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SLI~a ~ W~1.1 NS iI)' T4Z 06VT'~ATION

OF )L.TLOROLOGIC.'L FlELLS
by ,

A. S. 11onin and A. U. Obukhov

K On the basis of the solution of the problem of sliCht vari-
ations in a baroclinio atmosphere, a general classification
of the main types of dynamic processes in the atmosphere"
(horizontal vorticity notions and gravitational and acoustic.
waves) is given. The work also gives the general form of
the invariant, with which the critical stationary state of
the atmosphere can be computed using arbitrary initial data,
without analyalng the wave processes uhich cause reor•ani-
mation of the fields. The "filtering" role of the quasi-
static apraoximation is ex0laineds it "filters outm internal
acoustic waves and somer.ht overrates the frequencies of
gravitational-waves. In particular, it is shown that only
several minutes are required to establish quauistptic equi-
librium in the atmosphere.

As is known, the complete systes of the equations of atmospher•c hydro-

dynamics is a time system of the fifth-order (it contains derivatives of three

components of velocity# pres'•re, e@.a densitywith respect to time). Accord-
ingly, in order to solve the Cauchy problem for this s;*stam of equations one

must know, at the initial moment of time, the rields at five meteorological
elements. l7ith arbitrary initial data, .motions developing in the atmosphere

can be separated into relatively slai ones (synoptic) and rapid ones (wave)..

The consideration of rapid wave notions es*entially complicates the analysi

of synoptio processes. Therefore, %tem investigating syptLc processes, the

equations of atmospheric hydrodynamics are simplified so that the ,implified

equations will give an adequate enough description or the synoptic pocesses,
but wil not contain rapid wave motions among their solutions. %aach approxi-

* ,mations (qasistatic and quasig~eostrophic ar.,proximations) lead to dynamic

equations of the first time order, so that to describe Vhe evolution of synop.J

tic processes one need know the initial field of only one meteorological ele-

sent (e.g., pressure or a stream function). The order of the dynamics equa-

tions is reduced (from fifth to first) through the exclusion - "filtering out"-
of certain solutions- of the initial system of egiations (actually, rapid wave

motions) by the above-mentioned simplifications. To prove the validity of such

simplifications one must explain the nature of rapid wave motions.
Under actual conditions, rapid wave processes occur with small amplitudes

I.e., they are of the nature of slight variations. Accordingly, verification

of the quasistatic and quasigeostrophic approximations requires study of the

nature of slight atmospheric variations; the following results are obtained,--- 0 S U-,
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Ranid wave motions occur If static and geostrophia equilibrium is dim-

rupted In a certain region of the atmosphere. The resultant waves ar seat-

tored, due to which the meteorological fields adjust to one another so that the

atmosphere approaches the state of static and' eostrophic equilibrium. Ths

process is called the adaptation of meteorological fields* In the linear

theory, the state of the static and geostrophie equilibrium is stationary and

in order to distinguish this stationarl7 state with arbitrary initial data we

need only filter out the rapid wave motions.

The evolution of the adapted fields (i.e., those close to the state of

static and geostrophic equilibrium) occurs as the result of non-linear effeots,

viz., absolute vorticity transfer and entropy. These non-linear effect oontio-

ually create a tendency toward the destruction of static and geostrophi equi-

librium. But here, due to the generation And scattering of rapid waves,

adaptation continually occwur and the meteorological fields ranain olose to

the state of static and geostrophic equilibrium (adapted). The evolution of

the adapted fields is also, strictly upeaking, a synontic prcess and when

describing it, one must consider its cause - the non-linear effects - but in

place of a description of continually occurring adantation one mW substitute

the requirement that the meteorological fields remain adapted at all times.

This requirement also provides the basis for the quasistatic and quasigeo-

strophic approxmmations.
A. X. Obukhov [1) first suggested the adaptation of meteorological fields

0as a method of verifying the quasigeostrophic arproximation. In so doing, he

eximiied the case of a barotropie atmosphere. Charney [2' made the preliminary

analysis of the "filtering role" of the quasistatic and quasigeostrophic op-

pro.mations. I. A. Kibel' [13 and A. S. I;ornn [4] described the processe" of

adaotation in a quasistatic baroclinic atmosphere. In this latter work an

invariant was found which is a gencralization of the "potential vorticityu for

a quasistatic baroolinic atmosphore and it was established that in oddition to

the internal gravitational waves investigated in (3), in a baroclinic at=-'-

phere more rapid "two-dimensional" gravitational waves ma occur, uhich are
analotpus to the waves in a barotropic medium.

