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PREFACE 

In sonar evaluation studies there are at present three approximate 

methods of determining sound propagation:  ray theory, mode theory and 

semi-empirical formulation.  Under the usual environmental conditions, 

one or a combination of two of these methods will produce satisfactory 

prediction of intensity versus range. Dut under extreme environmental 

circumstances, favorable or unfavorable, range prediction is not re- 

liable with any combination of these methods. Another limitation of 

the existing methods arises with the Increasing reliance on signal pro- 

cessing. Static methods of range prediction are becoming less useful 

even under favorable circumstances. 

This Memorandum, part of a larger study conducted for the Advanced 

Research Projects Agency, presents a technique which may prove useful 

under difficult environmental conditions and in situations in which a 

dynamic solution is required. This latter capability should be of 

special interest to those who are concerned with sonar development in 

particular, and with acoustic propagation in general. 



SUMMARY 

A computer solution of the v/ave-difference equations is found by 

using an interlacing explicit-implicit scheme. In the computation, the 

entire two-dimensional field is found as a function of time. 

The examples considere'l tr.volve propagation in a homogeneous 

shallow-water channel where th-j effect of superposition of discrete 

spectra produces characteristic modal patterns.  The spatial sound 

pressure fluctuations are represented as plot-density variations along 

the two-dimensional channel. Examples of discrete propagated modes as 

well as evanescent modes are presented. The size of the field that can 

be presented is limited by the size, accuracy, and speed of the com- 

puter. 
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I. INTRODUCTION 

In this study the difference equations representing wave 

motion are solved by an Interlacing explicit-Implicit procedure. 

This scheme In its present form was applied with remarkable suc- 

cess by J. J. Leendertse to the solution of long-r rlod ocean wave 

motion.    Reference 1 demonstrated that this method is capable 

of producing accurate stable solutions of the nonlinear wave 

equation without the usual restricting assumptions. The present 

study is concerned with the two-dimensional linearized undamped 

wave equation. 



II.  DIFFERENCE *"RATIONS 

The basic first-order undamped differential equations which de- 

.(2) scribe the sound field are 

pfs.^u-o a, 

p|s + ^.„ (2) 

il+^+»S-« "> 

where the quantities £, U, W represent the linearized departures in the 

variables, density, and two components of particle velocity, respectively. 

In this Memorandum, the sound velocity C is considered only as a function 

of the  depth z; the density p is a constant. Both of these quantities 

could be functions of spatial as well as of time coordinates. 

The difference equations which represent the differential Eqs. (1), 

(2) and (3) could be formed in a variety of ways. The scheme chosen 

here uses a two-interlacing grid system in which the density point is 

surrounded by two stream points, as indicated in Fig. 1. Position in 

tb grid, formed by th>se points, is indicated by two subscripts. The 

first refers to the row and the second to the column. 

n,m   n,m  *p n  n.m+i   n,m 

y'  = y    I. (cZ  £     - C 5  )        (5) 
n,m   n,m  £p v n+1 n+l,m   n n,m        v 

•■*v 
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C-   m   =   ^n   n,   ■   ^   (Un   m   -   Un   n,   ^    -  ¥   <Wn   m   ■   Wn    1   m> (6) .,m        n^       i       11)111        11,111-1 l       n,m        n-itin 

* 
The primed supersciirts designate the quantity at t + T. 

if 
Note another equally valid formulation: 

U'  = U   - 7- c2 (?  ^, - ?  ) 
n,m   n,m  Jtp n 3n,m-t-l   n,m 

W'  - W   - -T- (C2.. I1.,       - C2 ?' ) 
n.m   n,m  *p  n+1 n+i,m   n n,m 

I'     =5  -•£ (u  -u  ,) "^ («'  -w'  > n.m   n,m  £   n,m   n,m-l   * v n,m   n-l.m' 

This formulation is used in the second half-time step when the alter- 
nate solution directic.i is used. 

