
CN41

INTGEGRB ORA13

Otl TAThS suazocfl~w

C ~ ~ ~ M L~w ECMRW@UGHWAU5

MEMORANDUM

RM-5644-PR

JUNE: 1968

AN IMPROVED

IMPLICIT ENUMERATION APPROACH FOR
INTEGER PROGRAMMING

A. M. Geoffrion

Thi, rv~-earch is supported bv the United States Air Force tinder project RAND - Con-
trart No. F I 1620-67-C-00 15 -MOnitoredl b% the Directorate of Operational Require-
ments and De~clopment Plans~. De~puty Chief of Staff. Research and De~clopmvnt, III
I SA 4. RAND Memoranda are suibject to critival re% iv% procedurts at the research dc-
part ment andi corporate Ivek ls Vivvs anti conclusions expressed herein art- ne~ertheless
the primary responsibility of the anthor, and) should not be interpreted as representing
the official opinion or policy of the I nited States Air Force or of The R ALNl) Corporation.

DISTRIBUTION STATEMENT
This document has been approied for public release and sale; itdisrin isunliitd

~.........

PREFACE

This Memorandum is part of a continuing RAND research effort in

the general area of mathematical programming. It presents a contribu-

tion to the effective solution of a general class of discrete optimi-

zation problems such as the Air Force encounters in scheduling,

sequencing, loading, and other combinatorial and resource allocation

contexts.

The present study incorporates and extends findings from several

of the author's earlier publications. It is a sequel to Integer

Proaramting by Implicit Enumeration and Bales' Method, The RAND

Corporation, RM-4783-PR, February 1966. The basic theoretical results

reported here were established some time ago in an unpublished paper

[13] and were given, along with preliminary computational experience,

in Implicit Enumeration Using an Imbedded Linear Program, The RAND

Corporation, R34-5406-PR, September 1967. Additional computational

experience was sumiarized in Recent Computational Experience with

Three Classes of Intexer Linear Programs, The RAND Corporation, P-3699,

October 1967. The present Memorandum supersedes all of these reports,

and is intended for operations analysts with a background in mathematical

programming and familiarity with R34-4783-PR.

The author is a consultant to The RAND Corporation.

V

This Memorandum synthesizes the Balasian implicit enumeration

approach to integer linear programning with the approach typified by

Land and Doig [19] and by Roy, Bertier and Nghiem [23). The synthesis

results from the use of an imbedded linear program to compute surrogate

constraints that are as "strong" as possible in a sense slightly

different from that originally used'by Glover [15]. A very simple

implicit enumeration algorithm fitted with optional imbedded linear

programing machinery was implemented and tested extensively on an

IBM 7044. Use of the imbedded linear program dramatically reduced

solution times in virtually every case, and sufficed to render the

tested algorithm superior to the five other implicit enumeration

algorithms for which comparable published experience was available.

The crucial issue of the sensitivity of solution time to the number

of integer variables was given special attention. Sequences were run

of set covering, optimal routing, and knapsack problems with multiple

constraints of varying sizes up to 90 variables. The results suggest

an extraordinary working hypothesis: that use of the imbedded linear

program in the prescribed way reduces solution time dependence on the

number of variables from exponential to low-order monomial increase.

The dependence appeared to be approximately linear for the first two

problem classes, with 90 variable problems typically being solved

in about 15 seconds; and approximately cubic for the third class, with

80 variable problems typically solved in less than 2 minutes. In the

35-variable range for all three classes, use of the imbedded linear

program reduced solution times by a factor of about 100. To what

extent the working hypothesis holds for various classes of problems

is obviously a matter warranting further study, but on the basis of

the existing evidence it would appear that the present approach permits

the routine solution of practical integer programs involving hundreds

of variables.

-vii-

ACKNOWJLEDGMENT

I- is a pleasure to acknowledge the able prograzming assistance

of A. B. Nelson of The RAND Corporation.

i

-ix-

CONTENTS

PREFACE .. iii

SUOIARY .. v

ACKNOWLEDGMENT ... vii

Section
S . INTRODUCTION .. I

I1. IMPLICIT ENUMEPATION WITH SURROGATE CONSTRAINTS 4

III. COMPUTING STRONGEST SURROGATE CONSTRAINTS BY LINEAR
PROGRAM ING .. 7

IV. COMPARATIVE COMPUTATIONAL EXPERIENCE 11
Implementation .. 11
Results .. 12
Opportunities for Improvement 13

V. INFLUENCE OF PROBLEM SIZE 17
Set Covering 17
Optimal Routing in Networke 19
Knapsack with Multiple Constraints 21

VI. EXTENSION TO THE MIXED INTEGER CASE 23

REFERENCES 25

I. INTRODUCTION

Any bounded-variable pure integer linear progra-mming problem can

be written in the form

(P) Minimize cx subject to b + Ax 4 0, x binary,

where c and x are n-vectors, b is an m-vector, and A is an m x n matrix.

The implicit enumeration approach to this problem has been the subject

of considerable recent investigation. This approach uses a flexible

"backtracking" procedure for methodically searching through the possible

solutions. Its efficiency depends on the exclusion of a sufficient

proportion of the possible solutions from further consideration by means

of various tests applied to partial solutions. A partial solution is

a subset of the n variables that each have a specific binary value;

variables excluded from the subset are termed free. The tests usually

amount to examining the constraints in an effort to determine whether

any completion of the current partial solution could possibly yield a

feasible solution of (P) that has a lower value of the objective

funztion than the best known feasible solution. Accordingly, the algo-

rithm either continues by augmenting the current partial solution or

backtracks to a different one. Backtracking implies that all possible

completions of the current partial solution have been accounted for

(implicitly enumerated).