The question of the adaptation of meteorolocical fields to the state of

quasiatatic equilibrium and of the filterine role of the quasistatic approxi-

mation had not been studied in sufficient detail until nuot. The present work

aims to fu=fl this need and to give the most general frmaulntion of the"

problem of the adaptation of mateorolo.•cal fields in a baroclinic atmosperee.
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,he study of slight atmospheric variatio'ns is significant not only for

describing the process of adaptation, but it is of independent interest in a
number of problems of atmospheric physics, e.g., a certain family of slight

variations is the basic object of study in atmospheric acoustics. Acoustic

variations arn of interest for atmospheric physics since acoustic waves, which

form in the troposphere, penetrate into the upper layers of the atmosphere and

are absorbed there, can transamit enery from the lower to the upper atmosphere.
Internal gavitational waves arise, e.g., during the streamlining of mountains

by an air stream (see the works of Lyra [6) and A. A. Dorodzitsyn (]).

1. THE WUATIONS OF SLIGHT ATIDSHERC VARIATIONS

17e will esamine the atmosphere as a liquid in which -processes occur poly-.

tropically with the exponent of polytropy x. In other words, we will consider

that when liquid particles move, the magnitude p-l/x is preserved in them

where p and p are pressure and density. In a real atmosphere (outside the

bounding lwers) the processes occur adiabatically, so that x - 9plw, which is

equal to the ratio of the specific heat of air at constant pressure and eonsta

volume. However, when interpreting certain formulas it will be convenient it

we can examine polytropic processes with ar, arbitrary exponent.

As the basic equatione of atmospheric dynamics, let us examine the equa-

tions of motion (disregarding dissipative factore*)), the equaptim of contire-

Itand the equation of the polytropic process

+P +

There would be no great difficulties in computing the dissipative forces,
but the computations would become more unwieldy. Yen computing the dissipative
forces in the form of the components Ap, vp&S, and v in the right-hand
parts of the first three equations of (1) (v Us the viscosity coefficient), a
basic change in the results given below would result in the appearance of

damping factors e in the formulas for the plitudes of hamon=i waves
with wave namber k.

C ll .. I



Here t La time, u, v, and w are the velocity components along the axes of

the cartesi.%n coordinates x, y, and a (the s-axis is directed vertically up-

ward). -L. a + .u- +v - +w!. is the symbol of the individual derivative,
o. ot ax ay as

c the acceleration of gravity and 9 the Coriolis 1arar.eter, from now on to be

considered a constant').
Wae vil stu4 slight variations which might arise in the atmosphere

atainst the background of one of its basic states (whose characteristics wil

be designated by a line aver the letters). The features of the slight varl-

ations will, naturally, depend on the properties of the basic state. In the

present work we will not explain how atmospheric motion in its basic state

affects the nature of sliht variations and, in connection with this, we will

use as the basic state the state of rest where pressure a and density • depean

waly on a and are oonneated by the statics equation

d;
ds gp(2)

The. relationship between slight veriations and prop)erties of basic atmos-

pheric motion can be explained in a soparate paper. The conclusions of the

present work relative to small-scale raves are also applicable in presence of

basic atmospheric motions (urovidod the velocity field in the basic state does

Q not contain r-.a]-scale inhomoeoeneities).

The distinaaishine characteristics of the basic state of the atmosphere

is the teLperature profile 7(s), instead of which it will be convenient to use

the magnitude

which has the scnse of the square of the speel of sound. Let us Plso Introduce

a soecial desirnation for the parameter of thermal stability

Chanees of 4 with latitude maike possible the arpearance in the at•osrwere
of additional inertial variations - the so-called Rossby wVavCs. Those waves
are oC intercst only when anal•zirZ..rocesses on a synootic scale; comnn.ting
the- would introduce no essential changes into the results of the present riork
on Cravitational and acoustic variations - they would only make the computation
more unwieldy. A sufficiently detailed description of Rossby waves iS given,,
e.g., in A. M. laglo,'s survey article (7).