and 



III. THE ALTERNATING DIRECTION IMPLICIT-ECPLICIT 
METHOD OF SOLUTION       " 

| 

During each of two successive time Increments T, a different 

operation Is performed. Equations (1) and (3) are first solved Im- 

plicitly; Eq. (2) Is then solved explicitly In tht first time Inter- 

val. In the second time Interval, Eqs. (2) and (3) are solved Implic- 

itly and Eq. (1) explicitly. These two operations comprise a oue-tlme 

step of 2'. From a knowledge of the boundary conditions, tti-y.  two groups 

of Implicit equations are solved by eliminating the urk cvns. 

The alternating direction method car. be applied directly to Eqs. 

(4) through (6) if the equations are put in the following form: 

First half-time step:  implicit solution over the row n 

7 p U'  . + |'  + 7 P U'  = A I        n,m-l   n,m  I        n,m   n,m (7) 

T 2 T „2  ,/ 
pi     n n,m   n,m   0/  n n,m+l  "n^ (8) 

where 

A   =?   +7P(W,  -W  ) n,m   n,m l n-l,m   n,m 

B   = U 
n,m   n,m 

First half-time step:  explicit solution over the column m 

•c2.. , c'i 
.,'  _ w   _ I / n-H n-H,m   n Jn,m\ 
n,m   n,m   P I        I i (9) 



Second half-time  step:     Implicit solution over the column m 

7 P W"  .      +|"      +7 p W"      = a (10) 
i       n-l,m        n,m      t        n,m       n,m v    ' 

r2 c2 

p \1 "n,m/ + Wn,m ''"   p   \"T" §n+l,m/ " bn.m K11) 

wher» 

j        .5'       -1   p(u'       - U'       .) 
n,m       n,ni      i   r \ n.m       n,m-l/ 

b        = W' n,m        n,m 

Second half-time step:    explicit solution over row n 

.c2 

^.m = ^.m -   7  IT ^^„rt-l " ^.a)} (12: 

During the first half-time step t to t + T, Eqs.   (7) and  (8) are 

solved  implicitly, while Eq.   (9)  is solved explicitly.    The  implicit 

formulas  for each n during the  first half-time step can he written in 

general terms 

§'      = - P        U'      + Q (13) n,m n,m    n,m        n»m 

U'       ,   = - R        , §'      + S , (14) n,ro-l n,m-l    n,m       n,m-l 



where 

n,m 

n,m 

A        + 7 P S _    n,m     i        n,m-i 
1 +7 P R        i l r    n,m-l 

p£    n 

'n,m      1+77c2P p£    n    n,m 

if m ^  1 

if m «  1 

B        + ~ C2 Q 
s =    n>m      iL n    r-''n     if m ^  1 

n.m        i+J-c2P 
p£    n    n,m 

n.l if m -  1 

M1  , represents an external driving function at the zero position; it 
n,l 

is zero otherwise. In the following time step t + T to t + 2T, Eqs. (10) 

and (11) are solved implicitly, while Eq. (12) is solved explicitly. 

The generalized form of the equations is 

5;.. P   W"  + q_ 
n,m n,m  ^n,m (15) 

a-l,m 
r    5'  + s 
n-l,m n,m   n-l,m 

(16) 



where 

T 

?n'm' 1+^p r , Z        n-l,m 

a   + -7 p s , _ n.m I       n-l,m 
ln'm" 1 +^ p r . I n-l,ni 

T 
Cn+I 

P t 
n,m       c2 

1 + - n 

p i    Pn,m 

If n j« 1 

If n - 1 

n.n 

c2 

n.m  p X  n.m 

, , T n 1 + - ■— p 
p / rn,m 

If n ^ 1 

«0 if n - 1 

Equations (13) through (16) are in the form used in the numerical 

computation. 



