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SLIGHT aT.n5’hieiiC VAL /ZJIONS ol THZ ADAPTATION
OF )METZOROLOGIC,'L FIELUS

by
A. S, lionin and A, Y. Obukhov

< On the basis of the solution of the problem of slifht vari-
ations in a baroclinic atmosphere, a general classification .
of the main types of dynamic processes in the atmosnhere - | N
(horizontal vorticity motions and gravitational and acoustie .
waves) is given, The wark also gives the general fora of
the invariant, with which tho critical stationary state of
the atmosphere can be computed using arbitrary initial data,
without analyzing the wave nrocesses which cause reorjani-

* sation of the fields, The "filtering™ role of the qQuasi-
static sprroximation is exrlaineds it "filters out" internal
acoustic waves and somevhct overrates the frequencies of
gravitational waves, In particular, it is shown that only
several minutes are required to establish quasistatic equi-
libriua in the atoosphers, | |

A8 18 knewn, the complete mteu/ot the equations of atmospheric hydro-
dynamics is a time system of the fifth-order (it contains derivatives of three
components of velocity, pressure, end density with respect to time), Accorde
ingly, in order to solve the Cauchy problem for this sy sten of equations one
zust Jonow, at the initial moment of time, the fields of five meteorological
elements, 1ith arbitrary initial data, .motions developing in the atmosphere
can be separated into relatively slow ones (synoptic) and rapid ones (wave), .
The consideration of hpid wave motions essentially ccmplicates the anslysis -
of synoptic processes. Therefore, vhen investigating synoptic processes, ‘the
equations of atmospheric hydrodynamics are simplified so that the simplified -
equations wiil give an adoquate enough description of the synoptic mrocesses,
but will not contain rapid wave notions_ among thoir solutions, Such approxi-’
mations (qﬁuiauuc and quasigeostrophic arproximations) lead to dynmic
equations of the first timo order, so that to describe the evolution of synop<
tic processes one need lnow the initial field of only one meteorological ele-
pent (e.2., pressure or a strem function), The order of the dynamics equa-
tions 1s reduced (from fifth to first) through the exclusion - "filtering out"e

" of certain solutions of the initial system of equations (dotually, rapid wave

motions) by the above-mentioned sirplifications. To prove the validity of such
simplifications one must explain the nature of rapid wave uouox_u.' '
Under actual conditions, rapid wave processes occur with small amplitudes,
i.e., they are of the nature of slicht variations. Accordingly, verification -
of tho quasistatic and quasigeostrophic epproxinmations requires atudy of the
nature of slight atmospherio variations; the following results are obtained,
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Ranid wave motions occur if static and geostrophic equilibrium is dis-
rupted in a certain region of the atmosphere, The resultant waves gre scate
tored, due to which the meteorological fields adjust to one another so that the
atoosphere spprcaches the state of static and ‘geostrophic equilibriun, This
process is called the adaptation of meteorologicel fields, In the linear
theory, the state of the static and geostrophic equilibriua is stationary and
in order to distinguish this stationary state with arbitrery initial deta we.
noed only filter out the rapid wave motions. ' .

The evolution of the adapted fields (i.e,, those close to the state of
static and geostrophic equilibrium) occurs as the result of non-linear eoffects,
viz,, absolute vorticity transfer and entropy. These non-linear effect contine
ually create a tendency toward the destruction of static and geostrophic equi-
1ibriuzr. But here, due to‘the generation and scattering of rapid waves,
sdaptation continually occurs, and the meteorological fields ramain clcse to
the state of static and geostrophic equilibrium (adapted)s The evolution of
the adapted fields is also, strictly speaking, a synontic precess and when
describing it, one nmust consider its cause = the nan-lincar effects - but in
place of a deseription of continually occurring adaptation one mgy substitute
the requirezent that the meteorological fields remain adapted at all times.
This requirezent also provides the basis for the quasistatic and quasigeo-
strophic approximations, .

