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i.  INTRODUCTION 

The study of vakes behind objects is a challenging problem in fluid 

mechanics. Even for the least cortrplicated cases involving incompressible 

flow past simple body shapes, there does not exist a unified theory that 

provides a satisfactory solution to the problem. This is because vake 
■I 

flow may be considered as a juxtaposition of a number of flow phenomena - 

i.e., free shear layers, turbulence, and flow separation — that have yet 

to be understood properly on an individual basis. In view of the intrac- 

table nature of the wake problem, it is not surprising that until recently 

research in tnis area was somewhat fragmentary. 

_  The advent of ballistic missiles and other reentry vehicles, however, 

has provided the impetus for a concerted effort to study the wake problem, 

particularly in the hypervelocity flow regime. The motivation lies in 

the need to monitor reentry vehicles through the observation of their 

trail, that is, to relate the dimensional characteristics of the vehicle 

to the observable quantities in the wake, such as length of trail or 

radar cross section. Research activities along these lines have therefore 
I 

increased markedly during the past ten years. This is evidenced by the 

fact that in a survey article on recent; work, Lykoudis (1966) cites well 
I 

over a hundred references. Yet despite these efforts, there still re- 

mains a lack of thorough understanding of the basic flow mechanisms within 
I 

the wake. This state of affairs attests to the particularly complex na- 

ture of the problem in the hypervelocity regime. 

To appreciate the essential features of the hypervelocity wake, 

consider the flow field for a sphere as sketched in Fig. 1. The regions 

that dominate the picture are J ^e recirculation zone and the viscous vake 

downstream of it. The origins of the viscous wake can be traced to the 

boundary layer over the front half (approximately) of the sphere. Near | 

the meridian cp = jt/2 (the angle 9 defined in Fig. l), the boundary 

layer separates to for.n an annular, free shear layer which subsequently 

coalesces near the wake neck and becomes the viscous vake. The flow 

within the viscous wake is initially laminar but becomes turbulent 



Bomevhere downstream. The position at vhich transition occurs is 

dependent on the Reynolds number. Outside the viscous wake, the flow 

field conforms easeul>lally to the inviccid field e.ro'Jird « ^emlsphere- 

cylinder model. 

In the foregoing model of the wake flow, several distinctive problem 

areas can be discerned: (l) the separation of the boundary layer and its 

subsequent role as a free shear layer; (2) the complex flow structure of 

the "dead-water" region or recirculation zone; (5) the viscous-inviscid 

interaction of the free shear layer with the outer flow as veil as viscous 

interaction with the recirculation zone; and {k)  the problem of laminar- 

to-turbulent transition and the description of the transport mechanisms 

in the viscous wake when turbulence sets in. In all of these areas the 

effects of compressibility and of heat transfer to the body must be taken 

into account in the hypervelocity case. The theoretician is thus con- 

fronted with many complex problems in his attempt at finding wake solutions. 

At the experimental level, the difficulty with which data can be obtained 

under hypervelocity flow conditions makes it hard to achieve a compre- 

hensive verification of theoretical solutions. 

In an attempt five years ago to gain insight into the wake problem, 

an experimental program was initiated at Stanford University to study the 

wake flow behind a circular cylinder in a spark-heated wind tunnel. The 

original program called for mapping the velocity field in the wake with 

"tracer-spark" equipment as well as for Pitot-pressure surveys with con- 

ventional methods. The tracer-spark technique for velocity measurement 

was first used for low-speed flows by Bomelburg (1958); an extension of 

the method to the hypervelocity flow regime was made by Kyser (196^). In 

addition to the velocity and Pitot-pressure measurements, exploratory 

studies were also planned to determine the feasibility of using the phe- 

nomenon of resonance scattering to detect laminar-to-turbulent transition 

in the viscous wake. To achieve resonance scattering in the nitrogen 

stream of the tunnel, a nitrogen laser was to be used as the light source. 

The presence of the recorapression shock wave uodifies somewhat the 
inviscid flow field. 



The exploratory studies showed, however, that the laser originally 

intended for the resonance-scattering experiments did not have sufficient 

pcrwCi üuLput for uoc wiuli Cuuiiiier^lally available phot orec or ding filsis or 

plates. The transition studies were therefore abandoned. As to the 

mapping of the velocity field, it was found that the gradients in the wake 

were too severe for the tracer-spark technique to apply.  As a result of 

these instrumentation limitations, the wake-studies program was reduced 

essentially to the surveying of Pitot pressure. 

The measurement of wake Pitot pressure in itself is a fairly routine 

"idertaking. Detailed surveys have been made by McCarthy (1962), for 

example, for the case of a circular cylinder at a Mach number of 5«8. In 

McCarthy's work, heat transfer was negligible since the tests were con- 

ducted in a steady-flow tunnel. Smith, Kramer, and Brown (1966), on the 

other hand, measured the Pitot pressure behind a cylinder under conditions 

where heat-transfer effects were important. In this instance, the tests 

were performed in a short-duration tunnel at hypervelocity conditions 

(free-stream Mach number approximately 20), and the data were obtained 

with a conventional rake fixed with respect to the tunnel. 

The experiments to be reported herein were performed at flow con- 

ditions similar to those of Smith et al. Differences exist, however, in 

the type of model used and in the technique employed to survey the Pitot 

pressure. In place of the conventional stationary rake typical of short- 

duration testing facilities, use was made of rapidly moving spring- 

driven probes capable of recording continuous pressure data along a 

traversed p^th within the wake. This was done to increase the data- 

gathering capability of the available pressure-recording system and to 

improve the quality of data that cnuld have been achieved with stationary 

rakes. To cover the entire wake region, two traversing probes were used, 

one for axial traverses and the other for traverses across the wake. 

Because of the short tunnel running times, these probes were made to be 

*■ 

Research efforts on this technique wer» then directed toward studying 
the details of the sparking process itself. This was done to estab- 
lish the measuring accuracy that can be expected when the technique is 
used for measuring free-stream velocity (see Kyser, 1967). 



capable of high speeds of traverse (35 fps and 60 fps, respectively). In 

addition to the rapidly driven probes, a second Innovation was the imple- 

mentation of a technique that permitted testing in the wake of a support- 

free sphere. A description of these systems and the associated apparatus, 

together with a more detailed discussion of the motivation for the use of 

traversing probes, is given in Chapter 2. 

The use of rapidly traversing probes, though facilitating the 

gathering of data, introduced an instrumentation problem of unexpectedly 

serious proportions. After a considerable portion of the testing had 

been completed, it became apparent that the pressure-recording system used 

in conjunction with the traversing probes did not have a fast enough re- 

sponse to cope with the rapidly changing pressure signal encountered 

during a traverse across the wake. As a result, the recorded pressure 

output exhibited considerable time lag and distortion of shape. In an 

attempt to resolve this problem, a combined experimental and analytical 

study was made to ascertain the response characteristics of the system, 

comprised of a pressure transducer, carrier amplifier, and galvanometer. 

With the r jsponse characteristics known, it is possible to use the solution 

of an analogous problem in the theory of sampled-data control systems to 

devise a scheme for correcting the galvanometer output for response lag. 

A discussion of the response problem and an outline of the subsequent 

correction scheme is given in Chapter 3. 

A second difficulty in the experiments, also recognized only after 

most of the testing had been performed, was the seriousness of the tunnel 

source-flow effect on the test data. It became apparent that because of 

the large downstream distances Involved in wake testing, the expanding 

stream in the conical nozzle could significantly affect both the magnitude 

of the Pitot pressure and the rate of growth of the wake. The suspected 

source-flow effect on the magnitude of the Pitot pressure has been veri- 

fied (in the inviscid portion of the wake) by the use of results from the 

method of characteristics, and this is explained in Chapter k.    By means 

of a combination of available source-flow solutions, including some method- 

of-characteristics results, an approximate scheme is then devised to 

correct both the magnitude of the measured Pitot pressure and the lateral 

wake dimension. 



The salient points in the final overall data-reduction procedure 

are discussed in Chapter 5- These include the essential steps in the 

?-Pplicatir>n of the correction schemes — for both response lag and source- 

flow effects - to the experimental data. Representative Pitot-pressure 

results, after appropriate correction, are also presented and discussed. 

The corrections are quite large in some cases and lead to significant 

changes in the shape of the Pitot-pressure profiles. Because of the lack 

of data that are free of errors due to response lag and source-flow 

effects, it is not possible to make a direct assessment of the accuracy 

of the corrections. The scheme for correcting response lag is checked, 

however, by applying it to a constructed test case. Also, the magnitude 

of the source-flow correction compares favorably with the results from 

the method of characteristics. On the basis of these indirect, partial 

checks, it is believed that the corrections represent an improvement on 

the raw data. 



2. APPARATUS AND TEST CONDITIONS 

2.1 Wind Tunnel and Model 

The experiments were performed in the Stanford University spark- 

heated wind tunnel, shown schematically in Pig. 2. This tunnel, which 

uses nitrogen as the test gas, has a useful run time of about 30 milli- 

seconds. The nominal test-section Mach number is 17. It is possible to 

vary free-stream conditions euch as density and temperature by appropriate 

choice of throat size, initial gas density in the arc chamber, and amount 

of energy imparted to the gas through the arc discharge. One can, for 

example, achieve a tenfold variation in the Reynolds number. A discussion 

of the range aud variatiun of Reynolds number and stagnation temperature 

encountered in the experiments is given in Section 2.7 under "Test 

Conditions." A detailed description of the tunnel and its operation 

appears in the work of Karamcheti, Vali, and Vincenti (1961). 

The model is a 2-inch-diameter sphere, a commercially available steel 

ball bearing. Its location with respect to the tunnel differs according 

to which portion of the wake is being studied. The alternative of fixing 

the sphere location and changing the position of the probe is not fea- 

sible, since the probe units are heavy and bulky, and once they are in- 

stalled in the tunn:,!, they remain in their specified position of instal- 

lation. In the actual arrangement, the sphere is placed in the portion 

of the nozzle upstream of the nominal test section, which is in fact a 

portion of the nozzle. In the course of the tests, eight different 

stations were used. These are illustrated in Fig. 5, which also contains 

a schedule of their distance from the vertically traversing probe. 

Since the flow in the nozzle is continuously expanding, free-stream 

conditions at the different stations are not the same, even for identical 

conditions in the test section. A more complete discussion of the lon- 

gitudinal variation in stream properties is given in Section k.2. 

2.2 Model Suspension and Release 

The task cf obtaining wake data behind three-dimensional models in 

a wind tunnel is inherently difficult. This results from the fact that 
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one cannot supjort the model from the rear, as is usually done vhen 

measuring some quantity, such as surface pressure, on the model itself. 

Several attempts have heen made at various vays of supporting three- 

dimensional models by means of thin wires or rods (see, for example, 

Demetriades and Bauer, 1966). None of these methods has been proven to 

be unquestionably reliable, however. A different approach is used in the I 
■work of Vas, Murman, and Bogdonoff (1965). In this instance the model, 

? sphere, is magnetically s\)!?T)end<?d in the R+.reaTn^ so that the resulting 

wake flow is genuinely free of support interference. 

The present study is similar to the work of Vas et al. in that a 

three-dimensional model is used. There is, however, a major difference 

in the method of suspension. In contrast to the steady-state wind tunnel 

used by Vas et al., the tunnel employed for the present work has the 

relatively short running time of 30 milliseconds. In this case, if the 

model is suddenly released (i.e., left unsupported) in the tunnel at the 

start of a run, it will not fall appreciably from the effects of gravity 

over the duration of the run. Even if the vertical drop of the model is 

not completely negligible, it can be calculated from the usual time- 

distance relation for free fall. The problem of testing behind a support- 

free model is thus merely one of devising a means of releasing the model 

Just before flow is established in the tunnel. 

A system capable of this type of release for the special case of a 

sphere is shown in Fig. h*    Before the run, the sphere is suspended by a 

wire spotwelded to the sphere. At the start of the run, the wire is given 

a sudden pull, whereupon the weld breaks and the sphere is released into 

the stream. If the weld is weak enough, and if the impulse supplied by 

the pull is sufficiently large to break the weld instantaneously, only a 

small fraction of the energy (of the pulling motion) will be transmitted 

to the sphere. The little that is transmitted does not raise the sphere 

appreciably, by virtue of the sphere's large inertial mass (about 1.2 Ibm.). 

An experiment was performed to verify the fact that the rise is negligible. 

The sphere was suspended between a light source and a photocell so that 

any movement of the sphere affected the amount of light entering the 

photocell. It was thus possible to relate the photocell output to the 



-=rr— 

verticle position of the sphere, rfith this system, it vas found that the 

rise of the sphere vas indeed negligible. 

Considerable effort was required to find a spotwelding process that 

provides a weak enough weld. The weld must also, of course, be strong 

enough to support the weight of the sphere. An important factor in 

controlling the spotweld was found to be the material of the wire. Another 

question to be considered in the choice of the wire is the tensile strength 

of the wire relative to the strength of the weld. Although it is desirable 

to use a thin wire to achieve a weak weld, an excessively thin wire tends 

to stretch and break when the pull is app-1 ied. After some experimentation, 

ii was found that the best results were obtained with a relatively thick 

tinned copper wire (gage no. 22). In subsequent tests, the spotwelding 

process was carefully controlled. 

The mechanism for providing the sudden pull on the suspension wire 
I 

is also shown in Fig. k.    A heavy mass is set in motion by the energy 

stored in the compressed spring, and the momentum of this moving mass is 

used to supply the pull. The mass is initially restrained from motion by 

a locked cam, which is released through the action of a rotary solenoid. 

The triggering assembly is similar to the one in the vertically traver- 

sing probe and is described in detail in Section 2.k.    A predetermined 

amount of slack is provided in the music wire that connects the mass to 

the suspension wire. The mass is thus permitted to acquire a pre- 

determined speed before it is made to break the weld and withdraw the 

suspension wire. This speed is necessary so that the wire will clear the 

flow field rapidly. In addition, the moving mass then exerts a large 

enough impulsive force on the weld to break it instantaneously. 

As the mass travels along the guide tube, it trips two microswitches 

that are installed inside a slot cut along one side of the tube (see Fig. 

k).    The signal from the first switch indicates the instant at which the 

spotweld is broken, thereby supplying the information needed to calculate 

the free fall of the sphere. The second switch is located three inches 

from the first and thus indicates the instant at which the tip of the 

suspension wire is three inches from the point of the weld (or four inches 

from the tunnel axis, since the radius of the sphere is one inch). At 

8 
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this instant, the tip of the vire has cleared the inviscic core flow of 

the tunnel - the inviscid core flow having a maximum radiu& of about four 

inches (see Section h.2) - and the wire is assumed to have negligible 

effect on the flow field around the sphere. Ey means of the second switch, 

it is thus possible to ensure that the pressure probing is done only 

after a clean flow field has been established. 

2.5 Traversing Pressure Probes 

With a wind tunnel of the steady-flow type, it is common practice 

to make traverses with various tjpes of probes within a given region of 

interest. For a short-duration tunnel, however, conventional motor-driven 

probes are too slow. To survey the Pitot pressure, for example, one may 

then resort to the use of a stationary rake with an array of impact tubes. 

An example of this procedure is the work of Smith, Kramer, and Brown 

(1966), where a stationary rake was used to survey the Pitot pressure in 

the wake of a circular cylinder, also in a spark-heated tunnel. The dis- 

advantage of such a fixed rake is that a large amount of instrumentation 

must be available. A still more serious difficulty lies In the fact that 

the impact tubes cannot be too closely spaced, or shock interaction bet- 

ween adjacent tubes will result. Because of this limitation, it is 

difficult to use data from a given run to resolve the detailed variation 

in regions where gradients are high, as for example in the region of 

transition from the inviscid to the viscous portions of the wake, or in 

the viscous wake itself. It is, of course, possible to shift the rake 

slightly from one run to the next and then combine the results from 

sev --al runs. Unfortunately, in the case of the spark-heated tunnel the 

inherent lack of precise run-to-run repeatability precludes this method. 

The situation is worse when an axial variation is to be studied. In this 

case, since one cannot place impact tubes one behind another, only one 

data point can be obtained with each run, and poor repeatability then 

presents an even more formidable problem. In view of these difficulties, 

it was decided to extend the traversing-probe technique to cope with the 

short run time of the spark-heated tunnel. 

To estimate the necessary probe speed, we note that for the probe to 



complete a traverse of, say, ^  Inc ss vithin the tunnel run time of 30 

mi: iseconds, the minimum probe speed must be, ideally, 25 fps. In 

prei-  e it is not possible to coordinate or time everything precisely, 

and a more realistic minimum is about 55 fps. Furthermore, it is desirable 

to make even faster traverses because the flow in a spark-heated tunnel 

decays with time. To complete the traverse in less than 10 millisecuids 

would require a speed of about 100 fps. Such speed is difficult, if not 

impossible, to attain with a motor-driven probe. One must resort instead 

to pneumatic systems or spring-driven devices. 

For the present measurements of Fitot pressure, two spring-driven 

probes were designed and built, (l) a vertically traversing probe that 

gives transverse profiles across the wake, and (2) an axially traversing 

probe capable of surveying the longitudinal ■■'ariation. These are described 

in the following sections. 

2.k   Vertically Traversing Probe 

General Description; The bulk of the results to be presented were obtained 

with the vertically traversing probe, shown mounted on the tunnel test 

section in the schematic drawing of Fig. 5« This probe uses one spring 

for providing the driving force and one for braking. The traversing 

portion of the probe, süv ..-n in Fig. 6, consists of a length of aluminum 

tubing and an alundnum shell, rigidly pin-motnted at one er  ihat houses 

two wafer-type pressure transducers. The tube, in addition to being the 

driven shaft, also provides a protected passageway for the transducers' 

electrical and vacuum connections. A öteel collar pin-mounted to the 

tube at about the half-way mark serves three functions: (ii, it is the 

"catch" through which the action of the driver and braking springs is 

transmitted to the driven probe; (2) it serves as a guide for the entire 

traversing assembly to slide vertically inside the outer brass tut^ that 

encases the probe and the springs; and (3) its lower flat surface engages 

the locked cam when the probe is being cocked. A set-screw inserted in 

the collar slides in a vertical slot in the brass tube, thereby curbing 

rotation of the probe about its own axis. The brass tube is bolted onto 

a heavy base plate, on which is also mounted the support stand for the 
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trigger aasembly. When installed in the tunnel, the bulk of the 

traversing-probe unit remains outside the tunnel, the only parts entering 

inside being the transducer-carrier housing and a portion of the aluminum 

guide tube. Since it is difficult to make the unit completely air-tight, 

a sheet-metal hood with an O-ring attached is placed over the unit during 

tunnel runs. The enclosure thus becomes a part of the tunnel vacuum 

chamber. 

Driving Mechanism; The maximum design probe speed was set at 100 fps. 

In addition, the useful acceleration-free traverse of the probe was 

specified to be 8 inches. 

To design a driver spring that will give these results, certain physical 

limitations had to be taken into account. For example, the spring was 

to be made from music wire, and the largest music vlre that is available 

commercially has a diameter of 0.l80 inches. Furthermore, at the loca- 

tion where the traversing-probe unit is installed, the tunnel inner 

diameter is 16 inches. If the probe is to have an acceleration-free 

traverse of 8 inches centered about the tunnel axis, the probe and. the 

driver spring must complete their acceleration in the first k  inches of 

motion. This implies that the initial compression of the spring should 

not appreciably exceed k  inches. 

The theory and formulas used to design the spring are the same as 

those already reported for the case of the axially traversing probe (see 

Alligood, Kyser, and Tsao, 1965) and will not be elaborated here. It 

will suffice to mention that the method is based on the surge-wave-theory 

approach of Maier, an account of vhich is given in Chironis (1961). The 

finished spring has a coil outer diameter of 1.25 inches and is 9*5 inches 

long when fully extended. It consists of 21 turns, of 0.l80-inch-diameter 

mvsic wire, first coiled into form and tnen heat treated to increase the 

yield point of the steel. Without heat treatment, the wire will not be 

stiff enough to give probe speeds close to 100 fps. 

After the spring  s designed and built, the compression required 

to give a particular probe speed was found experimentally during bench 

testing. For all subsequent tunnel runs, the probe was operated at a 

speed of 60 fps, obtained with a spring compression of 5*5 inches. This 
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speed is short of the design value of 100 fps. This vas primarily the 

result of the fact that the mass of the driven assembly came to exceed 

the design figure when it was found necessary to reinforce the cushioning 

and support details ror the transducer wiring. 

Loading the Probe; The probe is loaded by first engaging the steel collar 

to the locking cam and then compressing the spring by means of the 

threaded brass plunder (refer to Fig. 5)- To prevent the spring from 

interfering with the probe after its release, the spring is welded onto 

the plunger. Thus, when the spring is being compressed, it tends to 

rotace with the plunger. Large bearing loads result between the spring 

and the collar, and it was found that of several commercially available 

ball bearings tested none could handle these 2oads.- The difficulty was 

resolved through the use of a specially made, flat teflon ring bearing, 

sketched in Fig. 6. 

Trigger Assembly; The mechanism for releasing the probe is illustrated 

in Fig. 7« The cam-and-sear combination is controlled by a Ledex 25° 

rotary solenoid with an axial stroke of 0.6 inches. 

it is essential that the probe traverse be synchronized with the 

tunnel run. This is accomplished by integrating the switch closure (of 

the d. c. circuit) into the circuit for starting the tunnel. Through the 

use of an appropriate number of relays, one can control the timing to 

within 5 milliseconds.  It was found, however, that if the probe were 

left in the loaded position for a prolonged time before triggering, the 

various links and Joints would stick slightly. The delay time between 

switch closure and probe release can thus increase by as much as 15 to 

20 milliseconds, and even though the switch is closed at the specified 

instant relative to tunnel firing, the probe is released too late to 

complete its traverse within the tunnel run. Care was therefore taken 

to lead the probe just before making the run. In addition, the solenoid- 

activating voltage was increased from the rated 50 volts to 90 volts to 

These remarks concerning the necessity of synchronization and the means 
of achieving it apply also in the case of the release of the sphere. 
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provide a higher force from the rotary arm. When the&^ precautions vere 

taken, it was possible to program the probe traverse into the tunnel 

running sequence to vithin the desired accuracy of 5 milliseconds. 

