HIED YPATES AIR FORCE PROJ

Reproducel Dy The

CLEARINGHOUSE
inr Fodera! Sc.enthic B Tezhnoral
Infarmatiar Loeinabetd Ja 205

MEMORANDUM

RM-5644-PR
JUNE 1968

AN IMPROVED
IMPLICIT ENUMERATION APPROACH FOR
INTEGER PROGRAMMING

A. M. Geoffrion

This recearch is supported by the United States Air Foree under Project RAND — Con-
tract No. F11620-67-C.0015 — monitored by the Directorate of Operational Require-
ments and Development Plans, Deputy Chief of Staff. Rescarch and Development. Hq
USAF. RAND Memoranda are subject ta eritical review procedures at the research de-
partment and corporate levels. Views and conclusions expressed herein are nevertheless
the primary responsibility of the author. and should not be interpreted as representing
the official opinion ar policy of the United States Air Foree or of The RAND Corporation,

DISTRIBUTION STATEMENT

This document has heen approved for public release and sale; its distribution is unlimited.

24 Q1D g

TT00 ma M B? - NAMtA MOWI (A : Cai PONN A < 0484

-1i1-

PREFACE

This Memorandum is part of a continuing RAND research effort in
the general area of mathematical programming. It presents a contribu-
tion to the effective solution of a general class of discrete optimi-
zation problems such as the Air Force encounters in scheduling,
sequencing, loading, and other combinatcrial and resource allocation
contexts.

The present study incorporates and extends findings from several
of the author's earlier publications. It is a sequel to Integer
Programeing by Implicit Enumeration and Balas' Method, The RAND
Corporation, RM-4783-PR, February 1966. The basic theoretical results
reported here were established some time ago in an unpublished paper
(13] and were given, along with preliminary computational experience,
in Implicit Enumeration Using an Imbedded Linear Program, The RAND
Corporation, RM-5406-PR, September 1967. Additional computational
experience was summarized in Recent Computational Experience with
Three Classes of Integer Linear Programs, The RAND Corporation, P-3699,

October 1967. The present Memorandum supersedes al) of these reports,

and is intended for operations analysts with a background in mathematical

prograsming and familiarity with RM-4783-PR.
The author is a consultant to The RAND Corporation.

e ag——rot

-y=-

SUMMARY

This Memorandum synthesizes the Balasian implicit enumeration
approach to integer linear programming with the approach typified by
Land and Dotg [19] and by Roy, Bertier and Nghiem [23]. The synthesis
results from the use of an imbedded linear program to compute surrogate
constraints that are as “strong" as possible in a sense slightly
different from that originally used'by Glover [15]. A very simple
implicit enumeration algorithm fitted with optional imbedded linear
programning machinery was implemented and tested extensively on an
IBM 7044. Use of the imbedded linear program dramatically reduced
solution times in virtually every case, and sufficed to render the
tested algorithm superior to the five other implicit enumeration
algorithms for which comparable published experience was available.
The crucial issue of the sensitivity of solution time to the number
of integer variables was given special attention. Sequences were run
of set covering, optimal routing, and knapsack problems with multiple
constraints of verying sizes up to 90 variables. The results suggest
an extraordinary working hypothesis: that use of the imbedded linear
program in the prescribed way reduces solution time dependence on the
number of variables from exponential to low-order monomial increase.
The dependence appeared to be spproximately linear for the first two
problem classes, with 90 variable problems typically being solved
in about 15 seconds; and approximately cubic for the third class, with
80 variable problems typically solved in less than 2 minutes. In the
35-variable range for all three classes, use of the imbedded linear
program reduced solution times by a factor of about 100. To what
extent the working hypothesis holds for various classes of problems
is obviocusly a matter warranting further study, but on the basis of
the existing evidence it would appear that the present approach permits
the routine solution of practical integer programs involving hundreds

of variables.

o e

-vii-

ACKNOWLEDGMENT

1- 18 a pleasure to acknowledge the able programming assistance

of A. B. Nelson of The RAND Corporation.

A e e

-ix-

CONTENTS

Section
I. INTRODUCTIONco0esevcccnscsucecscsancsssssascsoascasss

II. IMPLICIT ENUMEPATION WITH SURROGATE CONSTRAINTS

I1I. COMPUTING STRONGEST SURROGATE CONSTRAINTS BY LINEAR
PROGRAMMINGccvocivuisvacnoscaossvasansonsoonncanss

IV. COMPARATIVE COMPUTATIONAL EXPERIENCEcc0e0veeenee
Implementationcoceeevvensoscnsssancscacaasonnnes
ReSULES ...uunuecennsinnsnssoorsasaoscasoosascasnasnoane
Opportunities for Improvementcoccvvvevaneennsoe

V. INFLUENCE OF PROBLEM SIZEccccivvenvecnncnncancsnoos
Set Coveringccerevernenosscncencssessranesnssoansnos

Optimal Routing in Networke cevierrcnneaarsscnnasns
Knapsack with Multiple Constraintsceecveeeanense

VI. EXTENSION TO THE MIXED INTEGER CASEccvevveeneens

REFERENCES cuicvneornceascooensoovssososvoacoanosssososnsns

11
11
12
13

17
17
19
21
23

25

-t i e

IR

-1-

L. INTRODUCTION

Any bounded-variable pure integer linear programming problem can
be written in the form

(P) Minimize cx subject to b + Ax 2 0, x, binary,

3
where c and x are n-vectors, b is an m~vector, and A i8 an m x n matrix.
The implicit enumeration approach to this problem has been the subject
of considerable recent investigation.* This approach uses a flexible
"backtracking'" procedure for methodically searching through the possible
solutions. Its efficiency depends on the exclusion of a sufficient

proportion of the possible solutions from further consideration by means

of various tests applied to partial solutions. A partial solution is
8 subset of the n variables that each have a specific binary value;
variables excluded from the subset are termed free. The tests usually
amount to examiring the constraints in an effort to determine whether
any completion of the current partial solution could possibly yield a
feasible solution of (P) that has a lower value of the objective
function than the best known feasible solution. Accordingly, the alge-
rithm either continues by augmenting the current partial solution or
backtracks to a different one. Backtracking implies that all possible
completions of the current partial solution have been accounted for
(implici{tly enumerated).