A. X, Obukhov {1) first suggested the adaptation of meteorclogical f1elds
a3 a methad of verifying the quasigeostrophic arproximation. In so doing, he
exxmined the case of a barotropic atoosphere, Charney [2] made the preliminary

- analysis of the "filtering role® of the quasistatic and quasigeostrophic ep-
‘proximations, I, A, Kibel' [3] and A, S, Yonin (4] desoridbed the processes of

adaptation in a quasistatic baroclinic stmosphere. In this latter work an
invariant was found which 18 a gencralization of the “potential vorticity" for
a quasistatic boroclinic atmosphore and it was established that in oddition to '
the internal gravitational waves investigated in 3}, in a baroclinic atmos-
vhere more rapid "two-dimensional® gravitational waves may occur, vhich are
anslopus to the waves in a barotropic mediuam, '

" The question of tho adaptation of metearological fields to the state of
quasistatic equilibrium and of the filtering role of the quasistatic approxi-
zation had not been studied in sufficiont detail until now, The present work -
aims to fulfill this need and to give the most general farmulntion of the
prodlam of tho adaptation of mcteorolo:dcal fields in a daroclinic atmosphere,




The study of slight atmospheric variations is significant not only for
doseribing the process of adaptation, but it is of independent interest in a
nmber of problems of atmospheric physies, e.g., a certain family of slight
variations is the basic object of study in stmospheric acoustics, Acoustio
variations are of interest for ahoépheric physics since acoustic waves, which

- form in the troposphere, penetrate into the upper layers of the atmosphere and

are absorbed there, can transmit energy from the lower to the upper atmosphere,’
Internal gravitational waves arise, e.g., during the stresnlining of mountains
by an air strean (see the works of Lyra [6) and A, A, Dorodnitsyn (S]).

1, THE BQUATIONS OF SLIGHT A'ﬂDSPHE!IC VAEFATIO)B

Ve will examine the atmosphere as a 1iquid in which ‘processes ocaur poly=~_

tropically with the exponent of polytropy w, In other words, we will consider

that when liquid particles move, the magnitude pp'l/! is preserved in them,
vwheres p and pare pnum and density, In a real atmosphere (outside the )
bounding liyers) the processes occur adiabatically, so that x = 'c.P/c,, which is
oqual to the ratio of the specific heat of air at constant pressure and constad .

‘volune, However, when interpreting certain formulas it will be convenient if -

e can exanine polytropic processes with g arbitrary exponent.

A3 the basic equations of atmospheric dynamics, let us exmine the equa~
tions of motion (disregarding dissipative factors®) ), the equction of contimu~"
ity, and the equation of the polytropic process . ’

- dw - L] : '
Pe—(f e )

4 9 .
f-24.

*) There would be no great difficulties in camputing the dissipative forces,
but the computations would become more wmwieldy. Vhen computing the dissipative
forces in the form of the components vpd, vpdv, and v pb7 in the right-hand
parts of the firet three equations of ?1) (v 18 the viscosity coefficient), a
basic change in the results given below would result in the sppearance of

darping factors &~ % ¥ in the formulas for the sxplitudes of hamonic waves |
with wave number k, . -
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Hore t 13 time, u, v, and w are the velocity components along the axes of
the cartesian coordinates x, y, and z (the z-axis is directed vertically wp=-
) i

ward). 4.2 ,u2 v2owd g5 the synbol of the individual derint.in,
a. at ox 3y o

g the acceleration of gnvity ard ¢ the Coriolis parareter, from now on to be
considered a constant” )

Vie will study slight variations vhich might arise in the atmosphere -
against the background of one of its basic states (whose characteristics will
bo designated by a line over the letters). The features of the slight vari-
ations will, naturslly, derend on the properties of the basic state, In the
present work we will not explain how atmospheric motion in its basio state
affects the nature of slight variations and, in connection with this, we will:
use as the basic state the state of rest vhere pressure P and density § depend
only on 3 and are connscted by the statics equation
g‘:- --gp : (2)

The. relationship between slight veriations amd projerties of basic atmose
pheric motion can be explained in a sépaut.c paper, The conclusions of the
present work relative to small-scalo waves are also applicable in presence of
basic atmospheric motions (vrovided the velocity tield in the basic st.ato does
not contain s-all-scale inhomozeneities),

The distinguishing characteristics of the basic state of the amosphoro
is the tecperature profile ’1’(;), instead ot which it will be convenient to use
the ucnxwdo

e Ruxtl ¢))
4

which has the sanse of the square of the sneed of ‘sound, Let us #1so introduce
a svecial designation for the parancter of thermal stability

