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UNCLASSIFIED ABSTRACT

A METHOD FOR DETERMINING PROBABILITY TR-0158(S3960~30)-2
DISTRIBUTIONS FOR MASS PROPERTIES OF June 1958
SYSTEMS, by Frank C. Bond

An analysis is performed to develop expressions for the statistical parameters of
system mass properties. It is assumed that the component weights, centers of
gravity, and inertias have known probability distributions. The general forms of the
density functions generated are deduced from the calculus of probability whenever
applicable. Means and variances of the system mass properties are computed from
linear functions of the statistical parameters of the components. The input random
variables may be distributed according to any probability law or combination of
probabiltity laws for which the moments are known. From conceptual design to
detailed specification drawings, the probability laws governing mass properties
estimation change. This method may be utilized at any point in the life cycle of

system design as it is independent of the particular forms of the distributions used
as input. (Unclassified Report)
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NOMENCLATURE

Cov [+, -] signifies covariance of the random variables ( -, - )
I -1
DX)' yy X
Dyz L
El-1,u “) signifies mean of the random variable (-)
F vz ny sz
I I
F ‘ Hyz Xy Xz
i - 1,1 ,1I moments of inertia of ith component about X, Y. Z.
;’ ox.’ "oy "oz, i~"i7i
(see Figure 1)
3
2 X th
: onyi, onzi, onzi products of inertia of i~ component in reference
f frame x. y. z.
i7i%
Ixx’ Iy} ” Izz system moments of irertia about axes X, Y, and Z

: I ,1 ,1 system products of inertia in reference frame XYZ
‘ xy' xz’ yz

' m number of random samples in simulation
|
, T number of components in system

sp [-] V[

5
‘ t i=1 w1X1
(:1 WX,
v([],e - )2 signifies variance of the random variable (-)
. th

W, weight of the i component
| b1

W total system weight( 3w,

i=1
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NOMENCILATURE (Continued)

X Y %4

position of center cf gravity (cg) of iLh component in
reference fra.ne XYZ (see Figure 1)

position vectors of system eg in reference frame XYZ

angle between the X axis and that principal axis having
the least moment of inertia

projected angles of principal axis offset angle from the
reference axis, X, in the XY and XZ planes respectively

estimate of g from simulation

estimate of variance frorn simulation

vii

v g

.-




(This page intentiorally left blank)

viii

Rl

R




SECTION |
INTRODUCTION

The mass properties of a system are functions of the mass properties of the
constituents comprising that system. If the component properties are known, then
the system properties are uniquely determined. Consider a system having components
whose mass properties are random variables. If these random variables are com-
pletely defined, then the system mass preperties are random variables having unique
probability laws. The problem here is to determine these system mass properties
probability laws given the statistical distributions of the components.

In this paper, a model describing the statistical nature of mass properties of
systems is developed. Given the probability laws governing the weights, centers of
gravity (cg), and inertias of the individual components, the means and variances cf
the system mass propérties may be computed. Corplete information about these laws
is not required; only the moments of the input random variables are utilized as input.

Appendix A lists some of the well-known probability laws with their associated
distributions and moments.

A Monte Carlo simulation (Appendix B) was used to verify the theoretically
derived expressions for mean and variance for all system mass properties of a

typical reentry vehicle. The component mass properties were all input as uniform

random variables for convenience. The theoretical results were well within the errors

associated with estimating parameters from finite samples (a sample size of 100
was used). Furthermore, 2ll mass properties appeared to be approximately normally
distributed regardless of whether the Central Limit Theorem could be applied.
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SECTION 1l
THE MASS PROPERTIES MODEL

Consider a physical system having n components. The weight of the ith

component is W The center of gravity of the ith component is located at

(xi, Y Zi) within the system reference frame X Y Z (see Figurel). Let

Xi Yi Zi be a rectangular coordinate system whose tahxes are parallelto XY Z
and whose origin is at the center of gravity of the i~ component., The-moments

and products of inertia of L2 with respect to Xi Y, Zi are oni, oni, Iozi and

onyi, onzi, onzi, respectively.

Using these component mase properties. the system mass properties with respect
. to the arbitrary reference frame, XYZ, may be computed as follows:

Weight

n
W= w,

=1 !