Most of these tests can be applied at a reasonable computational

cost essentially to only one constraint at a time. Glover's suggestion

(15) for mitigating this limitation is to periodically introduce addi-

tional "surrogate" constraints that are redundant in the usual sense

and yet effective when the tests are applied to them individually.

These constraints are composed primarily from the given constraints by

nonnegative linear combination. This is the starting point of the

present study.

In the next section we review the rudiments of implicit enumeration

with surrogate constraints. In Sec. III we introduce a measure ot the
"strength" of a given surrogate constraint slightly different from the

SSee, for exaple, Refe. 1, 2, 3, 4, 9, 10, 14, 15, 21, 22, and 26.

one implicitly used by Glover. It is shown how surrogate constraints

that are as strong as possible in this sense can be computed by linear

programming. This not only obviates the need for approximate methods I
of finding good surrogate constraints, but also leads to an additional

important advantage because the dual of the required linear program

coincides exactiy with the continuous version of (P) in the free

variables. Consequently the resulting class of algorithms for

solving (P) can be considered a synthesis of the implicit enumeration

approach as typified by Balas [I] and the approach typified by Land

and Doig [19] and Roy, Bertier and Nghiem [23]. We also mention the

connection of the present work to recent independent work by Balas [2]

and Spielberg [24].

In Sec. IV we present extensive computational experience with

problems of up to 80 variables taken from the literature. The algorithm,

implemented and tested on the IBM 7044, was among the simplest possible

with the present approach. No ad hoc "tests" beyond the basic binary

infeasibility test (see Sec. II) were used, so that no advantage was

taken of special problem structure. The improvements wrought by using

an imbedded linear program in the prescribed way were dlamatic, ane

sufficed to make even this bare-bones algorithm very efficient relative

to the other implicit enumeration algorithms for which comparable pub-

lished experience was available (those of Balas [1], Fleischmann [9,1)],

Lemke and Spielberg [21], Petersen [22], and Woiler [26]).

Section V presents empirical results concerning the influence of

problem size (number of variables) on solution time. This is a crucial

issue that must be faced by any integer programing approach offered

as being of practical interest. Sequences were run of set covering,

optimal routing, and knapsack problems with multiple constraints of

varying sizes up to 90 variables. The results suggest the following

working hypothesis: that use of the imbedded linear program reduces

solution time dependence on the number of variables from exponential

to low-order monomial increase. The dependence seemed to be approx-

imately linear for the first two problem classes and cubic for the

third. If this working hypothesis proves to be even approximately

correct for these and other problem classes, then the present approach

-3-

permits practical integer programs involving hundreds of variables

to be solved routinely. Ninety variable problems of the first

two classes were typically solved in abr t 15 seconds, and 80

variable problems of the third class were typically solved in less

than 2 minutes. In the range of 35 variables, for all three classes,

use of the imbedded linear program reduced solution times by a factor

of about lO0.

Section VI presents the easy and natural extension of the present

approach to the mixed integer case.

-4-

II. IMPLICIT NMERATION WITH SURROGATE CONSTRAINTS

Denote a partial solution by an ordered set S, where each element

is a nonzero integer between -n and n that may or may not be underlined.

An element j (- j) of S indicates that xj takes on the value 1 (0) in
A S=

the partial solution. Using an obvious notation, we write x . 1 (_ 0)3th

if j (- J) is in S. The significance of an underline at the k posi-

tion (counting from the left) is that all completions of the partial

solution up to and including the kth element complemented have been

accounted for. Associated with any partial solution S is an integer

program (Ps) involving the free variables (the variables not fixed by

S):

(P) Minimize cI cx + V cjx, subject to

bi + aijx + a x 0 Oi-l, ... m

0 - x 1 and integer,j f S,

where the notation j E S (S S) refers to the fixed (free) variables.

In addition to the original m constraints, (Ps) may also be

expanded to include one or more surrogate constraints, each of which

is a nonnegative linear combination of the original constraints plus

the constraint (z - cx) > 0, where i is the value of the currently
*

best-known feasible solution of (P). More precisely, each surrogate

constraint has the form

If no feasible solution is known a priori (indeed, (P) may be
infeasible), I can be initially taken as

n

" 1 c I

-5-

p (b + Ax) + (I - cx) > 0

for some nonnegative m-vector p. Such a constraint is clearly satisfied

by any feasible solution of (P) that has a better value of cx than I.

From the results of Ref. 14 or 15 it follows that the following

schema terminates in a finite number of steps either with an optimal

solution of (P), or with an indication that no feasible solution of (P)

exists with value less than the initial value of 1. The sequence of

partial solutions generated is nonredundant in the appropriate sense.

SCHEMA FOR SOLVING WP) BY IMPLICIT ENUMERATION

Step 0: Initialize i at a known upper bound on the optimal

value of (P), and S at an arbitrary partial solution without

underlines.

Step 1: If (Ps) is obviously devoid of a feaaible solution

with value less than i, go to Step 4. If (PS) has an obvious

optimal solution with value less than 1, then replace I by

this value, store the optimal solution as an incumbent, and

go to Step 4. If any free variable must obviously take on

a particular binary value in order for (Ps) to have a fea-

sible solution with value less than i, then augment S on

the right by j (- J) for each variable x that must take on

the value 1 (0).

Step 2: Add a new surrogate constraint and/or delete one

or more current surrogate constraints, or do neither.

Step 3: Augment S on the right by f j for some free variable

(or several free variables) x .

Step 4: Locate the rightmost element of S that is not

underlined. If none exists, terminate; otherwise, replace

the element by its underlined complement and drop all

elements to the right. Return to Step 1.