") Changes of ¢ with latitudo make possible the arpearance in tae at:osohere

of additional inertial variations - the so-called Rossby wavcs, These waves
are ol intercst only when analzing processes on & synootic scale; ccmouting
them would introduce no essential changes into the results of the prosent work
on gravitational and acoustic variations - they would only make the computations
rore unizieldy, A sufficiently detailed description of Rossby vaves is ¢1vcn,
e.2., in A, K, Isglea's nrny article (7).
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p= (n-l)g+ gd‘-;— - FR(Y.-y) ) -

Hore R is the gas eonsunt. and v, and ¥ aro the -dubauc and the astual,
vertical temperature gradients,

Jinearizing equations (1) with respect to the state of rest we will get
the equations of slight atmospheric variations in the farm

B _3e g
e +""'

0”
'y

*%=--\—L+») | ©
(o.- a.-) ) ‘
—L -—"w—"(a'. + 0'. + 0:!:
where u, v, w, p and p are the characteristics of slight variations (let us

ass\oe for them the sams designations as for the initial meteorological ele-
ments), The parameter )\, equal to unity in the general case, is introduced

vhcrc 80 that in the future 1t will be convenient to trace its influence on the

slight variations of the vertical accelerations of particles, Actually, if we
do rot compute vertical accelerations, i.e., if we describe the slight vari-
ations in the quasistatic anwroximation, we should assume that A —0, .
 There are no difficulties in obtaining the linearized equations (5) frem
_the initial equations (1) except, perhaps, the last of these equations,  Direct
linearization of the last equation of (1) ylelds :

1¢L+"'£' ( +°¢l)

—L-‘. ’+ (“‘ "d’J ' (6)
. Usi.ng oquat.iom (2) - (h) as characteristics of the basic state of the
atmosphere, let us transform the ex.ression in pvrontheuo in the x:lght-lund

part of this last equation as follows:
LY l%p___‘_'_:‘ -H- 7&..

HE T
'.L gt g —p .
Substituting this value in (6) ard omungqpét. ve get the last equa=
tion of (5) by using the fourth equation of system (5). '

In the future it will be convenient to intrcduce the new unknown magni-

or

- tudes 9, y, and x instead of the velocity 'eonpomnto 9, vad w, ut.t.ing

O
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The relationships

BepBrany Jo-dasy . 0 (8)

2 2
where 4 = %0—67 is the symbol for the tw-dimensional Laplace operator,
ax® oy : ’ .
showy that the velocity potential ¢ and the stream function y are determined by
plane divergence and the vertical oomponent of the relative vorticity of the
velocity field, resvectively. The magnitude y has the sense of the vertical

" strean of mass,

Differentiating the £irst equation of system (S) with respect to x and
the sacond with respect to y and adding the results we get

3¢
A — “ 3
Frod v=-0 .
-Analozously, differentiating the second equation of system (S) with ree

spect to x and subtracting the first equation, differentiated with respect to

. ¥, We got

oV
b3t e
Under the natural requireuent that functions ¢ v, and p be regular to
infinity, the sign of the Laplace operator in the last two equations can be
elininated, In additicn, using the designations of (7) in the last thres
oqnatioru of (5) we ma rewrite equations (s) in the fora
’ . . —r- - —l"

-%-w-m _
3 . sag—py~ak, ' (9)
- =(%+ o).
Tm—se—3 '
The equations of slight variations will be most convenient .m this foru

for subsequont anolysis, ‘e will study the solution of these oquntiom using

arbitrary mun-a.p.. “Then .
b0 ¢ ate(eyis) pmoolz,p8) g~ Ly, )
) ke (Z 0. 3) pespuis,y, 1) (10)

v




Since the system of equation- (9) contains derivatives with respect to s
arc ‘s of the s¢ 'nd z-order, two boundary conditions with respect to s must be
fomulated to solve it, The natursl boundary comiitions are

x=0(s=0), g=+0(s—ew). T ()
The first of these conditions is cbvious, The second indicates that the