Position Transducer; The position of the traversing probe relative to 

the tunne? is indicated by a combination of a light source and photocell. 

The physical arrangement is shovn schematically in Fig. 8(a), and Fig. 

8(b) is a diagram of the associated circuitry. An aluminum ring, attached 

to the brass tube near the base, holds the light and the photocell in 

diametrically opposed positions. Small holes (l/l6-inch in diameter) are 

drilled at half-inch and one-inch intervals through the aluminum traversing 

tube. Snug-fitting lucite rods are inserted into these holes and glued in 

place. 

The position transducer functions as follows: Whenever one of the 

lucite rods lines up with the idealized light path, the photocell senses 

the light directly. When the wall of the aluminum tubing is in the way, 

however, only reflected light reaches the photocell. The signal from the 

photocell therefore exhibits a series of spikes corresponding to the 

position of the lucite rods, and can be used as a position indicator. 

Figure 9(a) shows an oscillograph record of the photocell-circuit output. 

To establish the actual position correspondence of the individual spikes, 

one such spike must be calibrated by direct measurement. It is then 

possible to obtain a time-position plot from the o cillograph trace. An 

example is shown in Fig. 9{^)t  where it can be seen that the probe reaches 

its peak speed after the first 3 to 4 inches of travel. This speed of 

approximately 60 fps is maintained for the 8 inches of traverse, within 

which the data recorded by the pressure transducers are considered reliable. 

Pressure Transducers and Associated Wiring; The probe carries two pressure 

transducers of the variable-reluctance wafer design origir.ted at AEDC 

(see Smotherman, i960). These are housed in the aluminum shell illus- 

trated in Fig. 6, with the wafer plane verticaJ. so as to minimize any 

effects that the probe's acceleration might have on the displacement of 

the transducer diaphragm. To obtain the fastest response possible with 

the transducers, their pressure-side inlets are used directly as Pitot- 

pressure orifices. 
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Electrical and referance-vacuum connections to the transducers must 

be routed through the aluminum tube. The size of the electric cables 

hence dictates not only their own veight but also the ^" ".e and weight of 

the tube. It is therefore important to use the smallest cables available. 

The present choice was a Microdot coaxial cable with an ouvaide  «neter 

of 0.068 inches. 

Some difficulties were encountered in finding adequate means of anchoring 

the cables to the shaft. It was thought at first that potting the entire 

transducer-carrier shell would enable the soldered joints to withstand 

the large impact loads that are involved during acceleration and braking. 

Potting alone was not sufficient, however, because the cabling that hangs 

outside the shaft has a tendency to whip about during the impulsive start 

and stop of the probe motion. The situation was finally remedied by 

clamping the cables to the shaft at the top, and in addition the potting 

vas extended to include the lower portion of the shaft. The potting 

compound u^ed is a General Electric RTV 102 adhesive. The compound proved 

to be an ideal potting medium because it sets into a rubbery substance 

that provides a firm cushioning support; at the same time it does not 

harden into a solid that easily cracks upon impact. 

The pressure transducers were patterned after the initial design of 

Smothennan (i960). They are not immune to external forces, as is a later 

acceleration-compensated version of the same basic transducer. After 

several runs with the probe, it became apparent that the probe's random 

lateral vibrations during descent had a noticeable effect on the diaphragm 

deflection, as manifested by a low-frequency noise in the transducer out- 

put. The noise level could be   high as 5 to 10% of the actual pressure 

signal. To correct the output for this vibrational noise, the upper 

transducer was converted into an accelerometer as follows: A short length 

of tygon tubing, with the front end blocked by a thin metal disc, was 

slipped over the transducer intake. A tiny puncture Is made in the wall 

of the tygon tube to permit the passage of air during static calibration. 

With this arrangement the upper transducer experiences no Pito; pressure 

during a tunnel run but does register the noise due to the lateral vi- 

bration. Assuming that the two transducers experience identical vibration 
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and that their sensitivity to acceleration forces is given by static 

calibration, one can then subtract the noise from the ou'.put of tie lower 

transducer, leaving a clean pressure signal. 

2.5 A.:ially Traversing Probe 

A detailed account of the design, construction, and operation of 

the axially traversing probe has already been givjn by Alligood et al. 

(1965)• The TnepVianinn.1 prlnfl'pl^s n.Tp iT^Uftr to those of the vertically 

traversing probe and need not be elaborated upon here. An assembly draw- 

ing of the probe is given in Fig. 10. A photograph of the probe mounted 

in the tunnel is shown in Fig. 11 (the nozzle of the tunnel, including 

the test section, is rolled back to the left). 

A redesigned Pitot-pressure rake has since replaced the one shown 

in the photograph. The details of the new rake are shown in Fig. 12. 

The spacing of the Pitot tubes has been modified to give an improved 

survey of the inner viscous wake. The size of the tubes has also been 

modified on the basis of the following considerations of low-Reynolds- 

number effects, data resolution, and structural strength. The parameter 

controlling the effect of low Reynolds numbers is the ratio of the inner 

to the outer diameter of the tube. The effects are minimized by maxi- 

mizing this ratio, that is, by minimizing the wall thickness for a given 

outside diameter. To obtain good data resolution, it is desirable to use 

as small a tube as possible consistent with adequate strength from the 

structural standpoint. The Pitot tubes as finally selected have an out- 

side diameter of 0.05'+ inches and a wall thickness of 0.002 inches. 

2.6 Pressure Instrumentation 

To calculate the flow conditions in the test region, measurements | 

are needed of the time history of the arc-chamber pressure and the test- 1 
i 

section Pitot pressure (see Section 2.7). 

The arc-chamber pressure is measured by a bonded-strain-gage trans- 
1 

ducer fabricated at Stanford. The sensing element is basically a four- 

arm resistive Wheatstone bridge. The transducer has a range of 0-20,000 

psig. It is calibrated periodically against a Heise gage that has a 
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range of 0-30,000 psig. Betveen such static calibrations, the linear 

behavior of the 1 ansducer is assumed to hold. The overall sensitivity 

of the amplifier-galvanometer system is checked from run to run, however. 

This is done by means of a standard resistor (in the amplifier circuit) 

that serves as an external calibrator. 

The Pitot pressure in the test section, as veil as in the vake flow, 

is measured with a two-arm variable-reluctance transducer with a range 

of 0-5 psi differential. Two types of gage are used: one is of the 

wafer design of AEDC but fabricated at Stanford, and the other is a 

heavier Hidyne unit. All Pitot-pressure transducers are calibrated 

statically before each run against manometers containing either mercury 

or oil of unit specific gravity. 

The transducers are used in conjunction with 20-kilocycle carrier 

amplifiers (CEC Type 1-127). The output is recorded on a CEC Type 5-11^ 

recording oscillograph. The recording galvanometers are flat to 1000 cps 

in the case of the arc-chamber pressure and to 120 cps or 185 cps 

(galvanometer option) in the case of the Pitot pressure. 

The oscillograph is also used to record the photocell-circuit output 

after it has been amplified by a Saribom 150-1500 d. . amplifier. 0t;her 

data outputs (viz., information pertaining to sphere release, etc.) are 

channeled directly to the oscillograph. 

2.7 Test Conditions 

The calculation of flow conditions in the test region is based on the 

work of Grabau, Humphrey, and Little (1961) and is performed on an elec- 

tronic computer. The range of temperatures in vhich the calculations are 

\alid has been extended with the incorporation of a nitrogen-properties 

subroutine due to Smith (1962). 

The essential input information required for the calculations consists 

of the arc-chamber pressure and the stagnation pressure at the station 

where the flow conditions are desired. The arc-chamber pressure is 

readily obtained; the stagnation pressure at the nose of an unsupported 

sphere cannot be obtained experimentally, however. Furthermore, the 

test region is too small to accommodate a separate probe to monitor 
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equivalent information, i.e., the Pitot pressure in the free stream at 

the same longitudinal station. It is therefore necessary to use infor- 

mation taken from a separate calibration run in vhich the time history 

of the Pitot pressure is obtained with a stationary probe positioned in 

place of the sphere. It has been found that for a particular set of 

operating conditions, the ratio of arc-chamber pressure to test-section 

Pitot pressure is more repeatable than either pressure individually. 

Consequently instead of taking the Pitot preöaure directly from the 

calibration run, we adopt the ratio of the tvo pressures for use in the 

sphere runs. 

A consideration is now given of the variation of test conditions 

encountered in the experiments. The flow quantity that will be used as 

the primary parametric variable is the Reynolds number, Re..  ,, based 

on the diameter d of the sphere and on free-stream conditions at the 

nose. '?hree sets of operating conditions have been used to obtain three 

basic Reynolds numbers. Within each of the three sets of conditions, 

some variation in ReynoMs number arises from the following causes: (l) 

the tunnel flow decays in time, and the Reynolds nuober decreases during 

a given probe traverse; (2) free-stream conditions at the nose of the 

sphert _re different for different positions of the sphere since the 

tunnel stream expands along the nozzle; and (3) overall tunnel flow 

conditions vary somewhat from run tu ran because of lack of exact repeat- 

ability. 

Typical flow conditions are summarized in Tables 2.1 and 2.2 at the 

end of this section. The results of Table 2.1 pertain to a f-ijeed test 

station, the variable being the operating conditions. In contrast, the 

results of Table 2.2 reflect the variation in conditions caused by a 

shift of the test station. In both tables, the time for which the data 

are given is 20 milliseconds after the start of the tunnel run, which 

corresponds roughly to the middle of the run. 
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Table 

Free-Stream Conditions at Station A 

Total Temperature Mach Number Reynolds Number 

•K (based on d = 2") 

3,750 16.0 2.18 x iok 

2,570 17.7 -j.ko x 10^ 

1A50 16.2 1.77 X 105 
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Table 2.2 

Variation of Free-Stream Conditions with Location of Test Station 

Station Total Temp. 
0K 

Mach Number 

A 1,270 16.31 

B 1,270 16.16 

C 1,270 16.00 

D 1,270 15-84 

E 1,270 15.68 

F 1.270 15.51 

G 1,270 15.55 

H 1,270 15.05 

Reynolds Number 

(based on d = 2") 

2.35 x 105 

2.kO x 105 

2.k6 x 105 

2.52 x 105 

2.58 x 105 

2.6k- x 105 

2.70 x 105 

2.81 x 105 
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3. TRANSDUCER-GALVANOMETER RESPONSE MT)  CORRECTION 

3«1 Preliminary Remarks 

When pressure instrumentation vas first chosen for the Stanford 

spark-heated tunnel, it vas decided that an oscillograph would be used 

for recording pressure information. The oscilloscope, despite its superior 

response and versatility in other respects, was passed over in deference 

to the oscillograph's capability of recording as many as 96  channels of 

data on a single time base. To use oscilloscopes to provide the equiva- 

lent capacity would not have been economically possible. Also, the task 

of operating «he many oscilloscopes simultaneously during calibration or 

tunnel run would have been difficult. Furthermore, data reduction is 

easier and more accurate on the oscillograph. These factors all contri- 

buted towards the selection of the oscillograph as the basic instrument 

for recording pressure data. 

5.2 Response Considerations 

For the recording of routine arc-chamber pressure and of Pitot 

pressure in the test section (measured with a stationary probe), the 

choice of the oscillograph was satisfactory because the different types 

of galvanometer that were available turned out to be adequate for their 

respective assignments. For example, in the case of arc-chamber pressure, 

where good response is essential, one can use a relatively fast galvanometer 

(flat to 1000 cps). On the other hand, for the Pitot-pressure transducer, 

where a substantial level of high-frequency noise in the amplified output 

requires a slower galvanometer (flat to 125 or l80 cps), response is not 

of prime concern when only the test-section Pitot pressure is involved. 

When the traversing probes were introduced, the same combination of 

galvanometer and Pitot-pressure transducer was taken over. This led to 

a response problem that was recognized only after a substantial amount of 

This difference in response requirements stems from the fact that the 
time history of the arc-chamber pressure is the more critical of the 
two pressure inputs in the calculation of test-section flow conditions. 
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data had already been taken. The problem is particularly acute vith the 

vertically traversing probe, because the probe speed is high and large 

gradients are present in the transverse Pitot-pressure profiles. For 

example, for the probe speed of 60 fps used and for an overall system 

response lag of - say - one millisecond, the entire profile vould appear 

to be shifted off center by about eight-tenths of an inch. In addition, 

since large gradients are present in the profile, its shape would be 

distorted, and the pressure trace actually recorded vould lose some of 

the symmetry normally to be expected in such a profile. In other appli- 

cations, for instance the axially traversing probe, response requirements 

are not so exacting. The discussion that follows vill pertain only to 

the vertically traversing probe. 

When it became apparent that the response of the pressure-recording 

system was not fast enough for work with the vertically traversing probe, 

it was also recognized that it would be difficult to improve on the response 

by replacing components of the existing system with other readily available 

equipment. One possibility was to replace the galvanometer with an oscil- 

loscope. This was not attempted, however, because previous experience 

showed that the amplifier output exhibited considerable high-frequency 

noise, and to obtain a clean pressure signal would have required that a 

low-pass filter be inserted ahead of the oscilloscope. From the response 

standpoint, the filter would then effectively reduce the oscilloscope to 

the level of a galvanometer, thereby defeating the purpose of using the 

oscilloscope in the first placo. 

Besides the slow response of the galvanometer, there is also the 

question of the response behavior of the transducer itself. The problem 

of transducer response has been studied by Smotherman and Kaddox (1963), 

who determined the rise time for various configurations of the wafer trans- 

ducer. This work is not directly applicable to the Stanford version of 

the basic AEDC design, however, since some differences exist in the 

dimensions and construction details, and these control the response char- 

acteristics of the transducer. Furthermore, Smotherman and Maddox did 

not study the response of the combined transducer-araplifier-galvanometer 

system, which is of interest here. It was decided therefore that a 

separate experimental study should be conducted to obtain the desired 
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infonnation. When the  response chai-acteristics of the overall system 

v?re knowii, one could hope to devise an analytical correction scheme 

that could Chen be applied to the recorded pressure output. 

The experimental determination of the system response characteristics 

is Hased on the theory of linear systems. It is therefore appropriate 
i 

to introduce some of the fundamental concepts before proceeding t ) the 

j        results of the experimental study, 
i 

I 
! 

3 0 System Transfer Function 
I 

The transducer-galvanometer combination may be considered as a 

linear system provided an approximation is made regarding the transaucer 

itself (see Appendix A). In vnat follows, the assumption of a linear 
I 

system will be adopted throughout. 

The response characteristics of the transducer-galvanometer system 

is specified if the system's transfer function is known. In the theory 

of linear systems, a transfer function G(s) is defined (see, for 

example, Clark, 1962) as the ratio of the Laplace transform of the out- 

put to the Laplace transform of the input, i.e., 

j r(   ,      
Pout(S)  ^Pout(t)) G(s)sp^r = xfpin(t)]   > (3-1; 

where s is the Laplace varlabl:, and ?..-,(*) and PQ^+C*) 
äre re- 

spectively the input and output to the system, as shown in Fig. 13(a). 

".a  the present case, p. (t) and p .(t) refer specifictlly to the 

pressure input and output. When the transfer function is known, the system 

oi .put to a specific input is theii given by 

Pout(t) =r
1{G(S).Pin(s)} (3.2) 

A convenient way of obtaining the trtnsfer function is to consMer 

the response of the system to a unit söep-input (whose Laplace transform 

is    l/s),    the output in this case being known as the "transiont response". 
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If the Laplace transform of the transient response is denoted by X(s), 

then from Eq. (5.1) the transfer function is simply s[X(?)]. This 

relationship in fact provides a means for experimental determination of 

the transfer function. That is, one can impose r step function on the 

system and record the corresponding output; the output can then be cor- 

pared with theoretically calculated transient-response curves (given in 

standard textbooks on automatic control systems) to yield the appropriate 

function for X(s), which ir. turn gives the transfer function. This 

procedure is not difficult if the order of the syetem is known. For a 

system of components in  series, an alternative approach is to find the 

transfer function for each component; the overall transfer function is 

then simply the product of the individual transfer functions (see Clark, 

1962, p. 50). 

To find the transfer function for the transducer-galvanometer system, 

the experimental approach was used. Briefly, a step increase in pressure 

of known magnitude was generated at one end of a simple shock tube by 

means of shock-wave reflection. The tran ducer positioned at this end 

thus experienced  ftep input of pressure. The transducer output and 

galvcnometer output were then used to find the transfsr function of the 

system corapor.ints. The experimental details and the intermediate steps 

used in arriving at the composite transfer function G(s) for the 

transducer-galvanometer system are outlined in Appendix A. The final 

result for G(s) was found to be 

koj     ,   -so 
G(s) "-T     2         2"'        ^'^ s(s + 2a) ts + to ) v     n1"   n' 

where (x> = undamped natural frequency of galvanometer, 

t, =  damping ratio of galvanometer, 

k = correction factor ■'■o transducer, and 
5 = approximate rise time of transducer. 

The values of the system parametric constants <x> ,  £, k, and 8 are 

also given in Appendix B. 
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The determination of the transfer function defines the response 

characteristics of the transducer-galvanometer systesis It does not, 

however, provide directly a means for calculating the system response to 

a pressure input of arbitrary shape, such as that encountered in the wake. 

This follows from the fact that in general an arbitrarily varying time 

function cannot be expressed analytically, and its Laplace transform — if 

it exists at all — cannot be calculated in closed form. The problem of 

finding the output to an input of arbitrary shape has an approximate 

solution, however, provided a sampling process is introduced at the input 

and at the output. We shall first show that the data-reduction procedure 

in the present case does introduce a fictitious data-sampling process. 

The resulting problem is then amenable to treatment by the theory of 

sarapled-data control systems. One of the basic mathematical devices of 

this theory, the z-transform, if* introduced in Section 3.5, which also 

gives an account of the application of the theory to the present case of 

the pressure-recording system. After we have establishe the procedure 

for calculating the sampled output from the input and the transfer func- 

tion, we then consider the inverse problem of deducing the input when the 

output is given. The solution is based on a method of successive approxi- 

mations and is presented in Section 3*6. 

3.k   Analog in Sampled-Data Theory 

In the data-reduction scheme, output-pressure information is obtr ned 

by reading deflections off the oscillograph record at re^lar time inter- 

vals, typically of one-half millisecond for runs with the vertically 

traversing probe. This procedure may be likened to sampling the pressure 

output by inserting after the galvanometer a switch that closes momentarily 

every T seconds, T being the sampling period. An equivalent sampling 

process would be to block the galvanometer light beaiu from the photo- 

recording paper at all times except for a flash every T seconds. This 

analogy with a sarapled-data system is illustrated in Fig. 13. (For the 

fundamentals of sampled-data theory, see Kuo, 1963, or P^gazzini and 

Franklin, 1958.) The physical transducer-galvanometer system, whose 

block diagram was shown in Fig. 13(a), is a system for continuous signals. 
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The switch that simulates the sampling process, the so-called "ideal 

sampler", is depicted in Fig. 15(b) together vith a graphical re ,  3- 

sentation of its sampling function in the form of a unit-impulse train. 

The blor;k diagram for the analogo\ ^ sampled-data system is shown in 

Fig. 13(c). (The function of the "hold circuit" placed ahead of the 

pressure transducer will be explained in the next section.) 

We note that in addition to the insertion of a sampler switch at the 

output in Fig. 13(c) - which is the appropriate representation of the 

process of reading off discrete values - a similar switch is inserted at 

the input as well. This input sampler is introduced to conrplete the 

analogy, since in a sampled-data system the presence of this sampler is 

mandatory. This is because the fundamental problem in sampled-data theory 

is to find the appropriate manner of sampling the input so that one needs 

to feed to the system only the sampled sequence instead of the continuous 

input while still being able to extract approximately the same information 

at the output. Thus in a sampled-data system the input sampler is the 

essential switch; the synchronous switch at the output is inserted 

simply to facilitate the analysis. In the analog for the transducer- 

galvanometer system, on the other hand, the output switch is the more 

meaningful one because it is at the output that discrete values are read 

off; the input sampler is included so that we may draw an exact analogy 

with the sampled-data problem and use the available results from the 

theory. With the introduction of the fictitious sampler into the trens- 

ducer-gelvanometer system, however, the question arises as to whether the 

sequence of input sampled by the switch is an accurate representation of 

the continuous input at the sampling instants. Thus, after the analogy 

has been drawn, the subsequent problem is twofold: (l) to find the appro- 

priate sampling procedure for the transducer-galvanometer system, and 

(2) to show tnat for this system there is indeed a correspondence between 

the sampled input and the continuous input. 

To find the appropriate sampling procedure in the present instance, 

use was made of the test case involving the transient response of the system« 

This test case has been considered in the last section, Eq. (3.5) 
and the paragraph preceding it. 
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Since the transient response vas determined experimentally, it vas 

possible to choose the sampling procedure that gave the best agreement 

vith experimental results, and this will be discussed in the next section. 

To show that there is correspondence between the sampled input and the 

continuous input (the second part of the problem), the following plau- 

sibility argument is used. In sarapled-data theory, the sarapled-sequence 

representation of the input is by definition exact, irrespective of the 

sampling procedure. The basic tenet of the theory states that with the 

proper choice of a saraplJ.*-g process, the sampled-output information then 

accorately represents the continuous output. Now, in the analogous case 

for the transducer-galvanometer system, the roles of input and output are 

interchanged. At the output the sampled sequence is known to correspond 

to the continuous signal, since the sampling describes in actuality the 

process of reeding discrete values off a continuous trace on the oscil- 

lograph record. Now, by virtue of part (l) in the foregoing, it can be 

assumed that the appropriate sampling procedure is ujed. We thus infer, 

by an application in reverse of the basic tenet of sampled-data theory, 

that the sampled input does represent adequately the continuous input 

at the particular sampling Instants. 

