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' Section 1 j
INTRODUCTION AND SUMMARY :
vqa ILet X bea p component random vector variable with transpose X' = |x1, . 'Xj’ e .Xp]

9] and Y be a one-dimensional random variable with a joint continuous distribution of :
'f density f(x,y). The regressionof Y given X = x is f

ot el
75 S 2
<

ElY|X=x] = [ yi(x,y) dy + / f(x,y) dy (1.1)

tm«

Using the consistent nonparametric estimators of the densities described later in the

Falees 27 aA 2o

paper, the regression can be estimated by the estimated regres;sion

AT

i
: 3
£ n p 2 g
. - i
I S x| 53 oy |
_; . A - - j= 2 i
i1 Y = > ) (1.2)
4 zexp-—I—Z(X - X)) }
§ i=1 j=1 ’
4 where ]
i n = number of observations of X and Y used in estimating the g
( densities 5
3 X, and Y, = the ith observations of X and Y, respectively ;
": gi = [xli,...,xji,..., pi]
£ o = a smoothing parameter
%
| ©
i
1 1 L
4
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&4

It is further shown that the nonlinear regression equation (1.2) can be approximated to

any desired accuracy by a polynomial-ratio regression estimate

Y*(x) = %g—; (1.3)

where the coefficients of the polynomials are computed as a function of the observed
sample. The advantage of the form Eq. (1.3) is that the observations are used only
in the computation of the coefficients. Subsequent evaluation of S?(g:) for a given
vector x is usually much faster using Eq. (1.3) rather than Eq. (1.2).

This same advantage is, of course, shared by classical polynomial regression equa-
tions, but the technique described has the following advantages compared with classical

polynomial regression techniques utilizing a single polynomial:

® It provides a simple method of determining the coefficients. The calculation
for the coefficient of a particular term amounts to little more than averaging
the corresponding product of variables over the set of observations available.

; o The computational and storage requirements increase only linearly with the

LA SN e ey
PRV

number of coefficients used.
® The shapz of the regressi~ surfiice can be made as comgplex as necessary to

—— s ane

closely approximate Eq. (1.1), or as simple as desired, by proper choice of
the smoothing parameter o. In spite of this flexibility, Y*(x) estimated
from Eq. (1.3) is bounded by the minimwmn and maxiimmum of the ohservations
Yi when Q(gf) and P(x) are truncated at an even order.

® Because of the smoothing properties inherent in the density estimator, the
number of coefficients used in the polynomiais can approach or even exceed
the number of observations in the sample with no danger of the regression

surface overfitting the data when ¢ is suitably chosen.
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Since the derivation of Eq. (1.3) from Eq. (1.2) is not dependent on X being random,
the computational advantages of the polynomial form can be utilized also when values
of X are specified in the design of an experiment and Y alone is a random variable.
This property applies, of course, to ordinary polynomial regression as well.
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Section 2 ]
¥
GENERAL REGRESSION

-~

and let Y be a random variable with a joint continuous distribution of density f(x,y).
The conditional mean of Y given X =x,

Let X be a p component random vector variable with transpose X' = [XI’ . .Xj, cee Xp] ,

o0 0
1
EIY|X=x] = [ vy dy+ [ fxy) dy (2.1)
-00 -~00

iz also called the regression of Y on X and is determined by the density f.

When the density f(x,y) is not known, it must usually be estimated from a sample of
observations of X and Y. We estimate the regression by taking the regression of a

Ly e Reva—

nonparametric estimate of f(x,y). The class of consistent estimators proposed by
Parzen (Ref. 1) and shown to be applicable to the multidimensional case by Cacoullos
(Ref. 2) are suitable for this purpose. For reasons expressed in Refs, 3 and 4, the
particular estimator

X, - x)' (X, - %)
- 1 J (2.2)

n
Py 1 1
fix) = > p7Zn exp
- P (21r)p 2n i}-:l [ 202

seems to be a good choice for estimating a probability density function f if it can
reasonably be assumed that the underlying density is continuous and that its first
partial derivatives evaluated at any x are small.