(
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Here R is the•ps constant nd ya and yT are the adisbatio and the aotual.

vertical temperature gradients,

Linearizing equations (1) with respect to the state of rest we will get

the equations of slight atmospheric variations in the fam

401p. +i

*V 
+

where u, vY w, p and p are the characteristics -o slight variations (lot us

&ams e for them the saw designations as for the initial meteorological ele-

ments). The parameter 1, equal to unity in te general case, is introduced

hero so that in the future it will be convenient to trace 'Its influence on the

slight variations of the vertical accelerations of particles. Actually, if we

do rot compute vertical accelerations, i.e., if rte'describe the slight'vari-

ations in the quasistatic annroxdmation, we should ass3= that X-40,

There are no difficulties in obtaining the linearized equations ()from
the initial equations (1) except, perhaps, the last of these equations. Direct

linearization of the last equation of (1) yields
ap do

-ol 1; '- ,,;. (6)
S Using equations (2) - (4s) as characteristics of the basic state of the

atmosphere, let us transform the ex.oression in perentheses In the right4hand

Rant of this last equation as follows$

de

Substituting this value in (6) ard eliminatingfrpt, we get the last-equa-

In the future it will be convenient to introduce the nmi unknown sagni-

tudes v, t, and -X instead of the velocity components u, v ada w, settin
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The relationships

+ (8)
a2 az

where A _.+ *-' is the symbol for the tm-diiensional Laplace operator,

show that the velocity potential 4 and the stream function $ are determined by

plane divergence and the vertical component of the relative vorticity o the

velocity field, resoectively. The mapitude X has the sense of the vertcAal

stream of mass.

Differentiatinc the first equation of systm (5) with respect to x an

the second with respect to y and adcing the results we get

A -"= SA. -p

at

Analogously, differentiating the second equation or system () ith re-

spect to x and subtracting the first equation, differentiated with respect to

70 we get

at

__C Under the natural requirewent that functions 0, V, and p be regular to

infinity, the sipn of the Laplace operator in the last two equations can be

eliminated. In additLon, using the designations of (7) in the last three

equations of (5) we ma-. rewrite equations (5) in the form

The equations of slight variations will be most convenient in this fonm

for subsequent. analysis. We will study the solution of these equation using

arbitraly Initialdata. Then!0: (a. Vn.( ); 9--I(#, ,s); * ,,

"• ' (z'.'); p".(,y,,().(0)
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Since the system of equation- (9) contains derivatives Irith respect tU a 1
anr '3 of the st -nd z-order, two boundary conditions with respect to a must be

formulated to solve it. The naturol boundai'y corriitions are

The first of these conditions is obvious. The second indicates that the

* vertical stream of mass should revert to zero at the lower boundary of the-

,taosphre).

2. T• RTATTOMAY SOUMM'N IND THE IM2VAM,=T

Equations (9) have a certain fami•y of stationary solutions t,, O, pop

SXs and P . Far each of thp stationary solutions the following relationships

are fulfilledof
tOM-o. X.mO, p.*M4.. P.M-i--,. (12)

so that stationary motions are horizontal and non-divergent and the fomulas

of geostrophic wind and -the statics equationsI--• -*P. ' DP" . T -* ."(•

are aYp1±cable to them.

Obviously, each such solution describes a certain stationaw,, horizontal

vortic. motion. From (12) it is evident that each st.tionary swlution can be

determined completely by assi-ning one function *5 (xr i, a).

It is not hard to see that any solution for which 9 W 0 is stationar.,

Actually, if 9 r. 0, it follo.s from the first tao equations of (9) that 4 and

p are snot functions of t (and are connected by the relationship p 9 #4). Then

the third equation of (9) assuMes the form

G2 0Xi~

and the solution of X for this equation with boundary conditions (11) Is

identical with zero. From the last tWO equations of (9) it follows that p is

not a function of t and is connected i-th p by the relationship

Up. -. jp

The question of the formulation of the condition at infinity deserves-a more

detailed exmination. Let us note that when analyzing wave -,rooesses it turns,
out that the oandition -4-0 Is too weak and should be replaced bx the stronrw
condition wL/V-vO when s-4so.