5.5 The z-Transform Method 

In the theory of sarapled-data control systems, the basic mathe- 

matical tool is the z-transform. The z-transform is actually a short- 

hand notation for the reciprocal of the Laplace transform of a unit 

impulse occurring at t = T, that is. 

£ {B(t-T)} = e"Ts = z"1 (5.10 

Similarly, the Laplace transform of the unit-impulse train of Fig. 15(b), 

which is basic to ^he data-c. mpling process, is expressible in terras of 

a polynomial in z  as follows: 

00 _ O5 

-nTs £{l   6(t-nT)}= Z   *   = E *'*    ' ^) 
n=0 n=0       n=0 
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Since a sampled sequence (vith sampling period T) of any function 

00 

f(t) can be represented ty  ^ f(nT)[6(t-nT)J, it follows from Eq. 
n=0 

(5.5) that the Laplace transform of the sampled input can be expressed as 

li2   Pin(nT)6(t-nT)} =   £   p.n(nT)z"n = Pin(z)  . (3.6) 

The corresponding expression for the sampled output is 

Pout(z)= E Pout(nT)z"n • ^.7) 
n=0 

It is shown in standard texts on sarapled-data systenus that the 

functional relationship between P. (z) and P  (z) is completely 

analogous to the corresponding case of Eq.. (3.1) for continuous signals. 

Thus, for sarapled-data systems the relationship is 

Pout(Z) = G(z) Pin(z) , (3.8) 

where G(z), the z-transform of the transfer function, is e-v^luated 

according to the formula (see Ragazzini and Franklin, 1958, p. 57) 

G(z) =  E   residue G(s)  j^-^r 
poles of      I   1-e z 

G(8) 

(5.9) 

The function G(z) is normally expressed in terms of the quotient of two 

polynomials in z' . Further simplification is possible by long division 

to yield a single polynomial in z' . 

Ideally, Eq. (3.8) used in conjunction with Eqa. (3.6) and (3.7) for 

Pin(z) and P^U) gives a method for calculating P .(z) when 

G(2) and Pin(z) »re given (by equating coefficients of like powers in 
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z ). However, if the sampled input vere fed directly into the linear 

system, some of the original information between sampling instants would 

be lost, resulting in an inaccurate output. It is therefore necessary 

to use some form of interpolation scheme to supply additional information 

between the sampling instants. This is done by the fictitious hold 

circuit, or "data hold", inserted between the input sampler and the trans- 

ducer (refer to Fig. 13(c)). The function of the hold circuit is to 

reconstruct the sampled-input sequence and transform it into a pieeewise 

continuous or piecewise smooth data curve before feeding the information 

into the linear system. Interpolators of various orders can be used, 

depending on the accuracy desired and on the shape of the particular data 

curve under consideration. A detailed discussion of the subject of hold 

circuits is given by Jury (196I+). 

In the present instance, the most suitable hold circuit is a first- 

order interpolator having the transfer function (see Jury, 196^, p. 222) 

Q(z,s) = 2(l~Zg )  . (5.10) 
Ts 

Because this transfer function contains the Laplace variable s, the 

function must be included in the right-hand side of Eq.. (5.9) before the 

z-transform of the overall transfer function can be evaluated. For 

clarity, the overall transfer function that includes the first-order 

interpolator is denoted by ?r(z,s), that is, 

S(z,s) = Q(z,s) G(s) , (3.11) 

where G(s) for the transducer-galvanometer system is given by Eq. (3.5). 

The algebraic details of evaluating 'Ö(z), the z-transform of Ö(z,8), 

from Eq. (3.9) are outlined in Appendix B. The final result is 

.  m ,7.+m,+nLZ +mr.z 
G(z) =    r *  , (3.12a) 

XTb       l+d,z +d0z 
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or,   ^(z) = r z + r + r.z," + r2z" + ••• ,     (3.12b) 

where T = co T, S = co 6, and X, m .., m ,  in., nu, d^., dp are all non- 

dlirjnsional functions of the system parameters. The series representation 

of (5(z) in Eq. (5.12b), found by straightforward division from Eq. 

(3.12a), is in a form convenient for later use. The coefficients r ^ 

r , r., rp,... have been calculated with an electronic computer and are 

listed in Appendix B. An inspection of the magnitudes suggests that the 

series is convergent. 

In the analogy of the transducer-galvanometer system with a sarapled- 

data system, we have assumed that a suiteble sampling rate has been used. 

Furthermore, no immediate justification was given for choosing an inter- 

polator of a particular order as „he appropriate data hold. These two 

aspects of the problem are interrelated, and several combinations of 

sampling period and inte:rpolator were tested to establish the most sat- 

isfactory combination. The criterion used to gage the relative success 

of a particular combination was to determine how closely the calculated 

sampled output matches the experimentally recorded output corresponding 

to the unit-atep pressure input generated by shock-wave reflection. 

Interpolators of zeroth, first, and second order were tried and the 

sampling period was varied from 0.1 to 0.5 milliseconds. The best results 

were obtained with the first-order interpolar of Eq.. (3.10) and a sampling 

period of 0.25 milliseconds. Now, *       .-reduction procedure for 

wake runs (discussed in Chapter 3),  the time interval between data read- 

outs was 0.5 milliseconds. To use the foregoing results with a sampling 

period of 0.25 milliseconds, additional data had to be obtained at points 

midway between any two adjacent data-readout instants. This additional 

information was obtained by interpolating the 0.5-millisecond data. The 

interpolation was carried out with Lagrange's interpolation coefficients 

(see Henrici, 196^, pp. 183-185); either a three-point or a four-point 

formula was used, depending on the portion of the output trace considered. 
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5.6 The Indirect Correction Scheme 

With the inclusion of the data hold in the overall transfer function, 

Eq.. (5.8) must now he modified to read 

Pout^=^Pin^ ' (5.15) 

The problem at hand is to find P1 (z) when P .(z) and Cx(z) are 

given. Conceptually, one is therefore inclined to seek an inverse of the 

transfer function so as to calculate P. (z) directly from P .(z) 

according to 

pii?(z) = r1(z). poii,(z) . out (5.110 

An examination of ?5(z) reveals, however, that the inverted function, 

if evaluated exactly, will be unbounded at t = 0. The use of Eq. (5.11*-) 

would then lead to anomalous results. 

To understand the behavior of ^T (z) about t = 0, consider the 

physical interpretation of the series representation of 'ö(z) in Eq.. 

(5.12b). The response lag in the transducer-galvanometer system is due 

mainly to the galvanometer, which is a second-order system. The output 

from the galvanometer corresponding to a step-input thus approximates 

that calculated for a second-order system; namely, at t = 0 the out- 

put curve has zero deflectioi as well as zero slope (see Fig. 1^). For 

zero deflection, the coefficient of z  in Pout(
z) "^s* vanish. It 

follows from Eq. (5.15) that ideally the coefficient r0 in Eq. (5.12b) 

would be zero as well. In this ideal case, it is easy to see that the 

inverse transfer function (T (z) would indeed be unbounded at t = 0. 

In actuality the coefficient r  is small but not zero, owing to the 

slight distortion of information inherent in the data-sampling and 

The function 3(z) in the present study involves the first-order 
interpolator Q(z,8) of Eq. (5-10). In general, however, 7i{z) 
may involve a data hold of any order. 
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reconstruction process. The behavior of the inverse function is never- 

theless unstable about t = 0, and this instability in turn infects the 

entire series. 

An inversion of ^(z) war in fact attempted by first taking the 

reciprocal of the right-hand side of Eq. (5.12a) and then dividing to 

obtain a series in z . The series thus obtained is divergent, however, 

as contrasted with the convergent series for 'Ö(z) of Eq. (3.12b). The 

divergence of the series for CT (z) is an indication of the instability 

of the inverse function. 

With the failure of the direct calculation of P. (z) according to 

Eq.. (5.15), an iterative scheme was devised by which P. (z) can be 

calculated indirectly from Eq. (5.15) through a series of successive 

approximations. Briefly, an initial guess is made for P. (z), say 
(C) (0) P^ (z), and the output FK  l{z)    corresponding to this guessed Input 
m out / (-v \ 

is found from Eq. (5.15). By comparing P Hz)   with the actual output 

P^.+(z)> it is possible to derive a correction term that provides an 
(0) 

improvement on Pi- (z)- This forms the basis for an iterative procedure 

that can be repeated until the desired accuracy is obtained. 

The derivation of the correction scheme is lengthy; the details are 

given in Appendix C. In brief, by considering the magnitude of the 

coefficients r. of 'Ö(z) together with the functional relationship of 

Eq. (3.15), it can be shown that an improvement on the ith approximation 

to P1 (z) at t = nT, for n > 5, is given by 

P      - P(i) 
(i+1) _ (i)   rout,n+5   out,n-i-5 /, 1(-x 

Pin,n " Pin,n +  5 '        (5-5; 

JO d 

* 
The inclusion of a first-order interpolator introduces some incon- 
sistency in ö(z) about t = 0. Since the interpolator operates on 
adjacent data points, at t - 0 it interpolates the point t = -T as 
well. This results in the physically unrealistic term of r_1z

+1 in 
ö(z) in addition to ascribing a nonzero value to rn. 
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vhere P^ hz)    is the output calculated from P^ Hz) with the use of 

Eq. (5.15)• For n = 0,1,2 the corresponding expressions are slightly 

different and are given in Appendix C. Convergence of the correction 

scheme is not particularly rapid, since it is based primarily on a linear 

analysis. The iteration procedure is simple, however, and as many as 5 

to 15 iterations can be performed rapidly on an electronic computer. 

To test the accuracy of the foregoing correction scheme, it was 

applied to a case in which both the input and the output sequences are 

constructed and are therefore known sequences. This verifies Lion procedure 

consists of the following steps: (l) construct a sequence of input data 

points that simulates the type of Pit^t-pressure data that one might expect 

to obtain in the experiments; (2) calculate the corresponding output 

according to Eq. (5.15); and (5) apply the correction scheme to this 

output in an attempt to recover the constructed input. 

The constructed sequences of input and output data from steps (l) 

and (2) are shown in Fig. 15. Evsn though the data as uted in tine actual 

calculation are discrete points at the sampling instants, they are never- 

theless shown in this figure as piecewise continuous curves. This is 

done to Improve visual representation. The input -^ur/e is made up of 

three segments, corresponding to an idealized representation of the Pitot- 

pressure variation in the three distinct flow regions traversed by the 

probe in going from the tunnel wall to the wake axis. The first region 

is the tunnel boundary layer, in which the Pitot pressure increases 

linearly.  Upon crossing the bow shock wave into the inviscid portion of 

the wake, the Pitot pressure undergoes an initial Jump, after which the 

pressure decreases, rapidly at first but flattening out gradually as the 

viscous wake is approached; a parabolic segment is used to represent 

this variation. In the third region, the viscous wake, the Pitot pressure 

In the case where the bow shock wave intersects the tunnel boundary 
layer downstream of the probing station, there is a region between the 
boundary layer and the shock wave in which the Pitot pressure is con- 
stant. This region need not be represented separately, however, since 
a line denoting constant pressure is essentially the same as the line 
representing the linear pressure Increase in the boundary layer. 

52 



is taken to be given by a second parabolic segment whose minimum corres- 

ponds to the axis of the vake. The calculated output corresponding to 

this input exhibits the essential features of the measured Pitot-pressure 

profiles (see Chapter 5 for comparison). 

In the application of the correction scheme, the initial, guessed 

input (shown as a dashed curve) vas taken to be essentially Ihe output 

curve shifted backwards in time by an appropriate amount. A modification 

was provided at the jump discontinuity by using a backwards linear extra- 

polation. The corresponding input data as finally reconstructed are 

shown in the figure as discrete points. (To avoid crowding the figure, 

we have plotted the input at intervals of hi   only.) From a comparison 

of the reconstructed input with the original input, we observe that there 

is good agreement between the two sets of data. 

A discussion of the application of the correction scheme to the 

measured Pitot-pressure profiles is deferred to Chapter !?, when the overall 

data-reduction procedure is described. 

33 
■ 



! I 

k.     S(X-iCE-FLOW EFFECTS AND CORRECTION 

h.l   Consequence of .tree-Stream Nonuniformities 

Tne Stanford cpark-heated t^nne] has a üonical nozzle thai includes 

a portion .nominally used and äeslgnated as the test section (see Fig. 2). 

For the present experiments, however, the actual test region includes 

this test section together vith a considerable portion of the nozzle up- 

stream (see Section 2.1 and Fig. 3). In vhat follows it is therefore 

appropriate to use the term "nozzle" to denote the entire test region. 

T!-e undisturbed stream in the nozzle is nonunlform in two respects. 

The flow through the nozzle., starting from the tunnel throat, approxi- 

mates tliat from a three-dlmensloral point soarce. Thus none of the stream- 

lines are parallel to one smother, and the flow has transverse non- 

uniformity. The second aspect of the nonunlfonr.ity is actually a conse- 

quence of the firr.t, though it is useful to consider it separately. As 

tht gas flows through the diverging nozzle it expands, resulting in 

longitudinal gradients In the various flow quantities. 

When a model is placed in such a nonunlform stream, the flow field 

around it diiTers from that for t.ie same body Immersed in a uniform 

stream. Kathematically speaking, the difference (for supersonic flow) 

stems from the different upstream boundary conditions for the two cases- 

Since for most flow fields tuere is a shock wave emanating from the nose 

of the model, this difference in the upstream boundary condition can be 

ace ^unted for at the upstream side of the shock wave. The flow field 

around the model accomolates this different set of upstream boundary 

conditions by making suitable adjustments in the shape of the shock wave, 

vith ••.he result that the shape of the shock Vive in source flow differs 

from that In uniform flow for the same model. It is useful to bear in 

* 
An exception to this statement is found in the velocity. In a hyper- 
velocity tunnel, the sp«ed of flow approaches the highest attainable 

value of V, - (2h. )2 early in the expansion process and does not 
1    ^ 

increase appreciably thereafter. Thus !•, is permissible to assume, for 
the sake of ease of computation and analysis, that the undirturbsd 
stream velocity is constant in the test region under consideration. 
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mind that once this change in shock-wave shape has been taken into consi- 

deration, it will be incorrect to consider in addition that the down- 

stream flow field is also expanding locally within a diverging nozzle. 

The reason is that the boundary pertinent to the downstream flow field is 

the envelopinc bow shock wave and not the nozzle wall (or strictly 

speaking the edge of the boundary layer that exists along the nozzle wall), 

and the effects of the source flow associated with the diverging nozzle 

have already been accounted for in the shape adjustment of the shock 

wave. The situation changes, however, after the shock wave intersects 

the nozzle boundary layer. In this situation, th» flow in the region 

bounded by the reflected shock wave and the edge of the boundary layer is 

directly affected by th' diverging geometry of the edge of the boundary 

layer. 

In the present experiments, the wake Pitot pressure is amon« the 

flow quantities affected by the tunnel source flow. To use the pressure 

data for comparison w^ch any theoretical results worked out for the case 

of uriform flow, the data first must be corrected for source-flow effects. 

Such correction would also be important if the data were to be applied 

to examples of actual flight, for which a uniform atmosphere prevails. 

Ve shall consider the effects 01. -y insofar as they change the shape of 

the shock wave and not after interaction between shock wave and boundary 

layer has occurred. In the following sections, we discuss the analytical 

bas::.s for approximate schemes used to correct the measured Pitot pressure 

for source-flow effects. 

4.2 Tunnel Source Flow 

Before proceeding to the main portion of the analysis, it is appro- 

priate to consider the nature and magnitude of the source flow in the 

Stanford tunnel. 

The flow in the tunnel may be regarded as consisting of an inviscia 

core flow and a thick hypersonic boundary layer on the tunnel wall. If 

the thickness of the boundary layer along the nozzle is a constant fraction 

of the local nozzle radius, then the edge of the boundary layer will form 

a cone withii the nozzle cone, the apexes of both cones being at the 
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* 
throat of the nozzle.  In this case, the inviscid flow will be that due 

to a point source situated at the throat. Theoretical results supported 

by experiment show, however, that the edge of the boundary layer is not 

a conical surface. The boundary layer thus has a contouring effect on 

the invisoid flow, and the magnitude of the local source-flow effect is 

different from that associated with the iu i. case of a point source 

positioned at the throat. We shall present a comparison of theory with 

experiment, after which the magnitude of the local source-flow effects 

will he assessed. 

The problem of boundary-layer devslopment in a hypersonic nozzle has 

been studied analytically by Rasmussen and Karamcheti (1966). Results 

from this work (Fig. 6) can be used to deduce the variation of the area 

rat if Aw/A with the longitudinal distance L along the nozzle. Here 

A-, is the effective area of the inviscid flow, A is the tunnel cross- 

sectional area, and L is mea.T'ired from the throat. When the variation 

of the area ratio A^/A is known, it is possible -co calculate the 

variation of other flow quantities. For example, to find one ratio of 

the Pitot pressure at any two points along the length of the nozzle, one 

starts by writing the Pitot pressure p' us 

p; = f(p,T,V)pV2 . '4.1) 

In this equation the function f(p,T,V) is essentially a constant for a 

vide range of conditions when the Mach number is high. Furthermore, the 

velocity may be assumed to be constant along the length of the nozzle 

under consideration (see footnote on p. 5U). Making use of mass conser- 

ve tion, we then have, for two points a and b. 

This is an idealization based on the fact that the throat diameter is 
very small relative to the other dimensions of the conical nozr.le. 
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^1 " p V2 " ^F^ Va ^A a a 

(^.2) 

(Va  ^V^a Aa 

where A /A,  is calculated directly from the nozzle geometry. 

It is now possible to compare the theoretical results with experi- 

mental date and this is done in Fig. 16. Two theoretical curves are 

shown. The solid curve is a plot of Eq.. {k.2)  in which the ratio A-Zä, 

deduced from the theory of Rasmussen and Karamcheti, varies from 0.^16 

to 0.1+75- The second theoretical curve (dashed line) is based or the 

assumption that the Pitot pressure varies inversely as the tunnel ^rea 

A instead of the effective area A„. This is equivalent to saying that 

in Eq. (^.2) the ratio Ap/A is taken to be constant, that is, that the 

edge of the boundary layer forms a conical surface with apex at the nozzle 

throat. The difference between the two seo of results indicates that the 

inviscid flow in the tunnel as predicted by the theory of Rasmussen and 

Karamcheti is different from that in the ideal case of a source situated 

at the nozzle throat. Also shown in Fig. 16 are experimental points 

deduced from data obtained in a single run with the axially traversing 

probe. The good agreement between the experimental results and the 

theory of Rasmussen and Keramcheti verifies the earlier statement tha4 the 

boundary layer has a contouring effect on the inviscid flow. Admittedly 

the range in which the theory is substant iated by the data is somewhat 

limited, owing to the relatively short traverse (9 inches) of the probe. 

In view of the close agreement, however, we shall adopt the results of 

Rasmussen and Karamcheti for present purposes. 

The Pitot-pressure correction scheme worked out in later sections 

(Sections 4.5 and k.6)  is based on iheory that pertains to a simple source 

flow. To render the theory applicable to the present situation where the 

stream is not a simple source flow, the following approximation is made 

in regard to the stream nonuniformity. It is assumed that the local 
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nomuilform stream can be replaced by a virtual source that gives at the 

station of interest the same longitudinal flow gradients as those calcu- 

lated from the theory of Rasmussen and Karamcheti (see Fig. IT(a) for 

illustration). A characteristic length associated vith this virtual 

source is L , the distance from the origin of the source to the nose 

of the model, that is, to the station of interest. This length is used 

to define a "source-flow parameter" r./L , vhere r,  is a character- 

istic dimension of the model, here taken to be the radius of the sphere. 

The source-flow parameter gives a measure of the seriousness of the source- 

flow effects on the flow field around the model. 

The problem is now to find a relation that expresses L  in terms 

of the longitudinal gradients. With this relation, one can then use the 

results of Rasmussen and Karamcheti to find the variation of L  with the 
o 

axial distance L from the nozzle throat. To derive the required relation, 

consider the sketch shown in Fig. IT(b). The two points a and b with- 

in the virtual source flow are situated at distances L  and (L +AL ) 
o     ^ o  o 

from the origin of the virtual source. From Eq.. (^.2), we have 

which leads to 

^o'a  \    o/        o 

In the limit as b approaches a, Eq. {k-.k)  reduces to the required 

relation 

Since Eq. {k.2)  dealt with the tunnel stream, the appropriate area to 
use was the effective area. In the case of the virtual source flow, 
however, it is not necessary to use the "effective" subscript. 
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The quantity (dp,/'iL)0 is evaluated graphically from the Pitot-pressure 
c   a 

curve deduced from the results of Rasmussen and Karamcheti and shown in 

Fig. 16. The variation of L  thus calculated is given in Fig. 18 as a 

function of L. Shown for comparison is the straight-line relationship 

L = L that would prevail if the edge of the boundary layer were a conical 

surface with apex at the throat. It can be seen that the distance (L-L) 

varies from 20 inches at L = 80 inches to 52 inches at L = 110 inches. 

Thus the origin of the virtual source is at a distance of 20 to 52 inches 

from the throat. Considered in terms of the overall values of L 

involved (100 to IhO  inches), this gradual shift of 12 inches is a rela- 

tively minor change. Thus the approach used here of representing the 

local nonuniform stream by an idealized point source appears to be rea- 

sonable. 

The description of the source flow is now complete. In the next 

section a discussion is given of the available solutions to problems of 

flow around objects placed in a source flow. We then turn to the specific 

problem of source-flow effects on wakes and begin with a general descrip- 

tion of the wake behind a sphere. Particular enrpliasis is placed on showing 

that some of the available source-flow solutions can be applied to the 

wake problem. The theory of the correction scheme for wake flow is then 

treated in Sections ^.5 and ^.6. 

U.5 Available Source-Flow Solutions 

Source-flow effects were recognized to be significant only after a 

considerable number of hypervelocity tunnels had been put into operation. 

It wcs then found that substantial errors could result from the conduct 

of tests in a diverging stream. This realization stimulated a consid- 

erable amount of analytical work aimed at finding ways for correcting the 

experimental data. 