Center of Gravity, x Coordinate

™
g
X

1
i
put
1
=

, similarly for y and z

™M
z

1
=t
[

Moment of Inertia about X

, Similarly for I and I
o1 0% yy 22
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, Figure 1. Componeni Reference Frame

Product of Inertia in XY Plane

n n
— + . Y
Ly 1=E1 LAR A 12;1 onyi , similarly for I and Ly

Pro}ection of Principal Axis Offset Angle in the XY Plane (See Figure 2)

=1 Xy N
f,, = 5 tan = y——7—, similarly for -




e JRET
INER o . -
»

Drincipal Axis Offset Angle

S | 2 2
o= ™\ fe 0+ w0, )

28 719

X PRINCIPAL AXiS

Figure 2. Principal Axis Offset Angle

.
L N




e e Bue iy Lt g T o

B
DAY

(This page intentionally left blank)

%

P




SECTION 1l
PROBLEM STATEMENT

Determine the probability density functions of the following system mass

properties:
Weight w
Components of Center of Gravity XY,z
Moments of Inertia I ,I ,I
xx’ yy’ zz
Products of Inertia I , 1
] Xy xz

Components of Principal Axis Offset Angle axy’ Or

C Principal Axis Offset Angle 9

In particular, for each of the above random variables, determine the mean (u),

3 variance (02) , and the general form of the probability density function (normal,
uniform, etc.).
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SECTION IV
RESULTS

A. GENERAL FORMS OF THE SYSTEM MASS PROPERTIES
DISTRIBUTION FUNCTIONS

For sufficiently large n, the Central Limit Theorem states that the weight and
the moments and products of inertia are approximately normally distributed. Siace the
equations for the center of gravity and principal axis offset-involve dependent terms,
the theorem cannot be applied to these latter mass properties. However, the simulation
(Appendix B)-verifies that the dependency of these terms is weak enough for them to
still be normally distributed for most practical purposes. A good rule to follow when
no other information is available is to assume that all sums of random variables are
. normally distributed. I a more precise density function is required in order to make
probability statements, simulation may be used.

& B. THEORETICALLY DERIVED EXPRESSIONS FOR
MEANS (u) AND VARIANCES (02)
The foliowing results are in terms of the first four moments (E [], (-2,

E[ 3], E [ 4])of the component mass properties. These means and variances are
y independent of the forms of the system distribution functions,

Weight, w

Hy = E: E[wi]

i=1

W -£ (501 ))

A T

- -

oA
i
i
i
i
t
{

e Py
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J

X Coordinate of Center of Gravity, x

_ i=t
>, &[w
=1 t1!
o = Ly (o vug’ 0" = 2z cov [1, W)
w
where
9 n 2 21 2 2
o2 -3, E[w ]E[x |-E [W]E [x]
i=1 ! ' : '

and

=1 =1
i=j
v 3 =[] o] -, ( > E[wi]E[xi])

Replacing X, by A and z;, we get the expressions for the means and variances

of y and 7 respectively.

10




Moment of Inertia about X, Ixx

- é:l E [wi] (E [yiz] +E [ziz])+ g E [oni]

12231 E [wiz] (E [yi4] +2E {yiz}_ E [zi2]+ E [z{*])

n 2 n )
iz—:-l B [wi] (E [yiz] +E [z12]> + i§1 E [ngi] -E2 [I ox i]

Replacing ¥; by X and z; by X5 yields the equations for Iyy and

Izz respectlvely.

=
)
I

o
]

Product of Inertia in XY Plane, Ixy

2 obdef]eb e 3 fon]

u =
vy &1
n
0?2 = Y E [w.z] E [x.z_l E [y.z] - B [w] E [x] E? [y.z]
Ixy = i i i i i i

+
ud,

X gt
f————
4
g [

<
| SU———

H
[ ]
—
[

2

o=
| —— |
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Replacing Y by z; in the above equations gives the parameters for Ixz'

Angle of Principal Axis Offset Angle in XY Plane, 959[

Hy
I‘g = - 2
S TR
Xy Ly T
2
~ 1 2 2
- Z Hyg ©
0 p ® (I D 6
xy (Iyy Ixx) \ v ox
where

ny

and

Cov [Ixy, ny] =,

12

Q
)
Ii
M=
x4
0
Hi
)
o]
™ !
"y
'
o
iy
it
L)
t5
:-:< '
L
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)
\_/
(4

»
¥
¥

et e




Replacing ‘A by z, in the above equations yields the exprcssions for oxz'
Principal Axis Offset Angle, 6