Most of these tests can be applied at a reasonable computational
cost essentially to only one constraint at a time. Glover's suggestion
(15] for mitigating this limitation is to periodically introduce addi-
tional "surrogate" constraints that are redundant in the usual seunse
and yet effective when the tests are applied to them individually.
These constraints are composed primarily from the given constraints by
nonnegative linear combination. This is the starting point of the
present study.

In the next section we review the rudiments of implicit enumeration
with surrogate constraints. 1In Sec. III we introduce a measure of the

"strength” of a given surrogate constraint slightly different from the

*
See, for example, Refs. 1, 2, 3, 4, 9, 10, 14, 15, 21, 22, and 26.

one implicitly used by Glover. It is shown how surrogate constraints
that are as strong as possible in this sense can be computed by linear
programming. This not only obviates the need for approximate methods
of finding good surrogate constraints, but also leads to an additional
important advantage because the dual of the required linear program
coincides exactiy with the continuous version of (P) in the free
variables. Consequently the resulting class of algorithms for

solving (P) can be corsidered a synthesis of the implicit enumeration
approach as typified by Balas [1] and the approach typified by Land
and Doig [19] and Roy, Bertier and Nghiem [23]. We also mention the
connection of the present work to recent independent work by Balas [2]
and Spielberg [24].

In Sec, IV we present extensive computational experience with

problems of up to 80 variables taken from the literature. The algorithm,

implemented and tested on the IBM 7044, was among the simplest possible
with the present approach. No ad hoc '"tests" beyond the basic binary
infeasibility test (see Sec. II) were used, so that no advantage was
taken of special problem structure. The improvements wrought by using
an imbedded linear program in the prescribed way were diamatic, and
sufficed to make even this bare-bones algorithm very efficient relative

to the other implicit enumeration algorithms for which comparable pub-

lished experience was available (those of Balas [1], Fleischmann [9,1)],

Lemke and Spielberg (21], Petersen [22], and Woiler [26]).

Section V presents empirical results concerning the influence of
problem size (number of variables) on solution time. This is a crucial
issue that must be faced by any integer programming approach offered
as being of practical interest. Sequences were run of set covering,
optimal routing, and knapsack problems with multiple constraints of
varying sizes up to 90 variables. The results suggest the following
working hypothesis: that use of the imbedded linear program reduces

Solution time dependence on the number of variables from exponential
to low-order monomial increase. The dependence seemed to be approx-

imately linear for the first two problem classes and cubic for the
third, If this working hypothesis proves to be even approximately

correct for these and other problem classes, then the present approach

; a———

ane g

R

permits practical integer programs involving hundreds of variables
to be solved routinely. Ninety variable problems of the first
two classes were typically solved in abr t 15 seconds, and 80
variable problems of the third class were typically soived in less
than 2 minutes. In the range of 35 variables, for all three classes,
use of the imbedded linear program reduced solution times by a factor
of about 100.

Section VI presents the easy and natural extension of the present

approach to the mixed integer case.

4~

II, IMPLICIT ENUMERATION WITH SURROGATE CONSTRAINTS

Denote a partial solution by an ordered set S, where each element
is a nonzero integer between -n and n that may or may not be underlined.

An element j (-~ j) of S indicates that x, takes on the value 1 (0) in

the partial soclution. Using an obvious iotation, we write xi =1 (= 0)
if J (- jJ) is in S. The significance of an underline at the kth posi-
tion (counting from the left) is that all completions of the partial
solution up to and including the kth element complemented have been
accounted for. Associated with any partial solution S {8 an integer
program (PS) involving the free variables (the variables not fixed by
S):

S
() Minimize c,x, + c,x, subject to
s j;s“ Z;jsjj

S
b, + a, . x, + a x, 20, {i=1, ..., m
i ;g; 137] ;;; 137

0< xj < 1 and integer,j ¢ S,

where the notation j € S (£ S) refers to the fixed (free) variables.
In addition to the original m constraints, (PS) may also be
expanded to include one or more surrogate constraints, each of which
is a nonnegative linear combination of the original constraints plus
the constraint (z - cx) > 0, where & is the value of the currently
best-known feasible solution of (P).* More precisely, each surrogate

constraint has the form

*
If no feasible solution is known a priori{ (indeed, (P) may be
infeasible), % can be initially taken as

£ le.|
L le,i.
g=1 3

e e g e s - S

SO WP RNy o~

u(b + Ax) + (2 ~ cx) > 0

for some nonnegative m-vector y. Such a constraint is clearly satisfied
by any feasible solution of (P) that has a better value of cx than 2.
From the results of Ref. 14 or 15 it follows that the following
schema terminates in a finite number of steps either with an optimal
solution of (P), or with an indication that no feasible solution of (P}
exists with value less than the initial value of Z. The sequence of

partial solutions generated is nonredundant in the appropriate sense.

SCHEMA FOR SOLVING (P) BY IMPLICIT ENUMERATION

Step 0: Initialize z at a known upper bound on the optimal
value of (P), and S at an arbitrary partial solution without

underlines.

Step 1: If (Ps) is obviously devoid of a feasible solution
with value less than %, go to Step 4. 1If (PS) has an obvious
optimal solution with value less than 2, then replace % by
this value, store the optimal solution as an incumbent, and
go to Step 4. If any free variable must obviously take on

a particular binary value in order for (PS) to have a fea-
sible solution with value less than %z, then augment S on

the right by l (- i) for each variable xj that must take on
the value 1 (0).

Step 2: Add a new surrogate constraint and/or delete one

or more current surrogate constraints, or do neither.

Step 3: Augment S on the right by + j for some free variable

(or several free variables) xj.