IV.    ORDER OF SOLUTION 

During the  first half-time step the coefficients P       ,0       ,  etc. n,m  n,m 

are evaluated in succession over each row beginning with m " 1 and ex- 

tending to the far boundary at m = m  . At the far end of the channel, 
IDAX 

beyond the area where the wave has disturbed the channel, ü' " 0, n,m max 
Eq.   (13)  1 «comes 

5' -Q 'n.m xn,m max max 

The solution for Eqs.   (13) and  (14) begins at m s m        and proceeds 
m&x 

to m " 2 over each row, beginning with n = 2, as follows: 

?'    - + Q n,m       n,m max       max 

UI m   i - " R     5'    + S n»™-^"1     n,m    n,m     n,m  -1 max max    max    ' max 

"'"Vx-1 E  ^'Vx"1 ""'■"max-1 4 ^'"max-1 

Un,2 " " Rn,2 5n.3 + Sn,2 

§n,2 = ■ Pn.2 ün,2 + ^,2 

The explicit Eq. (9) is then solved over the columns m beginning with 

n = 2. 
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In the following half-time step p  , q  , etc. arc evaluated in 

succession over each column beginning with n ■ 2. The implicit Eqs. (15) 

and (16) for C  , W   can then be solved in the same way as the first 
n,m  n,E 

half-time step, except that the boundary conditions now depend on the 

surface and bottom of the channel. The water-air interface cannot sus- 

tain any change of pressure. The boundary conditions at the free sur- 

face of the channel n = n   can be satisfied if |"    " 0. Equation (16) 
max an  ,m     n      v ' 

max 
becomes 

n 
max 

i  ' + * ■l,m     n 
max 

•l,m 

Beginning with this equation, at the top of the channel the solution 

proceeds to the bottom of the channel in a procedure similar to that 

used to compute the first half-time step. For the rigid boundary at the 

bottom of the channel (Fig. 1), the velocity in the vertical direction 

is W" - 0. Then Eq. (15) can be written 
i ,m 

S2,m    P2,in 2,m  q2,m 
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V. DISCUSSION OF THE EXAMPLES 

The interlaced implicit-explicit method was programmed in FORTRAN 

for RAND's 7040-7044 computer for a rectangular channel. Various grid 

sizes, time increments and frequencies were tried. The numerical sta- 

bility of the calculations and the basis for grid and time step size 

have been discussed in Ref. 2. For the examples presented, a 20 cps 

source of the form 

A sin (u)t + cp) 

was applied at one end of the channel. In order to reduce the transient 

disturbances, a zero phase angle was used. Peak amplitudes of the steady- 

state solution of excess density at each data point of the channel were 

retained and pi itted on the S-C 4060 microfilm recorder.  A density plot 

representative of the peak density amplitude was constructed by making 

the size of the character (X in this case) represent a density amplitude 

range. In Figs. 2 and 3 the darker regions represent less sonified re- 

gions, while the white regions represent those which are highly sonified. 

These plots represent only a portion of the steady-state field. 

Examples of patterns of locked and evanescent modes are shown in 

Figs. 2 and 3. As indicated in Fig. 2(a), the source was placed in the 

center of the end of the channel. This resulted in the energizing of 

modes 1 and 3. In Fig. 2(b), the source was placed near a nodal point 

of mode 3; hence mode 3 was suppressed to some extent and energy was 

As programmed, the maximum peak amplitude is divided into 
five equal increments.  The first increment (a blank) represents 
the excess density in the range 1.0A to 0.8A, and the four successive 
divisions represent decrements in amplitude with the largest X 
designating the range 0.2A to 0.0. 
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directed to modes 1 and 2. These two figures represent the channel 

driven at a frequency below mode 3 cutoff, as the attenuation in the 

x-direction demonstrates. 

In Fig. 3 one boundary condition -'as changed to represent a free 

surface, as described in the preceding section. All other parameters 

are the same, the source is in the middle of the channel, and irodes 1 

and 2 are propagated wuile mode 3 and higher modes are evanescent. 

These results are very much like those of the. optical fringe analog 

of sound propagation of Ref. 3. 

