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Section 1
INTRODUCTION AND SUMMARY

Let X be a p component random vector variable with transpose X' I X Xp

and Y be a one-dimensional ra)adom variable with a joint continuous distribution of

density f(x,y). The regression of Y given X =x is

oOo

E[YIX=x = f yf(x,y) dy + f f(x,y) dy (1.1)
-o0 -00

Using the consistent nonparametric estimators of the densities described later in the

paper, the regression can be estimated by the estimated regression

Y exp 2 -5(X )
1'x 1 26 2 j= "-- 1

Y(10 2o (1.2)r2
exp 202 i- ( Xi )

=1 2aJ=1

where

n = nunber of observations of X and Y used in estimating the

densities

and Y= the ith observations of X and Y, respectively

, x; -'[xii,.. -.,x .. ,Xi
o = a smoothing parameter
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It is further shown that the nonlinear regression equation (1. 2) can be approximated to

any desired accuracy by a polYnomial-ratio regression estimate

Q(Y)
=r PY()(1.3)

where the coefficients of the polynomials are computed as a function of the observed

sample. The advantage of the form Eq. (1.3) is that the observations are used only
in the computation of the coefficients. Subsequent evaluation of Y(x) for a given
vector x is usually much faster using Eq. (1.3) rather than Eq. (1.2).

This same advantage is, of course, shared by classical polynomial regression equa-

tions, but the technique described has the following advantages compared with classical

polynomial regression techniques utilizing a single polynomial:

0 It provides a simple method of determining the coefficients. The calculation

for the coefficient of a particular term amounts to little more than averaging

the corresponding product of variables over the set of observations available.

0 The computational and storage requirements increase only linearly with the

number of coefficients used.

0 The shape of the regres-:;"" surftce can be made as complex as necessary to
closely approximate Eq. (1. 1), ; ;as simple as desired, by proper choice of

the smoothing parameter a. In spite of this flexibility, Y*(x) estimated

from Eq. (1.3) is bounded by the minimum and maximum of the observations

Yi when Q(x) and P(x) are truncated at an even order.

0 Because of the smoothing properties inherent in the density estimator, the

number of coefficients used in the polynomiais can approach or even exceed

the number of observations in the sample with no danger of the regression

surface overfitting the data when a is suitably chosen.

Since the derivation of Eq. (1.3) from Eq. (1.2) is not dependent on X being random,

the computational advantages of the polynomial form can be utilized also when values

of X are specified in the design of an experiment and Y alone is a random variable.

This property applies, of course, to ordinary polynomial regression as well.

2
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Section 2

GENERAL REGRESSION

Let X be a p component random vctor variable with transpose X'-[X1 ,.. X....X pj,

and let Y be a random variable with a joint continuous distribution of density f(x, y).

The conditional mean of Y given X = x,

E[YJ X=x] =f yf(x,y) dy +f fx, y) dy (2.1)

ia also called the regression of Y on X and is determined by the density f.

When the density f(x, y) is not known, it must usually be estimated from a sample of

observations of X and Y. We estimate the regression by taking the regression of a

nonparametric estimate of f(x, y). The class of consistent estimators proposed by

Parzen (Ref. 1) and shown to be applicable to the multidimensional case by Cacoullos

(Ref. 2) are suitable for this purpose. For reasons expressed in Refs. 3 and 4, the

particular estimator

4 exp 2 2 (2.2)

seems to be a good choice for estimating a probability density function f if it can

reasonably be assumed that the underlying density is continuous and that its first

partial derivatives evaluated at any x are small.

Letting (X*)- [X 1 ,...,XpY] and (x*)p 9- X,...,xp,yJ, the application of Eq. (2.2)

yields the estimated regression

Ci

3
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00 00

Y(x) f yf(x*) dy f !(x*) dy
-0 -00

n0 -

e..X y

L= 2cr 2J X

exp [ ( -xX*q - x*)dy

exp [2-- (X- x)'(Xy - ex- 2Y2-)j dy

i-'-i
andpefomig-e ndiatd ntgrtins

2

Ai  (i -x)( i - x) =Yi (X1 i -T ) 2  (2.4)

2jrj

e":(x =L iy =

,=e p

Note that because the particular estimator Eq. (2.2) is readily decomposed into X
and Y factors, the integrations were accomplished analytically. The reuling

regression equation (2.7) which involves summations over the observations is simply.

applicable to problems involving numerical data.