Step 4: Locate the rightmost element of S that {s not
underlined. If none exists, terminate; otherwise, replace
the element by its underlined complement and drop all

elements to the right. Return to Step 1,

There is a wide variety of possible mechanisms for implementing
Steps 1 and 3. Many can be found in, or adapted from, Refs. 1, 4, 9,

10, 14, 15, 21, 22, and 26. The possibilities are further multiplied
because the conditional instructions of Step 1 can be executed in any
order or even in parallel. It is important to observe that many of

the possible mechanisms, and perhaps most of the ones that are rela-
tively inexpensive computationally, essentially apply to the constraints

taken one at a time. At Step 1, for example, a prominent role is often

played by tests for binary-infeasibility and for conditional binary-
infeasibility, with each constraint being considered individually. A
constraint is said to be binary-infeasible if it has no binary solution,
and is said to be conditionally binary-infeasible if its binary feasi-

bility is conditional upon certain of the variables taking on particular
binary values. It is easily verified that B + Ejajxj 20 (0 is
binary infeasible if and only {f B + }:j Max {0, orj] <0 (s 0); and

- < s 0
B + Zj Max (O, aj} \ajol 0 (s 0) implies %40
asa, < Oora, >0,in any binary solution of B + Z,a,x, 2 0 (> 0).

Jo o 33

This leads naturally to the desire to introduce surrogate con-

= 0 or 1, according

straints at Step 2 that are '"strong" in the sense that such tests

are effective when applied to them.

_ame - a

VERE" S nrgnemmmnenwes o .

-7-

III, COMPUTING STRONGEST SURROGATE CONSTRAINTS
BY LINEAR PROGRAMMING

Since at any given stage of the calculations only a subset of the
variables is free, the '"strength'" of a surrogate constraint must be
defined relative to the current partial solution S. The special role
played by conditional and unconditional binary-infeasibility (see Sec.
II) suggests that 'strength” be defined in accordance with how near a

constraint is to being binary-infeasible.

Definition. The surrogate constraint ul(b + Ax) + (z -~ cx) >0
is said to be stronger relative to S than the surrogate constraint
u2(b + Ax) + (2 - cx) > 0 if the maximum of the left-hand side of

the first constraint is less than the maximum of the left-hand
side of the second constraint, the maxima being taken over binary
values of the free variables.

(For purposes of comparison, the corresponding definition Glover
implicitly uses [15] seems to be: the surrogate constraint ul(b + Ax)
2 0 is said to be stronger relative to S than the surrogate con-
straint uz(b + Ax) 2 0 if the maximum of (E - cx) subject to the
first constraint is less than the maximum of (z - cx) subject to the
second constraint, the maxima being taken over binary values of the
free variables.)

Finding a strongest surrogate constraint is, then, the problem

of minimizing, over all u ¥ 0, the expression

4 Max{u(b + Ax) + (z - cx)\xj =Jo0rl, j¢S and

xj - x?,j € s}

-8-

or, upon rearrangement, the expression

(2) Eub +z -2 +Max3§;(2iij cxj‘xj-OOtl,jiS

i=l

where we have introduced the notation

S
cx andb-b+ a,. X, .

Now for any » g O we have

m
(3) Max gjﬁs(12_:1uiaij - cj)xj|xj =gorl, j¢ S%
m
= Max<y§ (i;pia“ - cj)xj‘ 0s xJ <1, j ¢ Ss

= Min ; j‘" 2 0 and wj 2 ig“i"u - cj,j ¢ Ss,

where the second equality follows from the Dual Theorem of linear

programming. Using (3) in (2), we obtain the following linear program:

Minimize M bs +z - zs + 2: w
11 3
B,w i= § €s

(LP) subject to vy 2 gpia“ - <y j€s

wjzo,jCSanduZO.

T R T R

-9.

Denote the infimal value of (LPS) by V(LPS). It is easy to see that

the desired result is now at hand.

Proposition: Let S be an arbitrary partial solution. Then (LPS)

is necessarily feasible, and

A. v(LPS) < 0 @ there exists a binary-infeasible surrogate

constraint;

B. V(LPS) > 0 @ there does not exist a binary-infeasible
surrogate constraint, but any optimal u in (LPS) yields

a strongest surrogate constraint relative to S.

The usefulness of (LPS) is further enhanced by the fact that it
is precisely the dual of the continuous version of (PS) (in which
0= xj < 1 replaces xj = 0 or 1). Consequently, with thf help of the
Dual Theorem of linear programming, one can verify that z - v(LPS) is a
lower bound on the optimal value of (PS), and the optimal dual variables
of (LPS) are optimal in (PS) if they are all integers.

These results show not only how strongest surrogate constraints
can be calculated by linear programming, but also that the aim of Step
1 can be accomplished at no extra computational cost in the course
of attempting to construct a strongest surrogate constraint at Step 2.
More specifically, one would set out to construct a strongest surrogate

constraint by executing simplex iterations on (LPS) until one of the

following mutually exclusive events occurs:

(a) the value of the objective function of (LPS) becomes S O;

(b) an optival solution of (LPS) is obtained, and v(LPs) >0
and the optimal dual variables are all integers;

(c) an optimal solution of (LPS) is obtained, and v(LPS) >0

but not all of the dual variables are integers.

In event (a), a binary infeasible surrogate constraint must exist, and
consequently one may go to Step 4; in event (b), the optimal solution

of (PS) is s.ven by the optimal dual variables cf (LPS), so one should
replace Z by the new value and the incumbent by the new solution and

80 to Step 4; in event (c), a strongest surrogate constraint is obtained

from the optimal u in (LPS).