There is a wide variety of possible mechanisms for implementing

Steps I and 3. Many can be found in, or adapted from, Refs. 1, 4, 9,

ISesIad3 aycnb on

-6-

10, 14, 15, 21, 22, and 26. The possibilities are further multiplied

because the conditional instructions of Step 1 can be executed in any

order or even in parallel. It is important to observe that many of

the possible mechanisms, and perhaps most of the ones that are rela-

tively inexpensive computationally, essentially apply to the constraints

taken one at a time. At Step 1, for example, a prominent role is often

played by tests for binary-infeasibility and for conditional binary-

infeasibility, with each constraint being considered individually. A

constraint is said to be binary-infeasible if it has no binary solution,

and is said to be conditionally binary-infeasible if its binary feasi-

bility is conditional upon certain of the variables taking on particular

binary values. It is easily verified that 0 + E o~x. Z 0 (> 0) is

binary infeasible if and only if 0 + E 1 Max (0, a.1 < 0 (• 0); and

B + Z j Max (0, a I - IctjoI < 0 (0 0) implies x jo 0 or 1, according

as ajo < 0 or Cyjo >0, in any binary solution of D + E jajx z 0 (> 0).

This leads naturally to the desire to introduce surrogate con-

straints at Step 2 that are "strong" in the sense that such tests

are effective when applied to them.

-7-

III. COMIUTING STRONGEST SURROGATE CONSTRAINTS
BY LINEAR PROGRAMMING

Since at any given stage of the calculations only a subset of the

variables is free, the "strength" of a surrogate constraint must be

defined relative to the current partial solution S. The special role

played by conditional and unconditional binary-infeasibility (see Sec.

II) suggests that "strength" be defined in accordance with how near a

constraint is to being binary-infeasible.

Definition. The surrogate constraint P (b + Ax) + (i - cx) > 0

is said to be stronger relative to S than the surrogate constraint
2
1 (b + Ax) + (I - cx) > 0 if the maximum of the left-hand side of

the first constraint is less than the maximum of the left-hand

side of the second constraint, the maxima being taken over binary

values of the free variables.

(For purposes of comparison, the corresponding definition Glover

implicitly uses [15] seems to be: the surrogate constraint 1(b + Ax)
z 0 is said to be stronger relative to S than the surrogate con-

straint 2(b + Ax) z 0 if the maximum of (z - cx) subject to the
first constraint is less than the maximum of (z - cx) subject to the

second constraint, the maxima being taken over binary values of the

free variables.)

Finding a strongest surrogate constraint is, then, the problem

of minimizing, over all 4 a 0, the expression

(1) Max[s(b + Ax) + (z - cx)Ix , 0 or 1, j i S and

xj - x j E S)

I

-8-

or, upon rearrangement, the expression

m ID

(2)- Ji b i + z - z + Max I (rd ia ii -c)x jxj 0 0 or 1, j f S

where we have introduced the notation

zS ;rcjx bS

Now for any i a 0 we have

m

In

- Max ŽJý 0) an i 1 Ž iii - cj)x10SxjS10j f

where the second equality follows from the Dual Theorem of linear

prograing. Using (3) in (2), we obtain the following linear program:

m

Minimize •kb + i- z5 + w

m

(LPS) subject to wj Ž z -iaij - ci, j J S

wj 1 0, j 9 S and ý A 0.

"-9-

Denote the infimal value of (LPS) by V(LPs). It is easy to see that

the desired result is now at hand.

Proposition: Let S be an arbitrary partial solution. Then (LPS)

is necessarily feasible, and

A. V(LPS) • 0 • there exists a binary-infeasible surrogate

constraint;

B. V(LPS) •0 there does not exist a binary-infeasible

surrogate constraint, but any optimal p in (LPS) yields

a strongest surrogate constraint relative to S.

The usefulness of (LPS) is further enhanced by the fact that it

is precisely the dual of the continuous version of (Ps) (in which

o 2 x i• 1 replaces xj = 0 or 1). Consequently, with the help of the

Dual Theorem of linear programming, one can verify that z - v(LP) is a

lower bound on the optimal value of (Ps), and the optimal dual variables

of (LPS) are optimal in (Ps) if they are all integers.

These results show not only how strongest surrogate constraints

can be calculated by linear programming, but also that the aim of Step

1 can be accomplished at no extra computational cost in the course

of attempting to construct a strongest surrogate constraint at Step 2.

More specifically, one would set out to construct a strongest surrogate

constraint by executing simplex iterations on (LPS) until one of the

following mutually exclusive events occurs:

(a) the value of the objective function of (LPS) becomes s 0;

(b) an optimal solution of (LPS) is obtained, and v(LPS) > 0

and the optimal dual variables are all integers;

(c) an optimal solution of (LPS) is obtained, and v(LPs) > 0

but not all of the dual variables are integers.

In event (a), a binary infeasible surrogate constraint must exist, and
consequently one may go to Step 4; in event (b), the optimal solution

of (Ps) is jven by the optimal dual variables ef (LPs), so one should

replace 1 by the new value and the incumbent by the new solution and

go to Step 4; in event (c), a strongest surrogate constraint is obtained

from the optimal w in (LPs).

-10-

Restarting techniques primal with respect to (LPs) can con-

veniently be used to take advantage of the results of previous calcu-

lations each time Step 2 is executed. Since we do not always optimize

(LPs), some of these techniques are pre- as well as post-optimality.

The Revised Simplex format is convenient in this regard. Keep in mind

that the columns of the w1 are just the negatives of the unit vectors

associated with the corresponding slack variables. One consequence

is that the w variables can be treated logically rather than alge-

braically, so that (LPS) is reduced to essentially m nontrivial

variables and as many constraints as free variables. The other impor-

tant consequence is that it is easy to write down a basic feasible

solution to (LPS) for any S; in fact, there is an obvious and simple

procedure for modifying any basic feasible solution for (IPS) until

it becomes basiz feasible for (LP S), where S' 0 S. This avoids the

need for restartin, techniques that are dual with respect to (LP S).