- vertical stream of mass should revert to zero at the lower 'bonnduy of the"

at.:osphcro )
‘2, THE STATIONMRY SOLU‘I'ION 0 THE INVARIANT

Equations (9) have a certain family of stationary ‘solutions Voo 9 Pgo

. *s’ and pg. For each of the stationary soluuons the following relationships

are fulfilled . .
) -'0‘ %, =0, p.nl’.. p.--——-;-. . . Q2)
so that atationary motions are horirontal and non-divergent and the formulas
of geostrophic wind and -the suuca equations
"'-—"T' '.--'--‘;'—. —E'—y-—;p.. : (13)
sre anplicable to them. <t

Obvicusly, each such solution describes a certain stationar;, horizental
vortici ty motion, From (12) it is evident that each stationary =lution can bo
deternined completely by assimning one function y,(x, Y, t)e

It is not haxd to see that any solution for which ¢ = 0 is stationary,
hotually, if 9 =0, it follows from the first t7o equations of (9) that v and
p are not functions of t (and are connected by the relationship p = &y). Then
the third equation of (9) assuzes the forn ) i ;

zhf -
‘c e Px=0

and the solution of x for this equation with boundary conditions (11) is
identical with zero, Fran the last two equations of (9) it follows that p is

- ot & function of ¢ and is connected uith p by the relationship

B

*) The question of the formulaticn of the condition at infinity deserves-a more
dotailed examination, Let us note that when anulyzing wave orocesses it turns'
out that the condition pw —0 is too weak and should be replaced by the ﬂ.ronalr
condition w|/p—0 when s =00,

e e Gt
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The solution of equations (9) vith inftial data (10) will be stationary

when, and only when, these initial date ocatisfy the relaumship
P00, pEml, pm— ot ()

It follows from (12) that this comdition is necessary., To show that it
suffices, le. us differentiate the second ami fourth equations of system (9)
¥ith respect to t ard in the first part of the obtained equations e.xlude the
darivatives dy/d%t, 3p/d0t and 3p/dt, using the remaining equations of (9). As a

result wo get the following systms of fourth-order time equations for ¢ and ys
(G + e But e+,

(15)
AL w2 (g + ot 09) +5 (T + b9),
The solutions of ¢ and y for these equations with identical boundary con-
ditions (11) ia determined ccmpletely by the following m%t.ial data, hen
=0 9= .&'-‘*'_Ph %=L )"?l‘-— —+‘P‘) 16)
“hen conditions (1) are fulfilled, these initial data revert to zero and

-consequently, equations (15) have only the trivial solution ¢ = 0 and x = O,

but from the condition ¢ = 0 it follows that the solution of equations (9) 4m

this case will be atationary, - ' ’
If the initial data (10) do not satisfy relationships (1L), the solution

of equations (9) with these initial dsta can be represented in thne forn of the

sua of the stationary solution which can be determined by some function v,

and of the non-stationary solution of V', o/, p', x', #nd p' vhich setisfies

the initial data. Vhen ¢ s
: S 0:  wmdo—9u 9—9.. p'-p.—lé.. L=

' —'.+ — i (17)
In order to find the function vs Which detemines the stat.ionary solution

in this case, we may use tho fact that equations (9) allew an invariant, i.e.,
scne expression vhioh does not chango with time and which is a linear function

of the unknom functions v, 9, D, X, and p’). Let us use the followring method

to find this invariant. let us introduce tezporarily the new notations for the
unknovm functions e

«) .
) Let us note that equations (9) also pemit a cer‘ain integral invarisnt

vhich is quadratic with resncct to the unknown functions (the energy integral),

fctually, using equations (5) ve can convince ourselves that the following

equality holdss -
Phw 1 &
LA Lo ) (4 ).
froa which it follows that the magnit.udo ) [footnote continued next .page)
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3J;/8t should equal '

DR St 28 [had 1B [ha 78 Dok 00 Aol . (18)
and write equations (9) in the form .
L] .
L \]
—‘-v.- - '2.:4“y. (‘ - ’. 2. sen '5). L (19)
vhere i iy are, goneullyvspcakinz, the differentisl operators
(0 =i S0 0 0
: 0 -t 0 0
A 0 =4 0 —p—ad o
Lo e is e (20)
‘ 0 0 % 0 -1
. :
0 -—a 0 vy 0
Ve will seck t.ho {invariant in the ta-n ’
Jy=- 2}'{1%- . ) » (21)

whore vy generally spuking are linsar operators 1ndﬂpcndont of tize t. Sano

.
. ‘—;3-)1'{15‘;! = .21'1‘4‘. y,-O

the operatorl R4 satisly the aysten of equations
211.&:!!0 : t - (22)

" connected with the aystea -

. .
thlyl -0,

A=)
vhich deternines the stationary solution ¥y = (yq)g.