-10-

Restarting techniques primal with respect to (LPS) can con-
veniently be used to take advantage of the results of previous calcu-
lations each time Step 2 is executed. Since we do not always optimize
(Lrs), some of these techniques are pre- as well as post-optimality.
The Revised Simplex format is convenient in this regard. Keep in mind
that the columns of the wJ are just the negatives of the unit vectors
associated with the corresponding slack variables. One consequence
is that the wj variables can be treated logically rather than alge-
braically, so that (LPS) is reduced to essentially m nontrivial
variables and as many constraints as free variables. The other impor-
tant consequence is that it is easy to write down a basic feasible
solution to (LPS) for any S; in fact, there is an obvious and simple
procedure for modifying any basic feasible solution for (LPS) until
it becomes basi. feasible for (L!s.), vhere S' ¥ S. This avoids the
need for restartin- techniques that are dual with respect to (Lrs).

It should be noted that the developments of this section, although
unique in terms of motivation and details of use, are nevertheless
related in certain respects to independent work by other authors.

Land and Doig [19], Dakin 7], Roy, Bertier and Nghiem [23]. Herve

(18] and others have also described algorithms that use the continuous
approximation to discrete programs like (Ps); but they make little

or no use of the dual variables (4 and w). The dual variables p sre,
however, used by Balas in his "filter algorithm" (2] to determine

his "filter constraint" -- a close relative of the type of surrogate
constraint employed here. He solves the continuous approximation to

(Ps) only once, with S empty, rather than periodically. Recently,

Glover [16] has 1lluminated the relationship between Balas' filter
constraint and the strongest surrogate constraint of this study

(as presented in an earlier draft), and has suggested possible extensions.
Spielberg [24] has also independently used an approach akin to the
present one, in the special context of the simple plant location problem.
He has suggested in a private communication to the author that his

"gain function" is analogous to our surrogate constraint.

-11-

IV, COMPARATIVE COMPUTATIONAL EXPERIENCE

IMPLEMENTATION

A simple version of the implicit enumeration procedure has been
implemented and extensively tested on an IBM 7044. 1t is of completely
general applicability, and takes no advantage of special problem struc-
tures. Step 1l uses just the simple tests for conditional and uncondi-
tional binary-infeasibility mentioned at the end of Sec. IIL; it recog-
nizes an obvious optimal solution of (Ps), in the fashion of Balas [1],
only by the trivial minimization of cx over binary values of the free
variables while ignoring the constraints, and then testing the resulting
solution for feasibility. Step 2 follows the outline and suggestions
given at the end of Sec. III, except that a binary-infeasible surrogate
constraint is added anyway in event (a), and in event (c) the non-
integer dual variables are rounded in a simple attempt to discover a
good feasible solution of (Ps). Step 3 uses a simplified version of
Balas' augmentation rule: augment S by jo’ where jo maximizes over

all free variables the expression

m
S
;;mn {o, b o-au}.

(This assumes, without loss of generality, that ¢ 3 0.)

The program was written entirely in Fortran IV for RAND's 32,000
word machine. The object program and its data are all-{in-core, with
all problem data treated as floating point. and is dimensioned to
handle problems with up to 90 variables and 50 constraints (including

*
surrogate constraints, 1f any). The linear programming subroutine

- .
More than 32,000 words of primary storage are required if larger

pyoblems are tc be solved; the number of words required i
nE 4+ n(3a + 18) + 9,000. : ® Spproximately

-12-

is basically a Revised Simplex method with explicit inverse, the
starting point having been a routine due to Clasen [6]. Restarting
techniques were incorporated that use a labeling procedure rather

than more conventional matrix manipulations. The labeling procedure
is based on the observation that fixing a variable at the value 0 or

1 can be viewed as demanding equality in the appropriate inequality
constraint among 0 < xj €1, § €8S, in the continuous version of (Ps).
This means that the corresponding dual variables (the "j and slacks in
(LPS)) become unconstrained in sign; the appropriate variables are
therefore labeled and treated as "unsigned." This procedure is easier
to program than a more conventional one using matrix manipulations,
and has the advantage of being economical in terms of core and setup
time for the successive linear programs. It has the drawback, however,
that (LPs) (and therefore the explicit inverse) always has n rows,
instead of only as many rows as free variables. Hence each pivot

requires more work.

RESULTS

The code has been used to solve numerous test problems with up
to 80 variables taken from the llterature.* The number of iterations
(executions of Step 1) and execution times (until termination, to the
nearest hundredth of a minute) for most of these problems is presented
in Table 1. We have omitted the problems too small to be of interest.
Each problem was run twice: once skipping Step 2, so that no surrogate
constraints were ever computed; and once with Step 2 fully implemented,
so that an attempt wvas made to compute a new surrogate constraint each
time, with only the last four surrogate constraints being kept and used.
The colusns corresponding to these runs are labeled “No LP" and "LP
Every Time."

No prior information was used, such as an obvious initial feasible
solution or upper bound on the optimal value of the objective function.
Such information was usually available by inspection, but we did not
wish to further confound comparability with other investigators'

*Refs. 1, 4, 11, 17, 21, 22, and 25.

«13-

computational results, which are reproduced in Table 1 for easy
reference. These other investigators are: Bouvier and Messoumian
{4], whose problems are randomly generated without any special struc-
ture at all; Fleischmann [9], whose "economic' problems are highly
structured; Lemke and Spielberg (21), whose problems B and D2 are
attributed to M. Sidrow of Texaco, and problem C to W. Arcuri of IBM;
Petersen [22], whose problems ara of the Lorie-Savage capital budgeting
variety; and Woiler [26] who ran, among other problems, a number of
Haldi's fixed charge problems [17) and some of the "IBM test problems"
also published by Haldi. Each of these investigators used a different
adaptation of the ifmplicit enumeration approach.

The results summarigzed in Table 1 indicate that use of the imbedded
linear program (LPS) dramatically reduces the number of required iter-
ations, often by several orders of magnitude; and that this reduction
is more than enough to pay for the time spent working on (LPS), since
total execution times were greatly reduced in almost every case.

The present algorithm is evidently very efficient relative to the
others; but differences in programming and machine speed make it inad-
visable to hazard a quantitative estimate of the apparent improvement.