It should be noted that the developments of this section, although

unique in terms of motivation and details of use, are nevertheless

related in certain respects to independent work by other authors.

Land and Doig [19), Dakin [7), Roy, Bertier and Nghiem 123), Serve

[183 and others have also described algorithms that use the continuous

approximation to discrete programs like (PS); but they make little

or no use of the dual variables (p and w). The dual variables k are,

however, used by Balas in his "filter algorithm" [2) to determine

his "filter constraint" -- a close relative of the type of surrogate

constraint employed here. He solves the continuous approximation to

(QS) only once, with S empty, rather than periodically. Recently,

Glover [16) has illuminated the relationship between Balas' filter

constraint and the strongest surrogate constraint of this study

(as presented in an earlier draft), and has suggested possible extensions.

Spielberg [24) has also independently used an approach akin to the

present one, in the special context of the simple plant location problem.

He has suggested in a private comunication to the author that his

"gain function" is analogous to our surrogate constraint.

IV. COMPARATIVE COMPUTATIONAL EXPERIENCE

I)B'LMEUTATION

A simple version of the implicit enumeration procedure has been

implemented and extensively tested on an IBM 7044. It is of completely

general applicability, and takes no advantage of special problem struc-

tures. Step 1 uses just the simple tests for conditional and uncondi-

tional binary-infeasibility mentioned at the end of Sec. II; it recog-
nizes an obvious optimal solution of (PS), in the fashion of Balas (13,
only by the trivial minimization of cx over binary values of the free
variables while ignoring the constraints, and then testing the resulting

solution for feasibility. Step 2 follows the outline and suggestions
given at the end of Sec. 111, except that a binary-infeasible surrogate

constraint is added anyway in event (a), and in event (c) the non-
integer dual variables are rounded in a simple attempt to discover a

good feasible solution of (PS). Step 3 uses a simplified version of
Bales' augentation rule: aupment S by jo0 where Jo maximizes over
all free variables the expression

m

Min (0, b s 4- }.

(This assumes, without loss of generality, that c 1 0.)

The program was written entirely in Fortran IV for RAND's 32,000
word machine. The object program and its data are all-in-core, with

all problem data treated as floating point, and is dimensioned to
handle problems with up to 90 variables and 50 constraints (including
surrogate constraints, if any). The linear programing subroutine

More than 32,000 words of primary storage are required if larger
pJobl*m are to be solved; the number of words required is approximately
n + n(3m + 18) + 9,000.

-12-

is basically a Revised Simplex method with explicit inverse, the

starting point having been a routine due to Clasen [6]. Restarting

techniques were incorporated that use a labeling procedure rather

than more conventional matrix manipulations. The labeling procedure

is based on the observation that fixing a variable at the value 0 or

I can be viewed as demanding equality in the appropriate inequality

constraint among 0 T xS l, J E S, in the continuous version of (PS).

This means that the corresponding dual variables (the w and slacks in

(LPs)) become unconstrained in sign; the appropriate variables are

therefore labeled and treated as "unsigned." This procedure is easier

to program than a more conventional one using matrix manipulations,

and has the advantage of being economical in terms of core and setup

time for the successive linear programs. It has the drawback, however,

that (LPS) (and therefore the explicit inverse) always has n rows,

instead of only as many rows as free variables. Hence each pivot

requires more work.

RISULTS

The code has been used to solve numerous test problem!J with up

to 80 variables taken from the literature. The number of iterations

(executions of Step 1) and execution times (until termination, to the

nearest hundredth of a minute) for most of these problems is presented

in Table 1. We have omitted the problem too small to be of interest.

Each problem was run twice: once skipping Step 2, so that no surrogate

constraints were ever computed; and once with Step 2 fully implemented,

so that an attempt was made to compute a new surrogate constraint each

time, with only the last four surrogate constraints being kept and used.

The columns corresponding to these runs are labeled "9No LP" and "LP

Every Time."

No prior information was used, such as an obvious initial feasible

solution or upper bound on the optimal value of the objective function.

Such information was usually available by inspection, but we did not

wish to further confound comparability with other investigators'

lefs. 1, 4, 11, 17, 21, 22, and 25.

-13-

computational results, which are reproduced in Table 1 for easy

reference. These other investigators are: Bouvier and Messoumian

[4), whose problems are randomly generated without any special struc-

ture at all; Fleschmsann [9], whose "economic" problems are highly

structured; Lemke and Spielberg [21,, whose problems B and D2 are

attributed to M. Sidrow of Texaco, and problem C to W. Arcuri of IBM;

Petersen [22], whose problems are of the Lorne-Savage capital budgeting

variety; and Woiler [263 who ran, among other problems, a number of

Haldi's fixed charge problems [17] and some of the "IBM test problems"

also published by Haldi. Each of these investigators used a different

adaptation of the implicit enumeration approach.

The results summarized in Table 1 indicate that use of the imbedded

linear program (LPS) dramatically reduces the number of required iter-

ations, often by several orders of magnitude; and that this reduction

is more than enough to pay for the time spent working on (LPSs), since

total execution times were greatly reduced in almost every case.

The present algorithm is evidently very efficient relative to the

others; but differences in progrmming and machine speed make it inad-

visable to hazard a quantitative estimate of the apparent improvement.

For comparison with various cutting-plane algorithms for the Haldi

and IBM problems, see [25]; such a comparison, although by no means

unfavorable to the present algorithm, is somewhat prejudiced because upper

bounds on variables have been handled here by binary representation

rather than directly.

