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PREFACE

In sonar evaluation studies there are at present three approximate
methods of determining sound propagetion: ray theory, mode theory and
semi-empirical formulation. Under the usual environmental conditions,
one or a combination of two of these methods will produce satisfactory
prediction of intensity versus range. DBut under extreme environmental
circumstances, favorable or unfavorable, range prediction is not re-
liable with any combination of these methods. Another limitation of
the existing methods arises with the increasing reliance on signal pro-
cessing. Static methods of range prediction are becoming less useful
even under favorable circumstances.

This Memorandum, part of a larger study conducted for the Advanced
Research Projects Agency, presents a technique which may prove uscful
under difficult environmental coaditions and in sltuations in which a
dyramic solution is required. This latter capability should be of
special interest to those who are concerned with sonar development in

particular, and with acoustic propagation in general.
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SUMMARY

A computer solution of the wave-difference equations is founa by
using an interlacing explicit-implicit scheme. In the computation, the
entire two-dimensional field is found as a function of time.

The examples consideresd irvolve propagation in a homogeneous
shallow-water channel where the effect of superposition of discrete
spectra produces characteristic modal patterns. The spatial sound
pressure fluctuations are rep:esented as plot-density variations along
the two-dimensional channel. Examples of discrete propagated modes as
well as evanescent modes are presented. The size of the field that can
be presented is limited by the size, accuracy, and speed of the com-

puter.
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I. INTRODUCTION

In this study the difference equations representing wave
motion are solved by an interlacing explicit-implicit procedure.
This scheme in its present form was applied with remarkable suc-
cess by J. J. Leendertse to the solution of long-1r riod ocean wave

(1)

motion. Reference 1 demonstrated that this method is capable
of producing accurate stable solutions of the nonlinear wave
equation without the usual restricting assumptions. The present

study is concerned with the two-dimensional linearized undamped

wave equation.
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II. DIFFERENCE ™" ATIONS

The basic first-order undamped differential equations which de-

scribe the cound field are(z)
au _ ac’e)
p 5t + = =0 (1)
|, A
Paet Tae n O @)

§+9%+p%=o 3)
where the quantities £, U, W represent the linearized departures in the
variables, density, and two components of particle velocity, respectively.
In this Memorandum, the sound velocity C is considered only as a function
of the depth z; the density p is a constant. Both of these quantities
could be functions of spatial as well as of time coordinates.

The difference equations which represent the differential Egs. (1),
(2) and (3) could be formed in a variety of ways. The scheme chosen
here uses a two-interlacing grid system in which the density point is
surrounded by two stream points, as indicated in Fig. 1. Position in

th grid, formed by th2se points, is indicated by two subscripts. The

first refers to the row and the second to the column.
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1 _ bt 02 ! T =
E",m - gn,m £ (Un,m bn,m-l) £ (wn,m wn-l,m) (6)
The primed superscirirts designate the quantity at t + 7.
*Note another equal:iv valid formulation:
AN I 2 -
Un,m - Un,m Lo cn (gn,m+1 gn,m)
! 1 T 2 r} _ 2F'
wn,m wn,m Lo (cn+1 gn+:,m cn ’n,m)
and
4 =F -ﬂ - --pl + 7 _I
gn,m n,m £ (Un,m Un,m-l) L (wn,m wn-l,m)

This formulation is used in the second half-time step when the alter-
nate solutfon directica is used.




I1I. THE ALTERNATING DIRECTION IMPLICIT-EXPLICIT

METHOD OF SOLUTION

During each of two successive time increments T, a different
operation is performed. Equations (1) and (3) are first solv~d im-
plicitly; Eq. (2) is then solved explicitly in the first time inter-
val. 1In the second time interval, Egs. (2) and {3) are solved implic-
itly and Eq. (1) explicitly. These two operations comprise a oue-time
step of 2. From a knowledge of the boundary conditions, tr> twc groups
of implicit equations are solved by eliminating the urx: cwns.

The alternating direction method car be applied directly to Egs.