It is possible to compare these results with ray theory by veri- 

fying that the horizontal pattern repetition distance A given by ray 

(3) 
theory is the same as the A indicated in Fig. 3. From ray theoryx 

A 12—r (18) 
X.(n - m ) 

where n and m are the mode numbers, H the distance between two density 

release surfaces, and X the wavelength. The phase change at the rigid 

surface is equivalent to a reflection at a free surface lying at a dis- 

tance 

below the rigid surface. Here 0 is the angle that the ray makes with 

the boundary for in-phase regions to appear. From Fig. 3 this angle 

is approximately 20 . The enhanced channel depth is then 

H - H' + H1 (20) 
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From the parameters assumed in Figs. (2) and (3) 

sound velocity V 

wavelength X 

channel depth H. 

grid size I 

time step size T 

5000 ft/sec 

250 ft 

237.5  ft 

12.5  ft 

0.00125 sec 

the horizontal repetition length calculated from Eqs.   (18),   (19) and 

(20) is approximately 739 ft, while the measured distance from Fig.  3 

is approximately 12.5 x 57.0 ft = 712.5 ft.    The difference between 

the ray theory calculation and the calculation in this work probably 

can be attributed to quantization. 
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VI.  CONCLUSIONS 

It Is Important to recognize the distinctive features end the in- 

herent limitations of the implicit-explicit method compared with the 

methods now in use.  It is difficult to infer all of the features and 

limitations of this method from these simple examples, but the follow- 

ing are evident: 

FEATURES 

1. The entire field is found as a function cf time in the 
calculation. 

2. Other than the grid size, no restrictions are placed 
on the velocity field and boundary conditions. 

3. The parameters describing the field can vary in time. 

LIMTTATIONS 

1. The field size is limited by the accuracy and the 
storage capacity of the computer. 

2. The computation time is a function of the field size 
and the computer fast-storage capacity. For example, 
one hour of RAND 70^0-7044 computer time and most of the 
fast-storage capacity were consumed in puUjcing each 
solution as shown in Figs. 2 and 3. 

It is generally accepted that ray tracing, normal mode, or semi- 

empirical method, or some combination of them, is adequate for most 

naval applications, orovidud that the environmental parameters and 

sonar system parameters are available and are used correctly. How- 

ever, in conditions which are either exceptionally good or sxceptlon- 

ally bad, all throe methods fail in reliable range prediction.  ' The 

implicit-explicit method has a potential which is not available with 

current methods for range prediction under the conditions of a variable 

local environment. 
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Appendix 

COMPUTER PROGRAM 

S0UNDW is a main routine written in F0RTRAN IV for use on the IBM- 

7044, but it also may be used on the various machines capable of using 

the F0RTRAN language. 

Input, read in by FORMAT (15), consists  £: 

1. Length of grid - MDIM 

2. Width of grid - NMAX 

3. Expanding boundary for M - MMAX 

4. Maximum number of time steps - MAXST 

5. Initial time step number - NST 

6. Frequency - F 

7. Length of grid interval - AL 

8. velocity - VEL 

9. Time step size - AT 

10. Rho - RH0 

11. Gamma - GAM'A 

12. Amplitude - AMPU 

Output is stored on F0RTPAN 1/0 unit 9 

1. SEP, SEPP - density 

2. UP, UPP - X-component of velocity 

3. WP, WPP - Z-component of velocity 

where P refers to the first half-time step, and PP refers to the second 

half-ti.ne step. 
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SIMULATES   SOUND  PROPAGATION   UNOERWATfcR 

♦   SOUNCW  ♦ 

H.C. SHIfH 
THE RANO CORP. 
SANTA MONICA,CALK1. 