Letting (X*)' = [Xl, oo ,Xp,Y] and (x*)' = [xl, coe ,xp,y] , the application of Eq. (2.2)
yields the estimated regression

YTy
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i » "
Yix) = / yitx*) dy + [ fx*) dy
;:! ‘I -0 -0
L
+ B o n
i [ y ) exp [ L (%F - x9NKp - :5*)] dy
b N i
3 :%. o n
L F [ 3 e [ L5 X - XK - :,c*)] dy
y 20
-0 f=1
i . ¢ (v, - 9’
Z exp |- —5 X; - X)'(X; - %) [ y exi |- ———5—|dy
h 20 20
_i=1 ~o0
o . ¢ (; - »
z exp - —5 (X; - X' - %) f exp |- ———5—|dy
= 20 20
i=1 -
..etting
2 o 2
A= -0 -0 = ) X - x) (2.3)
j=1
and performing tl.e indicated integrations,
n A?
Yi exp |- ——§
o i=1 d
Y(x) = 5 {2.4)

n Ai
D, |- —,
i=1 2o

Note that because the particular estimator Eq. (2.2) is readily decomposed into X
and Y factors, the integrations were accomplished analytically. The resulting
regression equation (2. 7) which involves sunmations over the observations is simply .
applicable to problems invoiving numerical data.
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Although ';'(:5) will be expressed in terms of series expansions to introduce a com-
putationally more efficient approximation in the next section, the main properties of
Y(x) are evident in the present form.

Parzen (Ref. 1) and Cacoullos (Ref. 2j have shown that the density estimator f(.s)

(Eq. (2.2)] used in estimating Eq. (2. 1) by Eq. (2.4) is a consistent estimator
lasymptotically converges to the underlying probability density function f(x) ] at all
points x at which the density function is continuous, providing that ¢ = e(n) is chosen
as a function of n such that

I'm ofn) =0
n—-e

and
lim no(n) = «
n—*c

_ The estimate &A'(:.c) can be visualized as a weighted average of all of the observed values
Yi where each observed value is weighted exponentially according to its Euclidean

distance from x. When the smoothing parameter ¢ is made large, the estimated
density is forced to be smooth and in the limit becomes multivariate Gaussian with
covariance orzl . On the other hand, smali ¢ allows the estimated density to assume
non-Gaussian shapes but with the hazard that wild points may have too great an effect
on the estimate. As o—=, l'f(;g) assumes the value of the sample mean of the ob-
served Y.x , andas ¢g—o0, {'().c) assumes the value of the Yi associated with the

observation closest to x.* (This case is treated in more detail in Ref. 5.) For

*Consider two observations (¥1,Y1) and (Xp,Yz) such that A2 = A>+ ¢, ¢>0 for
some value of x. Then from Eq. (2.4),

2
e __ﬁ. Y .I.Y e -L
. = 2f1%1 7 T2 ©P 2 .
Y = 20 /1 20 /1 ] Y =Y
/Af[ e] lim ¢g—0 1
expl~- — 1+exp(-—)
202 202
G
5

LOCKHEED PALO ALTO RESEARCH LABORATORY

LOCKMHEED MISSILES & SPACE COMPANY
A GROVP PIVISION OF (OCKNEED AINCRAFT CORPORATION

Po—r

» - e
- e - - ‘-

.

oa Treo o S e s -

Lah o

N

il Gttt

L

TP R

VP A gy

TEANL (A

AT R S TPRAT TP/ fovsal




TUTETETT S T AR e TS TEREERONDY RATRRA Z AET T BRIy

-~

6-79-68-6

intermediate values of ¢, all values of Yi are {aken into account, hut those corres-

ponding to points nearer to X are given heavier weight.