(4) through (6) if the equations are put in the following form:

First half-time step: implicit solution over the row n

. % 0 Urlx,m-l + gr’l,m + % p Ur'l,m =AL @))
- _g:rT Cr21 g;,,m + Urlg,m + TT[ Cr?; gr:,m-H i :'n,m (8)
where
An,m B gn, * % e (wn-l,m ) wn,m)
Bn,m ) Un,m

First half-time step: explicit solution over the column m

2 : 2
Vo= W T { n+l Sn+1L|m n °n,m}
n,m n,m P L

(9)




Second half-time step: implicit sclution over the column m

T ” ” T ” =
T P wn-l,m + gn,m + L P wn,m an,m (10)
Y CZ
X (:E Y ) + W + I ( n+l ., ) = b 11)
p \ £ °n,m n,m p L “n+l,m n,m {

where

Second half-time step: explicit solution over row n

o2
3 - ) az

" [4
U
n,m n,m

(=]
]

- X
P

During the first half-time step t to t + 7, Eqs. (7) and (8) are
solved implicitly, while Eq. (9) is solved explicitly. The implicit

formulas for each n during the first half-time step can he written in

general terms

= = ’
°n,m Pn,m Un,m * Qn,m (13)
’ - =0

Un,m-l - Rn,m-l Sn,m + sn,m-l (14)
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where
70
Pn m T
’ >
4 1+ . pRn,m-l
3
T
o - At 7P Shm1
n,m I
L ae £ P Rn,m-l
T .2
R = ol Cn ifme¥ 1
LT B QPR
pL n n,m
=0 ifm=1
T
B +—=C
S - _n,m pl nQr.,m ifmeg 1l
n,m 1 lCZ
p4 n n,m
=y’ ifm=1
n,l
U‘: 1 represents an external driving function at the zero position; it
H
is zero otherwise. In the following time step t + 7 to t + 271, Eqs. (10)
and (11) are solved implicitly, while Eq. (12) is solved explicitly.
The generalized form of the equations is

~ n

gn,m 5 pn,lu wn,m i qn,m (15)

LA = - ” 16
n-1,m rn-l,m gn,m + sn-l,m (16)
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n,m CQ
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- —
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Equations (13) through (16) are in the form used in the numerical

computation.




IV. ORDER OF SOLUTION

During the first half-time step the coefficients P » Q , etc.
n,m’ “n,m

are evaluated in succession over each row beginning with m = 1 and ex-
tending to the far boundary at m = moax’ At the far end of the channel,

beyond the area where the wave has disturbed the channel, u’ o = 0,
B Bhax
Eq. (13) ! :comes

' -
gn m - Qn
’ ,m
max max

The solution for Eqs. (13) and (14) begins at m = M ax and proceeads

tom = 2 over each row, beginning with n = 2, as follows:

’ =+
gn,m Qn,m
max max

¢ o vy
Un’2 Rn,z §11,3 sn,2

?

= o 14
§n,2 5

n,2 Un,2 + Qn,2

The explicit Eq. (9) is then solved over the columns m beginning with

n=2,
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In the following half-time step P, 9 , etc. are evaluated in
» ’

n,m
succession over each column beginning with n = 2. The implicit Eqs. (15)
and (16) for gn,m’ wn,m can then be solved in the same way as the first
half-time step, except that the boundary conditions now depend on the
surface and bottom of the channel. The water-air interface cannot sus-
tain any change of pressure. The boundary conditions at the free sur-

face of the channel n =n__ can be satisfied if §; o~ 0. Equation (16)

max ’
becomes

Beginning with this equation, at the top of the channel the solution
procecds to the bottom of the channel in a procedure similar to that
used to compute the first half-time step. For the rigid boundary at the
bottom of the channel (Fig. 1), the velocity in the vertical direction
is Wi,m' 0. Then Eq. (15) can be written

” = < ”
g2,m p2,m w2,m + q2,m
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V. DISCUSSION OF THE EXAMPLES