0 +P_ + . . . .ll . . .. I _ , I +
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Mho solution of equations (9) vdith initial data (10)'will be stationary

irhcn, and only when, these initial dato satisfy the relationship

It follOws from (12) that this condition is necessary. To showy that it

suffices, lob us differentiate the second and fourth equations of system (9)

•r1th respect to t and in the first part of the obtained equations e.o0lude the

aerivatives adc/a%, ap/at and ap/at, using the remaining equations of (9). As a

result we Cet the following cystCMs of fourth-order time equations for 9 and XsWAO + P) P tca + CIA?az
i's "6, \Ox + C a I j+C a

The solutions of 0 and X for these equations with identical boundary oon'-

ditions (l1) is determined ccmpletely by the follov.ing initial data. "hen

0rn: Pa.. x + Spa)- (16)
"-1en conditions (14) are fulfilled, these initial data revert to ;ero and

-consequently, equations (15) have only the trivial solution ( r- 0 and X a 0,

but from the condition 9 a 0 it follows that the solution of equations (9) In

this case will be stationary.

If the initial data (10) do not satisfy relationships (24), the solution
of equations (9) with these initial dat, can be represented in the form of the
s= of the stationary solution which can be determined by come function s

and of the non-stationary solution of *1,4 1 p , 1. and, po which s13tsfies
the initial data. When

,•. (17)

In order to find the functicn ,s which determines the stationary solution

in this case, we may use the fact that equations (9) allow an invariant, i.e.,

scme exprossion whioh does not chanso with time and which is a linear function

of the unknown functions *, 9, p, X. and p). Let us use the follo.ving method

to find this invariant. I et us introduce temporarily the nei notations for the

unknown functions

*)'Let us note that equations (9) also permit a cer*ain integral invariant

which is quadratic with res)cct to the unkno'in functions (the energy integral).
Iotually, using equations (5) re can convince ourselves that the following
equality holds:. -

from which it fellows that the magnitude (footnote continued next .page]



and write equations (9) in the form
!!'. - ý..y4 (1t 2... 95)9

where Ak -are, generally speaking, the differential operators
'0 -- 1 0 0 0

7 0 -t e0 0

0 -iOA e --ee o o
stuc e oto (20)

c oln on identcall oaifid Ths,- ny

0 -- 0 +• "

tett wo ft seek the irvarecaot-hin the fe a

uhere yi, generally speaking, are linear operators indspendent of time t. Sim*
WJl/t should eaual

the operators yxse oatisfr the systel of equattons

tee ire.f d of io(22)
-- +connected with the M•stm

which determines the! stationary solution yj - (yi)s"

It is easy to solve equations ('22) vith respect to the operators yi in the

given case. From the structure of the first and fifth columns of matrix (20)

it is evident that we should set y2 - Y4 * O. In this c *ase, the equati6n Ob-

tained using the third column is identicalIV, satisfied.. Thus, only the

,,,,.,[, +V we:
is independent of time, if the total work of the pressure forces on the aides
of a cylindrical container of base S is equal to zero. The expression in the
braces is the density of the conplets energy of the disturb~nces, arxd the
second component in this expression is the density of potential energy. Thus,
i the corplate energy of the entire field of disturbances is finite, it does
not change with tins,



10

opcrat~ors yl, Y3, and y5 may differ frao zero. For those operators, using the

second and fourth columns of matrix (20), we get the equations

III.,,TIC,& +T4.- 0o.
Setting y' j A and seeking y3 and YS in the form of linear functions of

the operator a/az. we 'get"

%bstitUtiMg these values of the operators yj in (21) and returning to

the old variables, we Cot the following invariant,
as : - (23)

This invariant can be called the potential vorticit•y (1. 4). Lot us note

that from the third and fifth equati ons of (9) we goet the. equal Ity

"*'ritLn this equality with z 0 and rememberinC, according to (11), that

the Magnitude X reverts to zero when z - 0, we get the additional invariant
7, -W• - ="e. (24)

where the asterisks indicate values of the functions when z - 0. Lot us note

that JI and J2 do not contain the parameter %, i.e., they do not change form

when transferring to a quasistatic approximation.

Let us examine the case where the ini.tial conditions (10) satisfy con-

ditions (114) everythere with the exception of a certain limited region of

space V. The non-stationary comnoncat of the solution of equations (9) under

Q• these initial conditions will be of the nature of waves, propagating with a

certain firite velocity from region V. and the entire energy of these waves

will be finite. Since this energy will be propagated throughout an ever in-

creasing volume, the values of f'.!nctions 0.0 (p, p', XI and p'e which describe

the non-stationary component, will tend to:'ard zero when t approaches Infinity,

at every fixed point in space, and in this case a complete solution of equa-

tions (9) vill tend to.ard their stationary component. From this it follows

that the invariants J, and J 2 will coincide with their values for the station-

ary components of the solution and accordinrly, for the non-stationary com-

ponent, those invariants are equal to zero. The solutions of equations (9) for

which J1 = J2 2 0 will be called rave solutions.