The first published work on source-flow effects is due to Baradell 

and Bertram (i960). They use the method of characteristics to calculate 
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the flow field about a blunted flat plate in the flow from a point source. 

The solution for the nose region is an approximation^ since the body- 

surface here is replaced by a so-called "sonic wedge". Several other 

studies make use of simple Newtonian theory to estimate the effects on the 

surface pressure on sleiidar bodies. This is done by Burke and Bird (1962) 

and Whitfield and Norfleet (1962) for wedges and cones, and by Hall (1963), 

who includes the Basemann centrifugal term for flow over curved surfaces. 

The work of Hall, in particular, extends the application of the simple 

Newtonian-flow model to generalized free-stream nonuniformities. Hall 

also treats the problem of a blunted slender body (typically a hemisphere- 

cylinder nomhlnatlon) by performing a perturbation analysis on a flow 

model based on the detached-shock-wave theory of Cheng (i960). The source- 

flow perturbations of the shock-wave location and  surface pressure are 

thereby estimated. 

A different approach is used by Berndt (1962), who adopts the constant- 

density approximation to estimate the effect on the shock-wave stand-off 

distance and  the stagnation-point velocity gradient for a blunt nose. 

Following a suggestion by Berndt, Meyer (1965) used the blast-wave analogy 

to treat the problem of a hemisphere-cylinder model in the flow from a 

point source. 

More recently. Savage (1966) has used the Newtonian successive- 

approximation scheme of Cole (1957) to calculate the effect on the flow 

field about a slender cone. This method of solution represents a more 

systematic approach to the problem than does the straightforward pertur- 

bation method based on the simple Newtonian-flow model. The results of 

Savage, worked out to second order in the Newtonian expansion, are not 

significantly different, however, from those of Whitfield and Norfleet, 

and of Hall. 

As regards numerical solutions, in addition to the early work of 

Baradell and Bertram, there are two recent studies by Eaves and Lewis 

(I965) and Inouye (1966a). Saves and Lewis consider a hemisphere-cylinder 

model in which source-flow effects are included in the method-of- 

characteristics calculations but neglected in the solution for the sub- 

sonic-transonic flow in the nose region. That is, the blunt-body solution 

is for a uniform parallel flow, whereas in the supersonic portion of the 



flow field the upstream boundary condition at the shock vave corresponds 

to the case of nonuniformities resulting from a point source. Also 

included in this analysis are viscous effects over the model and their 

interaction with the inviscid flow field. The work of Inouye, on the 

other hand, treats exclusively the inviscid problem. The solution is 

exact in that source-flow effects are accounted for in both the subsonic- 

transonic region and the supersonic region. The solution for these 

regions is based respectively on the blunt-body solution of Van Dyke 

(1958) and on the method of characteristics. The model configurations 

considered include a spherical nose, ellipsoidal nose, spherically blunted 

cone, and, of particular interest to the present investigation, a hemi- 

spherical nose with a cylindrical afterbody. 

To see which of the aforementioned solutions are applicable to the 

current problem of source-flow correction we first review briefly the 

general character of the wake behind a sphere. This is done in the next 

section, which also gives a preliminary discussion of how the pertinent 

.solutions '.jill be used. 

k.h   The Wake Behind a Sphäre 

For the present study, we are not concerned directly with the near- 

wake region upstream of the wake neck. The near wake will be considered 

only in terras of its gross effect on the wake downstream; the complicated 

structure of the recirctüation zone will be ignored for the most part. 

The remainder of the wake (downstream of the neck) is assumed to consist 

of two distinct regions, the outer inviscid wake and the inner viscous 

wake (see Fig. l). 

The flow in the outer inviscid region consists primarily of the 

familiar entropy layer and shock layer. The overall picture of the 

inviscid wake behind the sphere is comparable to the aft portion of the 

flow field around a hemisphere-cylinder model. This similarity is based 

on the following considerations: 

(l) The inviscid flow field around a blunt-nosed body is dominated by 

the bow shock wave, which in turn is dictated by the shape of the nose. 

The sphere and the hemiöphere-cylinder have identical nose shapes. 
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(2) Even if the two flow fields are not the same in every detail, the 

overall picture of the inviscid flow is affected only slightly by the 

differences. To illustrate this, 

we construct an inviscid flow 

field for the sphere in -which 

the supersonic stream comes to- 

gether at the rear (see accom- 

panying sketch ). By construction 

the space that is taken up by the 

cylindrical afterbody in the case 

of the hemisphere-cylinder is 

now occupied by fluid; the tvo 

flow fields are therefore some- 

what different. This difference does not significantly affect the rest 

of the inviscid flow field, however. This is because the fluid near the 

longitudinal axis, being part of the entropy layer, is of low density. 

In addition, the volume difference that is under consideration is rela- 

tively small. Thus the details of the afterbody geometry do not play a 

crucial, role in determining the overall inviscid flow field. In the 

actual flow behind the sphere the existence of the viscous vake modifies 

the above picture in any case. The viscoua wakt. may be thought of in a 

sense as replacing the cylindrical afterbody. The amount of fluid that 

flows through the viscous vake is small, however, and the inviscid wakes 

may still be considered similar to each other. 

(3) Insofar as the inviscid vake is concerned, the recempression shock 

wave emanating from the neck region has been shown by Feldman (196l) to 

have negligible effect and vill be disregarded in the analysis to follow. 

Here again the equivalence of the tvo wakes is substantiated. 

In view of the similarity of the inviscid vakes for the sphere and 

The conical region behind the sphere, drawn in dashed line, may be 
interpreted as being either a dead-water region or a solid afterbody. 
This extension in boundary is necessary because otherwise the stream 
would have to be turned through 90° at the rearmost point on the 
sphere, which is not possible for a supersonic stream. 
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the hemisphere-cylinder, all the source-flow solutions worked out for 

the latter case can he applied to the inviscid wake of the sphere. In 

particular the solutions of Meyer (1965), Hall (1965), and Inouye (I966a,b) 

will be used simultaneously, as well as first-order hlast-wave theory. 

Where possible the approximate solutions of Hall and the results from 

blast-wave theory are preferred because of their inherent simplicity. 

The work of Inouye is invaluable, however, in that it provides a means 

for checking the accuracy of the other methods. 

Turning to the inner, viscous portion of the wake, we note that it 

has its origin in the boundary layer on the sphere. The boundary layer 

separates near the meridian cp = it/2 (cp defined in Fig. l), despite the 

existence there of a favorable pressure gradient in the external inviscid 

flow. Separation in this instance is caused by high-pressure signals 

that originate in the downstream conipression region near the wake neck and 

propagate upstream through the subsonic portion of the wake and boundary 

layer. The boundary layer after separation becomes a free shear layer 

in which mixing takes place with the external inviscid flow. Viscous- 

inviscid interaction then characterizes the compression process that 

accompanies the turning of the shear layer back to parallel with the wake 

axis. The resultant inner wake is relatively hot, und viscous effects 

are then important. A short distance after the annular shear layer has 

coalesced into the viscous wake proper, the flow becomes supersonic 

throughout. Since the flow in the viscous wake is of the boundary-layer 

type, the static pressure at a given longitudinal location is uniform 

and equal to the value in the external inviscid flow at that location. 

One may thus think of an inviscid-pressure "envelope" surrounding the 

viscous wake. In general the development of the viscous wake depends both 

on this imposed pressure field and on the diffusion processes present. 

For the conditions of the current tests, however, the pressure field has 

the more important effect, as will be shown in Section ^.6. To the extent 

that this is true, the inviscid solutions for the hemisphere-cylinder 

model are again applicable in the analysis of the viscous wake. In 

addition, since the viscous wake originates in the boundary layer, a 

consideration of source-flow effects on the viscous wake must necessarily 

include the related effects on the boundary layer as well. To study 
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these latter effects, we need the inviscid pressure distribution over 

the nose region, vhich the numerical vork of Inouye (1966a) alone pro- 

vides, since the studies of Meyer and liall do not treat the nose region 

in detail but only account for the cumulative effect of the nose shape 

through the overall nose drag. 

We now proceed to a more detailed consideration of the source-flow 

correction schemes in the next two section. 

^•5 Source-Flow Correction for Inviscid Wake 

It was pointed out in the last section that the inviscid wake behind 

a sphere is essentially equivalent to the aft portion of the inviscid 

flow field of a hemisphere-cylinder model. The latter model in a source 

flow has been studied by several investigators (see Section h.J>).    In 

these studies the flow variable of primary interest has been the static 

pressure on the surface of the model. The  results show that a source flow 

has considerable influence on the magnitude of the surface pressure, as 

well as the static pressure in genera].. To illustrate this, the normal- 

ized pressure difference, (p- -p- )/?_ , as calculated from unpublished 
# u  s   u 

results of Inouye , is presented in Fij. 19 as A function of the normal- 

ized radial distance f = r/R. Here Pp denotes the static pressure in 

the wake (that is, downstream, of the bow shock wave), the subscripts 

"u" and "s" refer to uniform flow and source flow respectively, and R 

is the distance from the axis of symmetry to the bow shock wave. Tne 

results are for an x/d of 5  (x and d defined in Fig. l), which is 

the farthest station considered by Inouye. The values of p2 for source 

flow are taken from the case with T./L   - 0.02, the smallest value of 
D' o     ' 

the source-flow jiarameter studied by Inouye. For the particular case 

considered, the q. lantity (p2 -p2 )/p2  ranges from 0.35 to 0.1<O. Thus 
u  s   u 

the difference in the static pressure is an order of magnitude larger than 

the source-flow parameter and should not be ignored. 

it 
The author wishes to thank Mr. M. Inouye of .toes Research Center for 
providing these results. 

1A 



For the present investigation the quantity of more dire it interest 

is the wake Pitot pressure p'. This can be deduced from the static 

pressure and the Mach number, the latter being also available from 

Inouye's unpublished results. The fractional difference (p* -p' )/■£' 
u  s   u 

thus calculated is plotted along -with the static-pressure results in 

Fig. 19« Although the difference here is not as large as for the static 

pressure, it is still from ten to fifteen times the value of r,/L . In 

the present experiments the source-flow parameter iv/L  assumes values 

up to 0.01. On the basis of dependence on r,/L  alone (if we assume 

a linear dependence) errors of 10 to 15 percent may thus be anticipated 

in the Pitot pressure in the most serious case. The quantity r,/L  is 

not the only controlling parameter, however; source-flow effects also 

increase with the distance x/d. In the present tests the station with 

the largest value of r,/L  is at an x/d of about 15, compared with 

x/d = 5 for the case considered in Fig. 19^ Because of the added source- 

flow effect due to the larger value of x/d, the discrepancy in Pitot 

pressure can thus be expected to be substantially larger than 10 to 15 

percent. 

Besides affecting the magnitude of the Pitot pressure, the source 

flow also changes the lateral extension of the wake. It is thus desirable 

to find a means of correcting for both these effects. An immediately 

obvious approach is the direct use of method-of-characteristics results. 

The calculations that this method entails are involved and lengthy, how- 

ever, and we seek to develop an approximate scheme that makes use of 

relatively simple analytical expressions. In this derivation, Inouye's 

more accurate method-of-characteristics results will be used either to 

check the approximate theory employed or to justify the assumptions that 

are made. 

We shall first outline the essential steps in the correction method, 

after which the various points that require explanation will be discussed 

in detail. 

(l) Up to the point where r is 0.7 to 0.8, the variation of the 

total pressure with r is assumed to be the same for uniform flnw and 

source flee». 
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(2) At a given longitudinal station, the variation of the static- 

pressuf's ratio Po(r)/Po  vith r is assumed to be unchanged from uni- 
e 

form flow to source flow. Here p0 = p0(r ) is the pressure at the 
e   ^ e 

surface of the cylindrical afterbody, which in the case of the wake behind 

a sphere is equivalent to the hypothetical "surface" separating the viscous 

and inviscid wakes, or the "edge" of the viscous wake. Since the ratio 

Po(r)/Po  cannot be deduced from expsrimental data, we use the results 
e 

from first-order blast-wave theory, which compare favorably with the 

method-of ~c'. aracteristics results. 

(5) The longitudinal variation of ohe surface pressure for uniform flow, 

(Po ) , is given satisfactorily by first-order blast-wave theory. The 
e 

corresponding pressure in source flow, (p0 ) , if obtained by combining 
e s 

blast-wave theory with a simple correction formula due to Hall (1963). 

An alternative approach that applies to the vertically traversing probe 

is to deduce (p9 )  at the particular station from experimen oal results, 
e 8 

and then use Hall's correction formula to obtain (p2 ) . In either case, 
e 

with the aid of (2) the transverse distributions p2 (r) and P2 (r) 
u s 

are ascertained independently of the method-of-characteristics results. 

(k)   With p« (f) known from (3), we then use the measured Pitot-pressure 
s 

distribution p' (r) to deduce the distribution of the total pressure 
o 
s 

[p*. (r)] • This is done through the use of routine normal-shock relations. 
2   S  ' 

By virtue of condition (l), the determination of [pt (r)]  also gives 
2 A 

the total-pressure distribution in uniform flow, [pt (r)]u. 

(5) With the distribution [p. (r)]  from CO and To (*) from (3), 
2 u     * 

the required Pitot-preasure distribution in uniform flow, p^ (r), can 
u 

be aeduced accordingly. 

(6) The lateral distance in the inviscid wake in source flow, rs, is 

corrected by a single scaling down of the distance with the ratio RU/RF^ 

1+6 
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vhere R is the distance from the wake axis to the shock vave. 

In the foregoing outline, steps (U) and (5) are straightforiard and 

need no further expiration at this point.  .Steps (l), (2), (3),  and 

(6) on the other hand require elaboration. Since the theory in svpport 

of these steps draws from the work of Meyor (1965), Hall (1963), and 

Inouye (l966a,b), we now describe these solutions in brief and note some 

of the results. 

Meyer solved the inviscid problem of a hemisphere-cylinder model in 

a source flow by application of the blast-wave analogy. Formulating the 

problem in the manner of the second-order blast-wave theory of Sakurai 

(1955, 195^) and accounting for source-flow effects through the upstream 

boundary condition at the bow shock wave, Meyer showed that source-flow 

effects come into play only in the second-order terms, where they appear 

through a blast-wave source-flow parameter k  defined by 
s 

nx o/ 
(^•6) 

In this definition J  is a function of y   alone and is C.877 for 

7 = 1.4 (see Sakurai, 1955), C  is the drag coefficient of the nose, 

VL      is the Mach mum/ar upstream of the shock wave at the nose, r^ is 
n 

the nose radius of the hemisphere-cylinder, and L  is the distance from 

the nose to the origin of the source. With the source-flow peraineter 

k  as the parametric variable, solutions are obtained by n-Jjnerical inte- 

gration for the pressure, density, radial component of velocity, and 

shock-wave shape. 

The second-order results from Meyer's work that are of interest to 

the present study are those for static pressure and shock-wave shape. 

Although none of these results are actually employed in the correction 

scheme, they are useful in the comparison of the relative accuracy of 

various theories. It is through this comparison that we are able to show 

Later (in Section 5.5) when the correction scheme is applied to actual 
test data, some of the details of these 1;WO steps will be discussed. 
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that the second-order results do not represent a significant improvement 

over first-order hlast-vave theory. Furthermore, the first-order results, 

vhich are adopted for use in the correction scheme, are contained in the 

second-order results* For these reasons ve summarize the pertinent re- 

sults from Meyer's second-order solution. 

Meyer's result for the static pressure can be written as 

8 ■ g^^ (1 ^ Kr;ka)6(x;k )} , 
6(x;kB) 

(M) 

vhere x « x/d, 6 is the parameter in the hlast-vave expansion, and 

g^ ' and g^ 'i|r axe respectively the first- and second-order coefficients 

in the expansion. The quantity £ is given by 

•VR/V£ 

[i-x^u/p^n 
(^.8) 

vith 

^■■^t^^ t] {h.9) 

and 

^ = (rA)cDr^    . (1^.10) 

Source-flow effects enter into Bq.s. (^.8) and (^.9) through the parameter 

\..  = -I.992 - 2.695 k ,  for 7 = l.k    . (^.n) 

The function g^ ' in Eq,. (^.7) depends on r and 7 but not on k 

W 

• ' -"^■—-", 
,-i. 



and is given by 

e
(0)C?;r) = yl y+1 

y 7 

|(72+27-l) 

(^.12) 

The quantity iKfjk ) is not expressible in closed form and must be 

obtained by numerical integration. Meyer's results for \|f are shown in 

Fig. 20 iui values of k  ranging from 0 to 1.6. 
s 

It is now possible to derive a simplified expression for the surface 

pressure. Since there is practically no radial gradient in the pressure 

near the body surface - this is confirmed by blast-wave theory - it is 

customary in balst-wave applice.oions to use the pressure at the axis 

(r = 0) as the surface pressure. The variation of t*=ri with k  for rr=0 
this special case is vlven by the linear relation 

♦rcO = "0•662 " 3•596 k8 (*.13) 

When EqB. (^.8) through (^.IJ/ are used in Bq. C+.T), the resultant 

pressure can be expanded in the parameter 2X,1(j /yCL.) ' TC /X. To second 

order the fellow lüg is obtained for the surface pressure: 

—£ = 0.0671 VcT — + 0.353 - O.669 k ,  for 7 = \,\ .  ik.lk) 
Pi D " S P 

n 

The vsiLue of CL for the hemispherical nose is taken to be 1.0. 

In first-order blast-wave theory (see Lukasiewicz, 1961), the surface- 

pressure result is simply the first term of the right-hand sid*1 of Eq.. 

{k.lk): 

— = 0.0671 VCT, — . (^•15) 
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The first-order result for the transverse veu-lation of the static 

prsssure, Pg^r), vill also be needed. This is most conveniently given 

"by the ratio Pg(r)/p2 , for vhich we ha^re from Eq. (^.7)^ vith the 

second-order term omitled; 

The right-hand side of this equation is easily calculated from Eq.. (^.12). 

As to the t'tudy of Hall (1963), source-flow solutions for the hemi- 

sphere-cylinder model are obtained explicitly for surface pressure and 

shock-vave location. In this vork the quantity rb/L  is used as the 

source-flow parameter. We will have occasion to use the ratios 

(Po ) /(P/> )  and R /R > for which Hall's results are 
&_ S   ^^ U        8  U e    e 

^p2 ^a        /r \ 

£-♦$©* • '^ 
We are now in a position to present the supporting evidence and 

provide the specific formulas for steps (l), (2), (3), and (6) in the 

correction procedure outlined earlier. 

(l) In the Inviscid flow behind the bow shock wave, the total pressure 

p  along any given streamline is a constant. Its value changes from 

streamline to streamline, however, because the fluid along the various 

streamlines has traversed portions of the bow shock wave that have 

different angles of Inclination. Nevertheless, the value of p.  is a 
t2 

function only of the angle of Inclination of the portion of the shock 

nave traversed by the fluid in question. This is because the total 

pressure ahead of the shock wave, p. , is the same everywhere in the 
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free stream in both the uniform flow and the source flow. Now, at a 

given longitudinal station where the shock-wave inclination is not 

""Arge, the streamlines that are not too close to the shock wave are al- 

most horizontal. The fluid here has crossed the shock wave at points 

considerably farther upstream. In particular, if consideration is liiaited 

to the entropy layer next to the body, the fluid there has traversed the 

segment of the bow shock wave that is nearly normal to the flow axis. 

The slope at corresponding points of this segment does not differ signif- 

icantly between uniform flow and so irce flow. This can be confirmed by 

comparing values of (dR/dx)  and (dR/dx)  calculated from Eq. (^.9)« 

This suggests that the distribution p. (r) is the same for both uniform 
t2 

flow and source flow if the portion of the flow field near the shock wave 

is excluded from consideration. 

This conjecture is in fact supported by the method-of-characteristics 

calculations of Inouye (1966b), whose unpublished results have been used 

to obtain the ratio  (p. ) /(p. )  given in Fig. 21. Although the ratio 
P     2 U 

tends to behave erratically near the shock wave, it is nevertheless close 

to unity for a considtrable portion of the wake. If the difference 

[(p* ) -(P4. ) ]/(P+ )  is "to fc6 le8S t11613 5^ for the case under con- «p U   Xp S    tp U 

sideration, then the total-pressure distribution may be assumed to be the 

same up to r of about 0.?. Within this range the assvnnption is quite 

good, considering the fact that the corresponding difference in the wake 

Fibot pressure can be as large as 30%. 

(2) The normalized static-pressure distribution Pp(f)/pp , as calculated 
e 

from Inouye's method-of-characteristics results, is compared in Fig. 22 

for uniform flow and source flow. The agreement in this case is good 

all the way to the shock wave, although one cannot take full advantage 

of this fact, in view of the limited range of validity of the assumption 

concerning the identity of total pressure in step (l). Shown in the same 

figure are points calculated from Meyer's second-order blast-wave result 

of Eq. {h.f),  for both un?' •  low and source flow, and from the first- 

order blast-wave result of Eq. (^.16). There is good agreement among 

the five sets of results, except for the second-order results for source 

flow in the range of r between O.85 and 1.0, which is in any case 
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outside the range of interest. For the portiou of the vake vhere r is 

less than 0.7, in particular, there is only a small difference among all 

five sets of results. For simplicity of calculation it vill therefore 

be assumed that the distribution given by first-order blast-vave theory 

can be used for both uniform flow and source flow. The advantage here 

is that this result, Eq. (k.lS),  involves a simple analytical expression 

that is a function only of r and 7. The second-order results of 

Meyer would have improved the accuracy somewhat. They were not used, 

however, because of the added complexity of calculatioii, expecially the 

Inclusion of the function i|f that cannot be expressed rnalytically. 

(3) We now consider the available solutions or the longitudinal variation 

of the surface pressure p« . Resultf from the first- and second-orier 
e 

blast-wave theory, Eqs. (U.15) and (^.l^) respectively, are compared in 

Fig. 23 against the more accurate numerical results of Inouye. The 

corresponding correction curves are . yen in Fig. <::r. The . rrection 

formula of Hall, Eq.. {k.Vj),  has been used with the first-order blast- 

wave curve, even though in Hall's analysis he uses the Newton-Busemann 

pressure formula rather than the blast-wave expression of Eq. (^.15). 