For comparison with various cutting-plane algorithms for the Haldi
and IBM problems, see [25]; such a comparison, although by no means
unfavorable to the present algorithm, is somewhat prejudiced because upper
bounds on variables have been handled here by binary representation
rather than directly.

A rather conspicuous feature of the algorithm with the imbedded linear
program is that it not only tends to find near-optimal solutions quickly,
but also tends to verify an optimal solution relatively promptly after
one 1s found. Exceptions are IBM 5 and 9 (in each cass an optimum was
found in 0.01 min.) and most of the Bouvier and Messoumian problems (where

about 90 percent of the computing time was spent verifying an optimum).

QPPORTUNITIES FOR IMPROVEMENT
The results presented in Table 1 are subject to further fmprove-
ment. Substantial improvement could often have been gained simply by

exercising the basic options of the experimental program in a

-14-

Table 1

COMPARATIVE COMPUTATIONAL EXPERIENCE

Problem . .
Stze. No LP LP Every Time Other Algorithms
Problem 0-1 var x | Iter- (7044)|1ter- (7044)
Designation Constraints| ations Min |ations Min Min Machine| Version | Ref
Bouvier and
Messoumian &)
15 20 x 20 515 0.48 21 0.09 0.47 7044 4
16 20 x 20 1,897 1.69 89 0.62 2.07 7044 4
17 20 x 23 889 1.06 115 0,64 0.85 7044 4
i8 20 x 23 569 0.59 1 0.04 0.97 7044 4
22 25 x 20 4,267 4,88 143 0.92 3.27 7044 4
23 27 x 20 6,565 8.08 171 1.18 7.10 7044 4
24 28 x 20 - 8,117 >10.00) 281 1.93 15.20 7044 4
Fleischmann [11] b cd
I-35 35 x 8 1,009 0.50 4 0.02b 0.04 7094 Ref. 10] 9,10
1-50 50 x 11 >10.00 9 0.06 0.26°d 7094 Ref. 10} 9,10
1-60 60 x 11 >10,367 | >10.00 3 0.04 1.689 7094 Ref. 10} 9,10
1-80-1 80 x 11 | > 8,557 | >10.00 1 0.03 8.959 | 70% Ref. 10 9,10
1-80-2 80 x 11 > 8,337] >10.00 19 0.20 8.28d 7094 Ref. 10| 9,10
Lemke and
Spielberg (21
B 35 28 1,995 2.39 35 0.19 5.5 360/40 | DZIP) 21
C 4h x 12 2,061 1.90]| 447 1.38 5 360/40 | DZIP1 21
D2 T4 x 37 > 3,838 | >10.00) >517 >10,00 | >30 7094 DZIP1 21
Petersen _22) .
4 20 x 10 893 0.46 27 0.04 0.06 7094 R1&R2 22
5 28 x 10 13,387 8.85 181 0.24 0.16® 7094 R1&R2 22
6 ¥ x5 >18,857 | >10.00 143 0.43 1.18¢ 7094 R1&R2 22
7 50 x 5 >15,577 | >10.00] 115 0.46 9.55¢ | 7094 R1&R2 22
Haldi Ll;j
11-7 20 x 4 459 0.10 63 0.03 0.02 360/40 | DZIP1 21
" ¢ " " " " " 0.36 B5500 LAR~-MAX | 26
11-8 20 x 4 511 0.10 79 0.05 0,40 B5500 LAR-MAX | 26
11-10 30 x 10 769 0.41 75 0.06 cwnm cemeoe cmecene
M {17]
is 21 x 7 435 0.14) 17 0.01 0.13 | 85500 | LAR-max |26
28 21 x 7 369 0.1 27 0.02 0.17 | B5500 | LAR-Max |26
38 20 x 3 217 0.04 17 0.01 0.04 85500 LAR-MAX | 26
8 30 x 15 >13,995 | >10,00 57 0.13 6,67 7094 DZIPL 21
58 30 x 15 >13,858 | >10.00| 365 1.90 50.00 7094 DZ1IP1 21
6 31x N > 7,038 | >10.00] 209 2.00 | >50.00 7094 DZIP1 21
ot 15 x 3% 551 0.45| 107 0.44 .- —mee -

.lxcopt for the Haldi and IBM problems, the initial partial solution was taken to be the
enpty one. In the Heldi problems, the initisl partial solution consisted of all variables at
the value 0. In the IBM problems, each of the original variables was set at the value 1.

bAvcu;o for five slightly different problems of the same size.
‘Avcnp for ten slightly differsnt problems of the same size.

“rhese times (11] are much better than the timms d tn 9] b of sub
modifications [10].

*Ihese times {20] are much better than those ammounced in [22] because Petersen's program was
converted to & faster machine., The Rl & R2 wodifications are tha best of several that Petersen
devaloped .

'*nm problem wes converted to 0-1 fors using e six-place binary expansion for each original
activity variable. This seems to be the sams conversion as was used in [21] end/or [26].

9

Sproblens 1 through 3 were converted to 0-1 forw by bimary representation of the variables
using en upper bound of 7, 7, 31, Jf and 3 in sach problem, respectively. This seems to be
tha same conversion ss wes used in [21] or {26).

"l’h“ problem had 30 constrainte ortiginally, bu. the last 15 have been sliminsted here since
they only epecify that the varisbles be binary.

PR

Ly

j

-15-

discriminating rather than uniform manner. It is often more economical,
for example, to employ the imbedded linear program less frequently

than at every opportunity. Lemke and Spielberg's problem C was solved
in 0.45 instead of 1.38 minutes when (LPS) was used only every sixteenth
time. Another possibility is to take advantage of an obvious upper
bound on the optimal value of a given problem. When z was initially

set at an upper bound for IBM 6 that was in error by 20 percent, the
solution time was 1.25 instead of 2.00 minutes. A third possibility

for improvement involves making a more appropriate choice of the initial
partial solution. More plausible initial partial solutions than the
empty one are often obvious when the problem data are inspected. This
was 8o for IBM 6, and its use reduced the solution time from 2 minutes
to less than 4 seconds. Another source of good initial solutions for
some problems is the linear programming solution of the continuous
approximation to (P). If we take the initial partiil solution to be
empty, the dual variables of (LPS) the first time arcund yileld this
solution. Taking the next partial solution to consist of the naturally
integral variables causes the algorithm in effect to examine all possible
roundings of the continuous solution first. An option to begin in

this way -- we call this the "LP start" -- huas proven effective for
many problems (e.g., Lemke and Spielberg C is solved in 0.44 minute,

and IBM 6 in 0.34 minute).