Yex 2

4

LOCKHEED PALO ALTO RESEARCH LABORATORY
IOCICNEE|D MiSSlE[S & SPACE COMPANY

A GIOUP OSYISION 0, IOCI[N|ED ICII C OSPOSAIION

.- F.=.m = (2.4)mm m mllmmmm m •



6-79-68-6

Although Y(x) will be expressed in terms of series expansions to introduce a con-

putationally more efficient approximation in the next section, the main properties of

Y(x) are evident in the present form.

Parzen (Ref. 1) and Cacoullos (Ref. 2) have shown that the density estimator f4.)

[Eq. (2.2)1 used in estimating Eq. (2.1) by Eq. (2.4) is a consistent estimator

[asymptotically converges to the underlying probability density function f(x) ] at 'Il

points x at which the density function is continuous, providing that a = U(n) is chosen

as a function of n such that

l.m u(n) = 0
n-oo

and

lira no(n) - o
n--0

The estimate Y(L) can be visualized as a weighted average of all of the observed values

Yi where each observed value is weighted exponentially according to its Euclidean

distance from x. When the smoothing parameter a is made large, the estimated

density is forced to be smooth and in the limit becomes multivariate Gaussian with
covariance 2r1. On the other hand, small a allows the estimated density to assume

non-Gaussian shapes but with the hazard that wild points may have too great an effect

on the estimate. As a-- o, Y(x) assumes the value of the sample mean of the ob-

served Y., and as -- o, Y(.() assumes the value of the associated with the

observation closest to x .* (This case is treated in more detail in Ref. 5.) For

$!Consider two observations Q1  2 2

on 1,Y ) and (X2 , Y2) suci, that A2 = AI+ c, c> 0 for
some value of x. Then from Eq. (2.4),

A2
exp + Y2 exp
A1 2L~! 2/ A; YY

'A2  'E lim a-0 1
a)[I +exp 5£)

exp 22)
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intermediate values of a, all values of Y. are taken into account. but those corres-

ponding to points nearer to x are given heavier weight.

When the underlying parent distribution is not known, it is not possible to compute an

optimum ar for a given number of observations n. It is therefore necessary to find

a on an empirical basis. This can be done quite easily when the density estimate is

being used in a regression equation because there is a natural criterion which can be

used for evaluating each value of a; namely, the correlation between Y. and the

estimate Y(Xi) for each of the observed samples. One precaution is necessary, how-
ever. For this p'rpose Y(Xi) must be modified to

Y(X.) = Y. exp (-A2
1 2a2 ) + exp (-AF/2a2

j;0i J 3i

so that each Y(X.) is based on inference from all the observations except the actualSO1

observed value at Xi.. This procedure is used to avoid an artificial maximum cor-

relation as a - 0 which results when the estimated density is allowed to fit the

observed data points. (Overfitting of the data is also present in the least-squares

estimation of linear regression surfaces, but is not as severe because the linear

regression equation has on'y p + 1 degrees of freedom. If n >> p, the phenomenon

of overfitting can be and is commonly ignored in least-squares regression.)

6
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Section 3

A POLYNOMIAL EQUIVALENT

3.1 DERIVATION

In Ref. 4 it was shown that since the density estimator f(x) can be written

n

fQ-) = (2*2P/- exp -",/2 1 xpj la,' ex- - a

i--1 nI

it can be replaced by a polynomial approximation based on a Taylor's series expansion

of exp [x'X/ ioJ. In many circumstances, this approximation requires substantially

less computation than f(x) [Eq. (2.2)]. The polynomial version of the estimator has

the form

fj*() = (21r2)-P/2 exp [-(x'x)/2 2 ] Pi(c) (3.1)

where

j J1 lJ2 x p

o a. xx 2 " , Ji 0

J = + J2 +. +JP (3.2)

The coefficients aj, .. . jp are coxiputed from the observations X using

a" ."" 2J exp (- Xi/22 (3.3)

7
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and the sum is over all j for which J - f. Note that each coefficient a ..j p

involves the ith observation Xi only in one of a stum of n terms.