A rather conspicuous feature of the algorithm with the imbedded linear

program is that it not only tends to find near-optimal solutions quickly,

but also tends to verify an optimal solution relatively promptly after

one is found. Exceptions are IBM 5 and 9 (in each case an optimun was

found in 0.01 sin.) and most of the Bouvier and Messoumian problems (where

about 90 percent of the computing time was spent verifying an optimum).

OUPOIMITIS• OR IWIOVaUo

The results presented in Table I are subject to further improve-

ment. Substantial improvement could often have been gained simply by

exercising the basic options of the experimental program in a

-14-

Table 1

COMPARATIVE COMPUTATIONAL EXPERIENCE

Prob ler
Size. No LPa LP Every Time

5
Other Algorithms

Problem 0-1 Var x Iter- (7044) Iter- (7044)
Designation Constraints ations Mn tons a Mn Min Machine Version Ref

Bouvier and
Messoumtin .4]

15 20 x 20 515 0.48 21 0.09 0.47 7044 4
16 20 x 20 1,897 1.69 89 0.62 2.07 7044 4
17 20 x 23 889 1.06 115 0.64 0.85 7044 4
18 20 x 23 569 0.59 1 0.04 0.97 7044 4
22 25 x 20 4,267 4.88 143 0.92 3.27 7044 4
23 27 x 20 6,565 8.08 171 1.18 7.10 7044 4
24 28 x 20 8,117 >10.00 281 1.93 15.20 7044 4

Flelschmann [11)
1-35 35 x 8 1,009 0.50 4 0. 0 2 b 0 . 0 4 cd 7094 Ref. 10 9,10
1-50 50 x Ii >10.00 9 0.06b 0 . 2 4 cd 7094 Ref. 10 9,10
1-60 60 x 11 >10,367 >10.00 3 0.04 1 . 6 8 d 7094 Ref. 10 9,10
1-80-1 80 x 11 > 8,557 >10.00 1 0.03 8 .9 5 d 7094 Ref. 10 9,10
1-80-2 80 x 11 > 8,337 >10.00 19 0.20 8 .2 8 d 7094 Ref. 10 9,10

Lamke and
Spielberg i21"

B 35 28 1,995 2.39 35 0.19 5.5 360/40 DZIPI 21
C 44 x 12 2,061 1.90 447 1.38 5 360/40 DZIPI 21
D2 74 x J7 > 3,838 >10.00 >517 >10.00 >30 7094 DZIP1 21

Petersen '.22ý
4 20 x 10 893 0.46 27 0.04 0.06e 7094 RI&2 22
5 28 x 10 13,387 8.85 181 0.24 0.16C 7094 18&R2 22
6 39 x 5 >18,857 >10.00 143 0.43 1.18 7094 R31&62 22
7 50 x 5 >15,577 >10.00 115 0.46 9.55e 7094 It&8.2 22

Kaldi [li
11-7 20 x 4 459 0.10 63 0.03 0.02 360/40 DZIP1 21

1 .. 1 "1 1 0.36 55500 LAR-MAX 26
11-8f 20 x 4 511 0.10 79 0.05 0.40 B5500 LAR-MAX 26
11-10 30 x 10 769 0.41 75 0.06

IBM 117)8
S21 x 7 435 0.14 17 0.01 0.13 35500 LAR-MAX 26
2& 21 x 7 369 0.11 27 0.02 0.17 35500 AIA-MAX 26
38 20 x 3 217 0.04 17 0.01 0.04 35500 LAR-MAX 26
4Z 30 a 15 >13.995 >10.00 57 0.13 6.67 7094 DZIPI 21
5B 30 a 15 >13,858 >10.00 365 1.90 50.00 7094 DZIPI 21
6 31 x 31 > 7,038 >10.00 209 2.00 >50.00 7094 DZIPI 21
9h 15 x 35 551 0.45 107 0.44 -.- ----. ---

a acept for the Naldi and IDM problem, the initial partial solution was taken to be the

empty one. In the Heldi problem, the initial partial solution consisted of all variables at
the value 0. In the IBM problem, each of the original variables was set at the value 1.

bAverase for five slightly different problems of the same size.

CAverage for ten slightly different problem of the sam size.

dThese times 11] are much better than the time announced in 19) because of subsequent

mndificationa [10).

*Thewe time [20) are mach better then those remounced in 1223 because Paterson's program was
converted to a faster machine. The 11 & 32 uodifications are the best of several that Patersen
developed.

fThLb problem woo converted to 0-1 form using a six-place binary expansion for each original
activity variable. This seem to be the sam conversion as was used in r21) and/or !26).

8Probles 1 through $ were converted to 0-1 form by binary representation of the variables
using en upper bound of 7, 7, 31, 3 and 3 in each problem, respectively. This seems to be
the sam conversion as was used in f21) or 126).

h'This problem bed 30 constraints originally. bu, the last 15 have been eliminated here since
they only specify that the variables be binary.

-15-

discriminating rather than uniform manner. It is often more economical,

for example, to employ the imbedded linear program less frequently

than at every opportunity. Lemke and Spielberg's problem C was solved

in 0.45 instead of 1.38 minutes when (LP S) was used only every sixteenth

time. Another possibility is to take advantage of an obvious upper

bound on the optimal value of a given problem. When z was initially

set at an upper bound for IBM 6 that was in error by 20 percent, the

solution time was 1.25 instead of 2.00 minutes. A third possibility

for improvement involves making a more appropriate choice of the initial

partial solution. More plausible initial partial solutions than the

empty one are often obvious when the problem data are inspected. This

was so for IBM 6, and its use reduced the solution time from 2 minutes

to less than 4 seconds. Another source of good initial solutions for

some problems is the linear programming solution of the continuous

approximation to (P). If we take the initial parti iI solution to be

empty, the dual variables of (LP s) the first time aro7und yield this

solution. Taking the next partial solution to consist of the naturally

integral variables causes the algorithm in effect to examine all possible

roundings of the continuous solution first. An option to begin in

this way -- we call this the "LIP start" -- has proven effective for

many problems (e.g., Lemke and Spielberg C is solved in 0.44 minute,

and IBM 6 in 0.34 minute).