Thus, the solution of equations (9) with arbitrary initial data (10) can

be represented in the form of a sum a) of the stationary solution, for which

the invariants J1 and J2 are determined acccrding to the initial data, and b)

of the wave solution which satisfies the irnitial conditions (17). It remains

only to show how we find the tunction *e which determines the stationary
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olut~ion, knowing the values Of the invariants J1 and J 2 o For this, let us

expros3 J1 and J2 b V., usina fornulas (12). Here we got

Thus, the function •s can be round as the solution of an inhomogeneous

elliptical equation (25) with the inhomogeneous boundary condition (26) (as

the second boundary condition it is suffici'ent to require that b

as a approaches infinity). In order to avid inhomogeneity in the boundary

condition here, we may write the invariants J 1 and J2in a single integral

form. Thus, let us examine the folloving composite invariant
,. p- Ad-

j ds'+ J

(27)

This invariant is the integral form of the potentienl vorticity.

In the quasistatic approximation, by excluding the magnitude p- - ;
gas.

from expression (27) and by switching from the integration variable a to the'

now variable Y. we can give (27) in the -oZ (2 NoT R° P O LB
."• -•/\.. +--- d:) -1 -

o where

is the non-dimensional stability parameter. A. S. flonin [J4] found the in-

variant (28) for a quasistatic baroclinic atmosphere.

*xpressing invariant (27) by ýr3 using formulas (12), and setting 4/• u

S-, we get the following equation with respect .to'Ips

RC) lei€g in LUs equation the ma••itude c% by its mean value in the
trc,-'•;ser-, e~e czc;c=--a.ts ,.th Ve.pr•• ." deeriatives cn t* vrTttn in

2 c2 a 2

the form s + --s- , from which it is evident that the characteristic

scales of the synoptic processes along the vertical and the horitonsal are
nest naturally determined such that their ratio is e*/,Vf, which is apprwd-
nately one one-hundredth.

0
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S here the right side can. be determined from the initial data, using for=4a

(i 27 The solution of this equation (in the Ca30 02 c onst) is given in [4).
t- J

j ý3. M U AVE SOLUTION

S.1fter finding the function vs which determines the etationvy7 solution,

from initial conditions (10) we can separate the part [the initial conditions

(17)] which determines the wave solution. '.hen finding this solution, one of

equations (9) can be replaced by the condition that the potential .vorticity

(27) be equal to zero, so that the equations which describe the wave solution

are fourth-order time equations. In principle, these equations make it po3-

sible to express ",4, pl and ps by 9 and -, without integrating with respeot

to tie, while the magnitudes 9 and C are determined from equations (15) with

initial conditions (16), not containing function ý3- Therefore, it is not
necessary to know the stationary solution to find the wave solution.

.ince the coefficients of equations (15) are independent of x, y and t,

these equations have partial solutions in the form of harmonic v-avos with

&;ýplitudes Ahich are functions of z

x(Z. ys. 0) - X (Z),d'•*'....', (31)

where k1 and k2 are the horizontal wave ntaber3 which can be arbitrary, and a
the frequenoies to be determined. `iince the d;ynamic equations '.1hich we are

exi~ninn are linear, and we are not considering either the influx or dissi-

pation of energy in them, the encr~y of waves of type (31) cannot change with

time. Accordingly, frequencies o must be real.

The solution of eq,4etions (15) with arbitrary initial data can be repro-

sented in the form of the suoorposition of elementary wave solutions (31) with

all Possible values of k, and k 2. Therefore, the explanation or the nature of

the elenentary :'aves (31) makes it possible to draw definite conclusions as to

the nature of arV wave solution of the examined ecutntions of hydrodynamics.

In order to study waves (31) we have only to find their amplitudes R(z) and
X(z) and determine the frequencies a (i.e., find the frequency spectrum of the

elementary w!ave solution.). substituting functions (31) in equations (15) we



TEXT NOT REPRODUCIBLE
get the following equations for a;plitudes Q(z) and X(z)s

+ ( P' - 0+ ) 4V _' 
2+ )d- ,

whore A' • ' + A"j.