Finally, we mention that a very important source of improvement
would be to use tests at Step 1 that are more powerful than the simple
binary-infeasibility test. The dramatic improvements Fleischmann (9]
and Petersen [22] achieved over the original Balasian algorithm testify
to the untapped potential here. Some of the more powerful tests are
of general applicability, while others capitalize on special problem
structures (remember that we have not taken any advantage here whatever
of special structure in the test problems). Obviously one can take
advantage of structure not only by introducing specialized tests at
Step 1, but also by exploiting it in the LP subroutine that is used to
solve (LPS). since (LPS) inherits the structure of (P). It remains
also to implement various augmentation rules for Step 3 other than

Balas'. For example, combining Balas' augmentation rule with a

restriction to the free variables corresponding to fractional dual

variables of (LPS) seems to generally improve performance -- for Lemke
and Spielberg C, it reduced the solution time to 0.60 minute.

Rl

Ry - o

R

A

e i

-17-

V, INFLUENCE OF PROBLEM SIZE

The ultimate practical usefulness of any integer programming
algorithm depends on the crucial question, "How fast does solution time
increase with problem size?'" The number of variables is perhaps the
main determining factor for implicit enumeration algorithms, since
the number of possible solutions of (P) is 2", If solution times tend
to increase exponentially with the number of variables,* as has been
suggested of Balas' algorithm,** then there is little hope of ever
being able to solve really large problems directly.

Probably this important question can be answered only within the
context of specific problem classes, and even then only with a speci-
fically parameterized population of problems of differing sizes. We
shall summarize our experimental investigations in the range of 30-90
variables for three important classes of problems: set covering,
optimal routing, and knapsack with several constraints. The main con-
clusion which emerges i{s that, for the problems run, the imbedded linear
program mitigates approximately exponential dependence of computing
time on the number of variables to what appears to be low-order mo-
nomial dependence -- approximately linear in the first two cases, and
cubic in the third. If these results are at all indicative, then the
present algorithm can be expected to cope routinely with quite large
structured integer linear programs.

SET COVERING

Fekk Feddk
Set covering problems were randomly generated to have 30
constraints, a density of 0.07, and no column dominance. Five samples

each were generated with 30, 40, ..., 90 variables. Each problem was

*
That is, 1f the soluticn time is proportional to some constant
greater than unity raised to the nt power.

ke
See Castellan [5), Fulkerson [12], and the results below.

Balinski {3]) has given an excellent discussion of the structure
and applications of set covering problems.

Professor Melvin Breuer, USC, generated the problems
incidentally to certain other investigations.

-18-

run with an empty initial partial solution, (LPS) used at every oppor-

tunity, and with the last four surrogate constraints retained. The

computational results, presented in Table 2, suggest that the solution

times are increasing approximately linearly with the number of variables.

Table 2

SET COVERING PROBLEMS (30 CONSTRAINTS)

No. 0-1
Variables

Avg Solution Time Avg No.
For 5 Problems (Min)| Iter

30
40
50
60
70
80
90

0.03
0.07
0.08
0.14
0.15
0.21
0.17

S0 w

An attempt was also made to run some of the problems without the

imbedded linear program.

The two attempted 30-variable problems were

solved in 1.6 and 1.2 minutes, but the three attempted 40-variable

problems each exceeded their time limit of 16 minutes. A sequence of

smaller set covering problems with 15 constraints and density 0.2 was

then run. The results are summarized in Table 3.

When plotted on

semilog paper, it seems that times are increasing exponentially with

the number of variables.

Table 3

SET COVERING PROBLEMS (15 CONSTRAINTS):
IMBEDDED LINEAR PROGRAM NOT USED

No. 0-1
Variables

Avg Solution Time
For 4 Problems (Min)

Avg No,
- Iter

15
20
25
30
35

0.02
0.07
0.42
1.13
3.59

44
137
689

1657
4744

("R N

e

-19-

Finally, a representative selection of the above problems was
converted to have a modified form of objective function which is
supposed [3, p. 306] to be relatively difficult for cutting-plane
algorithms: each cost coefficient was set at the number of ones in
its column. Experiments indicate that this kind of weighted set cov-
ering problem is only slightly more difficult when the imbedded linear

program is used.

OPTIMAL ROUTING IN NETWORKS

Consider a network with nodes connected by L links, with link 1
having capacity Ci» and having K distinguished source-sink pairs.
Associated with each source-sink pair is a required flow dk’ and a
collection of routes along which flow is permitted. Let the set Jk
index the routes permitted for source-sink pair k, and yj be the flow

at unit price pj through route j for j ¢ J Designate the link-route

K
matrix by A; that is, aij is 1 if link i is on route j, and is 0 other-
wise. The problem is to meet the demands at minimum cost by integral

flow over permissible routes, without exceeding the link capacities:

K
Minimize E Z p.y, subject to
- 373
k=1 jeJ
k
K
}E: }E: a, .y, Sc, i=l, .., L
k=1 je3, 373 1 o
k
2d , k=1, ..., K
je3, 4 k

yj z 9, yj integer.

The particular numerical example used was adapted from the model

and data of [8). In the language of this reference, there are 9 air

-20-

bases (nodes) and 9 origin-destination pairs (K = 9) requiring various
tonnages (dk) of air cargo shipments. A total of 45 permissible routes
are allowed for the shipments, each of which involves a subset of 32 i
given segments (links). Each segment is taken to contribute a cost

per unit shipped proportional to its air mileage, and to have a capacity
of 3 units of air cargo. Hence each yj is bounded above by 3, and
therefore admits binary representation by two binary variables; a total
of 90 binary variables is required.