WRITTEN BY R.H. MAYALL, JULY,1967 
REVISED 8Y S.V. HUBER. DECEMBER,1967 

»IBFTC SOUNOW  REF 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
c 
c 
c 
c 

404 
406 

10 
C 
C** 

C 
C 

DIMENSION P0IT(20,124I 
DIMMS ION U(20,2?2),SE(20,222),W(20,222),wr(?Ov2??) 
DIMENSION SEP(20,222),$EPP(20,222;tUP(20,222),UPP(20,222), 

1  WPP(20,222) 
EQUIVALENCE ( SE( 1, 1) ,SEP( I, H , SEPPd , U ) 
EQUIVALENCE (U(1«1),UP(1,1)) 
EQUIVALENCE (W( 1«1)fUPP(1,1)) 
EQUIVALENCE (WP( I, 1)♦WPP(1,1») 
DIMENSION A(222),B(222),P<222)vQ(222)fRf222)vS(222) 
DIMENSION ADAV(222),X1DAV<222) 
DIMENSION CSQ121I 
DIMENSION 0ES(6),DESU2) 
DIMENSION  NO(222) 
DATA DES /3H  U,4H  UP,4H  SE,4H SEP,3H  W,4H  WP/ 
DATA 0ES1 /5HFIRST,6HSEC0N0/ 
READ(5,404) MDIM 
REA0(*,404) NMAX 
REA0(5t404) MMAX 
READ(5,404) MAXST 
READI5,404I NST 
READ(5,406) F 
READ(5,406) AL 
REA0(5,406I VCL 
READ(5f406) AT 
READ(5V406) RHO 
REA0f5,406) GAMMA 
READ IS«406) AMPU 
FORMAT(15) 
F0RMAT(F10.4) 
00 10 UUMOIM 
NO(I) * I 

MMAX SHOULD BF EVEN INITIALLY. 
NMAX1 = NMAX-I 
MMAXI « MMAX-I 
AL * AL*30.5 
CF » .975914506 
VEL « VEL*30.5 
Cl » AT/AL 
C2 » Cl/AL 

INITIAL CONDITIONS 
DO 20 M^UMDIH 
AIM) « 0. 
B(M) « 0. 



P(MI at 0. 
CHMJ s 0. 
RtM) s 0. 
S(M) « 0. 

00 20 N: «ItNM' ,x 
U(N,M| *   0. 
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SEiNtM) » 0.0 
W(N,M) « G. 

20   WPCN.W. « 0. 
PI = 3.1415926 
FPI « 4.0*PI*F*AT 
TROL * Cl*RHO 
PL2 « Cl/AL/RHO 
PLGAM = PL2*GAI«tMA 
00 30 N<2tNMAX 
CSQ(N) * C1*VEL**2/RH0 

30   CONTINUE 
C 
C     XOAV.XIDAV USED ONLY FOR A CYLINDRICAL COORDINATE SYSTEM 

00 40 I*2tM0IH 
XH « AL*FL0AT(I-n 
XMM« AL*FL0ATII-2) 
XDAVdl » 2.*XM/(XM+XMM|*TRCL 
XlOAVm « 2.*XMM/(XM+XHM)*TR0L 

40   CONTINUE 
C 
C     FIRST HALF-TIME STEP CALCULATIONS BEGIN 
50   CONTINUE 

C 
C     EXPLICIT CALCULATION OF WP 

XNST « NST 
DO 70  M=2.MMAX 
MM « M-l 
MMM « M+l 
00 60  N=2»NMAXl 
NN = N-l 
NNN » N+l 
H0LD1 » WIN.M) - CSQ(NNN)**E(NNNVM) *  CSO(N)«SEfNtM) 
WPINfMI « HÜLD1 ♦ PLGAM*(W(NNNfM) - 2.0»W(N,M> ♦ W(NN»M)) 

