the normal model is inadequate for a particular problem, a simulation

may be performed to establish the general form of the distribution function. In the

absence of other information, the simulation shows that the normal distribution is a

reasonably good first approximation.

The derived means and variances were verified (Appendix B). Although some

of the equations seem formidable, they involve only simple algebraic manipulations

and therefore are easily programmed for computer analysis. The equations yield

good approximations of the true means and variances and are valid for all possible

component and system distributions.

The form of the probability density function used in conjunction with the derived

mean and variance completely describes the statistical nature of the mass property in

question. Care must be used in making probability statements, however, because the

density function, the derived parameters, and especially the input distributions are

really estimates of reality. For example, the simulation used Zomponents which were

uniformly distributed. It would be impossible to make a 3a probability statement

about the weight based on the theoretical normal because p w + 3crw exceeds the

largest possible value w may have. The reason for this is that the input components

are uniform and therefore have finite upper bounds. If we had assumed, instead, that

the components were normal, then the 3cr statement would have been exact.

31
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APPENDIX B

MASS PROPERTIES SIMULATION

In order to verify the theoretically derived expressions for mean and variance

and to gain some insight into the general forms of the probability density functions, a

simulation was performed. The object considered is a typical reentry vehicle sub-

divided into seven components. Because the simulation was performed by hand, the

component mass properties were assumed to be uniformly distributed. For each

component mass property, a sample of size 100 was generated according to its A

prescribed probability law. The system equations were then used to generate samples

of size 100 for each system mass property. Following this, estimates for the means

and variances were derived and compared to the theoretical results of the same model.

Minimum variance unbiased estimates were used. For the mean and variance, they

are of the form

mo
I j=1 x.

and

m

A 2 = i - i ( x . u )
j=1 

threspectively. Here x. represents the j sample of the arbitrary mass property, x.
The sample size is m. In order to display the verification of the theoretical

parameters without releasing classified information, the following criterion was used.

35
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A A2

The estimates and ^ are random variables with approximate standard

deviations as follows:

SD[ ]

Sr2]2
Lrn-

^2
qThe approximation results from the fact that the point estimate of a is used in

S- place of the unknown variance. The expressions

1 ̂2 a 21
SD [r 2]

and

SD[ru]

give a measure of the difference between theory and simulation in terms of the

standard deviations (inherent errors) of the estimates. These results for the

simulation are listed in Figure B-1.

Distribution functions resulting from the simulation are plotted in Figures B-2

through B-7. They are transformed to zero mean and unit variance for security

reasons. Theoretical normal curves with zero mean and unit variance are super-

imposed for comparison.

36
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SD[r 2 ] SD[P]

W 1.26 0.61

x 1.27 0.59

I 0.33 2.27xx

I 0.36 0. 04

Gxy

0 0.10 0.07

Figure B-I. Difference between Theoretical and Simulated Parameters in
Terms of Standard Deviations of the Estimators
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Sw ,

Figure B-2. Nondimensionalized Density Function of Weight (w)

37 :1

21



0.5

0.4

0.3 THEORETICAL NORMAL
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Figure B-3. Nondimensionalized Density Function of Longitudinal
Center of Gravity (3r)
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Figure B-4. Nondimensionalized Density Function of Moment of Inertia (lxx)
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Figure B-5. Nondimensionalized Density Function of Product of Inertia (Ixy)
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Figure B-6. Nondimensionalized Density Function of Principal Axis
Offset Projection (0 xy)
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Figure B-7. Nondimensionalized Density Function of Principal Axis
Offset Angle (9)
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