It is easy to solve equations (22) with respect to the operators y; in the
given case, From ‘the structure of the first and fifth columns of matrix (20)
it is evident that we ehould set v, ® vy " 0. In this case, the equatién ob-
tained using the third column is identically satisfied,  Thus, only the

45 -S.a g}{‘. Q.L'.;L'l + f}- [r'+ ':- - 0‘0)‘]}“ fv

is irdependent of time, if the total work of the pressure forces on the sides
of a cylirdrical container of base S$ is equal to zero. The expression in the
braces is the density of the complete energy of the disturbances, and the

- second component in this expression is the density of potential energy. Thus,

if the complete onergy of the ont.ire field of disturbances is finito, it dou
not change with time, .
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opcrators vy, Y3, and yg may differ fran zero., For these oporators, using the
second and fourth columns of matrix (20), we get the equations
WHnd +08=0, n(p+e ) +ng =0
Setting yy = & and seeking y3 and Yg in the form of linear functions of
the operator 3/3z, ve get '
T “ , . 10"'-";;“;'."‘1'
Substituting those values of the operators y; in (21) and retwrning to
the old variablos, ‘we get the following invariants
Sim bl g, (23)
This invariant can be called the potential vorticity {1, Lj. let us note
that froc the third and fifth oqmt.ions of (9) we get the cq\nuty
[ arp—cp=—p
“Iriting this equality with z » O and remembering, according to (11), that
the magnitude x reverts to zero vhen z = 0, we get the additional invariant
Jy='pt ="', (24)
where the asterisks indicate values of the functions vhen z = 0, Let us note
that Jl and J2 do not contain the parameter A\, i.,e., they do not changc form
vhen trarsferring to a quasistatic approximation, -
let us exacine the case where the initial conditions (10) satisfy con-
ditions (L) everyvhere with the exception of a certain limited region of
space V. The non-statiocnary commonent of the solution of equations (9) under
these initial conditions will be of the nature of waves, propagating with a
certain finite velocity from region V, and the entire energy of these waves
vill be finite. Since this energy will be propagated throughout an ever in-
creasing volume, the values of fu:nctions v*, ¢', p', x' and ', vnich describe
the non-stationary conponent, will tend tovard zero When t approaches 1nt&rﬁ.ty,
at every fixed point in space, and in this casc a complete solution 81‘ equa~
tions (9) will tend toward their stationary component, From this it follows

. that the invariants Jl and Jp will coincide with their values for the station-

ary components of the solution ard accordingly, for the non-stationary come
ponent, thase invariants are equal to zero. The solutions of equations (9) for
vhich J; £ J, & 0 will be cangd vave solutions,

Thus, the solution of equations (9) with arbitrary initial data (10) can
be represented in the form of a sum a) of the stationary solution, for which
the invariants J; and J, are determined accarding to the initial dats, and b)
of the wave solution which satisfies the initial conditions (17). It remains
only to show how we find the function v, which determines the stationary

SUNTW T
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solution, knowing the values of the invariants Jy and Joe For this, let us
express Jl. ard Jp by Vv, using formulas ( 12) Here we get

Canr E(S e )= R o
o e (26

Thus, the function y, can be found as the solution of an inhomogeneous
elliptical equation (25) with the ixihomocmem boundary condition (26) (as
the second boundary condition it is sufficient to require that Vg be limited
as 3 approaches infinity). In order to avoid inhomogeneity in the boundary
condition here, we miy write the invariants Jy and Jp in a single integral

forw, Thus, let us examine the x‘onowing eomposito invariant : -

Pl Sl,dx+---l.+’—§“'§l.dz-

)
S(Aq- ) ds — -—Slt ’—';-S-! S(Aq.- l,,)'.u] ds.

This invariant is the integral form of the potent.ial vorticity.