This is consistent with Hall's theory, however, jince in deriving the 

result of Eq. (^.1?) for the pressure rat^.o Hall implies the adoption of 

the first-order theory by using the parabolic bow shock wave from this 

theory. 

The method-of-characteristics results in Figs. 23 and 21»- have been 

obtained by extrapolation and interpolation of Inouye's results. The 

calculations of Inouye (1966a) were carried out only to x of 5. The 

curve for urlform flow for points beyond is therefore extrapolated with 

the use of the blast-wa/e correlation method suggested by Van Hise (1961). 

In this extrapolation, we have used as a glide the method-of-characteristics 

calculations of Feldman (i960) for air with real-gas effects (^ = 18) 
n 

and carrif 1 to x «= 50. Also., since Inouye fs results are for 

r-Zli = 0, 0.02, 0,0h,  and 0.06, the correction curve, which is for 

T./L   =0.01 (or k =0.8), is obtained by graphical interpolation o^ 
b' o s 
Inouye's correction curves (his Fig. lib) up to x/r. = 10. Beyond this 
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point a linear extrapolation has been adopted to continue the linear 

trend exhibit 'd by the original curve. 

The comparison of results in Fig. 25 shows that for the range of 

stations involved in this study (x < 15), first-order blast-vave theory 

gives a more accurate prediction of the surface pressure than the second- 

order theory for both uniform flow and source flow. In addition, the 

correction formula of Hall is considerably more accurate than Meyer's 

second-order result from Eq.. (l+.l^). Strictly speaking, the numerical 

results of Inouye are superior to both Meyer and Hall in terms of accuracy. 

For the present study, however, ve are interested in a set of relatively 

simple analytical expressions that afford more flexibility with regard to 

the source-flow parameter, the Mach number M, , and the longitudinal 
n 

station x. These conditions are met by the combined results of Hall, 

Eq. (if. 17), and first-order blast-wave theory, Eq. (^.15), and these will 

be used in the current work, even though some accuracy is sacrificed in 

the process. 

(6) With regard to the lateral distance r  in source flow, we correct 

it to uniform flow according to the simple relation 

ru = (Wrs ' ^'^ 

where \/R-f    the ratio of the distances to the shock wave, is given by 
Eq. (if.l8). This correction appears to be reasonable, since the normalized 

radial distance r = r/R correlates quite well the pressure results for 

uniform flow and source flow. For the ratio Pk/R , we have used Eq. u' s 
(^.18) rather than Meyer's result from second-order blast-wave theory, which 

can be calculated from Eq. (^.9). This  is because Eq. (^.18) has been 
shown by Hall to be in better agreement with experimental data. 

This completes the discussion of the essentials of the correction 

scheme for the Fitot pressure in the Inviscid wake. Some of the details 

of the method will be considered in Section 5.3, following a general 

description of the data-reduction procedure. Ve proceed now to a discussion 

of the corresponding scheme for the viscous wake. 
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^.6 Souroe-Flow Correction for VIFCOUS Wake 

The general character of the viscous vake has been discussed in 

Section U.U. It vas pointed out that this portion of the vake originates 

in the "boundary layer over the hemispherical nose. This boundary layer 

upon separation becomes a free shear layer that subsequently coalesces 

to form the viscous vake. To consider the source-flow >. °fects on the 

development of the viscous vake - and in particular on the Pitot pressure — 

it is necessary first to study the effect on the flow in the boundary 

layer and the free shea:- layer. In the analysis to follow it will be 

useful to divide the viscous-flow region into two parts: (l) the boundary 

layer on the body together vith the free shear layer, and (2) the viscous 

vake downstream of the neck. This division is desirable because the 

flow differs somewhat in these two subregions and different approaches 

are used to study the source-flow effects. 

Boundaiy Layer and Free Shear Layer; We first consider only the boundary 

layer over the hemispherical nose prior to separation. At the end of 

this subsection, it will be shown that the conclusion reached for the 

boundary layer applies equally veil through the free shear layer. 

To study the effect on the boundary layer, ve use the source-flow 

results of Inouye (1966c) for the inviscid external flow as an input to 

the boundary-layer solution of Cohen and Reshotko (1956). Parts of 

both these solutions that are pertinent to the preaent study will now 

be described in brief. 

The work of Cohen and Reshotko gives self-similar solutions for 

two-dimensional boundary-layer flows with arbitrary pressure gradient 

and Mach number bat vith the Prandtl number Pr restricted to 1.0. 

The study also has as a parametric variable the quantity S « K./^*.    " ^ 
v   w ^ex 

vhere the subscript "w" refers to conditions at the surface of the 

model. For a perfect gas S  is equal to (T /T.  - l) and thus is 
v w ^ex 

a measure of the ratio of model temperature to free-stream total tempera- 

ture. 

The inclusion of a non-zero pressure gradient means that the solu- 

tion 1& not restricted to a flat plate and can be applied to the case 
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of the hemispherical nose under study in the present vork, provided 

that local similarity is assumed. Also, the tvo-dlmensional boundary- 

layer transformations used by Cohen and Reshcjko must be modified to account 

for the axial symmetry in the flow over the hemisphere. The restriction 

on the Prandtl number is not a serious one for the current study in vhich 

only comparative information is being sought. The ratio of the thick- 

nesses of the velocity and thermal boundary layers is associated vith 

the Prandtl number (see Schlichting, I960, p. 30l). It Is reasonable to 

assume that the source flow affects these layers to about the same extent, 

rcgercless of the ratio of the thicknesses. We shall therefore use the 

results for Pr = 1.0 for the present case where the Prandtl number is 

approximately 0.7. As regards the parameter S . it is assumed to have 
w 

the value -1.0, that is, the body is assumed to be "cold". This is 

Justifiable because the Initial temperature of the model does not exceed 

one-fifth, and for most runs is closer to one-tenth, the value of the 

free-stream total temperature. Sinc^ the duration of the run is «hor*, 

the model does not heat up significantly in the course of the run. 

The primary input to the solution of Coheu and Reshotko is the 

static pressure in the inviscid stream external to the boundary layer, 

or equivalently, the surface pressure p2  on the body of interest. 
ex 

For the case of the hemispherical nose under study here, this information 

can be obtained from Inouye's surface-pressure results, vhich are gjven 

in Fig. 25 for uniform flow (iv/L, = o) and source flow (^v/L = 0.02). 

According to Inouye, although in the subsonic-transonic region the 

difference [(p2 ) "(Po LVCPo )u 
is <**■' ^e  same order of magnitude 

ex   "ex     ex 
as the source-flow parameter rb/L , the difference in the supersonic 

region soon becomes an order of magnitude larger than r,/L . For 

example, the results of Fig. 25 show that at cp = Jt/2 (supersonic region) 

the pressure ratio p0 /(p. )  for uniform flow and source flow is 
ex  fc2 n 

respectively 0.036 and 0.050, giving a difference of about 1?^« 

With th!?. large difference in p2 , it is reasonabxe to expect that the 
ex 

development of the boundary layer will be significantly affected by the 

source flow. The magnitude of the effect can be assessed by substituting 
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both sets of surface-pressure results into the solution of Cohen and 

Reshotko and co&iputing the boundary-layer growth in the two cases. 

In contrast to the relatively large difference in surface pressure, 

bhe total pressure along the body streamline is tne sane for uniform 

flow and source flow. This results from the a;-sumption of issntropic 

•Claw  in the invltcid stream in both cases. In either case the total 

pressure corresponds to the s-uagnation-point pressure, which is the same 

in uniform flow and source flow since the fluid has traversed the normal 

ex ex 
one can calculate the temperature ratios T /T.   and Ts/T   as 
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portion of the bow shock wave and conditions ahead of it are Identical 

In both cases. 

On the basis of thrise considerations of surface pressure and total 

pressure in tne invlscld stream, we are now in a position to study the 

effect of the source flow on the boundary layer. The details of the 

calculations and the variouf assumptions are given in Appendix D. Here 
i 

we shall merely outline the approach an-3! summarize the result^:: 

II (l) In the solution of Cohen and Reshotko, an important parametric 

■"triable is the precsure-gradient parameter ß, which depends on conc'l- 

tir-s in the e\warnal flow. In the present case, by virtue of the 

isentropic condition, the external flow is completely specified by the 

pressuxe results of Fig. 25. It is thus possible to use these data to 

calculate the values of ß at (p = «/^ for uniform flow and source flow. 

It is found that the difference (ß -ß )/ß  is only 0.0066 for the 

case with r,/l = 0.02. The -"ariation ir ß is thus negligibly small, 

particularly when conipared with the relatively large difference of 0.17 

in the surface pressure. 

(2) Certain ratios of flow quantities, when expressed as functions ox 

a boundary-layer «:■ ollarity variable T), are relatively insensitive to 

changes in ß. Since the difference in ß between uniform flow and 

source flow is small, one can assume that these ratios are the same for 

the two flows. Examples of ratios that satisfy this condition are the 

total-enthalpy ratio \/K       and the velocity ratio V/Vex. 
"Jit " 

(3) Using the Identity in the ratios of velocity and total enthalpy. 



functions of n.    For the case with r,/L = 0.02, the fractional 
D' o 

difference (T -T )/T  at cp = n/2    is about 0.05 throughout almost 

the entire boundary layer. 

(4) The temperature ratios calculated in (3) can be used to estimate 

the difference In the lateral extent of the boundary layer in the physical 
I 

plane. At cp = n/2,    the ratio 5 /6  of the boundary-layer thickness 

turns out to be given by the relation 

5S/Bu = 1 + 4.75 (VV ' for ^ = V2 •       (^20) 

The above results have been calculated for the boundary layer at 

<P = it/2. It is assumed that the boundary layer has not sere rated up 

to this point, but that it does so shortly thereafter, so that the results 

describe the conditions just before separation. The process of fluid 

sepu: vtion is complicated, and no attempt vill be made to analyze it 

here. We shall, simply assume that neither the location of separation nor 

the local separation mechanism is significantly differert for uniform 

flow and source flow. Whereas the profile shapes of specific flow 

quantities before and after separation undoubtedly differ considerably 

from each other, it seems reasonable to assume that the functional 

relationship in each case is Independent of the slightly different local 

conditions that exist in uniform flow and source flow. This functional 

relationship is therefore assuT  to be the same for the tvo flows. With 

this assumption, the boundary-layer thickness 8 in uniform flow and 

source flow bears the BSWB  relationship to each other after separation 

as before. Equation (^.20) then provides the ratio of the thickness of 

the free shear layer Just after separation. 

The application of Eq. {k.20)  can be extended to the entire free 

shear layer through the following argument. The fluid in the free shear 

layer (from separation to recompression at the neck) is dominated by the 

adjoining recirculatlon zone, in which the static pressure, or base 

pressure, is essentially constant. The free shear layer thus undergoes 

a constant-pressure mixing process. The assumption of a constant-pressure 

process has in fact been used In base-flow and near-wake-flow models 
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by various investigators, such as Denlson and Baum (1963) and Reeves 

and Lees (1965). To the extent that this as-umrption Is valid, It Is 

reasonable to stipulate that the ratio of the cross-sectional area of the 

shear layer at separation to its area at the neck is the same for both 

uniform flow and source flow. We base this assumption (regarding the 

ratio of areas) on the fact that significant area changes in the shear 

layer occur only if there is a marked variation in the pressure field, 

as for example in an expanding flow. In the present instance of the 

shear layer along the recirculation zone, however, the pressure is 

essentially constant in oact: of the two cases of uniform flow ana source 

flow. The cross-sectional area of the layer can thus be expected to 

remain basically unchanged from the separation point to the neck. When 

mixing is Included, the chear layer does undergo an area increase, owing 

to the entralnment of fluid from the outside. It seems reasonable to 

assume, however, that the rate of area Increase is the same for both 

uniform flow and source flow. This then leads to the identity in area 

ratio for the two cases. On this basis Eq. (^.20) is applicable through- 

out the entire free sheir layer as well. 

The boundary layer and the free shear layer are annular in shape 

at separation. As the shear layer flows towards the axis, its thickness 

increases, until eventually it coalesces Just ahead of the neck. This 

change in cross-secti^jal geometry Lrings about a modification of the 

ratio of the lateral dimension of the viscous wake at the neck. The 

ratio of the areas of the annular boundary layer at 9 = n/2 is 

^1   (2r.+6 )8   5 
B   v  b  S7 S ~ J3 

A...  = l2r.+5 ;5 = 5 T)l   v b u7 u   u 
{k.2l) 

u 

for (2r.+8 ) » ^5 -8 ). Since the ratio of the areas of the boundary 
Du       B  u 

layer is assumed to apply as well to the areas of the coalesced shear 

layer at the neck, then we have 

5S 

-^ :  
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vhere r_ = r_ /d denotes the radius of the viscous vake at the neck. 
o   P 

Thus, from purely geometric considerations, the effect of the source 

ilow on the lateral dimension of the viscous vake is approximately half 

the effect on the boundary layer. 

We are now in a position to consider the viscous vaJ^e p ,.«r down- 

stre-an of the neck. 

Viscous Vokn Proper; The problem of deriving a source-flow correction 

for the ...scous vake vill be considered in two parts. The first is to 

determine the extent to which the source flow influences wake growth. 

From this consideration ve devise a correction for the lateral dimension 

of the vake. The second aspect of the problem is to obtain a local 

magnitude correction for the measured Fltot pressure. 

Th»? growth of the viscous wake is governed both by expansion due to 

the Imposed inviscid-pressure envelope and by laminar or turbulent 

diffusion of various flow quantities from the inner to the outer vake. 

Since one of the major points of difference betveen the tvo portions of 

the vake is that th'? Inner vake is much hotter, an important fluid 

property to Tje considered is the static enthalpy. Lees and Hromas (1962) 

have studied the problem of vake growth on a semi-empirical basis, taking 

into account both expansion and turbulent diffusion of static en.halpy. 

They assume that the development of the viscous vake can be divided 

approximately into three stages for vhich either expansion or diffusion, 

or both, is important. Expansion vithout diffusion governs the initial 

stage of vake growth up to the point at which the Imposed inviscid 

pressure — and hence the pressure all the way through the viscous vake — 

is four times the free-stream static pressure, p1 , at the nose of 
n 
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the model. Downstream from this point to where the pressure has decayed 

to p. ,    hoth expansion and diffusion are important. Beyond this region 
n 

diffusion becomes the sole mechanism. (The term "diffusion" here refers 

to turbulent diffusion only, since the laminar counterpart may be assumed 

to be insignificant by comparison.) 

The farthest station encountered in the present experiments 

(x 3 15) is about midway through the second region considered by Lees 

and Hromas. According to their model, therefore, both expansion and 

diffusion should be Included in devising a source-flow correction scheme. 

When their results are considered In detail, however, it is found that 

within the present region of Interest (that is, up to x = 15) the 

contribution to wake growth from diffusion is relatively small. By 

assuming that the expansion and diffusion mechanisms con be treated as 

uncoupled, one can devise a correction scheme that accounts for source- 

flow effects due to expansion alone. The diffusion contribution by 

virtue of its insignificant part in the overall picture of wake growth, 

is assumed to be the same in both uniform and source flows. 

We now consider in some detail parts of the solution of Lees and 

Hromas, who have worked out the uniform-flow problem for ML =22. At 
n 

this Mach number, the rake pressure is kp.      at x -• 7*5 and approaches 
n 

p.  at x of about 50. The turbulent-diffusion calculations were 

carried out for two cases: (l) pressure held constant at p,  down- 
n 

stream of x = 7.5, and (2) pressure gradually decreasing from kp^ 
n 

to p. , starting from the same axial location. The results of their 
n * - 

calculations are shown In Fig. 26 , in which r = rf/d is the normalized 

radius of the viscous wake, the subscript "l" denoting the value at 

x - 7.5, which corresponds to the station at which diffusion is first 

Included. In case (l), ?_/?_  remains less than 1.2 up to x of 
r rl 

» 
The curves in this figure are deduced from Flg. k of Lykoudls (1965) 
rather than from Lees and Hromas because the scales used in Lykoudls's 
work are easier to read. 
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about 25, vhereas the growth is considerably faster over the same 

distance vhen expansion is taken into account in case (2). The relatively 

small vake growth of case (l) may be interpreted as indirect evidence 

that diffusion does not contribute significantly to the overall growth 

upstream of x = 25. 

In the application of the foregoing results - worked out for 

IL    =22 - to the present case of K. = 11,    the longitudinal distances 
n n 

at which the pressure is J+p,  and p.  are now different. To calculate 
n      n 

the pertinent distances in the present case we can use the pressure 

formula from second-order blast-wave theo^ r,  Eq.. (^.ll+), this being pre- 

ferred over the first-order expression of Eq. (^.15) because the former 

is more accurate for the larger distances involved here. For M-. = 11, 
n 

it is found that the pressure is kp.      at x = k,5   while p.  occurs 
n n 

at x = 50. The corresponding distances for R. = 22 vere x = 7.5 
n 

and x = 50. Since for this earlier case turbulent diffusion was 

relatively unlmportant upstream of about 25 body diameters, ve may assume 

that in the present instance it is likewise unimportant for x < 15. 

Hence in considering the data from the current experiments, in vhich 

x varies from 3 to 15, ve shall account for the source-flow effects 

associated with the expansion process but not those connected with 

diffusion. 

We now consider the expansion process that accompanies the decay 

of static pressure along the wake. At any given longitudinal station, 

the static pressure within the viscous vake is assumed to be uniform 

and equal to the pressure of the inviscid flow Just outside the vake. 

The longitudinal variation of this pressure, for both uniform flow and 

source flow, is a known quantity either from the numerical solution 

of Inouye or from first-order blast-wave theory (see Section k.5).    In 

addition the ratio of the areas of the viscous vake at the neck, 

A /A , is given by Eqs. (^.20) and (^.22) as 
s  u 

AO r^f )s12 
s     o 

A 
0 u 

O 

'•75(^)- 
= 1 + 1^.75 r5 •       (^23) 
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The problem is now to derive an expression for the area ratio A /A 

for any station farther downstream. This will then provide a means for 

correcting the lateral position within the wake from source flow to 

uniform flow. The expression for this area ratio should be in terms 

of the static pressure and flow quantities deducible therefrom. 

To derive the desired expression, consider an elemental annular 

streamtube within the viscous wake. If AA denotes the cross-sectional 

area of this streamtube at any station x and £A*   is the fictitious 

sonic area associated with £A,    then one can write the area relation 

ST 

In particular, for ZA  and M* Just downstream of tha neck we have 

These equalities are point relations and do not require the assumption 

of isentropic flow. In fact the flow within the viscous wake in general 

is not isentropic, and the total pressure and sonic area are not Invariant 

along any given streamtube. We shall however make the simplifying 

assumption that their variations for uniform flow and source flow are 

identical insofar as ratios between corresponding longitudinal stations 

are concerned. That is, we assume that for a given pair of longitudinal 

stations x  and x. within the viscous wake one may write 

In this equation and in the discussion to follow, the subscript "2" 
that denotes "downstream of the bow ishock wave" is omitted so as to 
render the subscript situation more easily manageable. 
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(^.25) 

(AA*/M*)s = (AA*/M*)u . 

7+1 

_£ = B ^ f lu A ' ,k26) 

vhere the notation Q is used to denote the ratio ' o 
On the right-iiand side of this equation, the ratio M /M   is 

s   u 
equal to A /A , vhich is given by Eq.. (^.23). Its value is a 

s  u 
function of the source-flow parameter r,/L  but not of the lateral 

location of the streamtube vithin the viscous vake. The static pressure 

is uniform at a particular longitudinal station, so that the ratios p 

and p  are also independent of lateral position. The compound ratio 
s 

VißL     in general varies vith the lateral coordinate. We shall assume 

however that at corresponding longitudinal stations, the transverse 

distribution of the normalized Mach number M/M  is identical for uniform 

flow and source flow, that is, 

(M/Me)s = (H/Me)u . (4.2?) 

The rationale behind this assumption will be discussed in Appendix E. 

Writing this equation for xo and x, ve then obtain 

H/ft «ft /ft   . (4.28) u' s   e ' e N   ' 
u  s 
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Thus local differences in pressure and other thermodynamic quantities 

(between uniform flow and source flow) are assumed to have an ineignifleant 

effect on the ratios of total pressure and sonic area of corresponding 

streamtubes. If Eqs. (U.^4) are now written for both uniform flow and 

source flow to form the ratio AA /AA  and Eqs. (4.25) are used to 

simplify the result, one obtains the relation 

K+l 

P , us  ■'s 



The compound ratio   Vi   /ft       can be calculated from the inviscld-tiressure 
e ' e 
u  s 

results, since at the edge of the viscous vake i;he flow is isentropic. 

When this relation is used in Eq. (^.26), the entire right-hand side 

becomes independent of the lateral coordinate of the particular stream- 

tube under consideration. The elemental areas can thus be integrated 

to give 

fi   A  M  ~  Z±l 
o  e /p \ 2/ 

u  0„ K  \Po ' 
A 
u   c .. 

u e s 

Since the integration can be carried out from the wake axis to any- 

desired position f vithin the viscous wake, the ratio A /A  applies 

not only to the overall area of the viscous wake but also to the area 

of radius f. Thus the desired source-flow correction formula for the 

lateral position r can be obtained from Eq. {h.2S)  as 

r       /A\fc      Äo   ne   /p   \ 
8        [^ f  8        U/ ^U   \ 

? "wi = Ao M ^p ; u L    u   e     -^s 

(^•50) 

We turn now to an outline of the procedure for correcting the 

magnitude of the measured Fitot pressure. The scheme is analogous in 

general to the one used in Section k.5 for the inviscid wake. 