When the underlying parent distribution is not known, it is not possible to compute an
optimum ¢ for a given number of observations n. It is therefore necessary to find

o on an empirical basis. This can be done quite easily when the density estimate is
being used in a regression equation because there is a natural criterion which can be
used for e\:alunting each value of ¢; namely, the correlation between Yi and the
estimate YQ(i) for each of the observed samples. One precaution is necessary, how-

ever. For this p'wpose 17().{1) must be modified to

?({(i) = z Y. exp (— Aj2/202) = z exp (- Aj2/202)

j=i 3 =i

so that each ’;'(?_(i) is based on inference from all the observations except the actual
obscrved value at X, . This procedure is used to avoid an artificial maximum cor-
relation as o — 0 which results when the estimated density is allowed to fit the
observed data points. (Overfitting of the data is also present in the least-squares
estimation of linear regression surfaces, hut is not as severe because the linear
regression equation has on'y p + 1 degrees of freedom. If n>p, the phenomencn
of overfitting can be and is commonly ignored in least-squares regression.)
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Section 3
A POLYNOMIAL EQUIVALENT

3.1 DERIVATION

In Ref. 4 it was shown that since the density estimator f(;g) can be written

=

f(gg) = (27ra‘?')-p/2 exp |- (§’x)/2 z [5 )~{ ] exp [ XiX /2 I

it can be replaced by a polynomial approximation based on a Taylor's series expansion
of exp[x'xi/o ] In many circumstances, this approximation requires substantially
less computation than f(x) [Eq. (2.2)]. The polynomial version of the estimator has
the form

B0 = @) P2 exp (- (rx)/207) Pyx) 3.1)

where

v

3y 3 i
P!(;() = 2 a .“jxllx22...xpp , ji 0

J = gptigt .t (3.2)

The coefficients a;, jp are corvputed from the observations X, using

4 M .
a’r"j =[na Jlig! oo 1] ' z [ S XP P exp (- ;qgi/zaz)] (3.3)
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and the sum is over all j for which J = £, Note that each coefficient ST ip

involves the ith observation X, only in one of 2 sum of n terms.

Although the generality of the notation used makes the equations look formidable,
sonsider the coefficient of a specific term in Eq. (3.2) such as the coefficient 2110...0

of X1Xg - Then

n

_ L _ 2

®110...0 = 3 2 X,i%ai e"p( X%/ 2")
i=1

In words, this equation says to take the average of the products of the cross products
XliXZi and a "normalizing factor' exp (— )5{)&/202) ; then to multiply this average by
a "premultiplying constant" 1/ng . Each term has its own premultiplying constant.
Note, however, that all terms for an observation have the same normalizing factor.
The normalizing factor, therefore, need be calculated only once for each observation,
regardless of the number of coefficients used in the polynomial P!(;g) . Considering
this circumstance, and also the fact that the premultiplying constunt is not data-
dependent, the algorithm implied by Eq. (3.3) amounts to little more computation than
simply making each coefficient equal to the mean of the corresponding cross product

over the observation set used for establishing the coefficients.

Note that the regression equation (2. 4) can be written

n
n'1(2'r02)°p /2 z Y, exp [- X - " - )5)/202]
i=1

n

Y(x) !
nendhy P2 Y e [- % - w0, - w72
i=1

n
nler) PP Y ¥ e [- %) - 91K, - 9/2]

- i=1 (3.4)

f(x)

8
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A polynomial approximation for the denominator of Eq. (3.4) has just been given; a
similar polynomial approximation can be derived for the numerator of this expression.
When these are both used in Eq. (3.4), we approximate 1?(;5) by the polynomial-ratio
regression estimate

Qf(’f)

Y3(x) = p—l(g;

(3.5)

where Q.t(’f) has identically the same form as Pl(:s) except that the coefficients are
computed by

1o [ j
[ 23, < ] b 0
bjl...jp = [y . jp’] iz.l YK oo X exp (- XiX;/20 )] (3.6)

s, e n

3.2 NORMALIZATION OF INPUT

,\,.
apbe

TSRV TR THARA
“ “

DO 433 1 Ayt i of
]

Since the accuracy of a finite term Taylor's series expansion of exp (:5'}}/02) depends
on the magnitude of :5'2(/02 , it is often desirable to make a transformation (translation)
;. 8. from raw measurement vectors (e.g., zi for the ith observation) to obiain a set

of vectors )~(i for which the Taylor approximation is satisfactory. Similarly, to
minimize distortion of the estimated density relative to the parent density and simul-
taneously to minimize error due to the Taylor's series expansien, it is desirable to
"gphericalize' the data in some way. The simplest procedure consists of normalizing
each variate to have a variance of unity. If the variables are highly interdependent,

it may be desirable to use more complicated and specialized preprocessing techniques.
Preprocessing requirements are discussed at length in Ref. 6, but of course there

13

are no techniques which arc "optimum' except for specific parent distributions.