Although the generality of the notation used makes the equations look formidable,

consider the coefficient of a specific term in Eq. (3.2) such as the coefficient a1 lO. " .0

of x 1x2 . Then

n

a110... 0  4 XX 2 exp ,> Cp5~/2)

In words, this equation says to take the average of the products of the cross products
XiX and a "normalizing factor" exp (- XjXi/22) ; then to multiply this average by

a "premultiplying constant" 1/n4 . Each term has its own premultiplying constant.

Note, however, that all terms for an observation have the same normalizing factor.

The normalizing factor, therefore, need be calculated only once for each observation,

regardless of the number of coefficients used in the polynomial P2(x). Considering

this circumstance, and also the fact that the premultiplying constant is not data-
dependent, the algorithm implied by Eq. (3.3) amounts to little more computation than

simply making each coefficient equal to the mean of the corresponding cross product

over the observation set used for establishing the coefficients.

Note that the regression equation (2.4) can be written

n

n-1 (2r-2)p/2 I YI exp Q-(Xi- x)'(Xi- x)/2 2 J

i=1
Y(Ux) =

n

n 1 (27r 2 )- p / 2  exp[-<Xi-x)'(Xi - x)/2u21

1=1

n

n- (2r2)'p/2 Y exp q-(Xi - x)'(X i - x)/22j

4 = iI =1 (3.4)

8
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S
A polynomial approximation for the denominator of Eq. (3.4) has just been given; a

similar polynomial approximation can be derived for the numerator of this cxpress.on.

When these are both used in Eq. (3.4), we approximate Y(L) by the polynomial-ratio

regression estimate

Yx)= (3.5)

where QI(x) has identically the same form as Pf(x) except that the coefficients are

computed by

=, ... [YIn2jIi .. XPexp(-XX/2 2 )] (3.6)

3.2 NORMALIZATION OF INPUT

2
Since the accuracy of a finite term Taylor's series expansion of exp (x'X/2) depends

on the magnitude of x'X/r 2 , it is often desirable to make a transformation (translation)

from raw measurement vectors (e.g., Zi for the ith observation) to obLtin a set

of vectors Xi for which the Taylor approximation is satisfactory. Similarly, to

minimize distortion of the estimated density relative to the parent density and simul-

taneously to minimize error due to the Taylor's series expansion, it is desirable to

"sphericalize" the data in some way. The simplest procedure consists of normalizing

each variate to have a variance of unity. If the variables are highly interdependent,

it may be desirable to use more complicated and specialized preprocessing techniques.

Preprocessing requirements are discussed at length in Ref. 6, but of course there

are no techniques which arc "optimum" except for specific parent distributions.

In summary, if the means and standard deviations of the raw measurement variables

Z over the set of observations to be used for establishing the regression surface are

C

9
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.)
denoted by Z. and si, respectively, the usual normalizing necessary may be

expressed by

X5i = (Zji - Z)/sj (3.7)

3.3 A FIRST-ORDER CORRECTION

The regression E(Y JX = x] represents that function h(x) which minimizes the mean-

squared error, EfY - h(x)] 2 . However, even for large sample size, this objective

is not realized by either Y(x) or Y*(x) because of systematic distortion of the esti-

mated density which results when the smoothing parameter a is greater than zero.

In the case n - -o, the nature of this distortion is known since it is routine to show

that

go 0

E -[ ... f (Xng(, - 3) d 9 g(x9 (3.8)

where * indicates convolution,

g(x) = (21r 2 )-p 2 exp (-'x/2o 2 )

and f(x) is the probability density function of the distribution from which the sample

is drawn.

If, for example, f is the normal distribution with mean p and covariance It as

n c O, f(x) converges to a normal distribution with mean 1 but with a covariance

matrix of j€ + 2 I , where I is the identity matrix. Since a covariance of [a2I1

represents a distribution in which the variates are completely uncorrelated, addition
2of 2 I to an arbitrary covariance # increases the variance terms with no effect on

the covarlance terms. This has the effect of biasing the estimated density in the

direction of lower intercorrelations. Since the intercorrelations between the predicted

10
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and predictor variables for the estimated density are characteristically less than these

same intercorrelations for the parent density, the predictions for Yi are charac-

terlstically closer to the mean than they should be. This effect has been noted In

experience with real data.