The interlaced implicit-explicit method was programmed in FORTRAN
for RAND's 7040-7044 computer for a rectangular channel. Various grid
sizes, time increments and frequencies were tried. The numerical sta-
bility of the calculations and the basis for grid and time step size
have been discussed in Ref. 2. For the examples presented, a 20 cps
source of the form

A sin (wt + ¢)
was applied at one end of the channel. In order to reduce the transient
disturbances, a zero phase angle was used. Peak amplitudes of the steady-
state solution of excess density at each data point of the channel were
retained and plitted on the S-C 4060 microfilm recorder. A density plot
representative of the peak density amplitude was constructed by making
the size of the character (X in this case) represent a density amplitude
range. In Figs. 2 and 3 the darker regions reprzsent less sonified re-
gions, while the white regions represent those which are highly sonified.*
These plots represent only a portion of the steady-state field.

Examples of patterns of locked and evanescent modes are shown in
Figs. 2 and 3. As indicated in Fig. 2(a), the source was placed in the
center of the end of the channel, This resulted in the energizing of
modes 1 and 3. In Fig. 2(b), the source was placed near a nodal point

of mode 3; hence mode 3 was suppressed to some extent and energy was

*As programmed, the maximum peak amplitude is divided into
five equal increments. The first increment (a blank) represents
the excess density in the range 1.0A to 0.8A, and the four successive
divisions represent decrements in amplitude with the largest X
designating the range 0.2A to 0.0.
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directed to modes 1 and 2. These two figures represent the channel
driven at a frequency below mode 3 cutoff, as the attenuation in tie
x-direction demonstrates.

In Fig. 3 one boundary condition .as changed to represent a free
surface, as described in the preceding section. All other parameters
are the same, the source is in the middle of the channel, and modes 1
and 2 are propagated wiiile mode 3 and higher modes are evanescent.
These results are very much like those of the optical fringe analog
of sound propagation of Ref. 3.

It is possible to compare these results with ray theory by veri-
fying that the horizontal pattern repetition distance A given by ray

theory is the same as the A indicated in Fig. 3. From ray theory(B)

812

A —th
A(n? - n?)

(18)
where n and m are the mode numbers, H the distance between two density
release surfaces, and A the wavelength. The phase change at the rigid

surface is equivalent to a reflecticn at a free surface lying at a dis-

tance

(19)

®
[ 8
=]
D
&1

below the rigid surface. Here 9 is the angle that the ray makes with
the boundary for in-phase regions to appear. From Fig. 3 this angle

is approximately 20°. The enhanced channel depth is then

H=H+ Hy (20)

RRSTTNSRSTPR. NPt

ety 3 2 4 it




1
4
3

From the parameters assumed in Figs. (2) and (3)

sound velocity V = 5000 ft/sec

wavelength ) = 250 ft
channel depth Hl = 237.5 ft
grid size £ = 12.5 ft

time step size T = 0.00125 sec

the horizontal repetition length calculated from Eqs. (18), (19) and
{20) is approximately 739 ft, while the measured distance from Fig. 3
is appreximstely 12.5 x 57.0 ft = 712.5 ft. The difference betwseen

the ray theory calculation and the calculation in this work probably

can be attributed to gquantization.
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VI. CONCLUSIONS

It is important to recognizec the distinctive features <nd the in-
herent limitations of the implicit-explicit method compared with the
methods now in use. It is difficult to infer all of the features and

limitations of this method from these simpie examples, but the follow-

ing are evident:

FEATURES

1. The entire field is found 38 a function cf time in the
calculation.

2. Other than the grid size, no restrictions are placed
on the velocity field and boundary conditions.

3. The parameters describing the field can vary in time.

LIMITATIONS

1. The field size is limited by the accuracy and the
storage capacity of the computer.

2. The computation time is a function of the field size
and the computer fast-storage capacity. For example,
one hour of RAND 70%40-7044 computer time and most of the

fast-storage capacity were consumed in pt.Juocing each
solution as shown in Figs. 2 and 3.