In summary, if the means and standard deviations of the raw measurement variables

Z it over the set of observations to be used for establishing the regression surface are
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denoted by 'Zj and sj, respectively, the usual normalizing necessary may be
expressed by

in = (Zji - Zj)/sj {3.7)

3.3 A FIRST-ORDER CORRECTION

The regression E[Y|X =x] represents that function h(x) which minimizes the mean-
squared error, E[Y - h(;s)]2 . However, even for large sample size, this objective

is not realized by either S?(;g) or Y;‘(:s) because of systematic distortion of the esti-
mated density which results when the smoothing parameter ¢ is greater than zero.

In the case n— o, the nature of this distortion is known since it is routine tc show
that

3

o0

Elfx) = [ ... / f(X)gix - X) dX = (x) * g(x) (3.8)

8

where * indicates convolution,

g = @10 P2 exp (- x'x/20%)

and f(g_c) is the probability density function of the distribution from which the sample
is drawn.

If, for example, f is the normal distribution with mean u and covariance & . as
n—wo, f(:g) converges to a normal distribution with mean u but with a covariance
matrix of {& + azl] , where I is the identity matrix. Since a covariance of [021]
represents a distribution in which the variates are completely uncorrelated, addition
of 021 to an arbitrary covariance & increases the variance terms with no effect on
the covariance terms. This has the effect of biusing the estimated density in the
direction of lower intercorrelations, Since the intercorrelations between the predicted

10
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and predicior variables for the estimated density are characteristically less than these ,;
same intercorrelations for the parent density, the predictions for Yi are charac- &

N
teristically closer to the mean than they shouid be, This effect has been noted in

experience with real data.
k

As a simple but extreme example, consider the case of Y and X both normally ;
distributed with zero mean, unit variance, and correlation one. Applying Eq. (2.4), 3

it can be seen that as n— o

X (3.9)

In this example, E[Y|X =x] = x whereas i’(x) is only proportional to x and, as
predicted, biased toward the mean. Similarly, it can be shown that a purely deter-
ministic second-order component, Y = sz , is attenuated by the estimator ?(x) to

ey

yieid

Al i

[

A X2 o ]
Y(x) = A +
[(02 + 1)2 02 + 1

L]

As ¢— 0 both first- and second-order components are obtained without error, but

with finite ¢ the error can be appreciable. However, the first-order scaling eifect
and the constant bias can be completely compensated. Once Eq. (2.4) or (3.5) is used
to find a nonlinear relationship between X and Y, the relationship between the re-
sulting scalar Y and Y should be essentially linzar. The best linear correctior of

Y (in the least-squares sense) is, of course, obtained through simple linear regression

of Y on i'.

11
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o

Thus, a corrected estimate of Y could be obtained by

[

1:{(5) a, + o 1?(:9 (3. 10)

where

R
1

0 HEYi] [z({{q(i))z] - {wasi)] IzYif(xi)n +D
L= rlEvEe)] - By [Eee)} <o

R
l

= n S’ - [ Sy’

=)
!

and the summations run from i =1 to i = n,

12
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3 Section 4
COMPARISON WITH CONVENTIONAL TECHNIQUES

-4 Nonlinear regression involves cither a priori specification of the form of the regression

i equation with subsequent statistical determination of some undetermined constants, or

-
N

statistical determination of the constants in a general regression equation — usually of
polynomial form. The advantages and disadvantages of both approackes are well
known. I will now point out some of the differences which distinguish the technique
described in this paper.

ey

AR
R

o P

SRR
R it-ﬁ.‘n\-'a,ﬁ; s
SR )

o
RO

The first approach requires that the form of the regressic 1 equation be known a priori