60   CONTINUE 
WP(NMAXtMI « 0.0 

70   CONTINUE 
C 
C     RINtDtSINvl) DEFINE RDRY. CONDS. FOR UP 

RID * 0.0 
L * MMAX 

C 
C     IMPLICIT CALCULATION OF P,Q,R.S 

DO 100 N«2»NMAX 
Sd) »   0.0 

C 
C     POINT SOURCE 

IF(N.EQ.14I   Sd) > AMPU*SINIFPI*XNST) 
NN *   N-l 
00 80 M=2,L 
MM = M-l 
MMM « M+l 
AIM) « SECN.M) ♦ TROL*(H(NN,M) - WIN,M)) 
POEM » 1.0 ♦ TROL*R(MM) 
P(M) » TROL/POEM 



20 
0(M»   »(A(M»   ♦        TROL*SIMM))/PDEM 
IF(H.EQ.MHAX)   GO   TO   80 
B(M)   >   U(N,M)   ♦ PLOAM«(U(N,:iMM)   -2.0*U(N,M)   ♦   U(N,MM)) 
RNUM  *   CS0(NI 
ROE»«  «   1.0   ♦  RNÜM*P<MJ 
R<M)   «   RNUM/RDEM | 
S(M)   «   (B(M)   ♦  RNUM*Q(M))/RDEM 

80       CONTINUE 
UP(N,L)«   0.0 
M»L 4 

C 
C IMPLICIT  CALCULATION OF   SEP,UP 

00 90     J«2tMMAX 
MM  »   M-l 
SEPINtM)   «-PfM)*UPlN,M)*0(M) 
UP(N,MM)   «-R(MM)*SEP(NtM)+SCMMJ 

90        M  «   M-l 
100     CONTINUE 

MX  *   MMAX 
ASSIGN   110  TO KK 
GO TO   190 

C 
C SECOND HALF-TIME   STEP CALCULATIONS BEGIN 

1.10     CONTINUE 
C 
C     EXPLICIT CALCULATION OF UPP 

00 130 N«2.NMAX 
NN « N-l 
NNN » N+l 
00 120 M«2tMMAXl 
MM » M-l 
MMM * M*l 
UPP(NfM|«UP(N«M) -      CSOINI*(SEP(N»MMM) - SEPIN.MH ♦ PLGAM« 
UUP(N.MMMI-2.0*UP(N,M) ♦ UP(N,MMI) 

120  CONTINUE 
130  CONTINUE 

C 
C     BOUNDARY CONDITIONS ON UPP 

00 140 N--ltNMAX 
UPPJN.ll « 0.0 

140   UPP(N«MMAX) • 0.0 
UPPIIA,!} « AMPU*SIN(FPI*(XNST*.5n 

C 
C     IMPLICIT CALCULATION OF P,Q,R,S 

DC 170 M«2«MMAX 
C 
C     R(ltM),S( 1,M) DEFINE BDRY. CONDS. FOR WPP 

Rt 1 ) > 0.0 
S( i ) * 0.0 
MM » M-l 
MMM « MM 
DO 150 N«2fNMAX 
NN * N-l 
NNN « N+l 
A(N) * SEPINtM} -   TROL*(UP(N,M)-UPINiMMn 
POE »1.0 ♦TRCL*B(NN» 
PIN» «TROL/PDE 
0(N) >(A(N) ♦TROL*S(NN)I/PDE 
IFIN.EQ.NMAXI GO TO 150 
B(N)«WP(NVM)«-   PLGAM*(WP(NNN»M)-2.*WP(N»M)4WP(NN»Mn 