Let us note first that these equations have -a non-trivial partial solution

in. which X r 0 (since this solution satisfies the boundary conditions it has

a physical significange). The first equation of (32) shows that the frequen-

cies corresponding to this solution are determined by the foMula

)+ (33)
According to the second equation of (32) the amplitude 2(s) should eatisfy

the equation.-

so that it has the fern

(34s)® (,)m - '"*•-® /''• •

.Zvidently, the waves corresponding to this solution embrace the entire

atmosphere at once, propagate only horizontally and do not- cause vertical

variations of air particles. In the quasistatic approximation 0 X 0), these

wares retain their form. The maxinum group velocity of motion of packets of

similar waves (the velocity of the front of the wave) is equal.to the speed of

sound c. The indicated waves are completely analogous to the waves in a quasi-

static barotropic atmosphere studied by A. V. •bukhov ji] when he examined the

questiam of the adaptation of hydrodyna-ic fields. Such waves were singled

out by A. S. 1'onin (4] for the case of a quasistatic baroclinic atmosphere.

In the future, we'will call these waves two-dimensional.

Turning to a study of the solutions for which X ( 0, for purposes of sim-

plifying the computations we will limit ourselves to an examination of the case

where the coefficients ý2 and p in equations (32) can be considered constant

(this condition is accurate for an isothermal atmosphere in -which o2 - xgH and

* (x-l)g where H - je/g* is the height of the uniform atmosphere]. In this

case, each of the functions 2 and X satisfies the following equation, which

stes from (32)

"This equation has a partial solution in the forn [exp (-L'iM)sZ, whqrs.

M and a are real nmbers, . Substituting this function in (35), we get

"0 p. .. .. ...

L©
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0Remembering that a is real and equating the imaginary part of the obtained
equalty to zero, we get 9 - (p+g)/20 2 . Using this result and equating the

rea part of the equality to zer, we get the folow~ng relationshkps

Lot us note that funAtiens and X of the form

t. -X-6 Bt ... ,- (37)

correspond to the examined partial "solution of equation (35), i.e., plane haer-

monic waves with hor zonta•l wave numbers k1 and k2 and a vertical wave number

m, whc se amplitudes decrease exponentially with height. These wav- have

physic~il significance only when a I 0, since when m - 0, no combination of

such taves satisfies the boundary condition x-O (z-40). Accordingly, the

prcpagatioa rate of such waves always has a vertical component, i.e., these

waves are essentially three-dimensional. 17e will call such waves internal

waves,

Internal waves with any wave nubers can enter into the solution of the

Cauchy problem for equations (15) with srbitrary r1nitial data. Therefore, in

(36) the magnitudes k and M must be considered arbitrary and then (36) is an

equrtion with respect to a. 1!otina that the left-hand part of eq"ualitr (36)

is not negative and considering that

we can easily convince ourselves that V .roots of o2 in equation (36) can be

found only within the intervals

*6•,W . (38)
whereupon (due to the fact that the roots of 02 are continuous functions of 0

and m2 ), all points of these intervals are possible frequencies o. internal

waves. Thus, two fam£ilies of internal waves can occur in the atmrosphere, i.e..,

waves with frequencies from the first or. from the second interval of (38). To

aralyze the nature of these waves, let us write the solutions, of equation (36)

for the square of the freqxency u 2 in the form
e + + +

e +
+ t ,,' + I-. + P 0CW+I
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SX ' -- - -'J-,-- (39)

SIt"".. + +,'''('l

where L- C/4 is the characterist•i: scale of the horizontal movements of a

ccmpressible medium In a Coriolis force field, first introduced in (I].-

From (39) it is evident, that the influence of the Coriolis force is

essential only with very snail horizontal wave numbers k (i.e., for waves

whose horizontal scales are not snall compared with L). In order to explain

the nature of waves with frequencies oa and ag' let us first digress from the

effect of the Coriolis force (i.e., let us set S 0 ard accordingly, L - co).

Let us assmme that X a 1 and examine the isothermal atmosphere in which oa,

- xgH and P - (%-I)g. Hesre fcrmulas (39) "sume the form

* u[,-~. I/ I-I-: ' I

- g.~i +w[l+J - *1j

(1,o)

4T,

Let us remember that we are examininc polytropic processes during which

the magitude pp2A Is retained in liquid particles.. In particular, when

ix - co, the value retained will be density p., so that this case corresponds to

a non-compressible m•d•um. WThen x --4 o all frequencies a revert to infinity,

i.e., the waves with these frequcr.cies disaprear. But.in a non-compressible

medium, only variations with frequencies F g may arise, determined frwa (4o)

"""within the boundary x -1 o'

Evidently, waves with these frequencies are internal eravitat'lonal waves.