Finally, we mention that a very important source of improvement

would be to use tests at Step i that are more powerful than the simple

binary-infeasibility test. The dramatic improvements Fleischmann [9]

and Petersen [22] achieved over the original Balasian algorithm testify

to the untapped potential here. Some of the more powerful tests are

of general applicability, while others capitalize on special problem

structures (remember that we have not taken any advantage here whatever

of special structure in the test pxoblems). Obviously one can take

advantage of structure not only by introducing specialized tests at

Step I, but also by exploiting it in the LP subroutine that is used to

solve (LPs), since (LPs) inherits the structure of (P). It remains

also to implement various augmentation rules for Step 3 other than

Balas'. For example, combining Balas' a'igmentation rule with a

-16-

restriction to the free variables corresponding to fractional dual
variables of (LP S) seems to generally improve performance -- for Leake

and Spielberg C, it reduced the solution time to 0.60 minute.

-17-

V. INFLUENCE OF PROBLEM SIZE

The ultimate practical usefulness of any integer progra-m-ing

algorithm depends on the crucial question, "How fast does solution time

increase with problem size?" The number of variables is perhaps the

main determining factor for implicit enumeration algorithms, since

the number of possible solutions of (P) is 2n. If solution times tend

to increase exponentially with the number of variables, as has been

suggested of Balas' algorithm, then there is little hope of ever

being able to solve really large problems directly.

Probably this important question can be answered only within the

context of specific problem classes, and even then only with a speci-

fically parameterized population of problems of differing sizes. We
shall summarize our experimental investigations in the range of 30-90
.variables for three important classes of problen'" set covering,

optimal routing, and knapsack with several constraints. The main con-

clusion which emerges is that, fox the problems run, the imbedded linear

program mitigates approximately exponential dependence of computing

time on the number of variables to what appears to be low-order mo-

nomial dependence -- approximately linear in the first two cases, and

cubic in the third. If these results are at all indicative, then the

present algorithm can be expected to cope routinely with quite large

structured integer linear programs.

SET COVERING

Set covering problems were randomly generated to have 30

constraints, a density of 0.07, and no column dominance. Five samples

each were generated with 30, 40, ... , 90 variables. Each problem was

S~*
That is, if the soluticn time is proportional to some constant

greater than unity raised to the nth power.

See Castellan [5], Fulkerson [12), and the results below.
*Balinski [3) has given an excellent discussion of the structure

and applications of set covering problems.

Professor Melvin Breuer, USC, generated the problems
incidentally to certain other investigations.

-18-

run with an empty initial partial solution, (LPs) used at every oppor-

tunity, and with the last four surrogate constraints retained. The

computational results, presented in Table 2, suggest that the solution

times are increasing approximately linearly with the number of variables.

Table 2

SET COVERING PROBLEMS (30 CONSTRAINTS)

No. 0-1 Avg Solution Time Avg No.
Variables For 5 Problems (Min) Iter

30 0.03 3
40 0.07 6
50 0.08 4
60 0.14 6
70 0.15 8
80 0.21 6
90 0.17 4

An attempt was also made to run some of the problems without the

imbedded linear program. The two attempted 30-variable problems were

solved in 1.6 and 1.2 minutes, but the three attempted 40-variable

problems each exceeded their time limit of 16 minutes. A sequence of

smaller set covering problems with 15 constraints and density 0.2 was

then run. The results are sumarized in Table 3. When plotted on

semilog paper, it seems that times are increasing exponentially with

the number of variables.

Table 3

SET COVERING PROBLEMS (15 CONSTRAINTS):
IMBEDDED LINEAR PROGRAM NOT USED

No. 0-1 Avg Solution Time Avg No.

Variables For 4 Problems (Min) Iter

15 0.02
20 0.07 137
25 0.42 689
30 1.13 1657
35 3.59 4744

-19-

Finally, a representative selection of the above problems was

converted to have a modified form of objective function which is

supposed [3, p. 306] to be relatively difficult for cutting-plane

algorithms: each cost coefficient was set at the number of ones in

its column. Experiments indicate that this kind of weighted set cov-

ering problem is only slightly more difficult when the imbedded linear

program is used.

OPTIMAL ROUTING IN NETWORKS

Consider a network with nodes connected by L links, with link i

having capacity ci, and having K distinguished source-sink pairs.

Associated with each source-sink pair is a required flow d and a

collection of routes along which flow is permitted. Let the set Jk

index the routes permitted for source-sink pair k, and y. bc the flow

at unit price pj through route j for j e J k Designate the link-route

matrix by A; that is, a.. is 1 if link i is on route j, and is 0 other-
2ij

wise. The problem is to meet the demands at minimum cost by integral

flow over permissible routes, without exceeding the link capacities:

K

Minimize E E pjyj subject to
k-l jeJk

K

E E aijYa y ci, i-l, L
k-l JeJ k

J Ž dk, k-1, ... , K

yj Z 0, yj integer.

The particular numerical example used was adapted from the model

and data of [8]. In the language of this reference, there are 9 air

t-20-

bases (nodes) and 9 origin-destination pairs (K = 9) requiring various

tonnages (dk) of air cargo shipments. A total of 45 permissible routes

are allowed for the shipments, each of which involves a subset of 32

given segments (links). Each segment is taken to contribute a cost

per unit shipped proportional to its air mileage, and to have a capacity

of 3 units of air cargo. Hence each y. is bounded above by 3, and

therefore admits binary representation by two binary variables; a total

of 90 binary variables is required.