2 2 2 2
— My o +HE 02 -2u, n Cov[e 0]
IE P O Py ly Oxa by % X
8 \T0y 8y, 2 2 \3/2
2#0 + yg i
Xy XZ/
oz= ag +a§ +,u§_+llg -ﬂg
Xy Xz Xy Xz
where
yH
o~ z
Cov[O ,Oxz]_TF_L y. Ky
Xy Xz
yz
and where
n n r
= Efw]E[w]E E[]E[]D[]
“Hy, 2 & (%] B[] =[] =[] =[5 s

iy
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PR 1 Y

SECTION V
THE ANALYSIS

A. DISTRIBUTION OF w

By the Ccntral Limit Theorem, for independent w; and large enough n,
we know that w is noxmally distributed and has a mean

pw=E[§ wi] =izz:l E [wi}

and variance

o
w

[\

i
——
Pte
it

S

u
it=

<
| pame-n |
L

(29

il

o= & ([ -2 )

It has been shown that w converges to a normal random variable rapidly
even for n as small as 3 or 4 when the E [wi] are of the same order of magni-
tude. A mass properties probability distribution simulation (Appendix B) of an
operational reentry vehicle with n=7 showed the weight to be approximately
normally distributed even though the E w.| were not all of the same order of
magnitude. In the simulation, the w; were assumed uniformly distributed,

which represents a conservative test for w approaching normality.
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o B. DISTRIBUTION OF x
r ! Let

L' t. = w, X

F; 1 1 1

Since w; and X, are independent,

‘ Bly]= 2 [ = [

: and
- E [t.z] = E [w.?‘] E [x.z]
X 1 1 1
3
Using the identity
f v [ = £ le2] - 220
. KTk I
. we get
\' [t] = E [w.z] E[x.z] - g? [w] g2 [x]
1 1 1 1 1
Now let
i n
t = t. = w. X.
=1 ' =1 !

Since each of the t, are independent, we have the mean of t

v+l H{E ] - £ o

16
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or

or
2 _ ¢ 2 2 2 2
o = % (E[wi] El—xi] - E [wl] E ["x])
i=1 .
Expanding x asafunctionof t and w in a Taylor series about u ¢ and
H,, respectively,

py t-H oy

- t
X=—= + - w-p)+...
v Py He, uwz ( w

Using only the first three terms of the expansion, the mean of X is found to be

— U
”x= E[x]g-—t-
Hy

Combining the last two expressions and squaring,

- {t-ll 2 p2 2u_2
xz‘.‘z' [1}_{_2.;. \ ”W;) + ﬂ:‘vz (w - ﬂw)z - u"; (w - ”w)

17
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{ Taking the expected value

2
: 2 0.2 H= 24 _
: -t~ ,,2 £ X 2 X
. E [x ]: .ux + —E‘ + —-—2— Uw - —-—2' Cov [t, W]
4 K u u
w w w

The variance of X is therefore

ai?‘ = E {iz] - 2 %]

., = 1 2 2 2 _

i _#2 {at tle o, - 2Ho Cov [t w]

L w

where

P Covt, w] = E [(t - ”t) (w - ‘“w)]

o =E[t“"”tw'-”wt+”t"w]
; = E [tw] - un,

(S and
! n n

[ Eftw] = E[lY wx ) [ w,

- =1 Y \iI|

-

n n
E|Y w.x.w.]

=1 =

= 1Z=:1 Z E [Wi X, Wj]
= 1§1 jél E [wl] E [xi] E [wJ] + iz:l.;l E [;viz] E [xi]
izj

ﬁf. 18
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The reentry vehicle mass properties simulation (Appendix B) showed X to be
X, W,
approximately normal despite the dependency of the terms iw L . The theoretical

expressions above for M and 03‘.2 agreed very well with the sample means and
variances. Using Y % in the above equations, we get the equations of the means
and variances of ¥ and Z respectively.