-

or guessed. The advantage of this approach is that it usually reduces the problem to
estimation of a relatively small number of undetermined constants, and that the values
of these constants when found may provide some insight to the investigator. The dis~
advantage is that the regression is constrained to yield a ""best fit" for the specificd
' form of equation. If the specified form of equation is a poor guess and not actually
appropriate to the data base to which it is applied, this constraint can be serious.
Classical polynomial regression is usually limited to polynomials in one independent

R RN

.:‘"“(' L “ﬁ‘.”' IR

- vt e

WLy o2

SR v

variable because polynomials involving multiple variates often have too lirge a number
of free constants to be determined using a fixed number n of observations Q(i ' Yi) .

. A classical polynomial regression surface may fit the n-observed points very closely,
but unless n is much larger than the number of coefficients in the polynomial, there
is no assurance that the error (Y* ~Y) for a new point (X,Y) taken randomly from
the distribution f(x,y) will be small. On the other hand, with the regressionEq. (2.4)
it is possible to let o be small which allows high order curves if they are necessary
to fit the data, but even in the limit as o -~ 0 Eq. (2.4) does not go wild but merely
estimates ?(?_() as being the same as the Yi associated with the Z(i which is ciosest
in Euclidean distance to X. Cover (Ref. 5) points out that, for a wide range of
probability distributions, the iarge-sample risk associated with estimation by this

13
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"nearest-neighbor' rule is equal to only twice the Bayes risk (for squared crror loss
functions), For any ¢ >0 there is a smooth interpolation between the obscrved points
(as distinct from the discontinuous change of Y from one value to another at points

cquidistant from the observed points when o =0).

Since Eqs. (2.4) and (3. 5) are mathematically identical when the polynomials are not
truncated, the above statements are equally applicable to the polynomial regression
equation of the form Eq. (3.5). The Egs. (3.3) and (3. 6) were derived in such a way
that hundreds or thousands of terms can be introduced into the polynomial regression
cquation without overfitting the data cven if the number of observed points is less than
the number of coefficients. It is important to note that actual identity of the polynomial
equation and Eq. (2.4) occurs when all possible terms are included in the polynomials.
The significant point is that the polynomial approximation tends to fit the cstimated
regression surface given by Eq. (2.4), not the actual data. Equation (2. 4), in turn,
employs a density estimator which involves smoothing of the data — thereby minimizing
the cffects of randomness in sampling on the resulting regression surfaces. Thus, the
number of terms used in the polynomials is limited only to minimize computation;
there is no necd to further limit this number because of any danger of overfitting the
data. As a practical matter, the computed volynomials can usually be truncated to a
low order with littledegradation in the correlation between {f(gi) and Yi . If the
dimensionality p is limited to 3 or 4, the number of terms can be held to a number

which is casily manageable *

A general formula for the computation time involved is not iwvailable but, as an example,
one problem which has been run many times with different data has p = 3 and maxi-
mum order of terms in the polynomials = 4. The average time required to compute
the 70 cocfficients using 288 observations of (xli'XZi’ 3i'Yi) ard to evaluate Y*(x)
for each of the 288 observations was 690 miliiseconds on the Univac 1108 computer,

*The total number of terms in a polynomial truncated to include termns up to the r order
is given by Sebestycn (Re:. 7) to be (p + r)
p L[]

14
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One additional feature of Eq. (2.4) is that {'(}f) is always bounded by the maximum
and minimum values of the observed Yi's . In contrast, the classical polynomial
regression estimate goes to either « or -« as x goes to +e. Surprisingly, the
polynomial-ratio regression estimate Y*(x) is also bounded if Pt(.::) and Qf(.g) are
truncated to include only corresponding pairs of coefficients and enough terms are
retained so that the contribution of each observation §i to Pl(:.c) is positive in the
range of x of interest. The question of bounds on Y*(x) will be treated in more
detaii in the Appendix.
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Section §
INDEPENDENT VARIABLE NOT RANDOM