RDE * 1.0 ♦ CS^(N)*P(N) 
RIN) » CSQ(NNN)/R0E 
S(N) *(B(N) ♦ 0INI*CSQ(N))/R0E 

150  CONTINUE 
C0N1 « CSQiNMAX) 
N« NHAX 

C 
C     BOUNDARY CONDITIONS ON MPP 

WPP(N*AX(Hl « 0.0 
C 
C     IMPLICIT CALCULATION OF SEPP,WPP 

00 160 J«2,NMAX 
NN « N-l 
SEPP(N*M) * -PfN)*WPP(NtMI ♦ Q(N) 
WPPCNN.M» » -RINNI*SEPP(N,M) ♦ S(NNJ 

160  N > N-l 
170  CONTINUE 

DO 180 J«1«MMAX 
DO 180 I«1*NMAX 
UdfJI • UPPIItJI 

180   WINJI « WPP(IfJ) 
ASSIGN 200 TO KK 

|    190  CONTINUE 
DO 2 N=l,20 
00 3 M« 1,124 
IF(SE(N,M).GT.POIT(NvM))     POITIN,M)   »   SEIN.NJ 

3 CONTINUE 
2  CONTINUE 

GO TO KK,1110,200) 
200  CONTINUE 

NST » NST^l 
C 
C     EXPANDING BOUNDARY 

IF(HHAX.LT.NCIN) MMAX > MMAX+2 
MMAXl * MHAX-l 
IF(NST.GT.MAXST) GO TO 210 
GO TO 50 

210  CONTINUE 
HRITEm POIT 
00 13  H* 1,124 
PRINT 14, (P0IT(N,M), N*l*20) 

13 CONTINUE 
STOP 

14 FORMAT (1H ,10E13.5) 
300 FORMATdH , I3,?X, 11E11.4) 
301 F0RMAT(1H1,4X,4HTHE ,A6,9HVALUES AT,IX,A6,17H HALF OF TIHESTFP,I5) 
400  FORMATdH ,3X, 13) 
402  FORMATdH0,6HNST » ,I4,23HALL VALUES ARE AVERAGED) 

END 
SENTRY SOUNDW 

222 LENGTH OF GRID 
20 WIDTH  OF GRID 
60 EXPANDING BOUNORY FOR M 
350 MAX. NO. OF TIMESTEPS 

1 INITIAL TIMESTEP NO. 
20.0 FREQUENCY 
12.5        LENGTH OF GRID INTERVAL 

5000.0 VELOCITY 
.00125        TIMESTEP SIZE 
1.025 RHO 
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6.0 AMPLITUDE 
$IBSYS 
SCLOSE S.SU06,REMOVt 

SIBFTC   PLOTP 
DIMENSION   AM0DfcS(200) 
DIMENSION  P0ITI20,124) 
DIMENSION   SIZE(4),X(2500)»Y«2500) 
DATA   SIZE/.75,1.0,1.25,1.5/ 
READ   (9)   POIT 
CALL   MODESG(AMODtS,0> 
CALL   SETSMG   CAMOOES,84,6HXXXXXX| 
CALL   SETSMG   (AMOOES,94,1.J 
CALL OBJCTG«AMOOES,O.vO.t1.333333,.3) 
CALL SUBJEG (AMOOES,0.0,0.0*124.,20.) 
CALL GRIDG (AMOOES,1.0,1.0,0,0) 
00 20 1-1,4 
IX - 0 
00 30 Ml,20 
00 40 L«1,124 
GO TC (60,70,80,90), I 

60 IF(P0IT(K,L).LT. .50E-5.AND.P0IT(K,L).GE. .40E-5)  GO TO 50 
GO TO 40 

70 IF(POIT(K,L).LT. .40E-5.AN0.P0IT(K,L).GE» .30E-5)  GO TO 50 
GO TO 40 

80 IF(POIT(K,L).LT. .30E-5.AND.P0IT(K,L).Gt. .206-51  GO TO 50 
60 TO 40 

90 IF(P0IT(K,L).LT. .20E-5.AN0.P0IT(K,L).GE. .OOE-1)  GO TO 50 
GO TO 40 

50 IX * IX+1 
xrx) » L 
Y(IX) ■ K 

40 CONTINUE 
30 CONTINUE 

CALL SETSMG( AMOOES,53, SIZEd)) 
CALL POINTG (AMOOES,lXtX,Y) 

20 CONTINUE 
CALL PICTRG(AMOOES,1,0.1) 
CALL EXITG (AMOOES) 
CALL EXIT 
END 
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