The problem was solved in full 90 variable form and also with

some of the routes eliminated. In each case the initial partial

S

solution was empty, (LPS) was used at every opportunity, and the last
four surrogate constraints were retained. The solution times are given
in Table 4. As with the set covering problems, solution times seem to

increase not much faster than linearly with the number of variables.

Table 4

OPTIMAL ROUTING PROBLEMS (41 CONSTRAINTS)

No. O-1 Solution Time
Variables (Min) Iterations
26 0.%6 15
48 0.08 15
60 0.14 23
72 0.20 31
84 0.24 31
90 0,26 k) '

aDue to the method of problem generation,
some of the constraints turn out to be trivial
in the problems with less than 90 variables.

When the algorithm ran without the imbedded linear program on
the two smaller problems, it tended to find an optimal solution just
about as quickly, but took much longer to verify nptimality--8.0
minutes for the 36-variable problem, and in excess of the l6-minute

time limit for the 4B8-variable problem.

AR Ay

‘e

-21-

KNAPSACK WITH MULTIPLE CONSTRAINTS

A "knapsack' problem with 5 constraints and 82 variables was
constructed from the largest problem in {22]. The latter problem, of
the Lorie-Savage capital budgeting variety with 50 alternative projects
subject to 5 capital constraints, was augmented by 32 similar projects.
Smaller problems were then constructed by randomly selecting subsets
of the 82 projects. The right-hand side was kept in constant propor-
tion to the row sums of the resulting coefficient matrix in an attempt
to preserve the relative degree of problem difficulty. Problems were
generated in this way with 30, 40, ..., 80 variables, with four samples
at each size. Each problem was run using an "LP start" (see Sec. IV),
with (LPS) used at every opportunity, and with the last six surrogate

constraints retained. The results are given in Table 5.

Table 5

KNAPSACK (5 CONSTRAINTIS)

No. 0-1 Avg Solution Time Avg No.
Variables | For 4 Problems (Min) |Iterations
30 0.09 79
40 0.27 139
50 0.44 164
60 0.55 189
70 1.11 293
80 1.85 361

Without the imbedded linear program, the results given in Tab.e

6 were obtained.

Table 6

KNAPSACK (5 CONSTRAINTS):
IMBEDDED LINEAR PROGRAM NOT USED

No. 0-1 Avg Solution Time Avg No.
Variables | For 4 Problems (Min) | Iterations
15 0.02 178
20 0.06 402
25 0.36 1,857
30 1.59 7,064

35 9.74 38,385

=22~

With the imbedded linear program, sclution times seem to increase
approximately as the third power of the number of variables. Without
the imbedded linear program, however, a semilog plot suggests that

times are going up exponentially with the number of variables.

COPRr * N

=23~

VI, EXTENSION TO THE MIXED INTEGER CASE

Extension to the mixed integer problem is natural and completely

straight forward. Suppose that (P) is of the form

Minimize cx + dy
(4)
Subject to Ax + Dy + b 2 0

0s xJ < 1 and integer, j =1, ..., n

yego,

where d and y are nl-vectors and D is an m x n, matrix. A partial
solution is still defined in terms of a subset of the xj, but a "com-
pletion" now involves a choice of y as well as a choice of the free

x, variables. The analog of (Ps) 1s the mixed program:

!

Minimize zs + c.x, + dy
&%

(5 "1
S]E:
subject to bi + j;; a“xJ + &1 d“yj 20, 1=1, ..., m

0= X, € 1 and integer, j ¢ S

yJ 20, =1, ..., ny,

and the orocedure of Sec, II remains valid with surrogate constraints

of the form
H(b + Ax + Dy) + (£ - cx - dy) > 0,
The concept of binary-infeasibility is modified to account for the

presence of y in the obvious way, and so is the definition of “strength."
The analog of (LPS) is

-264-

m
Ml’.nl‘.mlz:’:’w ‘g U bi +3 - zS + j;s “'j
(6) o
Subject to wj 2 g uiaij - cj’ j¢s
ub g d.
ugo

ujZO,j¢S,

One uses (6) in a manner precisely analogous to the use of (LPS).
The only possible complication is that (6) may be infeasible, i.e.,

m 20 :uDs d’ may be empty. To avoid this possibility, we can assume
that the minimand of the continuous version of (4) (i.e., without the
integrality requirement) is bounded from below. This assumption can

be enforced, if necessary, by adding an additional constraint sucn as
2:31 vy € Mor cx + dy 2 -M, where M is a suitably large positive
number. Then it is easy to show that (6) is infeasible only if (4)

is also infeasible, in which case the entire procedure terminates.

This extension has not been tested computationally.

Another extension that has not been tested computationally is the
handling of general upper bounds on the integer variables dfrectly rather
than by conversion to the 0O-1 case by binary representation. This can
be done with a slightly modified form of the backtracking procedure
used here. The induced changes should be obvious, such as a change
in the coefficient of wj in (LPS) from 1 to the given upper bound on
x.. An alternative would be to keep the binary representation of upper
bgundod variables but to take advantage of the resulting special struc-
ture; in an expansion requiring 5 binary variables, for example, only
one of the corresponding columns of the A mstrix need be stored explic-
{tly since the other 4 can be generated as needed from the stored

column.

10.

11.
12.

13.

14.

15.

16.

17.

-25-

REFERENCES

Balas, E., "An Additive Algorithm for Solving Linear Programs with
Zero-One Variables,'" Operations Research, Vol. 13, No. 4, July-
August 1965, pp. 517-546.

----- » '"Discrete Programming by the Filter Method," Operations ,
Research, Vol. 15, No. 5, September-October 1967, pp. 915-957.