It has been pointed out that although the motivation used in arriving at Eq. (2.4) was
based on both X and Y being random variables, the concept of using [o;' {f(:-() a
weighted average of the Yi's with the weight for euch Yi being some monotonically
decreasing function of |_),Ci ~ x| is attractive intuitively even if values of g(i are
specified in the design of an experiment. In this case, only the values Yi of Y
corresponding to the fixed values of §i would be measured observations of a random
variable. If for the monotonicaily decreasing weighting function we choose

oxp [- 1%, - x1°/20)

then the regression equation is given by Eq. (2.4). Since the derivation of the polynomial
equivalent, Eq. (3.5), was not dependent on the assumption that .:( is random, the
computational advantages of the polynomial form can be utilized even when X is not
random, but instead values of X are specified in the design of an experiment.
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Appendix
BOUNDS ON Yi(§) FROM EQUATION (3.5)

From Eqs. (3.5) and (3. 2)

Yrx) = L=2 - g (A.1)
£~ Jl Jp
z 31"‘ij1 ...xp
J=¢
Decomposing the coefficients into elements due to each observation
n
a. . =
] ...J 2 .‘.’ l
1 P i=
-1 0§ J
_ 2J. .
ajl"'jpi = [na 11! ’p!] X ... XP oi exp( X'X/20)
n
b, . = z
Jl...]p ...J i
g =bﬁ%1 id Y£ x%ap(xwm ) Yo
jl...jpi 1" °°° 1" “pi jl...jpi
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Then

M=

o
[t
[

o,
Bo,..oi* Pro...oy T et le...jpixl ree Xy e

Yr(x) =

+ o X, + + XJl ‘(p‘*'
0...0i 10...08°1 © e “jl...jpil"“p

s
™M=
ey
R

b

ol
il

[y

b Sty & e ‘ > " CW 3 o S (s o % ¢ - . rs
TP - TP o R Ml s v e B S T TR 5t daaazis 1 o N g
NI gl LS ot XS

(% 3
14 Let the expression contained in the first set of brackets be represented by N;°(:5) and
1 %;’ «he expression contained in the second set of brackets be represented by L;°(:5) I
: g N?’(gg) and L;°(>5) are truncated to contain any arbitrary finite subsets of the original
2 terms but contain only corresponding pairs of terms, then
w1
5 ; =
o Ni(:s) YiLi(gg)
. (
23
X .. where Ni(g) and Li(:g represent finite trunr +tions of N;°(>5) and L;°(§) , respec-
4 ; tively, and
Y &
e B n
L)Y,
Y*(’.() = i"__l__. ( A. 2)

n
> L
i=1

Thus, Y*(x) is always equivalent to a weighted average of the Yi's . The weightings
are, of course, dependent on the value of x at which Y*(x) is to be evaluated.

When the weights Li(gg) are all nonnegative, the weighted average Y*(x) is bounded
by the maximum and minimum values of Yi observed in the sample.
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“»
-
Since
XX,
LY = 5 e ( ‘2‘)[1 T B S S sy S
20 l ¢ 210 Jlo J
Xix - = XIX,
_ 1 ~i~ 2 ~i~i
: =pepl— (A.3)
: c
Li(x) is always positive in the untruncated case. Letiing z = X!x/ 02
; - e TS
2 /]
'~ =1 _ 2 zZ_ z_
l Li(g) -nexp( g(ig(i/?,o)[1+z+2!+...+“ (A.4)

Sirce exp (— )5;)51/202) = 0 forany X, L(x) = 0 if

Sl(z) =1+ 1z +212!-+...+%-2!- =0
But

dSl(z)

“az = 5@
and

'
-z _ 4
S = 21~z 5@

Since the minimum value of Sn(z) occurs when ag; S! (z) =0,

/]

min Sl(z) = % for some value of z -0 = 2z = o«

& A
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Thus

O o W

o

min S(z) = 0 £ even . (A.5)

A

a8 e

and therefore Lix) = 0 for all z when Pﬂ(g) and QR(:Q are truncated ic include

all terms up to the £ order and £ is even.
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