The problem was solved in full 90 variable form and also with

some of the routes eliminated. In each case the initial partial

solution was empty, (LPs) was used at every opportunity, and the last

four surrogate constraints were retained. The solution times are given

in Table 4. As with the set covering problems, solution times seem to

increase not much faster than linearly with the number of variables.

Table 4

OPTIMAL ROUTING PROBLEMS (41 CONSTRAINTS)a

No. 0-1 Solution Time
Variables (Min) Iterations

36 0.36 15

48 0.08 15
60 0.14 23
72 0.20 31

84 0.24 31
90,26 0 31

aDue to the method of problem generation,
some of the constraints turn out to be trivial
in the problems with less than 90 variables.

When the algorithm ran without the imbedded linear program on

the two smaller problem., it tended to find an optimal solution just

about as quickly, but took much longer to verify nptimality--8.0

minutes for the 36-variable problem, and in excess of the 16-minute

time limit for the 48-variable problem.

-21-

KNAPSACK WITH MULTIPLE CONSTRAINTS

A "knapsack" problem with 5 constraints and 82 variables was

constructed from the largest problem in [223. The latter problem, of
the Lorie-Savage capital budgeting variety with 50 alternative projects

subject to 5 capital constraints, was augmented by 32 similar projects.

Smaller problems were then constructed by randomly selecting subsets

of the 82 projects. The right-hand side was kept in constant propor-

tion to the row sums of the resulting coefficient matrix in an attempt

to preserve the relative degree of problem difficulty. Problems were

generated in this way with 30, 40, ... , 80 variables, with four samples

at each size. Each problem was run using an "LP start" (see Sec. IV),

with (LPs) used at every opportunity, and with the last six surrogate

constraints retained. The results are given in Table 5.

Table 5

KNAPSACK (5 CONSTRAINTS)

No. 0-I Avg Solution Time Avg No.
Variables For 4 Problems (Min) Iterations

30 0.09 79
40 0.27 139
50 0.44 164
60 0.55 189
70 1.11 293
80 1.85 361

Without the imbedded linear program, the results given in TabLe

6 were obtained.

Table 6

KNAPSACK (5 CONSTRAINTS):
IMBEDDED LINEAR PROGRAM NOT USED

No. 0-1 Avg Solution Time Avg No.
Variables For 4 Problems lMin) Iterations

15 0.02 178
20 0.06 402
25 0.36 1,857
30 1.59 7,064
35 9.74 38,385

-22-

With the imbedded linear program, solution times seem to increase

approximately as the third power of the number of variables. Without

the imbedded linear program, however, a semilog plot suggests that

times are going up exponentially with the number of variables. I
I

I I I

-23-

VI, EXTENSION TO THE MIXED INTEGER CASE

Extension to the mixed integer problem is natural and completely

straightforward. Suppose that (F) is of the form

Minimize cx + dy

(4)
Subject to Ax + Dy + b O 0

0 x xj • 1 and integer, j - 1, ... , n

y 0,

where d and y are n1-vectors and D is an m x n1 matrix. A partial

solution is still defined in terms of a subset of the x., but a "com-

pletion" now involves a choice of y as well as a choice of the free

x variables. The analog of (PS) is the mixed program:

Minimize zS + J cJx1 + dy

(5) nI

subject to bSi + ax + d+ j Y a 0, i = 1, ... , m

0 ! xj < l and integer, j f S

y 2 0, J - 1, ... , nl,

and the procedure of Sec. ii remains valid with surrogate constraints

of the form

W(b + Ax + Dy) + (I - cx - dy) > 0.

The concept of binary-infeasibility is modified to account for the

presence of y in the obvious way, and so is the definition of "strength."

The analog of (LPS) is

-24-

Minimize bS + S + W
VW i ii +"- z + wj

(6) m

Subject to wj • J Z Ia i -'j, j V S

pD d.

•0

w 0 0, j S S.

One uses (6) in a manner precisely analogous to the use of (LPs).

The only possible complication is that (6) may be infeasible, i.e.,

[P Z 0 : P D 9 d' may be empty. To avoid this possibility, we can assume

that the minin•and of the continuous version of (4) (i.e., without the

integrality requirement) is bounded from below. This assumption can

be enforced, if necessary, by adding an additional constraint sucn as
n
Jl YJ 9 M or cx + dy Z -H, where M is a suitably large positive

number. Then it is easy to show that (6) is infeasible only if (4)

is also infeasible, in which case the entire procedure terminates.

This extension has not been tested computationally.

Another extension that has not been tested computationally is the

handling of general upper bounds on the integer variables directly rather

than by conversion to the 0-1 case by binary representation. This can

be done with a slightly modified form of the backtracking procedure

used here. The induced changes should be obvious, such as a change

in the coefficient of w in (LPS) from I to the given upper bound on

xj. An alternative would be to keep the binary representation of upper

bounded variables but to take advantage of the resulting special struc-

ture; in an expansion requiring 5 binary variables, for example, only

one of the corresponding colums of the A matrix need be stored explic-

itly since the other 4 can be generated as needed from the stored

column.

-25-

REFERENCES

1. Balas, E., "An Additive Algorithm for Solving Linear Programs with
Zero-One Variables," Operations Research, Vol. 13, No. 4, July-
August 1965, pp. 517-546.

2. ------- , "Discrete Programming by the Filter Method," Operations
Research, Vol. 15, No. 5, September-October 1967, pp. 915-957.

3. Balinski, M. L., "Integer Programming: Methods, Uses, and Compu-
tation," Management Science, Vol. 12, 1965, pp. 253-313.