C. DISTRIBUTION OF Ixx

The mean of Ixx can be found immediately as

u EIIL |=E woly.” +2°] + 3 I
Ixx [xx] [i=1 iV’i i ) & oxi]

izijl E [wi] (E [yiz] + E[ziz]>+ 1£=:1 E [oni]

Assuming that the terms are all independent, we have the variance

alxxz = v [Ixx] = 122:1 v[wi (yif% + zi2)] . 3 V[oni]

i=1

]

—

<
—
W
_—
-
o
+
N
pete o
O~
I
=

w? (v, + Ziz>2] -5 [wi (v ”iz):|
-5 )60 - b ol o)
- 2w <E[Yiz] ; E[Zi2:,>2

19
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Note that Hy and a? are exact. The Central Limit Theorem would
xx XX
guarantee that Ixx is asymptotically normal if the texms w; (y 2, ziz) and

i
I ox. vere independent. It was shown in the previously mentioned simulation that
i

Ixx is, for all practical purposes, approximately normal. The statistical parameters

£ e s L)
for Ixy and Izz are found similariy.

D. DISTRIBUTION OF I

The mean of 1 is
Xy

- (o
u =E[L_]=ElY
Xy L~J L’:]_

AR AERE )

Assuming each term independent, we find the variance of I to be

Q
]
1

2xy V[Ixy] = V[;Zl (wi X ¥ * ony.)}

1

i

n
Y, Viw.xy +1
= [1 i7i oxyi]
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=
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Again, these parameters are exact and the simulation has shown that I is

approximately normal. The parameters for Ixz are similar to those for -Ixy’

~ N

-~ v,,-’.v o -n.«":m

E. DISTRIBUTION OF ny

For oxv small, we can rewrite

tan2 6
as
] =
Xy
Now let
D =
Xy
The mean of
IID =
Xy

- XY
x I -1
yy  xx
I
i E:'1'
vy x|
5
I -1 =
oo i3
D is simpl
y 15 simply
E[ny]=uI
NAY

21
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e o, e ik

and the variance of ny is

. 2 L 2 2 - -
f 4 =V[D]=VZ{W. x° -yS)+ 1 -1 ]
Dyy s B = I ( 1 ! ) oy; 0% 1

Assuming the three terms are independent,

anyz 1)2:1 (V[wi (xiz ) yiz) ] ’ V[I°yi] i V[I°xi]>

-

or

£
)
il
s
NNl
=
[ | ) ]
—y
T
Cw !
L.
'
0o
t
—
u.”m
L,
o]
't< )
)
+
t
IR”EL
"y
S—

! + E h—m 2] - EZ '-I-.. ] - E on 2} + E2 [on ] l .
,4 SRR I N el

Expanding gxy as a function of Ixy and ny in a Taylor series about
the noints Ixy and ny respectively,

: /¢ /g u
: I I - "1
i 0 - Xy = Xy + (Ixy XY) - I&’ ny - ”D +...
i Xy Xy Xy
The mean of oxy is
!‘lI <
J7 =z XY |
0xy ”D :
Xy

22
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Fala=4 LAY

» L anants

The variance of oxy is found by a method similar to that for o 2

X ?
2 1 2 2 2
g = c + M g - 2u, Cov |I D
o | > [ 2}
Oy D, xy % Dxy Oy A
where
Cov[I,D]-E[I D]-Il u
3 I D
Xy Xy Xy Xxy o R
and where
/' n n n 2 2
5 = + -
E [Ixy va] E(g-%l W, X,y 1§ onyi 1§1 W, (xl ¥ )
5 5
+ -~ 1
i= oyl i=1 ox1>
f(. v ;
i n
i 2 2
=E|{Y. W X.¥. IE w. {x.” - }
liﬂ 111_[1.“=1 1(1 y1)
+ W, X. ¥ I -
i=1 =1 Y i=1 %%
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Assuming the component moments and products of inertia are independent, we have

linaled B B bbb o)
g B B )

/

' n n n
o + -Y E[1 a - A +§:E[I ]-E;E[I]
o (Ixy i=1 [°"Y1] I Sy =1 L% ox,

R

XX Yy il i=1
Replacing y by =z inthe above equations yields the parameters for sz.

F. DISTRIBUTION OF ¢

" —~ B
B AAMILAR SELANL NS PS g

For small values of 6, we can rewrite

» 9 = tan t (\/tan2 9 + tan® 6 >
Xy Xz

t as
2 2
0=
' by * O

Then, § can be expanded in a Taylor series about the points uexy and 'uoxz:

6, _H, \u
XY -6 0
6=, [u +ul +( ) Oy *
Xy Xz \/uz + u2
oxy OXZ

24
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thCoamearaty

BN

+ ”; 2 2 \3/2
s+ o (”o ¥ ”a)
\/oxy oxz Xy Xz
o H 6., - H 6 - H
ny Oxz (Xy 8le (xz ze)

g 2g 2, 4 2 5 2
> 2 6, 0 ; 0
Ky = E[o]s U + U + Xy Ay Xz
6 0 2
xy Xz 2 Ho + H 2\3/2
Xy Xz
u &, Cov [0 ) ]
) oxy <z ! Yxz
l”g 2 + ﬂo 2 3/2
Xy Xz
or
& 2 2 2
#, o tU>y, o 2u, M, Covlig._, @
‘ N 5 5. oxz oxy ny oxz oxy oxz [ s *cz]
HoZ\ [Hg *Hg 3/2
Xy XZ 2 + 2
Ko o
Xy Xz

25
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Let

.1 =

Xy Xz yz
and

D = F

We can then write

I \/I_\ H
0. 6. = (X () FE
xy 'xz D._J\D F
xy/ \"xz/ “yz

The first-order approximation for the mean of Oxy 6. is

XZ

E [axy oxz]= i

vz
where
5 % el ol =l o}
u = Elw.| E|x, Ey.]Ew] E[X]E[Z]
Hyz i#l j=1 g ! L ] )
ifj

26




and

= 8 B oln] Gl - o)
8 sloillels] - sl (o[ = 2] ) ] o]
oy B (o] - £ o)
| "y é( onyi] > ELIOXJ>

Y "
'
[
l-l
Il
=
f'—"_'i
(au]

£ 2l - ol (B Pl 7

The covariance term can then be computed as

COv[o 0]=E[9 9]-;: u
Xy’ Xz Xy Xz 0xy6xz

In some cases the computation of u 0 may be considerably simplified by
noting that

Cov[ﬂxy, oxz] = paoh 00

where p is the correlation coefficient between 0 and oxz’ and is bounded,

lpls

27
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If it happens that

2 2

>>2
He,, %

2 2
+ ”9 0'0

l‘le ”0 g 4
XZ Xy xz

xy XZ Xy Xz

(i.e., twice the magnitude of the second term is negligible compared to the magnitude
of the first term), then we can write

2 2
Hog 0Gg * Ny 04 I»

24, Uu o o
oxy Oxz oxy gxz

or

>>

2#9xy llexz Cov [exy’ axz]

and u P is written neglecting the covariance term

+Ilg 02

2 2
T, 0 0O 0
~ XZ Xy Xy  XZ
118= [10 +ﬂ0 + 3/2
Xy Xz <2 2 >
“q

+ U
Xy Oz

The variance for ¢ may be readily found since we have

and

28
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. The variance is

or

The theoretical parameters for 6 agreed quite well with those found by simulation
for the reentry vehicle. The distribution function was shown to be very nearly normal.
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SECTION VI
CONCLUSION

Any sum of independent, normal, random variables is normally distributed.
For large n , the Central Lim it Theorem states that the sum is approximately
normal regardless of the forms of the independent component distributions. The
largeness of n must be measured primarily as a function of those components which
dominate. Teviation from the theoretical normal will also occur if the terms are
dependent. If the normal model is inadequate for a particular problem, a simulation
may be performed to establish the general form of the distribution function. In the
absence of other information, the simulation shows that the normal distribution is a
reasonably good first approximation.

The derived means and variances were verified (Appendix B). Although some
of the equations seem formidable, they involve only simple algebraic manipulations
and therefore are easily programmed for computer analysis. The equations yield
good approximations of the true means and variances and are valid for all possible
component and system distributions.

The form of the probability density function used in conjunction with the derived
mean and variance completely describes the statistical nature of the mass property in
question. Care must be used in making probability statements, however, because the
density function, the derived parameters, and especially the input distributions are
really estimates of reality. For example, the simulation used components which were
uniformly distributed, It would be impossible to make a 3¢ probability statement
about the weight based on the theoretical normal because fy * 30y, exceeds the
largest possible value w may have. The reason for this is that the input components
are uniform and therefore have finite upper bounds. If we had assumed, instead, that

the components were normal, then the 3o statement would have been exact.