(1) The measured Pitot pressure corresponds to the source- flow value, 

denoted by p• . In perticular, its value at the edge of the viscous 

wake, (p' ) = p' (?„ ), is known from the measurements provided f 
'   o s   o  e e 

e     s  s       _ s 
is found. The determination of r  will be considered in Section 5.3. 

e 
8     „     _ 

(2) If the flow at the viscous-wake edge f   or r • is assumed to 
u      s 

be isentropic, the total pressure p.  is equal to the known stagnation 
te 

pressure at the nose, this pressure being the same for both uniform flow 

and source flow. The Justification for the isentropic-flow assumption 
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vill be given following this outline. 

(3) For the source-flow case, the knowledge of (p' )  and (p ) 

determines uniquely the ratios of flow quantities at r e In particular, 
s 

w its determl- 

the quantities  I  and p   are known, 
s      s 

Since p  within the viscous wake is equal to p , 
s s 

nation in step (3), together with the measurement of p* , leads to the 
s 

specification of the Mach number within the entire viscous wake in source 

flow. Thus it is possible to calculate the quantity (M/M )   through- 
6 S 

out the wake. 

(5/ The major assumption that relates the source-x'low results to those 

for uniform flow concerns the Macb-number ratio ^M • As in the 

derivation of the formula for correcting the lateral distance, this 

ratio is ass-jmed to be the same for both uniform flow and source flow. 

The basis for this assumption is considered in Appendix E. 

(6) To calculate M , we observe from step (2) that p.  is the same 
u e 

for uniform flow and source flow. Only one other flow quantity is needed 

to specliy the flow, and for this the static pressure p  = p  is 
e 
u 

•u 

chosen. The value of p   is obtained from p  by means of the 
u s 

correction formula of Hall, Eq. (^.17). 

(?) The flow within the viscous wake in a hypothetical uniform stream 

is now specified by p  and M  to the extent that the desired value-- 

of p'  can be calculated with the use of a routine normal-shock relation, 
u 
In the foregoing procedure, the isentropic-flow assumption is 

Invoked at the edge of the viscous wake. The flow here is assumed to 

have expanded isentropically from the stagnation point. Strictly speaking, 

there are losses at the separation point and during recompresslon at the 

wake neck. Although these losses may not be negligible in each of the 

two cases of uniform flow and source flow, we reason that their effect 

on the overall correction scheme can be taken to be negligible. This 

can be seen from the following consideration. Owing to separation and 
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recompresslon losses, the actual total pressure at the edge Is less than 

th^ stagnation pressure and can he represented hy k.(p. )• Since the 

losses are not large and are comparahle for uniform flow and source flow, 

the factor k. takes on a value close   1 for hoth cases. Now, the 

total pressure at the edge Is used In steps (3) and (6) In a "parallel" 

manner, that Is, once for uniform flow and once for source flow In 

identical sets of formulas. It would aopear, therefore, that using 

(p^ )n in place of k^Cp^ )  and thereby neglecting the factor k^ 

in the calculations will lead to only a small error in the overall results. 

The analysis of the source-flow correction scheme for the viscous 

wake is now complete. The application of the results of this and the 

preceding section to the experimental data will be considered in Section 

5«5.3, which also presents jome of the intermediate steps. 
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5. DATA REDUCTION AND RESULTS 

5«1 Preliminary Remarks 

The theory ts1 Ind the method for correcting for transducer- 

galvanometer lag has been treatei in Chapter 5« The corresponding theory 

for source-flow effects has been presented in Chapter k.    Consideration 

vill now be given to the problem of implementing these theories and 

applying them to the experimental data. 

Although data from both the vertically and axlally traversing probes 

will be considered, the correction will be applied only to the results 

from the former. The reasons for omitting the corrections in th. case of 

the axially traversing probe are discussed in Section 5-2. 

We shall present the results from the two probes separately in 

Sections 5«2 and 5«3' In each section the salient points in the data- 

reduction procedure are discussed in some detail. Because only Pitot- 

pressure data were obtained, it is not possible to deduce additional 

Information regarding the wake flow. For this reason, no attempt will 

be made to discuss the experimental results in this context. Some con- 

sideration will be given, however, to the magnitude of the corrections to 

which the experimental data were subjected. 

5.2 Results from Axially Traversing Probe 

5.2.1 General Discussion 

A relatively small number of runs were made with the axially traversing 

probe. The results from these runs will be presented without correction 

for -isponse lag. As to source-flow effects, instead of applying the 

detailed correction scheme of Chapter k,  we adopt a simpler and more 

intuitive approach to account for the effects in this case. 

Response corrections are considered unnecessary since the time rates 

of change in the pressure signal are substantially smaller than those 

encountered with the vertically traversing probe. Two factors contribute 

to this effect: (l) the spatial gradients in the wake flow are less 

severe in the longitudinal direction than in the traverse direction, and 
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(2) tht* speed of 55 frs of the axially traversing probe is small compared 

with the speed of about 60 fps for the vertically traversing probe, so 

that the spatial gradients do not appear as rapidly changing time signals 

to the transducers. For this reason, it vas thought that only minor 

signal distortions vere involved. It vas therefore considered unnecessary 

to correct for the time lag due to a slow galvanometer. 

An aspect of the response proble- tha^ cannot be ignored, however, 

is the anomalous behavior of.  some of the wafer transducers (see Appendix 

A). When a step pressure of known magnitude is applied to these trans- 

ducers^ they register initially anywhere from 0.6 to 1.5 of the expected 

pressure increase. These measured values, based on static calibration, 

do not reflect the expected oscillatory response that is characteristic 

of galvanometers; that is, if the galvanometer overshoot were included, 

the value of 1.5 would be even higher. Thus the st^isitivity of the 

galvanometers as determined by static calibration is not applicable when 

recording time-varying signals. 

In the case of the axially traversing probe thi.s behavior of th-- 

transducers has led to difficulties that uld not arise with the vertically 

traversing probe. In the latter instance, it was possible to ascertain 

experimentally the response characteristics of the particular transducer 

involved, priraxily becaut -• this transducer responded quite accurately 

to the imposed pressure step. The value of k, the transducer correction 

factor, was found to be }.,0k  (see Appendix A). When the value of k 

departs significantly from 1.0, however, the question of recovery to the 

asyniptotic value becomes a difficult problem for which the response 

study does not provide a solution. The inconsistent response of the 

transducers explains in part the peculiar shape of transverse Pitot- 

preoaure profiles that were previously reported (without comment) by 

Alligood, Kyser, and Tsao (1965). 

In view of the serious degree of uncertainty associated with trans- 

ducer performance, we consider it unwarranted to attempt a detailed 

source-flow correction of the data from the axially traversing probe. 

For the same reason rn attempt will be made to reduce the data obtained 

fron ala. the impact cubes in the .rake. Effort will be concentrated 

.'liistead on deducing the variation of Pitot pressure along the axis of 
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the vske, this being the most valuable information obtainable from the 

data under these circumstances. In deducing this variation, an intuitive 

method of correction vill be used tc account for source-flow effects. 

This is discussed in the next section. 

5.2.2 Data Reduction and Results 

Tunnel runs with the axially traversing probe were made (both with 

and without the sphere) for each of the three sets of operating conditions 

listed in Section 2.7« In the wake runs, the sphere was positioned at 

station F, and the useful traverse of the probe was from x 3< ^ to 

x ^ 9. Figure 27 shows the oscillograph records of two runs made at the 

same operating conditions, with and without the model. The traces 

corresponding to the impact tubes located at y = ± O.09I+ are marked on 

the records. (The coordinate y denotes the normalized vertical distance 

with recpect to the measured tunnel axis, values abo/e the axis being 

positive.} These two tubes are the closiest to the idealized wake axis. 

In actuality the sphere falls sligntly during the run; if exact position 

correspondence is desired, appropriate adjustment must be made to account 

for the sphere's free fall. 

Since the stagnation pressure on the sphere cannot be measured 

directly, this inlurmation is obtained from a corresponding calibration 

run (see Section 2.7 for details). Ordinarily this stagnation pressure 

is used to normalize the wake Pitot pressure so as to account for the 

gradual decay in the tunnel flow. In the present instance, we are inter- 

ested also in making use of any readily available means of accounting 

for source-flow effects in the tunnel, other than making direct use of 

the detailed correction scheme devised in Chapter k.    Now, the tunnel- 

empty traces of Fig. 27(b) give the longitudinal variation of the Pitot 

pressure in the free stream of the tunnel source flow. An intuitive 

approach is therefore to use this free-stream variation to correct for 

the source-flow effects. Given that this is the only information avail- 

able, we can show that both tunnel deoay and source-flow effects can best 

bi: taken into account if the wake Pitot presjure is simply divided by 

the corresponding free-stream Pitot pressure at the same locati :i. This 

: 
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relatively straightforward data-reduction procedure vas followed in 

olstaining the longitudinal variation oi the Pitot pressure near the wake 

axis (r = O.l). The results of three runs, correspc .ing to the three 

basic Reynolds numbers for the experiments, are presented in Fig. 28. 

5.3 Results from Vertically Traversing Probe 

5.3.1 Data Reduction 

Figure 29 shows the oscillograph record for a wake run made with 

the vertically traversing probe. The traces that are labelled correspond, 

from top to bottom, to the arc-chamber pressure, two channels of wake 

Pftot pressure measured with a stationary probe (see below), photocell 

output, thf. wake Pitot-pressure profile and the associated mechanical 

noise measured with the traversing-probe transducers, and the pulsed 

signal that gives the instant at which the sphere is released into the 

stream. The function of the stationary probe, whose position in the wake 

is shown in the accompanying 
Tunnel axis 

2.25" 

Top View 

r Tunnel axis 

Side View 

sketch, is to monitor the 

random fluctuations xn the 

tunnel flow. This is done 

by using the Pitot pressure 

from the stationary probe 

in conjunction with the 

stagnation pressure taken 

from a calibration run 

(refer to Section 2.7 for 

the method of obtaining the 

latter pressure). By assuming 

that the ratio of these two 

pressures is essentially 

constant during the run, we 

can incorporate the random Stationary Probe 

fluctuations that are present in the wuke Pitot press re into the stag- 

nation pressure. The stagnation pressure thus modif'ed is then used to 

normalize the wake Pitot-pressure profile. 
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The photocell output gives the position of the prohe with respect 

to the tunnel during probe traverse. Before release the sphere is 

positioned at the center of the tunnel (to vitv.in ahuut 0.05 inches); 

after its release it is assumed to fall from gravity effects. Thus vith 

an appropriate correction for free fall, the photocell output then gives 

the position of the probe vith respect to the sphere, if for the moment 

■we assume that there is no response lag in the system associatea vith 

the photocell. To proceed from this to a calculation of the 3ateral- 

distance coordinate for the Pitot-pressure profi] --■,  the oscillograph 

trace must first be corrected for transducer-galvanometer response lag. 

(This correction vill be discussed in Section 5»5.2.) 

After the gravity and response corrections had b<.en applied, it vas 

found that the axis of the wake, taken to be the minimum of the Pitot- 

pressure profile, is at a calculated position of y of approximately 

+0.2 inches. This discrepancy occurred consistently throughout the 

redur-od data. A probable source of error is that some response lag does 

exist in the photocell galvanometer, even though its response is relatively 

fast (flat to 1,000 cps). We assume that it is permissible at this point 

to shift the entire profile uniformly so that the minimum corresponds to 

y = 0. After this shift the lateral dimension of the wake is then 

finally corrected for source-flow effects (see Section 5.5.5). 

5.5.2 Response Correction 

In Section 5.6 an example was given of the application of the 

correction scheme to a specially constructed input-output pair of curves. 

In that instance, we were able to recover accurately the input from the 

output through a series of successive approximations. When the correction 

scheme was applied to the measured Pitot-pressure profiles, however, some 

difficulty was encountered at first in deducing the correct input for a 

given recorded output. If the c* vba that have been subjected to mechanical- 

noise correction and subsequent normalization by the stagnation pressure 

are used directly, the input curves deduced from the correction scheme 

exhibit large oscillations throughout the entire curve. 

An examination of the output data shows that the points do not form 

" 
* 
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a smooth curve, owing to the fact that it is not possible to eliminate 

the mechanical noise completely through tht- use of the acceleromoter out- 

put. A factor that also contributes to the unevenness is that the random 

fluctuations in the tunnel flow cannot he taken out completely by normal- 

ization. Since the galvanometer functions basically as a low-pass filter, 

a small oscillation in the output is interpreted by the correction scheme 

as having originated from a much larger oscillation. In addition, the 

input-output relationship is not unique; that is, it is possible for 

more than one input to have the identical output. This aspect of the 

system, which is reflected in the correction scheme, apparently leads to 

instability problems in the iteration procedure once oscillation sets in. 

To remedy the problem of exaggerated noise in the input, the output 

curve is first smoothed before it is subjected to the correction scheme. 

The curve-smoothing formulas used are standard least-squares formulas 

(see Hildebrand, 1956, Chapter 7, especially pp. 291-296). The degree 

of the polynomial and the number of points employed are dependent on the 

shape of the particular portion of the curve under consideration, and on 

how much smoothing is required. The curve-smoothing routine that was 

eventually incorporated in the data-reduction program consists of third- 

degree formulas that apply to five, seven, or nine points. Application 

of the formulas is repeated until the deduced input becomes free of un- 

wanted oscillations. Apart from the foregoing modification 00 the 

recorded output, however, the basic correction scheme is identical to 

the method outlined in Section 3.6. 

5.3.5 Source-Flow Correction 

In the theory of source-flow correction presented in Chapter k, 

perfect-gas relations were used throughout fche derivation. Strictly 

speaking, the perfect-gas assumption is at times incorrect, since the 

temperature in parts of the wake is sufficiently high that real-gas 

effects must be taken into consideration. Although the temperature dis- 

tribution in the wake is not given a priori, it is nevertheless known 

that the viscous wake is notably l--«t, particularly in the initial stages. 

The viscous-wake temperature is likely to be of the order of the 
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free-stream total temperature, vhich ranges approximately from 1,250 

to 5>750CK in the experiments reported here (see Section 2.7}« In this 

range of temperatures in nitrogen, whose characteristic temperature for 

vibration is 5,3900K, the vibrational contributions to the values of the 

specific heats is considerable. For example, at a temperature of 2,850oK, 

c    is O.89R. Thus the possible influence of caloric imperfections 
vib 

in the gas must be recognized. 

Since the correction method itself is approximate in nature, no 

attempt has been made to use exact calculations for flow properties. 

Instead the alternative approach is adopted whereby it is shown that 

caloric imperfections have negligible effect on the corrected results. 

To show this we first make the engineering assumption tl.at perfect-gas 

formulas may be used locally to relate flow quantities. The value of 7 

in these formulas is tauten to be the value appropriate to the local flow. 

Typical correction calculations are then made for selected values of 7 

within a sufficiently inclusive range. The limiting values are taken 

to be l.k and 1.3, correspondinc respectively to the value for a ealorically 

and thermally perfect gas und. to the value of 9/7 (approximately) when 

the vibrational modes are fully excited. The results of these calcula- 

tions differ by less than 0.1%.    From this we conclude that the correction 

method is insensitive to caloric imperfections, and that the value of 

l.h may be used for 7 throughout the calculations withouu> seriously 

affecting tne results. 

With these preliminary considerations, we now proceed to the appli- 

cation of the correction scheme to the results from a typical run. We 

begin by usin^" the experimental pressure data to deduce the lateral 

variation of static pressure throughout the wake (at the given longi- 

tudinal station). This reduces essentially to finding the pressure 

(p9 )  at the edge of the viscous wake, since in the viscous wake tfr1 

ft  s i 

pressure is assumed to be constant and equal to (p« ) , and the pressure 
e 

in the inviscid wake is given through the rav,io p0 (r )/(p0 )  from 
ds s   e s 

the first-order blast-wave result of Eq. (1+.16). 

It is possible to deduce (p^ ) = p- (r ) from experimentell 
^1    S       £-     C * 

I 
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pressure data provided the location of the viscous-wake edge, r ,    can 
s 

be ascertained. For the near stations (stations A, B, c) where the 

viscous wake is laminar, r   can be found by observing the change of 
s 

shape of the Pitot-pressure profile in going from the viscous wake to 

the inviscid wake. The pressure in the laminar viscous wake follows a 

Gaussian variation, whereas in the inviscid wake the profile exhibits a 

parabolic shape. The edge of the viscous wake, r , is taken to be 
s 

the point where the pressure ceases to follow the Gaussian variation. 
_ * 

Thus for the profile shown in Fig. 50, r^  is taken to be O.56.  For 
"s 

the more distant stations (stations D through H), the profile does not 

exhibit an obvious change of shape, and it is not possible to locate the 

edge from the mere examination of the profile. It is then necessary to 

assume that the value of f  can be determined from a linear extre e 
polation of a plot of r   versus x for the near stations (stations 

s 
A, B, 0). 

With r  known, the Pitot pressure p' (r ) is then obtained 
s s  s 

from the met sured profile. The pressure (p0 )  at the edge can now be 
e S 

deduced from p' (r. ) and the local total pressure [p. (f )] . This o  e_ "C** e  s 
s  s 2  s 

latter quantity is equal io the stagnation pressure on the model, by 

virtue of the assumed Isentropic condition along the streamline emanating 

from the stagnation point (see Section k,S for details). We first 

calculate  the Mach number (Mp )  from the normal-shock relation (with 
e 

unnecessary subscripts omitted) 

P* ■^o +1 

(7-l)j^+2j   [27^-(7-l) 
^ 

7-1 
(5.1) 

** 

This method of determination has been used successfully by McCarthy 
(1962). 

This Is dor-e by first rearranging Eq. (5»l) to give an equation in 
Vfe and then solving for the root by any standard method, such as 
Newton's method, that is applicable to algebraic equations. 
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The static pressure (p^ )  is then obtained from the Rayleigh Pitot 
^ s 

formula 

P2 

"(7+1)4 7 r 7-1 

2 
7+1 

27l|-(7-l). 

1 
7-1 

(5.2) 

With reference to the step-by-step outline of the correction schemes 

set forth in Sections k.5 and k.6,  we now proceed to some of the addi- 

tional details. 

Inviscid Wake; In deference to the limi-ced lateral range of validity of 

the assumption concerning the identity in the total-pressure distribution 

for uniform flow and source flow, the correction scheme is applied to 

data up to r = 0.8 only. (Since the procedural steps to follow do not 

necessarily correspond to the ones in Section 4.5, a different numbering 

system is used here.) 

(a) The pressure ratio p2(r)/p2  is the same for both flows and is 
e 

given by the first-order blast-wave result of Eq. (k.lS).    From this 

equation the static-pressure distribution in source flow, p« (r), is 
s 

readily obtained. 

(b) The transverse distributions of static pressure and of the measured 

Pitot pressure are combined to give the total-pressure distribution 

(p. )  in source flow. In these calculations we make use of Eqs. (5.1) 
Up s 

and (5.2), in reverse order, again using the Mach number as an inter- 

merHate variable. 

(c) For the portion of the inviscid wake up to r = O.B, the transverse 

distribution of total pressure is the same for uniform flow and source 

flow. Thus the distribution in uniform flow (p. )  is known from step 
u0 u 

(b). 2 

(d) The static-pressure distribution in uniform flow Pp  is given by 
u 

Eq. (4.16) provided (pp )  is known. The levcer quantity is calculated 
e 

I 
I 
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from (p. )  vlth the use of Hall's correction formula of Eq. (U.17). 
d.     s e 

(s) The required Pitot-pressure distribution in uniform flow, p' (r), 
u 

is then deduced from [p. (r)]  from step (c) and p0 (r) from 
2 u 

step (d), again using the normal-shock relations vith the Mach number 

as an intermediate flow parameter. 

(f) The correction for the experimentally deduced lateral position in 

the Inviscid wake is simply a scaling down of the coordinate r  with s 
the ratio R /R , that is, r = (R /R )r . For the ratio R /R  we V s'       '  u  v u' s' s u' s 
use Hall's source-flow solution in Eq. (1+.18) for the shock-v-we shape. 

To ascertain which portion of the inviscid profile is to be sub- 

jected to the foregoing correction (that is, which portion satisfies the 

condition r < 0.8), we need the value of either R  or R . For 
a    " US 

cases where tne bow shock wave intersects the wall boundary layer down- 

stream of the probing station, it is possible to determine R  from the 

Pitot-pressure trace on the oscillograph record. In this situation the 

transducer, in crossing the shock wave, experiences a marked pressure 

jump which is clearly reflected in the galvanometer output. For stations 

where the intersection occurs ahead of the station, the interaction between 

shock wave and boundary layer renders it impossible to determine R 

experimentally. We then use the following empirical formula for R 

from Van Rise (196C): 

Ru/d - O^J)
0,1*8 . (50) 

Viscous Wake: 

(a) The static pressure within the viscous wake at a given longitudinal 

station is uniform and equal to p2  at that station. It has been shown 
e 

above how the value of (p, )  is deduced from experimental pressure 
e s 

data. The corresponding value of (p2 )  for uniform flow is determined 
e 

as in step (d) for the inviscid wake. 

(b) The distribution p2 (r8) = (p2 )s is used with the measured 
s       e 
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Pitot-pressure distribution p' (r ) to calculate the variation of Mach 
o  s 
s 

number, Mg i?  )>    according to Eq. (b-l). 
s 

(c) In the viscous vake, the normalized Mach-number distribution 

Mp(r)/Mp  is assumed to be the same for uniform flow and source flow. 
e 

Since the distribution for . 01 x:e flow is known from step (b) and since 

the value of (Mp )u has already been calculated in step (e) for tbe 
g 

inviscid wake, the distribution M^ (ru) is fully determined. 
u 

(d) The Mach number Mp (r ) is then used with the static pressure 
u 

p2 ^u^ = ^p2 •'u froin step ^a^ t0 calcula+'e ^e  required Pitot-pressure 
u       e 

distribution p' (r ) in uniform flow, o  u u 
(e) The lateral position coordinate f  in the viscous wake is corrected 

according to Eq. {k.30) to  give r  in uniform flow. 