It is generally accepted that ray tracing, normal mode, or semi-
empirical method, or some combination of them, is adequa.e for most
naval applications, orovidud that the environmental parameters and
sonar system parameters are available and are used cerrectly. How-
ever, in conditions which are either exceptionally good or axception-
ally bad, all throe methods fail in reliable range prediction.(a) The
implicit-explicit method has a potential which is not available with

current methods for range prediction under the conditions of a variable

local environment.
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Appendix

COMPUTER PROGRAM

SPUNDW is a main routine written in FPRTRAN IV for use on the 1BM-

7044, but it also may be used on the various machines capable of using
the F@RTRAN language.
Input, read in by F¢RMAT (I5), comsists .f:

Length of grid - MDIM
Width of grid - NMAX
Expanding boundary for M - MMAX

Maximum number of time steps - MAXST

Rasibiont:

Initial time step number - NST
Frequency - F
Length of grid interval - AL
velocity - VEL
Time step size - AT
Rho - RH@
Gamma - GAM'A
12. Amplitude - AMPU
Output is stored on FGRTPAN I/@ unit 9
1. SEP, SEPP - density
2. UP, UPP - X-component of velocity

VT, N I S R S

(L=
- O

3. WP, WPP - Z-component of velocity

b i)

where P refers to the first half-time step, and PP refers to the second

half-tine step.
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OIMENSION PO

DIMINSION U(204222)9SE(204222)4W(204222)4WF(204222)
DIMENSION SEP(20,222)ySEPP(20,222i ¢UP(204222) yUPP(20,222),

WPP (20, 222

EQUIVALENCE (SE(141)ySEP(1,1)ySEPP(1,1))

oVo HUBER'

IT(20,124)

'ECEMBER, 1967

EQUIVALENCE (U(1l,1),UP(1,y1))
EQUIVALENCE (W(1l,1),UPP(141))
FQUIVALENCE (WP(1y1)9eWPPI{1,1))

DIMENSION A(222),8(222),P(222),Q1222),R(222)45(222)

DIMENSION ADAV(222), X1DAV(222)

DIMENSION CS

DIMENSION DES(6),DESL(2)

OIMENSION N

DATA DES /3H U,4H UP,4H

Qt21)
0(222)

SEs4H SEP,3H MWy4H

DATA DES1 /SHFIRST,6HSECOND/

READ(5y404)
READ(54404)
READ(5, 404)
READ(5, 404)
READ(5, 404)
READ(5,406)
READ(5,406)
READ(59406)
READ(5y 406)
READ(5¢406)
READ(5,406)
READ(S,406)
FORMAT(I5)
FORMAT (F10.4
00
NO(T) = 1

MDIM
NMAX
MMAX
MAXST
NST

F

AL
vel
AT
RHO
GAMMA
AMPU

10 I=1,MDIM

MMAX SHOULD BE EVEN INITIALLY.

NMAX1 = NMAX

-1

MMAX]1 = MMAX-1

AL = AL*30.5
CF = .975914
VEL = VEL*30
Cl = AT/AL
C2 = Cl/AL

INITIAL COND
00 20 M=1,M0
AlM) = O,
B(M) = 0.

506

5

ITIONS
IM
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20

30

40

50

Ao e o

60

70

P(M) = 0. 19
Q(M) = 0.
R(M) = 0.
S(M) = 0.
D0 20 N=1,NM”X
UINyM) = 0.
SEINyM) = 0.0
H(N'M) = 0o

WPIN,M, = 0.
Pl = 3.1415926
FPI = 4.0%PI*F*AT
TROL = C1#*RHO
PL2 = C1/AL/RHO
PLGAM = PL2%GAMMA
DO 30 N=2,KMAX
CSQ(N) = CL*VEL*%*2/RHO
CONT INVE

XDAV ¢ X1DAV USED ONLY FOR A CYLINDRICAL COORDINATE SYSTEM
DO 40 I1=2,MDIM

XM = AL*FLOAT(I-1)

XMM= AL*FLOAT(I-2)