In the quasistatic approximation, by excluding the magnitude pe = i g!;.
4

from expression (27) and by switching fron the integration vu-.Labh s to the’

new variable ¥ = 5/5". we can give (27) in the t°mTEXT NOT REPRODU
' ol v N A .
@oaliyeefislyaig, o
| where p : S . - |
' B N el L _“._"'("__-‘*).T ' :
AR A . (29)

is the non-dimensional stability parameter. A, S, tonin (U] found t.ha 1.n-

variant (28) for a quasistatic baroclinic atmosphero.

Depressing invariant (27) by Vg using formulas (12), and setting v,/5 =
‘V we get the tonuv'mg equaticn with respect t.o‘]ls

) Reolacing in this egquation the zmagnitude ez/g by its zean value in the
teposphere, the cz:c:e:-.ts Tith the Frevious derivatives can te written in

22 3 v
the form &y, * ‘—ﬁ- = —2, fron vhich it 1s evident that the Gharacteristic

scales of t.he synoptic processes along the vertical and the horitonzal are
most naturally determined such that t.mr ratio is o¢//fig , which is .ppw:s-
mately one one-hundredth,

" Y
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' 3 H - - .
al\ vaz 4 !_','-f': X% d:) N MV ‘.ﬁ.‘} .
(} 1 5 R e il (30)
vhere tho right side can be determined from the initial data, using formula
(27). The solution of this equation (in thc case a2 35 const) is given .in [4), -
Voo : .
! )

. : 3. - THE VAVE SOLUTION

AMter finding the function yg which determines the stationary solution,
from initial conditinns (10) e can separate the part [the initial conditions
(17}] which determines the wave solution, ‘hen finding this solution, one of
equations (9) can be replaced by the condition that the potential -verticity
(27) be equal to zero, so that the equations which describe the wave solution
are fourth-order time equations, In principle, these equations make it pos-
sible to express V', p', and p' by ¢ and ¥, without integrating with respeot
to tize, while the magnitudes ¢ and x are deterained from equations (15) with
initial corditions (16), not containing function Vge Therefore, it is not
necessary to know the stationary solution to find the wave soluticn,

Since the coefficients of equations (15) are independent of x, y ard ¢,

‘these equstions have partial solutions in the form of ‘barmondc waves with

azplitudes vhich are functions of 2 . .
elz, ¥, 3, ) - (D(;)g‘(l.ﬂl-u--cu.. _

T (@ e ) = X (5) ebartun, - (1)

vihere k) and ky are the horizontal wave mmbers vhich can be arbitrary, and o
the {requencies to te deternined, Since the dvnamic equations which we are
excmining are linear, and we are not considering either the influx or dissi-
pation of erergy in them, the encrcy of waves of type ('31') cannot ch'ange with
time, Accordingly, frequencies ¢ must be real, . '

The solution of equations (15) vith arbitrary initial data can be repre-
gsented in the form of the suoerposition of elementary wave solutions (31) with
all possidble values of kl and ko, Therefore, the explanation of the nature of
the elementary vaves (31) makes it possible to draw definito conclusions as to
;ho nature of any wave solution of the examined equitions of hydrodynamics.

In order to study waves (31) we have only to find their amplitudes R(z) ard
X(z) and determine the frequencies o (4.e.,, find the frequency spectrunm of the
olezentary wave asclutions). Substituting functions (31) in equations (15) we
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got the tollowing equations for aaplitudes 9(z) and x(z):
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- Let us note first that these equations have -a non-trivial partial solution
in vhich X & 0 (since this solution satisfies tho boundary conditions it has
a physical significance), The first equation of (32) shows that the frequen-
cics ccarresponding to this solution are determined by the farmula

: o =Pttt S ¢ 1)

According to the second equation of (32) the mputudo B(s) should ntiary
the oqmtion 7 +50 w0,

so that it has the fom ’
8
. Nl

0(:)-0‘4.‘5 ? oGy (34)