4. Bouvier, B., and G. Messoutaian, "Programmes lineaires en variables
bivalentes, algorithme de Balas," Universit& de Grenoble, France,
June 1965.

5. Castellan, J. W., "Political Apportionment by Computer," Brown
University Computing Review, Vol. I, No. 2, pp. 5-24.

6. Clasen, R. J., Using Linear Programming as a Simplex Subroutine,
The RAND Corporation, P-3267, November 1965.

7. Dakin, R. J., "A Tree-Search Algorithm for Mixed Integer Programming
Problems," Computer Journal, Vol. 8, No. 3, October 1965,
pp. 250-255.

8. Fetter, R. B., and R. C. Steorts, A Model for the Design and
Evaluation of Air Cargo Systems, The RAND Corporation, RM-4801-PR,
October 1966.

9. Fleischmann, B., "Computational Experience with the Algorithm of
Balas," Operations Research, Vol. 15, No. 1, January-February
1967, pp. 153-155.

10.- , "Programm zur Losung linearer Optimierungsaufgaben
mit Null-Eins-Variablen," Deutsches Rechenzentrum, October
19, 1966.

11. - ------, private communication, November 30, 1966.

12. Fulkerson, D. R., Review 1015, Mathematical Reviews, Vol. 32,
No. 1, July 1966, p. 170.

13. Geoffrion, A. M., "An Improved Algorithm for Integer Programming
by Implicit Enumeration," August 23, 1965 (unpublished).

14. - ------, Integer Programming by Implicit Enumeration and Balas'
Method, The RAND Corporation, RM-4783-PR, February 1966, and
in SIAM Review, Vol. 9, No. 2, April 1967, pp. 178-190.

15. Glover, F., "A Multiphase-Dual Algorithm for the Zero-One Integer
Programming Problem," Operations Research, Vol. 13, No. 6,
November-December 1965, pp. 879-919.

16. - ------, "Surrogate Constraints," Working Paper 68-5, Graduate
School of Business, University of Texas, Austin, September 1967.

17. Haldi, J., "25 Integer Programming Test Problems," Working Paper
No. 43, Graduate School of Business, Stanford University,
December 1964.

-26-

18. Herve, P., "Resolution des programmes lin'aires a variables mixtes
par Ia proce'dure S. E. P.," Metra, Vol. VI, No. 1, 1967,
pp. 77-91.

19. Land, A. H., and A. G. Doig, "An Automatic Method of Solving
Discrete Programming Problems," Econometrica, Vol. 28, 1960,
pp. 497-520.

20. Laughhunn, D. J., private commun.-.tion, October 31, 1967.

21. Lemke, C., and K. Spielberg, Direct Search Zero-One and Mixed
Integer Programming, LBM Corporation, IBM Technical Report
39.008, New York Scientific Center, July 1966.

22. Petersen, C. C., "Computational Experience with Variants of the
Balas Algorithm Applied to the Selection of R & D Projects,"
Management Science, Vol. 13, No. 9, May 1967, pp. 736-750.

23. Roy, B., P. Bertier, and P. T. Nghiem, "Programmes lindaires en
nombres entiers et procedure S. E. P.," Metra, Vol. IV, No. 3,
1965.

24. Spielberg, K., An Algorithm for the Simple Plant Location Problem
with Some 3ide Conditions, IBM Corporation, IBM Technical
Report 320-2900, New York Scientific Center, May 1967.

25. Trauth, C. A., and R. E. Woolsey, Practical Aspects of Integer
Linear Programming, Sandia Corporation Monograph, SC-R-66-925,
August 1966.

26. Woiler, S., "Implicit Enumeration Algorithms for Discrete Optimi-
zation Problems," Ph.D. Dissertation, Department of Industrial
Engineering, Stanford University, May 1967.

DOCUMENT CONTROL DATA
IORIGINATING ACTIVITY 2o. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
THE RAND CORPORATION 2b. GROUP

3 REPORT TITLE

AN IM4PROVED IMPLICIT ENUMERATION APPROACH FOR INTEGER PROGRAMMING

4. AUTHOR(S) (Last name, first name,initial)

Geoffrion, A. M.

5.REPORT DATE Go. TOTAL No. OF PAGE-S b. No. OF REFS.
June 1968 26

7 CONTRACT OR GRANT No. S. ORIGINATOR'S REPORT No.
F44620-67-C-0045] R-5644-PR

9a AVAILABILITY/LIMITATION NOTICES 9b. SPONSORING AGENCY

DDC-I United States Air Force
Project Rand

10. ABSTRACT II. KEY WORDS

A synthesis of the Balaslan implicit Linear programming
enumeration approach to integer linear Computer programming
programming with the approach typified by Numerical methods and
Land and Doig and by Roy, Bertier, and processes
Nghiem. This synthesis results from the Optimization
use of an imbedded linear program to com- Resource management
pute surrogate constraints that are as

"strong" as possible in a sense slightly
different from that originally used by
Glover. A very simple implicit enumera-
tion algorithm fitted with optional im-
bedded linear programming machinery was
implemented and tested extensively on an
IBM 7044 computer. Use of the imbedded
linear program dramatically reduced solu-
tion time in virtually every case and
sufficed to render the tested algorithm
superior to the other five implicit enu-
meration algorithms for which comparable
published experience was available. The
crucial issue of the sensitivity of solu-
tion time to the number of integer vari-
ables was given special attention. Se-
quences were run of set covering, optimal
routing, and knapsack problems of varying
sizes up to 90 variables. The results
suggest the following working hypothesis:
Use of the imbedded linear program in the
prescribed way reduces solution t'me de-
pendence on the number of variables from
exponential to low-order monomial increase.
Existing evidence supgests that the pres-
ent approach should permit the routine

solution of practical integer problems
involving hundreds of variables.