XDAVII) = 2.%XM/{XM+XMM)*TRCL

XIDAV(I) = 2.%XMM/(XM+XMM)*TROL

CONT INUE

FIRST HALF-TIME STEP CALCULATIONS BEGIN
CONT INVE

EXPLICIT CALCULATION OF wpP

XNST = NST

CO 70 M=2,MMAX

MM = M-1

MMM = M4}

DO €0 N=2,NMAX]

NN = N-1

NNN = N+l

HOLDL = W{NeM) — CSQI(NNN)*SE(NNNyM) + CSQI(N)*SE(N, M)
WP(NoeM) = HOLDL ¢ PLGAME(W(NNN¢M) = 2,0*W(N,M) + WINNyM))
CONT INVE

WP(NMAX,M) = 0.0

CONT INUE

R{Ny1)9SI{Ns1) DEFINE BURY. CONDS. FOR UFP
R{1) = 0.0
L = MMAX

IMPLICIT CALCULATION OF PyQoR,S
CO 100 N=2,NMAX
$(1) = 0.0

POINT SOURCE

IFI(N.EQ.14) S{1) = AMPUSSIN(FPI*XNST)
NN = N-1

DO 80 M=2,L

MM = M-1

MMM = M+]

A(M) = SE(HyM) + TROL®IWINNoM) - W(N,M))
PDEM = 1.0 ¢ TROL*R{MM)

P(M) = TROL/PDEM
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80

90
100

110

o0 (g N g

120
130
c
c

140

(aN e (o X g

CIM) =(A(M) + TROL*S{MM) ) /PDEM

IF(IM.EQ.MMAX) GO TO 80

B(M) = U(NyM) ¢ PLGAMR(U(N,'iMM) —-2,.0%U(NeM) + U(NyMM))
RNUM = CSQIN)

RDEM = 1.0 ¢ RNUM®P(M)

R{M) = RNUM/RDEM

S(M) = (B(M) + RNUM®Q(M))/RDEM

CONTINUE

UP(NoL)= 0.0

M=| .

i

IMPLICIT CALCULATION OF SEP,UP
D0 90 J=2,MMAX

MM = M-1

SEP(NyM) ==P(M)®UP(NyM)*Q(M)
UP(NyMM) ==R{MM)*SEP(NyM)+S(MM)
M= M=1

CONT INUE

MX = MMAX

ASSIGN 110 TO KK

GO TO 190

SECOND HALF-TIMF STEP CALCULATIONS BEGIN
CONT INUE

EXPLICIT CALCULATION OF uPP

DO 130 N=2,NMAX

NN = N-1

NNN = N+1

00 120 M=2,MMAX]

MM = M-]

MMM = M+])

UPP(NyM)=UP(NeM) - CSQINI®({SEP{NyMMM) - SEP{N,M)) + PLGAM?
LIUP(N MMM ) -2 ,0%UP(NyM)} ¢+ UP{N,sMM)})
CONTINUE

CONTINUE

BOUNDARY CONDITIONS ON UPP
DO 140 N:=1,NMAX
UPP(Nes 1) = 0.0
UPP(NyMMAX) = 0,0
UPP(14¢1) = AMPUXSIN(FPI*(XNST+.5))

IMPLICIT CALCULATION OF PyQeRsS
DG 170 M=2,MMAX

R{leM)sS(1sM) DEFINE BDRY. CONDS. FOR WPP
Rt 1 ) = 0.0

St1)= 0.0

MM = M-1

MMM = M¢]

DO 150 N=2,NMAX

NN = N-1

NNN = N+¢1

A(N) = SEP(NyM) - TROL®{(UJP(NsM)=-UP(NsMM))
PDE = 1.0 +TROL*R(NN)

P{(N) =TROL/PDE

QIN) =(A(N) +TROL*S(NN))/PDE

IFINLEQ.NMAX) GO TO 150

BIN)=WP(NyM)+ PLGAM® (WP {NNNyM)-2 ., *WP (N, M)+WP(NN,M))
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RDE = 1.0 # CSU(NI*P(N)