7vidently, the waves corresponding to this solution embrace the entire
atzosphere at once, propagate only horizontally and do not.cause vertical
variations of air particles, In the quasistatic approximation (A = 0), these
waves retain their form, The zaxinum group velocity of motion of packets of
similar waves (the velocity of the front of the wave) is equal to the speed of
sound ¢, The indicated waves are comletely analogous to the waves in a quasi-
static barotropic atmosphere studied by A, 1. Tbukhov {1] when he examined the
questicn of the adaptation of hydrockyna:r.ic fields, Such waves were singled
out by A, S, Monin [L) for the case of a quasistatic baroclinic atmosphere,
In the future, we will call these waves two-dimensional,

Turning to a study of the solutions for which X & 0, for purposes of sim-
plifying the computations we will lirit ourselves to an examination of the case
where the coefficients ¢2 ard § ip equaticns (32) can be considered constant
(this condition 48 accurate for an isothermal atmosphere in which 0% = xgH and
p = (x=1)g, where H = pn/gpe is the height of the unifom atmosphere], In this
case, each of the functions 2 and X eatiaties the tollowing equation, which

stems fram (32) ” "
A s LS
‘This equation has a partial solution in the fom [exp (=L*in)z], where
N and m are real nusbers, . Substituting this function in (35), we get
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.Re:.ez.benng that o is real and equating the imaginary part of the obtained

equality to zero, we got M e (8+g)/202. Using this result and equating the
real part of the equality to zero, we get the following relationship:

(.--m{w- [ﬁ'ﬂ' + o)} - ke, (36)

ﬂ_‘.
Lot. us note that nmcuonu . and x ot the form
UL iy me—en
X~ s . (37

correspord to the examined partial soclution of equation (35), i.e., plane hare

. monic waves with horizontal wave numbers k) and ky and & vertical wave mmber .

B, whkse amplitudes decrease exponentially with height. These wave. have
physical simificmco only when m ¥ 0, since when m = 0, no combination of
such vaves satisfies the boundary condition x— 0 (2—343). Accordingly, the
prepagation rate of such waves always has a vertic:l component, i.e., these
waves are essentially three-dimensional. Ve will call such waves internal
waves,

Internal waves with any wave nuzbers can enter into the solution of the
Cauchy problen for equations (15) with arbitrary initial data, Therefore, in
(36) the magnitudes k and m must be considered arbitrary and then (36) is an
equstion vi th respect to g lloting that the left-hand part of equality (36)
is not negative and consideri t.hat.

i Y P

ve can easily convince ourselves that t.he roots of ¢2 in equation (36) can be
found only within the intervals - .

P lﬁ. .c>!?+l)" . (38)
vhereupan (due to t.he fact that the roots of g are continuous functions of k2
and nz), all points of these intervals are possible frequencies of internal
waves, Thus, to farilies of intemal waves can occur in the atmospherec, i.e., -
waves with frequencies from the first or from the second interval of (38)e To
aralyze the nature of these waves, let us write the solutions of equation (36)
ror the square of the freqiency o2 in the forn .

Ao+ 5 + 4 ()]
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't" [‘ +- l' + by + l l“:' ]x (39)
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where L = c¢/¢ is the characteristis scale of the horizeatal movements of a
ccopressible medium in a Coriolis force field, first introduced in [1]'.-

From (39) it is evident. that the influence of the Coriolis force is
essential only with very small horizontal wave nuxbers k (1.e., for waves
whose horizontal scales are not small cocpared with L). In order to exphin
the nature of waves with frequencies % and o,, let us first digress from the
offect of the Coriolis force (i.e., let us sot &« O and accordingly, L = o).
Let us assume that A » 1 and examine the isothermal atmosphere in which ¢ =

‘e xgH and § = (x=1)g, Here famulas (39) assume the form

x L&
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Let us remesber that we are examining polytropic processes during which
the magnitude pp~1/% is retained in liquid ‘particles.. In particular, when

"% = 00, the value retained will be density g, so that this case ebrresponda to

a mn-cosz;essiblc modiuz, ihen x —vo0, &1l frequencies g, revert to infinity,
1.0,, the waves with these frequcrcies disaprear, But.in a noa-coupressible
medium, only variations with frequencies 3‘ pay arise, determined from (LO) -

* within the boundary x — 00

i - (k1)

. Btmt+ O
Ment.ly,' staves with these frequencies are intemal gravitational waves,
A description of them can be found, e.g., in Prandtl’s book [8]. f-\zrt.her,
vhen x = 1, the value which is maintained will be temperature, so that this