5.3.^ Results 
I 

For a comparison of the data before and after the successive 

corrections for response lag and source-flow effects, a set of results 

from a typical run is given in Fig. 31. Shown in this plot are (l) the 

uncorreeted data with appropriate normalization, (2) the results corrected 

for response lag, and (3) the final results after the profile of (2) has 

been properly centered and then subjected to source-flow corrections. 

The difference between adjacent curves is considerable, especially between 

curves (l) and (2), where the shift in time (or equivalently the lateral 

coordinate) leads to large magnitude corrections at a given position 

within the profile. For the particular run illustrated in Fig. 31, the 

source-flow correction amounts to about 7^, which is about ten times the 

magnitude of the source-flow parameter r./L = O.OO78. For certain of 

the more distant stations, the source-flow correction is as much as 30%. 

Representative data from selected runs, after appropriate correction, 
I are presented in Figs. 32 through 35« The dashed curves are the results 

corrected for response lag, and includes a subsequent centering of the 

profile. The application of the source-flow correction to the dashed 

curves then leads to the final results given by the solid curves. The 

77 



results of Figs. 32, 33, and 3k correspond to runs made during the final 

phase of the testing program, in which only the near stations (stations 

A, B, C, and D) vere probed. The results of Fig. 35 pertain to an 

earlier series of runs that covered the entire range of stations con- 

sidered in Section 2.7, the farthest position being at x/d = 15.6 

(station H). 

The later run3 vere confined to the lerj stations for tvo reasons. 

First, because the Pitot pressure decreases vith distance from the model, 

there is a corresponding increase in the relative level of mechanical 

noise that is apparent to the galvanometer. The recorded date for the 

distant stations must therefore be subjected to increased curve smoothing, 

and in the process some accuracy is unavoidably sacrificed. The second 

and more important reason for favoring the near stations is that earlier 

experience showed that the inviscid stream in the tunnel is too small to 

permit satisfactory testing at the more distant stations. When the sphere 

is placed far upstream into the nozzle, the interaction between the bow 

shock wave and the tunnel boundary layer appears to have a sizable effect 

on the wake at the probing station. The profile in this instance exhibits 

a trough-like shape that is suggestive of turbulent wakes (refer to Fig. 

35 for profiles of the distant stations). Data from other sources, such 

as Vas, Murman, and Bogdonoff (1965) and McCarthy (1962), show that the 

wake is not predominantly turbulent at these stations, however. We 

surmise that the tunnel boundary layer has "infected" a considerable 

portion of the inviscid wake, if not part of the viscous wake as well. 

For this reason some uncertainty exists in the data for stations E and 

beyond. 

With regard to the source-flow correction, we huve used the scheres 

derived in Sections ^.5 and k.6 for the distant stations as well, even 

though these schemes are basically for the situation in which turbulent 

diffusion is unimportant. This has been done for want of a better method. 

The results presented are grouped according to Reynolds number. 

The Reynolds number is based on the sphere diameter and on calculated 
free-stream conditions at the nose of the model at 20 milliseconds 
after the start of the run. 
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The three groups of runs in Fig. 52, 53, and 54 correspond to the three 

basic Reynolds numbers at vhich the tests were performed (see Section 

2.7). The nominal test-section Reynolds number for the runs of Fig. 55 

is approximately 20,000 and is essentially the same as the loy-Reynolds- 

number series of Fig. 52. Nevertheless, tvo separate plots have been 

used because the runs in Fig. 55 (runs ^59 through kjl) were madt prior 

to certain modifications to the tunnel arc-chamber and collector assembly. 

The changes in operating conditions and flow-decay characteristics that 

accompanied the modifications necessitated recalibration of the tunnel 

flow. It was thought desirable, therefore, to consider runs 459 through 

^71 as a separate series. Since the flow in the tunnel after modification 

decayed at a slower rate, it seems reasonable to expect that the data 

from the post-modification runs are of better quality. 

Although the usable traverse of the probe is centered roughly about 

the wake axis (approxitately four inches to either side), we have pre- 

sented only the data from the upper half of the profiles. If the whole 

profile is considered, some asymmetry is noticeable between the upper 

and lower halves, even after appropriate normalization and response 

correction. We presume that the asymmetry is not due to system response 

lag, since the correction scheme has been shown in the example of Section 

3.6 to be capable of removing the associated shape distortion. The most 

plausible explanation for the asymmetry is that the effects of flow decay 

are not completely accounted for by the process of normalization. Given 

this circumstance; it seems reasonable to emphasize one-half of the pro- 

file. The upper halt was chosen because the information on this side is 

more complete. This choice also minimizes interference of the probed 

region from the rest of the traversing probe, should such interference 

exist. 

5.4 Concluding Remarks 

In Sections 5.2.2 and 5«5.4 we have presented the Pitot-pressure 

results obtained with the two traversing probes. No extensive discussion 

was given to interpret the results because of lack of experimental know- 

leage of other quantities such as velocity and total temperature. Since 
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♦-he verall flow picture in the vake behind a sphere is relatively com- 

plex    is not possible to make simplifying assumptions and deduce the 

variation of other flow quantities from the measured Pitot pressure alone. 

A case in point concems the assumption Soften made in hypersonic inviscid 

flc) that the velocity is approximately constant and equal to the fr^e- 

stream value. This assumption is invalid in the viscous wake, which 

unfortunately is also the main region of interest in wake studies. In 

the viscous wake, it is thus not possible to infer density variations 

from Pitot-pressure results. 

A considerable portion of the research effort in this study was 

directed toward developing the rapidly traversing probes and toward 

perfecting the technique o" testing behind a support-free sphere. From 

the standpoint of mechanical operation, these techniques have been shown 

to be feasible. The success t-f the overall scheme of mapping Pitot 

pressure is hampered somewhat, however, by inadequate instrumentation 

responbe and by source-flow effects in the tunnel stream. Brth these 

factors can lead to substantial errors in the recorded data. It is 

possible, however, to correct for these effects with the use of approxi- 

mate schemes devised herein. When these corrections are taken into 

account, the '-:cperimei:+al systems and techniques -jvolved in the study 

appoar to me. ."t consideration as a means of "tudying the near wake of a 

cold, support-free sphere. 
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APPENDIX A 

EXPERIMENTAL DETERMINATION OF PRESSURE-INSTRUMENTATION 

TRANSFER FUNCTION 

Ir Section 3.3, a discussion vas given of the transfer function 

G(s) of the transducer-galvanometer system. The method of deducing the 

result of Eq. (3.3) is now described. The experimental procedure is 

represented schematically in Fig. 36. A pressure step of suitable size, 

generated by a simple shock tube, is impc dd on the pressure transducer. 

The response of the transducer as seen at the amplifier output i.. recorded 

on an oscilloscope, vhereas the galvanometer output is recorded on the 

oscillograph that is a normal part of the pressure-recording system. It 

is thus possible to consider the responce of the overall system in tvo 

stages, a transducer-amplifier combination and the galvanometer. Separate 

transfer functions are found for these two sub-systems. The overall 

transfer function is then the product of the two component functions. 

The shock-tube arrangement for generating the prersure-step input 

to the transducer is shown in Fig. 37« The transducer is mounted onto 

the end plate, the inlet tube of the transducer being flush with the 

inside of the plate. As many as three transducers of the wafer type can 

be accommodated in the same test. When the shock wave is reflected from 

the end plate, at time t = t,, say, the transducer experiences a 

pressure jump of magnitude p - P-i. The pressure level then remains at 

Pc until the disturbances that result from the interaction of the con- 

tact surface with the reflected shock wave reach the transducer, say at 

t = tp. The time interval of interest is thus tp - t, at the input, 

since it is during this interval that the pressure differential imposed 

on the transducer conforms to a step input. 

It is possible to relate PC/PT to PL/P-I (see, for example, 

Liepmann and Roshko, IS. "', p. 388). For the present experiments, two 

sets of conditions were used; these are as follows: 
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9.17 

24.50 

6.6ü 

12.50 

M sv 

I.58I 

I.89O 

(The test gas in there experiments vas air; the initial temperatures 

T, and TL were assun'-'d to be equal.) A pressure jump p - p1 of 

desired size could then be obtained by choooing appropriate values of 

pV Two sets of conditions are useful because for certain 

values of p,- - p,, the pressure level of p1 or p.  calculated from 

one set may be difficult to control accurately, in which case the other 

set of conditiors is usually found to give more satisfactory results. 

The weaker shock wave does, however, yield a longer interval t2 - t1 

(approximately k milliseconds compared to about 2.5 milliseconds for the 

case of the stronger shock wave) and is preferred where a choice exists. 

Typical response curves are shown in Fig. 58. The response curve 

of Fig. 58(a) pertains to the first stage, the transducer-amplifier 

combination, while the curve of Fig. 58(b) relates to the entire system 

including the galvanometer. In the oscilloscope record of Tig. 58(a), 

the upper trace is the signal from a pressure transducer located about 

one and a half feet upstream of the end plate. This signal serves to 

trigger the oscilloscope before the arrival of the shock wave at the 

transducer under test. It is thus possible to record the response at 

time t = t.. 

The response curve at the amirlifier output may be idealized, as in 

Fig. 59(a)^ to a step of height k and with a frontal plane that is 

inclined rather than vertical. The quantity 8 is the time taken for 

the output to reach the value k and in the present instance is taken 

to be the rise time of the transducer-amplifier stage. The output level 

k is a normalized quantity and its value is given by the magnitude of 

the output, based on static calibration, normalized with respect to the 

The pressure gage and manometers used to measure p^ and p^ were 
such that reading errors (percent) were more serious for certain 
values of the pressure than for others. 
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input pressure Pj. - p,. (The latter quantity is thus shown as .1 in 

Fig. 59(a)-) In the sense that k relates the dynamic behavior of the 

system to its static calibration factor, it is appropriate to define k 

as the "dynamic calibration factor". With the foregoing definitions of 

k and 5, it can be seen that if the system is linear, the shape of 

the normalized response curve will be indtpendeiit of the magnitude of 

tin input pressure p - p.. 

The overall system was first checksd for linearity by imposing 

pressure steps that ranged from 0.1 to 1.5 psi differential. For this 

range of pressure differentials, which corresponded to the levels en- 

countered in the wake tests, there was no detectable dependence of the 

normalized response on the magnitude of the input pressure. According 

to the response studies of Smotherman and Maddox (1965), the rise time 

6 does depend on the magnitude of the input pressure, which implies that 

the transducer is essentially nonlinear. However, the \/ariation in 6 

is significant only when relatively low pressures are involved, as encoun- 

tered for example in measuring static pressure. For the present appli- 

cation to Pitot pressures, the transducer was assumed to have linear 

response and a correspondingly constant rise time. Aside from the 

possible small discrepancies in the input independence of 8, the 

linearity of the overoll pressure system was confirmed by experiment. 

The pressure step was then held fixed at 1.0 psi frr convenience and a 

sequence of ten tests were performed. 

An unforeseen result of these tests was the discovery that initially 

the pressure level (Pc-p-i) measured by the transducer, based on the 

static calibration factor, did not correspond to the theoretically 

expected value of the pressure jumped generated by the shock-wave 

reflection. That is, the dynamic calibration factor k w^s found to be 

different from unity. After a check of the relations ueea for P^/p-, 

and Pc/p-i and of the associated calculations, the possibility of 

erroneous computation was ruled out. Also, several transducers used in 

the same test consistently measured different values for (Pc"Pi )m* with 

typic.il values of k ranging from 0.6 to 1.3» This suggested that the 

discrepancy was in the pressure-recording system. Subsequent checks for 

possible amplifier or galvanometer malfunction showed that none of the 
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system components external to the transducer were at fault. Furthermore, 

It vas established from the oscillograph record that t^e pressure traces 

tended to settle to the correct values eventua?ly, indicating that the 

discrepancy vas associated vlth the dynamic behavior of t' ^ prr  ire 

transducer. This anomalous response characteristic is attributed to 

faulty fabrication of the transducers, most probably in the construction 

and positioning of the sensing colls and the spacing of the pole pieces. 

The reason for this hypothesis is that there appears to be a definite 

correlation between the performance of a parti-alar transducer and how 

well It balances In the amplifier circuit. 

Because of the unpredictable nature of the response, the transducers 

must be calibrated dynamically on an individual basis if they are to be 

used for measurement. For the transducer actually used in the vertically 

traversing probe, the dynamic calibration factor k was found to be 

1.0k.    An average value for the rise time 6 was found to be 0.211 milli- 

seconds. 

The transfer function for the transducer-amplifier stage can now be 

calculated directly by taking the Laplace transform of the Idealized 

response curve of Fig. 39(a). The evaluation of the Laplace transform 

is simplified if the response diagram is taken to be the difference 

f' - f", where f' and f" are shown in Fig. 59(b) to be two parallel 

lines of slope k/8 whose t-intercepts are 0 and 5 respectively. 

The Laplace transform of f' and f" are standard expressions. The 

transfer function of the transducer-amplifier stage, G-^s), is thus 

c (c) _Xff']-Uf"l 
*rB'    Xlunit stepj 

s (k/6)(l/s2)-(k/8)(e-s6/s2) = k   (       -S5) ! 
HTsl sE ^ e    ; • 

(A.l) 

The transfer function for the galvanometer stage was taken to be 

the standard function for a second-order system, which is characteristic 

of galvanometers in general. The response curve of Fig. 38(b) provides 

the necessary check. It is possible to deduce from this curve the 
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natural undamped frequency m  and the damping factor £ fv.r the 

galvanometer in question. These values correspond closely to the manu- 

facturer's bpecifications. The response curve of Fig. 56(b) represents 

the overall system response, which includes the transducer-amplifier 

stage. Since the rise time 6 is small compared with the overall system 

rise timt, the matching with a second-order system would be valid. The 

standard second-order transfer function is given by 

2 

G2{8)=-2 2 _ . (A.2) 
s + 2ai) s + a> ^n   n 

The overall system transfer function is thus 

G(S) = G^S) a2(s) 

P (A.5) 
kuT    1   -S& _  n 1 - e  
"6  / 2 „,    2X ' s(8 +2yD s+u) ; 
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APPENDIX B 

THE Z-TRANSFORM OF THE TRANSFER FUNCTION 

The system transfer function for continuous-data signals has been 

found in Appendix A as 

ka)     .   -s5 

s(s +2CCD S+O) J v   ^ n  n' 

In Section 3,k,  a fictitious data-sampling process was introduced into 

the transducer-galvanometer system to describe tl^e data-reduction procedure 

of reading discrete data points off the oscillograph record. In the 

mathematical model for the resulting sampled-data system (discussed in 

Section 3»5/* a fictitious data hold vas inserted to interpolate the 

data between adjacent ?F,rapling instants t = 0, T, 2T, 5T,  For 

the transducer-galvanometer system vith the transfer function of Eq. 

(B.l), a first-order data hold Q(z,.s) of Eq. (3.10) was found to give 

the best results. The transfer function including the data hold is then 

3(s,z) = G(s) Q(z,s) 

2 (B.2) 
ka)  /, -1\/,  -sB^ 
 n z(l 

~ T6 "37 

-a.\/,  -öU\ 
-z )(l-e  ) 
o       p 

s (s +2t(jü s+u) ) 3 n  n 

From the theory of sampled-data systems, the z-transform of CJ(2,S) is 

given by (see Ragazzini and Franklin, 1958, p. 57) 

?r(z) s  £   Residue 
poles of 

G(z,p) 

(5(z,p) 
pT -1 
e^ z 

(B.3) 

vhere p is a dummy variable used in place of the Laplace variable s. 

The function (5(z,p) of Eq. (B.2) has a third-order pole at 
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p = 0,    and simple poles at    p = -o:,  -öc,    where   ä    is the complex 

conjugate of   a,    and   a = CD ((; + i Vl-lr)/    since    ^ < 1-    Equation 

(B.3) inajr now be written 

<S(z) =•       D     _ Res 
p=0,-a,-ä 

Z(l r1)2 Ül 1 - e-p6 

T5
   P^(p^)(p^)(l-e^z-:L) 

(B.10 

/ ■,    -1 \     n        «p „ l-e^ 
^ z(l-z    ) -mft        L     > Res -^ • -=-T- 

Th Ip^Cp-Kt (pw (l-epTz ;L p=0,-a,-ä       lp^(p-K)!)(p+ä)(: 

the last step being permissible since the factor that is not considered 

in the evaluation of the residues does not contain the variable p 

explicitly. 

Residue at p = 0; Define <>(p) as 

♦(p) = 
1 - e 

-p8 

(p-w)(p-tä)(l.epTz-1) 
(B.5) 

Then the residue at the third-order pole at   p = 0    is 

Res (0) = if - 
dp  ^=0 

co + 'i2'1 

CDn(l-Z      ) 

(B.6) 

where    c    = -2^8 - 6 /2    , 

c1 = (2^)5 + B2/2    , 

and 6    = (jü 6,    T = w T n ' n 
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Residues at p = -a^ p = -ä; It is convenient to evaluate the residues 

at p = -a and p = -5 simultaneously, because of the conjugate nature 
of the roots a and a. We then have 

1   -p5 ,   -p6 
Res(-a) + Res(-ä) =-5 ^ " e ^ .      +-, ^^ " e m ., 

p5(p4ä)(l.epTZ-
1) p=-a  P

5(p-Kx)(l-epTZ-
1) p= 

f0 + fiz'1 

p=-a 

(B.7) 

^n(:L+dlz +d2z"2) 

vhere d1 = 2^'® cos XT   , 

f0 = -sin 36 - e^ sin (\5-^) , 

fi = -e-5T sin (Xf-30) + e-^T-5) sin (^^^ ^ 

and   \ = Vi-^2' , 

6 = tan" (X/O, from the notation a = CD ei0 . 
n 

Combining Eqs. (B.k),  (B.6), and (B.?)- ve obtain 

XT6 I + d^"1 + d2z-
2     '       (B•8, 

vhere m^ = Xc0  + f0 , 

m0 = Xc0dl + ^l " 2fo + fi . 

m1 = Xc0d2 + ^1d1 + fo . 2^ , 

mg = Xc1d2 + ^ . 

The system parameters were found experimentally to have the values 

88 



k = 1.01+    f 

6 = 0.211 milliseconds    , 

^ = 0.6266    , 

CJJ = 1900 radians/sec. 

The sampling period T was taken to be 0.25 milliseconds, even though 

during data reduction, data were read off the oscillograph record every 

one-half millisecond. A value of 0.25 milliseconds for T was found to 

give more accurate results compared to the case with T = 0.5 milliseconds 

because with the sampling rate doubled, the first-order or linear data 

hold reconstructs the sampled data into a curve that resembles more 

closely the original continuous data curve. The information at the 

sampling instants between data readouts was obtained with the use of 

interpolation formulas (see discussion at the end of Section 5.5)« 

With the values of the system parameters thus specified, it is 

possible to evaluate the constants that appear in Eq. (B.8). An electronic 

computer was used to perform the arithmetic involved in transforming the 

quotient into a series in z" : 

0(7) = r^z + -TQ + i^z  + r2z" + •••  .       (B.9) 

The values of a representative number of r.'s are listed in the table 

at the end of this appendix. It can be seen from Eq. (5.1?) that the 

n 
sum ^P    r. represents the response of the system at t = nT to a 

i^l 

unit-step input. Thus the alternation in sign of successive sequences 

of 8 or 9 r.'s indicates that oscillations (of approximate period 16T, 

say) are present in the calculated response output. The general trend 

of decreasing coefficients beyond r, implies that the oscillation 

eventually damps out. These two observations are in keeping with the 

characteristic behavior of an underdaraped system. 

The fact that the coefficient r ^^ is nonzero means that the out- 

put has a deflection at t = -T, which is physically inadmissible. This 
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behavior is due to the Inclusion of the first-ordex- data hold that 

effects a linear interpolation between the zero input at t = -T and 

the unit-step input at t = 0. For a similar reason, i*  is not zero as 

it should be in principle. In the application of the coefficients r^s 

in the correction scheme (see Appendix C), r , was taken to be zero, 

whereas the nonzero value of rn was retained. This approach was con- 

sidered reasonable, since the output calculated in this manner, for a 

unit-step input, agreed well with the experimentally recorded output 

discussed in Appendix A. 
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Coefficierts in Series Expansion of    (J(Z) 

1 ri 
i ri 

-1 -6.1+792689, -03 25 1.4417189, -04 
0 2.3199572, -02 26 -5.8938240, -06 
1 9.9651717, -02 27 -8.7658587, -05 
2 2.0891119, -01 28 -I.1811693, -04 
^ 
• 2.31+29669, -01 29 -I.I520153, -04 
k 2.091967^ -01 30 -9.4369901, -05 
5 1.601+1+702, -01 51 -6.7135251, -05 
6 1.067911+1+, -01 32 -4.0914622, -05 
7 5.9381+39^, -02 33 -I.9628658, -05 
8 2.333381+1, -02 34 -4.6157902, -06 
O -I+.3871833, -04 35 4.4327616, -06 

10 -1.3474022, -02 36 8.6825478, -06 
11 -1.8413414, -02 37 9.5770539, -06 
12 -I.8064358, -02 38 8.4721437, -06 
13 -I.I+857427, -02 39 6.4491078, -06 
14 -I.0609776, -02 40 4.2573953, -06 
15 -6.4970768, -03 41 2.3384101, -06 
16 -3.1450905, -03 42 8.9003754, -07 
IT -7.7192826, -04 43 -5.7138223, -08 
18 6.6547992, -04 44 -5.6988905, -07 
19 1.3470357, -03 45 -7.5752768, -07 
20 1.4980708, -03 46 -7.3458316, -07 
21 1.3313658, -03 47 -5.9934902, -07 
22 1.0172732, -03 1*8 -4.2476382, -07 
23 6.7432266, -04 49 -2.5761347, -07 
21+ 3.7268871, -04 50 -1.2245572, -07 
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APPENDIX C 

DERIVATION OF RESPONSE CORRECTION SCHEME 

In Section 3.5> we arrived at expressions for ehe z-transform 

Pout(is) for the pressure output and G(z) for the system transfer 

function. These expressions are given in Eqs. (5.?) and (3.12);, respec- 

tively. The problem in Section 3.6 is to deduce the inpuc z-transform 

Pj^Cz) from the relation 

Pout(z)=^ • Pin^ • ^'^ 

It is convenient in vhat follovs to use the simpler nctation 

X(2) = Pln(z) , 

*U)=Pout(Z) • 

Equation (C.l) then becomes 

Y(z) = G(z) ' X(z) , (C.2) 

-1     -2 with        Xv z) = x0 + x z  + XpZ  + ••• 

y(z) = y0+y1z"'
i + y2z'

2 + ••• (c.3) 

G(z) = r_1z + CQ 
+ riz  + r2Z  + 

The coefficients x , y  are the values of th^ input and output, 
mm r    ? 

respectively, at t = mT (see Fig. ho).    The term r , in S(z) ia 

a spurious effect of the inclusion of the first-order data hold. Since 

r , is an order of magnitude smaller than r, (see values lit.ted j" 

This relation is identical to Eq.. (J'..\>). 
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Appendix B), the deletion of the z term in ^(z) does not cause any 

serious error but does, on the othei hand, simplify the presentation of 

the enr.uing analysis. The coefficient r0 is retained, however, because 

it does not cause any added difficulty in the algebra. 