As a simple but extreme example, consider the case of Y and X both normally

distributed with zero mean, unit variance, and correlation one. Applying Eq. (2.4),
4

it can be seen that as n -

Go [_r--
YA "- o 2 3.9)2) a + 1

f exp Texcp 2a 2  d

In this example, E[YIX =x = x whereas Y(x) is only proportional to x and, as

predicted, biased toward the mean. Similarly, it can be shown that a purely deter-

ministic second-order component, Y = AX , is attenuated by the estimator Y(x) to
yield

Y(x) = A 2 2  + 1
2[( + 1)2 a

As aT-- 0 both first- and second-order components are obtained without error, but

with finite a the error can be appreciable. However, the first-order scaling effect

and the constant bias can be completely compensated. Once Eq. (2.4) or (3.5) is used

to find a nonlinear relationship between X and Y, the relationship between the re-

suiting scalar Y and Y should be essentially linear. The best linear correctior of

Y (in the least-squares sense) is, of course, obtained through simple linear regression

of Y on Y.

LOCKHEED PALO ALTO RESEARCH LABORATORY
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Thus, a corrected estimate of Y could be obtained by

Y( )= c0 + Ct IY(x) (3.10)

where

Ce 1 2Y,~ I2(-i: 2I' - [-q1 )J IXYiY!(Xi)iII.,lI

D= ',,X1Yx1 2 - [n++j

and the summations run from i = I to i = n.

12
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Section 4

COMPARISON WITH CONVENTIONAL TECHNIQUES

Nonlinear regression involves either a priori specification of the form of the regression

equation with subsequent statistical determination of some undetermined constants, or

statistical determination of the constants in a general regression equation - usually of

polynomial form. The advantages and disadvantages of both approaches are well

known. I will now point out some of the differences which distinguish the technique

described in this paper.

The first approach requires that the form of the regressic i equation be known a priori
or guessed. The advantage of this approach is that it usually reduces the lroblem to

estimation of a relatively small number of undetermined constants, and that the values

of these constants when found may provide some insight to the investigator. The dis-

advantage is that the regression is constrained to yield a "best fit" for the specified

form of equation. If the specified form of equation is a poor guess and not actually

appropriate to the data base to which it is applied, this constraint can be serious.

Classical polynomial regression is usually limited to polynomials in one independent

variable because polynomials involving multiple variates often have too large a number

of free constants to be determined using a fixed number n of observations (Xi , Y.).
A classical polynomial regression surface may fit the n-observed points very closely,

but unless n is much larger than the number of coefficients in the polynomial, there

is no assurance that the error (Y* - Y) for a new point (X, Y) taken randomly from

the distribution f(x, y) will be small. On the other hand, with the regression Eq. (2.4)

it is possible to let a be small which allows high order curves if they are necessary

to fit the data, but even in the limit as o - 0 Eq. (2.4) does not go wild but merely

estimates Y(X) as being the same as the Yi associated with the X which is closest

in Euclidean distance to X. Cover (Ref. 5) points out that, for a wide range of

probability distributions, the large-sample risk associated with estimation by this

13
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"nearest-neighbor" rule is equal to only twice the Baycs risk (for squared error loss

functins). For any a > 0 there is a smooth interpolation between the obscrved points

(as distinct from the discontinuous change of Y from one value to another at points

equidistant from the observed points when r = 0).

Since Eqs. (2.4) and (3.5) are mathematically identical when the polynomials are not

truncated, the above statements are equally applicable to the polynomial regression

equation of the form Eq. (3. 5). The Eqs. (3.3) and (3.6) were derived in such a way

that hundreds or thousands of terms can be introduced into the polynomial regression

equation without overfitting the data even if the number of observed points is less than
the number of coefficients. It is important to note that actual iuentity of the polynomial

equation and Eq. (2.4) occurs when all possible terms are included in the polynomials.

The significantpoint is that the polynomi:'! approximation tends to fit the estimated

regression surface given by Eq. (2.4), not the actual data. Equation (2.4), in turn,
employs a density estimator which involves smoothing of the data - thereby minimizing

the effects of randomness in sampling on the resulting regression surfaces. Thus, the

number of terms used in the polynomials is limited only to minimize computation;
there is no need to further limit this number because of any danger of overfitting the

data. As a practical matter, the computed polynomials can usually be truncated to a

low order with little degradation in the correlation between Y(X.) and Y." If the

dimensionality p is limited to 3 or 4, the number of terms can be held to a number

which is easily manageable.*

A general formda for the computation time involved is not ;,vailable but, as an example,

one problem which has been run many times with different da-ta has p = 3 and maxi-

mum order of terms in the polynomials = 4. The average time required to compute

the 70 coefficients using 288 observations of (X1 1 , X2 1 X3 i, YI) and to evaluate Y*(x)

for each of the 288 observations was 690 miliiseconds on the Univac 1108 computer.