. case corresponds to isothermal processes, with respect to which isothermal

stratification is neutral, ‘Mhen x —jl1, all frequencies og revert to zero, so
that variations with these frequencies disappear (they convert into stationary
vorticity motions). Thus, with isothermal processes in an isothermal medium,
only variations with Lfrequencies o‘ nay occur, vwhich can be detemined from
(Lo) within the limit x——ls .
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Evidently, waves with these frequencies are acoustic, An analogous dis-
cussion shoss that two-dimensional waves with frequencies (33) aro acoustie,

Returning to the case of adiabatic processes during which x 2214, we may
conclude that the frequencies o, dotermined by formulas (hO) correspond to
ecoustic waves, distorted due to the absence of isothurty in neutral strate
ification, while frequencies o correspond to gravitational waves distorted
because of the compressibility of the air, ' An analogous {nterpretaticn can be
applied to waves correspording to frequencies (39) and containing an additional

‘distortion due to the effect of the Coriolis force,

Assuming A = 1 in formulas (39) :nd making use of the fact that with suf-
ficiently large k ard m, the subtrahend under the radical in these formulas is
szall (so that we may assume approximstely that 4/ 1-2%1- -;-'), we get the
following spproximate formulas (vhich are the more accurate, the larger are k

m n)g - .:gc'[k'+2.—+m'+(z£7‘).]>%ﬂ'

[ B .
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The inequalities shown here for oi ard a: are strict with any k and n,
Thus, vwaves with frequencies from the first interval of (38) are gravitational,
those {rom the second interval ard acoustic, In the case of an isothemal
atmosphere, -setting k = 1.4 and H « 8 kn, we get the following numerical ine-
Gualities for the periods of acoustic and gravitational waves: -

Tom i: < 300 sec ; T,--f-:->330uc

In an atmosphere in which temperature drop; with height, the interval
betveen T, ard ‘l‘g increases, -

The frequencies of slight variations, possible when using the quasistatic
arproximation, are obtained fron frequencies (39) within the lianit A =0,
Using this limited transition, all frequencies og revert to infinity, i.e,,
the internal scoustic waves are completely filtered out. Here the group ve-
locity of the vertical propagation of packets of internal acoustic waves
daa/dﬂ also reverts to infinity, so thst in the quasistatic approxization the
propagation rate of disturbarces along the vertical appears infinitely.large,
\Then the quasistatic spproximation is used, the only internal waves possidle
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are the gravitational ones whose rroq;a_oncies are determined by the formula

. By @ . .
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Comparing this formula with the corresponding formula (h3), we see that
the frequencies of gravitational waves in the quasistatic aprroximation are

too high, and they are the greater, the larger the horizontal wave number k; -

however, for the case k { a (long waves), this change of ¢ remains insignifi-
cu_zt.. .
Surming up the results of this malysis, we see that the slight variations
which can occur in the atmosphere with arbitrary initial data break down into .
three classes: two-dimensional waves, internal acoustic waves and internal
gravitational waves, T

The role of the quasistatic approximstion basically reduces to the fil-’
tering out of internal acoustic waves (a secondary eftoqt is a certain dis-
tortion of intemnal gravitational waves). Therefore, when the internal acous-
tic waves, which arise due to the disruption of static equilibrium & the ’
initial moament of time in a certain regién of space V, scatter, we may consider
that the atmosphere has basically already adjusted itself to the state of
static equilibrium, The tizme of adaptation to the state of static equilibrium
43 of tho same order of magnitude as the time it takes for the front of the -
internal acoustic waves to traverse the main part of the atmosphere. Since
this frent moses at the speed of sound ¢, the indicated time is only several
aimutes (in one minute a sound wave traverses a layer 20 km thick)., After
static equilibrium has been attained, the process of the sdaptation of the
atnosphere to the state of geostrophic equilibrium continues, vhereupon, on an
average, such a state is estadblished throughout the sctmosphere after the
scattoring of two-dimensional waves, while somewhat later, after the scattering
of slow (see [4]) internal gravitational waves, geostrophic equilibrium is es~
tablished at all altitudes, The rate of this latter process depends essen-
tially on atmospheric stratification, .
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