RIN) = CSQINNN)/RDE

SIN) ={BI(N) + QIN)I*CSQ{N))/RDE
CONT INUE

CON1 = CSQUNMAX)

N= NMAX

BOUNDARY CONDITIONS ON wWPP
WPP (NMAXyM} = 0.0

IMPLICIT CALCULATION OF SEPP,WPP

D0 160 J=2,NMAX

NN = N-1

SEPP{NyM) = -P{NI®WPP{N,M) ¢ Q(N)

WPP{NNyM) = ~R{NN)*SEPP{NyM) + S(NN)

N = N-1

CONT INUE

DO 180 J=1,MMAX

DO 180 I=1,NMAX
UlTsJ) = UPPLIsJ)
Wlled) = WPP(I1,J)

ASSIGN 200 TO KK

CONT INUVE

DO 2 N=1,20

D0 3 M=1,124

TF(SEIN,M).GT.POITI(NyM)) POITI{NyM) = SEIN,M)

CONT INUE

CONT INUE

GO TO KK,y (110,200)
CONTINUE

NST = NST+1

EXPANDING BOUNDARY
TF{MMAX LT MCIM) MMAX = MMAX+2
MMAX1 = MMAX-1
IFINST.GY.MAXST) GO YO 210
GO T0O 50

CONT INUE

WRITE(9) POIT

DO 13 M=1,124

PRINT 14, (POIT(N,M), N=1,20)
CONT INUE

STOP

FORMAT (1H ,10E113.5)
FORMAT(IH ,13,2Xys11E11.4)

FORMAT{1HL o4 Xy 4HTHE 4A6,9HVALUES AT,1X,A6,17H HALF CF TIMESTFP,I5)

FORMAT{LIH 43X%,13)

FORMKAT(IHO96HMST = ,14423HALL VALUES ARE AVERAGED)

END

$ENTRY SOUNDW

222
20
60

350

1

LENGTH OF GRID
WIDTH OF GRID

EXPANDING ROUNDRY FOR M

MAX. NO. OF TIMESTEPS
INITIAL TIMESTEP NO.
20.0 FREQUENCY

12.5 LENGTH OF GRID INTERVAL

5000.0 VELOCITY
«00125 TIMESTEP SIZE

1.025 RHO




0114 GAMMA 22
6.0 AMPLITUDE
$IBSYS
$CLOSE S«.SU06yREMOVE

$I1BFTC PLOTP

DIMENSION AMODES(200)
DIMENSION POIT(20,124)
DIMENSION SIZE(4),X{2500),Y(2500)
DATA SIZE/eT7541.091.2541.5/
READ (9) POIT
CALL MODESG{AMODES,0)
CALL SETSMG (AMODES, 84 6HXXXXXX)
CALL SETSMG (AMODES,94,1.)
CALL 0BJCTG{AMODES90e90e91.333333,.3)
CALL SUBJEG (AMODES90.090.04124.,20.)
CALL GRIDG (AMODES¢1.091.0,0,0)
DO 20 I=1.4
IX=0
DO 20 K=1,20
DO 40 L=1,124
GO TC (60470,80490)y 1

60 IF(POIT(KoL)eLTe «SOE-5.AND.POIT(K,L).GE.
GO TO 40

TO IF(POIT(KyL)elTe 40E-5.AND.POIT(K,L).GE.
GO TO 40

80 IF(POIT(KeL)elTe «30E-5.AND.POIT(K,L).GE®
GO TO 40

90 IF(POIT(KyL)eLTe ¢20E-5.AND.POIT(K,oL).GE.
GO TO 40

50 IX = [IXx¢l
X("X) = L
Y(IX) = K

40 CONTINUE

30 CONTINUE
CALL SETSMG(AMODES,53, SIZE(1))
CALL POINTG (AMODES,IXeX,Y)

20 CONT INUE
CALL PICTRG(AMODES+140,1)
CALL EXITG (AMODES)
CALL EXIT
END

+40E-5)
»30E-5)
«20€-5)
«00E-1)

G0 10 50
GO 10 50
GO 10O 50

GO 70 S0
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