Balinski, M. L., "Integer Programming: Methods, Uses, and Compu-
tation,'" Management Science, Vol. 12, 1965, pp. 253-313.

Bouvier, B., and G. Messoumian, "Programmes lin€aires en variables
bivalentes, algorithme de Balas," Universit€ de Grenoble, France,
June 1965.

Castellan, J. W., "Political Apportionment by Computer,” Brown
University Computing Review, Vol. I, No. 2, pp. 5-24,

Clasen, R. J., Using Linear Programming as a Simplex Subroutine,
The RAND Corporation, P-3267, November 1965.

Dakin, R. J., "A Tree-Search Algorithm for Mixed Integer Programming
Problems,'" Computer Journal, Vol. 8, No. 3, October 1965,
pp. 250-255.

Fettexr, R. B., and R. C. Steorts, A Model for the Design and
Evaluation of Air Cargo Systems, The RAND Corporation, RM-4801-PR,
October 1966.

Fleischmann, B., "Computational Experience with the Algorithm of
Balas,” QOperations Research, Vol. 15, No. 1, January-February
1967, pp. 153-155.

----- » "Programm zur Losung linearer Optimierungsaufgaben
mit Null-Eins-Variablen,' Deutsches Rechenzentrum, October
19, 1966.

----- » Private communication, November 30, 1966.

Fulkerson, D. R., Review 1015, Mathematical Reviews, Vol. 32,
No. 1, July 1966, p. 170.

Geoffrion, A. M., "An Improved Algorithm for Integer Programming
by Implicit Enumeration,” August 23, 1965 (unpublished).

----- » Integer Programming by Implicit Enumeration and Balas’
Method, The RAND Corporation, RM-4783-PR, February 1966, and

in SIAM Review, Vol, 9, No. 2, April 1967, pp. 178-190.

Glover, F., "A Multiphase-Dual Algorithm for the Zero-One Integer
Programming Problem," Operations Research, Vol. 13, No. 6,
November-December 1965, pp. 879-919.

----- » ""Surrogate Constraints,"” Working Paper 68-5, Graduate
School of Business, University of Texas, Austin, September 1967.

Haldi, J., "25 Integer Programming Test Problems,” Working Paper
No. 43, Graduate School of Business, Stanford University,
December 1964,

18.

19.

20.
21.

22.

23.

24.

25.

26.

-26~-

Herve’, P., "Rééolution des programmes lincaires a variables mixtes
par la procedure S, E. P.," Metra, Vol. VI, No. 1, 1967,
PP. 77-91.

Land, A. H., and A. G. Doig, "An Automatic Method of Solving
Discrete Programming Problems,' Econometrica, Vol. 28, 1960,
pp. 497-520.

Laughhunn, D. J., private commun.. .tion, October 31, 1967.

Lemke, C., and K. Spielberg, Direct Search Zero-One and Mixed
Integer Programming, [BM Corporation, IBM Technical Report
39.008, New York 8cientific Center, July 1966.

Petersen, C. C., "Computational Experience with Variants of the
Balas Algorithm Applied to the Selection of R & D Projects,”
Management Science, Vol. 13, No. 9, May 1967, pp. 736-750.

Roy, B., P. Bertier, and B. T. Nghiem, "Programmes lindaires en
nombres entiers et procedure S. E. P.,"” Metra, Vol. IV, No. 3,
1965.

Spielberg, K., An Algorithm for the Simple Plant Location Problem
with Some 3ide Conditions, IBM Corporation, IBM Technical
Report 320-2900, New York Scientific Center, May 1967.

Trauth, C. A., and R. E. Woolsey, Practical Aspects of Integer
Linear Programming, Sandia Corporation Monograph, SC-R-66-925,
August 1966.

Woiler, S., "Implicit Enumeration Algorithms for Discrete Optimi-
zation Problems,” Ph.D. Dissertation, Department of Industrial
Engineering, Stanford University, May 1967.

e

PT

wavea s

e

DOCUMENT CONTROL DATA

| ORIGINATING ACTIVITY

THE RAND CORPORATION

20. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

2b. GROUP

3. REPORT TITLE

AN IMPROVED IMPLICIT ENUMERATION APPROACH FOR INTEGER PROGRAMMING

4. AUTHOR(S) (Last name, first name, initial)

Geoffrion, A. M.

F44620-67-C-0045

S REPORT DATE 60. TOTAL No. OF PAGES 6b. No. OF REFS.
June 1968 35 26
7 CONTRACT OR GRANT No. 8. ORIGINATOR'S REPORT No.

RM-5644-PR

90 AVAILABILITY / LIMITATION NOTICES

bDRC-1

9b. SPONSORING AGENCY

United States Air Force
Project Rand

10. ABSTRACY

A synthesis of the Balasian implicit
enumeration approach to integer linear
programming with the approach typified by
Land and Doig and by Roy, Bertier, and
Nghiem. This synthesis results from the
use of an imbedded linear program to conm=-
pute surrogate constraints that are as
"strong" as possible in a sense slightly
different from that oripginally used by
Glover. A very simple implicit enumera-
tion algorithm fitted with optional im-
bedded linear programming machinery was
implemented and tested extensively on an
IBM 70LL computer, Use of the imbedded
linear program dramatically reduced solu-
tion time in virtually every case and
sufficed to render the tested algorithm
superior to the other five implicit enu-
meration algorithms for which comparable
published experience was available. The
crucial issue of the scnsitivity of solu-
tion time to the number of integer varij-
ables was given special attention, Se-
quences were run of set covering, optimal
routing, and knapsack problems of varying
sizes up to 90 variables., The results
suggest the following working hypothesis:
Use of the imbedded linear program {n the
prescribed way reduces solution time de-
pendence on the number of variables from
exponential to low~order monomial increase.
Existing evidence supggests that the pres-
ent approach should permit the routine

11. KEY WORDS

Linear progranmirng

Computer programming

Numerical methods and
processes

Optimization

Resource management

solution of practical integer problems
involving hundreds of variables.