*The total number of terms in a polynomial truncated to include terms up to the r order

is given by Sebestydn (Ret. 7) to be (p + r)

14
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One additional feature of Eq. '2.4) is that is always bounded by the maximun

and minimum values of the observed Yi's. In contrast, the classical polynomial

regression estimate goes to either 0o or -so as x goes to so. Surprisingly, the

polynomial-ratio regression estimate Y*(x) is also bounded if P (x) and Q,(x) are

truncated to include only corresponding pairs of coefficients and enough terms are

retained so that the contribution of each observation X to P1(x) is positive in the

range of x of interest. The question of boumds on Y*(x) will be treated in more

detail in the Appendix.

*
IA

15
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Section 5

INDEPENDENT VARIABLE NOT RANDOM

It has been pointed out that although the motivation used in arriving at Eq. (2.4) was

based on both X and Y being random variables, the concept of using for Y(x) a

weighted average of the Y°Is with the weight for each Yt being some monotonically

decreasing function of Xi - x is attractive intuitively even if values of X. are
-I

specified in the design of an experiment. In this case, only the values Y of Y

corresponding to the fixed values of X. would be measured observations of a random

variable. If for the monotonically decreasing weighting function we choose

I ' ~~ I _~ - 12/2.2J

then the regression equation is given by Eq. (2.4). Since the derivation of the polynomial

equivalent, Eq. (3.5), was not dependent on the assumption that X is random, the

computational advantages of the polynomial form can be utilized even when X is not

random, but instead values of X are specified in the design of an experiment.

16
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Appendix

BOUNDS ON Yplx) FROM EQUATION (3.5)

From Eqs. (3.5) and (3.2)

Sb 1 x ...bjr -jp I
Y (x) = Jl p (A. 1)

j1* r .jp l ---

Decomposing the coefficients into elements due to each observation

n
a.. = O f..

. . Jp i= p

j2J Iex I- X''

n

b. .jp = 3j.

...,,n,2J.,... x, exp (_ X./22) = ,..,
pi pi

18
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Then

n

..+ + x ... 1/3...0i + 310-0x + .j i I p
Y* (x) = n= .

1=1[ p0...'i i i pa0. .. 0i + a10.. .0i + + a] . ... x +.Lsio ot bp

Lot the expression contained in the first set of brackets be represented by N(x) and
,he expression contained in the second set of brackets be represented by Li0(x ) . If

N (x) and Lo'(x) are truncated to contain any arbitrary finite subsets of the original
terms but contain only corresponding pairs of terms, then

Ni(x) = YiLi(x)

where Ni(x) and Li,(x) represent finite trunr itions of Ni(x) and Li (x), respec-

tively, and

n
• . Li(x)Y i

Y*(x) = (A. 2)
Li(x)

Thus, Y*(x) is always equivalent to a weighted average of the YiIs. The weightings
are, of course, dependent on the value of x at which Y*(x) is to be evaluated.

When the weights Li(x) are all nonnegative, the weighted average Y*(x) is bouided

by the maximum and minimum values of Y observed in the sample.
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Since

L() 00 exp (1 + X~'d + 1 X)2 + + 1 :X +J

2 VIC (A. 3)

2
Li(x) is always positive In the untruncated case. Letting z X~x/aI-i

exp ', + z + + . + +A4

SiIrce exp (- XjX1/2o,2) 0 for any CLQ.) 0 if

2
S,(z) 1 + z+ _L_+ +. +zf 0

But

dS (Z)

dz =SI 2 1(

and

S,(z) - 2 Z SIMz

Since the minimum value of S,(z) occurs when d St (Z) =0,d z2

I
mnin S1(Z) = for some value of z -oo :s z :5 -o
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Thus

min Sf(z) _ 0 f even (A.5)

and therefore Li(x) - 0 for all z when P,(x) and Q,(x) are truncated to include

all terms up to the I order and f is even.
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