A description of then can be found, eg., in Prandtl's book 18]. Further,

Yhen x - 1, the value which is maintained will be tenperature, so that this

case corresponds to isothermal processes, with respect to which isothermal

stratitLcation is neutral. 1.'hen x-.•l- all frequencies a. revert to zero, so

that variations .i1th these frequencies disappear (they convert into stationary

.ortici1LV motions). Thus, with isothermal processes in an isothermal medium,

only variations with frequencies o"may occur, which cam be determined from

(140) within the limit % Plo



Evidently, waves with these frequencies are acoustic. An analogous dis-
cussion shows that two-dimensional waves with frequencies (33) aro acoustic.

Returning to the C1se of adiabatic processes during rhich x --1,4 we my
conclude that the frequencies 0a determined by formulas (40) correspond to

acoustic waves, distorted due to the absence of isoth,.rr" in neutral strat-

ification, while frequencios og correspond to gravitational waves distorted

because of the compressibility of the air., An analogous interpretation can be

applied to waves corresponding to frequencies (39) and containing an additional

"distor~tion due to the effect of the Coriolis force.

AssUMing X - 1 in formulas (39) •id making use of the fact that with stU-

ficiently large k and m, the subtrahend under the radical in these formulas is

Sriall (so that we may assume approximately that qI i7- 2c1 - L-), we get the
2

folloowing approximate formulas (which are the more accurate, the larger are k

+ V,+ _S+ >. .
€'~ ~ . ( 43)\- "•
•' , r •.+ -- -
2 a2

The inequalities shown here for oa and 2 g are strict 2ith any k and a.

C! Thus, waves with frequencies from the first interval of (38) are gravitational,

'those from the second interval arb acoustic. In the case of an isothermal

atmosphere, setting k - 1.4 and H = 8 km,. we get the following numerical ine-
qualities for the periods of acoustic and gravitational waves.

2 W < 300 sec ; T,. - > 330 see
o .a

In an atmosphere in .hich temperature drops with height, the interval

betreen Ta and T. increases.

The frequencies of slight variations, possible when using the quasistatie

approximation, are obtained from frequencies (39) within the liAit X-4 0.

Using this limited transition, all frequencies a. revert to infinity, i.e.,

the internal acoustic waves are completely filtered out. Here the group ve-

locity of the vertical propagation of packets of internal acoustic waveS

doa/dm also reverts to infinity, so that in the quasistatic approx:imation the

propagation rate of disturbarces along the vertical appears infinitely.large.
., . •hen the quasistatlo approximation is used, the only internal waves possibl.e
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ae the gravitational ones whose frequencies are determined by the formula

"a. I. ur)]7M 4)
Ih + V'+(WA

Comparing this formula with the corresponding formula (J•3, we see that

the frequencies of gravitational waves in the quasistatio sr-oximation are

too high, and they are the greater, the larger the horizontal wave number k;

however, for the case k (m (long waves), this change of a remains Insignifi-

cant,

%uming up the results of this analysis, we see that the slight variations

which can occur in the atmosphere with arbitrary initial data break down into

three Classes: two-dimensional waves, internal acoustic waves and internal

gravitational waves.

The role of the quasistatic approximation basically reduces to the fil-"

taring out of internal acoustic waves (a secondary effect is a certain dis-

tortion of internal gravitational waves). Therefore, when the internal acous-

tic waves, which arise due to the dizruption of static equilibrium at the

initial moment of time in a certain region of space V, scatter, re may consider

that the atmosphere has basically already adjusted itself to the state of

static equilibrium. The time of adaptation to the state of static equilibrium

-is of the same order of magnitude as the tine it takes for the front of the

internal acoustic waves to traverse the main part of the atmosphere. Since

this front moies at the speed of sound c, the indicated time is only several

minutes (in one minute a sound wave traverses a layer 20 ka thick). After

static equilibrium has been attained, the process of the adaptation of the

atcOsphere to the state of geostrophic equilibrium continues, whereupon, on an

average, such a state is established throughout the atmosphere after the

scattoring of two-dimensional waves, while somewhat later, after the scattering

of slow (see (4i) internal gravitational waves, geostrophic equilibrium is es-

tablished at all altitudes. The rate of this latter process depends essen-

tially on atmospheric stratification.
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