31




N B3 e
A P e Sere A svevata o REear 12 cadd) atr e onmas e v R cae v WSS T R e N & R
; H
!
. . ’ . : . m
.
¥
v |
.
H
v
'd e N
q
i
!
4 t
! _
i
X .
3 t
i
,
§
!
" .
m
o
=
Gy .
1%
—
= :
]
=
S N .
prey (20 ol
n ¥
3 -
el
i
&
2]
m
o
i
w .
I
i
.
.
!
M_ .
| w .
i w .
i
;
{
i
'
:
3 . .
- ¢ ~
e e i i S A = i S e e i -
Y g T S A g ik - i,




T SRTTFATCN e e R ETERR T T L TR T e g T T T AT Y eI T H
.yt S TSRO, WL R e oot ke TS L CIE O S FATCH 2w AT .
r~ T T AR TR TR S T S S TR A o ’ . . ;
. o v e mim b oy St [ % S e e . . .
N
)
X = .
' .
. YSIMIDYIO ‘D =
. x4
' A4 W P Y N Q)
| m..... vz s 4N a7 | T3 Iy a1 ...—.l.“k.._“... I o<x x«..oT._.xé |<L| = (X)) ewwten
W X 14
_ !
W ! .
M i
* ”
| an «®
oyzp

i 2° o8 20 4 v: Hyp o ot 22 g " o>x>00-¢ 2 ..o = ) [PwIoN
! NAﬂ.mv._.
; . x g Yo
i | 1
“ 1 I_Jo-% .
i t
b
' ISIMINGO ‘D =
| )
| (v - q) T - Q) £ -
“ o b = ST | AT asxse L8 waogiun

< ] 1 4 4 [ 1
{ . {aducjans) (wowow (luowowt (wowow (weaws) uopyoung Siysuag mv] Liiliqerqoad
w _..-A_”y.u q - x:n S.Haw: a”.:..: vcokuv {x)a
| _”v u.* _Hn ._u T..T
|
i
| SMVT XLITIIVIOUd AIsnN XTINOWNOD JO SLNAWON dNV SNOILALIHLSIA
i
| V XIANIddV )

t
» » . . » Y




i
+
'

(This page intentionally left blank)

34

-




A}

APPENDIX B
MASS PROPERTIES SIMULATION

In order to verify the theoretically derived expressions for mean and variance
and to gain some insight into the general forms of the probability density functions, a
simulation was performed. The object considered is a typical reentry vehicle sub-
divided into seven components. Because the simulation was performed by hand, the
component mass properties were assumed to be uniformly distributed. For each
component mass property, a sample of size 100 was generated according to its
prescribed prdbability law. The system equations were then used to generate samples
of size 100 for each system mass property. Following this, estimates for the means
and variances were derived and compared to the theoretical results of the same model.

Minimum variance unbiased estimates were used. For the mean and variance, they
are of the form

2 x

J

N\
u=

g L
[y

J:

and

respectively. Here x]. represents the jth sample of the arbitrary mass property, x.
The sample size is m. Inorder to display the verification of the theoretical
parameters without releasing classified information, the following criterion was used.
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The estimates 1 and 3\ 2 are random variables with approximate standard ]
deviations as follows: :

spl[u] =

Nl

>
SD {92] = 2 o2

The approximation results from the fact that the point estimate of 92 is used in
to- place of the unknown variance. The expressions

52 _ o2

splo?] -

e P T P

RO S AR LA Y

, [ - 4l
z sp [2]
give a measure of the difference between theory and simulation in terms of the
standard deviations (inherent errors) of the estimates, These results for the
simulation are listed in Figure B-1.

Distribution functions resulting from the simulation are plotted in Figures B-2

through B-7. They are transformed to zero mean and unit variance for security

reasons, Theoretical normal curves with zero mean and unit variance are super- !
. i
imposed for comparison. |
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W 1.26 0.61
x 1.27 0.59
I 0.33 2.27
I 0.36 0. 04

Oxy 0.24 0.06

2] 0.10 0.07

Figure B-1. Difference between Theoretical and Simulated Parameters in
Terms of Standard Deviations of the Estimators

0.5
0.4 L~ THEORETICAL NORMAL
/
0.3
x
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0.2
0.1 /
0
-4g -3¢0 20 -lo 0 lo 2o 3o 40

w
Figure B-2. Nondimensionalized Density Function of Weight (w)
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Figure B-3. Nondimensionalized Density Function of Longitudinal
Center of Gravity (%)
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0.4
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Figure B-4. Nondimensionalized Density Function of Moment cf Inertia (!x
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Figure B-5. Nondimensionalized Density Function of Product of Inertia (lxy)
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Figure B-6. Nondimensionalized Density Function of Principal Axis
Offset Projection (ny)
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