Substituting Eqs. (c.3) into Eq. (C.2) and equating the coefficients 

of z" , ve obtain 

m 

m £o    j m_j 

Let   x', x"   be respectively the ith and    (i+l)th   .pproximation of   x. 

Then from Eq.   {C.k) ve have 

m 
y1 =   7^  r.x'   .    , 

(C.5) 
m 

v" _  r* y XII 

vhere y' and y  are the outputs corresponding to the x' and x" 

sequei'ces respectively. With the notation e = x" - x', Eqs. (C.5) 

can be revritter as 

^ " ^ - J Vm-J • (C-6) 

m 
Now from Eq. {O.k)  and Fig. kO,  it can be seen that y = 7^ r^ 

m  ife 3 
is the response of the system at t = nff to a unit-step input ü 

at t = 0. For a system with a dynamic calibration factor k = 1.0k, 

we have 

m 
11m  ^ r = k = 1.01+ . (c.7) 

Consider the values of r  through r.Q from the table of Appendix B: 
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± _i_ 
0 0.0252 

1 0.0997 

2        0.2089 

5 0.25^5 

k 0.2092 

5 0.1601». 

6 0.1068 

7 0.059^ 

8 0.0255 

9 - 0.000^ 

10     - 0.0155 

6 
From this ve find that the sum  P r. has a value of 1,0^25. Thus 

r- through r^ roughly speaking account for the correct response that 

corresponds to the limiting vaJue given by Eq.. (C.7). The remaining 

r.'s represent the oscillations that occur in the output of an uader- 

damped system. If the errors e tnroughout Eq.. (C.6) are assumed to 

be of the same order of magnitude, the net contribution of  ,  r.e . 

vlU then be approximately zero, and from Eq.. (C.6) ve can vrite 

K-K'fc'fu-i ■ (c•ti, 

The important assumption is now made that the errors € ., for 
m-j7 

j = C thraogh 6,    form a linear sequence (see sketch on next page); 

that is, they are expressible in the form 

em-j " e0 " (J)^  ' (c-9) 

9h 

I 
f 

■ -*»■ •.«rut, ftnrrJF*', 



6A€ 

'm-6    em-5 m-h      m-3  in-2  m-l  m 

r6   r5   Tk        r3   r2   rl   r0 

It is then possible to use the idea of a veighted average to determine 

which of the errors e , most accurately satisfies the relation m-j 

e     T r. = (CIO) 

Letting e = €0 - v^e and solving for v from Eqs. (C.9) and (c.-TC), 

ve  obtain 

6 

v = ^ = 5.^6 . 

j=0 J 

(Cll) 

Thus if v is approximated by 3,  e  becomes e _,, and Eq. (C.8) 

may be approximated as 

v" - v« = e , ) r ym  ym  m-3   L^ rj (0.12) 

Since e = x - x', this equation can be rearranged to give 
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"v^J.^ "    "VlJ 

x.. = x. + 
y*+i: yrt , (c.i3) n   n    6      ' \      "/ 

J=o 

vhere (m-5) has been replaced by n. On the right-hand side of Eq. 

(C.1J5), y"  is the output corresponding to the improved input x". It 

is then reasonable to assume that if the recorded output y is used in 

place of y", the quantity x" calculated from Eq. (C.l5) is closer 

to the actual input x and therefore represents ein improvement on x'. 

We can thus vrite the final result as 

x" = x. + 
7*+l ' y^ . (ciM 

n   n    6 v 

In deriving this equation, the error sequence used goes back to (m-6), 

or (n-5); the derivation is thus applicable only for n > 5. 

For n = 2, the e corresponding to rg is zero (refer to sketch). 

The summation in Eq. (CIO) is carried to i = 5    only, resulting in 

v = 3.06 = 5. Hence the only modification required in Eq. (C.llO is in 

the summation of r's as follows: 

x2 =x2 + "5  ' (C,15) 

o 

£> J 

In a similar manner, expressions can be derived for n = 1 and n = 0 

as follows: 
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." _ 

j=0 J 

(C.16) 

x" = xj 
y2 " V2 

r r 
j=0 0 

The initial guess for the input is taken to be the recorded pressure 

output shifted backward in time by 1 millisecond. The correction scheme 

vorks veil with this guessed input except where Jump discontinuities 

occur. Consider for example the input shape of Fig. 15 and the corres- 

ponding output. In the neighborhood of the point t = 5 milliseconds, 

the shifted output differs significantly from the input, and the cor- 

rection scheme may break down here. To remedy the situation, the portion 

of the shifted output that causes the difficulty is deleted and replaced 

by a linearly extrapolated segment, shown by the dashed line in Fig. 15. 

A jump discontinuity is provided for, the point at which it is placed 

in the guessed output being determined fairly accurately from where the 

sharp rise occurs in the output. The guessed input for the segment to 

the left of t = 5 milliseconds may be any straight line with approxi- 

mately the same slope as that of the recorded output in that interval. 

The indirect correction scheme derived here is not unique. It Is 

conceivable that two slightly different inputs will give the same output. 

For instance, the same signal superimposed on two carrier voltages of 

different, but high, frequencies will probably produce such an effect. 

It is then not possible to differentiate between the two cases when the 

inputs are to be calculated from the identical output. A case in point 

is when the recorded output contains small-amplitude oscillations that 

are superimposed on the main Pitot-pressure curve. These are in actuality 

due to random variations in the tunnel flow or to ramnents of the mechan- 

ical noise that are not completely removed by the monitoring accelerometer 
! 
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output. When the recorded output Is subjected to the correction scheme 

however, the oscillations are taken to be the result of a filtering 

process of large-amplitude oscillations in the original pressure trace. 

Successive improvement on the guessed input then introduces an unstable 

iterative procedure. This difficulty was in fact encountered in the 

data-reduction procedure. To eliminate the spurious effect, a certain 

amount of curve smoothing of the recorded output was found to be necessary 

before it could be used as the initial guessed input. This problem is 

discussed in some detail in Section 5«3.2. Provided that this instability 

condition is taken into consideration, the indirect correction scheme 

derived herein is judged to be adequate for the present application. 
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APPENDIX D 

SOURCE-FLOW EFFECTS ON THE BOUNDARY LAYER 

The boundary-layer transformations for tvo-dimensional flow used by 

Cohen and Reshotko (1956) are based on Stewartson's transformation and 

can be -written 

rs p   a 

vJo pt at 
ex  ex 

a   ^n 

at Jo   pt 
ex     ex 

where s and n are rondiinensionalized distances tangential and normal 

to the body surface; a, p, and p are respectively the speed of sound, 

pressure, and density of the fluid, and X      is a constant of propor- 

tionality in the linear /iscosity law (^/ii+ } = X  (T/T.  ). The sub- 
ex        ex 

script "t" refers to total conditions, while "ex" pertains to the 

local inviscid flow outside the boundary layer (external flow). The 

value of X  is determined by the condition that the viscosity at the 

model temperature given by the linear law should match the value from 

Sutherland's law. Thus X,  assun.es the valu*" 

1 .T.  +T 

ex 

where T   is the Sutherland constant, which for nitrogen is 102.70K su 7 D 

(see Chapman and Cowling, 1952). 

For axially symmetrical flow, as for example over the hemispherical 

nose under study, the transformation must be modified as follows (see 

for example Moore, 196^), 
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rs / p  a \ _ 

ex  ex 

ex      ex 

vhere r is the nondimenslonalized distance measured from the axis of 

symmetry. 

The Fimilarity variable used in the boundary-layp.c solutions is 

defined by 

1 

n = i 
^i    u 
m+l   ex 
2 vt | 

ex 

2 
(D.2) 

vhere v.   is the kinematic viscosity at T. ,    and U   is the 
w Xt ex 
ex ex 

transformed velocity in the external invJocid stream, related to the 

physical velocity V  by: 

at 
U  =—^V   . (D.5) ex   a   ex 

ex 

The quantity   m   is the exponent in the power-lav description of the 

inviscid flow 

Uex = C5m    , (D.M 

Where C is a constant. In the present application, the inviscid flon 

cannot oe described by this equation with a single value of m that is 

applicable over the entire hemispherical nose. It is assumed neverthe- 

less that the power-lav description applies locally, so that at a parti- 

cular point of interest, the appropriate value of m to take is the one 

for vhich Eq. (D.^) describes the flow in the immediate neighborhood of 
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the point. 

An important parameter in the solutions is the pressure-gradient 

parameter ß,    vhich is defined in terms of m as 

e-M ■ (D-5) 

A second parameter is the enthalpy function at the model surlnce given 

by S, = h /h.  - 1. For the present experiments, h  is assumed to he 
w    w  X '   w 

ex 
negligible in comparison vjth h, ,    so tiiat S  takes on the value 

ex 
-1.0. 

It is now possible to show that the values of ß for uniform flow 

and source flow do not differ significantly from each other. To calculate 

ß,    or equivalently m, we see from Eq. (D.^) that m is given by the 

expression m = (l/U )(dU .,/d|), which can be evaluated graphically 

from a plot of U   versus g. This plot in turn can be deduced from 

the surface-pressure distributions in Fig. 25 by application of the 

transformations (D.la) and (D.3)^ since by virtue of the isentropic con- 

dition in the inviscid stream the pressure ratio completely specifies 

the flow. The values of ß thus calculated for uniform flow (r,/L = o) 
b' o   ' 

and source flow (r,/L =0.02) at cp = it/2 are 1.67^ and I.685 

respectively. The difference (ß -ß )/ß  is 0.0066^ which is sub- 

stantially smaller than the source-flow parameter r./L . 

We now examine the solutions of Cohen and Reshotko for the total- 

enthalpy ratio ht/ht   and the velocity ratio V/V ,    particularly 
0x 

with regard to their variation with zhe  pressure-gradient parameter ß. 

These solutions are given in Fig. hi  for non-negative values of ß,  that 

is, for cases where bhe pressure gradient is favorable. For values of 

ß approaching the limiting value of 2,    both ratios are insensitive to 

changes in ß. This is particularly true of the total-enthalpy ratio, 

and Lees (1956) for example invoked the associated invariance of total- 

enthalpy gradient at the wall to justify the omission of the latter in 

computing the laminar heat transfer on cold blunt-nosed bodies. In the 

present instance, since no actual solution of the boundary-layer problem 

is being attempted, it is not necessary to neglect the pressure gradient 
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altogether. We can assume, however, that the distribution of the total- 

enthalpy ratio as a function of the similarity variable \\    is the same 

for uniform flow and source 'low. In view of the small difference of 

0.0066 between 6 . and ß . particularly when these are close to the 
i^       s 

limiting value of 2,  we shall extend the assumption to include the 

invariance of the velocity ratio from uniform flow to source flow. 

With the assumption of the identity of the ratios of total enthalpy 

and velocity, it is now possible to compare the uniform-flow and source- 

flow distributions of the static-temperature ratio T/T • Starting with 
1 „2 

ex 
ht/ht   an(i usin6 "the energy equation h = *• V + 7Rr/(/-l), one obtains 

ex 
for T/T   the expression ex 

ex t ex 
ex 

On the right-hand side of this equation the ratios h./h.   and V/V 
ex 

are taken to be the üame for uniform flow and source flow, and are 

ootainable from the solution of Cohen and Reshotko. The values for 

M   and M   at <p = jt/2, deduced from the pressure results of Fig. 
u       s 

25, are respectively 2.8l and 2.93. The temperature distributions 

T,,/TÄ„  and T„/Tö   thus calculated from Eq. (D.6) are f;hown in Fig. u' ex      s' ex 1 \  / o 
u s 

42. ThJ curves are very close to each other and are identical for values 

of t]    larger than 2.5.    For smaller values of TJ, the difference is of 

the same order as the source-flow parameter {r,/L   = 0.02). Within the 

accuracy of the present study, this difference is negligible and the 

temperature-ratio distribution can be taken to be identical in the trans- 

formed TJ-variable; that is, 

T    T 
S-2- = =-ü-   for any given r\    . (D.?) 
ex   ex 

s    u 

We are now in a position to consider how the boundary layer in the 

physical plane differs from uniform flow to source flow. The transformation 
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from the similarity variable r\    back to the physical coordinate n is 

accomplished vith the use of Eqs. (D.lb) and (D.2), vith the result 

n = 

at  Pt ex  ex 
a   v ex  ex 

ex 
ra+1 U ex 

1/2 

0     T   Xt 
dT) (D.8) 

ex 

&n the right-hand side of this equation, all quantities except the 

integral have been used before in the determination of ß and are there- 

fore known. By virtue of the relation (D.7), the ratio of the integral 

for uniform flow and source flow can be written 

r11 Ts 
0 r it s  ex 

/ ' 1_  u 

^0  r ^t 
dTl 

Tex /Tt 
s  ex 

T TTT ex ' t 
u  ex 

u  ex 

for any given r] (D.9) 

Here we have used the condition that at cp = ;t/2 

r = r, + n s   b   s 

» r, + n 
b   u 

= r u 

since r,  is much larger than the difference n - n . b 0 su 
With these considerations, one can now calculate the ratio n 'n 

' S'  i 

from Eq. (D.8). Because the ratio of the temperature integrals in Eq. 

(D.9) is independent of r],    the ratio n /n  is the same for the entire 

boundary layer. Hence it is necessary to consider only the ratio of the 

"boundary-layer thickness" 6, with the result 

^S. = 1.095 ,   for   r./L =0.02 . 
6 b' o 
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For application to cared vhere r./L  is sraalle.' than 0.02, a linear 

interpolation ia assumed, leading to the final result 

I 5 

-s- = 1 + ^-75 (~) ,  at  cp = n/2 . 
u o 
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APPENDIX E 

COMPARISON OF NORMALIZED MACH-NUMBER PROFILE FOR UNIFORM 

FLOW AND SOURCE FLOW 

In the development of the source-flow correction scheme for the 

viscous wake (Section ^.6), it was assumed that the distribution of the 

Mach-number ratio M/M  was the same for both uniform flow and source 

flow. This condition, Eq. (U.27), was used in two instances:  (l) in 

reducing Eq. {k.26)  to the final result of Eq.. (+.29) for wake-growth 

correction, and (2) in relating the uniform flow to the source flow in 

tne correction for the magnitude c^ the Pitot pressure.  Although we 

cannot verify directly the accuracy of the assumed conaition ^M/M ) = 

(M/M ) ,    we can nevertheless demonstrate its plausibility on tlie basis 

of the results of some calculations pertaining to a related example. 

Thj related proülem may be stated as follows: We assume that at 

some initial longitudinal position, close to the wake neck, the distri- 

bution of M/M  is the same for uniform flow and sonrce flow, that is, 

^~1\        ,   for 0 < r < 1 ,      (E-l) 
e Ju,A 

wh-jre f in this appendix denotes r/r  and the subscript "A" refers 

to the initial station. This Mach-number distribution can be deduced 

Trom information that is considered given in the context of the present 

stuay. The problem then consists in showing that the similarity in the 

normalized Mach-number profile, Eq. (E.l), is preserved In the flow 

downstream of the initial station. 

Some of the details of the foregoing related problem are now co.- 

sidered. For the initial station, we use station A wii;h an x/d of 

3.8, this being the nearest station studied experiment£.lly. The Mach- 

number distribution M A(r) is deduced from the measured Pitot-pressure 

Specifically, this refers to step (5) on p. 65. 
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distribution p' (r) and the static pressure p (r) = P^Cr ) = p^ , 
o s     s e    e 
s s 

the last quantity being taken from the method-of-characteristics results 
•* 

of Fig. 23.  The use of experimental data for the Pitot-pressure profile 

ensures that the calculated Mach-number .  Tile has the proper distri- 

bution, even though the magnitude may not necessarily be correct. Since 

M.. 
's,A 

is by definition K    Al),    the lefthand side of Eq. (E.l) is 

now known.    The Mach-number distribution for uniform flow   \ A(r)    then 

follows from Eq.   (E.l) with the determination of    MD 
-u,A 

This quantity 

is deduced from the static and total pressures at the point r = 1. The 

distributions M .(r) and M .(r) thus calculated are listed in 

columns (2) and (3), respectively, of the table at the end of this 

appendix. 

We now proceed downstream from the initial station and show that 

the similarity in the distributions of the Mach-number ratio is preserved 

for the range of longitudinal stations of interest. To establish this, 

it is sufficient merely to show fiat the similarity holds at the most 

distant station tested, that is, at station H with an x/d of 15.6. 

To this end, we deduce independently both the uniform-flow and source- 

flow distribution of the Mach-numlser ratio at station H. The distribution 

[M(r)/M ]    for the source-flow case can be calculated in a manner 

similar to the corresponding distribution at station A, again using the 

measured Pitot-pressure profile to ensure that the Mach-number distribution 

adopted is realistic. As for deducing the uniform-flow distribution, we 

note that at station H, the only quantity known thus far is the static 

pressure from the method-of-characteristics results of Fig. 23. To 

obtain the Mach-number information, a second pressure quantity is needed, 

and for this we choose the total pressure. The distribution p.  (r) 
u,H 

The fact that the wake static pressure (p2  in figure) is given 
e 

as the ratio Pp /p1  in this figure does not introduce any 
e  n 

difficultieii. Since only pressure ratios are involved in the calcu- 
lations, the quantity p1  cancels out in all cases. 

n 
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t 

can be calculated as follows. For each of the ises of uniform flow 

and source flow at station A and of source flow at station H, the Mach- 

number distribution and static pressure are known. It is thus possible 

to calculate the respective total-pressure distributions, that is, tl.e 

distributions p   fr), p   (r), and p   (r). With the use of 
u,I s,A s,E 

Eq. (^.25) that relates these three quantities and p   (r), this 
u,H 

latter distribution can then be calculated. The required Mach-number 

distribution [M(r)/M ]    follows immediately from p.  (r) and e U'H VH 
pe  * 

The distributions M „(r) and M „(r) calcxilated in the fore- 
sail U, n 

going are listed in columns (U) and (5) of the table, while the ratios 

are given in columns (6) and (7)« We see that whereas the Mach rumber 

itself differs considerably for uniform flow and source flow, the -atios 

differ only slightly for the two cases. From this the conclusion c:an 

be drawn that the similarity of the distributions of Mach-number ratio 

is indeed preserved in the flow downstream of the initial station. 

Strictly speaking, this conclusion applies ily to the related problem 

that uses Eq. (E.l) as the starting point. The result does not provide 

direct proof for the assumption (M/M ) = (M/M )  throughout the entire 

viscous wake. We note, however, that the basic assumption of the related 

problem, Eq. (E.l), is itself :n line with the results of calculations 

pertaining to the development of the boundary layer. It was showi in 

Appendix D, Fig. hi,  that the temperature ratio T/T   did not diffei 

significantly for uniform flow and source flow. This implies that the 

difference in the Mach-number ratio M/M   is even smaller, thereby 

justifying the assumption of Eq. (E.l). On this basis, it appears 

reasonable to use the result of the related problem to substantiate the 

assumpticu (M/M ) = (M/M )  of Section 4.6. 
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Figure 20.   Pressure function f from biast-wave theory. 
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Run Sta x/d 

517 A 3.8 

512 B 5.1 

514 C 6.6 

518 D 81 

rh/Lf Ftei Mi, 

0.0078 I77xl0a 16.2 
0.0080 I.GIxlO5 16.1 
0.0083 1.80x10^ 15.9 
0.0086 1.84 x tO3 15.8 

Rsspons« correction, centered 
Response and source-flow corrections 

1 
!   i 

P^Vn 

Figur« 34.   Corrected Pftot-pressure profiles for 
high Reynoids numbers. 
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Run Sta x/d rb/l-o Ra'n.<« 
M«n 

471 B 5.1 0.0080 2.08 x I04 17.4 

470 C 6.6 0.0083 2.01 x I04 17.1 

469 D 6.1 0.0086 2.18 xlO4 17.0 

465 E 9.6 Q0089 2.15 xlO4 16.8 

462 F II.i 0.0092 2.19 xlO4 16.6 

461 G 12.6 0.0096 2.24 x I04 16.4 

459 H 15.6 0.0102 2.04 xlO4 15.6 

Response correction, centered 
Response and source-flow corrections 

Figure 35.   Corrected Pitot-pressure profiles for 
low Reynolds numbers. 
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Figure 36.   Schematic diagram of experimental procedure 
for determining transfer function. 
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Figure 37    Shock-tube arrangsment for response studies. 
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(o* Oscilloscope trace of amplifier output. 

(b) Oeciilogrcph reccrc of galvanometer output 
(for twt transducers). 

Figure 36.   Response curves. 
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(a) Idealized response curve. 
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-|8 \+ 

(b) Equivalent response diagram. 

Figure 39.   Idealization of response characteristics 
of transducer-amplifier stage. 
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la) Total-enthalpy profile. 
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(b) Velocity profile. 

Figure 41.   Boundary-layer solutions of Cohen and Reshotko. 
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Figure 42.   Comparison of temperature profiles in uniform 
flow and source flow. 
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